Concrete class implementing several nonlinear CG algorithms.
More...
#include <OptiPack_NonlinearCG_decl.hpp>
Inherits Describable, VerboseObject< NonlinearCG< Scalar > >, and ParameterListAcceptorDefaultBase.
|
typedef ScalarTraits< Scalar >::magnitudeType | ScalarMag |
|
|
(Note that these are not member functions.)
|
template<typename Scalar > |
const RCP< NonlinearCG< Scalar > > | nonlinearCG () |
| Nonmember constructor. More...
|
|
template<typename Scalar > |
const RCP< NonlinearCG< Scalar > > | nonlinearCG (const RCP< const Thyra::ModelEvaluator< Scalar > > &model, const int paramIndex, const int responseIndex, const RCP< GlobiPack::LineSearchBase< Scalar > > &linesearch) |
| Nonmember constructor. More...
|
|
template<typename Scalar>
class OptiPack::NonlinearCG< Scalar >
Concrete class implementing several nonlinear CG algorithms.
ToDo: Finish Documentation!
Definition at line 88 of file OptiPack_NonlinearCG_decl.hpp.
◆ ScalarMag
template<typename Scalar>
◆ NonlinearCG()
template<typename Scalar >
◆ initialize()
template<typename Scalar>
void OptiPack::NonlinearCG< Scalar >::initialize |
( |
const RCP< const Thyra::ModelEvaluator< Scalar > > & |
model, |
|
|
const int |
paramIndex, |
|
|
const int |
responseIndex, |
|
|
const RCP< GlobiPack::LineSearchBase< Scalar > > & |
linesearch |
|
) |
| |
◆ get_solverType()
template<typename Scalar >
◆ get_alpha_init()
template<typename Scalar >
◆ get_alpha_reinit()
template<typename Scalar >
◆ get_and_conv_tests()
template<typename Scalar >
◆ get_minIters()
template<typename Scalar >
◆ get_maxIters()
template<typename Scalar >
◆ get_g_reduct_tol()
template<typename Scalar >
◆ get_g_grad_tol()
template<typename Scalar >
◆ get_g_mag()
template<typename Scalar >
◆ setParameterList()
template<typename Scalar >
◆ getValidParameters()
template<typename Scalar >
◆ doSolve()
template<typename Scalar>
Perform a solve.
- Parameters
-
p | [in/out] On input p is the initial guess for the solution. On output, will be the final estimate for the solution. |
g_opt | [out] On output, *g_opt will be set to the final value of the objective function. |
tol | [in] If !is_null(tol) , then *tol will be the tolerance used to determine the convergence of the algorithm by comparing to norm(g_grad) (where norm(...) is the natural norm defined by the vector spaces scalar product). If is_null(tol) , then the tolerance will be determined in some other way. |
alpha_init | [in] If !is_null(alpha_init) , then *alpha_init will be the initial line search step length on the very first nonlinear CG iteration. If is_null(alpha_init) , the initial step length will be determined automatically. |
numIters | [out] If nonnull(numIters) , then on output *numIters gives the number of iterations taken by the algorithm. |
- Returns
- Returns
true
if the solution was found. Returns false
if a line search failure is encountered.
Definition at line 257 of file OptiPack_NonlinearCG_def.hpp.
◆ nonlinearCG() [1/2]
template<typename Scalar >
◆ nonlinearCG() [2/2]
template<typename Scalar >
const RCP< NonlinearCG< Scalar > > nonlinearCG |
( |
const RCP< const Thyra::ModelEvaluator< Scalar > > & |
model, |
|
|
const int |
paramIndex, |
|
|
const int |
responseIndex, |
|
|
const RCP< GlobiPack::LineSearchBase< Scalar > > & |
linesearch |
|
) |
| |
|
related |
◆ model_
template<typename Scalar>
◆ paramIndex_
template<typename Scalar>
◆ responseIndex_
template<typename Scalar>
◆ linesearch_
template<typename Scalar>
◆ solverType_
template<typename Scalar>
◆ alpha_init_
template<typename Scalar>
◆ alpha_reinit_
template<typename Scalar>
◆ and_conv_tests_
template<typename Scalar>
◆ minIters_
template<typename Scalar>
◆ maxIters_
template<typename Scalar>
◆ g_reduct_tol_
template<typename Scalar>
◆ g_grad_tol_
template<typename Scalar>
◆ g_mag_
template<typename Scalar>
◆ numIters_
template<typename Scalar>
◆ solverType_validator_
template<typename Scalar>
RCP< Teuchos::ParameterEntryValidator > OptiPack::NonlinearCG< Scalar >::solverType_validator_ = Teuchos::null |
|
staticprivate |
The documentation for this class was generated from the following files: