Inter-Client Exchange (ICE) Protocol

X Consortium Standard

Robert Scheifler, X Consortium
Jordan Brown
Quarterdeck Office Systems



Inter-Client Exchange (ICE) Protocol: X Consortium Standard
by Robert Scheifler

Jordan Brown

Quarterdeck Office Systems

X Version 11, Release 7.7

Version 1.1
Copyright © 1993, 1994 X Consortium

Abstract

There are numerous possible protocols that can be used for communication among clients. They have many
similarities and common needs, including authentication, version negotiation, data typing, and connection
management. The Inter-Client Exchange (ICE) protocol is intended to provide a framework for building such
protocols. Using |CE reduces the complexity of designing new protocols and allows the sharing of many aspects
of the implementation.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.




Table of Contents

1. PUrPOSE @NO GOBIS ...ttt ettt ettt 1
2. Overview of the ProtOCOl .........coeuuuiiiiiii e 2
R DT = R Y o= TP 4
PrIMITIVE TYPES ..ttt et e e e e e 4
COMPIEX TYPES ettt ettt ettt e e et e et e e e s 4
MESSAZE FOMMIEL ... iiee ettt e e e 4

4. Overall ProtoCOI DESCIIPIION .....uuieiiitiieeeeit ettt ettt e e e e eeeans 6
5. ICE Control Subprotocol -- Major OPCOTE O ..........ueeieiiiieiiiiiieeeeiii e 7
GENENTIC EITOr ClASSES ...iiiitii ettt et e e e eaeens 11

[CE EITOr ClBSSES ....vtueieeiie ettt ettt ettt e e et e e e e nb e eenanns 11

B. SHALE DIGOIAIMS ....eeeti ettt ettt ettt e e et e e et et e et e et e e et et e e et et e e e enra e aen 14
7. ProtoCol ENCOOING ....eeereneeiitie ettt ettt e e e e enaans 17
PHIMITIVES L.ttt ettt e et e e e eaa s 17
ENUMEELIONS ...ttt et e e e e 17
COMPOUNGT TYPES ..ttt ettt ettt ettt e ettt e e et et e et e et s e et etbreeeenbn e e eeentnaaeees 17

[CE MINOF OPCOOES .....vueieiii ettt ettt e et e et e et et e e e e et e e e e et e e e enbanaeeees 17
MESSAgE ENCOUING ...cevtieeeiti ettt ettt ettt e et e et e e et e e e enaa e eenes 18

Error Class ENCOOING .. ..ccuuniiiiiiiei ettt e s 20
Generic Error Class ENCOTING ........cveeuuneiiiiiieiiii et 20

| CE-specific Error Class ENCOTING ........covvvuiiiiiiiieiiii e e 21

AL MOAITICATON HISIOMY ...ttt e et e e eeae e eees 22
REIEaSe 6 10 REIEASE B.1 .....iiiie it 22
Relase 6.1 t0 REIEASE 6.3 ...t 22

B. ICE X ReNdezvOUS ProtOCOI .........cccuuuiiiiiiiiiiiiii ettt e e e e e eees 23
Fg11goTo (8 oi (oo RO UP PP TUPPPTRR 23
Overview Of ICE X RENAEZVOUS ........ccoiiviieiiiiiieeeeii ettt 23
Registering KNOWN ProtOCOIS ........cveeveieieii et 23
INitiating the RENAEZVOUS .......... oo 23

[CE SUDProtoCOl VErSIONING ....cccvvuiiiiitieieiii et eeeens 25




Chapter 1. Purpose and Goals

Indiscussing avariety of protocols-- existing, under development, and hypothetical -- it was noted that
they have many elementsin common. Most protocols need mechanismsfor authentication, for version
negotiation, and for setting up and taking down connections. There are also cases where the same two
parties need to talk to each other using multiple protocols. For example, an embedding relationship
between two parties is likely to require the simultaneous use of session management, data transfer,
focus negotiation, and command notification protocols. While these are logically separate protocols,
it is desirable for them to share as many pieces of implementation as possible.

The Inter-Client Exchange (ICE) protocol providesageneric framework for building protocolsontop
of reliable, byte-stream transport connections. It provides basi c mechanismsfor setting up and shutting
down connections, for performing authentication, for negotiating versions, and for reporting errors.
The protocols running within an ICE connection are referred to here as subprotocols. ICE provides
facilitiesfor each subprotocol to do its own version negotiation, authentication, and error reporting. In
addition, if two parties are communicating using several different subprotocols, ICE will alow them
to share the same transport layer connection.




Chapter 2. Overview of the Protocol

Through some mechanism outside I CE, two parties make themselves known to each other and agree
that they would like to communicate using an ICE subprotocol. ICE assumes that this negotation
includes some notion by which the parties will decide which is the “originating” party and which is
the “answering” party. The negotiation will aso need to provide the originating party with a name
or address of the answering party. Examples of mechanisms by which parties can make themselves
known to each other are the X selection mechanism, environment variables, and shared files.

The originating party first determines whether there is an existing ICE connection between the
two parties. If there is, it can re-use the existing connection and move directly to the setup of the
subprotocol. If no ICE connection exists, the originating party will open atransport connection to the
answering party and will start ICE connection setup.

The ICE connection setup dialog consists of three major parts: byte order exchange, authentication,
and connection information exchange. The first message in each directionisaByt eOr der message
telling which byte order will be used by the sending party in messages that it sends. After that, the
originating party sendsaConnect i onSet up message giving information about itself (vendor name
and release number) and giving alist of ICE version numbers it is capable of supporting and a list
of authentication schemes it is willing to accept. Authentication is optional. If no authentication is
required, the answering party responds with a Connect i onRepl y message giving information
about itself, and the connection setup is compl ete.

If the connection setup is to be authenticated, the answering party will respond with an
Aut hent i cati onRequi r ed message instead of a Connect i onRepl y message. The parties
then exchange Aut henti cati onRepl y and Aut henti cati onNext Phase messages until
authentication is complete, at which time the answering party finally sendsits Connect i onRepl y

message.

Once an ICE connection is established (or an existing connection reused), the originating party starts
subprotocol negotiation by sending a Pr ot ocol Set up message. This message gives the name
of the subprotocol that the parties have agreed to use, along with the ICE major opcode that the
originating party has assigned to that subprotocol. Authentication can aso occur for the subprotocol,
independently of authentication for the connection. Subprotocol authentication is optional. If there
is no subprotocol authentication, the answering party responds with a Pr ot ocol Repl y message,
giving the |CE major opcode that it has assigned for the subprotocol.

Subprotocols are authenticated independently of each other, because they may
have differing security requirements. If there is authentication for this particular
subprotocol, it takes place before the answering party emits the Protocol Reply
message, and it uses the Aut henticationRequired AuthenticationReply and
Aut hent i cat i onNext Phase messages, just as for the connection authentication. Only when
subprotocol authentication is complete doesthe answering party sendits Pr ot ocol Repl y message.

When a subprotocol has been set up and authenticated, the two parties can communicate using
messages defined by the subprotocol. Each message has two opcodes: a major opcode and a minor
opcode. Each party will send messagesusing the major opcodeit hasassignedinitsPr ot ocol Set up
or Pr ot ocol Repl y message. These opcodes will, in general, not be the same. For a particular
subprotocol, each party will need to keep track of two major opcodes: the major opcode it uses when
it sends messages, and the major opcode it expects to see in messages it receives. The minor opcode
values and semantics are defined by each individual subprotocoal.

Each subprotocol will have one or more messages whose semantics are that the subprotocol is to be
shut down. Whether this is done unilaterally or is performed through negotiation is defined by each
subprotocol. Once a subprotocol is shut down, its major opcodes are removed from use; no further
messages on this subprotocol should be sent until the opcodeis reestablished with Pr ot ocol Set up

ICE has a facility to negotiate the closing of the connection when there are no longer any active
subprotocols. When either party decides that no subprotocols are active, it can send aVWant Tod ose




Overview of the Protocol

message. If the other party agreesto close the connection, it can ssimply do so. If the other party wants
to keep the connection open, it can indicate its desire by replying with aNoCl ose message.

It should be noted that the party that initiates the connection isn't necessarily the same as the one
that initiates setting up a subprotocol. For example, suppose party A connects to party B. Party A
will issue the Connect i onSet up message and party B will respond with aConnect i onRepl y
message. (The authentication steps are omitted here for brevity.) Typically, party A will also issue
the Pr ot ocol Set up message and expect aPr ot ocol Repl y from party B. Once the connection
is established, however, either party may initiate the negotiation of a subprotocol. Continuing this
example, party B may decide that it needs to set up a subprotocol for communication with party A.
Party B would issue the Pr ot ocol Set up message and expect aPr ot ocol Repl y from party A.




Chapter 3. Data Types

| CE messages contain several types of data. Byte order isnegotiated in theinitial connection messages,
in general datais sent in the sender's byte order and the receiver is required to swap it appropriately.
In order to support 64-bit machines, ICE messages are padded to multiples of 8 bytes. All messages
are designed so that fields are “naturally” aligned on 16-, 32-, and 64-bit boundaries. The following
formula gives the number of bytes necessary to pad E bytes to the next multiple of b:

pad(E, b) = (b - (E mod b)) mod b

Primitive Types

Type Name Description

CARDS 8-bit unsigned integer

CARD16 16-bit unsigned integer

CARD32 32-bit unsigned integer

BOOL Fal se or Tr ue

LPCE A character from the X Portable Character Set in Latin Portable Character
Encoding

Complex Types

Type Name Type
VERSION [Major, minor: CARD16]
STRING LISTofLPCE

LISTof<type> denotes a counted collection of <type>. The exact encoding varies depending on the
context; see the encoding section.

Message Format

All ICE messages include the following information:

Field Type Description

CARDS8 protocol major opcode

CARDS8 protocol minor opcode

CARD32 length of remaining data in 8-byte units

Thefields are as follows:

Protocol major opcode This specifies what subprotocol the
message is intended for. Major opcode O
isreserved for |CE control messages. The
major opcodes of other subprotocols are
dynamically assigned and exchanged at
protocol negotiation time.

Protocol minor opcode This specifies what protocol-specific
operation is to be performed. Minor




Data Types

Length of datain 8-byte units

opcode O is reserved for Errors; other
values are protocol-specific.

This gpecifies the length of the
information following the first 8 bytes.
Each message-type has a different
format, and will need to be separately
length-checked against this value. As
every data item has either an explicit
length, or an implicit length, this can be
easily accomplished. Messages that have
too little or too much data indicate a
serious protocol failure, and should result
inaBadLengt h error.




Chapter 4. Overall Protocol
Description

Every message sent in a given direction has an implicit sequence number, starting with 1. Sequence
numbers are global to the connection; independent sequence numbers are not maintained for each
protocol.

Messages of a given major-opcode (i.e., of a given protocol) must be responded to (if aresponse is
called for) in order by the receiving party. Messages from different protocols can be responded to in
arbitrary order.

Minor opcode 0 in every protocol is for reporting errors. At most one error is generated per request.
If more than one error condition is encountered in processing a request, the choice of which error is
returned is implementation-dependent.

Error

offending-minor-opcode: CARDS8

severity: {CanContinue, Fat al ToPr ot ocol
Fat al ToConnecti on

sequence-number: CARD32

class: CARD16

value(s): <dependent on major/minor opcode and

class>

Thismessageissent to report an error in response to amessage from any protocol. TheEr r or message
existsinall protocol major-opcode spaces; it isminor-opcode zeroin every protocol . The minor opcode
of the message that caused the error is reported, as well as the sequence number of that message.
The severity indicates the sender's behavior following the identification of the error. CanCont i nue
indicates the sender is willing to accept additional messages for this protocol. Fat al ToPr ocot ol
indicatesthe sender is unwilling to accept further messagesfor thisprotocol but that messagesfor other
protocols may be accepted. Fat al ToConnect i on indicates the sender is unwilling to accept any
further messages for any protocols on the connection. The sender is required to conform to specified
severity conditions for generic and ICE (major opcode 0) errors; see Generic Error Classes | CE Error
Classes. The class definesthe generic class of error. Classes are specified separately for each protocol
(numeric values can mean different things in different protocols). The error values, if any, and their
types vary with the specific error class for the protocol.




Chapter 5. ICE Control Subprotocol --
Major Opcode O

Each of the | CE control opcodesis described below. Most of the messages have additional information
included beyond the description above. The additional information is appended to the message header
and the length field is computed accordingly.

In the following message descriptions, “Expected errors’ indicates errors that may occur in the
normal course of events. Other errors(in particular BadMaj or BadM nor BadSt at e BadLengt h
BadVal ue Prot ocol Dupl i cat e and Maj or QpcodeDupl i cat e might occur, but generally
indicate a serious implementation failure on the part of the errant peer.

Byt eOr der
byte-order: {MSBfirst, LSBf i r st

Both parties must send this message before sending any other, including errors. This message specifies
the byte order that will be used on subsequent messages sent by this party.

Note

Note: If the receiver detects an error in this message, it must be sure to send its own
Byt eOr der message before sending the Er r or .

Connecti onSet up

versions: LISTofVERSION

must-authenticate: BOOL

authenti cati on-protocol-names: LISTof STRING

vendor: STRING

release; STRING

Responses: Connecti onRepl vy,
Aut henti cati onRequired (See
note)

Expected errors: NoVer si on, Set upFai | ed,

NoAut henti cati on,
Aut henti cati onRej ect ed,
Aut henti cati onFai |l ed

The party that initiates the connection (the one that does the "connect()") must send this message as
the second message (after Byt eOr der on startup.

Versions gives alist, in decreasing order of preference, of the protocol versions this party is capable
of speaking. This document specifies major version 1, minor version 0.

If must-authenticate is Tr ue the initiating party demands authentication; the accepting party
must pick an authentication scheme and use it. In this case, the only valid response is
Aut hent i cati onRequi r ed

If must-authenticate is Fal se the accepting party may choose an authentication mechanism,
use a host-address-based authentication scheme, or skip authentication. When must-authenticate
is Fal se Connecti onReply and Aut henti cati onRequi red are both valid responses.




ICE Control Subprotocol
-- Mgjor Opcode 0

If a host-address-based authentication scheme is used, Aut henti cati onRej ected and
Aut hent i cati onFai | ed errors are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is Fal se list of
authentication protocols the party iswilling to perform. If must-authenticate is Tr ue presumably the
party will offer only authentication mechanisms allowing mutual authentication.

Vendor gives the name of the vendor of this |CE implementation.
Release gives the release identifier of this |CE implementation.

Aut hent i cati onRequi r ed

authenti cati on-protocol-index: CARDS8

data: <specific to authentication protocol >
Response: Aut henti cati onReply
Expected errors: Aut hent i cati onRej ect ed,

Aut henti cati onFai |l ed

Thismessageissent inresponsetoaConnect i onSet up or Pr ot ocol Set up message to specify
that authentication isto be done and what authentication mechanism isto be used.

The authentication protocol is specified by a O-based index into the list of names given in the
Connect i onSet up or Pr ot ocol Set up Any protocol-specific datathat might berequiredisalso
sent.

Aut hent i cati onReply
data: <gpecific to authentication protocol>

Responses: Aut hent i cat i onNext Phase, Connecti onReply,
Pr ot ocol Repl y

Expected errors: Aut hent i cati onRej ect ed,
Aut hent i cati onFai | ed, Set upFai | ed

This message is sent in response to an AuthenticationRequired or
Aut hent i cat i onNext Phase message, to supply authentication data as defined by the
authentication protocol being used.

Note that this message is sent by the party that initiated the current negotiation -- the party that sent
theConnect i onSet up or Pr ot ocol Set up message.

Aut hent i cat i onNext Phase indicates that more is to be done to complete the authentication.
If the authentication is complete, Connect i onRepl vy is appropriate if the current authentication
handshake is the result of aConnect i onSet up and aPr ot ocol Repl y isappropriate if it isthe
result of aPr ot ocol Set up.

Aut hent i cat i onNext Phase

data: <specific to authentication protocol>
Response: Aut henti cati onReply
Expected errors: Aut hent i cati onRej ect ed,

Aut henti cati onFai | ed

Thismessageissent in responseto an Aut hent i cat i onRepl y message, to supply authentication
data as defined by the authentication protocol being used.




ICE Control Subprotocol

-- Mgjor Opcode 0
Connecti onReply
version-index: CARDS8
vendor: STRING
release: STRING

Thismessageis sent in responseto aConnect i onSet up or Aut hent i cati onRepl y message
to indicate that the authentication handshake is complete.

Version-index gives a 0-based index into the list of versions offered in the Connect i onSet up
message; it specifies the version of the ICE protocol that both parties should speak for the duration
of the connection.

Vendor gives the name of the vendor of this |CE implementation.
Release gives the release identifier of this |CE implementation.

Pr ot ocol Set up

protocol-name: STRING

major-opcode: CARDS8

versions: LISTof VERSION

vendor: STRING

release: STRING

must-authenticate: BOOL

authenti cati on-protocol-names: LISTof STRING

Responses: Aut hent i cati onRequi r ed,

Pr ot ocol Reply

Expected errors: UnknownPr ot ocol, NoVer si on,
Set upFai | ed,
NoAut hent i cati on,
Aut henti cati onRej ect ed,
Aut hent i cati onFai |l ed

Thismessageisused to initiate negotiation of aprotocol and establish any authentication specifictoit.
Protocol-name gives the name of the protocol the party wishes to speak.
M gjor-opcode gives the opcode that the party will use in messages it sends.

Versions gives a list of version numbers, in decreasing order of preference, that the party is willing
to speak.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

If must-authenticate is Tr ue, the initiating party demands authentication; the accepting party
must pick an authentication scheme and use it. In this case, the only valid response is
Aut henti cati onRequi red

If must-authenticate is Fal se, the accepting party may choose an authentication mechanism,
use a host-address-based authentication scheme, or skip authentication. When must-authenticate
is Fal se, Protocol Reply and Aut henti cati onRequired are both valid responses.




ICE Control Subprotocol
-- Mgjor Opcode 0

If a host-address-based authentication scheme is used, Aut henti cati onRej ected and
Aut hent i cati onFai | ed errors are possible.

Authentication-protocol-names specifies a (possibly null, if must-authenticate is Fal se list of
authentication protocols the party iswilling to perform. If must-authenticate is Tr ue presumably the
party will offer only authentication mechanisms allowing mutual authentication.

Pr ot ocol Repl y

major-opcode: CARDS8
version-index: CARDS
vendor: STRING
release; STRING

This message is sent in response to a Pr ot ocol Set up or Aut hent i cati onRepl y message to
indicate that the authentication handshake is complete.

Major-opcode gives the opcode that this party will use in messages that it sends.

Version-index gives a 0-based index into the list of versions offered in the Pr ot ocol Set up
message; it specifies the version of the protocol that both parties should speak for the duration of the
connection.

Vendor and release are identification strings with semantics defined by the specific protocol being
negotiated.

Pi ng

Response: Pi ngRepl y

Thismessage is used to test if the connection is still functioning.

Pi ngRepl y

Thismessageissent inresponseto aPi ng message, indicating that the connectionisstill functioning.
Want ToCl ose

Responses: Want ToCl ose, NoCl ose, Pr ot ocol Set up

Thismessage is used to initiate a possible close of the connection. The sending party has noticed that,
as aresult of mechanisms specific to each protocol, there are no active protocols |eft. There are four
possible scenarios arising from this request:

1. The receiving side noticed too, and has aready sent a Want ToCl ose On receiving a
Want ToCl ose while already attempting to shut down, each party should simply close the
connection.

2. The receiving side hasn't noticed, but agrees. It closes the connection.

3. ThereceivingsidehasaPr ot ocol Set up "inflight,” inwhich caseitistoignoreVant ToCl ose
and the party sending Want ToCl ose is to abandon the shutdown attempt when it receives the
Pr ot ocol Set up

4. The receiving side wants the connection kept open for some reason not specified by the ICE
protocol, in which caseit sends NoCl ose

See the state transition diagram for additional information.

NoCl ose

10



ICE Control Subprotocol
-- Mgjor Opcode 0

This message is sent in response to a Want ToCl ose message to indicate that the responding party
does not want the connection closed at thistime. The receiving party should not close the connection.
Either party may again initiate Want ToCl ose at some future time.

Generic Error Classes

These errors should be used by al protocols, as applicable. For ICE (major opcode 0),
Fat al ToPr ot ocol should beinterpreted as Fat al ToConnect i on.

BadM nor

offending-minor-opcode: <any>

severity: Fat al ToPr ot ocol or CanConti nue
(protocol's discretion)

values: (none)

Received a message with an unknown minor opcode.

BadSt at e

offending-minor-opcode: <any>

severity: Fat al ToPr ot ocol or CanConti nue
(protocol's discretion)

values: (none)

Received a message with a valid minor opcode which is not appropriate for the current state of the

protocol.

BadLengt h

offending-minor-opcode: <any>

severity: Fat al ToPr ot ocol or CanConti nue
(protocol's discretion)

values: (none)

Received a message with a bad length. The length of the message is longer or shorter than required
to contain the data.

BadVal ue

offending-minor-opcode: <any>

severity: CanConti nue

values: CARD32 Byte offset to offending value

in offending message. CARD32 Length of
offending value. <varies> Offending value

Received a message with a bad value specified.

ICE Error Classes

These errors are all major opcode O errors.

BadMaj or

11



ICE Control Subprotocol

-- Mgjor Opcode 0
offending-minor-opcode; <any>
severity: CanCont i nue
values: CARDS8 Opcode

The opcode given is not one that has been registered.

NoAut henti cati on

offending-minor-opcode: Connect i onSet up, Pr ot ocol Set up
severity: Connect i onSet up \(->
Fat al ToConnecti on
Pr ot ocol Set up \(->

Fat al ToPr ot ocol
values: (none)

None of the authentication protocols offered are available.

NoVer si on

offending-minor-opcode; Connect i onSet up, Pr ot ocol Set up

severity: Connecti onSet up \(->
Fat al ToConnecti on
Pr ot ocol Set up \(->
Fat al ToPr ot ocol

values: (none)

None of the protocol versions offered are available.
Set upFai |l ed

offending-minor-opcode: Connect i onSet up,
Pr ot ocol Set up,
Aut henti cati onReply

severity: Connecti onSet up \(->
Fat al ToConnecti on
Pr ot ocol Set up \(->
Fat al ToPr ot ocol
Aut hent i cati onReply \(->
Fat al ToConnect i on if authenticating
a connection, otherwise
Fat al ToPr ot ocol

values: STRING reason

The sending side is unable to accept the new connection or new protocol for a reason other than
authentication failure. Typically this error will be aresult of inability to alocate additional resources
on the sending side. The reason field will give ahuman-interpretable message providing further detail
on the type of failure.

Aut henti cati onRej ect ed

offending-minor-opcode: Aut hent i cati onReply,
Aut hent i cati onRequi r ed,
Aut hent i cat i onNext Phase

12



ICE Control Subprotocol
-- Mgjor Opcode 0

severity: Fat al ToPr ot ocol
values: STRING reason

Authentication rejected. The peer has failed to properly authenticate itself. The reason field will give
a human-interpretabl e message providing further detail.

Aut hent i cati onFai | ed

offending-minor-opcode: Aut hent i cati onRepl Yy,
Aut hent i cati onRequi r ed,
Aut hent i cat i onNext Phase

severity: Fat al ToPr ot ocol
values: STRING reason

Authentication failed. Aut henti cati onFai |l ed does not imply that the authentication was
rejected, as Aut hent i cati onRej ect ed does. Instead it means that the sender was unable to
complete the authentication for some other reason. (For instance, it may have been unable to contact
an authentication server.) The reason field will give a human-interpretable message providing further
detail.

Pr ot ocol Duplicate

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol (but see note)
values: STRING protocol name

The protocol name was already registered. This is fatal to the "new" protocol being set up by
Pr ot ocol Set up but it does not affect the existing registration.

Maj or OpcodeDupl i cat e

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol (but see note)
values: CARDS8 opcode

The major opcode specified was already registered. Thisisfatal to the “new” protocol being set up by
Pr ot ocol Set up but it does not affect the existing registration.

UnknownPr ot ocol

offending-minor-opcode: Pr ot ocol Set up
severity: Fat al ToPr ot ocol
values: STRING protocol name

The protocol specified is not supported.

13



Chapter 6. State Diagrams

Here are the state diagrams for the party that initiates the connection:

Start:
connect to other end, send Byt eOr der Connect i onSet up -> conn_wait

conn_wait:
receive Connect i onRepl y -> stasis
receive Aut hent i cat i onRequi r ed -> conn_authl
receive Er r or -> quit
receive <other>, send Er r or -> quit

conn_authl:
if good auth data, send Aut hent i cat i onRepl y -> conn_auth2
if bad auth data, send Er r or -> quit

conn_auth2:
receive Connect i onRepl y -> stasis
receive Aut hent i cat i onNext Phase -> conn_authl
receive Er r or -> quit
receive <other>, send Er r or -> quit

Here are top-level state transitions for the party that accepts connections.

listener:
accept connection -> init_wait

init_wait:
receive Byt eOr der Connect i onSet up -> auth_ask
receive <other>, send Er r or -> quit

auth_ask:
send Byt eOr der Connecti onReply
-> stasis

send Aut hent i cat i onRequi r ed -> auth_wait
send Er r or -> quit

auth_wait:
receive Aut hent i cat i onRepl y ->auth_check

receive <other>, send Er r or -> quit

auth_check:
if no more auth needed, send Connect i onRepl y -> stasis
if good auth data, send Aut hent i cat i onNext Phase -> auth_wait
if bad auth data, send Er r or -> quit

Here are the top-level state transitions for all parties after the initial connection establishment
subprotocol.

14



State Diagrams

Note

Note: thisis not quite the truth for branches out from stasis, in that multiple conversations
can be interleaved on the connection.

stasis:
send Pr ot ocol Set up -> proto_wait
receive Pr ot ocol Set up -> proto_reply
send Pi ng -> ping_wait
receive Pi ng send Pi ngRepl y -> stasis
receive Want Tod ose -> shutdown_attempt
receive <other>, send Er r or -> stasis
all protocols shut down, send Vant ToCl ose -> close wait

proto_wait:
receive Pr ot ocol Repl y -> stasis
receive Aut hent i cati onRequi r ed -> give_authl
receive Er r or give up on this protocol -> stasis
receive Want Tod ose -> proto_wait

give authl:
if good auth data, send Aut hent i cat i onRepl y -> give auth2
if bad auth data, send Er r or give up on this protocol -> stasis
receive Want ToC ose -> give authl

give auth2:
receive Pr ot ocol Repl y -> stasis
receive Aut hent i cat i onNext Phase -> give authl
receive Er r or give up on this protocol -> stasis
receive Want Tod ose -> give auth2

proto_reply:
send Pr ot ocol Repl y -> stasis
send Aut hent i cat i onRequi r ed ->take _authl
send Er r or give up on this protocol -> stasis

take authl:
receive Aut hent i cat i onRepl y ->take auth2
receive Er r or give up on this protocol -> stasis

take auth2:
if good auth data \(-> take_auth3
if bad auth data, send Er r or give up on this protocol -> stasis

take auth3:
if no more auth needed, send Pr ot ocol Repl y -> stasis
if good auth data, send Aut hent i cat i onNext Phase ->take authl
if bad auth data, send Er r or give up on this protocol -> stasis

ping_wait:
receive Pi ngRepl y -> stasis

quit:
-> close connection

Here are the state transitions for shutting down the connection:

15



State Diagrams

shutdown_attempt:
if want to stay alive anyway, send NoCl ose -> stasis
else -> quit

close wait:
receive Pr ot ocol Set up -> proto_reply
receive NoCl ose -> stasis
receive Want Tod ose -> quit
connection close -> quit

16



Chapter 7. Protocol Encoding

In the encodings bel ow, the first column isthe number of bytes occupied. The second column iseither
the type (if the value is variable) or the actual value. The third column is the description of the value
(e.g., the parameter name). Receivers must ignore bytes that are designated as unused or pad bytes.

This document describes major version 1, minor version O of the ICE protocol.

LISTof<type> indicates some number of repetitions of <type>, with no additional padding. The

number of repetitions must be specified elsewhere in the message.

Primitives
Type Name Length (bytes) Description
CARDS8 1 8-hit unsigned integer
CARD16 2 16-bit unsigned integer
CARD32 4 32-bit unsigned integer
LPCE 1 A character from the X Portable Character Set in Latin
Portable Character Encoding
Enumerations
Type Name Value Description
BOOL 0 False
1 True
Compound Types
Type Name Length (bytes) Type Description
VERSION
2 CARD16 Major version number
2 CARD16 Minor version number
STRING
2 CARD16 length of string in bytes
LISTofLPCE string
p unused, p = pad(n+2, 4)

ICE Minor opcodes

M essage Name Encoding
Error 0
ByteOrder 1
ConnectionSetup 2

17



Protocol Encoding

M essage Name Encoding
AuthenticationRequired 3
AuthenticationReply 4
AuthenticationNextPhase 5
ConnectionReply 6
Protocol Setup 7
ProtocolReply 8
Ping 9
PingReply 10
WantToClose 11
NoClose 12
Message Encoding
Error
1 CARDS maj or - opcode
1 0 Error
2 CARD16 cl ass
4 (n+p)/8+1 | ength
1 CARDS of f endi ng- m nor - opcode
1 severity:
0 CanCont i nue
1 Fat al ToPr ot oco
2 Fat al ToConnecti on
2 unused
4 CARD32 sequence nunber of erroneous nessage
n <varies> val ue(s)
p pad, p = pad(n,8)
Byt eOr der
1 0 | CE
1 1 Byt eOr der
1 byt e- order:
0 LSBfirst
1 VBBf i r st
1 unused
4 0 | ength

Connect i onSet up

0

2

CARD8

CARD8

(i +) +k+mtp)/ 8+1
BOOL

STRI NG

STRI NG

LI STof STRI NG
LI STof VERSI ON

TIX T TNPRPAPRPRPRPPR

| CE
Connect i onSet up

Nunmber of versions of fered
Nunmber of authentication protocol

| ength

nmust - aut henti cat e
unused

vendor

rel ease

aut henti cati on- pr ot ocol - nanes

version-|ist

unused, p = pad(i +j +k+m 8)

names of f ered

18



Protocol Encoding

Aut hent i cati onRequi r ed

1 0 | CE

1 3 Aut hent i cati onRequi r ed

1 CARDS aut henti cati on- protocol -i ndex
1 unused

4 (n+p)/8+1 | ength

2 n | ength of authentication data
6 unused

n <varies> dat a

p unused, p = pad(n, 8)

Aut henti cati onReply

1 0 | CE

1 4 Aut henti cati onReply

2 unused

4 (n+p)/8+1 [ ength

2 n | ength of authentication data
6 unused

n <vari es> dat a

p unused, p = pad(n, 8)

Aut hent i cat i onNext Phase

1 0 | CE

1 5 Aut hent i cat i onNext Phase

2 unused

4 (n+p)/ 8+1 | ength

2 n | ength of authentication data
6 unused

n <vari es> data

p unused, p = pad(n, 8)

Connecti onReply

1 0 | CE

1 6 Connecti onReply

1 CARD8 ver si on-i ndex

1 unused

4 (i+j+p)/8 [ ength

[ STRI NG vendor

j STRI NG rel ease

p unused, p = pad(i+j, 8)

Pr ot ocol Set up

1 0 | CE

1 7 Pr ot ocol Set up

1 CARD8 maj or - opcode

1 BOCL nmust - aut henti cat e

4 (i +) +k+mtn+p)/ 8+1 | ength

1 CARDS8 Nurmber of versions offered

1 CARD8 Nunmber of authentication protocol nanes offere
6 unused

[ STRI NG pr ot ocol - nane

j STRI NG vendor

k STRI NG rel ease

m LI STof STRI NG aut henti cati on- pr ot ocol - nanes

19



Protocol Encoding

n LI STof VERSI ON version-list
p unused, p = pad(i +j +k+mtn, 8)

Pr ot ocol Repl y

1 0 | CE
1 8 Pr ot ocol Repl y
1 CARDS ver si on-i ndex
1 CARDS maj or - opcode
4 (i+)+p)/8 | ength
[ STRI NG vendor
j STRI NG rel ease
p unused, p = pad(i+j, 8)
Pi ng
1 0 | CE
1 9 Pi ng
2 0 unused
4 0 [ ength
Pi ngRepl y
1 0 | CE
1 10 Pi ngRepl y
2 0 unused
4 0 [ ength
Want ToCl ose
1 0 | CE
1 11 Want ToCl ose
2 0 unused
4 0 | ength
Nodl ose
1 0 | CE
1 12 Nodl ose
2 0 unused
4 0 | ength

Error Class Encoding

Generic errors have classes in the range 0x8000-0xFFFF, and subprotocol-specific errors are in the
range 0x0000-0x7FFF.

Generic Error Class Encoding

Class Encoding
BadMinor 0x8000
BadState 0x8001
BadL ength 0x8002
BadVaue 0x8003

20



Protocol Encoding

ICE-specific Error Class Encoding

Class Encoding
BadMagjor 0
NoAuthentication 1
NoVersion 2
SetupFailed 3

AuthenticationRejected 4
AuthenticationFailed 5
Protocol Duplicate 6
MajorOpcodeDuplicate 7
UnknownProtocol 8

21



Appendix A. Modification History

Release 6 to Release 6.1

Release 6.1 added the ICE X rendezvous protocol (Appendix B) and updated the document version
tol.1

Release 6.1 to Release 6.3

Release 6.3 added the listen on well known ports feature.

22



Appendix B. ICE X Rendezvous
Protocol

Introduction

ThelCE X rendezvous protocol is designed to answer the need posed in Section 2 for one mechanism
by which two clients interested in communicating via ICE are able to exchange the necessary
information. This protocol is appropriate for any two | CE clients who a so have X connections to the
same X server.

Overview of ICE X Rendezvous

The ICE X Rendezvous Mechanism requires clients willing to act as ICE originating parties to
pre-register the ICE subprotocols they support in an ICE_PROTOCOLS property on their top-
level window. Clients willing to act as ICE answering parties then send an ICE_PROTOCOLS X
i ent Message event to the ICE originating parties. ThisC i ent Message event identifies the
I CE network 1Ds of the ICE answering party as well as the ICE subprotocol it wishes to speak. Upon
receipt of this message the ICE originating party uses the information to establish an ICE connection
with the ICE answering party.

Registering Known Protocols

Clientswilling to act as | CE originating parties preregister the | CE subprotocols they support in alist
of atoms held by an ICE_PROTOCOLS property on their top-level window. The name of each atom
listed in ICE_PROTOCOLS must be of the form ICE_INITIATE_pname where pname is the name
of the ICE subprotocol the ICE originating party iswilling to speak, as would be specified in an ICE
Pr ot ocol Set up message.

Clients with an ICE_INITIATE pname atom in the ICE_PROTOCOLS property on their top-
level windows must respond to d i ent Message events of type ICE_ PROTOCOLS specifying
ICE_INITIATE_ pname. If a client does not want to respond to these client message events, it
should remove the ICE_INITIATE_pname atom from its ICE_PROTOCOL S property or remove the
ICE_PROTOCOLS property entirely.

Initiating the Rendezvous

To initiate the rendezvous a client acting as an ICE answering party sendsan X C i ent Message
event of type|CE_PROTOCOL Sto an ICE originating party. ThisICE_PROTOCOL S client message
containstheinformation the | CE originating party needsto identify the | CE subprotocol thetwo parties
will use as well asthe ICE network identification string of the |CE answering party.

Before the | CE answering party sends the client message event it must define atext property on one of
its windows. This text property contains the |CE answering party's | CE network identification string
and will be used by | CE originating partiesto determine the | CE answering party'slist of ICE network
IDs.

The property name will normally be ICE_ NETWORK_IDS, but may be any name of the ICE
answering party's choosing. The format for this text property is as follows:

Field Value

type XA_STRING

format 8

value commarseparated list of ICE network 1Ds

23



ICE X Rendezvous Protocol

Once the | CE answering party has established this text property on one of its windows, it initiates the
rendezvous by sending an ICE_PROTOCOLSd i ent Message event to an | CE originating party's
top-level window. This event has the following format and must only be sent to windows that have
pre-registered the | CE subprotocol in an ICE_PROTOCOLS property on their top-level window.

Field Value

message_type Atom ="ICE_PROTOCOLS"

format 32

datal[0] Atom identifying the | CE subprotocol to speak

datal[1] Timestamp

datal[2] | CE answering party's window ID with ICE network IDs text property

datal[3] Atom naming text property containing the | CE answering party's |ICE
network IDs

datal[4] Reserved. Must be 0.

The name of the atom in data.l[0] must be of the form ICE_INITIATE_pname, where pname is the
name of the | CE subprotocol the ICE answering party wishes to speak.

When an ICE originating party receives a O i ent Message event of type ICE_ PROTOCOLS
specifying ICE_INITIATE_pnameit can initiate an | CE connection with the | CE answering party. To
open this connection the client retrieves the | CE answering party's | CE network | Ds from the window
specified in data.l[2] using the text property specified in data.l[3].

If the connection attempt fails for any reason, the client must respond to the client message event by
sending areturn G i ent Message event to the window specified in data.l[2]. This return event has
the following format:

Field Value

message_type Atom ="ICE_INITIATE_FAILED"

format 32

data.l[O] Atom identifying the | CE subprotocol requested

datall[1] Timestamp

datal[2] Initiating party's window ID (holding ICE_PROTOCOLYS)
datal[3] int: reason for failure

datal[4] Reserved, must be 0

The values of datal[0] and data.l[1] are copied directly from the client message event the client
received.

Thevalueindata.l[2] istheid of thewindow towhichthe ICE_PROTOCOLS.ICE_INITIATE_pname
client message event was sent.

Data.l[3] has one of the following values:

Value Encoding Description

OpenFailed 1 The client was unable to open the connection (e.g.
acall to IceOpenConnection() failed). If the client
is able to distinguish authentication or authorization
errors from general errors, then the preferred reply
isAut hent i cat i onFai | ed for authorization
errors.

AuthenticationFailed 2 Authentication or authorization of the connection
or protocol setup was refused. This reply will be

24



ICE X Rendezvous Protocol

Value Encoding Description

given only if the client is able to distinguish it from
OpenFai | ed otherwise OpenFai | ed will be
returned.

SetupFailed 3 The client was unable to initiate the specified
protocol on the connection (e.g. acall to
| ceProtocol Setup() failed).

UnknownProtocol 4 The client does not recognize the requested protocol.
(This represents a semantic error on the part of the
answering party.)

Refused 5 The client was in the process of removing
ICE_INITIATE_pname from its ICE_PROTOCOLS
list when the client message was sent; the client
no longer iswilling to establish the specified ICE
communication.

Note

Clientswilling to act as | CE originating parties must update the ICE_PROTOCOL S property
ontheir top-level windowstoincludethe ICE_INITIATE_pnameatom(s) identifyingthe | CE
subprotocolsthey speak. The method a client usesto updatethe ICE_PROTOCOL S property
to include ICE_INITIATE_pname atoms is implementation dependent, but the client must
ensure the integrity of the list to prevent the accidental omission of any atoms previously
inthelist.

When setting up the ICE network IDs text property on one of its windows, the ICE
answering party can determine its commarseparated list of ICE network 1Ds by calling
|ceComposeNetworkldList() after making a call to IceListenForConnections(). The method
an |CE answering party uses to find the top-level windows of clients willing to act as ICE
originating parties is dependent upon the nature of the answering party. Some may wish
to use the approach of requiring the user to click on a client's window. Others wishing to
find existing clients without requiring user interaction might use something similar to the
XQueryTree() method used by several freely-available applications. In order for the ICE
answering party to become automatically aware of new clients willing to originate ICE
connections, the ICE answering party might register for SubstructureNotify events on the
root window of the display. When it receives a SubstructureNotify event, the | CE answering
party can check to see if it was the result of the creation of a new client top-level window
with an ICE_PROTOCOLS property.

In any case, before attempting to use this ICE X Rendezvous Mechanism ICE answering
partieswishing to speak | CE subprotocol pname should check for the ICE_INITIATE_pname
atominthel CE_PROTOCOL Sproperty on aclient'stop-level window. A client that does not
includean ICE_INITIATE_pnameatominalCE_PROTOCOL S property on some top-level
window should be assumed toignore Cl i ent Message events of type ICE_PROTOCOLS
specifying ICE_INITIATE_pname for | CE subprotocol pname.

ICE Subprotocol Versioning

Although the version of the | CE subprotocol could be passed in the client message event, | CE provides
more aflexible version negotiation mechanism than will fit withinasingleCl i ent Message event.
Because of this, |CE subprotocol versioning is handled within the ICE protocol setup phase.

Note

Clients wish to communicate with each other via an ICE subprotocol known as "RAP
V1.0". In RAP terminology one party, the "agent", communicates with other RAP-enabled

25



ICE X Rendezvous Protocol

applications on demand. The user may direct the agent to establish communication with a
specific application by clicking on the application's window, or the agent may watch for new
application windows to be created and automatically establish communication.

During startup the | CE answering party (the agent) first calls | ceRegisterForProtocol Reply()
withalist of theversions(i.e., 1.0) of RAPthe agent can speak. The answering party thencalls
| ceListenForConnections() followed by |ceComposeNetworkldList() and storesthe resulting
ICE network IDs string in atext property on one of its windows.

When the answering party (agent) finds a client with which it wishes to speak, it checks
to see if the ICE_INITIATE_RAP atom is in the ICE_PROTOCOLS property on the
client's top-level window. If it is present the agent sends the client's top-level window an
ICE_PROTOCOLS client message event as described above. When the client receives the
client message event and iswilling to originate an | CE connection using RAP, it performsan
| ceRegisterForProtocol Setup() with alist of the versions of RAP the client can speak. The
client then retrieves the agent's | CE network 1D from the property and window specified by
the agent in the client message event and calls |ceOpenConnection(). After this call succeeds
the client calls IceProtocol Setup() specifying the RAP protocol. During this process, ICE
callsthe RAP protocol routines that handle the version negotiation.

Note that it is not necessary for purposes of this rendezvous that the client application call
any ICElib functions prior to receipt of the client message event.

26



	Inter-Client Exchange (ICE) Protocol
	Table of Contents
	Chapter 1. Purpose and Goals
	Chapter 2. Overview of the Protocol
	Chapter 3. Data Types
	Primitive Types
	Complex Types
	Message Format

	Chapter 4. Overall Protocol Description
	Chapter 5. ICE Control Subprotocol -- Major Opcode 0
	Generic Error Classes
	ICE Error Classes

	Chapter 6. State Diagrams
	Chapter 7. Protocol Encoding
	Primitives
	Enumerations
	Compound Types
	ICE Minor opcodes
	Message Encoding
	Error Class Encoding
	Generic Error Class Encoding
	ICE-specific Error Class Encoding


	Appendix A. Modification History
	Release 6 to Release 6.1
	Release 6.1 to Release 6.3

	Appendix B. ICE X Rendezvous Protocol
	Introduction
	Overview of ICE X Rendezvous
	Registering Known Protocols
	Initiating the Rendezvous
	ICE Subprotocol Versioning


