CLHEP 2.4.7.1
C++ Class Library for High Energy Physics
RotationZ.icc
Go to the documentation of this file.
1// -*- C++ -*-
2// ---------------------------------------------------------------------------
3//
4// This file is a part of the CLHEP - a Class Library for High Energy Physics.
5//
6// This is the definitions of the inline member functions of the
7// HepRotationZ class
8//
9
10#include <cmath>
12
13namespace CLHEP {
14
15inline double HepRotationZ::xx() const { return its_c; }
16inline double HepRotationZ::xy() const { return -its_s; }
17inline double HepRotationZ::yx() const { return its_s; }
18inline double HepRotationZ::yy() const { return its_c; }
19
20inline double HepRotationZ::zz() const { return 1.0; }
21inline double HepRotationZ::zy() const { return 0.0; }
22inline double HepRotationZ::zx() const { return 0.0; }
23inline double HepRotationZ::yz() const { return 0.0; }
24inline double HepRotationZ::xz() const { return 0.0; }
25
27 return HepRep3x3 ( its_c, -its_s, 0.0,
28 its_s, its_c, 0.0,
29 0.0, 0.0, 1.0 );
30}
31
32inline HepRotationZ::HepRotationZ() : its_d(0.0), its_s(0.0), its_c(1.0) {}
33
35 its_d(orig.its_d), its_s(orig.its_s), its_c(orig.its_c)
36{}
37
38inline HepRotationZ::HepRotationZ(double dd, double ss, double cc) :
39 its_d(dd), its_s(ss), its_c(cc)
40{}
41
43 its_d = orig.its_d;
44 its_s = orig.its_s;
45 its_c = orig.its_c;
46 return *this;
47}
48
50
52 { return Hep3Vector ( its_c, its_s, 0.0 ); }
54 { return Hep3Vector ( -its_s, its_c, 0.0 ); }
56 { return Hep3Vector ( 0.0, 0.0, 1.0 ); }
57
59 { return Hep3Vector ( its_c, -its_s, 0.0 ); }
61 { return Hep3Vector ( its_s, its_c, 0.0 ); }
63 { return Hep3Vector ( 0.0, 0.0, 1.0 ); }
64
65inline double HepRotationZ::getPhi () const { return phi(); }
66inline double HepRotationZ::getTheta() const { return theta(); }
67inline double HepRotationZ::getPsi () const { return psi(); }
68inline double HepRotationZ::getDelta() const { return its_d; }
69inline Hep3Vector HepRotationZ::getAxis () const { return axis(); }
70
71inline double HepRotationZ::delta() const { return its_d; }
72inline Hep3Vector HepRotationZ::axis() const { return Hep3Vector(0,0,1); }
73
75 return HepAxisAngle ( axis(), delta() );
76}
77
79 (double & ddelta, Hep3Vector & aaxis) const {
80 ddelta = its_d;
81 aaxis = getAxis();
82}
83
84inline bool HepRotationZ::isIdentity() const {
85 return ( its_d==0 );
86}
87
88inline int HepRotationZ::compare ( const HepRotationZ & r ) const {
89 if (its_d > r.its_d) return 1; else if (its_d < r.its_d) return -1; else return 0;
90}
91
92inline bool HepRotationZ::operator==(const HepRotationZ & r) const
93 { return (its_d==r.its_d); }
94inline bool HepRotationZ::operator!=(const HepRotationZ & r) const
95 { return (its_d!=r.its_d); }
96inline bool HepRotationZ::operator>=(const HepRotationZ & r) const
97 { return (its_d>=r.its_d); }
98inline bool HepRotationZ::operator<=(const HepRotationZ & r) const
99 { return (its_d<=r.its_d); }
100inline bool HepRotationZ::operator> (const HepRotationZ & r) const
101 { return (its_d> r.its_d); }
102inline bool HepRotationZ::operator< (const HepRotationZ & r) const
103 { return (its_d< r.its_d); }
104
105inline void HepRotationZ::rectify() {
106 its_d = proper(its_d); // Just in case!
107 its_s = std::sin(its_d);
108 its_c = std::cos(its_d);
109}
110
112 double x = p.x();
113 double y = p.y();
114 double z = p.z();
115 return Hep3Vector( x * its_c - y * its_s,
116 x * its_s + y * its_c,
117 z );
118}
119
121 return operator()(p);
122}
123
124inline HepLorentzVector HepRotationZ::operator()
125 ( const HepLorentzVector & w ) const {
126 return HepLorentzVector( operator() (w.vect()) , w.t() );
127}
128
129inline HepLorentzVector HepRotationZ::operator *
130 (const HepLorentzVector & p) const {
131 return operator()(p);
132}
133
135 return *this = (*this) * (m1);
136}
137
139 return *this = m1 * (*this);
140}
141
142inline double HepRotationZ::proper( double ddelta ) {
143 // -PI < d <= PI
144 if ( std::fabs(ddelta) < CLHEP::pi ) {
145 return ddelta;
146 } else {
147 double x = ddelta / (CLHEP::twopi);
148 return (CLHEP::twopi) * ( x + std::floor(.5-x) );
149 }
150} // proper()
151
154 its_s*rz.its_c + its_c*rz.its_s,
155 its_c*rz.its_c - its_s*rz.its_s );
156}
157
159 return HepRotationZ( proper(-its_d), -its_s, its_c );
160}
161
163 return r.inverse();
164}
165
167 return *this=inverse();
168}
169
171 { return HepLorentzVector (colX(), 0); }
173 { return HepLorentzVector (colY(), 0); }
175 { return HepLorentzVector (colZ(), 0); }
177 { return HepLorentzVector (0,0,0,1); }
179 { return HepLorentzVector (rowX(), 0); }
181 { return HepLorentzVector (rowY(), 0); }
183 { return HepLorentzVector (rowZ(), 0); }
185 { return HepLorentzVector (0,0,0,1); }
186inline double HepRotationZ::xt() const { return 0.0; }
187inline double HepRotationZ::yt() const { return 0.0; }
188inline double HepRotationZ::zt() const { return 0.0; }
189inline double HepRotationZ::tx() const { return 0.0; }
190inline double HepRotationZ::ty() const { return 0.0; }
191inline double HepRotationZ::tz() const { return 0.0; }
192inline double HepRotationZ::tt() const { return 1.0; }
193
195 return HepRep4x4 ( its_c, -its_s, 0.0, 0.0,
196 its_s, its_c, 0.0, 0.0,
197 0.0, 0.0, 1.0, 0.0,
198 0.0, 0.0, 0.0, 1.0 );
199}
200
204inline double HepRotationZ::setTolerance(double tol) {
206}
207
208} // namespace CLHEP
double z() const
double x() const
double y() const
static double setTolerance(double tol)
HepLorentzVector row4() const
double getTheta() const
Definition RotationZ.icc:66
double xy() const
Definition RotationZ.icc:16
double delta() const
Definition RotationZ.icc:71
HepRep3x3 rep3x3() const
Definition RotationZ.icc:26
double yz() const
Definition RotationZ.icc:23
double psi() const
HepAxisAngle axisAngle() const
Definition RotationZ.icc:74
HepRotationZ & transform(const HepRotationZ &r)
double tt() const
Hep3Vector operator()(const Hep3Vector &p) const
Hep3Vector colY() const
Definition RotationZ.icc:53
double phi() const
bool operator>=(const HepRotationZ &r) const
Definition RotationZ.icc:96
bool isIdentity() const
Definition RotationZ.icc:84
double xz() const
Definition RotationZ.icc:24
double ty() const
double yt() const
double tz() const
HepRotationZ & invert()
double zz() const
Definition RotationZ.icc:20
Hep3Vector colZ() const
Definition RotationZ.icc:55
HepLorentzVector col1() const
bool operator<(const HepRotationZ &r) const
double xx() const
Definition RotationZ.icc:15
double zx() const
Definition RotationZ.icc:22
double getDelta() const
Definition RotationZ.icc:68
static double getTolerance()
HepRep4x4 rep4x4() const
Hep3Vector operator*(const Hep3Vector &p) const
double yy() const
Definition RotationZ.icc:18
double zt() const
HepLorentzVector row1() const
Hep3Vector rowY() const
Definition RotationZ.icc:60
HepLorentzVector col4() const
bool operator>(const HepRotationZ &r) const
Hep3Vector getAxis() const
Definition RotationZ.icc:69
Hep3Vector colX() const
Definition RotationZ.icc:51
HepLorentzVector col2() const
HepRotationZ & operator*=(const HepRotationZ &r)
bool operator==(const HepRotationZ &r) const
Definition RotationZ.icc:92
HepRotationZ inverse() const
HepLorentzVector row2() const
bool operator!=(const HepRotationZ &r) const
Definition RotationZ.icc:94
static double setTolerance(double tol)
double getPhi() const
Definition RotationZ.icc:65
Hep3Vector axis() const
Definition RotationZ.icc:72
HepLorentzVector row3() const
bool operator<=(const HepRotationZ &r) const
Definition RotationZ.icc:98
double yx() const
Definition RotationZ.icc:17
double xt() const
double theta() const
void getAngleAxis(double &delta, Hep3Vector &axis) const
Definition RotationZ.icc:79
Hep3Vector rowX() const
Definition RotationZ.icc:58
double zy() const
Definition RotationZ.icc:21
HepLorentzVector col3() const
int compare(const HepRotationZ &r) const
Definition RotationZ.icc:88
static double proper(double delta)
double tx() const
HepRotationZ & operator=(const HepRotationZ &r)
Definition RotationZ.icc:42
Hep3Vector rowZ() const
Definition RotationZ.icc:62
double getPsi() const
Definition RotationZ.icc:67
HepBoost inverseOf(const HepBoost &lt)
Definition Boost.icc:266