#ifndef WUFFS_INCLUDE_GUARD #define WUFFS_INCLUDE_GUARD // Wuffs ships as a "single file C library" or "header file library" as per // https://github.com/nothings/stb/blob/master/docs/stb_howto.txt // // To use that single file as a "foo.c"-like implementation, instead of a // "foo.h"-like header, #define WUFFS_IMPLEMENTATION before #include'ing or // compiling it. // Wuffs' C code is generated automatically, not hand-written. These warnings' // costs outweigh the benefits. // // The "elif defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" #pragma GCC diagnostic ignored "-Wmissing-field-initializers" #pragma GCC diagnostic ignored "-Wunreachable-code" #pragma GCC diagnostic ignored "-Wunused-function" #pragma GCC diagnostic ignored "-Wunused-parameter" #if defined(__cplusplus) #pragma GCC diagnostic ignored "-Wold-style-cast" #endif #elif defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wimplicit-fallthrough" #pragma clang diagnostic ignored "-Wmissing-field-initializers" #pragma clang diagnostic ignored "-Wunreachable-code" #pragma clang diagnostic ignored "-Wunused-function" #pragma clang diagnostic ignored "-Wunused-parameter" #if defined(__cplusplus) #pragma clang diagnostic ignored "-Wold-style-cast" #endif #endif // Copyright 2017 The Wuffs Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #ifdef __cplusplus #if (__cplusplus >= 201103L) || defined(_MSC_VER) #include #define WUFFS_BASE__HAVE_EQ_DELETE #define WUFFS_BASE__HAVE_UNIQUE_PTR // The "defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #elif defined(__GNUC__) || defined(__clang__) #warning "Wuffs' C++ code expects -std=c++11 or later" #endif extern "C" { #endif // ---------------- Version // WUFFS_VERSION is the major.minor.patch version, as per https://semver.org/, // as a uint64_t. The major number is the high 32 bits. The minor number is the // middle 16 bits. The patch number is the low 16 bits. The pre-release label // and build metadata are part of the string representation (such as // "1.2.3-beta+456.20181231") but not the uint64_t representation. // // WUFFS_VERSION_PRE_RELEASE_LABEL (such as "", "beta" or "rc.1") being // non-empty denotes a developer preview, not a release version, and has no // backwards or forwards compatibility guarantees. // // WUFFS_VERSION_BUILD_METADATA_XXX, if non-zero, are the number of commits and // the last commit date in the repository used to build this library. Within // each major.minor branch, the commit count should increase monotonically. // // WUFFS_VERSION was overridden by "wuffs gen -version" based on revision // 00d5e35865a2f2718f4bb2596adaaa54bd639bbe committed on 2023-04-08. #define WUFFS_VERSION 0x000030003 #define WUFFS_VERSION_MAJOR 0 #define WUFFS_VERSION_MINOR 3 #define WUFFS_VERSION_PATCH 3 #define WUFFS_VERSION_PRE_RELEASE_LABEL "" #define WUFFS_VERSION_BUILD_METADATA_COMMIT_COUNT 3399 #define WUFFS_VERSION_BUILD_METADATA_COMMIT_DATE 20230408 #define WUFFS_VERSION_STRING "0.3.3+3399.20230408" // ---------------- Configuration // Define WUFFS_CONFIG__AVOID_CPU_ARCH to avoid any code tied to a specific CPU // architecture, such as SSE SIMD for the x86 CPU family. #if defined(WUFFS_CONFIG__AVOID_CPU_ARCH) // (#if-chain ref AVOID_CPU_ARCH_0) // No-op. #else // (#if-chain ref AVOID_CPU_ARCH_0) // The "defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #if defined(__GNUC__) || defined(__clang__) #define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg) __attribute__((target(arg))) #else #define WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET(arg) #endif // defined(__GNUC__) || defined(__clang__) #if defined(__GNUC__) // (#if-chain ref AVOID_CPU_ARCH_1) // To simplify Wuffs code, "cpu_arch >= arm_xxx" requires xxx but also // unaligned little-endian load/stores. #if defined(__ARM_FEATURE_UNALIGNED) && !defined(__native_client__) && \ defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) // Not all gcc versions define __ARM_ACLE, even if they support crc32 // intrinsics. Look for __ARM_FEATURE_CRC32 instead. #if defined(__ARM_FEATURE_CRC32) #include #define WUFFS_BASE__CPU_ARCH__ARM_CRC32 #endif // defined(__ARM_FEATURE_CRC32) #if defined(__ARM_NEON) #include #define WUFFS_BASE__CPU_ARCH__ARM_NEON #endif // defined(__ARM_NEON) #endif // defined(__ARM_FEATURE_UNALIGNED) etc // Similarly, "cpu_arch >= x86_sse42" requires SSE4.2 but also PCLMUL and // POPCNT. This is checked at runtime via cpuid, not at compile time. // // Likewise, "cpu_arch >= x86_avx2" also requires PCLMUL, POPCNT and SSE4.2. #if defined(__i386__) || defined(__x86_64__) #if !defined(__native_client__) #include #include // X86_FAMILY means X86 (32-bit) or X86_64 (64-bit, obviously). #define WUFFS_BASE__CPU_ARCH__X86_FAMILY #endif // !defined(__native_client__) #endif // defined(__i386__) || defined(__x86_64__) #elif defined(_MSC_VER) // (#if-chain ref AVOID_CPU_ARCH_1) #if defined(_M_IX86) || defined(_M_X64) #if defined(__AVX__) || defined(__clang__) // We need for the __cpuid function. #include // That's not enough for X64 SIMD, with clang-cl, if we want to use // "__attribute__((target(arg)))" without e.g. "/arch:AVX". // // Some web pages suggest that is all you need, as it pulls in // the earlier SIMD families like SSE4.2, but that doesn't seem to work in // practice, possibly for the same reason that just doesn't work. #include // AVX, AVX2, FMA, POPCNT #include // SSE4.2 #include // AES, PCLMUL // X86_FAMILY means X86 (32-bit) or X86_64 (64-bit, obviously). #define WUFFS_BASE__CPU_ARCH__X86_FAMILY #else // defined(__AVX__) || defined(__clang__) // clang-cl (which defines both __clang__ and _MSC_VER) supports // "__attribute__((target(arg)))". // // For MSVC's cl.exe (unlike clang or gcc), SIMD capability is a compile-time // property of the source file (e.g. a /arch:AVX or -mavx compiler flag), not // of individual functions (that can be conditionally selected at runtime). #pragma message("Wuffs with MSVC+IX86/X64 needs /arch:AVX for best performance") #endif // defined(__AVX__) || defined(__clang__) #endif // defined(_M_IX86) || defined(_M_X64) #endif // (#if-chain ref AVOID_CPU_ARCH_1) #endif // (#if-chain ref AVOID_CPU_ARCH_0) // -------- // Define WUFFS_CONFIG__STATIC_FUNCTIONS (combined with WUFFS_IMPLEMENTATION) // to make all of Wuffs' functions have static storage. // // This can help the compiler ignore or discard unused code, which can produce // faster compiles and smaller binaries. Other motivations are discussed in the // "ALLOW STATIC IMPLEMENTATION" section of // https://raw.githubusercontent.com/nothings/stb/master/docs/stb_howto.txt #if defined(WUFFS_CONFIG__STATIC_FUNCTIONS) #define WUFFS_BASE__MAYBE_STATIC static #else #define WUFFS_BASE__MAYBE_STATIC #endif // defined(WUFFS_CONFIG__STATIC_FUNCTIONS) // ---------------- CPU Architecture static inline bool // wuffs_base__cpu_arch__have_arm_crc32() { #if defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) return true; #else return false; #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) } static inline bool // wuffs_base__cpu_arch__have_arm_neon() { #if defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) return true; #else return false; #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) } static inline bool // wuffs_base__cpu_arch__have_x86_avx2() { #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // GCC defines these macros but MSVC does not. // - bit_AVX2 = (1 << 5) const unsigned int avx2_ebx7 = 0x00000020; // GCC defines these macros but MSVC does not. // - bit_PCLMUL = (1 << 1) // - bit_POPCNT = (1 << 23) // - bit_SSE4_2 = (1 << 20) const unsigned int avx2_ecx1 = 0x00900002; // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). #if defined(__GNUC__) unsigned int eax7 = 0; unsigned int ebx7 = 0; unsigned int ecx7 = 0; unsigned int edx7 = 0; if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) && ((ebx7 & avx2_ebx7) == avx2_ebx7)) { unsigned int eax1 = 0; unsigned int ebx1 = 0; unsigned int ecx1 = 0; unsigned int edx1 = 0; if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) && ((ecx1 & avx2_ecx1) == avx2_ecx1)) { return true; } } #elif defined(_MSC_VER) // defined(__GNUC__) int x7[4]; __cpuidex(x7, 7, 0); if ((((unsigned int)(x7[1])) & avx2_ebx7) == avx2_ebx7) { int x1[4]; __cpuid(x1, 1); if ((((unsigned int)(x1[2])) & avx2_ecx1) == avx2_ecx1) { return true; } } #else #error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler" #endif // defined(__GNUC__); defined(_MSC_VER) #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) return false; } static inline bool // wuffs_base__cpu_arch__have_x86_bmi2() { #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // GCC defines these macros but MSVC does not. // - bit_BMI2 = (1 << 8) const unsigned int bmi2_ebx7 = 0x00000100; // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). #if defined(__GNUC__) unsigned int eax7 = 0; unsigned int ebx7 = 0; unsigned int ecx7 = 0; unsigned int edx7 = 0; if (__get_cpuid_count(7, 0, &eax7, &ebx7, &ecx7, &edx7) && ((ebx7 & bmi2_ebx7) == bmi2_ebx7)) { return true; } #elif defined(_MSC_VER) // defined(__GNUC__) int x7[4]; __cpuidex(x7, 7, 0); if ((((unsigned int)(x7[1])) & bmi2_ebx7) == bmi2_ebx7) { return true; } #else #error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler" #endif // defined(__GNUC__); defined(_MSC_VER) #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) return false; } static inline bool // wuffs_base__cpu_arch__have_x86_sse42() { #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // GCC defines these macros but MSVC does not. // - bit_PCLMUL = (1 << 1) // - bit_POPCNT = (1 << 23) // - bit_SSE4_2 = (1 << 20) const unsigned int sse42_ecx1 = 0x00900002; // clang defines __GNUC__ and clang-cl defines _MSC_VER (but not __GNUC__). #if defined(__GNUC__) unsigned int eax1 = 0; unsigned int ebx1 = 0; unsigned int ecx1 = 0; unsigned int edx1 = 0; if (__get_cpuid(1, &eax1, &ebx1, &ecx1, &edx1) && ((ecx1 & sse42_ecx1) == sse42_ecx1)) { return true; } #elif defined(_MSC_VER) // defined(__GNUC__) int x1[4]; __cpuid(x1, 1); if ((((unsigned int)(x1[2])) & sse42_ecx1) == sse42_ecx1) { return true; } #else #error "WUFFS_BASE__CPU_ARCH__ETC combined with an unsupported compiler" #endif // defined(__GNUC__); defined(_MSC_VER) #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) return false; } // ---------------- Fundamentals // Wuffs assumes that: // - converting a uint32_t to a size_t will never overflow. // - converting a size_t to a uint64_t will never overflow. #if defined(__WORDSIZE) #if (__WORDSIZE != 32) && (__WORDSIZE != 64) #error "Wuffs requires a word size of either 32 or 64 bits" #endif #endif // The "defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #if defined(__GNUC__) || defined(__clang__) #define WUFFS_BASE__POTENTIALLY_UNUSED __attribute__((unused)) #define WUFFS_BASE__WARN_UNUSED_RESULT __attribute__((warn_unused_result)) #else #define WUFFS_BASE__POTENTIALLY_UNUSED #define WUFFS_BASE__WARN_UNUSED_RESULT #endif // -------- // Options (bitwise or'ed together) for wuffs_foo__bar__initialize functions. #define WUFFS_INITIALIZE__DEFAULT_OPTIONS ((uint32_t)0x00000000) // WUFFS_INITIALIZE__ALREADY_ZEROED means that the "self" receiver struct value // has already been set to all zeroes. #define WUFFS_INITIALIZE__ALREADY_ZEROED ((uint32_t)0x00000001) // WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED means that, absent // WUFFS_INITIALIZE__ALREADY_ZEROED, only some of the "self" receiver struct // value will be set to all zeroes. Internal buffers, which tend to be a large // proportion of the struct's size, will be left uninitialized. Internal means // that the buffer is contained by the receiver struct, as opposed to being // passed as a separately allocated "work buffer". // // For more detail, see: // https://github.com/google/wuffs/blob/main/doc/note/initialization.md #define WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED \ ((uint32_t)0x00000002) // -------- // wuffs_base__empty_struct is used when a Wuffs function returns an empty // struct. In C, if a function f returns void, you can't say "x = f()", but in // Wuffs, if a function g returns empty, you can say "y = g()". typedef struct wuffs_base__empty_struct__struct { // private_impl is a placeholder field. It isn't explicitly used, except that // without it, the sizeof a struct with no fields can differ across C/C++ // compilers, and it is undefined behavior in C99. For example, gcc says that // the sizeof an empty struct is 0, and g++ says that it is 1. This leads to // ABI incompatibility if a Wuffs .c file is processed by one compiler and // its .h file with another compiler. // // Instead, we explicitly insert an otherwise unused field, so that the // sizeof this struct is always 1. uint8_t private_impl; } wuffs_base__empty_struct; static inline wuffs_base__empty_struct // wuffs_base__make_empty_struct() { wuffs_base__empty_struct ret; ret.private_impl = 0; return ret; } // wuffs_base__utility is a placeholder receiver type. It enables what Java // calls static methods, as opposed to regular methods. typedef struct wuffs_base__utility__struct { // private_impl is a placeholder field. It isn't explicitly used, except that // without it, the sizeof a struct with no fields can differ across C/C++ // compilers, and it is undefined behavior in C99. For example, gcc says that // the sizeof an empty struct is 0, and g++ says that it is 1. This leads to // ABI incompatibility if a Wuffs .c file is processed by one compiler and // its .h file with another compiler. // // Instead, we explicitly insert an otherwise unused field, so that the // sizeof this struct is always 1. uint8_t private_impl; } wuffs_base__utility; typedef struct wuffs_base__vtable__struct { const char* vtable_name; const void* function_pointers; } wuffs_base__vtable; // -------- // See https://github.com/google/wuffs/blob/main/doc/note/statuses.md typedef struct wuffs_base__status__struct { const char* repr; #ifdef __cplusplus inline bool is_complete() const; inline bool is_error() const; inline bool is_note() const; inline bool is_ok() const; inline bool is_suspension() const; inline const char* message() const; #endif // __cplusplus } wuffs_base__status; extern const char wuffs_base__note__i_o_redirect[]; extern const char wuffs_base__note__end_of_data[]; extern const char wuffs_base__note__metadata_reported[]; extern const char wuffs_base__suspension__even_more_information[]; extern const char wuffs_base__suspension__mispositioned_read[]; extern const char wuffs_base__suspension__mispositioned_write[]; extern const char wuffs_base__suspension__short_read[]; extern const char wuffs_base__suspension__short_write[]; extern const char wuffs_base__error__bad_i_o_position[]; extern const char wuffs_base__error__bad_argument_length_too_short[]; extern const char wuffs_base__error__bad_argument[]; extern const char wuffs_base__error__bad_call_sequence[]; extern const char wuffs_base__error__bad_data[]; extern const char wuffs_base__error__bad_receiver[]; extern const char wuffs_base__error__bad_restart[]; extern const char wuffs_base__error__bad_sizeof_receiver[]; extern const char wuffs_base__error__bad_vtable[]; extern const char wuffs_base__error__bad_workbuf_length[]; extern const char wuffs_base__error__bad_wuffs_version[]; extern const char wuffs_base__error__cannot_return_a_suspension[]; extern const char wuffs_base__error__disabled_by_previous_error[]; extern const char wuffs_base__error__initialize_falsely_claimed_already_zeroed[]; extern const char wuffs_base__error__initialize_not_called[]; extern const char wuffs_base__error__interleaved_coroutine_calls[]; extern const char wuffs_base__error__no_more_information[]; extern const char wuffs_base__error__not_enough_data[]; extern const char wuffs_base__error__out_of_bounds[]; extern const char wuffs_base__error__unsupported_method[]; extern const char wuffs_base__error__unsupported_option[]; extern const char wuffs_base__error__unsupported_pixel_swizzler_option[]; extern const char wuffs_base__error__too_much_data[]; static inline wuffs_base__status // wuffs_base__make_status(const char* repr) { wuffs_base__status z; z.repr = repr; return z; } static inline bool // wuffs_base__status__is_complete(const wuffs_base__status* z) { return (z->repr == NULL) || ((*z->repr != '$') && (*z->repr != '#')); } static inline bool // wuffs_base__status__is_error(const wuffs_base__status* z) { return z->repr && (*z->repr == '#'); } static inline bool // wuffs_base__status__is_note(const wuffs_base__status* z) { return z->repr && (*z->repr != '$') && (*z->repr != '#'); } static inline bool // wuffs_base__status__is_ok(const wuffs_base__status* z) { return z->repr == NULL; } static inline bool // wuffs_base__status__is_suspension(const wuffs_base__status* z) { return z->repr && (*z->repr == '$'); } // wuffs_base__status__message strips the leading '$', '#' or '@'. static inline const char* // wuffs_base__status__message(const wuffs_base__status* z) { if (z->repr) { if ((*z->repr == '$') || (*z->repr == '#') || (*z->repr == '@')) { return z->repr + 1; } } return z->repr; } #ifdef __cplusplus inline bool // wuffs_base__status::is_complete() const { return wuffs_base__status__is_complete(this); } inline bool // wuffs_base__status::is_error() const { return wuffs_base__status__is_error(this); } inline bool // wuffs_base__status::is_note() const { return wuffs_base__status__is_note(this); } inline bool // wuffs_base__status::is_ok() const { return wuffs_base__status__is_ok(this); } inline bool // wuffs_base__status::is_suspension() const { return wuffs_base__status__is_suspension(this); } inline const char* // wuffs_base__status::message() const { return wuffs_base__status__message(this); } #endif // __cplusplus // -------- // WUFFS_BASE__RESULT is a result type: either a status (an error) or a value. // // A result with all fields NULL or zero is as valid as a zero-valued T. #define WUFFS_BASE__RESULT(T) \ struct { \ wuffs_base__status status; \ T value; \ } typedef WUFFS_BASE__RESULT(double) wuffs_base__result_f64; typedef WUFFS_BASE__RESULT(int64_t) wuffs_base__result_i64; typedef WUFFS_BASE__RESULT(uint64_t) wuffs_base__result_u64; // -------- // wuffs_base__transform__output is the result of transforming from a src slice // to a dst slice. typedef struct wuffs_base__transform__output__struct { wuffs_base__status status; size_t num_dst; size_t num_src; } wuffs_base__transform__output; // -------- // FourCC constants. Four Character Codes are literally four ASCII characters // (sometimes padded with ' ' spaces) that pack neatly into a signed or // unsigned 32-bit integer. ASCII letters are conventionally upper case. // // They are often used to identify video codecs (e.g. "H265") and pixel formats // (e.g. "YV12"). Wuffs uses them for that but also generally for naming // various things: compression formats (e.g. "BZ2 "), image metadata (e.g. // "EXIF"), file formats (e.g. "HTML"), etc. // // Wuffs' u32 values are big-endian ("JPEG" is 0x4A504547 not 0x4745504A) to // preserve ordering: "JPEG" < "MP3 " and 0x4A504547 < 0x4D503320. // Background Color. #define WUFFS_BASE__FOURCC__BGCL 0x4247434C // Bitmap. #define WUFFS_BASE__FOURCC__BMP 0x424D5020 // Brotli. #define WUFFS_BASE__FOURCC__BRTL 0x4252544C // Bzip2. #define WUFFS_BASE__FOURCC__BZ2 0x425A3220 // Concise Binary Object Representation. #define WUFFS_BASE__FOURCC__CBOR 0x43424F52 // Primary Chromaticities and White Point. #define WUFFS_BASE__FOURCC__CHRM 0x4348524D // Cascading Style Sheets. #define WUFFS_BASE__FOURCC__CSS 0x43535320 // Encapsulated PostScript. #define WUFFS_BASE__FOURCC__EPS 0x45505320 // Exchangeable Image File Format. #define WUFFS_BASE__FOURCC__EXIF 0x45584946 // Free Lossless Audio Codec. #define WUFFS_BASE__FOURCC__FLAC 0x464C4143 // Gamma Correction. #define WUFFS_BASE__FOURCC__GAMA 0x47414D41 // Graphics Interchange Format. #define WUFFS_BASE__FOURCC__GIF 0x47494620 // GNU Zip. #define WUFFS_BASE__FOURCC__GZ 0x475A2020 // High Efficiency Image File. #define WUFFS_BASE__FOURCC__HEIF 0x48454946 // Hypertext Markup Language. #define WUFFS_BASE__FOURCC__HTML 0x48544D4C // International Color Consortium Profile. #define WUFFS_BASE__FOURCC__ICCP 0x49434350 // Icon. #define WUFFS_BASE__FOURCC__ICO 0x49434F20 // Icon Vector Graphics. #define WUFFS_BASE__FOURCC__ICVG 0x49435647 // Initialization. #define WUFFS_BASE__FOURCC__INI 0x494E4920 // Joint Photographic Experts Group. #define WUFFS_BASE__FOURCC__JPEG 0x4A504547 // JavaScript. #define WUFFS_BASE__FOURCC__JS 0x4A532020 // JavaScript Object Notation. #define WUFFS_BASE__FOURCC__JSON 0x4A534F4E // JSON With Commas and Comments. #define WUFFS_BASE__FOURCC__JWCC 0x4A574343 // Key-Value Pair. #define WUFFS_BASE__FOURCC__KVP 0x4B565020 // Key-Value Pair (Key). #define WUFFS_BASE__FOURCC__KVPK 0x4B56504B // Key-Value Pair (Value). #define WUFFS_BASE__FOURCC__KVPV 0x4B565056 // Lempel–Ziv 4. #define WUFFS_BASE__FOURCC__LZ4 0x4C5A3420 // Markdown. #define WUFFS_BASE__FOURCC__MD 0x4D442020 // Modification Time. #define WUFFS_BASE__FOURCC__MTIM 0x4D54494D // MPEG-1 Audio Layer III. #define WUFFS_BASE__FOURCC__MP3 0x4D503320 // Naive Image. #define WUFFS_BASE__FOURCC__NIE 0x4E494520 // Offset (2-Dimensional). #define WUFFS_BASE__FOURCC__OFS2 0x4F465332 // Open Type Format. #define WUFFS_BASE__FOURCC__OTF 0x4F544620 // Portable Document Format. #define WUFFS_BASE__FOURCC__PDF 0x50444620 // Physical Dimensions. #define WUFFS_BASE__FOURCC__PHYD 0x50485944 // Portable Network Graphics. #define WUFFS_BASE__FOURCC__PNG 0x504E4720 // Portable Anymap. #define WUFFS_BASE__FOURCC__PNM 0x504E4D20 // PostScript. #define WUFFS_BASE__FOURCC__PS 0x50532020 // Quite OK Image. #define WUFFS_BASE__FOURCC__QOI 0x514F4920 // Random Access Compression. #define WUFFS_BASE__FOURCC__RAC 0x52414320 // Raw. #define WUFFS_BASE__FOURCC__RAW 0x52415720 // Resource Interchange File Format. #define WUFFS_BASE__FOURCC__RIFF 0x52494646 // Riegeli Records. #define WUFFS_BASE__FOURCC__RIGL 0x5249474C // Snappy. #define WUFFS_BASE__FOURCC__SNPY 0x534E5059 // Standard Red Green Blue (Rendering Intent). #define WUFFS_BASE__FOURCC__SRGB 0x53524742 // Scalable Vector Graphics. #define WUFFS_BASE__FOURCC__SVG 0x53564720 // Tape Archive. #define WUFFS_BASE__FOURCC__TAR 0x54415220 // Text. #define WUFFS_BASE__FOURCC__TEXT 0x54455854 // Truevision Advanced Raster Graphics Adapter. #define WUFFS_BASE__FOURCC__TGA 0x54474120 // Tagged Image File Format. #define WUFFS_BASE__FOURCC__TIFF 0x54494646 // Tom's Obvious Minimal Language. #define WUFFS_BASE__FOURCC__TOML 0x544F4D4C // Waveform. #define WUFFS_BASE__FOURCC__WAVE 0x57415645 // Wireless Bitmap. #define WUFFS_BASE__FOURCC__WBMP 0x57424D50 // Web Picture. #define WUFFS_BASE__FOURCC__WEBP 0x57454250 // Web Open Font Format. #define WUFFS_BASE__FOURCC__WOFF 0x574F4646 // Extensible Markup Language. #define WUFFS_BASE__FOURCC__XML 0x584D4C20 // Extensible Metadata Platform. #define WUFFS_BASE__FOURCC__XMP 0x584D5020 // Xz. #define WUFFS_BASE__FOURCC__XZ 0x585A2020 // Zip. #define WUFFS_BASE__FOURCC__ZIP 0x5A495020 // Zlib. #define WUFFS_BASE__FOURCC__ZLIB 0x5A4C4942 // Zstandard. #define WUFFS_BASE__FOURCC__ZSTD 0x5A535444 // -------- // Quirks. #define WUFFS_BASE__QUIRK_IGNORE_CHECKSUM 1 // -------- // Flicks are a unit of time. One flick (frame-tick) is 1 / 705_600_000 of a // second. See https://github.com/OculusVR/Flicks typedef int64_t wuffs_base__flicks; #define WUFFS_BASE__FLICKS_PER_SECOND ((uint64_t)705600000) #define WUFFS_BASE__FLICKS_PER_MILLISECOND ((uint64_t)705600) // ---------------- Numeric Types // The helpers below are functions, instead of macros, because their arguments // can be an expression that we shouldn't evaluate more than once. // // They are static, so that linking multiple wuffs .o files won't complain about // duplicate function definitions. // // They are explicitly marked inline, even if modern compilers don't use the // inline attribute to guide optimizations such as inlining, to avoid the // -Wunused-function warning, and we like to compile with -Wall -Werror. static inline int8_t // wuffs_base__i8__min(int8_t x, int8_t y) { return x < y ? x : y; } static inline int8_t // wuffs_base__i8__max(int8_t x, int8_t y) { return x > y ? x : y; } static inline int16_t // wuffs_base__i16__min(int16_t x, int16_t y) { return x < y ? x : y; } static inline int16_t // wuffs_base__i16__max(int16_t x, int16_t y) { return x > y ? x : y; } static inline int32_t // wuffs_base__i32__min(int32_t x, int32_t y) { return x < y ? x : y; } static inline int32_t // wuffs_base__i32__max(int32_t x, int32_t y) { return x > y ? x : y; } static inline int64_t // wuffs_base__i64__min(int64_t x, int64_t y) { return x < y ? x : y; } static inline int64_t // wuffs_base__i64__max(int64_t x, int64_t y) { return x > y ? x : y; } static inline uint8_t // wuffs_base__u8__min(uint8_t x, uint8_t y) { return x < y ? x : y; } static inline uint8_t // wuffs_base__u8__max(uint8_t x, uint8_t y) { return x > y ? x : y; } static inline uint16_t // wuffs_base__u16__min(uint16_t x, uint16_t y) { return x < y ? x : y; } static inline uint16_t // wuffs_base__u16__max(uint16_t x, uint16_t y) { return x > y ? x : y; } static inline uint32_t // wuffs_base__u32__min(uint32_t x, uint32_t y) { return x < y ? x : y; } static inline uint32_t // wuffs_base__u32__max(uint32_t x, uint32_t y) { return x > y ? x : y; } static inline uint64_t // wuffs_base__u64__min(uint64_t x, uint64_t y) { return x < y ? x : y; } static inline uint64_t // wuffs_base__u64__max(uint64_t x, uint64_t y) { return x > y ? x : y; } // -------- static inline uint8_t // wuffs_base__u8__rotate_left(uint8_t x, uint32_t n) { n &= 7; return ((uint8_t)(x << n)) | ((uint8_t)(x >> (8 - n))); } static inline uint8_t // wuffs_base__u8__rotate_right(uint8_t x, uint32_t n) { n &= 7; return ((uint8_t)(x >> n)) | ((uint8_t)(x << (8 - n))); } static inline uint16_t // wuffs_base__u16__rotate_left(uint16_t x, uint32_t n) { n &= 15; return ((uint16_t)(x << n)) | ((uint16_t)(x >> (16 - n))); } static inline uint16_t // wuffs_base__u16__rotate_right(uint16_t x, uint32_t n) { n &= 15; return ((uint16_t)(x >> n)) | ((uint16_t)(x << (16 - n))); } static inline uint32_t // wuffs_base__u32__rotate_left(uint32_t x, uint32_t n) { n &= 31; return ((uint32_t)(x << n)) | ((uint32_t)(x >> (32 - n))); } static inline uint32_t // wuffs_base__u32__rotate_right(uint32_t x, uint32_t n) { n &= 31; return ((uint32_t)(x >> n)) | ((uint32_t)(x << (32 - n))); } static inline uint64_t // wuffs_base__u64__rotate_left(uint64_t x, uint32_t n) { n &= 63; return ((uint64_t)(x << n)) | ((uint64_t)(x >> (64 - n))); } static inline uint64_t // wuffs_base__u64__rotate_right(uint64_t x, uint32_t n) { n &= 63; return ((uint64_t)(x >> n)) | ((uint64_t)(x << (64 - n))); } // -------- // Saturating arithmetic (sat_add, sat_sub) branchless bit-twiddling algorithms // are per https://locklessinc.com/articles/sat_arithmetic/ // // It is important that the underlying types are unsigned integers, as signed // integer arithmetic overflow is undefined behavior in C. static inline uint8_t // wuffs_base__u8__sat_add(uint8_t x, uint8_t y) { uint8_t res = (uint8_t)(x + y); res |= (uint8_t)(-(res < x)); return res; } static inline uint8_t // wuffs_base__u8__sat_sub(uint8_t x, uint8_t y) { uint8_t res = (uint8_t)(x - y); res &= (uint8_t)(-(res <= x)); return res; } static inline uint16_t // wuffs_base__u16__sat_add(uint16_t x, uint16_t y) { uint16_t res = (uint16_t)(x + y); res |= (uint16_t)(-(res < x)); return res; } static inline uint16_t // wuffs_base__u16__sat_sub(uint16_t x, uint16_t y) { uint16_t res = (uint16_t)(x - y); res &= (uint16_t)(-(res <= x)); return res; } static inline uint32_t // wuffs_base__u32__sat_add(uint32_t x, uint32_t y) { uint32_t res = (uint32_t)(x + y); res |= (uint32_t)(-(res < x)); return res; } static inline uint32_t // wuffs_base__u32__sat_sub(uint32_t x, uint32_t y) { uint32_t res = (uint32_t)(x - y); res &= (uint32_t)(-(res <= x)); return res; } static inline uint64_t // wuffs_base__u64__sat_add(uint64_t x, uint64_t y) { uint64_t res = (uint64_t)(x + y); res |= (uint64_t)(-(res < x)); return res; } static inline uint64_t // wuffs_base__u64__sat_sub(uint64_t x, uint64_t y) { uint64_t res = (uint64_t)(x - y); res &= (uint64_t)(-(res <= x)); return res; } // -------- typedef struct wuffs_base__multiply_u64__output__struct { uint64_t lo; uint64_t hi; } wuffs_base__multiply_u64__output; // wuffs_base__multiply_u64 returns x*y as a 128-bit value. // // The maximum inclusive output hi_lo is 0xFFFFFFFFFFFFFFFE_0000000000000001. static inline wuffs_base__multiply_u64__output // wuffs_base__multiply_u64(uint64_t x, uint64_t y) { #if defined(__SIZEOF_INT128__) __uint128_t z = ((__uint128_t)x) * ((__uint128_t)y); wuffs_base__multiply_u64__output o; o.lo = ((uint64_t)(z)); o.hi = ((uint64_t)(z >> 64)); return o; #else // TODO: consider using the _mul128 intrinsic if defined(_MSC_VER). uint64_t x0 = x & 0xFFFFFFFF; uint64_t x1 = x >> 32; uint64_t y0 = y & 0xFFFFFFFF; uint64_t y1 = y >> 32; uint64_t w0 = x0 * y0; uint64_t t = (x1 * y0) + (w0 >> 32); uint64_t w1 = t & 0xFFFFFFFF; uint64_t w2 = t >> 32; w1 += x0 * y1; wuffs_base__multiply_u64__output o; o.lo = x * y; o.hi = (x1 * y1) + w2 + (w1 >> 32); return o; #endif } // -------- // The "defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #if (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8) static inline uint32_t // wuffs_base__count_leading_zeroes_u64(uint64_t u) { return u ? ((uint32_t)(__builtin_clzl(u))) : 64u; } #else // TODO: consider using the _BitScanReverse intrinsic if defined(_MSC_VER). static inline uint32_t // wuffs_base__count_leading_zeroes_u64(uint64_t u) { if (u == 0) { return 64; } uint32_t n = 0; if ((u >> 32) == 0) { n |= 32; u <<= 32; } if ((u >> 48) == 0) { n |= 16; u <<= 16; } if ((u >> 56) == 0) { n |= 8; u <<= 8; } if ((u >> 60) == 0) { n |= 4; u <<= 4; } if ((u >> 62) == 0) { n |= 2; u <<= 2; } if ((u >> 63) == 0) { n |= 1; u <<= 1; } return n; } #endif // (defined(__GNUC__) || defined(__clang__)) && (__SIZEOF_LONG__ == 8) // -------- // Normally, the wuffs_base__peek_etc and wuffs_base__poke_etc implementations // are both (1) correct regardless of CPU endianness and (2) very fast (e.g. an // inlined wuffs_base__peek_u32le__no_bounds_check call, in an optimized clang // or gcc build, is a single MOV instruction on x86_64). // // However, the endian-agnostic implementations are slow on Microsoft's C // compiler (MSC). Alternative memcpy-based implementations restore speed, but // they are only correct on little-endian CPU architectures. Defining // WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE opts in to these implementations. // // https://godbolt.org/z/q4MfjzTPh #if defined(_MSC_VER) && !defined(__clang__) && \ (defined(_M_ARM64) || defined(_M_X64)) #define WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE #endif #define wuffs_base__peek_u8be__no_bounds_check \ wuffs_base__peek_u8__no_bounds_check #define wuffs_base__peek_u8le__no_bounds_check \ wuffs_base__peek_u8__no_bounds_check static inline uint8_t // wuffs_base__peek_u8__no_bounds_check(const uint8_t* p) { return p[0]; } static inline uint16_t // wuffs_base__peek_u16be__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint16_t x; memcpy(&x, p, 2); return _byteswap_ushort(x); #else return (uint16_t)(((uint16_t)(p[0]) << 8) | ((uint16_t)(p[1]) << 0)); #endif } static inline uint16_t // wuffs_base__peek_u16le__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint16_t x; memcpy(&x, p, 2); return x; #else return (uint16_t)(((uint16_t)(p[0]) << 0) | ((uint16_t)(p[1]) << 8)); #endif } static inline uint32_t // wuffs_base__peek_u24be__no_bounds_check(const uint8_t* p) { return ((uint32_t)(p[0]) << 16) | ((uint32_t)(p[1]) << 8) | ((uint32_t)(p[2]) << 0); } static inline uint32_t // wuffs_base__peek_u24le__no_bounds_check(const uint8_t* p) { return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | ((uint32_t)(p[2]) << 16); } static inline uint32_t // wuffs_base__peek_u32be__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint32_t x; memcpy(&x, p, 4); return _byteswap_ulong(x); #else return ((uint32_t)(p[0]) << 24) | ((uint32_t)(p[1]) << 16) | ((uint32_t)(p[2]) << 8) | ((uint32_t)(p[3]) << 0); #endif } static inline uint32_t // wuffs_base__peek_u32le__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint32_t x; memcpy(&x, p, 4); return x; #else return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) | ((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24); #endif } static inline uint64_t // wuffs_base__peek_u40be__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 32) | ((uint64_t)(p[1]) << 24) | ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 8) | ((uint64_t)(p[4]) << 0); } static inline uint64_t // wuffs_base__peek_u40le__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | ((uint64_t)(p[4]) << 32); } static inline uint64_t // wuffs_base__peek_u48be__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 40) | ((uint64_t)(p[1]) << 32) | ((uint64_t)(p[2]) << 24) | ((uint64_t)(p[3]) << 16) | ((uint64_t)(p[4]) << 8) | ((uint64_t)(p[5]) << 0); } static inline uint64_t // wuffs_base__peek_u48le__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40); } static inline uint64_t // wuffs_base__peek_u56be__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 48) | ((uint64_t)(p[1]) << 40) | ((uint64_t)(p[2]) << 32) | ((uint64_t)(p[3]) << 24) | ((uint64_t)(p[4]) << 16) | ((uint64_t)(p[5]) << 8) | ((uint64_t)(p[6]) << 0); } static inline uint64_t // wuffs_base__peek_u56le__no_bounds_check(const uint8_t* p) { return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | ((uint64_t)(p[6]) << 48); } static inline uint64_t // wuffs_base__peek_u64be__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint64_t x; memcpy(&x, p, 8); return _byteswap_uint64(x); #else return ((uint64_t)(p[0]) << 56) | ((uint64_t)(p[1]) << 48) | ((uint64_t)(p[2]) << 40) | ((uint64_t)(p[3]) << 32) | ((uint64_t)(p[4]) << 24) | ((uint64_t)(p[5]) << 16) | ((uint64_t)(p[6]) << 8) | ((uint64_t)(p[7]) << 0); #endif } static inline uint64_t // wuffs_base__peek_u64le__no_bounds_check(const uint8_t* p) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) uint64_t x; memcpy(&x, p, 8); return x; #else return ((uint64_t)(p[0]) << 0) | ((uint64_t)(p[1]) << 8) | ((uint64_t)(p[2]) << 16) | ((uint64_t)(p[3]) << 24) | ((uint64_t)(p[4]) << 32) | ((uint64_t)(p[5]) << 40) | ((uint64_t)(p[6]) << 48) | ((uint64_t)(p[7]) << 56); #endif } // -------- #define wuffs_base__poke_u8be__no_bounds_check \ wuffs_base__poke_u8__no_bounds_check #define wuffs_base__poke_u8le__no_bounds_check \ wuffs_base__poke_u8__no_bounds_check static inline void // wuffs_base__poke_u8__no_bounds_check(uint8_t* p, uint8_t x) { p[0] = x; } static inline void // wuffs_base__poke_u16be__no_bounds_check(uint8_t* p, uint16_t x) { p[0] = (uint8_t)(x >> 8); p[1] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u16le__no_bounds_check(uint8_t* p, uint16_t x) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) // This seems to perform better on gcc 10 (but not clang 9). Clang also // defines "__GNUC__". memcpy(p, &x, 2); #else p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); #endif } static inline void // wuffs_base__poke_u24be__no_bounds_check(uint8_t* p, uint32_t x) { p[0] = (uint8_t)(x >> 16); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u24le__no_bounds_check(uint8_t* p, uint32_t x) { p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); } static inline void // wuffs_base__poke_u32be__no_bounds_check(uint8_t* p, uint32_t x) { p[0] = (uint8_t)(x >> 24); p[1] = (uint8_t)(x >> 16); p[2] = (uint8_t)(x >> 8); p[3] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u32le__no_bounds_check(uint8_t* p, uint32_t x) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) // This seems to perform better on gcc 10 (but not clang 9). Clang also // defines "__GNUC__". memcpy(p, &x, 4); #else p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 24); #endif } static inline void // wuffs_base__poke_u40be__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 32); p[1] = (uint8_t)(x >> 24); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 8); p[4] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u40le__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 24); p[4] = (uint8_t)(x >> 32); } static inline void // wuffs_base__poke_u48be__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 40); p[1] = (uint8_t)(x >> 32); p[2] = (uint8_t)(x >> 24); p[3] = (uint8_t)(x >> 16); p[4] = (uint8_t)(x >> 8); p[5] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u48le__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 24); p[4] = (uint8_t)(x >> 32); p[5] = (uint8_t)(x >> 40); } static inline void // wuffs_base__poke_u56be__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 48); p[1] = (uint8_t)(x >> 40); p[2] = (uint8_t)(x >> 32); p[3] = (uint8_t)(x >> 24); p[4] = (uint8_t)(x >> 16); p[5] = (uint8_t)(x >> 8); p[6] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u56le__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 24); p[4] = (uint8_t)(x >> 32); p[5] = (uint8_t)(x >> 40); p[6] = (uint8_t)(x >> 48); } static inline void // wuffs_base__poke_u64be__no_bounds_check(uint8_t* p, uint64_t x) { p[0] = (uint8_t)(x >> 56); p[1] = (uint8_t)(x >> 48); p[2] = (uint8_t)(x >> 40); p[3] = (uint8_t)(x >> 32); p[4] = (uint8_t)(x >> 24); p[5] = (uint8_t)(x >> 16); p[6] = (uint8_t)(x >> 8); p[7] = (uint8_t)(x >> 0); } static inline void // wuffs_base__poke_u64le__no_bounds_check(uint8_t* p, uint64_t x) { #if defined(WUFFS_BASE__USE_MEMCPY_LE_PEEK_POKE) || \ (defined(__GNUC__) && !defined(__clang__) && defined(__x86_64__)) // This seems to perform better on gcc 10 (but not clang 9). Clang also // defines "__GNUC__". memcpy(p, &x, 8); #else p[0] = (uint8_t)(x >> 0); p[1] = (uint8_t)(x >> 8); p[2] = (uint8_t)(x >> 16); p[3] = (uint8_t)(x >> 24); p[4] = (uint8_t)(x >> 32); p[5] = (uint8_t)(x >> 40); p[6] = (uint8_t)(x >> 48); p[7] = (uint8_t)(x >> 56); #endif } // -------- // Load and Store functions are deprecated. Use Peek and Poke instead. #define wuffs_base__load_u8__no_bounds_check \ wuffs_base__peek_u8__no_bounds_check #define wuffs_base__load_u16be__no_bounds_check \ wuffs_base__peek_u16be__no_bounds_check #define wuffs_base__load_u16le__no_bounds_check \ wuffs_base__peek_u16le__no_bounds_check #define wuffs_base__load_u24be__no_bounds_check \ wuffs_base__peek_u24be__no_bounds_check #define wuffs_base__load_u24le__no_bounds_check \ wuffs_base__peek_u24le__no_bounds_check #define wuffs_base__load_u32be__no_bounds_check \ wuffs_base__peek_u32be__no_bounds_check #define wuffs_base__load_u32le__no_bounds_check \ wuffs_base__peek_u32le__no_bounds_check #define wuffs_base__load_u40be__no_bounds_check \ wuffs_base__peek_u40be__no_bounds_check #define wuffs_base__load_u40le__no_bounds_check \ wuffs_base__peek_u40le__no_bounds_check #define wuffs_base__load_u48be__no_bounds_check \ wuffs_base__peek_u48be__no_bounds_check #define wuffs_base__load_u48le__no_bounds_check \ wuffs_base__peek_u48le__no_bounds_check #define wuffs_base__load_u56be__no_bounds_check \ wuffs_base__peek_u56be__no_bounds_check #define wuffs_base__load_u56le__no_bounds_check \ wuffs_base__peek_u56le__no_bounds_check #define wuffs_base__load_u64be__no_bounds_check \ wuffs_base__peek_u64be__no_bounds_check #define wuffs_base__load_u64le__no_bounds_check \ wuffs_base__peek_u64le__no_bounds_check #define wuffs_base__store_u8__no_bounds_check \ wuffs_base__poke_u8__no_bounds_check #define wuffs_base__store_u16be__no_bounds_check \ wuffs_base__poke_u16be__no_bounds_check #define wuffs_base__store_u16le__no_bounds_check \ wuffs_base__poke_u16le__no_bounds_check #define wuffs_base__store_u24be__no_bounds_check \ wuffs_base__poke_u24be__no_bounds_check #define wuffs_base__store_u24le__no_bounds_check \ wuffs_base__poke_u24le__no_bounds_check #define wuffs_base__store_u32be__no_bounds_check \ wuffs_base__poke_u32be__no_bounds_check #define wuffs_base__store_u32le__no_bounds_check \ wuffs_base__poke_u32le__no_bounds_check #define wuffs_base__store_u40be__no_bounds_check \ wuffs_base__poke_u40be__no_bounds_check #define wuffs_base__store_u40le__no_bounds_check \ wuffs_base__poke_u40le__no_bounds_check #define wuffs_base__store_u48be__no_bounds_check \ wuffs_base__poke_u48be__no_bounds_check #define wuffs_base__store_u48le__no_bounds_check \ wuffs_base__poke_u48le__no_bounds_check #define wuffs_base__store_u56be__no_bounds_check \ wuffs_base__poke_u56be__no_bounds_check #define wuffs_base__store_u56le__no_bounds_check \ wuffs_base__poke_u56le__no_bounds_check #define wuffs_base__store_u64be__no_bounds_check \ wuffs_base__poke_u64be__no_bounds_check #define wuffs_base__store_u64le__no_bounds_check \ wuffs_base__poke_u64le__no_bounds_check // ---------------- Slices and Tables // WUFFS_BASE__SLICE is a 1-dimensional buffer. // // len measures a number of elements, not necessarily a size in bytes. // // A value with all fields NULL or zero is a valid, empty slice. #define WUFFS_BASE__SLICE(T) \ struct { \ T* ptr; \ size_t len; \ } // WUFFS_BASE__TABLE is a 2-dimensional buffer. // // width, height and stride measure a number of elements, not necessarily a // size in bytes. // // A value with all fields NULL or zero is a valid, empty table. #define WUFFS_BASE__TABLE(T) \ struct { \ T* ptr; \ size_t width; \ size_t height; \ size_t stride; \ } typedef WUFFS_BASE__SLICE(uint8_t) wuffs_base__slice_u8; typedef WUFFS_BASE__SLICE(uint16_t) wuffs_base__slice_u16; typedef WUFFS_BASE__SLICE(uint32_t) wuffs_base__slice_u32; typedef WUFFS_BASE__SLICE(uint64_t) wuffs_base__slice_u64; typedef WUFFS_BASE__TABLE(uint8_t) wuffs_base__table_u8; typedef WUFFS_BASE__TABLE(uint16_t) wuffs_base__table_u16; typedef WUFFS_BASE__TABLE(uint32_t) wuffs_base__table_u32; typedef WUFFS_BASE__TABLE(uint64_t) wuffs_base__table_u64; static inline wuffs_base__slice_u8 // wuffs_base__make_slice_u8(uint8_t* ptr, size_t len) { wuffs_base__slice_u8 ret; ret.ptr = ptr; ret.len = len; return ret; } static inline wuffs_base__slice_u16 // wuffs_base__make_slice_u16(uint16_t* ptr, size_t len) { wuffs_base__slice_u16 ret; ret.ptr = ptr; ret.len = len; return ret; } static inline wuffs_base__slice_u32 // wuffs_base__make_slice_u32(uint32_t* ptr, size_t len) { wuffs_base__slice_u32 ret; ret.ptr = ptr; ret.len = len; return ret; } static inline wuffs_base__slice_u64 // wuffs_base__make_slice_u64(uint64_t* ptr, size_t len) { wuffs_base__slice_u64 ret; ret.ptr = ptr; ret.len = len; return ret; } static inline wuffs_base__slice_u8 // wuffs_base__make_slice_u8_ij(uint8_t* ptr, size_t i, size_t j) { wuffs_base__slice_u8 ret; ret.ptr = ptr + i; ret.len = (j >= i) ? (j - i) : 0; return ret; } static inline wuffs_base__slice_u16 // wuffs_base__make_slice_u16_ij(uint16_t* ptr, size_t i, size_t j) { wuffs_base__slice_u16 ret; ret.ptr = ptr + i; ret.len = (j >= i) ? (j - i) : 0; return ret; } static inline wuffs_base__slice_u32 // wuffs_base__make_slice_u32_ij(uint32_t* ptr, size_t i, size_t j) { wuffs_base__slice_u32 ret; ret.ptr = ptr + i; ret.len = (j >= i) ? (j - i) : 0; return ret; } static inline wuffs_base__slice_u64 // wuffs_base__make_slice_u64_ij(uint64_t* ptr, size_t i, size_t j) { wuffs_base__slice_u64 ret; ret.ptr = ptr + i; ret.len = (j >= i) ? (j - i) : 0; return ret; } static inline wuffs_base__slice_u8 // wuffs_base__empty_slice_u8() { wuffs_base__slice_u8 ret; ret.ptr = NULL; ret.len = 0; return ret; } static inline wuffs_base__slice_u16 // wuffs_base__empty_slice_u16() { wuffs_base__slice_u16 ret; ret.ptr = NULL; ret.len = 0; return ret; } static inline wuffs_base__slice_u32 // wuffs_base__empty_slice_u32() { wuffs_base__slice_u32 ret; ret.ptr = NULL; ret.len = 0; return ret; } static inline wuffs_base__slice_u64 // wuffs_base__empty_slice_u64() { wuffs_base__slice_u64 ret; ret.ptr = NULL; ret.len = 0; return ret; } static inline wuffs_base__table_u8 // wuffs_base__make_table_u8(uint8_t* ptr, size_t width, size_t height, size_t stride) { wuffs_base__table_u8 ret; ret.ptr = ptr; ret.width = width; ret.height = height; ret.stride = stride; return ret; } static inline wuffs_base__table_u16 // wuffs_base__make_table_u16(uint16_t* ptr, size_t width, size_t height, size_t stride) { wuffs_base__table_u16 ret; ret.ptr = ptr; ret.width = width; ret.height = height; ret.stride = stride; return ret; } static inline wuffs_base__table_u32 // wuffs_base__make_table_u32(uint32_t* ptr, size_t width, size_t height, size_t stride) { wuffs_base__table_u32 ret; ret.ptr = ptr; ret.width = width; ret.height = height; ret.stride = stride; return ret; } static inline wuffs_base__table_u64 // wuffs_base__make_table_u64(uint64_t* ptr, size_t width, size_t height, size_t stride) { wuffs_base__table_u64 ret; ret.ptr = ptr; ret.width = width; ret.height = height; ret.stride = stride; return ret; } static inline wuffs_base__table_u8 // wuffs_base__empty_table_u8() { wuffs_base__table_u8 ret; ret.ptr = NULL; ret.width = 0; ret.height = 0; ret.stride = 0; return ret; } static inline wuffs_base__table_u16 // wuffs_base__empty_table_u16() { wuffs_base__table_u16 ret; ret.ptr = NULL; ret.width = 0; ret.height = 0; ret.stride = 0; return ret; } static inline wuffs_base__table_u32 // wuffs_base__empty_table_u32() { wuffs_base__table_u32 ret; ret.ptr = NULL; ret.width = 0; ret.height = 0; ret.stride = 0; return ret; } static inline wuffs_base__table_u64 // wuffs_base__empty_table_u64() { wuffs_base__table_u64 ret; ret.ptr = NULL; ret.width = 0; ret.height = 0; ret.stride = 0; return ret; } static inline bool // wuffs_base__slice_u8__overlaps(wuffs_base__slice_u8 s, wuffs_base__slice_u8 t) { return ((s.ptr <= t.ptr) && (t.ptr < (s.ptr + s.len))) || ((t.ptr <= s.ptr) && (s.ptr < (t.ptr + t.len))); } // wuffs_base__slice_u8__subslice_i returns s[i:]. // // It returns an empty slice if i is out of bounds. static inline wuffs_base__slice_u8 // wuffs_base__slice_u8__subslice_i(wuffs_base__slice_u8 s, uint64_t i) { if ((i <= SIZE_MAX) && (i <= s.len)) { return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(s.len - i))); } return wuffs_base__make_slice_u8(NULL, 0); } // wuffs_base__slice_u8__subslice_j returns s[:j]. // // It returns an empty slice if j is out of bounds. static inline wuffs_base__slice_u8 // wuffs_base__slice_u8__subslice_j(wuffs_base__slice_u8 s, uint64_t j) { if ((j <= SIZE_MAX) && (j <= s.len)) { return wuffs_base__make_slice_u8(s.ptr, ((size_t)j)); } return wuffs_base__make_slice_u8(NULL, 0); } // wuffs_base__slice_u8__subslice_ij returns s[i:j]. // // It returns an empty slice if i or j is out of bounds. static inline wuffs_base__slice_u8 // wuffs_base__slice_u8__subslice_ij(wuffs_base__slice_u8 s, uint64_t i, uint64_t j) { if ((i <= j) && (j <= SIZE_MAX) && (j <= s.len)) { return wuffs_base__make_slice_u8(s.ptr + i, ((size_t)(j - i))); } return wuffs_base__make_slice_u8(NULL, 0); } // wuffs_base__table_u8__subtable_ij returns t[ix:jx, iy:jy]. // // It returns an empty table if i or j is out of bounds. static inline wuffs_base__table_u8 // wuffs_base__table_u8__subtable_ij(wuffs_base__table_u8 t, uint64_t ix, uint64_t iy, uint64_t jx, uint64_t jy) { if ((ix <= jx) && (jx <= SIZE_MAX) && (jx <= t.width) && // (iy <= jy) && (jy <= SIZE_MAX) && (jy <= t.height)) { return wuffs_base__make_table_u8(t.ptr + ix + (iy * t.stride), // ((size_t)(jx - ix)), // ((size_t)(jy - iy)), // t.stride); // } return wuffs_base__make_table_u8(NULL, 0, 0, 0); } // wuffs_base__table__flattened_length returns the number of elements covered // by the 1-dimensional span that backs a 2-dimensional table. This counts the // elements inside the table and, when width != stride, the elements outside // the table but between its rows. // // For example, consider a width 10, height 4, stride 10 table. Mark its first // and last (inclusive) elements with 'a' and 'z'. This function returns 40. // // a123456789 // 0123456789 // 0123456789 // 012345678z // // Now consider the sub-table of that from (2, 1) inclusive to (8, 4) exclusive. // // a123456789 // 01iiiiiioo // ooiiiiiioo // ooiiiiii8z // // This function (called with width 6, height 3, stride 10) returns 26: 18 'i' // inside elements plus 8 'o' outside elements. Note that 26 is less than a // naive (height * stride = 30) computation. Indeed, advancing 29 elements from // the first 'i' would venture past 'z', out of bounds of the original table. // // It does not check for overflow, but if the arguments come from a table that // exists in memory and each element occupies a positive number of bytes then // the result should be bounded by the amount of allocatable memory (which // shouldn't overflow SIZE_MAX). static inline size_t // wuffs_base__table__flattened_length(size_t width, size_t height, size_t stride) { if (height == 0) { return 0; } return ((height - 1) * stride) + width; } // ---------------- Magic Numbers // wuffs_base__magic_number_guess_fourcc guesses the file format of some data, // given its starting bytes (the prefix_data argument) and whether or not there // may be further bytes (the prefix_closed argument; true means that // prefix_data is the entire data). // // It returns a positive FourCC value on success. // // It returns zero if nothing matches its hard-coded list of 'magic numbers'. // // It returns a negative value if prefix_closed is false and a longer prefix is // required for a conclusive result. For example, a single 'B' byte (without // further data) is not enough to discriminate the BMP and BPG image file // formats. Similarly, a single '\xFF' byte might be the start of JPEG data or // it might be the start of some other binary data. // // It does not do a full validity check. Like any guess made from a short // prefix of the data, it may return false positives. Data that starts with 99 // bytes of valid JPEG followed by corruption or truncation is an invalid JPEG // image overall, but this function will still return WUFFS_BASE__FOURCC__JPEG. // // Another source of false positives is that some 'magic numbers' are valid // ASCII data. A file starting with "GIF87a and GIF89a are the two versions of // GIF" will match GIF's 'magic number' even if it's plain text, not an image. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__MAGIC sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC int32_t // wuffs_base__magic_number_guess_fourcc(wuffs_base__slice_u8 prefix_data, bool prefix_closed); // ---------------- Ranges and Rects // See https://github.com/google/wuffs/blob/main/doc/note/ranges-and-rects.md typedef struct wuffs_base__range_ii_u32__struct { uint32_t min_incl; uint32_t max_incl; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__range_ii_u32__struct s) const; inline wuffs_base__range_ii_u32__struct intersect( wuffs_base__range_ii_u32__struct s) const; inline wuffs_base__range_ii_u32__struct unite( wuffs_base__range_ii_u32__struct s) const; inline bool contains(uint32_t x) const; inline bool contains_range(wuffs_base__range_ii_u32__struct s) const; #endif // __cplusplus } wuffs_base__range_ii_u32; static inline wuffs_base__range_ii_u32 // wuffs_base__empty_range_ii_u32() { wuffs_base__range_ii_u32 ret; ret.min_incl = 0; ret.max_incl = 0; return ret; } static inline wuffs_base__range_ii_u32 // wuffs_base__make_range_ii_u32(uint32_t min_incl, uint32_t max_incl) { wuffs_base__range_ii_u32 ret; ret.min_incl = min_incl; ret.max_incl = max_incl; return ret; } static inline bool // wuffs_base__range_ii_u32__is_empty(const wuffs_base__range_ii_u32* r) { return r->min_incl > r->max_incl; } static inline bool // wuffs_base__range_ii_u32__equals(const wuffs_base__range_ii_u32* r, wuffs_base__range_ii_u32 s) { return (r->min_incl == s.min_incl && r->max_incl == s.max_incl) || (wuffs_base__range_ii_u32__is_empty(r) && wuffs_base__range_ii_u32__is_empty(&s)); } static inline wuffs_base__range_ii_u32 // wuffs_base__range_ii_u32__intersect(const wuffs_base__range_ii_u32* r, wuffs_base__range_ii_u32 s) { wuffs_base__range_ii_u32 t; t.min_incl = wuffs_base__u32__max(r->min_incl, s.min_incl); t.max_incl = wuffs_base__u32__min(r->max_incl, s.max_incl); return t; } static inline wuffs_base__range_ii_u32 // wuffs_base__range_ii_u32__unite(const wuffs_base__range_ii_u32* r, wuffs_base__range_ii_u32 s) { if (wuffs_base__range_ii_u32__is_empty(r)) { return s; } if (wuffs_base__range_ii_u32__is_empty(&s)) { return *r; } wuffs_base__range_ii_u32 t; t.min_incl = wuffs_base__u32__min(r->min_incl, s.min_incl); t.max_incl = wuffs_base__u32__max(r->max_incl, s.max_incl); return t; } static inline bool // wuffs_base__range_ii_u32__contains(const wuffs_base__range_ii_u32* r, uint32_t x) { return (r->min_incl <= x) && (x <= r->max_incl); } static inline bool // wuffs_base__range_ii_u32__contains_range(const wuffs_base__range_ii_u32* r, wuffs_base__range_ii_u32 s) { return wuffs_base__range_ii_u32__equals( &s, wuffs_base__range_ii_u32__intersect(r, s)); } #ifdef __cplusplus inline bool // wuffs_base__range_ii_u32::is_empty() const { return wuffs_base__range_ii_u32__is_empty(this); } inline bool // wuffs_base__range_ii_u32::equals(wuffs_base__range_ii_u32 s) const { return wuffs_base__range_ii_u32__equals(this, s); } inline wuffs_base__range_ii_u32 // wuffs_base__range_ii_u32::intersect(wuffs_base__range_ii_u32 s) const { return wuffs_base__range_ii_u32__intersect(this, s); } inline wuffs_base__range_ii_u32 // wuffs_base__range_ii_u32::unite(wuffs_base__range_ii_u32 s) const { return wuffs_base__range_ii_u32__unite(this, s); } inline bool // wuffs_base__range_ii_u32::contains(uint32_t x) const { return wuffs_base__range_ii_u32__contains(this, x); } inline bool // wuffs_base__range_ii_u32::contains_range(wuffs_base__range_ii_u32 s) const { return wuffs_base__range_ii_u32__contains_range(this, s); } #endif // __cplusplus // -------- typedef struct wuffs_base__range_ie_u32__struct { uint32_t min_incl; uint32_t max_excl; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__range_ie_u32__struct s) const; inline wuffs_base__range_ie_u32__struct intersect( wuffs_base__range_ie_u32__struct s) const; inline wuffs_base__range_ie_u32__struct unite( wuffs_base__range_ie_u32__struct s) const; inline bool contains(uint32_t x) const; inline bool contains_range(wuffs_base__range_ie_u32__struct s) const; inline uint32_t length() const; #endif // __cplusplus } wuffs_base__range_ie_u32; static inline wuffs_base__range_ie_u32 // wuffs_base__empty_range_ie_u32() { wuffs_base__range_ie_u32 ret; ret.min_incl = 0; ret.max_excl = 0; return ret; } static inline wuffs_base__range_ie_u32 // wuffs_base__make_range_ie_u32(uint32_t min_incl, uint32_t max_excl) { wuffs_base__range_ie_u32 ret; ret.min_incl = min_incl; ret.max_excl = max_excl; return ret; } static inline bool // wuffs_base__range_ie_u32__is_empty(const wuffs_base__range_ie_u32* r) { return r->min_incl >= r->max_excl; } static inline bool // wuffs_base__range_ie_u32__equals(const wuffs_base__range_ie_u32* r, wuffs_base__range_ie_u32 s) { return (r->min_incl == s.min_incl && r->max_excl == s.max_excl) || (wuffs_base__range_ie_u32__is_empty(r) && wuffs_base__range_ie_u32__is_empty(&s)); } static inline wuffs_base__range_ie_u32 // wuffs_base__range_ie_u32__intersect(const wuffs_base__range_ie_u32* r, wuffs_base__range_ie_u32 s) { wuffs_base__range_ie_u32 t; t.min_incl = wuffs_base__u32__max(r->min_incl, s.min_incl); t.max_excl = wuffs_base__u32__min(r->max_excl, s.max_excl); return t; } static inline wuffs_base__range_ie_u32 // wuffs_base__range_ie_u32__unite(const wuffs_base__range_ie_u32* r, wuffs_base__range_ie_u32 s) { if (wuffs_base__range_ie_u32__is_empty(r)) { return s; } if (wuffs_base__range_ie_u32__is_empty(&s)) { return *r; } wuffs_base__range_ie_u32 t; t.min_incl = wuffs_base__u32__min(r->min_incl, s.min_incl); t.max_excl = wuffs_base__u32__max(r->max_excl, s.max_excl); return t; } static inline bool // wuffs_base__range_ie_u32__contains(const wuffs_base__range_ie_u32* r, uint32_t x) { return (r->min_incl <= x) && (x < r->max_excl); } static inline bool // wuffs_base__range_ie_u32__contains_range(const wuffs_base__range_ie_u32* r, wuffs_base__range_ie_u32 s) { return wuffs_base__range_ie_u32__equals( &s, wuffs_base__range_ie_u32__intersect(r, s)); } static inline uint32_t // wuffs_base__range_ie_u32__length(const wuffs_base__range_ie_u32* r) { return wuffs_base__u32__sat_sub(r->max_excl, r->min_incl); } #ifdef __cplusplus inline bool // wuffs_base__range_ie_u32::is_empty() const { return wuffs_base__range_ie_u32__is_empty(this); } inline bool // wuffs_base__range_ie_u32::equals(wuffs_base__range_ie_u32 s) const { return wuffs_base__range_ie_u32__equals(this, s); } inline wuffs_base__range_ie_u32 // wuffs_base__range_ie_u32::intersect(wuffs_base__range_ie_u32 s) const { return wuffs_base__range_ie_u32__intersect(this, s); } inline wuffs_base__range_ie_u32 // wuffs_base__range_ie_u32::unite(wuffs_base__range_ie_u32 s) const { return wuffs_base__range_ie_u32__unite(this, s); } inline bool // wuffs_base__range_ie_u32::contains(uint32_t x) const { return wuffs_base__range_ie_u32__contains(this, x); } inline bool // wuffs_base__range_ie_u32::contains_range(wuffs_base__range_ie_u32 s) const { return wuffs_base__range_ie_u32__contains_range(this, s); } inline uint32_t // wuffs_base__range_ie_u32::length() const { return wuffs_base__range_ie_u32__length(this); } #endif // __cplusplus // -------- typedef struct wuffs_base__range_ii_u64__struct { uint64_t min_incl; uint64_t max_incl; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__range_ii_u64__struct s) const; inline wuffs_base__range_ii_u64__struct intersect( wuffs_base__range_ii_u64__struct s) const; inline wuffs_base__range_ii_u64__struct unite( wuffs_base__range_ii_u64__struct s) const; inline bool contains(uint64_t x) const; inline bool contains_range(wuffs_base__range_ii_u64__struct s) const; #endif // __cplusplus } wuffs_base__range_ii_u64; static inline wuffs_base__range_ii_u64 // wuffs_base__empty_range_ii_u64() { wuffs_base__range_ii_u64 ret; ret.min_incl = 0; ret.max_incl = 0; return ret; } static inline wuffs_base__range_ii_u64 // wuffs_base__make_range_ii_u64(uint64_t min_incl, uint64_t max_incl) { wuffs_base__range_ii_u64 ret; ret.min_incl = min_incl; ret.max_incl = max_incl; return ret; } static inline bool // wuffs_base__range_ii_u64__is_empty(const wuffs_base__range_ii_u64* r) { return r->min_incl > r->max_incl; } static inline bool // wuffs_base__range_ii_u64__equals(const wuffs_base__range_ii_u64* r, wuffs_base__range_ii_u64 s) { return (r->min_incl == s.min_incl && r->max_incl == s.max_incl) || (wuffs_base__range_ii_u64__is_empty(r) && wuffs_base__range_ii_u64__is_empty(&s)); } static inline wuffs_base__range_ii_u64 // wuffs_base__range_ii_u64__intersect(const wuffs_base__range_ii_u64* r, wuffs_base__range_ii_u64 s) { wuffs_base__range_ii_u64 t; t.min_incl = wuffs_base__u64__max(r->min_incl, s.min_incl); t.max_incl = wuffs_base__u64__min(r->max_incl, s.max_incl); return t; } static inline wuffs_base__range_ii_u64 // wuffs_base__range_ii_u64__unite(const wuffs_base__range_ii_u64* r, wuffs_base__range_ii_u64 s) { if (wuffs_base__range_ii_u64__is_empty(r)) { return s; } if (wuffs_base__range_ii_u64__is_empty(&s)) { return *r; } wuffs_base__range_ii_u64 t; t.min_incl = wuffs_base__u64__min(r->min_incl, s.min_incl); t.max_incl = wuffs_base__u64__max(r->max_incl, s.max_incl); return t; } static inline bool // wuffs_base__range_ii_u64__contains(const wuffs_base__range_ii_u64* r, uint64_t x) { return (r->min_incl <= x) && (x <= r->max_incl); } static inline bool // wuffs_base__range_ii_u64__contains_range(const wuffs_base__range_ii_u64* r, wuffs_base__range_ii_u64 s) { return wuffs_base__range_ii_u64__equals( &s, wuffs_base__range_ii_u64__intersect(r, s)); } #ifdef __cplusplus inline bool // wuffs_base__range_ii_u64::is_empty() const { return wuffs_base__range_ii_u64__is_empty(this); } inline bool // wuffs_base__range_ii_u64::equals(wuffs_base__range_ii_u64 s) const { return wuffs_base__range_ii_u64__equals(this, s); } inline wuffs_base__range_ii_u64 // wuffs_base__range_ii_u64::intersect(wuffs_base__range_ii_u64 s) const { return wuffs_base__range_ii_u64__intersect(this, s); } inline wuffs_base__range_ii_u64 // wuffs_base__range_ii_u64::unite(wuffs_base__range_ii_u64 s) const { return wuffs_base__range_ii_u64__unite(this, s); } inline bool // wuffs_base__range_ii_u64::contains(uint64_t x) const { return wuffs_base__range_ii_u64__contains(this, x); } inline bool // wuffs_base__range_ii_u64::contains_range(wuffs_base__range_ii_u64 s) const { return wuffs_base__range_ii_u64__contains_range(this, s); } #endif // __cplusplus // -------- typedef struct wuffs_base__range_ie_u64__struct { uint64_t min_incl; uint64_t max_excl; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__range_ie_u64__struct s) const; inline wuffs_base__range_ie_u64__struct intersect( wuffs_base__range_ie_u64__struct s) const; inline wuffs_base__range_ie_u64__struct unite( wuffs_base__range_ie_u64__struct s) const; inline bool contains(uint64_t x) const; inline bool contains_range(wuffs_base__range_ie_u64__struct s) const; inline uint64_t length() const; #endif // __cplusplus } wuffs_base__range_ie_u64; static inline wuffs_base__range_ie_u64 // wuffs_base__empty_range_ie_u64() { wuffs_base__range_ie_u64 ret; ret.min_incl = 0; ret.max_excl = 0; return ret; } static inline wuffs_base__range_ie_u64 // wuffs_base__make_range_ie_u64(uint64_t min_incl, uint64_t max_excl) { wuffs_base__range_ie_u64 ret; ret.min_incl = min_incl; ret.max_excl = max_excl; return ret; } static inline bool // wuffs_base__range_ie_u64__is_empty(const wuffs_base__range_ie_u64* r) { return r->min_incl >= r->max_excl; } static inline bool // wuffs_base__range_ie_u64__equals(const wuffs_base__range_ie_u64* r, wuffs_base__range_ie_u64 s) { return (r->min_incl == s.min_incl && r->max_excl == s.max_excl) || (wuffs_base__range_ie_u64__is_empty(r) && wuffs_base__range_ie_u64__is_empty(&s)); } static inline wuffs_base__range_ie_u64 // wuffs_base__range_ie_u64__intersect(const wuffs_base__range_ie_u64* r, wuffs_base__range_ie_u64 s) { wuffs_base__range_ie_u64 t; t.min_incl = wuffs_base__u64__max(r->min_incl, s.min_incl); t.max_excl = wuffs_base__u64__min(r->max_excl, s.max_excl); return t; } static inline wuffs_base__range_ie_u64 // wuffs_base__range_ie_u64__unite(const wuffs_base__range_ie_u64* r, wuffs_base__range_ie_u64 s) { if (wuffs_base__range_ie_u64__is_empty(r)) { return s; } if (wuffs_base__range_ie_u64__is_empty(&s)) { return *r; } wuffs_base__range_ie_u64 t; t.min_incl = wuffs_base__u64__min(r->min_incl, s.min_incl); t.max_excl = wuffs_base__u64__max(r->max_excl, s.max_excl); return t; } static inline bool // wuffs_base__range_ie_u64__contains(const wuffs_base__range_ie_u64* r, uint64_t x) { return (r->min_incl <= x) && (x < r->max_excl); } static inline bool // wuffs_base__range_ie_u64__contains_range(const wuffs_base__range_ie_u64* r, wuffs_base__range_ie_u64 s) { return wuffs_base__range_ie_u64__equals( &s, wuffs_base__range_ie_u64__intersect(r, s)); } static inline uint64_t // wuffs_base__range_ie_u64__length(const wuffs_base__range_ie_u64* r) { return wuffs_base__u64__sat_sub(r->max_excl, r->min_incl); } #ifdef __cplusplus inline bool // wuffs_base__range_ie_u64::is_empty() const { return wuffs_base__range_ie_u64__is_empty(this); } inline bool // wuffs_base__range_ie_u64::equals(wuffs_base__range_ie_u64 s) const { return wuffs_base__range_ie_u64__equals(this, s); } inline wuffs_base__range_ie_u64 // wuffs_base__range_ie_u64::intersect(wuffs_base__range_ie_u64 s) const { return wuffs_base__range_ie_u64__intersect(this, s); } inline wuffs_base__range_ie_u64 // wuffs_base__range_ie_u64::unite(wuffs_base__range_ie_u64 s) const { return wuffs_base__range_ie_u64__unite(this, s); } inline bool // wuffs_base__range_ie_u64::contains(uint64_t x) const { return wuffs_base__range_ie_u64__contains(this, x); } inline bool // wuffs_base__range_ie_u64::contains_range(wuffs_base__range_ie_u64 s) const { return wuffs_base__range_ie_u64__contains_range(this, s); } inline uint64_t // wuffs_base__range_ie_u64::length() const { return wuffs_base__range_ie_u64__length(this); } #endif // __cplusplus // -------- typedef struct wuffs_base__rect_ii_u32__struct { uint32_t min_incl_x; uint32_t min_incl_y; uint32_t max_incl_x; uint32_t max_incl_y; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__rect_ii_u32__struct s) const; inline wuffs_base__rect_ii_u32__struct intersect( wuffs_base__rect_ii_u32__struct s) const; inline wuffs_base__rect_ii_u32__struct unite( wuffs_base__rect_ii_u32__struct s) const; inline bool contains(uint32_t x, uint32_t y) const; inline bool contains_rect(wuffs_base__rect_ii_u32__struct s) const; #endif // __cplusplus } wuffs_base__rect_ii_u32; static inline wuffs_base__rect_ii_u32 // wuffs_base__empty_rect_ii_u32() { wuffs_base__rect_ii_u32 ret; ret.min_incl_x = 0; ret.min_incl_y = 0; ret.max_incl_x = 0; ret.max_incl_y = 0; return ret; } static inline wuffs_base__rect_ii_u32 // wuffs_base__make_rect_ii_u32(uint32_t min_incl_x, uint32_t min_incl_y, uint32_t max_incl_x, uint32_t max_incl_y) { wuffs_base__rect_ii_u32 ret; ret.min_incl_x = min_incl_x; ret.min_incl_y = min_incl_y; ret.max_incl_x = max_incl_x; ret.max_incl_y = max_incl_y; return ret; } static inline bool // wuffs_base__rect_ii_u32__is_empty(const wuffs_base__rect_ii_u32* r) { return (r->min_incl_x > r->max_incl_x) || (r->min_incl_y > r->max_incl_y); } static inline bool // wuffs_base__rect_ii_u32__equals(const wuffs_base__rect_ii_u32* r, wuffs_base__rect_ii_u32 s) { return (r->min_incl_x == s.min_incl_x && r->min_incl_y == s.min_incl_y && r->max_incl_x == s.max_incl_x && r->max_incl_y == s.max_incl_y) || (wuffs_base__rect_ii_u32__is_empty(r) && wuffs_base__rect_ii_u32__is_empty(&s)); } static inline wuffs_base__rect_ii_u32 // wuffs_base__rect_ii_u32__intersect(const wuffs_base__rect_ii_u32* r, wuffs_base__rect_ii_u32 s) { wuffs_base__rect_ii_u32 t; t.min_incl_x = wuffs_base__u32__max(r->min_incl_x, s.min_incl_x); t.min_incl_y = wuffs_base__u32__max(r->min_incl_y, s.min_incl_y); t.max_incl_x = wuffs_base__u32__min(r->max_incl_x, s.max_incl_x); t.max_incl_y = wuffs_base__u32__min(r->max_incl_y, s.max_incl_y); return t; } static inline wuffs_base__rect_ii_u32 // wuffs_base__rect_ii_u32__unite(const wuffs_base__rect_ii_u32* r, wuffs_base__rect_ii_u32 s) { if (wuffs_base__rect_ii_u32__is_empty(r)) { return s; } if (wuffs_base__rect_ii_u32__is_empty(&s)) { return *r; } wuffs_base__rect_ii_u32 t; t.min_incl_x = wuffs_base__u32__min(r->min_incl_x, s.min_incl_x); t.min_incl_y = wuffs_base__u32__min(r->min_incl_y, s.min_incl_y); t.max_incl_x = wuffs_base__u32__max(r->max_incl_x, s.max_incl_x); t.max_incl_y = wuffs_base__u32__max(r->max_incl_y, s.max_incl_y); return t; } static inline bool // wuffs_base__rect_ii_u32__contains(const wuffs_base__rect_ii_u32* r, uint32_t x, uint32_t y) { return (r->min_incl_x <= x) && (x <= r->max_incl_x) && (r->min_incl_y <= y) && (y <= r->max_incl_y); } static inline bool // wuffs_base__rect_ii_u32__contains_rect(const wuffs_base__rect_ii_u32* r, wuffs_base__rect_ii_u32 s) { return wuffs_base__rect_ii_u32__equals( &s, wuffs_base__rect_ii_u32__intersect(r, s)); } #ifdef __cplusplus inline bool // wuffs_base__rect_ii_u32::is_empty() const { return wuffs_base__rect_ii_u32__is_empty(this); } inline bool // wuffs_base__rect_ii_u32::equals(wuffs_base__rect_ii_u32 s) const { return wuffs_base__rect_ii_u32__equals(this, s); } inline wuffs_base__rect_ii_u32 // wuffs_base__rect_ii_u32::intersect(wuffs_base__rect_ii_u32 s) const { return wuffs_base__rect_ii_u32__intersect(this, s); } inline wuffs_base__rect_ii_u32 // wuffs_base__rect_ii_u32::unite(wuffs_base__rect_ii_u32 s) const { return wuffs_base__rect_ii_u32__unite(this, s); } inline bool // wuffs_base__rect_ii_u32::contains(uint32_t x, uint32_t y) const { return wuffs_base__rect_ii_u32__contains(this, x, y); } inline bool // wuffs_base__rect_ii_u32::contains_rect(wuffs_base__rect_ii_u32 s) const { return wuffs_base__rect_ii_u32__contains_rect(this, s); } #endif // __cplusplus // -------- typedef struct wuffs_base__rect_ie_u32__struct { uint32_t min_incl_x; uint32_t min_incl_y; uint32_t max_excl_x; uint32_t max_excl_y; #ifdef __cplusplus inline bool is_empty() const; inline bool equals(wuffs_base__rect_ie_u32__struct s) const; inline wuffs_base__rect_ie_u32__struct intersect( wuffs_base__rect_ie_u32__struct s) const; inline wuffs_base__rect_ie_u32__struct unite( wuffs_base__rect_ie_u32__struct s) const; inline bool contains(uint32_t x, uint32_t y) const; inline bool contains_rect(wuffs_base__rect_ie_u32__struct s) const; inline uint32_t width() const; inline uint32_t height() const; #endif // __cplusplus } wuffs_base__rect_ie_u32; static inline wuffs_base__rect_ie_u32 // wuffs_base__empty_rect_ie_u32() { wuffs_base__rect_ie_u32 ret; ret.min_incl_x = 0; ret.min_incl_y = 0; ret.max_excl_x = 0; ret.max_excl_y = 0; return ret; } static inline wuffs_base__rect_ie_u32 // wuffs_base__make_rect_ie_u32(uint32_t min_incl_x, uint32_t min_incl_y, uint32_t max_excl_x, uint32_t max_excl_y) { wuffs_base__rect_ie_u32 ret; ret.min_incl_x = min_incl_x; ret.min_incl_y = min_incl_y; ret.max_excl_x = max_excl_x; ret.max_excl_y = max_excl_y; return ret; } static inline bool // wuffs_base__rect_ie_u32__is_empty(const wuffs_base__rect_ie_u32* r) { return (r->min_incl_x >= r->max_excl_x) || (r->min_incl_y >= r->max_excl_y); } static inline bool // wuffs_base__rect_ie_u32__equals(const wuffs_base__rect_ie_u32* r, wuffs_base__rect_ie_u32 s) { return (r->min_incl_x == s.min_incl_x && r->min_incl_y == s.min_incl_y && r->max_excl_x == s.max_excl_x && r->max_excl_y == s.max_excl_y) || (wuffs_base__rect_ie_u32__is_empty(r) && wuffs_base__rect_ie_u32__is_empty(&s)); } static inline wuffs_base__rect_ie_u32 // wuffs_base__rect_ie_u32__intersect(const wuffs_base__rect_ie_u32* r, wuffs_base__rect_ie_u32 s) { wuffs_base__rect_ie_u32 t; t.min_incl_x = wuffs_base__u32__max(r->min_incl_x, s.min_incl_x); t.min_incl_y = wuffs_base__u32__max(r->min_incl_y, s.min_incl_y); t.max_excl_x = wuffs_base__u32__min(r->max_excl_x, s.max_excl_x); t.max_excl_y = wuffs_base__u32__min(r->max_excl_y, s.max_excl_y); return t; } static inline wuffs_base__rect_ie_u32 // wuffs_base__rect_ie_u32__unite(const wuffs_base__rect_ie_u32* r, wuffs_base__rect_ie_u32 s) { if (wuffs_base__rect_ie_u32__is_empty(r)) { return s; } if (wuffs_base__rect_ie_u32__is_empty(&s)) { return *r; } wuffs_base__rect_ie_u32 t; t.min_incl_x = wuffs_base__u32__min(r->min_incl_x, s.min_incl_x); t.min_incl_y = wuffs_base__u32__min(r->min_incl_y, s.min_incl_y); t.max_excl_x = wuffs_base__u32__max(r->max_excl_x, s.max_excl_x); t.max_excl_y = wuffs_base__u32__max(r->max_excl_y, s.max_excl_y); return t; } static inline bool // wuffs_base__rect_ie_u32__contains(const wuffs_base__rect_ie_u32* r, uint32_t x, uint32_t y) { return (r->min_incl_x <= x) && (x < r->max_excl_x) && (r->min_incl_y <= y) && (y < r->max_excl_y); } static inline bool // wuffs_base__rect_ie_u32__contains_rect(const wuffs_base__rect_ie_u32* r, wuffs_base__rect_ie_u32 s) { return wuffs_base__rect_ie_u32__equals( &s, wuffs_base__rect_ie_u32__intersect(r, s)); } static inline uint32_t // wuffs_base__rect_ie_u32__width(const wuffs_base__rect_ie_u32* r) { return wuffs_base__u32__sat_sub(r->max_excl_x, r->min_incl_x); } static inline uint32_t // wuffs_base__rect_ie_u32__height(const wuffs_base__rect_ie_u32* r) { return wuffs_base__u32__sat_sub(r->max_excl_y, r->min_incl_y); } #ifdef __cplusplus inline bool // wuffs_base__rect_ie_u32::is_empty() const { return wuffs_base__rect_ie_u32__is_empty(this); } inline bool // wuffs_base__rect_ie_u32::equals(wuffs_base__rect_ie_u32 s) const { return wuffs_base__rect_ie_u32__equals(this, s); } inline wuffs_base__rect_ie_u32 // wuffs_base__rect_ie_u32::intersect(wuffs_base__rect_ie_u32 s) const { return wuffs_base__rect_ie_u32__intersect(this, s); } inline wuffs_base__rect_ie_u32 // wuffs_base__rect_ie_u32::unite(wuffs_base__rect_ie_u32 s) const { return wuffs_base__rect_ie_u32__unite(this, s); } inline bool // wuffs_base__rect_ie_u32::contains(uint32_t x, uint32_t y) const { return wuffs_base__rect_ie_u32__contains(this, x, y); } inline bool // wuffs_base__rect_ie_u32::contains_rect(wuffs_base__rect_ie_u32 s) const { return wuffs_base__rect_ie_u32__contains_rect(this, s); } inline uint32_t // wuffs_base__rect_ie_u32::width() const { return wuffs_base__rect_ie_u32__width(this); } inline uint32_t // wuffs_base__rect_ie_u32::height() const { return wuffs_base__rect_ie_u32__height(this); } #endif // __cplusplus // ---------------- More Information // wuffs_base__more_information holds additional fields, typically when a Wuffs // method returns a [note status](/doc/note/statuses.md). // // The flavor field follows the base38 namespace // convention](/doc/note/base38-and-fourcc.md). The other fields' semantics // depends on the flavor. typedef struct wuffs_base__more_information__struct { uint32_t flavor; uint32_t w; uint64_t x; uint64_t y; uint64_t z; #ifdef __cplusplus inline void set(uint32_t flavor_arg, uint32_t w_arg, uint64_t x_arg, uint64_t y_arg, uint64_t z_arg); inline uint32_t io_redirect__fourcc() const; inline wuffs_base__range_ie_u64 io_redirect__range() const; inline uint64_t io_seek__position() const; inline uint32_t metadata__fourcc() const; // Deprecated: use metadata_raw_passthrough__range. inline wuffs_base__range_ie_u64 metadata__range() const; inline wuffs_base__range_ie_u64 metadata_raw_passthrough__range() const; inline int32_t metadata_parsed__chrm(uint32_t component) const; inline uint32_t metadata_parsed__gama() const; inline uint32_t metadata_parsed__srgb() const; #endif // __cplusplus } wuffs_base__more_information; #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__IO_REDIRECT 1 #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__IO_SEEK 2 // Deprecated: use // WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_PASSTHROUGH. #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA 3 #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_PASSTHROUGH 3 #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_RAW_TRANSFORM 4 #define WUFFS_BASE__MORE_INFORMATION__FLAVOR__METADATA_PARSED 5 static inline wuffs_base__more_information // wuffs_base__empty_more_information() { wuffs_base__more_information ret; ret.flavor = 0; ret.w = 0; ret.x = 0; ret.y = 0; ret.z = 0; return ret; } static inline void // wuffs_base__more_information__set(wuffs_base__more_information* m, uint32_t flavor, uint32_t w, uint64_t x, uint64_t y, uint64_t z) { if (!m) { return; } m->flavor = flavor; m->w = w; m->x = x; m->y = y; m->z = z; } static inline uint32_t // wuffs_base__more_information__io_redirect__fourcc( const wuffs_base__more_information* m) { return m->w; } static inline wuffs_base__range_ie_u64 // wuffs_base__more_information__io_redirect__range( const wuffs_base__more_information* m) { wuffs_base__range_ie_u64 ret; ret.min_incl = m->y; ret.max_excl = m->z; return ret; } static inline uint64_t // wuffs_base__more_information__io_seek__position( const wuffs_base__more_information* m) { return m->x; } static inline uint32_t // wuffs_base__more_information__metadata__fourcc( const wuffs_base__more_information* m) { return m->w; } // Deprecated: use // wuffs_base__more_information__metadata_raw_passthrough__range. static inline wuffs_base__range_ie_u64 // wuffs_base__more_information__metadata__range( const wuffs_base__more_information* m) { wuffs_base__range_ie_u64 ret; ret.min_incl = m->y; ret.max_excl = m->z; return ret; } static inline wuffs_base__range_ie_u64 // wuffs_base__more_information__metadata_raw_passthrough__range( const wuffs_base__more_information* m) { wuffs_base__range_ie_u64 ret; ret.min_incl = m->y; ret.max_excl = m->z; return ret; } #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__WHITE_X 0 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__WHITE_Y 1 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__RED_X 2 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__RED_Y 3 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__GREEN_X 4 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__GREEN_Y 5 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__BLUE_X 6 #define WUFFS_BASE__MORE_INFORMATION__METADATA_PARSED__CHRM__BLUE_Y 7 // wuffs_base__more_information__metadata_parsed__chrm returns chromaticity // values (scaled by 100000) like the PNG "cHRM" chunk. For example, the sRGB // color space corresponds to: // - ETC__CHRM__WHITE_X 31270 // - ETC__CHRM__WHITE_Y 32900 // - ETC__CHRM__RED_X 64000 // - ETC__CHRM__RED_Y 33000 // - ETC__CHRM__GREEN_X 30000 // - ETC__CHRM__GREEN_Y 60000 // - ETC__CHRM__BLUE_X 15000 // - ETC__CHRM__BLUE_Y 6000 // // See // https://ciechanow.ski/color-spaces/#chromaticity-and-white-point-coordinates static inline int32_t // wuffs_base__more_information__metadata_parsed__chrm( const wuffs_base__more_information* m, uint32_t component) { // After the flavor and the w field (holding a FourCC), a // wuffs_base__more_information holds 24 bytes of data in three uint64_t // typed fields (x, y and z). We pack the eight chromaticity values (wx, wy, // rx, ..., by), basically int24_t values, into 24 bytes like this: // - LSB MSB // - x: wx wx wx wy wy wy rx rx // - y: rx ry ry ry gx gx gx gy // - z: gy gy bx bx bx by by by uint32_t u = 0; switch (component & 7) { case 0: u = ((uint32_t)(m->x >> 0)); break; case 1: u = ((uint32_t)(m->x >> 24)); break; case 2: u = ((uint32_t)((m->x >> 48) | (m->y << 16))); break; case 3: u = ((uint32_t)(m->y >> 8)); break; case 4: u = ((uint32_t)(m->y >> 32)); break; case 5: u = ((uint32_t)((m->y >> 56) | (m->z << 8))); break; case 6: u = ((uint32_t)(m->z >> 16)); break; case 7: u = ((uint32_t)(m->z >> 40)); break; } // The left-right shifts sign-extend from 24-bit to 32-bit integers. return ((int32_t)(u << 8)) >> 8; } // wuffs_base__more_information__metadata_parsed__gama returns inverse gamma // correction values (scaled by 100000) like the PNG "gAMA" chunk. For example, // for gamma = 2.2, this returns 45455 (approximating 100000 / 2.2). static inline uint32_t // wuffs_base__more_information__metadata_parsed__gama( const wuffs_base__more_information* m) { return ((uint32_t)(m->x)); } #define WUFFS_BASE__SRGB_RENDERING_INTENT__PERCEPTUAL 0 #define WUFFS_BASE__SRGB_RENDERING_INTENT__RELATIVE_COLORIMETRIC 1 #define WUFFS_BASE__SRGB_RENDERING_INTENT__SATURATION 2 #define WUFFS_BASE__SRGB_RENDERING_INTENT__ABSOLUTE_COLORIMETRIC 3 // wuffs_base__more_information__metadata_parsed__srgb returns the sRGB // rendering intent like the PNG "sRGB" chunk. static inline uint32_t // wuffs_base__more_information__metadata_parsed__srgb( const wuffs_base__more_information* m) { return m->x & 3; } #ifdef __cplusplus inline void // wuffs_base__more_information::set(uint32_t flavor_arg, uint32_t w_arg, uint64_t x_arg, uint64_t y_arg, uint64_t z_arg) { wuffs_base__more_information__set(this, flavor_arg, w_arg, x_arg, y_arg, z_arg); } inline uint32_t // wuffs_base__more_information::io_redirect__fourcc() const { return wuffs_base__more_information__io_redirect__fourcc(this); } inline wuffs_base__range_ie_u64 // wuffs_base__more_information::io_redirect__range() const { return wuffs_base__more_information__io_redirect__range(this); } inline uint64_t // wuffs_base__more_information::io_seek__position() const { return wuffs_base__more_information__io_seek__position(this); } inline uint32_t // wuffs_base__more_information::metadata__fourcc() const { return wuffs_base__more_information__metadata__fourcc(this); } inline wuffs_base__range_ie_u64 // wuffs_base__more_information::metadata__range() const { return wuffs_base__more_information__metadata__range(this); } inline wuffs_base__range_ie_u64 // wuffs_base__more_information::metadata_raw_passthrough__range() const { return wuffs_base__more_information__metadata_raw_passthrough__range(this); } inline int32_t // wuffs_base__more_information::metadata_parsed__chrm(uint32_t component) const { return wuffs_base__more_information__metadata_parsed__chrm(this, component); } inline uint32_t // wuffs_base__more_information::metadata_parsed__gama() const { return wuffs_base__more_information__metadata_parsed__gama(this); } inline uint32_t // wuffs_base__more_information::metadata_parsed__srgb() const { return wuffs_base__more_information__metadata_parsed__srgb(this); } #endif // __cplusplus // ---------------- I/O // // See (/doc/note/io-input-output.md). // wuffs_base__io_buffer_meta is the metadata for a wuffs_base__io_buffer's // data. typedef struct wuffs_base__io_buffer_meta__struct { size_t wi; // Write index. Invariant: wi <= len. size_t ri; // Read index. Invariant: ri <= wi. uint64_t pos; // Buffer position (relative to the start of stream). bool closed; // No further writes are expected. } wuffs_base__io_buffer_meta; // wuffs_base__io_buffer is a 1-dimensional buffer (a pointer and length) plus // additional metadata. // // A value with all fields zero is a valid, empty buffer. typedef struct wuffs_base__io_buffer__struct { wuffs_base__slice_u8 data; wuffs_base__io_buffer_meta meta; #ifdef __cplusplus inline bool is_valid() const; inline void compact(); inline size_t reader_length() const; inline uint8_t* reader_pointer() const; inline uint64_t reader_position() const; inline wuffs_base__slice_u8 reader_slice() const; inline size_t writer_length() const; inline uint8_t* writer_pointer() const; inline uint64_t writer_position() const; inline wuffs_base__slice_u8 writer_slice() const; // Deprecated: use reader_position. inline uint64_t reader_io_position() const; // Deprecated: use writer_position. inline uint64_t writer_io_position() const; #endif // __cplusplus } wuffs_base__io_buffer; static inline wuffs_base__io_buffer // wuffs_base__make_io_buffer(wuffs_base__slice_u8 data, wuffs_base__io_buffer_meta meta) { wuffs_base__io_buffer ret; ret.data = data; ret.meta = meta; return ret; } static inline wuffs_base__io_buffer_meta // wuffs_base__make_io_buffer_meta(size_t wi, size_t ri, uint64_t pos, bool closed) { wuffs_base__io_buffer_meta ret; ret.wi = wi; ret.ri = ri; ret.pos = pos; ret.closed = closed; return ret; } static inline wuffs_base__io_buffer // wuffs_base__ptr_u8__reader(uint8_t* ptr, size_t len, bool closed) { wuffs_base__io_buffer ret; ret.data.ptr = ptr; ret.data.len = len; ret.meta.wi = len; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = closed; return ret; } static inline wuffs_base__io_buffer // wuffs_base__ptr_u8__writer(uint8_t* ptr, size_t len) { wuffs_base__io_buffer ret; ret.data.ptr = ptr; ret.data.len = len; ret.meta.wi = 0; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = false; return ret; } static inline wuffs_base__io_buffer // wuffs_base__slice_u8__reader(wuffs_base__slice_u8 s, bool closed) { wuffs_base__io_buffer ret; ret.data.ptr = s.ptr; ret.data.len = s.len; ret.meta.wi = s.len; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = closed; return ret; } static inline wuffs_base__io_buffer // wuffs_base__slice_u8__writer(wuffs_base__slice_u8 s) { wuffs_base__io_buffer ret; ret.data.ptr = s.ptr; ret.data.len = s.len; ret.meta.wi = 0; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = false; return ret; } static inline wuffs_base__io_buffer // wuffs_base__empty_io_buffer() { wuffs_base__io_buffer ret; ret.data.ptr = NULL; ret.data.len = 0; ret.meta.wi = 0; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = false; return ret; } static inline wuffs_base__io_buffer_meta // wuffs_base__empty_io_buffer_meta() { wuffs_base__io_buffer_meta ret; ret.wi = 0; ret.ri = 0; ret.pos = 0; ret.closed = false; return ret; } static inline bool // wuffs_base__io_buffer__is_valid(const wuffs_base__io_buffer* buf) { if (buf) { if (buf->data.ptr) { return (buf->meta.ri <= buf->meta.wi) && (buf->meta.wi <= buf->data.len); } else { return (buf->meta.ri == 0) && (buf->meta.wi == 0) && (buf->data.len == 0); } } return false; } // wuffs_base__io_buffer__compact moves any written but unread bytes to the // start of the buffer. static inline void // wuffs_base__io_buffer__compact(wuffs_base__io_buffer* buf) { if (!buf || (buf->meta.ri == 0)) { return; } buf->meta.pos = wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri); size_t n = buf->meta.wi - buf->meta.ri; if (n != 0) { memmove(buf->data.ptr, buf->data.ptr + buf->meta.ri, n); } buf->meta.wi = n; buf->meta.ri = 0; } // Deprecated. Use wuffs_base__io_buffer__reader_position. static inline uint64_t // wuffs_base__io_buffer__reader_io_position(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0; } static inline size_t // wuffs_base__io_buffer__reader_length(const wuffs_base__io_buffer* buf) { return buf ? buf->meta.wi - buf->meta.ri : 0; } static inline uint8_t* // wuffs_base__io_buffer__reader_pointer(const wuffs_base__io_buffer* buf) { return buf ? (buf->data.ptr + buf->meta.ri) : NULL; } static inline uint64_t // wuffs_base__io_buffer__reader_position(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0; } static inline wuffs_base__slice_u8 // wuffs_base__io_buffer__reader_slice(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__make_slice_u8(buf->data.ptr + buf->meta.ri, buf->meta.wi - buf->meta.ri) : wuffs_base__empty_slice_u8(); } // Deprecated. Use wuffs_base__io_buffer__writer_position. static inline uint64_t // wuffs_base__io_buffer__writer_io_position(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0; } static inline size_t // wuffs_base__io_buffer__writer_length(const wuffs_base__io_buffer* buf) { return buf ? buf->data.len - buf->meta.wi : 0; } static inline uint8_t* // wuffs_base__io_buffer__writer_pointer(const wuffs_base__io_buffer* buf) { return buf ? (buf->data.ptr + buf->meta.wi) : NULL; } static inline uint64_t // wuffs_base__io_buffer__writer_position(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0; } static inline wuffs_base__slice_u8 // wuffs_base__io_buffer__writer_slice(const wuffs_base__io_buffer* buf) { return buf ? wuffs_base__make_slice_u8(buf->data.ptr + buf->meta.wi, buf->data.len - buf->meta.wi) : wuffs_base__empty_slice_u8(); } #ifdef __cplusplus inline bool // wuffs_base__io_buffer::is_valid() const { return wuffs_base__io_buffer__is_valid(this); } inline void // wuffs_base__io_buffer::compact() { wuffs_base__io_buffer__compact(this); } inline uint64_t // wuffs_base__io_buffer::reader_io_position() const { return wuffs_base__io_buffer__reader_io_position(this); } inline size_t // wuffs_base__io_buffer::reader_length() const { return wuffs_base__io_buffer__reader_length(this); } inline uint8_t* // wuffs_base__io_buffer::reader_pointer() const { return wuffs_base__io_buffer__reader_pointer(this); } inline uint64_t // wuffs_base__io_buffer::reader_position() const { return wuffs_base__io_buffer__reader_position(this); } inline wuffs_base__slice_u8 // wuffs_base__io_buffer::reader_slice() const { return wuffs_base__io_buffer__reader_slice(this); } inline uint64_t // wuffs_base__io_buffer::writer_io_position() const { return wuffs_base__io_buffer__writer_io_position(this); } inline size_t // wuffs_base__io_buffer::writer_length() const { return wuffs_base__io_buffer__writer_length(this); } inline uint8_t* // wuffs_base__io_buffer::writer_pointer() const { return wuffs_base__io_buffer__writer_pointer(this); } inline uint64_t // wuffs_base__io_buffer::writer_position() const { return wuffs_base__io_buffer__writer_position(this); } inline wuffs_base__slice_u8 // wuffs_base__io_buffer::writer_slice() const { return wuffs_base__io_buffer__writer_slice(this); } #endif // __cplusplus // ---------------- Tokens // wuffs_base__token is an element of a byte stream's tokenization. // // See https://github.com/google/wuffs/blob/main/doc/note/tokens.md typedef struct wuffs_base__token__struct { uint64_t repr; #ifdef __cplusplus inline int64_t value() const; inline int64_t value_extension() const; inline int64_t value_major() const; inline int64_t value_base_category() const; inline uint64_t value_minor() const; inline uint64_t value_base_detail() const; inline int64_t value_base_detail__sign_extended() const; inline bool continued() const; inline uint64_t length() const; #endif // __cplusplus } wuffs_base__token; static inline wuffs_base__token // wuffs_base__make_token(uint64_t repr) { wuffs_base__token ret; ret.repr = repr; return ret; } // -------- #define WUFFS_BASE__TOKEN__LENGTH__MAX_INCL 0xFFFF #define WUFFS_BASE__TOKEN__VALUE__SHIFT 17 #define WUFFS_BASE__TOKEN__VALUE_EXTENSION__SHIFT 17 #define WUFFS_BASE__TOKEN__VALUE_MAJOR__SHIFT 42 #define WUFFS_BASE__TOKEN__VALUE_MINOR__SHIFT 17 #define WUFFS_BASE__TOKEN__VALUE_BASE_CATEGORY__SHIFT 38 #define WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT 17 #define WUFFS_BASE__TOKEN__CONTINUED__SHIFT 16 #define WUFFS_BASE__TOKEN__LENGTH__SHIFT 0 #define WUFFS_BASE__TOKEN__VALUE_EXTENSION__NUM_BITS 46 // -------- #define WUFFS_BASE__TOKEN__VBC__FILLER 0 #define WUFFS_BASE__TOKEN__VBC__STRUCTURE 1 #define WUFFS_BASE__TOKEN__VBC__STRING 2 #define WUFFS_BASE__TOKEN__VBC__UNICODE_CODE_POINT 3 #define WUFFS_BASE__TOKEN__VBC__LITERAL 4 #define WUFFS_BASE__TOKEN__VBC__NUMBER 5 #define WUFFS_BASE__TOKEN__VBC__INLINE_INTEGER_SIGNED 6 #define WUFFS_BASE__TOKEN__VBC__INLINE_INTEGER_UNSIGNED 7 // -------- #define WUFFS_BASE__TOKEN__VBD__FILLER__PUNCTUATION 0x00001 #define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_BLOCK 0x00002 #define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_LINE 0x00004 // COMMENT_ANY is a bit-wise or of COMMENT_BLOCK AND COMMENT_LINE. #define WUFFS_BASE__TOKEN__VBD__FILLER__COMMENT_ANY 0x00006 // -------- #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__PUSH 0x00001 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__POP 0x00002 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_NONE 0x00010 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_LIST 0x00020 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__FROM_DICT 0x00040 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_NONE 0x01000 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_LIST 0x02000 #define WUFFS_BASE__TOKEN__VBD__STRUCTURE__TO_DICT 0x04000 // -------- // DEFINITELY_FOO means that the destination bytes (and also the source bytes, // for 1_DST_1_SRC_COPY) are in the FOO format. Definitely means that the lack // of the bit means "maybe FOO". It does not necessarily mean "not FOO". // // CHAIN_ETC means that decoding the entire token chain forms a UTF-8 or ASCII // string, not just this current token. CHAIN_ETC_UTF_8 therefore distinguishes // Unicode (UTF-8) strings from byte strings. MUST means that the the token // producer (e.g. parser) must verify this. SHOULD means that the token // consumer (e.g. renderer) should verify this. // // When a CHAIN_ETC_UTF_8 bit is set, the parser must ensure that non-ASCII // code points (with multi-byte UTF-8 encodings) do not straddle token // boundaries. Checking UTF-8 validity can inspect each token separately. // // The lack of any particular bit is conservative: it is valid for all-ASCII // strings, in a single- or multi-token chain, to have none of these bits set. #define WUFFS_BASE__TOKEN__VBD__STRING__DEFINITELY_UTF_8 0x00001 #define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_MUST_BE_UTF_8 0x00002 #define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_SHOULD_BE_UTF_8 0x00004 #define WUFFS_BASE__TOKEN__VBD__STRING__DEFINITELY_ASCII 0x00010 #define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_MUST_BE_ASCII 0x00020 #define WUFFS_BASE__TOKEN__VBD__STRING__CHAIN_SHOULD_BE_ASCII 0x00040 // CONVERT_D_DST_S_SRC means that multiples of S source bytes (possibly padded) // produces multiples of D destination bytes. For example, // CONVERT_1_DST_4_SRC_BACKSLASH_X means a source like "\\x23\\x67\\xAB", where // 12 src bytes encode 3 dst bytes. // // Post-processing may further transform those D destination bytes (e.g. treat // "\\xFF" as the Unicode code point U+00FF instead of the byte 0xFF), but that // is out of scope of this VBD's semantics. // // When src is the empty string, multiple conversion algorithms are applicable // (so these bits are not necessarily mutually exclusive), all producing the // same empty dst string. #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_0_DST_1_SRC_DROP 0x00100 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_1_SRC_COPY 0x00200 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_2_SRC_HEXADECIMAL 0x00400 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_1_DST_4_SRC_BACKSLASH_X 0x00800 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_3_DST_4_SRC_BASE_64_STD 0x01000 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_3_DST_4_SRC_BASE_64_URL 0x02000 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_4_DST_5_SRC_ASCII_85 0x04000 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_5_DST_8_SRC_BASE_32_HEX 0x08000 #define WUFFS_BASE__TOKEN__VBD__STRING__CONVERT_5_DST_8_SRC_BASE_32_STD 0x10000 // -------- #define WUFFS_BASE__TOKEN__VBD__LITERAL__UNDEFINED 0x00001 #define WUFFS_BASE__TOKEN__VBD__LITERAL__NULL 0x00002 #define WUFFS_BASE__TOKEN__VBD__LITERAL__FALSE 0x00004 #define WUFFS_BASE__TOKEN__VBD__LITERAL__TRUE 0x00008 // -------- // For a source string of "123" or "0x9A", it is valid for a tokenizer to // return any combination of: // - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_FLOATING_POINT. // - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_SIGNED. // - WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_UNSIGNED. // // For a source string of "+123" or "-0x9A", only the first two are valid. // // For a source string of "123.", only the first one is valid. #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_FLOATING_POINT 0x00001 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_SIGNED 0x00002 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_INTEGER_UNSIGNED 0x00004 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_NEG_INF 0x00010 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_POS_INF 0x00020 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_NEG_NAN 0x00040 #define WUFFS_BASE__TOKEN__VBD__NUMBER__CONTENT_POS_NAN 0x00080 // The number 300 might be represented as "\x01\x2C", "\x2C\x01\x00\x00" or // "300", which are big-endian, little-endian or text. For binary formats, the // token length (after adjusting for FORMAT_IGNORE_ETC) discriminates // e.g. u16 little-endian vs u32 little-endian. #define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_BINARY_BIG_ENDIAN 0x00100 #define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_BINARY_LITTLE_ENDIAN 0x00200 #define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_TEXT 0x00400 #define WUFFS_BASE__TOKEN__VBD__NUMBER__FORMAT_IGNORE_FIRST_BYTE 0x01000 // -------- // wuffs_base__token__value returns the token's high 46 bits, sign-extended. A // negative value means an extended token, non-negative means a simple token. static inline int64_t // wuffs_base__token__value(const wuffs_base__token* t) { return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE__SHIFT; } // wuffs_base__token__value_extension returns a negative value if the token was // not an extended token. static inline int64_t // wuffs_base__token__value_extension(const wuffs_base__token* t) { return (~(int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_EXTENSION__SHIFT; } // wuffs_base__token__value_major returns a negative value if the token was not // a simple token. static inline int64_t // wuffs_base__token__value_major(const wuffs_base__token* t) { return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_MAJOR__SHIFT; } // wuffs_base__token__value_base_category returns a negative value if the token // was not a simple token. static inline int64_t // wuffs_base__token__value_base_category(const wuffs_base__token* t) { return ((int64_t)(t->repr)) >> WUFFS_BASE__TOKEN__VALUE_BASE_CATEGORY__SHIFT; } static inline uint64_t // wuffs_base__token__value_minor(const wuffs_base__token* t) { return (t->repr >> WUFFS_BASE__TOKEN__VALUE_MINOR__SHIFT) & 0x1FFFFFF; } static inline uint64_t // wuffs_base__token__value_base_detail(const wuffs_base__token* t) { return (t->repr >> WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT) & 0x1FFFFF; } static inline int64_t // wuffs_base__token__value_base_detail__sign_extended( const wuffs_base__token* t) { // The VBD is 21 bits in the middle of t->repr. Left shift the high (64 - 21 // - ETC__SHIFT) bits off, then right shift (sign-extending) back down. uint64_t u = t->repr << (43 - WUFFS_BASE__TOKEN__VALUE_BASE_DETAIL__SHIFT); return ((int64_t)u) >> 43; } static inline bool // wuffs_base__token__continued(const wuffs_base__token* t) { return t->repr & 0x10000; } static inline uint64_t // wuffs_base__token__length(const wuffs_base__token* t) { return (t->repr >> WUFFS_BASE__TOKEN__LENGTH__SHIFT) & 0xFFFF; } #ifdef __cplusplus inline int64_t // wuffs_base__token::value() const { return wuffs_base__token__value(this); } inline int64_t // wuffs_base__token::value_extension() const { return wuffs_base__token__value_extension(this); } inline int64_t // wuffs_base__token::value_major() const { return wuffs_base__token__value_major(this); } inline int64_t // wuffs_base__token::value_base_category() const { return wuffs_base__token__value_base_category(this); } inline uint64_t // wuffs_base__token::value_minor() const { return wuffs_base__token__value_minor(this); } inline uint64_t // wuffs_base__token::value_base_detail() const { return wuffs_base__token__value_base_detail(this); } inline int64_t // wuffs_base__token::value_base_detail__sign_extended() const { return wuffs_base__token__value_base_detail__sign_extended(this); } inline bool // wuffs_base__token::continued() const { return wuffs_base__token__continued(this); } inline uint64_t // wuffs_base__token::length() const { return wuffs_base__token__length(this); } #endif // __cplusplus // -------- typedef WUFFS_BASE__SLICE(wuffs_base__token) wuffs_base__slice_token; static inline wuffs_base__slice_token // wuffs_base__make_slice_token(wuffs_base__token* ptr, size_t len) { wuffs_base__slice_token ret; ret.ptr = ptr; ret.len = len; return ret; } static inline wuffs_base__slice_token // wuffs_base__empty_slice_token() { wuffs_base__slice_token ret; ret.ptr = NULL; ret.len = 0; return ret; } // -------- // wuffs_base__token_buffer_meta is the metadata for a // wuffs_base__token_buffer's data. typedef struct wuffs_base__token_buffer_meta__struct { size_t wi; // Write index. Invariant: wi <= len. size_t ri; // Read index. Invariant: ri <= wi. uint64_t pos; // Position of the buffer start relative to the stream start. bool closed; // No further writes are expected. } wuffs_base__token_buffer_meta; // wuffs_base__token_buffer is a 1-dimensional buffer (a pointer and length) // plus additional metadata. // // A value with all fields zero is a valid, empty buffer. typedef struct wuffs_base__token_buffer__struct { wuffs_base__slice_token data; wuffs_base__token_buffer_meta meta; #ifdef __cplusplus inline bool is_valid() const; inline void compact(); inline uint64_t reader_length() const; inline wuffs_base__token* reader_pointer() const; inline wuffs_base__slice_token reader_slice() const; inline uint64_t reader_token_position() const; inline uint64_t writer_length() const; inline uint64_t writer_token_position() const; inline wuffs_base__token* writer_pointer() const; inline wuffs_base__slice_token writer_slice() const; #endif // __cplusplus } wuffs_base__token_buffer; static inline wuffs_base__token_buffer // wuffs_base__make_token_buffer(wuffs_base__slice_token data, wuffs_base__token_buffer_meta meta) { wuffs_base__token_buffer ret; ret.data = data; ret.meta = meta; return ret; } static inline wuffs_base__token_buffer_meta // wuffs_base__make_token_buffer_meta(size_t wi, size_t ri, uint64_t pos, bool closed) { wuffs_base__token_buffer_meta ret; ret.wi = wi; ret.ri = ri; ret.pos = pos; ret.closed = closed; return ret; } static inline wuffs_base__token_buffer // wuffs_base__slice_token__reader(wuffs_base__slice_token s, bool closed) { wuffs_base__token_buffer ret; ret.data.ptr = s.ptr; ret.data.len = s.len; ret.meta.wi = s.len; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = closed; return ret; } static inline wuffs_base__token_buffer // wuffs_base__slice_token__writer(wuffs_base__slice_token s) { wuffs_base__token_buffer ret; ret.data.ptr = s.ptr; ret.data.len = s.len; ret.meta.wi = 0; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = false; return ret; } static inline wuffs_base__token_buffer // wuffs_base__empty_token_buffer() { wuffs_base__token_buffer ret; ret.data.ptr = NULL; ret.data.len = 0; ret.meta.wi = 0; ret.meta.ri = 0; ret.meta.pos = 0; ret.meta.closed = false; return ret; } static inline wuffs_base__token_buffer_meta // wuffs_base__empty_token_buffer_meta() { wuffs_base__token_buffer_meta ret; ret.wi = 0; ret.ri = 0; ret.pos = 0; ret.closed = false; return ret; } static inline bool // wuffs_base__token_buffer__is_valid(const wuffs_base__token_buffer* buf) { if (buf) { if (buf->data.ptr) { return (buf->meta.ri <= buf->meta.wi) && (buf->meta.wi <= buf->data.len); } else { return (buf->meta.ri == 0) && (buf->meta.wi == 0) && (buf->data.len == 0); } } return false; } // wuffs_base__token_buffer__compact moves any written but unread tokens to the // start of the buffer. static inline void // wuffs_base__token_buffer__compact(wuffs_base__token_buffer* buf) { if (!buf || (buf->meta.ri == 0)) { return; } buf->meta.pos = wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri); size_t n = buf->meta.wi - buf->meta.ri; if (n != 0) { memmove(buf->data.ptr, buf->data.ptr + buf->meta.ri, n * sizeof(wuffs_base__token)); } buf->meta.wi = n; buf->meta.ri = 0; } static inline uint64_t // wuffs_base__token_buffer__reader_length(const wuffs_base__token_buffer* buf) { return buf ? buf->meta.wi - buf->meta.ri : 0; } static inline wuffs_base__token* // wuffs_base__token_buffer__reader_pointer(const wuffs_base__token_buffer* buf) { return buf ? (buf->data.ptr + buf->meta.ri) : NULL; } static inline wuffs_base__slice_token // wuffs_base__token_buffer__reader_slice(const wuffs_base__token_buffer* buf) { return buf ? wuffs_base__make_slice_token(buf->data.ptr + buf->meta.ri, buf->meta.wi - buf->meta.ri) : wuffs_base__empty_slice_token(); } static inline uint64_t // wuffs_base__token_buffer__reader_token_position( const wuffs_base__token_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.ri) : 0; } static inline uint64_t // wuffs_base__token_buffer__writer_length(const wuffs_base__token_buffer* buf) { return buf ? buf->data.len - buf->meta.wi : 0; } static inline wuffs_base__token* // wuffs_base__token_buffer__writer_pointer(const wuffs_base__token_buffer* buf) { return buf ? (buf->data.ptr + buf->meta.wi) : NULL; } static inline wuffs_base__slice_token // wuffs_base__token_buffer__writer_slice(const wuffs_base__token_buffer* buf) { return buf ? wuffs_base__make_slice_token(buf->data.ptr + buf->meta.wi, buf->data.len - buf->meta.wi) : wuffs_base__empty_slice_token(); } static inline uint64_t // wuffs_base__token_buffer__writer_token_position( const wuffs_base__token_buffer* buf) { return buf ? wuffs_base__u64__sat_add(buf->meta.pos, buf->meta.wi) : 0; } #ifdef __cplusplus inline bool // wuffs_base__token_buffer::is_valid() const { return wuffs_base__token_buffer__is_valid(this); } inline void // wuffs_base__token_buffer::compact() { wuffs_base__token_buffer__compact(this); } inline uint64_t // wuffs_base__token_buffer::reader_length() const { return wuffs_base__token_buffer__reader_length(this); } inline wuffs_base__token* // wuffs_base__token_buffer::reader_pointer() const { return wuffs_base__token_buffer__reader_pointer(this); } inline wuffs_base__slice_token // wuffs_base__token_buffer::reader_slice() const { return wuffs_base__token_buffer__reader_slice(this); } inline uint64_t // wuffs_base__token_buffer::reader_token_position() const { return wuffs_base__token_buffer__reader_token_position(this); } inline uint64_t // wuffs_base__token_buffer::writer_length() const { return wuffs_base__token_buffer__writer_length(this); } inline wuffs_base__token* // wuffs_base__token_buffer::writer_pointer() const { return wuffs_base__token_buffer__writer_pointer(this); } inline wuffs_base__slice_token // wuffs_base__token_buffer::writer_slice() const { return wuffs_base__token_buffer__writer_slice(this); } inline uint64_t // wuffs_base__token_buffer::writer_token_position() const { return wuffs_base__token_buffer__writer_token_position(this); } #endif // __cplusplus // ---------------- Memory Allocation // The memory allocation related functions in this section aren't used by Wuffs // per se, but they may be helpful to the code that uses Wuffs. // wuffs_base__malloc_slice_uxx wraps calling a malloc-like function, except // that it takes a uint64_t number of elements instead of a size_t size in // bytes, and it returns a slice (a pointer and a length) instead of just a // pointer. // // You can pass the C stdlib's malloc as the malloc_func. // // It returns an empty slice (containing a NULL ptr field) if (num_uxx * // sizeof(uintxx_t)) would overflow SIZE_MAX. static inline wuffs_base__slice_u8 // wuffs_base__malloc_slice_u8(void* (*malloc_func)(size_t), uint64_t num_u8) { if (malloc_func && (num_u8 <= (SIZE_MAX / sizeof(uint8_t)))) { void* p = (*malloc_func)((size_t)(num_u8 * sizeof(uint8_t))); if (p) { return wuffs_base__make_slice_u8((uint8_t*)(p), (size_t)num_u8); } } return wuffs_base__make_slice_u8(NULL, 0); } static inline wuffs_base__slice_u16 // wuffs_base__malloc_slice_u16(void* (*malloc_func)(size_t), uint64_t num_u16) { if (malloc_func && (num_u16 <= (SIZE_MAX / sizeof(uint16_t)))) { void* p = (*malloc_func)((size_t)(num_u16 * sizeof(uint16_t))); if (p) { return wuffs_base__make_slice_u16((uint16_t*)(p), (size_t)num_u16); } } return wuffs_base__make_slice_u16(NULL, 0); } static inline wuffs_base__slice_u32 // wuffs_base__malloc_slice_u32(void* (*malloc_func)(size_t), uint64_t num_u32) { if (malloc_func && (num_u32 <= (SIZE_MAX / sizeof(uint32_t)))) { void* p = (*malloc_func)((size_t)(num_u32 * sizeof(uint32_t))); if (p) { return wuffs_base__make_slice_u32((uint32_t*)(p), (size_t)num_u32); } } return wuffs_base__make_slice_u32(NULL, 0); } static inline wuffs_base__slice_u64 // wuffs_base__malloc_slice_u64(void* (*malloc_func)(size_t), uint64_t num_u64) { if (malloc_func && (num_u64 <= (SIZE_MAX / sizeof(uint64_t)))) { void* p = (*malloc_func)((size_t)(num_u64 * sizeof(uint64_t))); if (p) { return wuffs_base__make_slice_u64((uint64_t*)(p), (size_t)num_u64); } } return wuffs_base__make_slice_u64(NULL, 0); } // ---------------- Images // wuffs_base__color_u32_argb_premul is an 8 bit per channel premultiplied // Alpha, Red, Green, Blue color, as a uint32_t value. Its value is always // 0xAARRGGBB (Alpha most significant, Blue least), regardless of endianness. typedef uint32_t wuffs_base__color_u32_argb_premul; // wuffs_base__color_u32_argb_premul__is_valid returns whether c's Red, Green // and Blue channels are all less than or equal to its Alpha channel. c uses // premultiplied alpha, so 50% opaque 100% saturated red is 0x7F7F_0000 and a // value like 0x7F80_0000 is invalid. static inline bool // wuffs_base__color_u32_argb_premul__is_valid( wuffs_base__color_u32_argb_premul c) { uint32_t a = 0xFF & (c >> 24); uint32_t r = 0xFF & (c >> 16); uint32_t g = 0xFF & (c >> 8); uint32_t b = 0xFF & (c >> 0); return (a >= r) && (a >= g) && (a >= b); } static inline uint16_t // wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__color_u32_argb_premul c) { uint32_t r5 = 0xF800 & (c >> 8); uint32_t g6 = 0x07E0 & (c >> 5); uint32_t b5 = 0x001F & (c >> 3); return (uint16_t)(r5 | g6 | b5); } static inline wuffs_base__color_u32_argb_premul // wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul(uint16_t rgb_565) { uint32_t b5 = 0x1F & (rgb_565 >> 0); uint32_t b = (b5 << 3) | (b5 >> 2); uint32_t g6 = 0x3F & (rgb_565 >> 5); uint32_t g = (g6 << 2) | (g6 >> 4); uint32_t r5 = 0x1F & (rgb_565 >> 11); uint32_t r = (r5 << 3) | (r5 >> 2); return 0xFF000000 | (r << 16) | (g << 8) | (b << 0); } static inline uint8_t // wuffs_base__color_u32_argb_premul__as__color_u8_gray( wuffs_base__color_u32_argb_premul c) { // Work in 16-bit color. uint32_t cr = 0x101 * (0xFF & (c >> 16)); uint32_t cg = 0x101 * (0xFF & (c >> 8)); uint32_t cb = 0x101 * (0xFF & (c >> 0)); // These coefficients (the fractions 0.299, 0.587 and 0.114) are the same // as those given by the JFIF specification. // // Note that 19595 + 38470 + 7471 equals 65536, also known as (1 << 16). We // shift by 24, not just by 16, because the return value is 8-bit color, not // 16-bit color. uint32_t weighted_average = (19595 * cr) + (38470 * cg) + (7471 * cb) + 32768; return (uint8_t)(weighted_average >> 24); } static inline uint16_t // wuffs_base__color_u32_argb_premul__as__color_u16_gray( wuffs_base__color_u32_argb_premul c) { // Work in 16-bit color. uint32_t cr = 0x101 * (0xFF & (c >> 16)); uint32_t cg = 0x101 * (0xFF & (c >> 8)); uint32_t cb = 0x101 * (0xFF & (c >> 0)); // These coefficients (the fractions 0.299, 0.587 and 0.114) are the same // as those given by the JFIF specification. // // Note that 19595 + 38470 + 7471 equals 65536, also known as (1 << 16). uint32_t weighted_average = (19595 * cr) + (38470 * cg) + (7471 * cb) + 32768; return (uint16_t)(weighted_average >> 16); } // wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul converts // from non-premultiplied alpha to premultiplied alpha. static inline wuffs_base__color_u32_argb_premul // wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( uint32_t argb_nonpremul) { // Multiplying by 0x101 (twice, once for alpha and once for color) converts // from 8-bit to 16-bit color. Shifting right by 8 undoes that. // // Working in the higher bit depth can produce slightly different (and // arguably slightly more accurate) results. For example, given 8-bit blue // and alpha of 0x80 and 0x81: // // - ((0x80 * 0x81 ) / 0xFF ) = 0x40 = 0x40 // - ((0x8080 * 0x8181) / 0xFFFF) >> 8 = 0x4101 >> 8 = 0x41 uint32_t a = 0xFF & (argb_nonpremul >> 24); uint32_t a16 = a * (0x101 * 0x101); uint32_t r = 0xFF & (argb_nonpremul >> 16); r = ((r * a16) / 0xFFFF) >> 8; uint32_t g = 0xFF & (argb_nonpremul >> 8); g = ((g * a16) / 0xFFFF) >> 8; uint32_t b = 0xFF & (argb_nonpremul >> 0); b = ((b * a16) / 0xFFFF) >> 8; return (a << 24) | (r << 16) | (g << 8) | (b << 0); } // wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul converts // from premultiplied alpha to non-premultiplied alpha. static inline uint32_t // wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( wuffs_base__color_u32_argb_premul c) { uint32_t a = 0xFF & (c >> 24); if (a == 0xFF) { return c; } else if (a == 0) { return 0; } uint32_t a16 = a * 0x101; uint32_t r = 0xFF & (c >> 16); r = ((r * (0x101 * 0xFFFF)) / a16) >> 8; uint32_t g = 0xFF & (c >> 8); g = ((g * (0x101 * 0xFFFF)) / a16) >> 8; uint32_t b = 0xFF & (c >> 0); b = ((b * (0x101 * 0xFFFF)) / a16) >> 8; return (a << 24) | (r << 16) | (g << 8) | (b << 0); } // wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul converts // from 4x16LE non-premultiplied alpha to 4x8 premultiplied alpha. static inline wuffs_base__color_u32_argb_premul // wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul( uint64_t argb_nonpremul) { uint32_t a16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 48))); uint32_t r16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 32))); r16 = (r16 * a16) / 0xFFFF; uint32_t g16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 16))); g16 = (g16 * a16) / 0xFFFF; uint32_t b16 = ((uint32_t)(0xFFFF & (argb_nonpremul >> 0))); b16 = (b16 * a16) / 0xFFFF; return ((a16 >> 8) << 24) | ((r16 >> 8) << 16) | ((g16 >> 8) << 8) | ((b16 >> 8) << 0); } // wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul converts // from 4x8 premultiplied alpha to 4x16LE non-premultiplied alpha. static inline uint64_t // wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul( wuffs_base__color_u32_argb_premul c) { uint32_t a = 0xFF & (c >> 24); if (a == 0xFF) { uint64_t r16 = 0x101 * (0xFF & (c >> 16)); uint64_t g16 = 0x101 * (0xFF & (c >> 8)); uint64_t b16 = 0x101 * (0xFF & (c >> 0)); return 0xFFFF000000000000u | (r16 << 32) | (g16 << 16) | (b16 << 0); } else if (a == 0) { return 0; } uint64_t a16 = a * 0x101; uint64_t r = 0xFF & (c >> 16); uint64_t r16 = (r * (0x101 * 0xFFFF)) / a16; uint64_t g = 0xFF & (c >> 8); uint64_t g16 = (g * (0x101 * 0xFFFF)) / a16; uint64_t b = 0xFF & (c >> 0); uint64_t b16 = (b * (0x101 * 0xFFFF)) / a16; return (a16 << 48) | (r16 << 32) | (g16 << 16) | (b16 << 0); } static inline uint64_t // wuffs_base__color_u32__as__color_u64(uint32_t c) { uint64_t a16 = 0x101 * (0xFF & (c >> 24)); uint64_t r16 = 0x101 * (0xFF & (c >> 16)); uint64_t g16 = 0x101 * (0xFF & (c >> 8)); uint64_t b16 = 0x101 * (0xFF & (c >> 0)); return (a16 << 48) | (r16 << 32) | (g16 << 16) | (b16 << 0); } static inline uint32_t // wuffs_base__color_u64__as__color_u32(uint64_t c) { uint32_t a = ((uint32_t)(0xFF & (c >> 56))); uint32_t r = ((uint32_t)(0xFF & (c >> 40))); uint32_t g = ((uint32_t)(0xFF & (c >> 24))); uint32_t b = ((uint32_t)(0xFF & (c >> 8))); return (a << 24) | (r << 16) | (g << 8) | (b << 0); } // -------- typedef uint8_t wuffs_base__pixel_blend; // wuffs_base__pixel_blend encodes how to blend source and destination pixels, // accounting for transparency. It encompasses the Porter-Duff compositing // operators as well as the other blending modes defined by PDF. // // TODO: implement the other modes. #define WUFFS_BASE__PIXEL_BLEND__SRC ((wuffs_base__pixel_blend)0) #define WUFFS_BASE__PIXEL_BLEND__SRC_OVER ((wuffs_base__pixel_blend)1) // -------- // wuffs_base__pixel_alpha_transparency is a pixel format's alpha channel // model. It is a property of the pixel format in general, not of a specific // pixel. An RGBA pixel format (with alpha) can still have fully opaque pixels. typedef uint32_t wuffs_base__pixel_alpha_transparency; #define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__OPAQUE 0 #define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NONPREMULTIPLIED_ALPHA 1 #define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__PREMULTIPLIED_ALPHA 2 #define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__BINARY_ALPHA 3 // Deprecated: use WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NONPREMULTIPLIED_ALPHA // instead. #define WUFFS_BASE__PIXEL_ALPHA_TRANSPARENCY__NON_PREMULTIPLIED_ALPHA 1 // -------- #define WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX 4 #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__INDEX_PLANE 0 #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE 3 // A palette is 256 entries × 4 bytes per entry (e.g. BGRA). #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH 1024 // wuffs_base__pixel_format encodes the format of the bytes that constitute an // image frame's pixel data. // // See https://github.com/google/wuffs/blob/main/doc/note/pixel-formats.md // // Do not manipulate its bits directly; they are private implementation // details. Use methods such as wuffs_base__pixel_format__num_planes instead. typedef struct wuffs_base__pixel_format__struct { uint32_t repr; #ifdef __cplusplus inline bool is_valid() const; inline uint32_t bits_per_pixel() const; inline bool is_direct() const; inline bool is_indexed() const; inline bool is_interleaved() const; inline bool is_planar() const; inline uint32_t num_planes() const; inline wuffs_base__pixel_alpha_transparency transparency() const; #endif // __cplusplus } wuffs_base__pixel_format; static inline wuffs_base__pixel_format // wuffs_base__make_pixel_format(uint32_t repr) { wuffs_base__pixel_format f; f.repr = repr; return f; } // Common 8-bit-depth pixel formats. This list is not exhaustive; not all valid // wuffs_base__pixel_format values are present. #define WUFFS_BASE__PIXEL_FORMAT__INVALID 0x00000000 #define WUFFS_BASE__PIXEL_FORMAT__A 0x02000008 #define WUFFS_BASE__PIXEL_FORMAT__Y 0x20000008 #define WUFFS_BASE__PIXEL_FORMAT__Y_16LE 0x2000000B #define WUFFS_BASE__PIXEL_FORMAT__Y_16BE 0x2010000B #define WUFFS_BASE__PIXEL_FORMAT__YA_NONPREMUL 0x21000008 #define WUFFS_BASE__PIXEL_FORMAT__YA_PREMUL 0x22000008 #define WUFFS_BASE__PIXEL_FORMAT__YCBCR 0x40020888 #define WUFFS_BASE__PIXEL_FORMAT__YCBCRA_NONPREMUL 0x41038888 #define WUFFS_BASE__PIXEL_FORMAT__YCBCRK 0x50038888 #define WUFFS_BASE__PIXEL_FORMAT__YCOCG 0x60020888 #define WUFFS_BASE__PIXEL_FORMAT__YCOCGA_NONPREMUL 0x61038888 #define WUFFS_BASE__PIXEL_FORMAT__YCOCGK 0x70038888 #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL 0x81040008 #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL 0x82040008 #define WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY 0x83040008 #define WUFFS_BASE__PIXEL_FORMAT__BGR_565 0x80000565 #define WUFFS_BASE__PIXEL_FORMAT__BGR 0x80000888 #define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL 0x81008888 #define WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE 0x8100BBBB #define WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL 0x82008888 #define WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE 0x8200BBBB #define WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY 0x83008888 #define WUFFS_BASE__PIXEL_FORMAT__BGRX 0x90008888 #define WUFFS_BASE__PIXEL_FORMAT__RGB 0xA0000888 #define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL 0xA1008888 #define WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL_4X16LE 0xA100BBBB #define WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL 0xA2008888 #define WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL_4X16LE 0xA200BBBB #define WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY 0xA3008888 #define WUFFS_BASE__PIXEL_FORMAT__RGBX 0xB0008888 #define WUFFS_BASE__PIXEL_FORMAT__CMY 0xC0020888 #define WUFFS_BASE__PIXEL_FORMAT__CMYK 0xD0038888 extern const uint32_t wuffs_base__pixel_format__bits_per_channel[16]; static inline bool // wuffs_base__pixel_format__is_valid(const wuffs_base__pixel_format* f) { return f->repr != 0; } // wuffs_base__pixel_format__bits_per_pixel returns the number of bits per // pixel for interleaved pixel formats, and returns 0 for planar pixel formats. static inline uint32_t // wuffs_base__pixel_format__bits_per_pixel(const wuffs_base__pixel_format* f) { if (((f->repr >> 16) & 0x03) != 0) { return 0; } return wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 0)] + wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 4)] + wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 8)] + wuffs_base__pixel_format__bits_per_channel[0x0F & (f->repr >> 12)]; } static inline bool // wuffs_base__pixel_format__is_direct(const wuffs_base__pixel_format* f) { return ((f->repr >> 18) & 0x01) == 0; } static inline bool // wuffs_base__pixel_format__is_indexed(const wuffs_base__pixel_format* f) { return ((f->repr >> 18) & 0x01) != 0; } static inline bool // wuffs_base__pixel_format__is_interleaved(const wuffs_base__pixel_format* f) { return ((f->repr >> 16) & 0x03) == 0; } static inline bool // wuffs_base__pixel_format__is_planar(const wuffs_base__pixel_format* f) { return ((f->repr >> 16) & 0x03) != 0; } static inline uint32_t // wuffs_base__pixel_format__num_planes(const wuffs_base__pixel_format* f) { return ((f->repr >> 16) & 0x03) + 1; } static inline wuffs_base__pixel_alpha_transparency // wuffs_base__pixel_format__transparency(const wuffs_base__pixel_format* f) { return (wuffs_base__pixel_alpha_transparency)((f->repr >> 24) & 0x03); } #ifdef __cplusplus inline bool // wuffs_base__pixel_format::is_valid() const { return wuffs_base__pixel_format__is_valid(this); } inline uint32_t // wuffs_base__pixel_format::bits_per_pixel() const { return wuffs_base__pixel_format__bits_per_pixel(this); } inline bool // wuffs_base__pixel_format::is_direct() const { return wuffs_base__pixel_format__is_direct(this); } inline bool // wuffs_base__pixel_format::is_indexed() const { return wuffs_base__pixel_format__is_indexed(this); } inline bool // wuffs_base__pixel_format::is_interleaved() const { return wuffs_base__pixel_format__is_interleaved(this); } inline bool // wuffs_base__pixel_format::is_planar() const { return wuffs_base__pixel_format__is_planar(this); } inline uint32_t // wuffs_base__pixel_format::num_planes() const { return wuffs_base__pixel_format__num_planes(this); } inline wuffs_base__pixel_alpha_transparency // wuffs_base__pixel_format::transparency() const { return wuffs_base__pixel_format__transparency(this); } #endif // __cplusplus // -------- // wuffs_base__pixel_subsampling encodes whether sample values cover one pixel // or cover multiple pixels. // // See https://github.com/google/wuffs/blob/main/doc/note/pixel-subsampling.md // // Do not manipulate its bits directly; they are private implementation // details. Use methods such as wuffs_base__pixel_subsampling__bias_x instead. typedef struct wuffs_base__pixel_subsampling__struct { uint32_t repr; #ifdef __cplusplus inline uint32_t bias_x(uint32_t plane) const; inline uint32_t denominator_x(uint32_t plane) const; inline uint32_t bias_y(uint32_t plane) const; inline uint32_t denominator_y(uint32_t plane) const; #endif // __cplusplus } wuffs_base__pixel_subsampling; static inline wuffs_base__pixel_subsampling // wuffs_base__make_pixel_subsampling(uint32_t repr) { wuffs_base__pixel_subsampling s; s.repr = repr; return s; } #define WUFFS_BASE__PIXEL_SUBSAMPLING__NONE 0x00000000 #define WUFFS_BASE__PIXEL_SUBSAMPLING__444 0x000000 #define WUFFS_BASE__PIXEL_SUBSAMPLING__440 0x010100 #define WUFFS_BASE__PIXEL_SUBSAMPLING__422 0x101000 #define WUFFS_BASE__PIXEL_SUBSAMPLING__420 0x111100 #define WUFFS_BASE__PIXEL_SUBSAMPLING__411 0x303000 #define WUFFS_BASE__PIXEL_SUBSAMPLING__410 0x313100 static inline uint32_t // wuffs_base__pixel_subsampling__bias_x(const wuffs_base__pixel_subsampling* s, uint32_t plane) { uint32_t shift = ((plane & 0x03) * 8) + 6; return (s->repr >> shift) & 0x03; } static inline uint32_t // wuffs_base__pixel_subsampling__denominator_x( const wuffs_base__pixel_subsampling* s, uint32_t plane) { uint32_t shift = ((plane & 0x03) * 8) + 4; return ((s->repr >> shift) & 0x03) + 1; } static inline uint32_t // wuffs_base__pixel_subsampling__bias_y(const wuffs_base__pixel_subsampling* s, uint32_t plane) { uint32_t shift = ((plane & 0x03) * 8) + 2; return (s->repr >> shift) & 0x03; } static inline uint32_t // wuffs_base__pixel_subsampling__denominator_y( const wuffs_base__pixel_subsampling* s, uint32_t plane) { uint32_t shift = ((plane & 0x03) * 8) + 0; return ((s->repr >> shift) & 0x03) + 1; } #ifdef __cplusplus inline uint32_t // wuffs_base__pixel_subsampling::bias_x(uint32_t plane) const { return wuffs_base__pixel_subsampling__bias_x(this, plane); } inline uint32_t // wuffs_base__pixel_subsampling::denominator_x(uint32_t plane) const { return wuffs_base__pixel_subsampling__denominator_x(this, plane); } inline uint32_t // wuffs_base__pixel_subsampling::bias_y(uint32_t plane) const { return wuffs_base__pixel_subsampling__bias_y(this, plane); } inline uint32_t // wuffs_base__pixel_subsampling::denominator_y(uint32_t plane) const { return wuffs_base__pixel_subsampling__denominator_y(this, plane); } #endif // __cplusplus // -------- typedef struct wuffs_base__pixel_config__struct { // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { wuffs_base__pixel_format pixfmt; wuffs_base__pixel_subsampling pixsub; uint32_t width; uint32_t height; } private_impl; #ifdef __cplusplus inline void set(uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height); inline void invalidate(); inline bool is_valid() const; inline wuffs_base__pixel_format pixel_format() const; inline wuffs_base__pixel_subsampling pixel_subsampling() const; inline wuffs_base__rect_ie_u32 bounds() const; inline uint32_t width() const; inline uint32_t height() const; inline uint64_t pixbuf_len() const; #endif // __cplusplus } wuffs_base__pixel_config; static inline wuffs_base__pixel_config // wuffs_base__null_pixel_config() { wuffs_base__pixel_config ret; ret.private_impl.pixfmt.repr = 0; ret.private_impl.pixsub.repr = 0; ret.private_impl.width = 0; ret.private_impl.height = 0; return ret; } // TODO: Should this function return bool? An error type? static inline void // wuffs_base__pixel_config__set(wuffs_base__pixel_config* c, uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height) { if (!c) { return; } if (pixfmt_repr) { uint64_t wh = ((uint64_t)width) * ((uint64_t)height); // TODO: handle things other than 1 byte per pixel. if (wh <= ((uint64_t)SIZE_MAX)) { c->private_impl.pixfmt.repr = pixfmt_repr; c->private_impl.pixsub.repr = pixsub_repr; c->private_impl.width = width; c->private_impl.height = height; return; } } c->private_impl.pixfmt.repr = 0; c->private_impl.pixsub.repr = 0; c->private_impl.width = 0; c->private_impl.height = 0; } static inline void // wuffs_base__pixel_config__invalidate(wuffs_base__pixel_config* c) { if (c) { c->private_impl.pixfmt.repr = 0; c->private_impl.pixsub.repr = 0; c->private_impl.width = 0; c->private_impl.height = 0; } } static inline bool // wuffs_base__pixel_config__is_valid(const wuffs_base__pixel_config* c) { return c && c->private_impl.pixfmt.repr; } static inline wuffs_base__pixel_format // wuffs_base__pixel_config__pixel_format(const wuffs_base__pixel_config* c) { return c ? c->private_impl.pixfmt : wuffs_base__make_pixel_format(0); } static inline wuffs_base__pixel_subsampling // wuffs_base__pixel_config__pixel_subsampling(const wuffs_base__pixel_config* c) { return c ? c->private_impl.pixsub : wuffs_base__make_pixel_subsampling(0); } static inline wuffs_base__rect_ie_u32 // wuffs_base__pixel_config__bounds(const wuffs_base__pixel_config* c) { if (c) { wuffs_base__rect_ie_u32 ret; ret.min_incl_x = 0; ret.min_incl_y = 0; ret.max_excl_x = c->private_impl.width; ret.max_excl_y = c->private_impl.height; return ret; } wuffs_base__rect_ie_u32 ret; ret.min_incl_x = 0; ret.min_incl_y = 0; ret.max_excl_x = 0; ret.max_excl_y = 0; return ret; } static inline uint32_t // wuffs_base__pixel_config__width(const wuffs_base__pixel_config* c) { return c ? c->private_impl.width : 0; } static inline uint32_t // wuffs_base__pixel_config__height(const wuffs_base__pixel_config* c) { return c ? c->private_impl.height : 0; } // TODO: this is the right API for planar (not interleaved) pixbufs? Should it // allow decoding into a color model different from the format's intrinsic one? // For example, decoding a JPEG image straight to RGBA instead of to YCbCr? static inline uint64_t // wuffs_base__pixel_config__pixbuf_len(const wuffs_base__pixel_config* c) { if (!c) { return 0; } if (wuffs_base__pixel_format__is_planar(&c->private_impl.pixfmt)) { // TODO: support planar pixel formats, concious of pixel subsampling. return 0; } uint32_t bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&c->private_impl.pixfmt); if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) { // TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel? return 0; } uint64_t bytes_per_pixel = bits_per_pixel / 8; uint64_t n = ((uint64_t)c->private_impl.width) * ((uint64_t)c->private_impl.height); if (n > (UINT64_MAX / bytes_per_pixel)) { return 0; } n *= bytes_per_pixel; if (wuffs_base__pixel_format__is_indexed(&c->private_impl.pixfmt)) { if (n > (UINT64_MAX - WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH)) { return 0; } n += WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; } return n; } #ifdef __cplusplus inline void // wuffs_base__pixel_config::set(uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height) { wuffs_base__pixel_config__set(this, pixfmt_repr, pixsub_repr, width, height); } inline void // wuffs_base__pixel_config::invalidate() { wuffs_base__pixel_config__invalidate(this); } inline bool // wuffs_base__pixel_config::is_valid() const { return wuffs_base__pixel_config__is_valid(this); } inline wuffs_base__pixel_format // wuffs_base__pixel_config::pixel_format() const { return wuffs_base__pixel_config__pixel_format(this); } inline wuffs_base__pixel_subsampling // wuffs_base__pixel_config::pixel_subsampling() const { return wuffs_base__pixel_config__pixel_subsampling(this); } inline wuffs_base__rect_ie_u32 // wuffs_base__pixel_config::bounds() const { return wuffs_base__pixel_config__bounds(this); } inline uint32_t // wuffs_base__pixel_config::width() const { return wuffs_base__pixel_config__width(this); } inline uint32_t // wuffs_base__pixel_config::height() const { return wuffs_base__pixel_config__height(this); } inline uint64_t // wuffs_base__pixel_config::pixbuf_len() const { return wuffs_base__pixel_config__pixbuf_len(this); } #endif // __cplusplus // -------- typedef struct wuffs_base__image_config__struct { wuffs_base__pixel_config pixcfg; // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { uint64_t first_frame_io_position; bool first_frame_is_opaque; } private_impl; #ifdef __cplusplus inline void set(uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height, uint64_t first_frame_io_position, bool first_frame_is_opaque); inline void invalidate(); inline bool is_valid() const; inline uint64_t first_frame_io_position() const; inline bool first_frame_is_opaque() const; #endif // __cplusplus } wuffs_base__image_config; static inline wuffs_base__image_config // wuffs_base__null_image_config() { wuffs_base__image_config ret; ret.pixcfg = wuffs_base__null_pixel_config(); ret.private_impl.first_frame_io_position = 0; ret.private_impl.first_frame_is_opaque = false; return ret; } // TODO: Should this function return bool? An error type? static inline void // wuffs_base__image_config__set(wuffs_base__image_config* c, uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height, uint64_t first_frame_io_position, bool first_frame_is_opaque) { if (!c) { return; } if (pixfmt_repr) { c->pixcfg.private_impl.pixfmt.repr = pixfmt_repr; c->pixcfg.private_impl.pixsub.repr = pixsub_repr; c->pixcfg.private_impl.width = width; c->pixcfg.private_impl.height = height; c->private_impl.first_frame_io_position = first_frame_io_position; c->private_impl.first_frame_is_opaque = first_frame_is_opaque; return; } c->pixcfg.private_impl.pixfmt.repr = 0; c->pixcfg.private_impl.pixsub.repr = 0; c->pixcfg.private_impl.width = 0; c->pixcfg.private_impl.height = 0; c->private_impl.first_frame_io_position = 0; c->private_impl.first_frame_is_opaque = 0; } static inline void // wuffs_base__image_config__invalidate(wuffs_base__image_config* c) { if (c) { c->pixcfg.private_impl.pixfmt.repr = 0; c->pixcfg.private_impl.pixsub.repr = 0; c->pixcfg.private_impl.width = 0; c->pixcfg.private_impl.height = 0; c->private_impl.first_frame_io_position = 0; c->private_impl.first_frame_is_opaque = 0; } } static inline bool // wuffs_base__image_config__is_valid(const wuffs_base__image_config* c) { return c && wuffs_base__pixel_config__is_valid(&(c->pixcfg)); } static inline uint64_t // wuffs_base__image_config__first_frame_io_position( const wuffs_base__image_config* c) { return c ? c->private_impl.first_frame_io_position : 0; } static inline bool // wuffs_base__image_config__first_frame_is_opaque( const wuffs_base__image_config* c) { return c ? c->private_impl.first_frame_is_opaque : false; } #ifdef __cplusplus inline void // wuffs_base__image_config::set(uint32_t pixfmt_repr, uint32_t pixsub_repr, uint32_t width, uint32_t height, uint64_t first_frame_io_position, bool first_frame_is_opaque) { wuffs_base__image_config__set(this, pixfmt_repr, pixsub_repr, width, height, first_frame_io_position, first_frame_is_opaque); } inline void // wuffs_base__image_config::invalidate() { wuffs_base__image_config__invalidate(this); } inline bool // wuffs_base__image_config::is_valid() const { return wuffs_base__image_config__is_valid(this); } inline uint64_t // wuffs_base__image_config::first_frame_io_position() const { return wuffs_base__image_config__first_frame_io_position(this); } inline bool // wuffs_base__image_config::first_frame_is_opaque() const { return wuffs_base__image_config__first_frame_is_opaque(this); } #endif // __cplusplus // -------- // wuffs_base__animation_disposal encodes, for an animated image, how to // dispose of a frame after displaying it: // - None means to draw the next frame on top of this one. // - Restore Background means to clear the frame's dirty rectangle to "the // background color" (in practice, this means transparent black) before // drawing the next frame. // - Restore Previous means to undo the current frame, so that the next frame // is drawn on top of the previous one. typedef uint8_t wuffs_base__animation_disposal; #define WUFFS_BASE__ANIMATION_DISPOSAL__NONE ((wuffs_base__animation_disposal)0) #define WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_BACKGROUND \ ((wuffs_base__animation_disposal)1) #define WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_PREVIOUS \ ((wuffs_base__animation_disposal)2) // -------- typedef struct wuffs_base__frame_config__struct { // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { wuffs_base__rect_ie_u32 bounds; wuffs_base__flicks duration; uint64_t index; uint64_t io_position; wuffs_base__animation_disposal disposal; bool opaque_within_bounds; bool overwrite_instead_of_blend; wuffs_base__color_u32_argb_premul background_color; } private_impl; #ifdef __cplusplus inline void set(wuffs_base__rect_ie_u32 bounds, wuffs_base__flicks duration, uint64_t index, uint64_t io_position, wuffs_base__animation_disposal disposal, bool opaque_within_bounds, bool overwrite_instead_of_blend, wuffs_base__color_u32_argb_premul background_color); inline wuffs_base__rect_ie_u32 bounds() const; inline uint32_t width() const; inline uint32_t height() const; inline wuffs_base__flicks duration() const; inline uint64_t index() const; inline uint64_t io_position() const; inline wuffs_base__animation_disposal disposal() const; inline bool opaque_within_bounds() const; inline bool overwrite_instead_of_blend() const; inline wuffs_base__color_u32_argb_premul background_color() const; #endif // __cplusplus } wuffs_base__frame_config; static inline wuffs_base__frame_config // wuffs_base__null_frame_config() { wuffs_base__frame_config ret; ret.private_impl.bounds = wuffs_base__make_rect_ie_u32(0, 0, 0, 0); ret.private_impl.duration = 0; ret.private_impl.index = 0; ret.private_impl.io_position = 0; ret.private_impl.disposal = 0; ret.private_impl.opaque_within_bounds = false; ret.private_impl.overwrite_instead_of_blend = false; return ret; } static inline void // wuffs_base__frame_config__set( wuffs_base__frame_config* c, wuffs_base__rect_ie_u32 bounds, wuffs_base__flicks duration, uint64_t index, uint64_t io_position, wuffs_base__animation_disposal disposal, bool opaque_within_bounds, bool overwrite_instead_of_blend, wuffs_base__color_u32_argb_premul background_color) { if (!c) { return; } c->private_impl.bounds = bounds; c->private_impl.duration = duration; c->private_impl.index = index; c->private_impl.io_position = io_position; c->private_impl.disposal = disposal; c->private_impl.opaque_within_bounds = opaque_within_bounds; c->private_impl.overwrite_instead_of_blend = overwrite_instead_of_blend; c->private_impl.background_color = background_color; } static inline wuffs_base__rect_ie_u32 // wuffs_base__frame_config__bounds(const wuffs_base__frame_config* c) { if (c) { return c->private_impl.bounds; } wuffs_base__rect_ie_u32 ret; ret.min_incl_x = 0; ret.min_incl_y = 0; ret.max_excl_x = 0; ret.max_excl_y = 0; return ret; } static inline uint32_t // wuffs_base__frame_config__width(const wuffs_base__frame_config* c) { return c ? wuffs_base__rect_ie_u32__width(&c->private_impl.bounds) : 0; } static inline uint32_t // wuffs_base__frame_config__height(const wuffs_base__frame_config* c) { return c ? wuffs_base__rect_ie_u32__height(&c->private_impl.bounds) : 0; } // wuffs_base__frame_config__duration returns the amount of time to display // this frame. Zero means to display forever - a still (non-animated) image. static inline wuffs_base__flicks // wuffs_base__frame_config__duration(const wuffs_base__frame_config* c) { return c ? c->private_impl.duration : 0; } // wuffs_base__frame_config__index returns the index of this frame. The first // frame in an image has index 0, the second frame has index 1, and so on. static inline uint64_t // wuffs_base__frame_config__index(const wuffs_base__frame_config* c) { return c ? c->private_impl.index : 0; } // wuffs_base__frame_config__io_position returns the I/O stream position before // the frame config. static inline uint64_t // wuffs_base__frame_config__io_position(const wuffs_base__frame_config* c) { return c ? c->private_impl.io_position : 0; } // wuffs_base__frame_config__disposal returns, for an animated image, how to // dispose of this frame after displaying it. static inline wuffs_base__animation_disposal // wuffs_base__frame_config__disposal(const wuffs_base__frame_config* c) { return c ? c->private_impl.disposal : 0; } // wuffs_base__frame_config__opaque_within_bounds returns whether all pixels // within the frame's bounds are fully opaque. It makes no claim about pixels // outside the frame bounds but still inside the overall image. The two // bounding rectangles can differ for animated images. // // Its semantics are conservative. It is valid for a fully opaque frame to have // this value be false: a false negative. // // If true, drawing the frame with WUFFS_BASE__PIXEL_BLEND__SRC and // WUFFS_BASE__PIXEL_BLEND__SRC_OVER should be equivalent, in terms of // resultant pixels, but the former may be faster. static inline bool // wuffs_base__frame_config__opaque_within_bounds( const wuffs_base__frame_config* c) { return c && c->private_impl.opaque_within_bounds; } // wuffs_base__frame_config__overwrite_instead_of_blend returns, for an // animated image, whether to ignore the previous image state (within the frame // bounds) when drawing this incremental frame. Equivalently, whether to use // WUFFS_BASE__PIXEL_BLEND__SRC instead of WUFFS_BASE__PIXEL_BLEND__SRC_OVER. // // The WebP spec (https://developers.google.com/speed/webp/docs/riff_container) // calls this the "Blending method" bit. WebP's "Do not blend" corresponds to // Wuffs' "overwrite_instead_of_blend". static inline bool // wuffs_base__frame_config__overwrite_instead_of_blend( const wuffs_base__frame_config* c) { return c && c->private_impl.overwrite_instead_of_blend; } static inline wuffs_base__color_u32_argb_premul // wuffs_base__frame_config__background_color(const wuffs_base__frame_config* c) { return c ? c->private_impl.background_color : 0; } #ifdef __cplusplus inline void // wuffs_base__frame_config::set( wuffs_base__rect_ie_u32 bounds, wuffs_base__flicks duration, uint64_t index, uint64_t io_position, wuffs_base__animation_disposal disposal, bool opaque_within_bounds, bool overwrite_instead_of_blend, wuffs_base__color_u32_argb_premul background_color) { wuffs_base__frame_config__set(this, bounds, duration, index, io_position, disposal, opaque_within_bounds, overwrite_instead_of_blend, background_color); } inline wuffs_base__rect_ie_u32 // wuffs_base__frame_config::bounds() const { return wuffs_base__frame_config__bounds(this); } inline uint32_t // wuffs_base__frame_config::width() const { return wuffs_base__frame_config__width(this); } inline uint32_t // wuffs_base__frame_config::height() const { return wuffs_base__frame_config__height(this); } inline wuffs_base__flicks // wuffs_base__frame_config::duration() const { return wuffs_base__frame_config__duration(this); } inline uint64_t // wuffs_base__frame_config::index() const { return wuffs_base__frame_config__index(this); } inline uint64_t // wuffs_base__frame_config::io_position() const { return wuffs_base__frame_config__io_position(this); } inline wuffs_base__animation_disposal // wuffs_base__frame_config::disposal() const { return wuffs_base__frame_config__disposal(this); } inline bool // wuffs_base__frame_config::opaque_within_bounds() const { return wuffs_base__frame_config__opaque_within_bounds(this); } inline bool // wuffs_base__frame_config::overwrite_instead_of_blend() const { return wuffs_base__frame_config__overwrite_instead_of_blend(this); } inline wuffs_base__color_u32_argb_premul // wuffs_base__frame_config::background_color() const { return wuffs_base__frame_config__background_color(this); } #endif // __cplusplus // -------- typedef struct wuffs_base__pixel_buffer__struct { wuffs_base__pixel_config pixcfg; // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { wuffs_base__table_u8 planes[WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX]; // TODO: color spaces. } private_impl; #ifdef __cplusplus inline wuffs_base__status set_interleaved( const wuffs_base__pixel_config* pixcfg, wuffs_base__table_u8 primary_memory, wuffs_base__slice_u8 palette_memory); inline wuffs_base__status set_from_slice( const wuffs_base__pixel_config* pixcfg, wuffs_base__slice_u8 pixbuf_memory); inline wuffs_base__status set_from_table( const wuffs_base__pixel_config* pixcfg, wuffs_base__table_u8 primary_memory); inline wuffs_base__slice_u8 palette(); inline wuffs_base__slice_u8 palette_or_else(wuffs_base__slice_u8 fallback); inline wuffs_base__pixel_format pixel_format() const; inline wuffs_base__table_u8 plane(uint32_t p); inline wuffs_base__color_u32_argb_premul color_u32_at(uint32_t x, uint32_t y) const; inline wuffs_base__status set_color_u32_at( uint32_t x, uint32_t y, wuffs_base__color_u32_argb_premul color); inline wuffs_base__status set_color_u32_fill_rect( wuffs_base__rect_ie_u32 rect, wuffs_base__color_u32_argb_premul color); #endif // __cplusplus } wuffs_base__pixel_buffer; static inline wuffs_base__pixel_buffer // wuffs_base__null_pixel_buffer() { wuffs_base__pixel_buffer ret; ret.pixcfg = wuffs_base__null_pixel_config(); ret.private_impl.planes[0] = wuffs_base__empty_table_u8(); ret.private_impl.planes[1] = wuffs_base__empty_table_u8(); ret.private_impl.planes[2] = wuffs_base__empty_table_u8(); ret.private_impl.planes[3] = wuffs_base__empty_table_u8(); return ret; } static inline wuffs_base__status // wuffs_base__pixel_buffer__set_interleaved( wuffs_base__pixel_buffer* pb, const wuffs_base__pixel_config* pixcfg, wuffs_base__table_u8 primary_memory, wuffs_base__slice_u8 palette_memory) { if (!pb) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } memset(pb, 0, sizeof(*pb)); if (!pixcfg || wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt) && (palette_memory.len < WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH)) { return wuffs_base__make_status( wuffs_base__error__bad_argument_length_too_short); } uint32_t bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt); if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) { // TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel? return wuffs_base__make_status(wuffs_base__error__unsupported_option); } uint64_t bytes_per_pixel = bits_per_pixel / 8; uint64_t width_in_bytes = ((uint64_t)pixcfg->private_impl.width) * bytes_per_pixel; if ((width_in_bytes > primary_memory.width) || (pixcfg->private_impl.height > primary_memory.height)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } pb->pixcfg = *pixcfg; pb->private_impl.planes[0] = primary_memory; if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt)) { wuffs_base__table_u8* tab = &pb->private_impl .planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE]; tab->ptr = palette_memory.ptr; tab->width = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; tab->height = 1; tab->stride = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; } return wuffs_base__make_status(NULL); } static inline wuffs_base__status // wuffs_base__pixel_buffer__set_from_slice(wuffs_base__pixel_buffer* pb, const wuffs_base__pixel_config* pixcfg, wuffs_base__slice_u8 pixbuf_memory) { if (!pb) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } memset(pb, 0, sizeof(*pb)); if (!pixcfg) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } if (wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) { // TODO: support planar pixel formats, concious of pixel subsampling. return wuffs_base__make_status(wuffs_base__error__unsupported_option); } uint32_t bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt); if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) { // TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel? return wuffs_base__make_status(wuffs_base__error__unsupported_option); } uint64_t bytes_per_pixel = bits_per_pixel / 8; uint8_t* ptr = pixbuf_memory.ptr; uint64_t len = pixbuf_memory.len; if (wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt)) { // Split a WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH byte // chunk (1024 bytes = 256 palette entries × 4 bytes per entry) from the // start of pixbuf_memory. We split from the start, not the end, so that // the both chunks' pointers have the same alignment as the original // pointer, up to an alignment of 1024. if (len < WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return wuffs_base__make_status( wuffs_base__error__bad_argument_length_too_short); } wuffs_base__table_u8* tab = &pb->private_impl .planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE]; tab->ptr = ptr; tab->width = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; tab->height = 1; tab->stride = WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; ptr += WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; len -= WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH; } uint64_t wh = ((uint64_t)pixcfg->private_impl.width) * ((uint64_t)pixcfg->private_impl.height); size_t width = (size_t)(pixcfg->private_impl.width); if ((wh > (UINT64_MAX / bytes_per_pixel)) || (width > (SIZE_MAX / bytes_per_pixel))) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } wh *= bytes_per_pixel; width = ((size_t)(width * bytes_per_pixel)); if (wh > len) { return wuffs_base__make_status( wuffs_base__error__bad_argument_length_too_short); } pb->pixcfg = *pixcfg; wuffs_base__table_u8* tab = &pb->private_impl.planes[0]; tab->ptr = ptr; tab->width = width; tab->height = pixcfg->private_impl.height; tab->stride = width; return wuffs_base__make_status(NULL); } // Deprecated: does not handle indexed pixel configurations. Use // wuffs_base__pixel_buffer__set_interleaved instead. static inline wuffs_base__status // wuffs_base__pixel_buffer__set_from_table(wuffs_base__pixel_buffer* pb, const wuffs_base__pixel_config* pixcfg, wuffs_base__table_u8 primary_memory) { if (!pb) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } memset(pb, 0, sizeof(*pb)); if (!pixcfg || wuffs_base__pixel_format__is_indexed(&pixcfg->private_impl.pixfmt) || wuffs_base__pixel_format__is_planar(&pixcfg->private_impl.pixfmt)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } uint32_t bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&pixcfg->private_impl.pixfmt); if ((bits_per_pixel == 0) || ((bits_per_pixel % 8) != 0)) { // TODO: support fraction-of-byte pixels, e.g. 1 bit per pixel? return wuffs_base__make_status(wuffs_base__error__unsupported_option); } uint64_t bytes_per_pixel = bits_per_pixel / 8; uint64_t width_in_bytes = ((uint64_t)pixcfg->private_impl.width) * bytes_per_pixel; if ((width_in_bytes > primary_memory.width) || (pixcfg->private_impl.height > primary_memory.height)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } pb->pixcfg = *pixcfg; pb->private_impl.planes[0] = primary_memory; return wuffs_base__make_status(NULL); } // wuffs_base__pixel_buffer__palette returns the palette color data. If // non-empty, it will have length // WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH. static inline wuffs_base__slice_u8 // wuffs_base__pixel_buffer__palette(wuffs_base__pixel_buffer* pb) { if (pb && wuffs_base__pixel_format__is_indexed(&pb->pixcfg.private_impl.pixfmt)) { wuffs_base__table_u8* tab = &pb->private_impl .planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE]; if ((tab->width == WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) && (tab->height == 1)) { return wuffs_base__make_slice_u8( tab->ptr, WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH); } } return wuffs_base__make_slice_u8(NULL, 0); } static inline wuffs_base__slice_u8 // wuffs_base__pixel_buffer__palette_or_else(wuffs_base__pixel_buffer* pb, wuffs_base__slice_u8 fallback) { if (pb && wuffs_base__pixel_format__is_indexed(&pb->pixcfg.private_impl.pixfmt)) { wuffs_base__table_u8* tab = &pb->private_impl .planes[WUFFS_BASE__PIXEL_FORMAT__INDEXED__COLOR_PLANE]; if ((tab->width == WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) && (tab->height == 1)) { return wuffs_base__make_slice_u8( tab->ptr, WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH); } } return fallback; } static inline wuffs_base__pixel_format // wuffs_base__pixel_buffer__pixel_format(const wuffs_base__pixel_buffer* pb) { if (pb) { return pb->pixcfg.private_impl.pixfmt; } return wuffs_base__make_pixel_format(WUFFS_BASE__PIXEL_FORMAT__INVALID); } static inline wuffs_base__table_u8 // wuffs_base__pixel_buffer__plane(wuffs_base__pixel_buffer* pb, uint32_t p) { if (pb && (p < WUFFS_BASE__PIXEL_FORMAT__NUM_PLANES_MAX)) { return pb->private_impl.planes[p]; } wuffs_base__table_u8 ret; ret.ptr = NULL; ret.width = 0; ret.height = 0; ret.stride = 0; return ret; } WUFFS_BASE__MAYBE_STATIC wuffs_base__color_u32_argb_premul // wuffs_base__pixel_buffer__color_u32_at(const wuffs_base__pixel_buffer* pb, uint32_t x, uint32_t y); WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_buffer__set_color_u32_at( wuffs_base__pixel_buffer* pb, uint32_t x, uint32_t y, wuffs_base__color_u32_argb_premul color); WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_buffer__set_color_u32_fill_rect( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, wuffs_base__color_u32_argb_premul color); #ifdef __cplusplus inline wuffs_base__status // wuffs_base__pixel_buffer::set_interleaved( const wuffs_base__pixel_config* pixcfg_arg, wuffs_base__table_u8 primary_memory, wuffs_base__slice_u8 palette_memory) { return wuffs_base__pixel_buffer__set_interleaved( this, pixcfg_arg, primary_memory, palette_memory); } inline wuffs_base__status // wuffs_base__pixel_buffer::set_from_slice( const wuffs_base__pixel_config* pixcfg_arg, wuffs_base__slice_u8 pixbuf_memory) { return wuffs_base__pixel_buffer__set_from_slice(this, pixcfg_arg, pixbuf_memory); } inline wuffs_base__status // wuffs_base__pixel_buffer::set_from_table( const wuffs_base__pixel_config* pixcfg_arg, wuffs_base__table_u8 primary_memory) { return wuffs_base__pixel_buffer__set_from_table(this, pixcfg_arg, primary_memory); } inline wuffs_base__slice_u8 // wuffs_base__pixel_buffer::palette() { return wuffs_base__pixel_buffer__palette(this); } inline wuffs_base__slice_u8 // wuffs_base__pixel_buffer::palette_or_else(wuffs_base__slice_u8 fallback) { return wuffs_base__pixel_buffer__palette_or_else(this, fallback); } inline wuffs_base__pixel_format // wuffs_base__pixel_buffer::pixel_format() const { return wuffs_base__pixel_buffer__pixel_format(this); } inline wuffs_base__table_u8 // wuffs_base__pixel_buffer::plane(uint32_t p) { return wuffs_base__pixel_buffer__plane(this, p); } inline wuffs_base__color_u32_argb_premul // wuffs_base__pixel_buffer::color_u32_at(uint32_t x, uint32_t y) const { return wuffs_base__pixel_buffer__color_u32_at(this, x, y); } WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_buffer__set_color_u32_fill_rect( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, wuffs_base__color_u32_argb_premul color); inline wuffs_base__status // wuffs_base__pixel_buffer::set_color_u32_at( uint32_t x, uint32_t y, wuffs_base__color_u32_argb_premul color) { return wuffs_base__pixel_buffer__set_color_u32_at(this, x, y, color); } inline wuffs_base__status // wuffs_base__pixel_buffer::set_color_u32_fill_rect( wuffs_base__rect_ie_u32 rect, wuffs_base__color_u32_argb_premul color) { return wuffs_base__pixel_buffer__set_color_u32_fill_rect(this, rect, color); } #endif // __cplusplus // -------- typedef struct wuffs_base__decode_frame_options__struct { // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { uint8_t TODO; } private_impl; #ifdef __cplusplus #endif // __cplusplus } wuffs_base__decode_frame_options; #ifdef __cplusplus #endif // __cplusplus // -------- // wuffs_base__pixel_palette__closest_element returns the index of the palette // element that minimizes the sum of squared differences of the four ARGB // channels, working in premultiplied alpha. Ties favor the smaller index. // // The palette_slice.len may equal (N*4), for N less than 256, which means that // only the first N palette elements are considered. It returns 0 when N is 0. // // Applying this function on a per-pixel basis will not produce whole-of-image // dithering. WUFFS_BASE__MAYBE_STATIC uint8_t // wuffs_base__pixel_palette__closest_element( wuffs_base__slice_u8 palette_slice, wuffs_base__pixel_format palette_format, wuffs_base__color_u32_argb_premul c); // -------- // TODO: should the func type take restrict pointers? typedef uint64_t (*wuffs_base__pixel_swizzler__func)(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len); typedef uint64_t (*wuffs_base__pixel_swizzler__transparent_black_func)( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, uint64_t num_pixels, uint32_t dst_pixfmt_bytes_per_pixel); typedef struct wuffs_base__pixel_swizzler__struct { // Do not access the private_impl's fields directly. There is no API/ABI // compatibility or safety guarantee if you do so. struct { wuffs_base__pixel_swizzler__func func; wuffs_base__pixel_swizzler__transparent_black_func transparent_black_func; uint32_t dst_pixfmt_bytes_per_pixel; uint32_t src_pixfmt_bytes_per_pixel; } private_impl; #ifdef __cplusplus inline wuffs_base__status prepare(wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__pixel_format src_pixfmt, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend); inline uint64_t swizzle_interleaved_from_slice( wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src) const; #endif // __cplusplus } wuffs_base__pixel_swizzler; // wuffs_base__pixel_swizzler__prepare readies the pixel swizzler so that its // other methods may be called. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__PIXCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_swizzler__prepare(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__pixel_format src_pixfmt, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend); // wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice converts pixels // from a source format to a destination format. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__PIXCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src); #ifdef __cplusplus inline wuffs_base__status // wuffs_base__pixel_swizzler::prepare(wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__pixel_format src_pixfmt, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { return wuffs_base__pixel_swizzler__prepare(this, dst_pixfmt, dst_palette, src_pixfmt, src_palette, blend); } uint64_t // wuffs_base__pixel_swizzler::swizzle_interleaved_from_slice( wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src) const { return wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice( this, dst, dst_palette, src); } #endif // __cplusplus // ---------------- String Conversions // Options (bitwise or'ed together) for wuffs_base__parse_number_xxx // functions. The XXX options apply to both integer and floating point. The FXX // options apply only to floating point. #define WUFFS_BASE__PARSE_NUMBER_XXX__DEFAULT_OPTIONS ((uint32_t)0x00000000) // WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES means to accept // inputs like "00", "0644" and "00.7". By default, they are rejected. #define WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES \ ((uint32_t)0x00000001) // WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES means to accept inputs like // "1__2" and "_3.141_592". By default, they are rejected. #define WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES ((uint32_t)0x00000002) // WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA means to accept // "1,5" and not "1.5" as one-and-a-half. // // If the caller wants to accept either, it is responsible for canonicalizing // the input before calling wuffs_base__parse_number_fxx. The caller also has // more context on e.g. exactly how to treat something like "$1,234". #define WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA \ ((uint32_t)0x00000010) // WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN means to reject inputs that // would lead to infinite or Not-a-Number floating point values. By default, // they are accepted. // // This affects the literal "inf" as input, but also affects inputs like // "1e999" that would overflow double-precision floating point. #define WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN ((uint32_t)0x00000020) // -------- // Options (bitwise or'ed together) for wuffs_base__render_number_xxx // functions. The XXX options apply to both integer and floating point. The FXX // options apply only to floating point. #define WUFFS_BASE__RENDER_NUMBER_XXX__DEFAULT_OPTIONS ((uint32_t)0x00000000) // WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT means to render to the right side // (higher indexes) of the destination slice, leaving any untouched bytes on // the left side (lower indexes). The default is vice versa: rendering on the // left with slack on the right. #define WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT ((uint32_t)0x00000100) // WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN means to render the leading // "+" for non-negative numbers: "+0" and "+12.3" instead of "0" and "12.3". #define WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN ((uint32_t)0x00000200) // WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA means to render // one-and-a-half as "1,5" instead of "1.5". #define WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA \ ((uint32_t)0x00001000) // WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ETC means whether to never // (EXPONENT_ABSENT, equivalent to printf's "%f") or to always // (EXPONENT_PRESENT, equivalent to printf's "%e") render a floating point // number as "1.23e+05" instead of "123000". // // Having both bits set is the same has having neither bit set, where the // notation used depends on whether the exponent is sufficiently large: "0.5" // is preferred over "5e-01" but "5e-09" is preferred over "0.000000005". #define WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT ((uint32_t)0x00002000) #define WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT ((uint32_t)0x00004000) // WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION means to render the // smallest number of digits so that parsing the resultant string will recover // the same double-precision floating point number. // // For example, double-precision cannot distinguish between 0.3 and // 0.299999999999999988897769753748434595763683319091796875, so when this bit // is set, rendering the latter will produce "0.3" but rendering // 0.3000000000000000444089209850062616169452667236328125 will produce // "0.30000000000000004". #define WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION \ ((uint32_t)0x00008000) // ---------------- IEEE 754 Floating Point // wuffs_base__ieee_754_bit_representation__etc converts between a double // precision numerical value and its IEEE 754 representations: // - 16-bit: 1 sign bit, 5 exponent bits, 10 explicit significand bits. // - 32-bit: 1 sign bit, 8 exponent bits, 23 explicit significand bits. // - 64-bit: 1 sign bit, 11 exponent bits, 52 explicit significand bits. // // For example, it converts between: // - +1.0 and 0x3C00, 0x3F80_0000 or 0x3FF0_0000_0000_0000. // - +5.5 and 0x4580, 0x40B0_0000 or 0x4016_0000_0000_0000. // - -inf and 0xFC00, 0xFF80_0000 or 0xFFF0_0000_0000_0000. // // Converting from f64 to shorter formats (f16 or f32, represented in C as // uint16_t and uint32_t) may be lossy. Such functions have names that look // like etc_truncate, as converting finite numbers produce equal or smaller // (closer-to-zero) finite numbers. For example, 1048576.0 is a perfectly valid // f64 number, but converting it to a f16 (with truncation) produces 65504.0, // the largest finite f16 number. Truncating a f64-typed value d to f32 does // not always produce the same result as the C-style cast ((float)d), as // casting can convert from finite numbers to infinite ones. // // Converting infinities or NaNs produces infinities or NaNs and always report // no loss, even though there a multiple NaN representations so that round- // tripping a f64-typed NaN may produce a different 64 bits. Nonetheless, the // etc_truncate functions preserve a NaN's "quiet vs signaling" bit. // // See https://en.wikipedia.org/wiki/Double-precision_floating-point_format typedef struct wuffs_base__lossy_value_u16__struct { uint16_t value; bool lossy; } wuffs_base__lossy_value_u16; typedef struct wuffs_base__lossy_value_u32__struct { uint32_t value; bool lossy; } wuffs_base__lossy_value_u32; WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u16 // wuffs_base__ieee_754_bit_representation__from_f64_to_u16_truncate(double f); WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u32 // wuffs_base__ieee_754_bit_representation__from_f64_to_u32_truncate(double f); static inline uint64_t // wuffs_base__ieee_754_bit_representation__from_f64_to_u64(double f) { uint64_t u = 0; if (sizeof(uint64_t) == sizeof(double)) { memcpy(&u, &f, sizeof(uint64_t)); } return u; } static inline double // wuffs_base__ieee_754_bit_representation__from_u16_to_f64(uint16_t u) { uint64_t v = ((uint64_t)(u & 0x8000)) << 48; do { uint64_t exp = (u >> 10) & 0x1F; uint64_t man = u & 0x3FF; if (exp == 0x1F) { // Infinity or NaN. exp = 2047; } else if (exp != 0) { // Normal. exp += 1008; // 1008 = 1023 - 15, the difference in biases. } else if (man != 0) { // Subnormal but non-zero. uint32_t clz = wuffs_base__count_leading_zeroes_u64(man); exp = 1062 - clz; // 1062 = 1008 + 64 - 10. man = 0x3FF & (man << (clz - 53)); } else { // Zero. break; } v |= (exp << 52) | (man << 42); } while (0); double f = 0; if (sizeof(uint64_t) == sizeof(double)) { memcpy(&f, &v, sizeof(uint64_t)); } return f; } static inline double // wuffs_base__ieee_754_bit_representation__from_u32_to_f64(uint32_t u) { float f = 0; if (sizeof(uint32_t) == sizeof(float)) { memcpy(&f, &u, sizeof(uint32_t)); } return (double)f; } static inline double // wuffs_base__ieee_754_bit_representation__from_u64_to_f64(uint64_t u) { double f = 0; if (sizeof(uint64_t) == sizeof(double)) { memcpy(&f, &u, sizeof(uint64_t)); } return f; } // ---------------- Parsing and Rendering Numbers // wuffs_base__parse_number_f64 parses the floating point number in s. For // example, if s contains the bytes "1.5" then it will return the double 1.5. // // It returns an error if s does not contain a floating point number. // // It does not necessarily return an error if the conversion is lossy, e.g. if // s is "0.3", which double-precision floating point cannot represent exactly. // // Similarly, the returned value may be infinite (and no error returned) even // if s was not "inf", when the input is nominally finite but sufficiently // larger than DBL_MAX, about 1.8e+308. // // It is similar to the C standard library's strtod function, but: // - Errors are returned in-band (in a result type), not out-of-band (errno). // - It takes a slice (a pointer and length), not a NUL-terminated C string. // - It does not take an optional endptr argument. It does not allow a partial // parse: it returns an error unless all of s is consumed. // - It does not allow whitespace, leading or otherwise. // - It does not allow hexadecimal floating point numbers. // - It is not affected by i18n / l10n settings such as environment variables. // // The options argument can change these, but by default, it: // - Allows "inf", "+Infinity" and "-NAN", case insensitive. Similarly, // without an explicit opt-out, it would successfully parse "1e999" as // infinity, even though it overflows double-precision floating point. // - Rejects underscores. With an explicit opt-in, "_3.141_592" would // successfully parse as an approximation to π. // - Rejects unnecessary leading zeroes: "00", "0644" and "00.7". // - Uses a dot '1.5' instead of a comma '1,5' for the decimal separator. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__FLOATCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 // wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options); // wuffs_base__parse_number_i64 parses the ASCII integer in s. For example, if // s contains the bytes "-123" then it will return the int64_t -123. // // It returns an error if s does not contain an integer or if the integer // within would overflow an int64_t. // // It is similar to wuffs_base__parse_number_u64 but it returns a signed // integer, not an unsigned integer. It also allows a leading '+' or '-'. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__result_i64 // wuffs_base__parse_number_i64(wuffs_base__slice_u8 s, uint32_t options); // wuffs_base__parse_number_u64 parses the ASCII integer in s. For example, if // s contains the bytes "123" then it will return the uint64_t 123. // // It returns an error if s does not contain an integer or if the integer // within would overflow a uint64_t. // // It is similar to the C standard library's strtoull function, but: // - Errors are returned in-band (in a result type), not out-of-band (errno). // - It takes a slice (a pointer and length), not a NUL-terminated C string. // - It does not take an optional endptr argument. It does not allow a partial // parse: it returns an error unless all of s is consumed. // - It does not allow whitespace, leading or otherwise. // - It does not allow a leading '+' or '-'. // - It does not take a base argument (e.g. base 10 vs base 16). Instead, it // always accepts both decimal (e.g "1234", "0d5678") and hexadecimal (e.g. // "0x9aBC"). The caller is responsible for prior filtering of e.g. hex // numbers if they are unwanted. For example, Wuffs' JSON decoder will only // produce a wuffs_base__token for decimal numbers, not hexadecimal. // - It is not affected by i18n / l10n settings such as environment variables. // // The options argument can change these, but by default, it: // - Rejects underscores. With an explicit opt-in, "__0D_1_002" would // successfully parse as "one thousand and two". Underscores are still // rejected inside the optional 2-byte opening "0d" or "0X" that denotes // base-10 or base-16. // - Rejects unnecessary leading zeroes: "00" and "0644". // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__result_u64 // wuffs_base__parse_number_u64(wuffs_base__slice_u8 s, uint32_t options); // -------- // WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL is the string length of // "-9223372036854775808" and "+9223372036854775807", INT64_MIN and INT64_MAX. #define WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL 20 // WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL is the string length of // "+18446744073709551615", UINT64_MAX. #define WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL 21 // wuffs_base__render_number_f64 writes the decimal encoding of x to dst and // returns the number of bytes written. If dst is shorter than the entire // encoding, it returns 0 (and no bytes are written). // // For those familiar with C's printf or Go's fmt.Printf functions: // - "%e" means the WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT option. // - "%f" means the WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT option. // - "%g" means neither or both bits are set. // // The precision argument controls the number of digits rendered, excluding the // exponent (the "e+05" in "1.23e+05"): // - for "%e" and "%f" it is the number of digits after the decimal separator, // - for "%g" it is the number of significant digits (and trailing zeroes are // removed). // // A precision of 6 gives similar output to printf's defaults. // // A precision greater than 4095 is equivalent to 4095. // // The precision argument is ignored when the // WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION option is set. This is // similar to Go's strconv.FormatFloat with a negative (i.e. non-sensical) // precision, but there is no corresponding feature in C's printf. // // Extreme values of x will be rendered as "NaN", "Inf" (or "+Inf" if the // WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN option is set) or "-Inf". // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__FLOATCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_f64(wuffs_base__slice_u8 dst, double x, uint32_t precision, uint32_t options); // wuffs_base__render_number_i64 writes the decimal encoding of x to dst and // returns the number of bytes written. If dst is shorter than the entire // encoding, it returns 0 (and no bytes are written). // // dst will never be too short if its length is at least 20, also known as // WUFFS_BASE__I64__BYTE_LENGTH__MAX_INCL. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_i64(wuffs_base__slice_u8 dst, int64_t x, uint32_t options); // wuffs_base__render_number_u64 writes the decimal encoding of x to dst and // returns the number of bytes written. If dst is shorter than the entire // encoding, it returns 0 (and no bytes are written). // // dst will never be too short if its length is at least 21, also known as // WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_u64(wuffs_base__slice_u8 dst, uint64_t x, uint32_t options); // ---------------- Base-16 // Options (bitwise or'ed together) for wuffs_base__base_16__xxx functions. #define WUFFS_BASE__BASE_16__DEFAULT_OPTIONS ((uint32_t)0x00000000) // wuffs_base__base_16__decode2 converts "6A6b" to "jk", where e.g. 'j' is // U+006A. There are 2 src bytes for every dst byte. // // It assumes that the src bytes are two hexadecimal digits (0-9, A-F, a-f), // repeated. It may write nonsense bytes if not, although it will not read or // write out of bounds. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__decode2(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // wuffs_base__base_16__decode4 converts both "\\x6A\\x6b" and "??6a??6B" to // "jk", where e.g. 'j' is U+006A. There are 4 src bytes for every dst byte. // // It assumes that the src bytes are two ignored bytes and then two hexadecimal // digits (0-9, A-F, a-f), repeated. It may write nonsense bytes if not, // although it will not read or write out of bounds. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__decode4(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // wuffs_base__base_16__encode2 converts "jk" to "6A6B", where e.g. 'j' is // U+006A. There are 2 dst bytes for every src byte. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // wuffs_base__base_16__encode4 converts "jk" to "\\x6A\\x6B", where e.g. 'j' // is U+006A. There are 4 dst bytes for every src byte. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // ---------------- Base-64 // Options (bitwise or'ed together) for wuffs_base__base_64__xxx functions. #define WUFFS_BASE__BASE_64__DEFAULT_OPTIONS ((uint32_t)0x00000000) // WUFFS_BASE__BASE_64__DECODE_ALLOW_PADDING means that, when decoding base-64, // the input may (but does not need to) be padded with '=' bytes so that the // overall encoded length in bytes is a multiple of 4. A successful decoding // will return a num_src that includes those padding bytes. // // Excess padding (e.g. three final '='s) will be rejected as bad data. #define WUFFS_BASE__BASE_64__DECODE_ALLOW_PADDING ((uint32_t)0x00000001) // WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING means that, when encoding base-64, // the output will be padded with '=' bytes so that the overall encoded length // in bytes is a multiple of 4. #define WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING ((uint32_t)0x00000002) // WUFFS_BASE__BASE_64__URL_ALPHABET means that, for base-64, the URL-friendly // and file-name-friendly alphabet be used, as per RFC 4648 section 5. When // this option bit is off, the standard alphabet from section 4 is used. #define WUFFS_BASE__BASE_64__URL_ALPHABET ((uint32_t)0x00000100) // wuffs_base__base_64__decode transforms base-64 encoded bytes from src to // arbitrary bytes in dst. // // It will not permit line breaks or other whitespace in src. Filtering those // out is the responsibility of the caller. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_64__decode(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // wuffs_base__base_64__encode transforms arbitrary bytes from src to base-64 // encoded bytes in dst. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__INTCONV sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_64__encode(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options); // ---------------- Unicode and UTF-8 #define WUFFS_BASE__UNICODE_CODE_POINT__MIN_INCL 0x00000000 #define WUFFS_BASE__UNICODE_CODE_POINT__MAX_INCL 0x0010FFFF #define WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER 0x0000FFFD #define WUFFS_BASE__UNICODE_SURROGATE__MIN_INCL 0x0000D800 #define WUFFS_BASE__UNICODE_SURROGATE__MAX_INCL 0x0000DFFF #define WUFFS_BASE__ASCII__MIN_INCL 0x00 #define WUFFS_BASE__ASCII__MAX_INCL 0x7F #define WUFFS_BASE__UTF_8__BYTE_LENGTH__MIN_INCL 1 #define WUFFS_BASE__UTF_8__BYTE_LENGTH__MAX_INCL 4 #define WUFFS_BASE__UTF_8__BYTE_LENGTH_1__CODE_POINT__MIN_INCL 0x00000000 #define WUFFS_BASE__UTF_8__BYTE_LENGTH_1__CODE_POINT__MAX_INCL 0x0000007F #define WUFFS_BASE__UTF_8__BYTE_LENGTH_2__CODE_POINT__MIN_INCL 0x00000080 #define WUFFS_BASE__UTF_8__BYTE_LENGTH_2__CODE_POINT__MAX_INCL 0x000007FF #define WUFFS_BASE__UTF_8__BYTE_LENGTH_3__CODE_POINT__MIN_INCL 0x00000800 #define WUFFS_BASE__UTF_8__BYTE_LENGTH_3__CODE_POINT__MAX_INCL 0x0000FFFF #define WUFFS_BASE__UTF_8__BYTE_LENGTH_4__CODE_POINT__MIN_INCL 0x00010000 #define WUFFS_BASE__UTF_8__BYTE_LENGTH_4__CODE_POINT__MAX_INCL 0x0010FFFF // -------- // wuffs_base__utf_8__next__output is the type returned by // wuffs_base__utf_8__next. typedef struct wuffs_base__utf_8__next__output__struct { uint32_t code_point; uint32_t byte_length; #ifdef __cplusplus inline bool is_valid() const; #endif // __cplusplus } wuffs_base__utf_8__next__output; static inline wuffs_base__utf_8__next__output // wuffs_base__make_utf_8__next__output(uint32_t code_point, uint32_t byte_length) { wuffs_base__utf_8__next__output ret; ret.code_point = code_point; ret.byte_length = byte_length; return ret; } static inline bool // wuffs_base__utf_8__next__output__is_valid( const wuffs_base__utf_8__next__output* o) { if (o) { uint32_t cp = o->code_point; switch (o->byte_length) { case 1: return (cp <= 0x7F); case 2: return (0x080 <= cp) && (cp <= 0x7FF); case 3: // Avoid the 0xD800 ..= 0xDFFF surrogate range. return ((0x0800 <= cp) && (cp <= 0xD7FF)) || ((0xE000 <= cp) && (cp <= 0xFFFF)); case 4: return (0x00010000 <= cp) && (cp <= 0x0010FFFF); } } return false; } #ifdef __cplusplus inline bool // wuffs_base__utf_8__next__output::is_valid() const { return wuffs_base__utf_8__next__output__is_valid(this); } #endif // __cplusplus // -------- // wuffs_base__utf_8__encode writes the UTF-8 encoding of code_point to s and // returns the number of bytes written. If code_point is invalid, or if s is // shorter than the entire encoding, it returns 0 (and no bytes are written). // // s will never be too short if its length is at least 4, also known as // WUFFS_BASE__UTF_8__BYTE_LENGTH__MAX_INCL. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__utf_8__encode(wuffs_base__slice_u8 dst, uint32_t code_point); // wuffs_base__utf_8__next returns the next UTF-8 code point (and that code // point's byte length) at the start of the read-only slice (s_ptr, s_len). // // There are exactly two cases in which this function returns something where // wuffs_base__utf_8__next__output__is_valid is false: // - If s is empty then it returns {.code_point=0, .byte_length=0}. // - If s is non-empty and starts with invalid UTF-8 then it returns // {.code_point=WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER, .byte_length=1}. // // Otherwise, it returns something where // wuffs_base__utf_8__next__output__is_valid is true. // // In any case, it always returns an output that satisfies both of: // - (output.code_point <= WUFFS_BASE__UNICODE_CODE_POINT__MAX_INCL). // - (output.byte_length <= s_len). // // If s is a sub-slice of a larger slice of valid UTF-8, but that sub-slice // boundary occurs in the middle of a multi-byte UTF-8 encoding of a single // code point, then this function may return something invalid. It is the // caller's responsibility to split on or otherwise manage UTF-8 boundaries. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output // wuffs_base__utf_8__next(const uint8_t* s_ptr, size_t s_len); // wuffs_base__utf_8__next_from_end is like wuffs_base__utf_8__next except that // it looks at the end of (s_ptr, s_len) instead of the start. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output // wuffs_base__utf_8__next_from_end(const uint8_t* s_ptr, size_t s_len); // wuffs_base__utf_8__longest_valid_prefix returns the largest n such that the // sub-slice s[..n] is valid UTF-8, where s is the read-only slice (s_ptr, // s_len). // // In particular, it returns s_len if and only if all of s is valid UTF-8. // // If s is a sub-slice of a larger slice of valid UTF-8, but that sub-slice // boundary occurs in the middle of a multi-byte UTF-8 encoding of a single // code point, then this function will return less than s_len. It is the // caller's responsibility to split on or otherwise manage UTF-8 boundaries. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__utf_8__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len); // wuffs_base__ascii__longest_valid_prefix returns the largest n such that the // sub-slice s[..n] is valid ASCII, where s is the read-only slice (s_ptr, // s_len). // // In particular, it returns s_len if and only if all of s is valid ASCII. // Equivalently, when none of the bytes in s have the 0x80 high bit set. // // For modular builds that divide the base module into sub-modules, using this // function requires the WUFFS_CONFIG__MODULE__BASE__UTF8 sub-module, not just // WUFFS_CONFIG__MODULE__BASE__CORE. WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__ascii__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len); // ---------------- Interface Declarations. // For modular builds that divide the base module into sub-modules, using these // functions require the WUFFS_CONFIG__MODULE__BASE__INTERFACES sub-module, not // just WUFFS_CONFIG__MODULE__BASE__CORE. // -------- extern const char wuffs_base__hasher_u32__vtable_name[]; typedef struct wuffs_base__hasher_u32__func_ptrs__struct { wuffs_base__empty_struct (*set_quirk_enabled)( void* self, uint32_t a_quirk, bool a_enabled); uint32_t (*update_u32)( void* self, wuffs_base__slice_u8 a_x); } wuffs_base__hasher_u32__func_ptrs; typedef struct wuffs_base__hasher_u32__struct wuffs_base__hasher_u32; WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__hasher_u32__set_quirk_enabled( wuffs_base__hasher_u32* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_base__hasher_u32__update_u32( wuffs_base__hasher_u32* self, wuffs_base__slice_u8 a_x); #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_base__hasher_u32__struct { struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable first_vtable; } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; #endif inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_base__hasher_u32__set_quirk_enabled( this, a_quirk, a_enabled); } inline uint32_t update_u32( wuffs_base__slice_u8 a_x) { return wuffs_base__hasher_u32__update_u32( this, a_x); } #endif // __cplusplus }; // struct wuffs_base__hasher_u32__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) // -------- extern const char wuffs_base__image_decoder__vtable_name[]; typedef struct wuffs_base__image_decoder__func_ptrs__struct { wuffs_base__status (*decode_frame)( void* self, wuffs_base__pixel_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__pixel_blend a_blend, wuffs_base__slice_u8 a_workbuf, wuffs_base__decode_frame_options* a_opts); wuffs_base__status (*decode_frame_config)( void* self, wuffs_base__frame_config* a_dst, wuffs_base__io_buffer* a_src); wuffs_base__status (*decode_image_config)( void* self, wuffs_base__image_config* a_dst, wuffs_base__io_buffer* a_src); wuffs_base__rect_ie_u32 (*frame_dirty_rect)( const void* self); uint32_t (*num_animation_loops)( const void* self); uint64_t (*num_decoded_frame_configs)( const void* self); uint64_t (*num_decoded_frames)( const void* self); wuffs_base__status (*restart_frame)( void* self, uint64_t a_index, uint64_t a_io_position); wuffs_base__empty_struct (*set_quirk_enabled)( void* self, uint32_t a_quirk, bool a_enabled); wuffs_base__empty_struct (*set_report_metadata)( void* self, uint32_t a_fourcc, bool a_report); wuffs_base__status (*tell_me_more)( void* self, wuffs_base__io_buffer* a_dst, wuffs_base__more_information* a_minfo, wuffs_base__io_buffer* a_src); wuffs_base__range_ii_u64 (*workbuf_len)( const void* self); } wuffs_base__image_decoder__func_ptrs; typedef struct wuffs_base__image_decoder__struct wuffs_base__image_decoder; WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_frame( wuffs_base__image_decoder* self, wuffs_base__pixel_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__pixel_blend a_blend, wuffs_base__slice_u8 a_workbuf, wuffs_base__decode_frame_options* a_opts); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_frame_config( wuffs_base__image_decoder* self, wuffs_base__frame_config* a_dst, wuffs_base__io_buffer* a_src); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_image_config( wuffs_base__image_decoder* self, wuffs_base__image_config* a_dst, wuffs_base__io_buffer* a_src); WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32 wuffs_base__image_decoder__frame_dirty_rect( const wuffs_base__image_decoder* self); WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_base__image_decoder__num_animation_loops( const wuffs_base__image_decoder* self); WUFFS_BASE__MAYBE_STATIC uint64_t wuffs_base__image_decoder__num_decoded_frame_configs( const wuffs_base__image_decoder* self); WUFFS_BASE__MAYBE_STATIC uint64_t wuffs_base__image_decoder__num_decoded_frames( const wuffs_base__image_decoder* self); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__restart_frame( wuffs_base__image_decoder* self, uint64_t a_index, uint64_t a_io_position); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__image_decoder__set_quirk_enabled( wuffs_base__image_decoder* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__image_decoder__set_report_metadata( wuffs_base__image_decoder* self, uint32_t a_fourcc, bool a_report); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__tell_me_more( wuffs_base__image_decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__more_information* a_minfo, wuffs_base__io_buffer* a_src); WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__image_decoder__workbuf_len( const wuffs_base__image_decoder* self); #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_base__image_decoder__struct { struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable first_vtable; } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; #endif inline wuffs_base__status decode_frame( wuffs_base__pixel_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__pixel_blend a_blend, wuffs_base__slice_u8 a_workbuf, wuffs_base__decode_frame_options* a_opts) { return wuffs_base__image_decoder__decode_frame( this, a_dst, a_src, a_blend, a_workbuf, a_opts); } inline wuffs_base__status decode_frame_config( wuffs_base__frame_config* a_dst, wuffs_base__io_buffer* a_src) { return wuffs_base__image_decoder__decode_frame_config( this, a_dst, a_src); } inline wuffs_base__status decode_image_config( wuffs_base__image_config* a_dst, wuffs_base__io_buffer* a_src) { return wuffs_base__image_decoder__decode_image_config( this, a_dst, a_src); } inline wuffs_base__rect_ie_u32 frame_dirty_rect() const { return wuffs_base__image_decoder__frame_dirty_rect(this); } inline uint32_t num_animation_loops() const { return wuffs_base__image_decoder__num_animation_loops(this); } inline uint64_t num_decoded_frame_configs() const { return wuffs_base__image_decoder__num_decoded_frame_configs(this); } inline uint64_t num_decoded_frames() const { return wuffs_base__image_decoder__num_decoded_frames(this); } inline wuffs_base__status restart_frame( uint64_t a_index, uint64_t a_io_position) { return wuffs_base__image_decoder__restart_frame( this, a_index, a_io_position); } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_base__image_decoder__set_quirk_enabled( this, a_quirk, a_enabled); } inline wuffs_base__empty_struct set_report_metadata( uint32_t a_fourcc, bool a_report) { return wuffs_base__image_decoder__set_report_metadata( this, a_fourcc, a_report); } inline wuffs_base__status tell_me_more( wuffs_base__io_buffer* a_dst, wuffs_base__more_information* a_minfo, wuffs_base__io_buffer* a_src) { return wuffs_base__image_decoder__tell_me_more( this, a_dst, a_minfo, a_src); } inline wuffs_base__range_ii_u64 workbuf_len() const { return wuffs_base__image_decoder__workbuf_len(this); } #endif // __cplusplus }; // struct wuffs_base__image_decoder__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) // -------- extern const char wuffs_base__io_transformer__vtable_name[]; typedef struct wuffs_base__io_transformer__func_ptrs__struct { wuffs_base__empty_struct (*set_quirk_enabled)( void* self, uint32_t a_quirk, bool a_enabled); wuffs_base__status (*transform_io)( void* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); wuffs_base__range_ii_u64 (*workbuf_len)( const void* self); } wuffs_base__io_transformer__func_ptrs; typedef struct wuffs_base__io_transformer__struct wuffs_base__io_transformer; WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__io_transformer__set_quirk_enabled( wuffs_base__io_transformer* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__io_transformer__transform_io( wuffs_base__io_transformer* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__io_transformer__workbuf_len( const wuffs_base__io_transformer* self); #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_base__io_transformer__struct { struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable first_vtable; } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; #endif inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_base__io_transformer__set_quirk_enabled( this, a_quirk, a_enabled); } inline wuffs_base__status transform_io( wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { return wuffs_base__io_transformer__transform_io( this, a_dst, a_src, a_workbuf); } inline wuffs_base__range_ii_u64 workbuf_len() const { return wuffs_base__io_transformer__workbuf_len(this); } #endif // __cplusplus }; // struct wuffs_base__io_transformer__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) // -------- extern const char wuffs_base__token_decoder__vtable_name[]; typedef struct wuffs_base__token_decoder__func_ptrs__struct { wuffs_base__status (*decode_tokens)( void* self, wuffs_base__token_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); wuffs_base__empty_struct (*set_quirk_enabled)( void* self, uint32_t a_quirk, bool a_enabled); wuffs_base__range_ii_u64 (*workbuf_len)( const void* self); } wuffs_base__token_decoder__func_ptrs; typedef struct wuffs_base__token_decoder__struct wuffs_base__token_decoder; WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__token_decoder__decode_tokens( wuffs_base__token_decoder* self, wuffs_base__token_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__token_decoder__set_quirk_enabled( wuffs_base__token_decoder* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__token_decoder__workbuf_len( const wuffs_base__token_decoder* self); #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_base__token_decoder__struct { struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable first_vtable; } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; #endif inline wuffs_base__status decode_tokens( wuffs_base__token_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { return wuffs_base__token_decoder__decode_tokens( this, a_dst, a_src, a_workbuf); } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_base__token_decoder__set_quirk_enabled( this, a_quirk, a_enabled); } inline wuffs_base__range_ii_u64 workbuf_len() const { return wuffs_base__token_decoder__workbuf_len(this); } #endif // __cplusplus }; // struct wuffs_base__token_decoder__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) // ---------------- #ifdef __cplusplus } // extern "C" #endif #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ADLER32) || defined(WUFFS_NONMONOLITHIC) // ---------------- Status Codes // ---------------- Public Consts // ---------------- Struct Declarations typedef struct wuffs_adler32__hasher__struct wuffs_adler32__hasher; #ifdef __cplusplus extern "C" { #endif // ---------------- Public Initializer Prototypes // For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self, // etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)". // // Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version. // Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options. wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_adler32__hasher__initialize( wuffs_adler32__hasher* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options); size_t sizeof__wuffs_adler32__hasher(); // ---------------- Allocs // These functions allocate and initialize Wuffs structs. They return NULL if // memory allocation fails. If they return non-NULL, there is no need to call // wuffs_foo__bar__initialize, but the caller is responsible for eventually // calling free on the returned pointer. That pointer is effectively a C++ // std::unique_ptr. wuffs_adler32__hasher* wuffs_adler32__hasher__alloc(); static inline wuffs_base__hasher_u32* wuffs_adler32__hasher__alloc_as__wuffs_base__hasher_u32() { return (wuffs_base__hasher_u32*)(wuffs_adler32__hasher__alloc()); } // ---------------- Upcasts static inline wuffs_base__hasher_u32* wuffs_adler32__hasher__upcast_as__wuffs_base__hasher_u32( wuffs_adler32__hasher* p) { return (wuffs_base__hasher_u32*)p; } // ---------------- Public Function Prototypes WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_adler32__hasher__set_quirk_enabled( wuffs_adler32__hasher* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_adler32__hasher__update_u32( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); #ifdef __cplusplus } // extern "C" #endif // ---------------- Struct Definitions // These structs' fields, and the sizeof them, are private implementation // details that aren't guaranteed to be stable across Wuffs versions. // // See https://en.wikipedia.org/wiki/Opaque_pointer#C #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_adler32__hasher__struct { // Do not access the private_impl's or private_data's fields directly. There // is no API/ABI compatibility or safety guarantee if you do so. Instead, use // the wuffs_foo__bar__baz functions. // // It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct // can be stack allocated when WUFFS_IMPLEMENTATION is defined. struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable vtable_for__wuffs_base__hasher_u32; wuffs_base__vtable null_vtable; uint32_t f_state; bool f_started; wuffs_base__empty_struct (*choosy_up)( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; // On failure, the alloc_etc functions return nullptr. They don't throw. static inline unique_ptr alloc() { return unique_ptr(wuffs_adler32__hasher__alloc(), &free); } static inline wuffs_base__hasher_u32::unique_ptr alloc_as__wuffs_base__hasher_u32() { return wuffs_base__hasher_u32::unique_ptr( wuffs_adler32__hasher__alloc_as__wuffs_base__hasher_u32(), &free); } #endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR) #if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) // Disallow constructing or copying an object via standard C++ mechanisms, // e.g. the "new" operator, as this struct is intentionally opaque. Its total // size and field layout is not part of the public, stable, memory-safe API. // Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and // call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as // their first argument) rather than tweaking bar.private_impl.qux fields. // // In C, we can just leave wuffs_foo__bar as an incomplete type (unless // WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in // order to provide convenience methods. These forward on "this", so that you // can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)". wuffs_adler32__hasher__struct() = delete; wuffs_adler32__hasher__struct(const wuffs_adler32__hasher__struct&) = delete; wuffs_adler32__hasher__struct& operator=( const wuffs_adler32__hasher__struct&) = delete; #endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) #if !defined(WUFFS_IMPLEMENTATION) // As above, the size of the struct is not part of the public API, and unless // WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap // allocated, not stack allocated. Its size is not intended to be known at // compile time, but it is unfortunately divulged as a side effect of // defining C++ convenience methods. Use "sizeof__T()", calling the function, // instead of "sizeof T", invoking the operator. To make the two values // different, so that passing the latter will be rejected by the initialize // function, we add an arbitrary amount of dead weight. uint8_t dead_weight[123000000]; // 123 MB. #endif // !defined(WUFFS_IMPLEMENTATION) inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT initialize( size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options) { return wuffs_adler32__hasher__initialize( this, sizeof_star_self, wuffs_version, options); } inline wuffs_base__hasher_u32* upcast_as__wuffs_base__hasher_u32() { return (wuffs_base__hasher_u32*)this; } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_adler32__hasher__set_quirk_enabled(this, a_quirk, a_enabled); } inline uint32_t update_u32( wuffs_base__slice_u8 a_x) { return wuffs_adler32__hasher__update_u32(this, a_x); } #endif // __cplusplus }; // struct wuffs_adler32__hasher__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ADLER32) || defined(WUFFS_NONMONOLITHIC) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__CRC32) || defined(WUFFS_NONMONOLITHIC) // ---------------- Status Codes // ---------------- Public Consts // ---------------- Struct Declarations typedef struct wuffs_crc32__ieee_hasher__struct wuffs_crc32__ieee_hasher; #ifdef __cplusplus extern "C" { #endif // ---------------- Public Initializer Prototypes // For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self, // etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)". // // Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version. // Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options. wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_crc32__ieee_hasher__initialize( wuffs_crc32__ieee_hasher* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options); size_t sizeof__wuffs_crc32__ieee_hasher(); // ---------------- Allocs // These functions allocate and initialize Wuffs structs. They return NULL if // memory allocation fails. If they return non-NULL, there is no need to call // wuffs_foo__bar__initialize, but the caller is responsible for eventually // calling free on the returned pointer. That pointer is effectively a C++ // std::unique_ptr. wuffs_crc32__ieee_hasher* wuffs_crc32__ieee_hasher__alloc(); static inline wuffs_base__hasher_u32* wuffs_crc32__ieee_hasher__alloc_as__wuffs_base__hasher_u32() { return (wuffs_base__hasher_u32*)(wuffs_crc32__ieee_hasher__alloc()); } // ---------------- Upcasts static inline wuffs_base__hasher_u32* wuffs_crc32__ieee_hasher__upcast_as__wuffs_base__hasher_u32( wuffs_crc32__ieee_hasher* p) { return (wuffs_base__hasher_u32*)p; } // ---------------- Public Function Prototypes WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_crc32__ieee_hasher__set_quirk_enabled( wuffs_crc32__ieee_hasher* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_crc32__ieee_hasher__update_u32( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); #ifdef __cplusplus } // extern "C" #endif // ---------------- Struct Definitions // These structs' fields, and the sizeof them, are private implementation // details that aren't guaranteed to be stable across Wuffs versions. // // See https://en.wikipedia.org/wiki/Opaque_pointer#C #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_crc32__ieee_hasher__struct { // Do not access the private_impl's or private_data's fields directly. There // is no API/ABI compatibility or safety guarantee if you do so. Instead, use // the wuffs_foo__bar__baz functions. // // It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct // can be stack allocated when WUFFS_IMPLEMENTATION is defined. struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable vtable_for__wuffs_base__hasher_u32; wuffs_base__vtable null_vtable; uint32_t f_state; wuffs_base__empty_struct (*choosy_up)( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); } private_impl; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; // On failure, the alloc_etc functions return nullptr. They don't throw. static inline unique_ptr alloc() { return unique_ptr(wuffs_crc32__ieee_hasher__alloc(), &free); } static inline wuffs_base__hasher_u32::unique_ptr alloc_as__wuffs_base__hasher_u32() { return wuffs_base__hasher_u32::unique_ptr( wuffs_crc32__ieee_hasher__alloc_as__wuffs_base__hasher_u32(), &free); } #endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR) #if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) // Disallow constructing or copying an object via standard C++ mechanisms, // e.g. the "new" operator, as this struct is intentionally opaque. Its total // size and field layout is not part of the public, stable, memory-safe API. // Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and // call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as // their first argument) rather than tweaking bar.private_impl.qux fields. // // In C, we can just leave wuffs_foo__bar as an incomplete type (unless // WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in // order to provide convenience methods. These forward on "this", so that you // can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)". wuffs_crc32__ieee_hasher__struct() = delete; wuffs_crc32__ieee_hasher__struct(const wuffs_crc32__ieee_hasher__struct&) = delete; wuffs_crc32__ieee_hasher__struct& operator=( const wuffs_crc32__ieee_hasher__struct&) = delete; #endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) #if !defined(WUFFS_IMPLEMENTATION) // As above, the size of the struct is not part of the public API, and unless // WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap // allocated, not stack allocated. Its size is not intended to be known at // compile time, but it is unfortunately divulged as a side effect of // defining C++ convenience methods. Use "sizeof__T()", calling the function, // instead of "sizeof T", invoking the operator. To make the two values // different, so that passing the latter will be rejected by the initialize // function, we add an arbitrary amount of dead weight. uint8_t dead_weight[123000000]; // 123 MB. #endif // !defined(WUFFS_IMPLEMENTATION) inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT initialize( size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options) { return wuffs_crc32__ieee_hasher__initialize( this, sizeof_star_self, wuffs_version, options); } inline wuffs_base__hasher_u32* upcast_as__wuffs_base__hasher_u32() { return (wuffs_base__hasher_u32*)this; } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_crc32__ieee_hasher__set_quirk_enabled(this, a_quirk, a_enabled); } inline uint32_t update_u32( wuffs_base__slice_u8 a_x) { return wuffs_crc32__ieee_hasher__update_u32(this, a_x); } #endif // __cplusplus }; // struct wuffs_crc32__ieee_hasher__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__CRC32) || defined(WUFFS_NONMONOLITHIC) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__DEFLATE) || defined(WUFFS_NONMONOLITHIC) // ---------------- Status Codes extern const char wuffs_deflate__error__bad_huffman_code_over_subscribed[]; extern const char wuffs_deflate__error__bad_huffman_code_under_subscribed[]; extern const char wuffs_deflate__error__bad_huffman_code_length_count[]; extern const char wuffs_deflate__error__bad_huffman_code_length_repetition[]; extern const char wuffs_deflate__error__bad_huffman_code[]; extern const char wuffs_deflate__error__bad_huffman_minimum_code_length[]; extern const char wuffs_deflate__error__bad_block[]; extern const char wuffs_deflate__error__bad_distance[]; extern const char wuffs_deflate__error__bad_distance_code_count[]; extern const char wuffs_deflate__error__bad_literal_length_code_count[]; extern const char wuffs_deflate__error__inconsistent_stored_block_length[]; extern const char wuffs_deflate__error__missing_end_of_block_code[]; extern const char wuffs_deflate__error__no_huffman_codes[]; extern const char wuffs_deflate__error__truncated_input[]; // ---------------- Public Consts #define WUFFS_DEFLATE__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 1 // ---------------- Struct Declarations typedef struct wuffs_deflate__decoder__struct wuffs_deflate__decoder; #ifdef __cplusplus extern "C" { #endif // ---------------- Public Initializer Prototypes // For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self, // etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)". // // Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version. // Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options. wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_deflate__decoder__initialize( wuffs_deflate__decoder* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options); size_t sizeof__wuffs_deflate__decoder(); // ---------------- Allocs // These functions allocate and initialize Wuffs structs. They return NULL if // memory allocation fails. If they return non-NULL, there is no need to call // wuffs_foo__bar__initialize, but the caller is responsible for eventually // calling free on the returned pointer. That pointer is effectively a C++ // std::unique_ptr. wuffs_deflate__decoder* wuffs_deflate__decoder__alloc(); static inline wuffs_base__io_transformer* wuffs_deflate__decoder__alloc_as__wuffs_base__io_transformer() { return (wuffs_base__io_transformer*)(wuffs_deflate__decoder__alloc()); } // ---------------- Upcasts static inline wuffs_base__io_transformer* wuffs_deflate__decoder__upcast_as__wuffs_base__io_transformer( wuffs_deflate__decoder* p) { return (wuffs_base__io_transformer*)p; } // ---------------- Public Function Prototypes WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_deflate__decoder__add_history( wuffs_deflate__decoder* self, wuffs_base__slice_u8 a_hist); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_deflate__decoder__set_quirk_enabled( wuffs_deflate__decoder* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_deflate__decoder__workbuf_len( const wuffs_deflate__decoder* self); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_deflate__decoder__transform_io( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); #ifdef __cplusplus } // extern "C" #endif // ---------------- Struct Definitions // These structs' fields, and the sizeof them, are private implementation // details that aren't guaranteed to be stable across Wuffs versions. // // See https://en.wikipedia.org/wiki/Opaque_pointer#C #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_deflate__decoder__struct { // Do not access the private_impl's or private_data's fields directly. There // is no API/ABI compatibility or safety guarantee if you do so. Instead, use // the wuffs_foo__bar__baz functions. // // It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct // can be stack allocated when WUFFS_IMPLEMENTATION is defined. struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable vtable_for__wuffs_base__io_transformer; wuffs_base__vtable null_vtable; uint32_t f_bits; uint32_t f_n_bits; uint64_t f_transformed_history_count; uint32_t f_history_index; uint32_t f_n_huffs_bits[2]; bool f_end_of_block; uint32_t p_transform_io[1]; uint32_t p_do_transform_io[1]; uint32_t p_decode_blocks[1]; uint32_t p_decode_uncompressed[1]; uint32_t p_init_dynamic_huffman[1]; wuffs_base__status (*choosy_decode_huffman_fast64)( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); uint32_t p_decode_huffman_slow[1]; } private_impl; struct { uint32_t f_huffs[2][1024]; uint8_t f_history[33025]; uint8_t f_code_lengths[320]; struct { uint32_t v_final; } s_decode_blocks[1]; struct { uint32_t v_length; uint64_t scratch; } s_decode_uncompressed[1]; struct { uint32_t v_bits; uint32_t v_n_bits; uint32_t v_n_lit; uint32_t v_n_dist; uint32_t v_n_clen; uint32_t v_i; uint32_t v_mask; uint32_t v_n_extra_bits; uint8_t v_rep_symbol; uint32_t v_rep_count; } s_init_dynamic_huffman[1]; struct { uint32_t v_bits; uint32_t v_n_bits; uint32_t v_table_entry_n_bits; uint32_t v_lmask; uint32_t v_dmask; uint32_t v_redir_top; uint32_t v_redir_mask; uint32_t v_length; uint32_t v_dist_minus_1; uint64_t scratch; } s_decode_huffman_slow[1]; } private_data; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; // On failure, the alloc_etc functions return nullptr. They don't throw. static inline unique_ptr alloc() { return unique_ptr(wuffs_deflate__decoder__alloc(), &free); } static inline wuffs_base__io_transformer::unique_ptr alloc_as__wuffs_base__io_transformer() { return wuffs_base__io_transformer::unique_ptr( wuffs_deflate__decoder__alloc_as__wuffs_base__io_transformer(), &free); } #endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR) #if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) // Disallow constructing or copying an object via standard C++ mechanisms, // e.g. the "new" operator, as this struct is intentionally opaque. Its total // size and field layout is not part of the public, stable, memory-safe API. // Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and // call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as // their first argument) rather than tweaking bar.private_impl.qux fields. // // In C, we can just leave wuffs_foo__bar as an incomplete type (unless // WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in // order to provide convenience methods. These forward on "this", so that you // can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)". wuffs_deflate__decoder__struct() = delete; wuffs_deflate__decoder__struct(const wuffs_deflate__decoder__struct&) = delete; wuffs_deflate__decoder__struct& operator=( const wuffs_deflate__decoder__struct&) = delete; #endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) #if !defined(WUFFS_IMPLEMENTATION) // As above, the size of the struct is not part of the public API, and unless // WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap // allocated, not stack allocated. Its size is not intended to be known at // compile time, but it is unfortunately divulged as a side effect of // defining C++ convenience methods. Use "sizeof__T()", calling the function, // instead of "sizeof T", invoking the operator. To make the two values // different, so that passing the latter will be rejected by the initialize // function, we add an arbitrary amount of dead weight. uint8_t dead_weight[123000000]; // 123 MB. #endif // !defined(WUFFS_IMPLEMENTATION) inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT initialize( size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options) { return wuffs_deflate__decoder__initialize( this, sizeof_star_self, wuffs_version, options); } inline wuffs_base__io_transformer* upcast_as__wuffs_base__io_transformer() { return (wuffs_base__io_transformer*)this; } inline wuffs_base__empty_struct add_history( wuffs_base__slice_u8 a_hist) { return wuffs_deflate__decoder__add_history(this, a_hist); } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_deflate__decoder__set_quirk_enabled(this, a_quirk, a_enabled); } inline wuffs_base__range_ii_u64 workbuf_len() const { return wuffs_deflate__decoder__workbuf_len(this); } inline wuffs_base__status transform_io( wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { return wuffs_deflate__decoder__transform_io(this, a_dst, a_src, a_workbuf); } #endif // __cplusplus }; // struct wuffs_deflate__decoder__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__DEFLATE) || defined(WUFFS_NONMONOLITHIC) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ZLIB) || defined(WUFFS_NONMONOLITHIC) // ---------------- Status Codes extern const char wuffs_zlib__note__dictionary_required[]; extern const char wuffs_zlib__error__bad_checksum[]; extern const char wuffs_zlib__error__bad_compression_method[]; extern const char wuffs_zlib__error__bad_compression_window_size[]; extern const char wuffs_zlib__error__bad_parity_check[]; extern const char wuffs_zlib__error__incorrect_dictionary[]; extern const char wuffs_zlib__error__truncated_input[]; // ---------------- Public Consts #define WUFFS_ZLIB__QUIRK_JUST_RAW_DEFLATE 2113790976 #define WUFFS_ZLIB__DECODER_WORKBUF_LEN_MAX_INCL_WORST_CASE 1 // ---------------- Struct Declarations typedef struct wuffs_zlib__decoder__struct wuffs_zlib__decoder; #ifdef __cplusplus extern "C" { #endif // ---------------- Public Initializer Prototypes // For any given "wuffs_foo__bar* self", "wuffs_foo__bar__initialize(self, // etc)" should be called before any other "wuffs_foo__bar__xxx(self, etc)". // // Pass sizeof(*self) and WUFFS_VERSION for sizeof_star_self and wuffs_version. // Pass 0 (or some combination of WUFFS_INITIALIZE__XXX) for options. wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_zlib__decoder__initialize( wuffs_zlib__decoder* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options); size_t sizeof__wuffs_zlib__decoder(); // ---------------- Allocs // These functions allocate and initialize Wuffs structs. They return NULL if // memory allocation fails. If they return non-NULL, there is no need to call // wuffs_foo__bar__initialize, but the caller is responsible for eventually // calling free on the returned pointer. That pointer is effectively a C++ // std::unique_ptr. wuffs_zlib__decoder* wuffs_zlib__decoder__alloc(); static inline wuffs_base__io_transformer* wuffs_zlib__decoder__alloc_as__wuffs_base__io_transformer() { return (wuffs_base__io_transformer*)(wuffs_zlib__decoder__alloc()); } // ---------------- Upcasts static inline wuffs_base__io_transformer* wuffs_zlib__decoder__upcast_as__wuffs_base__io_transformer( wuffs_zlib__decoder* p) { return (wuffs_base__io_transformer*)p; } // ---------------- Public Function Prototypes WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_zlib__decoder__dictionary_id( const wuffs_zlib__decoder* self); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_zlib__decoder__add_dictionary( wuffs_zlib__decoder* self, wuffs_base__slice_u8 a_dict); WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_zlib__decoder__set_quirk_enabled( wuffs_zlib__decoder* self, uint32_t a_quirk, bool a_enabled); WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_zlib__decoder__workbuf_len( const wuffs_zlib__decoder* self); WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_zlib__decoder__transform_io( wuffs_zlib__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); #ifdef __cplusplus } // extern "C" #endif // ---------------- Struct Definitions // These structs' fields, and the sizeof them, are private implementation // details that aren't guaranteed to be stable across Wuffs versions. // // See https://en.wikipedia.org/wiki/Opaque_pointer#C #if defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) struct wuffs_zlib__decoder__struct { // Do not access the private_impl's or private_data's fields directly. There // is no API/ABI compatibility or safety guarantee if you do so. Instead, use // the wuffs_foo__bar__baz functions. // // It is a struct, not a struct*, so that the outermost wuffs_foo__bar struct // can be stack allocated when WUFFS_IMPLEMENTATION is defined. struct { uint32_t magic; uint32_t active_coroutine; wuffs_base__vtable vtable_for__wuffs_base__io_transformer; wuffs_base__vtable null_vtable; bool f_bad_call_sequence; bool f_header_complete; bool f_got_dictionary; bool f_want_dictionary; bool f_quirks[1]; bool f_ignore_checksum; uint32_t f_dict_id_got; uint32_t f_dict_id_want; uint32_t p_transform_io[1]; uint32_t p_do_transform_io[1]; } private_impl; struct { wuffs_adler32__hasher f_checksum; wuffs_adler32__hasher f_dict_id_hasher; wuffs_deflate__decoder f_flate; struct { uint32_t v_checksum_got; uint64_t scratch; } s_do_transform_io[1]; } private_data; #ifdef __cplusplus #if defined(WUFFS_BASE__HAVE_UNIQUE_PTR) using unique_ptr = std::unique_ptr; // On failure, the alloc_etc functions return nullptr. They don't throw. static inline unique_ptr alloc() { return unique_ptr(wuffs_zlib__decoder__alloc(), &free); } static inline wuffs_base__io_transformer::unique_ptr alloc_as__wuffs_base__io_transformer() { return wuffs_base__io_transformer::unique_ptr( wuffs_zlib__decoder__alloc_as__wuffs_base__io_transformer(), &free); } #endif // defined(WUFFS_BASE__HAVE_UNIQUE_PTR) #if defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) // Disallow constructing or copying an object via standard C++ mechanisms, // e.g. the "new" operator, as this struct is intentionally opaque. Its total // size and field layout is not part of the public, stable, memory-safe API. // Use malloc or memcpy and the sizeof__wuffs_foo__bar function instead, and // call wuffs_foo__bar__baz methods (which all take a "this"-like pointer as // their first argument) rather than tweaking bar.private_impl.qux fields. // // In C, we can just leave wuffs_foo__bar as an incomplete type (unless // WUFFS_IMPLEMENTATION is #define'd). In C++, we define a complete type in // order to provide convenience methods. These forward on "this", so that you // can write "bar->baz(etc)" instead of "wuffs_foo__bar__baz(bar, etc)". wuffs_zlib__decoder__struct() = delete; wuffs_zlib__decoder__struct(const wuffs_zlib__decoder__struct&) = delete; wuffs_zlib__decoder__struct& operator=( const wuffs_zlib__decoder__struct&) = delete; #endif // defined(WUFFS_BASE__HAVE_EQ_DELETE) && !defined(WUFFS_IMPLEMENTATION) #if !defined(WUFFS_IMPLEMENTATION) // As above, the size of the struct is not part of the public API, and unless // WUFFS_IMPLEMENTATION is #define'd, this struct type T should be heap // allocated, not stack allocated. Its size is not intended to be known at // compile time, but it is unfortunately divulged as a side effect of // defining C++ convenience methods. Use "sizeof__T()", calling the function, // instead of "sizeof T", invoking the operator. To make the two values // different, so that passing the latter will be rejected by the initialize // function, we add an arbitrary amount of dead weight. uint8_t dead_weight[123000000]; // 123 MB. #endif // !defined(WUFFS_IMPLEMENTATION) inline wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT initialize( size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options) { return wuffs_zlib__decoder__initialize( this, sizeof_star_self, wuffs_version, options); } inline wuffs_base__io_transformer* upcast_as__wuffs_base__io_transformer() { return (wuffs_base__io_transformer*)this; } inline uint32_t dictionary_id() const { return wuffs_zlib__decoder__dictionary_id(this); } inline wuffs_base__empty_struct add_dictionary( wuffs_base__slice_u8 a_dict) { return wuffs_zlib__decoder__add_dictionary(this, a_dict); } inline wuffs_base__empty_struct set_quirk_enabled( uint32_t a_quirk, bool a_enabled) { return wuffs_zlib__decoder__set_quirk_enabled(this, a_quirk, a_enabled); } inline wuffs_base__range_ii_u64 workbuf_len() const { return wuffs_zlib__decoder__workbuf_len(this); } inline wuffs_base__status transform_io( wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { return wuffs_zlib__decoder__transform_io(this, a_dst, a_src, a_workbuf); } #endif // __cplusplus }; // struct wuffs_zlib__decoder__struct #endif // defined(__cplusplus) || defined(WUFFS_IMPLEMENTATION) #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ZLIB) || defined(WUFFS_NONMONOLITHIC) // ‼ WUFFS C HEADER ENDS HERE. #ifdef WUFFS_IMPLEMENTATION #ifdef __cplusplus extern "C" { #endif // ---------------- Fundamentals // WUFFS_BASE__MAGIC is a magic number to check that initializers are called. // It's not foolproof, given C doesn't automatically zero memory before use, // but it should catch 99.99% of cases. // // Its (non-zero) value is arbitrary, based on md5sum("wuffs"). #define WUFFS_BASE__MAGIC ((uint32_t)0x3CCB6C71) // WUFFS_BASE__DISABLED is a magic number to indicate that a non-recoverable // error was previously encountered. // // Its (non-zero) value is arbitrary, based on md5sum("disabled"). #define WUFFS_BASE__DISABLED ((uint32_t)0x075AE3D2) // Use switch cases for coroutine suspension points, similar to the technique // in https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html // // The implicit fallthrough is intentional. // // We use trivial macros instead of an explicit assignment and case statement // so that clang-format doesn't get confused by the unusual "case"s. #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0 case 0:; #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT(n) \ coro_susp_point = n; \ case n:; #define WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(n) \ if (!status.repr) { \ goto ok; \ } else if (*status.repr != '$') { \ goto exit; \ } \ coro_susp_point = n; \ goto suspend; \ case n:; // The "defined(__clang__)" isn't redundant. While vanilla clang defines // __GNUC__, clang-cl (which mimics MSVC's cl.exe) does not. #if defined(__GNUC__) || defined(__clang__) #define WUFFS_BASE__LIKELY(expr) (__builtin_expect(!!(expr), 1)) #define WUFFS_BASE__UNLIKELY(expr) (__builtin_expect(!!(expr), 0)) #else #define WUFFS_BASE__LIKELY(expr) (expr) #define WUFFS_BASE__UNLIKELY(expr) (expr) #endif // -------- static inline wuffs_base__empty_struct // wuffs_base__ignore_status(wuffs_base__status z) { return wuffs_base__make_empty_struct(); } static inline wuffs_base__status // wuffs_base__status__ensure_not_a_suspension(wuffs_base__status z) { if (z.repr && (*z.repr == '$')) { z.repr = wuffs_base__error__cannot_return_a_suspension; } return z; } // -------- // wuffs_base__iterate_total_advance returns the exclusive pointer-offset at // which iteration should stop. The overall slice has length total_len, each // iteration's sub-slice has length iter_len and are placed iter_advance apart. // // The iter_advance may not be larger than iter_len. The iter_advance may be // smaller than iter_len, in which case the sub-slices will overlap. // // The return value r satisfies ((0 <= r) && (r <= total_len)). // // For example, if total_len = 15, iter_len = 5 and iter_advance = 3, there are // four iterations at offsets 0, 3, 6 and 9. This function returns 12. // // 0123456789012345 // [....] // [....] // [....] // [....] // $ // 0123456789012345 // // For example, if total_len = 15, iter_len = 5 and iter_advance = 5, there are // three iterations at offsets 0, 5 and 10. This function returns 15. // // 0123456789012345 // [....] // [....] // [....] // $ // 0123456789012345 static inline size_t // wuffs_base__iterate_total_advance(size_t total_len, size_t iter_len, size_t iter_advance) { if (total_len >= iter_len) { size_t n = total_len - iter_len; return ((n / iter_advance) * iter_advance) + iter_advance; } return 0; } // ---------------- Numeric Types extern const uint8_t wuffs_base__low_bits_mask__u8[8]; extern const uint16_t wuffs_base__low_bits_mask__u16[16]; extern const uint32_t wuffs_base__low_bits_mask__u32[32]; extern const uint64_t wuffs_base__low_bits_mask__u64[64]; #define WUFFS_BASE__LOW_BITS_MASK__U8(n) (wuffs_base__low_bits_mask__u8[n]) #define WUFFS_BASE__LOW_BITS_MASK__U16(n) (wuffs_base__low_bits_mask__u16[n]) #define WUFFS_BASE__LOW_BITS_MASK__U32(n) (wuffs_base__low_bits_mask__u32[n]) #define WUFFS_BASE__LOW_BITS_MASK__U64(n) (wuffs_base__low_bits_mask__u64[n]) // -------- static inline void // wuffs_base__u8__sat_add_indirect(uint8_t* x, uint8_t y) { *x = wuffs_base__u8__sat_add(*x, y); } static inline void // wuffs_base__u8__sat_sub_indirect(uint8_t* x, uint8_t y) { *x = wuffs_base__u8__sat_sub(*x, y); } static inline void // wuffs_base__u16__sat_add_indirect(uint16_t* x, uint16_t y) { *x = wuffs_base__u16__sat_add(*x, y); } static inline void // wuffs_base__u16__sat_sub_indirect(uint16_t* x, uint16_t y) { *x = wuffs_base__u16__sat_sub(*x, y); } static inline void // wuffs_base__u32__sat_add_indirect(uint32_t* x, uint32_t y) { *x = wuffs_base__u32__sat_add(*x, y); } static inline void // wuffs_base__u32__sat_sub_indirect(uint32_t* x, uint32_t y) { *x = wuffs_base__u32__sat_sub(*x, y); } static inline void // wuffs_base__u64__sat_add_indirect(uint64_t* x, uint64_t y) { *x = wuffs_base__u64__sat_add(*x, y); } static inline void // wuffs_base__u64__sat_sub_indirect(uint64_t* x, uint64_t y) { *x = wuffs_base__u64__sat_sub(*x, y); } // ---------------- Slices and Tables // wuffs_base__slice_u8__prefix returns up to the first up_to bytes of s. static inline wuffs_base__slice_u8 // wuffs_base__slice_u8__prefix(wuffs_base__slice_u8 s, uint64_t up_to) { if (((uint64_t)(s.len)) > up_to) { s.len = ((size_t)up_to); } return s; } // wuffs_base__slice_u8__suffix returns up to the last up_to bytes of s. static inline wuffs_base__slice_u8 // wuffs_base__slice_u8__suffix(wuffs_base__slice_u8 s, uint64_t up_to) { if (((uint64_t)(s.len)) > up_to) { s.ptr += ((uint64_t)(s.len)) - up_to; s.len = ((size_t)up_to); } return s; } // wuffs_base__slice_u8__copy_from_slice calls memmove(dst.ptr, src.ptr, len) // where len is the minimum of dst.len and src.len. // // Passing a wuffs_base__slice_u8 with all fields NULL or zero (a valid, empty // slice) is valid and results in a no-op. static inline uint64_t // wuffs_base__slice_u8__copy_from_slice(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src) { size_t len = dst.len < src.len ? dst.len : src.len; if (len > 0) { memmove(dst.ptr, src.ptr, len); } return len; } // -------- static inline wuffs_base__slice_u8 // wuffs_base__table_u8__row_u32(wuffs_base__table_u8 t, uint32_t y) { if (y < t.height) { return wuffs_base__make_slice_u8(t.ptr + (t.stride * y), t.width); } return wuffs_base__make_slice_u8(NULL, 0); } // ---------------- Slices and Tables (Utility) #define wuffs_base__utility__empty_slice_u8 wuffs_base__empty_slice_u8 // ---------------- Ranges and Rects static inline uint32_t // wuffs_base__range_ii_u32__get_min_incl(const wuffs_base__range_ii_u32* r) { return r->min_incl; } static inline uint32_t // wuffs_base__range_ii_u32__get_max_incl(const wuffs_base__range_ii_u32* r) { return r->max_incl; } static inline uint32_t // wuffs_base__range_ie_u32__get_min_incl(const wuffs_base__range_ie_u32* r) { return r->min_incl; } static inline uint32_t // wuffs_base__range_ie_u32__get_max_excl(const wuffs_base__range_ie_u32* r) { return r->max_excl; } static inline uint64_t // wuffs_base__range_ii_u64__get_min_incl(const wuffs_base__range_ii_u64* r) { return r->min_incl; } static inline uint64_t // wuffs_base__range_ii_u64__get_max_incl(const wuffs_base__range_ii_u64* r) { return r->max_incl; } static inline uint64_t // wuffs_base__range_ie_u64__get_min_incl(const wuffs_base__range_ie_u64* r) { return r->min_incl; } static inline uint64_t // wuffs_base__range_ie_u64__get_max_excl(const wuffs_base__range_ie_u64* r) { return r->max_excl; } // ---------------- Ranges and Rects (Utility) #define wuffs_base__utility__empty_range_ii_u32 wuffs_base__empty_range_ii_u32 #define wuffs_base__utility__empty_range_ie_u32 wuffs_base__empty_range_ie_u32 #define wuffs_base__utility__empty_range_ii_u64 wuffs_base__empty_range_ii_u64 #define wuffs_base__utility__empty_range_ie_u64 wuffs_base__empty_range_ie_u64 #define wuffs_base__utility__empty_rect_ii_u32 wuffs_base__empty_rect_ii_u32 #define wuffs_base__utility__empty_rect_ie_u32 wuffs_base__empty_rect_ie_u32 #define wuffs_base__utility__make_range_ii_u32 wuffs_base__make_range_ii_u32 #define wuffs_base__utility__make_range_ie_u32 wuffs_base__make_range_ie_u32 #define wuffs_base__utility__make_range_ii_u64 wuffs_base__make_range_ii_u64 #define wuffs_base__utility__make_range_ie_u64 wuffs_base__make_range_ie_u64 #define wuffs_base__utility__make_rect_ii_u32 wuffs_base__make_rect_ii_u32 #define wuffs_base__utility__make_rect_ie_u32 wuffs_base__make_rect_ie_u32 // ---------------- I/O static inline uint64_t // wuffs_base__io__count_since(uint64_t mark, uint64_t index) { if (index >= mark) { return index - mark; } return 0; } // TODO: drop the "const" in "const uint8_t* ptr". Some though required about // the base.io_reader.since method returning a mutable "slice base.u8". #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif static inline wuffs_base__slice_u8 // wuffs_base__io__since(uint64_t mark, uint64_t index, const uint8_t* ptr) { if (index >= mark) { return wuffs_base__make_slice_u8(((uint8_t*)ptr) + mark, ((size_t)(index - mark))); } return wuffs_base__make_slice_u8(NULL, 0); } #if defined(__GNUC__) #pragma GCC diagnostic pop #endif // -------- static inline void // wuffs_base__io_reader__limit(const uint8_t** ptr_io2_r, const uint8_t* iop_r, uint64_t limit) { if (((uint64_t)(*ptr_io2_r - iop_r)) > limit) { *ptr_io2_r = iop_r + limit; } } static inline uint32_t // wuffs_base__io_reader__limited_copy_u32_to_slice(const uint8_t** ptr_iop_r, const uint8_t* io2_r, uint32_t length, wuffs_base__slice_u8 dst) { const uint8_t* iop_r = *ptr_iop_r; size_t n = dst.len; if (n > length) { n = length; } if (n > ((size_t)(io2_r - iop_r))) { n = (size_t)(io2_r - iop_r); } if (n > 0) { memmove(dst.ptr, iop_r, n); *ptr_iop_r += n; } return (uint32_t)(n); } // wuffs_base__io_reader__match7 returns whether the io_reader's upcoming bytes // start with the given prefix (up to 7 bytes long). It is peek-like, not // read-like, in that there are no side-effects. // // The low 3 bits of a hold the prefix length, n. // // The high 56 bits of a hold the prefix itself, in little-endian order. The // first prefix byte is in bits 8..=15, the second prefix byte is in bits // 16..=23, etc. The high (8 * (7 - n)) bits are ignored. // // There are three possible return values: // - 0 means success. // - 1 means inconclusive, equivalent to "$short read". // - 2 means failure. static inline uint32_t // wuffs_base__io_reader__match7(const uint8_t* iop_r, const uint8_t* io2_r, wuffs_base__io_buffer* r, uint64_t a) { uint32_t n = a & 7; a >>= 8; if ((io2_r - iop_r) >= 8) { uint64_t x = wuffs_base__peek_u64le__no_bounds_check(iop_r); uint32_t shift = 8 * (8 - n); return ((a << shift) == (x << shift)) ? 0 : 2; } for (; n > 0; n--) { if (iop_r >= io2_r) { return (r && r->meta.closed) ? 2 : 1; } else if (*iop_r != ((uint8_t)(a))) { return 2; } iop_r++; a >>= 8; } return 0; } static inline wuffs_base__io_buffer* // wuffs_base__io_reader__set(wuffs_base__io_buffer* b, const uint8_t** ptr_iop_r, const uint8_t** ptr_io0_r, const uint8_t** ptr_io1_r, const uint8_t** ptr_io2_r, wuffs_base__slice_u8 data, uint64_t history_position) { b->data = data; b->meta.wi = data.len; b->meta.ri = 0; b->meta.pos = history_position; b->meta.closed = false; *ptr_iop_r = data.ptr; *ptr_io0_r = data.ptr; *ptr_io1_r = data.ptr; *ptr_io2_r = data.ptr + data.len; return b; } // -------- static inline uint64_t // wuffs_base__io_writer__copy_from_slice(uint8_t** ptr_iop_w, uint8_t* io2_w, wuffs_base__slice_u8 src) { uint8_t* iop_w = *ptr_iop_w; size_t n = src.len; if (n > ((size_t)(io2_w - iop_w))) { n = (size_t)(io2_w - iop_w); } if (n > 0) { memmove(iop_w, src.ptr, n); *ptr_iop_w += n; } return (uint64_t)(n); } static inline void // wuffs_base__io_writer__limit(uint8_t** ptr_io2_w, uint8_t* iop_w, uint64_t limit) { if (((uint64_t)(*ptr_io2_w - iop_w)) > limit) { *ptr_io2_w = iop_w + limit; } } static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_history(uint8_t** ptr_iop_w, uint8_t* io0_w, uint8_t* io2_w, uint32_t length, uint32_t distance) { if (!distance) { return 0; } uint8_t* p = *ptr_iop_w; if ((size_t)(p - io0_w) < (size_t)(distance)) { return 0; } uint8_t* q = p - distance; size_t n = (size_t)(io2_w - p); if ((size_t)(length) > n) { length = (uint32_t)(n); } else { n = (size_t)(length); } // TODO: unrolling by 3 seems best for the std/deflate benchmarks, but that // is mostly because 3 is the minimum length for the deflate format. This // function implementation shouldn't overfit to that one format. Perhaps the // limited_copy_u32_from_history Wuffs method should also take an unroll hint // argument, and the cgen can look if that argument is the constant // expression '3'. // // See also wuffs_base__io_writer__limited_copy_u32_from_history_fast below. for (; n >= 3; n -= 3) { *p++ = *q++; *p++ = *q++; *p++ = *q++; } for (; n; n--) { *p++ = *q++; } *ptr_iop_w = p; return length; } // wuffs_base__io_writer__limited_copy_u32_from_history_fast is like the // wuffs_base__io_writer__limited_copy_u32_from_history function above, but has // stronger pre-conditions. // // The caller needs to prove that: // - length <= (io2_w - *ptr_iop_w) // - distance >= 1 // - distance <= (*ptr_iop_w - io0_w) static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_history_fast(uint8_t** ptr_iop_w, uint8_t* io0_w, uint8_t* io2_w, uint32_t length, uint32_t distance) { uint8_t* p = *ptr_iop_w; uint8_t* q = p - distance; uint32_t n = length; for (; n >= 3; n -= 3) { *p++ = *q++; *p++ = *q++; *p++ = *q++; } for (; n; n--) { *p++ = *q++; } *ptr_iop_w = p; return length; } // wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast // copies the previous byte (the one immediately before *ptr_iop_w), copying 8 // byte chunks at a time. Each chunk contains 8 repetitions of the same byte. // // In terms of number of bytes copied, length is rounded up to a multiple of 8. // As a special case, a zero length rounds up to 8 (even though 0 is already a // multiple of 8), since there is always at least one 8 byte chunk copied. // // In terms of advancing *ptr_iop_w, length is not rounded up. // // The caller needs to prove that: // - (length + 8) <= (io2_w - *ptr_iop_w) // - distance == 1 // - distance <= (*ptr_iop_w - io0_w) static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast( uint8_t** ptr_iop_w, uint8_t* io0_w, uint8_t* io2_w, uint32_t length, uint32_t distance) { uint8_t* p = *ptr_iop_w; uint64_t x = p[-1]; x |= x << 8; x |= x << 16; x |= x << 32; uint32_t n = length; while (1) { wuffs_base__poke_u64le__no_bounds_check(p, x); if (n <= 8) { p += n; break; } p += 8; n -= 8; } *ptr_iop_w = p; return length; } // wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast is // like the wuffs_base__io_writer__limited_copy_u32_from_history_fast function // above, but copies 8 byte chunks at a time. // // In terms of number of bytes copied, length is rounded up to a multiple of 8. // As a special case, a zero length rounds up to 8 (even though 0 is already a // multiple of 8), since there is always at least one 8 byte chunk copied. // // In terms of advancing *ptr_iop_w, length is not rounded up. // // The caller needs to prove that: // - (length + 8) <= (io2_w - *ptr_iop_w) // - distance >= 8 // - distance <= (*ptr_iop_w - io0_w) static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast( uint8_t** ptr_iop_w, uint8_t* io0_w, uint8_t* io2_w, uint32_t length, uint32_t distance) { uint8_t* p = *ptr_iop_w; uint8_t* q = p - distance; uint32_t n = length; while (1) { memcpy(p, q, 8); if (n <= 8) { p += n; break; } p += 8; q += 8; n -= 8; } *ptr_iop_w = p; return length; } static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_reader(uint8_t** ptr_iop_w, uint8_t* io2_w, uint32_t length, const uint8_t** ptr_iop_r, const uint8_t* io2_r) { uint8_t* iop_w = *ptr_iop_w; size_t n = length; if (n > ((size_t)(io2_w - iop_w))) { n = (size_t)(io2_w - iop_w); } const uint8_t* iop_r = *ptr_iop_r; if (n > ((size_t)(io2_r - iop_r))) { n = (size_t)(io2_r - iop_r); } if (n > 0) { memmove(iop_w, iop_r, n); *ptr_iop_w += n; *ptr_iop_r += n; } return (uint32_t)(n); } static inline uint32_t // wuffs_base__io_writer__limited_copy_u32_from_slice(uint8_t** ptr_iop_w, uint8_t* io2_w, uint32_t length, wuffs_base__slice_u8 src) { uint8_t* iop_w = *ptr_iop_w; size_t n = src.len; if (n > length) { n = length; } if (n > ((size_t)(io2_w - iop_w))) { n = (size_t)(io2_w - iop_w); } if (n > 0) { memmove(iop_w, src.ptr, n); *ptr_iop_w += n; } return (uint32_t)(n); } static inline wuffs_base__io_buffer* // wuffs_base__io_writer__set(wuffs_base__io_buffer* b, uint8_t** ptr_iop_w, uint8_t** ptr_io0_w, uint8_t** ptr_io1_w, uint8_t** ptr_io2_w, wuffs_base__slice_u8 data, uint64_t history_position) { b->data = data; b->meta.wi = 0; b->meta.ri = 0; b->meta.pos = history_position; b->meta.closed = false; *ptr_iop_w = data.ptr; *ptr_io0_w = data.ptr; *ptr_io1_w = data.ptr; *ptr_io2_w = data.ptr + data.len; return b; } // ---------------- I/O (Utility) #define wuffs_base__utility__empty_io_reader wuffs_base__empty_io_reader #define wuffs_base__utility__empty_io_writer wuffs_base__empty_io_writer // ---------------- Tokens // ---------------- Tokens (Utility) // ---------------- Memory Allocation // ---------------- Images WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__limited_swizzle_u32_interleaved_from_reader( const wuffs_base__pixel_swizzler* p, uint32_t up_to_num_pixels, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, const uint8_t** ptr_iop_r, const uint8_t* io2_r); WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_from_reader( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, const uint8_t** ptr_iop_r, const uint8_t* io2_r); WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_transparent_black( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, uint64_t num_pixels); // ---------------- Images (Utility) #define wuffs_base__utility__make_pixel_format wuffs_base__make_pixel_format // ---------------- String Conversions // ---------------- Unicode and UTF-8 // ---------------- #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__CORE) const uint8_t wuffs_base__low_bits_mask__u8[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, }; const uint16_t wuffs_base__low_bits_mask__u16[16] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, }; const uint32_t wuffs_base__low_bits_mask__u32[32] = { 0x00000000, 0x00000001, 0x00000003, 0x00000007, 0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F, 0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF, 0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF, 0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF, 0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF, 0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF, 0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, }; const uint64_t wuffs_base__low_bits_mask__u64[64] = { 0x0000000000000000, 0x0000000000000001, 0x0000000000000003, 0x0000000000000007, 0x000000000000000F, 0x000000000000001F, 0x000000000000003F, 0x000000000000007F, 0x00000000000000FF, 0x00000000000001FF, 0x00000000000003FF, 0x00000000000007FF, 0x0000000000000FFF, 0x0000000000001FFF, 0x0000000000003FFF, 0x0000000000007FFF, 0x000000000000FFFF, 0x000000000001FFFF, 0x000000000003FFFF, 0x000000000007FFFF, 0x00000000000FFFFF, 0x00000000001FFFFF, 0x00000000003FFFFF, 0x00000000007FFFFF, 0x0000000000FFFFFF, 0x0000000001FFFFFF, 0x0000000003FFFFFF, 0x0000000007FFFFFF, 0x000000000FFFFFFF, 0x000000001FFFFFFF, 0x000000003FFFFFFF, 0x000000007FFFFFFF, 0x00000000FFFFFFFF, 0x00000001FFFFFFFF, 0x00000003FFFFFFFF, 0x00000007FFFFFFFF, 0x0000000FFFFFFFFF, 0x0000001FFFFFFFFF, 0x0000003FFFFFFFFF, 0x0000007FFFFFFFFF, 0x000000FFFFFFFFFF, 0x000001FFFFFFFFFF, 0x000003FFFFFFFFFF, 0x000007FFFFFFFFFF, 0x00000FFFFFFFFFFF, 0x00001FFFFFFFFFFF, 0x00003FFFFFFFFFFF, 0x00007FFFFFFFFFFF, 0x0000FFFFFFFFFFFF, 0x0001FFFFFFFFFFFF, 0x0003FFFFFFFFFFFF, 0x0007FFFFFFFFFFFF, 0x000FFFFFFFFFFFFF, 0x001FFFFFFFFFFFFF, 0x003FFFFFFFFFFFFF, 0x007FFFFFFFFFFFFF, 0x00FFFFFFFFFFFFFF, 0x01FFFFFFFFFFFFFF, 0x03FFFFFFFFFFFFFF, 0x07FFFFFFFFFFFFFF, 0x0FFFFFFFFFFFFFFF, 0x1FFFFFFFFFFFFFFF, 0x3FFFFFFFFFFFFFFF, 0x7FFFFFFFFFFFFFFF, }; const uint32_t wuffs_base__pixel_format__bits_per_channel[16] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x0A, 0x0C, 0x10, 0x18, 0x20, 0x30, 0x40, }; const char wuffs_base__note__i_o_redirect[] = "@base: I/O redirect"; const char wuffs_base__note__end_of_data[] = "@base: end of data"; const char wuffs_base__note__metadata_reported[] = "@base: metadata reported"; const char wuffs_base__suspension__even_more_information[] = "$base: even more information"; const char wuffs_base__suspension__mispositioned_read[] = "$base: mispositioned read"; const char wuffs_base__suspension__mispositioned_write[] = "$base: mispositioned write"; const char wuffs_base__suspension__short_read[] = "$base: short read"; const char wuffs_base__suspension__short_write[] = "$base: short write"; const char wuffs_base__error__bad_i_o_position[] = "#base: bad I/O position"; const char wuffs_base__error__bad_argument_length_too_short[] = "#base: bad argument (length too short)"; const char wuffs_base__error__bad_argument[] = "#base: bad argument"; const char wuffs_base__error__bad_call_sequence[] = "#base: bad call sequence"; const char wuffs_base__error__bad_data[] = "#base: bad data"; const char wuffs_base__error__bad_receiver[] = "#base: bad receiver"; const char wuffs_base__error__bad_restart[] = "#base: bad restart"; const char wuffs_base__error__bad_sizeof_receiver[] = "#base: bad sizeof receiver"; const char wuffs_base__error__bad_vtable[] = "#base: bad vtable"; const char wuffs_base__error__bad_workbuf_length[] = "#base: bad workbuf length"; const char wuffs_base__error__bad_wuffs_version[] = "#base: bad wuffs version"; const char wuffs_base__error__cannot_return_a_suspension[] = "#base: cannot return a suspension"; const char wuffs_base__error__disabled_by_previous_error[] = "#base: disabled by previous error"; const char wuffs_base__error__initialize_falsely_claimed_already_zeroed[] = "#base: initialize falsely claimed already zeroed"; const char wuffs_base__error__initialize_not_called[] = "#base: initialize not called"; const char wuffs_base__error__interleaved_coroutine_calls[] = "#base: interleaved coroutine calls"; const char wuffs_base__error__no_more_information[] = "#base: no more information"; const char wuffs_base__error__not_enough_data[] = "#base: not enough data"; const char wuffs_base__error__out_of_bounds[] = "#base: out of bounds"; const char wuffs_base__error__unsupported_method[] = "#base: unsupported method"; const char wuffs_base__error__unsupported_option[] = "#base: unsupported option"; const char wuffs_base__error__unsupported_pixel_swizzler_option[] = "#base: unsupported pixel swizzler option"; const char wuffs_base__error__too_much_data[] = "#base: too much data"; const char wuffs_base__hasher_u32__vtable_name[] = "{vtable}wuffs_base__hasher_u32"; const char wuffs_base__image_decoder__vtable_name[] = "{vtable}wuffs_base__image_decoder"; const char wuffs_base__io_transformer__vtable_name[] = "{vtable}wuffs_base__io_transformer"; const char wuffs_base__token_decoder__vtable_name[] = "{vtable}wuffs_base__token_decoder"; #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__CORE) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__INTERFACES) // ---------------- Interface Definitions. WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__hasher_u32__set_quirk_enabled( wuffs_base__hasher_u32* self, uint32_t a_quirk, bool a_enabled) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__hasher_u32__vtable_name) { const wuffs_base__hasher_u32__func_ptrs* func_ptrs = (const wuffs_base__hasher_u32__func_ptrs*)(v->function_pointers); return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_empty_struct(); } WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_base__hasher_u32__update_u32( wuffs_base__hasher_u32* self, wuffs_base__slice_u8 a_x) { if (!self) { return 0; } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return 0; } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__hasher_u32__vtable_name) { const wuffs_base__hasher_u32__func_ptrs* func_ptrs = (const wuffs_base__hasher_u32__func_ptrs*)(v->function_pointers); return (*func_ptrs->update_u32)(self, a_x); } else if (v->vtable_name == NULL) { break; } v++; } return 0; } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_frame( wuffs_base__image_decoder* self, wuffs_base__pixel_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__pixel_blend a_blend, wuffs_base__slice_u8 a_workbuf, wuffs_base__decode_frame_options* a_opts) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->decode_frame)(self, a_dst, a_src, a_blend, a_workbuf, a_opts); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_frame_config( wuffs_base__image_decoder* self, wuffs_base__frame_config* a_dst, wuffs_base__io_buffer* a_src) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->decode_frame_config)(self, a_dst, a_src); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__decode_image_config( wuffs_base__image_decoder* self, wuffs_base__image_config* a_dst, wuffs_base__io_buffer* a_src) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->decode_image_config)(self, a_dst, a_src); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__rect_ie_u32 wuffs_base__image_decoder__frame_dirty_rect( const wuffs_base__image_decoder* self) { if (!self) { return wuffs_base__utility__empty_rect_ie_u32(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_rect_ie_u32(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->frame_dirty_rect)(self); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__utility__empty_rect_ie_u32(); } WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_base__image_decoder__num_animation_loops( const wuffs_base__image_decoder* self) { if (!self) { return 0; } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return 0; } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->num_animation_loops)(self); } else if (v->vtable_name == NULL) { break; } v++; } return 0; } WUFFS_BASE__MAYBE_STATIC uint64_t wuffs_base__image_decoder__num_decoded_frame_configs( const wuffs_base__image_decoder* self) { if (!self) { return 0; } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return 0; } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->num_decoded_frame_configs)(self); } else if (v->vtable_name == NULL) { break; } v++; } return 0; } WUFFS_BASE__MAYBE_STATIC uint64_t wuffs_base__image_decoder__num_decoded_frames( const wuffs_base__image_decoder* self) { if (!self) { return 0; } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return 0; } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->num_decoded_frames)(self); } else if (v->vtable_name == NULL) { break; } v++; } return 0; } WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__restart_frame( wuffs_base__image_decoder* self, uint64_t a_index, uint64_t a_io_position) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->restart_frame)(self, a_index, a_io_position); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__image_decoder__set_quirk_enabled( wuffs_base__image_decoder* self, uint32_t a_quirk, bool a_enabled) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_empty_struct(); } WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__image_decoder__set_report_metadata( wuffs_base__image_decoder* self, uint32_t a_fourcc, bool a_report) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->set_report_metadata)(self, a_fourcc, a_report); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_empty_struct(); } WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__image_decoder__tell_me_more( wuffs_base__image_decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__more_information* a_minfo, wuffs_base__io_buffer* a_src) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->tell_me_more)(self, a_dst, a_minfo, a_src); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__image_decoder__workbuf_len( const wuffs_base__image_decoder* self) { if (!self) { return wuffs_base__utility__empty_range_ii_u64(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_range_ii_u64(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__image_decoder__vtable_name) { const wuffs_base__image_decoder__func_ptrs* func_ptrs = (const wuffs_base__image_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->workbuf_len)(self); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__utility__empty_range_ii_u64(); } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__io_transformer__set_quirk_enabled( wuffs_base__io_transformer* self, uint32_t a_quirk, bool a_enabled) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__io_transformer__vtable_name) { const wuffs_base__io_transformer__func_ptrs* func_ptrs = (const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers); return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_empty_struct(); } WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__io_transformer__transform_io( wuffs_base__io_transformer* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__io_transformer__vtable_name) { const wuffs_base__io_transformer__func_ptrs* func_ptrs = (const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers); return (*func_ptrs->transform_io)(self, a_dst, a_src, a_workbuf); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__io_transformer__workbuf_len( const wuffs_base__io_transformer* self) { if (!self) { return wuffs_base__utility__empty_range_ii_u64(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_range_ii_u64(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__io_transformer__vtable_name) { const wuffs_base__io_transformer__func_ptrs* func_ptrs = (const wuffs_base__io_transformer__func_ptrs*)(v->function_pointers); return (*func_ptrs->workbuf_len)(self); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__utility__empty_range_ii_u64(); } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_base__token_decoder__decode_tokens( wuffs_base__token_decoder* self, wuffs_base__token_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__token_decoder__vtable_name) { const wuffs_base__token_decoder__func_ptrs* func_ptrs = (const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->decode_tokens)(self, a_dst, a_src, a_workbuf); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_status(wuffs_base__error__bad_vtable); } WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_base__token_decoder__set_quirk_enabled( wuffs_base__token_decoder* self, uint32_t a_quirk, bool a_enabled) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__token_decoder__vtable_name) { const wuffs_base__token_decoder__func_ptrs* func_ptrs = (const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->set_quirk_enabled)(self, a_quirk, a_enabled); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__make_empty_struct(); } WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_base__token_decoder__workbuf_len( const wuffs_base__token_decoder* self) { if (!self) { return wuffs_base__utility__empty_range_ii_u64(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_range_ii_u64(); } const wuffs_base__vtable* v = &self->private_impl.first_vtable; int i; for (i = 0; i < 63; i++) { if (v->vtable_name == wuffs_base__token_decoder__vtable_name) { const wuffs_base__token_decoder__func_ptrs* func_ptrs = (const wuffs_base__token_decoder__func_ptrs*)(v->function_pointers); return (*func_ptrs->workbuf_len)(self); } else if (v->vtable_name == NULL) { break; } v++; } return wuffs_base__utility__empty_range_ii_u64(); } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__INTERFACES) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__FLOATCONV) // ---------------- IEEE 754 Floating Point // The etc__hpd_left_shift and etc__powers_of_5 tables were printed by // script/print-hpd-left-shift.go. That script has an optional -comments flag, // whose output is not copied here, which prints further detail. // // These tables are used in // wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits. // wuffs_base__private_implementation__hpd_left_shift[i] encodes the number of // new digits created after multiplying a positive integer by (1 << i): the // additional length in the decimal representation. For example, shifting "234" // by 3 (equivalent to multiplying by 8) will produce "1872". Going from a // 3-length string to a 4-length string means that 1 new digit was added (and // existing digits may have changed). // // Shifting by i can add either N or N-1 new digits, depending on whether the // original positive integer compares >= or < to the i'th power of 5 (as 10 // equals 2 * 5). Comparison is lexicographic, not numerical. // // For example, shifting by 4 (i.e. multiplying by 16) can add 1 or 2 new // digits, depending on a lexicographic comparison to (5 ** 4), i.e. "625": // - ("1" << 4) is "16", which adds 1 new digit. // - ("5678" << 4) is "90848", which adds 1 new digit. // - ("624" << 4) is "9984", which adds 1 new digit. // - ("62498" << 4) is "999968", which adds 1 new digit. // - ("625" << 4) is "10000", which adds 2 new digits. // - ("625001" << 4) is "10000016", which adds 2 new digits. // - ("7008" << 4) is "112128", which adds 2 new digits. // - ("99" << 4) is "1584", which adds 2 new digits. // // Thus, when i is 4, N is 2 and (5 ** i) is "625". This etc__hpd_left_shift // array encodes this as: // - etc__hpd_left_shift[4] is 0x1006 = (2 << 11) | 0x0006. // - etc__hpd_left_shift[5] is 0x1009 = (? << 11) | 0x0009. // where the ? isn't relevant for i == 4. // // The high 5 bits of etc__hpd_left_shift[i] is N, the higher of the two // possible number of new digits. The low 11 bits are an offset into the // etc__powers_of_5 array (of length 0x051C, so offsets fit in 11 bits). When i // is 4, its offset and the next one is 6 and 9, and etc__powers_of_5[6 .. 9] // is the string "\x06\x02\x05", so the relevant power of 5 is "625". // // Thanks to Ken Thompson for the original idea. static const uint16_t wuffs_base__private_implementation__hpd_left_shift[65] = { 0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, 0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, 0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0, 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA, 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, 0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, 0x051C, 0x051C, }; // wuffs_base__private_implementation__powers_of_5 contains the powers of 5, // concatenated together: "5", "25", "125", "625", "3125", etc. static const uint8_t wuffs_base__private_implementation__powers_of_5[0x051C] = { 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6, 9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1, 4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2, 5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0, 6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5, 0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0, 9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8, 9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4, 9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1, 3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, 3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1, 8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5, }; // -------- // wuffs_base__private_implementation__powers_of_10 contains truncated // approximations to the powers of 10, ranging from 1e-307 to 1e+288 inclusive, // as 596 pairs of uint64_t values (a 128-bit mantissa). // // There's also an implicit third column (implied by a linear formula involving // the base-10 exponent) that is the base-2 exponent, biased by a magic // constant. That constant (1214 or 0x04BE) equals 1023 + 191. 1023 is the bias // for IEEE 754 double-precision floating point. 191 is ((3 * 64) - 1) and // wuffs_base__private_implementation__parse_number_f64_eisel_lemire works with // multiples-of-64-bit mantissas. // // For example, the third row holds the approximation to 1e-305: // 0xE0B62E29_29ABA83C_331ACDAB_FE94DE87 * (2 ** (0x0049 - 0x04BE)) // // Similarly, 1e+4 is approximated by: // 0x9C400000_00000000_00000000_00000000 * (2 ** (0x044C - 0x04BE)) // // Similarly, 1e+68 is approximated by: // 0xED63A231_D4C4FB27_4CA7AAA8_63EE4BDD * (2 ** (0x0520 - 0x04BE)) // // This table was generated by by script/print-mpb-powers-of-10.go static const uint64_t wuffs_base__private_implementation__powers_of_10[596][2] = { {0xA5D3B6D479F8E056, 0x8FD0C16206306BAB}, // 1e-307 {0x8F48A4899877186C, 0xB3C4F1BA87BC8696}, // 1e-306 {0x331ACDABFE94DE87, 0xE0B62E2929ABA83C}, // 1e-305 {0x9FF0C08B7F1D0B14, 0x8C71DCD9BA0B4925}, // 1e-304 {0x07ECF0AE5EE44DD9, 0xAF8E5410288E1B6F}, // 1e-303 {0xC9E82CD9F69D6150, 0xDB71E91432B1A24A}, // 1e-302 {0xBE311C083A225CD2, 0x892731AC9FAF056E}, // 1e-301 {0x6DBD630A48AAF406, 0xAB70FE17C79AC6CA}, // 1e-300 {0x092CBBCCDAD5B108, 0xD64D3D9DB981787D}, // 1e-299 {0x25BBF56008C58EA5, 0x85F0468293F0EB4E}, // 1e-298 {0xAF2AF2B80AF6F24E, 0xA76C582338ED2621}, // 1e-297 {0x1AF5AF660DB4AEE1, 0xD1476E2C07286FAA}, // 1e-296 {0x50D98D9FC890ED4D, 0x82CCA4DB847945CA}, // 1e-295 {0xE50FF107BAB528A0, 0xA37FCE126597973C}, // 1e-294 {0x1E53ED49A96272C8, 0xCC5FC196FEFD7D0C}, // 1e-293 {0x25E8E89C13BB0F7A, 0xFF77B1FCBEBCDC4F}, // 1e-292 {0x77B191618C54E9AC, 0x9FAACF3DF73609B1}, // 1e-291 {0xD59DF5B9EF6A2417, 0xC795830D75038C1D}, // 1e-290 {0x4B0573286B44AD1D, 0xF97AE3D0D2446F25}, // 1e-289 {0x4EE367F9430AEC32, 0x9BECCE62836AC577}, // 1e-288 {0x229C41F793CDA73F, 0xC2E801FB244576D5}, // 1e-287 {0x6B43527578C1110F, 0xF3A20279ED56D48A}, // 1e-286 {0x830A13896B78AAA9, 0x9845418C345644D6}, // 1e-285 {0x23CC986BC656D553, 0xBE5691EF416BD60C}, // 1e-284 {0x2CBFBE86B7EC8AA8, 0xEDEC366B11C6CB8F}, // 1e-283 {0x7BF7D71432F3D6A9, 0x94B3A202EB1C3F39}, // 1e-282 {0xDAF5CCD93FB0CC53, 0xB9E08A83A5E34F07}, // 1e-281 {0xD1B3400F8F9CFF68, 0xE858AD248F5C22C9}, // 1e-280 {0x23100809B9C21FA1, 0x91376C36D99995BE}, // 1e-279 {0xABD40A0C2832A78A, 0xB58547448FFFFB2D}, // 1e-278 {0x16C90C8F323F516C, 0xE2E69915B3FFF9F9}, // 1e-277 {0xAE3DA7D97F6792E3, 0x8DD01FAD907FFC3B}, // 1e-276 {0x99CD11CFDF41779C, 0xB1442798F49FFB4A}, // 1e-275 {0x40405643D711D583, 0xDD95317F31C7FA1D}, // 1e-274 {0x482835EA666B2572, 0x8A7D3EEF7F1CFC52}, // 1e-273 {0xDA3243650005EECF, 0xAD1C8EAB5EE43B66}, // 1e-272 {0x90BED43E40076A82, 0xD863B256369D4A40}, // 1e-271 {0x5A7744A6E804A291, 0x873E4F75E2224E68}, // 1e-270 {0x711515D0A205CB36, 0xA90DE3535AAAE202}, // 1e-269 {0x0D5A5B44CA873E03, 0xD3515C2831559A83}, // 1e-268 {0xE858790AFE9486C2, 0x8412D9991ED58091}, // 1e-267 {0x626E974DBE39A872, 0xA5178FFF668AE0B6}, // 1e-266 {0xFB0A3D212DC8128F, 0xCE5D73FF402D98E3}, // 1e-265 {0x7CE66634BC9D0B99, 0x80FA687F881C7F8E}, // 1e-264 {0x1C1FFFC1EBC44E80, 0xA139029F6A239F72}, // 1e-263 {0xA327FFB266B56220, 0xC987434744AC874E}, // 1e-262 {0x4BF1FF9F0062BAA8, 0xFBE9141915D7A922}, // 1e-261 {0x6F773FC3603DB4A9, 0x9D71AC8FADA6C9B5}, // 1e-260 {0xCB550FB4384D21D3, 0xC4CE17B399107C22}, // 1e-259 {0x7E2A53A146606A48, 0xF6019DA07F549B2B}, // 1e-258 {0x2EDA7444CBFC426D, 0x99C102844F94E0FB}, // 1e-257 {0xFA911155FEFB5308, 0xC0314325637A1939}, // 1e-256 {0x793555AB7EBA27CA, 0xF03D93EEBC589F88}, // 1e-255 {0x4BC1558B2F3458DE, 0x96267C7535B763B5}, // 1e-254 {0x9EB1AAEDFB016F16, 0xBBB01B9283253CA2}, // 1e-253 {0x465E15A979C1CADC, 0xEA9C227723EE8BCB}, // 1e-252 {0x0BFACD89EC191EC9, 0x92A1958A7675175F}, // 1e-251 {0xCEF980EC671F667B, 0xB749FAED14125D36}, // 1e-250 {0x82B7E12780E7401A, 0xE51C79A85916F484}, // 1e-249 {0xD1B2ECB8B0908810, 0x8F31CC0937AE58D2}, // 1e-248 {0x861FA7E6DCB4AA15, 0xB2FE3F0B8599EF07}, // 1e-247 {0x67A791E093E1D49A, 0xDFBDCECE67006AC9}, // 1e-246 {0xE0C8BB2C5C6D24E0, 0x8BD6A141006042BD}, // 1e-245 {0x58FAE9F773886E18, 0xAECC49914078536D}, // 1e-244 {0xAF39A475506A899E, 0xDA7F5BF590966848}, // 1e-243 {0x6D8406C952429603, 0x888F99797A5E012D}, // 1e-242 {0xC8E5087BA6D33B83, 0xAAB37FD7D8F58178}, // 1e-241 {0xFB1E4A9A90880A64, 0xD5605FCDCF32E1D6}, // 1e-240 {0x5CF2EEA09A55067F, 0x855C3BE0A17FCD26}, // 1e-239 {0xF42FAA48C0EA481E, 0xA6B34AD8C9DFC06F}, // 1e-238 {0xF13B94DAF124DA26, 0xD0601D8EFC57B08B}, // 1e-237 {0x76C53D08D6B70858, 0x823C12795DB6CE57}, // 1e-236 {0x54768C4B0C64CA6E, 0xA2CB1717B52481ED}, // 1e-235 {0xA9942F5DCF7DFD09, 0xCB7DDCDDA26DA268}, // 1e-234 {0xD3F93B35435D7C4C, 0xFE5D54150B090B02}, // 1e-233 {0xC47BC5014A1A6DAF, 0x9EFA548D26E5A6E1}, // 1e-232 {0x359AB6419CA1091B, 0xC6B8E9B0709F109A}, // 1e-231 {0xC30163D203C94B62, 0xF867241C8CC6D4C0}, // 1e-230 {0x79E0DE63425DCF1D, 0x9B407691D7FC44F8}, // 1e-229 {0x985915FC12F542E4, 0xC21094364DFB5636}, // 1e-228 {0x3E6F5B7B17B2939D, 0xF294B943E17A2BC4}, // 1e-227 {0xA705992CEECF9C42, 0x979CF3CA6CEC5B5A}, // 1e-226 {0x50C6FF782A838353, 0xBD8430BD08277231}, // 1e-225 {0xA4F8BF5635246428, 0xECE53CEC4A314EBD}, // 1e-224 {0x871B7795E136BE99, 0x940F4613AE5ED136}, // 1e-223 {0x28E2557B59846E3F, 0xB913179899F68584}, // 1e-222 {0x331AEADA2FE589CF, 0xE757DD7EC07426E5}, // 1e-221 {0x3FF0D2C85DEF7621, 0x9096EA6F3848984F}, // 1e-220 {0x0FED077A756B53A9, 0xB4BCA50B065ABE63}, // 1e-219 {0xD3E8495912C62894, 0xE1EBCE4DC7F16DFB}, // 1e-218 {0x64712DD7ABBBD95C, 0x8D3360F09CF6E4BD}, // 1e-217 {0xBD8D794D96AACFB3, 0xB080392CC4349DEC}, // 1e-216 {0xECF0D7A0FC5583A0, 0xDCA04777F541C567}, // 1e-215 {0xF41686C49DB57244, 0x89E42CAAF9491B60}, // 1e-214 {0x311C2875C522CED5, 0xAC5D37D5B79B6239}, // 1e-213 {0x7D633293366B828B, 0xD77485CB25823AC7}, // 1e-212 {0xAE5DFF9C02033197, 0x86A8D39EF77164BC}, // 1e-211 {0xD9F57F830283FDFC, 0xA8530886B54DBDEB}, // 1e-210 {0xD072DF63C324FD7B, 0xD267CAA862A12D66}, // 1e-209 {0x4247CB9E59F71E6D, 0x8380DEA93DA4BC60}, // 1e-208 {0x52D9BE85F074E608, 0xA46116538D0DEB78}, // 1e-207 {0x67902E276C921F8B, 0xCD795BE870516656}, // 1e-206 {0x00BA1CD8A3DB53B6, 0x806BD9714632DFF6}, // 1e-205 {0x80E8A40ECCD228A4, 0xA086CFCD97BF97F3}, // 1e-204 {0x6122CD128006B2CD, 0xC8A883C0FDAF7DF0}, // 1e-203 {0x796B805720085F81, 0xFAD2A4B13D1B5D6C}, // 1e-202 {0xCBE3303674053BB0, 0x9CC3A6EEC6311A63}, // 1e-201 {0xBEDBFC4411068A9C, 0xC3F490AA77BD60FC}, // 1e-200 {0xEE92FB5515482D44, 0xF4F1B4D515ACB93B}, // 1e-199 {0x751BDD152D4D1C4A, 0x991711052D8BF3C5}, // 1e-198 {0xD262D45A78A0635D, 0xBF5CD54678EEF0B6}, // 1e-197 {0x86FB897116C87C34, 0xEF340A98172AACE4}, // 1e-196 {0xD45D35E6AE3D4DA0, 0x9580869F0E7AAC0E}, // 1e-195 {0x8974836059CCA109, 0xBAE0A846D2195712}, // 1e-194 {0x2BD1A438703FC94B, 0xE998D258869FACD7}, // 1e-193 {0x7B6306A34627DDCF, 0x91FF83775423CC06}, // 1e-192 {0x1A3BC84C17B1D542, 0xB67F6455292CBF08}, // 1e-191 {0x20CABA5F1D9E4A93, 0xE41F3D6A7377EECA}, // 1e-190 {0x547EB47B7282EE9C, 0x8E938662882AF53E}, // 1e-189 {0xE99E619A4F23AA43, 0xB23867FB2A35B28D}, // 1e-188 {0x6405FA00E2EC94D4, 0xDEC681F9F4C31F31}, // 1e-187 {0xDE83BC408DD3DD04, 0x8B3C113C38F9F37E}, // 1e-186 {0x9624AB50B148D445, 0xAE0B158B4738705E}, // 1e-185 {0x3BADD624DD9B0957, 0xD98DDAEE19068C76}, // 1e-184 {0xE54CA5D70A80E5D6, 0x87F8A8D4CFA417C9}, // 1e-183 {0x5E9FCF4CCD211F4C, 0xA9F6D30A038D1DBC}, // 1e-182 {0x7647C3200069671F, 0xD47487CC8470652B}, // 1e-181 {0x29ECD9F40041E073, 0x84C8D4DFD2C63F3B}, // 1e-180 {0xF468107100525890, 0xA5FB0A17C777CF09}, // 1e-179 {0x7182148D4066EEB4, 0xCF79CC9DB955C2CC}, // 1e-178 {0xC6F14CD848405530, 0x81AC1FE293D599BF}, // 1e-177 {0xB8ADA00E5A506A7C, 0xA21727DB38CB002F}, // 1e-176 {0xA6D90811F0E4851C, 0xCA9CF1D206FDC03B}, // 1e-175 {0x908F4A166D1DA663, 0xFD442E4688BD304A}, // 1e-174 {0x9A598E4E043287FE, 0x9E4A9CEC15763E2E}, // 1e-173 {0x40EFF1E1853F29FD, 0xC5DD44271AD3CDBA}, // 1e-172 {0xD12BEE59E68EF47C, 0xF7549530E188C128}, // 1e-171 {0x82BB74F8301958CE, 0x9A94DD3E8CF578B9}, // 1e-170 {0xE36A52363C1FAF01, 0xC13A148E3032D6E7}, // 1e-169 {0xDC44E6C3CB279AC1, 0xF18899B1BC3F8CA1}, // 1e-168 {0x29AB103A5EF8C0B9, 0x96F5600F15A7B7E5}, // 1e-167 {0x7415D448F6B6F0E7, 0xBCB2B812DB11A5DE}, // 1e-166 {0x111B495B3464AD21, 0xEBDF661791D60F56}, // 1e-165 {0xCAB10DD900BEEC34, 0x936B9FCEBB25C995}, // 1e-164 {0x3D5D514F40EEA742, 0xB84687C269EF3BFB}, // 1e-163 {0x0CB4A5A3112A5112, 0xE65829B3046B0AFA}, // 1e-162 {0x47F0E785EABA72AB, 0x8FF71A0FE2C2E6DC}, // 1e-161 {0x59ED216765690F56, 0xB3F4E093DB73A093}, // 1e-160 {0x306869C13EC3532C, 0xE0F218B8D25088B8}, // 1e-159 {0x1E414218C73A13FB, 0x8C974F7383725573}, // 1e-158 {0xE5D1929EF90898FA, 0xAFBD2350644EEACF}, // 1e-157 {0xDF45F746B74ABF39, 0xDBAC6C247D62A583}, // 1e-156 {0x6B8BBA8C328EB783, 0x894BC396CE5DA772}, // 1e-155 {0x066EA92F3F326564, 0xAB9EB47C81F5114F}, // 1e-154 {0xC80A537B0EFEFEBD, 0xD686619BA27255A2}, // 1e-153 {0xBD06742CE95F5F36, 0x8613FD0145877585}, // 1e-152 {0x2C48113823B73704, 0xA798FC4196E952E7}, // 1e-151 {0xF75A15862CA504C5, 0xD17F3B51FCA3A7A0}, // 1e-150 {0x9A984D73DBE722FB, 0x82EF85133DE648C4}, // 1e-149 {0xC13E60D0D2E0EBBA, 0xA3AB66580D5FDAF5}, // 1e-148 {0x318DF905079926A8, 0xCC963FEE10B7D1B3}, // 1e-147 {0xFDF17746497F7052, 0xFFBBCFE994E5C61F}, // 1e-146 {0xFEB6EA8BEDEFA633, 0x9FD561F1FD0F9BD3}, // 1e-145 {0xFE64A52EE96B8FC0, 0xC7CABA6E7C5382C8}, // 1e-144 {0x3DFDCE7AA3C673B0, 0xF9BD690A1B68637B}, // 1e-143 {0x06BEA10CA65C084E, 0x9C1661A651213E2D}, // 1e-142 {0x486E494FCFF30A62, 0xC31BFA0FE5698DB8}, // 1e-141 {0x5A89DBA3C3EFCCFA, 0xF3E2F893DEC3F126}, // 1e-140 {0xF89629465A75E01C, 0x986DDB5C6B3A76B7}, // 1e-139 {0xF6BBB397F1135823, 0xBE89523386091465}, // 1e-138 {0x746AA07DED582E2C, 0xEE2BA6C0678B597F}, // 1e-137 {0xA8C2A44EB4571CDC, 0x94DB483840B717EF}, // 1e-136 {0x92F34D62616CE413, 0xBA121A4650E4DDEB}, // 1e-135 {0x77B020BAF9C81D17, 0xE896A0D7E51E1566}, // 1e-134 {0x0ACE1474DC1D122E, 0x915E2486EF32CD60}, // 1e-133 {0x0D819992132456BA, 0xB5B5ADA8AAFF80B8}, // 1e-132 {0x10E1FFF697ED6C69, 0xE3231912D5BF60E6}, // 1e-131 {0xCA8D3FFA1EF463C1, 0x8DF5EFABC5979C8F}, // 1e-130 {0xBD308FF8A6B17CB2, 0xB1736B96B6FD83B3}, // 1e-129 {0xAC7CB3F6D05DDBDE, 0xDDD0467C64BCE4A0}, // 1e-128 {0x6BCDF07A423AA96B, 0x8AA22C0DBEF60EE4}, // 1e-127 {0x86C16C98D2C953C6, 0xAD4AB7112EB3929D}, // 1e-126 {0xE871C7BF077BA8B7, 0xD89D64D57A607744}, // 1e-125 {0x11471CD764AD4972, 0x87625F056C7C4A8B}, // 1e-124 {0xD598E40D3DD89BCF, 0xA93AF6C6C79B5D2D}, // 1e-123 {0x4AFF1D108D4EC2C3, 0xD389B47879823479}, // 1e-122 {0xCEDF722A585139BA, 0x843610CB4BF160CB}, // 1e-121 {0xC2974EB4EE658828, 0xA54394FE1EEDB8FE}, // 1e-120 {0x733D226229FEEA32, 0xCE947A3DA6A9273E}, // 1e-119 {0x0806357D5A3F525F, 0x811CCC668829B887}, // 1e-118 {0xCA07C2DCB0CF26F7, 0xA163FF802A3426A8}, // 1e-117 {0xFC89B393DD02F0B5, 0xC9BCFF6034C13052}, // 1e-116 {0xBBAC2078D443ACE2, 0xFC2C3F3841F17C67}, // 1e-115 {0xD54B944B84AA4C0D, 0x9D9BA7832936EDC0}, // 1e-114 {0x0A9E795E65D4DF11, 0xC5029163F384A931}, // 1e-113 {0x4D4617B5FF4A16D5, 0xF64335BCF065D37D}, // 1e-112 {0x504BCED1BF8E4E45, 0x99EA0196163FA42E}, // 1e-111 {0xE45EC2862F71E1D6, 0xC06481FB9BCF8D39}, // 1e-110 {0x5D767327BB4E5A4C, 0xF07DA27A82C37088}, // 1e-109 {0x3A6A07F8D510F86F, 0x964E858C91BA2655}, // 1e-108 {0x890489F70A55368B, 0xBBE226EFB628AFEA}, // 1e-107 {0x2B45AC74CCEA842E, 0xEADAB0ABA3B2DBE5}, // 1e-106 {0x3B0B8BC90012929D, 0x92C8AE6B464FC96F}, // 1e-105 {0x09CE6EBB40173744, 0xB77ADA0617E3BBCB}, // 1e-104 {0xCC420A6A101D0515, 0xE55990879DDCAABD}, // 1e-103 {0x9FA946824A12232D, 0x8F57FA54C2A9EAB6}, // 1e-102 {0x47939822DC96ABF9, 0xB32DF8E9F3546564}, // 1e-101 {0x59787E2B93BC56F7, 0xDFF9772470297EBD}, // 1e-100 {0x57EB4EDB3C55B65A, 0x8BFBEA76C619EF36}, // 1e-99 {0xEDE622920B6B23F1, 0xAEFAE51477A06B03}, // 1e-98 {0xE95FAB368E45ECED, 0xDAB99E59958885C4}, // 1e-97 {0x11DBCB0218EBB414, 0x88B402F7FD75539B}, // 1e-96 {0xD652BDC29F26A119, 0xAAE103B5FCD2A881}, // 1e-95 {0x4BE76D3346F0495F, 0xD59944A37C0752A2}, // 1e-94 {0x6F70A4400C562DDB, 0x857FCAE62D8493A5}, // 1e-93 {0xCB4CCD500F6BB952, 0xA6DFBD9FB8E5B88E}, // 1e-92 {0x7E2000A41346A7A7, 0xD097AD07A71F26B2}, // 1e-91 {0x8ED400668C0C28C8, 0x825ECC24C873782F}, // 1e-90 {0x728900802F0F32FA, 0xA2F67F2DFA90563B}, // 1e-89 {0x4F2B40A03AD2FFB9, 0xCBB41EF979346BCA}, // 1e-88 {0xE2F610C84987BFA8, 0xFEA126B7D78186BC}, // 1e-87 {0x0DD9CA7D2DF4D7C9, 0x9F24B832E6B0F436}, // 1e-86 {0x91503D1C79720DBB, 0xC6EDE63FA05D3143}, // 1e-85 {0x75A44C6397CE912A, 0xF8A95FCF88747D94}, // 1e-84 {0xC986AFBE3EE11ABA, 0x9B69DBE1B548CE7C}, // 1e-83 {0xFBE85BADCE996168, 0xC24452DA229B021B}, // 1e-82 {0xFAE27299423FB9C3, 0xF2D56790AB41C2A2}, // 1e-81 {0xDCCD879FC967D41A, 0x97C560BA6B0919A5}, // 1e-80 {0x5400E987BBC1C920, 0xBDB6B8E905CB600F}, // 1e-79 {0x290123E9AAB23B68, 0xED246723473E3813}, // 1e-78 {0xF9A0B6720AAF6521, 0x9436C0760C86E30B}, // 1e-77 {0xF808E40E8D5B3E69, 0xB94470938FA89BCE}, // 1e-76 {0xB60B1D1230B20E04, 0xE7958CB87392C2C2}, // 1e-75 {0xB1C6F22B5E6F48C2, 0x90BD77F3483BB9B9}, // 1e-74 {0x1E38AEB6360B1AF3, 0xB4ECD5F01A4AA828}, // 1e-73 {0x25C6DA63C38DE1B0, 0xE2280B6C20DD5232}, // 1e-72 {0x579C487E5A38AD0E, 0x8D590723948A535F}, // 1e-71 {0x2D835A9DF0C6D851, 0xB0AF48EC79ACE837}, // 1e-70 {0xF8E431456CF88E65, 0xDCDB1B2798182244}, // 1e-69 {0x1B8E9ECB641B58FF, 0x8A08F0F8BF0F156B}, // 1e-68 {0xE272467E3D222F3F, 0xAC8B2D36EED2DAC5}, // 1e-67 {0x5B0ED81DCC6ABB0F, 0xD7ADF884AA879177}, // 1e-66 {0x98E947129FC2B4E9, 0x86CCBB52EA94BAEA}, // 1e-65 {0x3F2398D747B36224, 0xA87FEA27A539E9A5}, // 1e-64 {0x8EEC7F0D19A03AAD, 0xD29FE4B18E88640E}, // 1e-63 {0x1953CF68300424AC, 0x83A3EEEEF9153E89}, // 1e-62 {0x5FA8C3423C052DD7, 0xA48CEAAAB75A8E2B}, // 1e-61 {0x3792F412CB06794D, 0xCDB02555653131B6}, // 1e-60 {0xE2BBD88BBEE40BD0, 0x808E17555F3EBF11}, // 1e-59 {0x5B6ACEAEAE9D0EC4, 0xA0B19D2AB70E6ED6}, // 1e-58 {0xF245825A5A445275, 0xC8DE047564D20A8B}, // 1e-57 {0xEED6E2F0F0D56712, 0xFB158592BE068D2E}, // 1e-56 {0x55464DD69685606B, 0x9CED737BB6C4183D}, // 1e-55 {0xAA97E14C3C26B886, 0xC428D05AA4751E4C}, // 1e-54 {0xD53DD99F4B3066A8, 0xF53304714D9265DF}, // 1e-53 {0xE546A8038EFE4029, 0x993FE2C6D07B7FAB}, // 1e-52 {0xDE98520472BDD033, 0xBF8FDB78849A5F96}, // 1e-51 {0x963E66858F6D4440, 0xEF73D256A5C0F77C}, // 1e-50 {0xDDE7001379A44AA8, 0x95A8637627989AAD}, // 1e-49 {0x5560C018580D5D52, 0xBB127C53B17EC159}, // 1e-48 {0xAAB8F01E6E10B4A6, 0xE9D71B689DDE71AF}, // 1e-47 {0xCAB3961304CA70E8, 0x9226712162AB070D}, // 1e-46 {0x3D607B97C5FD0D22, 0xB6B00D69BB55C8D1}, // 1e-45 {0x8CB89A7DB77C506A, 0xE45C10C42A2B3B05}, // 1e-44 {0x77F3608E92ADB242, 0x8EB98A7A9A5B04E3}, // 1e-43 {0x55F038B237591ED3, 0xB267ED1940F1C61C}, // 1e-42 {0x6B6C46DEC52F6688, 0xDF01E85F912E37A3}, // 1e-41 {0x2323AC4B3B3DA015, 0x8B61313BBABCE2C6}, // 1e-40 {0xABEC975E0A0D081A, 0xAE397D8AA96C1B77}, // 1e-39 {0x96E7BD358C904A21, 0xD9C7DCED53C72255}, // 1e-38 {0x7E50D64177DA2E54, 0x881CEA14545C7575}, // 1e-37 {0xDDE50BD1D5D0B9E9, 0xAA242499697392D2}, // 1e-36 {0x955E4EC64B44E864, 0xD4AD2DBFC3D07787}, // 1e-35 {0xBD5AF13BEF0B113E, 0x84EC3C97DA624AB4}, // 1e-34 {0xECB1AD8AEACDD58E, 0xA6274BBDD0FADD61}, // 1e-33 {0x67DE18EDA5814AF2, 0xCFB11EAD453994BA}, // 1e-32 {0x80EACF948770CED7, 0x81CEB32C4B43FCF4}, // 1e-31 {0xA1258379A94D028D, 0xA2425FF75E14FC31}, // 1e-30 {0x096EE45813A04330, 0xCAD2F7F5359A3B3E}, // 1e-29 {0x8BCA9D6E188853FC, 0xFD87B5F28300CA0D}, // 1e-28 {0x775EA264CF55347D, 0x9E74D1B791E07E48}, // 1e-27 {0x95364AFE032A819D, 0xC612062576589DDA}, // 1e-26 {0x3A83DDBD83F52204, 0xF79687AED3EEC551}, // 1e-25 {0xC4926A9672793542, 0x9ABE14CD44753B52}, // 1e-24 {0x75B7053C0F178293, 0xC16D9A0095928A27}, // 1e-23 {0x5324C68B12DD6338, 0xF1C90080BAF72CB1}, // 1e-22 {0xD3F6FC16EBCA5E03, 0x971DA05074DA7BEE}, // 1e-21 {0x88F4BB1CA6BCF584, 0xBCE5086492111AEA}, // 1e-20 {0x2B31E9E3D06C32E5, 0xEC1E4A7DB69561A5}, // 1e-19 {0x3AFF322E62439FCF, 0x9392EE8E921D5D07}, // 1e-18 {0x09BEFEB9FAD487C2, 0xB877AA3236A4B449}, // 1e-17 {0x4C2EBE687989A9B3, 0xE69594BEC44DE15B}, // 1e-16 {0x0F9D37014BF60A10, 0x901D7CF73AB0ACD9}, // 1e-15 {0x538484C19EF38C94, 0xB424DC35095CD80F}, // 1e-14 {0x2865A5F206B06FB9, 0xE12E13424BB40E13}, // 1e-13 {0xF93F87B7442E45D3, 0x8CBCCC096F5088CB}, // 1e-12 {0xF78F69A51539D748, 0xAFEBFF0BCB24AAFE}, // 1e-11 {0xB573440E5A884D1B, 0xDBE6FECEBDEDD5BE}, // 1e-10 {0x31680A88F8953030, 0x89705F4136B4A597}, // 1e-9 {0xFDC20D2B36BA7C3D, 0xABCC77118461CEFC}, // 1e-8 {0x3D32907604691B4C, 0xD6BF94D5E57A42BC}, // 1e-7 {0xA63F9A49C2C1B10F, 0x8637BD05AF6C69B5}, // 1e-6 {0x0FCF80DC33721D53, 0xA7C5AC471B478423}, // 1e-5 {0xD3C36113404EA4A8, 0xD1B71758E219652B}, // 1e-4 {0x645A1CAC083126E9, 0x83126E978D4FDF3B}, // 1e-3 {0x3D70A3D70A3D70A3, 0xA3D70A3D70A3D70A}, // 1e-2 {0xCCCCCCCCCCCCCCCC, 0xCCCCCCCCCCCCCCCC}, // 1e-1 {0x0000000000000000, 0x8000000000000000}, // 1e0 {0x0000000000000000, 0xA000000000000000}, // 1e1 {0x0000000000000000, 0xC800000000000000}, // 1e2 {0x0000000000000000, 0xFA00000000000000}, // 1e3 {0x0000000000000000, 0x9C40000000000000}, // 1e4 {0x0000000000000000, 0xC350000000000000}, // 1e5 {0x0000000000000000, 0xF424000000000000}, // 1e6 {0x0000000000000000, 0x9896800000000000}, // 1e7 {0x0000000000000000, 0xBEBC200000000000}, // 1e8 {0x0000000000000000, 0xEE6B280000000000}, // 1e9 {0x0000000000000000, 0x9502F90000000000}, // 1e10 {0x0000000000000000, 0xBA43B74000000000}, // 1e11 {0x0000000000000000, 0xE8D4A51000000000}, // 1e12 {0x0000000000000000, 0x9184E72A00000000}, // 1e13 {0x0000000000000000, 0xB5E620F480000000}, // 1e14 {0x0000000000000000, 0xE35FA931A0000000}, // 1e15 {0x0000000000000000, 0x8E1BC9BF04000000}, // 1e16 {0x0000000000000000, 0xB1A2BC2EC5000000}, // 1e17 {0x0000000000000000, 0xDE0B6B3A76400000}, // 1e18 {0x0000000000000000, 0x8AC7230489E80000}, // 1e19 {0x0000000000000000, 0xAD78EBC5AC620000}, // 1e20 {0x0000000000000000, 0xD8D726B7177A8000}, // 1e21 {0x0000000000000000, 0x878678326EAC9000}, // 1e22 {0x0000000000000000, 0xA968163F0A57B400}, // 1e23 {0x0000000000000000, 0xD3C21BCECCEDA100}, // 1e24 {0x0000000000000000, 0x84595161401484A0}, // 1e25 {0x0000000000000000, 0xA56FA5B99019A5C8}, // 1e26 {0x0000000000000000, 0xCECB8F27F4200F3A}, // 1e27 {0x4000000000000000, 0x813F3978F8940984}, // 1e28 {0x5000000000000000, 0xA18F07D736B90BE5}, // 1e29 {0xA400000000000000, 0xC9F2C9CD04674EDE}, // 1e30 {0x4D00000000000000, 0xFC6F7C4045812296}, // 1e31 {0xF020000000000000, 0x9DC5ADA82B70B59D}, // 1e32 {0x6C28000000000000, 0xC5371912364CE305}, // 1e33 {0xC732000000000000, 0xF684DF56C3E01BC6}, // 1e34 {0x3C7F400000000000, 0x9A130B963A6C115C}, // 1e35 {0x4B9F100000000000, 0xC097CE7BC90715B3}, // 1e36 {0x1E86D40000000000, 0xF0BDC21ABB48DB20}, // 1e37 {0x1314448000000000, 0x96769950B50D88F4}, // 1e38 {0x17D955A000000000, 0xBC143FA4E250EB31}, // 1e39 {0x5DCFAB0800000000, 0xEB194F8E1AE525FD}, // 1e40 {0x5AA1CAE500000000, 0x92EFD1B8D0CF37BE}, // 1e41 {0xF14A3D9E40000000, 0xB7ABC627050305AD}, // 1e42 {0x6D9CCD05D0000000, 0xE596B7B0C643C719}, // 1e43 {0xE4820023A2000000, 0x8F7E32CE7BEA5C6F}, // 1e44 {0xDDA2802C8A800000, 0xB35DBF821AE4F38B}, // 1e45 {0xD50B2037AD200000, 0xE0352F62A19E306E}, // 1e46 {0x4526F422CC340000, 0x8C213D9DA502DE45}, // 1e47 {0x9670B12B7F410000, 0xAF298D050E4395D6}, // 1e48 {0x3C0CDD765F114000, 0xDAF3F04651D47B4C}, // 1e49 {0xA5880A69FB6AC800, 0x88D8762BF324CD0F}, // 1e50 {0x8EEA0D047A457A00, 0xAB0E93B6EFEE0053}, // 1e51 {0x72A4904598D6D880, 0xD5D238A4ABE98068}, // 1e52 {0x47A6DA2B7F864750, 0x85A36366EB71F041}, // 1e53 {0x999090B65F67D924, 0xA70C3C40A64E6C51}, // 1e54 {0xFFF4B4E3F741CF6D, 0xD0CF4B50CFE20765}, // 1e55 {0xBFF8F10E7A8921A4, 0x82818F1281ED449F}, // 1e56 {0xAFF72D52192B6A0D, 0xA321F2D7226895C7}, // 1e57 {0x9BF4F8A69F764490, 0xCBEA6F8CEB02BB39}, // 1e58 {0x02F236D04753D5B4, 0xFEE50B7025C36A08}, // 1e59 {0x01D762422C946590, 0x9F4F2726179A2245}, // 1e60 {0x424D3AD2B7B97EF5, 0xC722F0EF9D80AAD6}, // 1e61 {0xD2E0898765A7DEB2, 0xF8EBAD2B84E0D58B}, // 1e62 {0x63CC55F49F88EB2F, 0x9B934C3B330C8577}, // 1e63 {0x3CBF6B71C76B25FB, 0xC2781F49FFCFA6D5}, // 1e64 {0x8BEF464E3945EF7A, 0xF316271C7FC3908A}, // 1e65 {0x97758BF0E3CBB5AC, 0x97EDD871CFDA3A56}, // 1e66 {0x3D52EEED1CBEA317, 0xBDE94E8E43D0C8EC}, // 1e67 {0x4CA7AAA863EE4BDD, 0xED63A231D4C4FB27}, // 1e68 {0x8FE8CAA93E74EF6A, 0x945E455F24FB1CF8}, // 1e69 {0xB3E2FD538E122B44, 0xB975D6B6EE39E436}, // 1e70 {0x60DBBCA87196B616, 0xE7D34C64A9C85D44}, // 1e71 {0xBC8955E946FE31CD, 0x90E40FBEEA1D3A4A}, // 1e72 {0x6BABAB6398BDBE41, 0xB51D13AEA4A488DD}, // 1e73 {0xC696963C7EED2DD1, 0xE264589A4DCDAB14}, // 1e74 {0xFC1E1DE5CF543CA2, 0x8D7EB76070A08AEC}, // 1e75 {0x3B25A55F43294BCB, 0xB0DE65388CC8ADA8}, // 1e76 {0x49EF0EB713F39EBE, 0xDD15FE86AFFAD912}, // 1e77 {0x6E3569326C784337, 0x8A2DBF142DFCC7AB}, // 1e78 {0x49C2C37F07965404, 0xACB92ED9397BF996}, // 1e79 {0xDC33745EC97BE906, 0xD7E77A8F87DAF7FB}, // 1e80 {0x69A028BB3DED71A3, 0x86F0AC99B4E8DAFD}, // 1e81 {0xC40832EA0D68CE0C, 0xA8ACD7C0222311BC}, // 1e82 {0xF50A3FA490C30190, 0xD2D80DB02AABD62B}, // 1e83 {0x792667C6DA79E0FA, 0x83C7088E1AAB65DB}, // 1e84 {0x577001B891185938, 0xA4B8CAB1A1563F52}, // 1e85 {0xED4C0226B55E6F86, 0xCDE6FD5E09ABCF26}, // 1e86 {0x544F8158315B05B4, 0x80B05E5AC60B6178}, // 1e87 {0x696361AE3DB1C721, 0xA0DC75F1778E39D6}, // 1e88 {0x03BC3A19CD1E38E9, 0xC913936DD571C84C}, // 1e89 {0x04AB48A04065C723, 0xFB5878494ACE3A5F}, // 1e90 {0x62EB0D64283F9C76, 0x9D174B2DCEC0E47B}, // 1e91 {0x3BA5D0BD324F8394, 0xC45D1DF942711D9A}, // 1e92 {0xCA8F44EC7EE36479, 0xF5746577930D6500}, // 1e93 {0x7E998B13CF4E1ECB, 0x9968BF6ABBE85F20}, // 1e94 {0x9E3FEDD8C321A67E, 0xBFC2EF456AE276E8}, // 1e95 {0xC5CFE94EF3EA101E, 0xEFB3AB16C59B14A2}, // 1e96 {0xBBA1F1D158724A12, 0x95D04AEE3B80ECE5}, // 1e97 {0x2A8A6E45AE8EDC97, 0xBB445DA9CA61281F}, // 1e98 {0xF52D09D71A3293BD, 0xEA1575143CF97226}, // 1e99 {0x593C2626705F9C56, 0x924D692CA61BE758}, // 1e100 {0x6F8B2FB00C77836C, 0xB6E0C377CFA2E12E}, // 1e101 {0x0B6DFB9C0F956447, 0xE498F455C38B997A}, // 1e102 {0x4724BD4189BD5EAC, 0x8EDF98B59A373FEC}, // 1e103 {0x58EDEC91EC2CB657, 0xB2977EE300C50FE7}, // 1e104 {0x2F2967B66737E3ED, 0xDF3D5E9BC0F653E1}, // 1e105 {0xBD79E0D20082EE74, 0x8B865B215899F46C}, // 1e106 {0xECD8590680A3AA11, 0xAE67F1E9AEC07187}, // 1e107 {0xE80E6F4820CC9495, 0xDA01EE641A708DE9}, // 1e108 {0x3109058D147FDCDD, 0x884134FE908658B2}, // 1e109 {0xBD4B46F0599FD415, 0xAA51823E34A7EEDE}, // 1e110 {0x6C9E18AC7007C91A, 0xD4E5E2CDC1D1EA96}, // 1e111 {0x03E2CF6BC604DDB0, 0x850FADC09923329E}, // 1e112 {0x84DB8346B786151C, 0xA6539930BF6BFF45}, // 1e113 {0xE612641865679A63, 0xCFE87F7CEF46FF16}, // 1e114 {0x4FCB7E8F3F60C07E, 0x81F14FAE158C5F6E}, // 1e115 {0xE3BE5E330F38F09D, 0xA26DA3999AEF7749}, // 1e116 {0x5CADF5BFD3072CC5, 0xCB090C8001AB551C}, // 1e117 {0x73D9732FC7C8F7F6, 0xFDCB4FA002162A63}, // 1e118 {0x2867E7FDDCDD9AFA, 0x9E9F11C4014DDA7E}, // 1e119 {0xB281E1FD541501B8, 0xC646D63501A1511D}, // 1e120 {0x1F225A7CA91A4226, 0xF7D88BC24209A565}, // 1e121 {0x3375788DE9B06958, 0x9AE757596946075F}, // 1e122 {0x0052D6B1641C83AE, 0xC1A12D2FC3978937}, // 1e123 {0xC0678C5DBD23A49A, 0xF209787BB47D6B84}, // 1e124 {0xF840B7BA963646E0, 0x9745EB4D50CE6332}, // 1e125 {0xB650E5A93BC3D898, 0xBD176620A501FBFF}, // 1e126 {0xA3E51F138AB4CEBE, 0xEC5D3FA8CE427AFF}, // 1e127 {0xC66F336C36B10137, 0x93BA47C980E98CDF}, // 1e128 {0xB80B0047445D4184, 0xB8A8D9BBE123F017}, // 1e129 {0xA60DC059157491E5, 0xE6D3102AD96CEC1D}, // 1e130 {0x87C89837AD68DB2F, 0x9043EA1AC7E41392}, // 1e131 {0x29BABE4598C311FB, 0xB454E4A179DD1877}, // 1e132 {0xF4296DD6FEF3D67A, 0xE16A1DC9D8545E94}, // 1e133 {0x1899E4A65F58660C, 0x8CE2529E2734BB1D}, // 1e134 {0x5EC05DCFF72E7F8F, 0xB01AE745B101E9E4}, // 1e135 {0x76707543F4FA1F73, 0xDC21A1171D42645D}, // 1e136 {0x6A06494A791C53A8, 0x899504AE72497EBA}, // 1e137 {0x0487DB9D17636892, 0xABFA45DA0EDBDE69}, // 1e138 {0x45A9D2845D3C42B6, 0xD6F8D7509292D603}, // 1e139 {0x0B8A2392BA45A9B2, 0x865B86925B9BC5C2}, // 1e140 {0x8E6CAC7768D7141E, 0xA7F26836F282B732}, // 1e141 {0x3207D795430CD926, 0xD1EF0244AF2364FF}, // 1e142 {0x7F44E6BD49E807B8, 0x8335616AED761F1F}, // 1e143 {0x5F16206C9C6209A6, 0xA402B9C5A8D3A6E7}, // 1e144 {0x36DBA887C37A8C0F, 0xCD036837130890A1}, // 1e145 {0xC2494954DA2C9789, 0x802221226BE55A64}, // 1e146 {0xF2DB9BAA10B7BD6C, 0xA02AA96B06DEB0FD}, // 1e147 {0x6F92829494E5ACC7, 0xC83553C5C8965D3D}, // 1e148 {0xCB772339BA1F17F9, 0xFA42A8B73ABBF48C}, // 1e149 {0xFF2A760414536EFB, 0x9C69A97284B578D7}, // 1e150 {0xFEF5138519684ABA, 0xC38413CF25E2D70D}, // 1e151 {0x7EB258665FC25D69, 0xF46518C2EF5B8CD1}, // 1e152 {0xEF2F773FFBD97A61, 0x98BF2F79D5993802}, // 1e153 {0xAAFB550FFACFD8FA, 0xBEEEFB584AFF8603}, // 1e154 {0x95BA2A53F983CF38, 0xEEAABA2E5DBF6784}, // 1e155 {0xDD945A747BF26183, 0x952AB45CFA97A0B2}, // 1e156 {0x94F971119AEEF9E4, 0xBA756174393D88DF}, // 1e157 {0x7A37CD5601AAB85D, 0xE912B9D1478CEB17}, // 1e158 {0xAC62E055C10AB33A, 0x91ABB422CCB812EE}, // 1e159 {0x577B986B314D6009, 0xB616A12B7FE617AA}, // 1e160 {0xED5A7E85FDA0B80B, 0xE39C49765FDF9D94}, // 1e161 {0x14588F13BE847307, 0x8E41ADE9FBEBC27D}, // 1e162 {0x596EB2D8AE258FC8, 0xB1D219647AE6B31C}, // 1e163 {0x6FCA5F8ED9AEF3BB, 0xDE469FBD99A05FE3}, // 1e164 {0x25DE7BB9480D5854, 0x8AEC23D680043BEE}, // 1e165 {0xAF561AA79A10AE6A, 0xADA72CCC20054AE9}, // 1e166 {0x1B2BA1518094DA04, 0xD910F7FF28069DA4}, // 1e167 {0x90FB44D2F05D0842, 0x87AA9AFF79042286}, // 1e168 {0x353A1607AC744A53, 0xA99541BF57452B28}, // 1e169 {0x42889B8997915CE8, 0xD3FA922F2D1675F2}, // 1e170 {0x69956135FEBADA11, 0x847C9B5D7C2E09B7}, // 1e171 {0x43FAB9837E699095, 0xA59BC234DB398C25}, // 1e172 {0x94F967E45E03F4BB, 0xCF02B2C21207EF2E}, // 1e173 {0x1D1BE0EEBAC278F5, 0x8161AFB94B44F57D}, // 1e174 {0x6462D92A69731732, 0xA1BA1BA79E1632DC}, // 1e175 {0x7D7B8F7503CFDCFE, 0xCA28A291859BBF93}, // 1e176 {0x5CDA735244C3D43E, 0xFCB2CB35E702AF78}, // 1e177 {0x3A0888136AFA64A7, 0x9DEFBF01B061ADAB}, // 1e178 {0x088AAA1845B8FDD0, 0xC56BAEC21C7A1916}, // 1e179 {0x8AAD549E57273D45, 0xF6C69A72A3989F5B}, // 1e180 {0x36AC54E2F678864B, 0x9A3C2087A63F6399}, // 1e181 {0x84576A1BB416A7DD, 0xC0CB28A98FCF3C7F}, // 1e182 {0x656D44A2A11C51D5, 0xF0FDF2D3F3C30B9F}, // 1e183 {0x9F644AE5A4B1B325, 0x969EB7C47859E743}, // 1e184 {0x873D5D9F0DDE1FEE, 0xBC4665B596706114}, // 1e185 {0xA90CB506D155A7EA, 0xEB57FF22FC0C7959}, // 1e186 {0x09A7F12442D588F2, 0x9316FF75DD87CBD8}, // 1e187 {0x0C11ED6D538AEB2F, 0xB7DCBF5354E9BECE}, // 1e188 {0x8F1668C8A86DA5FA, 0xE5D3EF282A242E81}, // 1e189 {0xF96E017D694487BC, 0x8FA475791A569D10}, // 1e190 {0x37C981DCC395A9AC, 0xB38D92D760EC4455}, // 1e191 {0x85BBE253F47B1417, 0xE070F78D3927556A}, // 1e192 {0x93956D7478CCEC8E, 0x8C469AB843B89562}, // 1e193 {0x387AC8D1970027B2, 0xAF58416654A6BABB}, // 1e194 {0x06997B05FCC0319E, 0xDB2E51BFE9D0696A}, // 1e195 {0x441FECE3BDF81F03, 0x88FCF317F22241E2}, // 1e196 {0xD527E81CAD7626C3, 0xAB3C2FDDEEAAD25A}, // 1e197 {0x8A71E223D8D3B074, 0xD60B3BD56A5586F1}, // 1e198 {0xF6872D5667844E49, 0x85C7056562757456}, // 1e199 {0xB428F8AC016561DB, 0xA738C6BEBB12D16C}, // 1e200 {0xE13336D701BEBA52, 0xD106F86E69D785C7}, // 1e201 {0xECC0024661173473, 0x82A45B450226B39C}, // 1e202 {0x27F002D7F95D0190, 0xA34D721642B06084}, // 1e203 {0x31EC038DF7B441F4, 0xCC20CE9BD35C78A5}, // 1e204 {0x7E67047175A15271, 0xFF290242C83396CE}, // 1e205 {0x0F0062C6E984D386, 0x9F79A169BD203E41}, // 1e206 {0x52C07B78A3E60868, 0xC75809C42C684DD1}, // 1e207 {0xA7709A56CCDF8A82, 0xF92E0C3537826145}, // 1e208 {0x88A66076400BB691, 0x9BBCC7A142B17CCB}, // 1e209 {0x6ACFF893D00EA435, 0xC2ABF989935DDBFE}, // 1e210 {0x0583F6B8C4124D43, 0xF356F7EBF83552FE}, // 1e211 {0xC3727A337A8B704A, 0x98165AF37B2153DE}, // 1e212 {0x744F18C0592E4C5C, 0xBE1BF1B059E9A8D6}, // 1e213 {0x1162DEF06F79DF73, 0xEDA2EE1C7064130C}, // 1e214 {0x8ADDCB5645AC2BA8, 0x9485D4D1C63E8BE7}, // 1e215 {0x6D953E2BD7173692, 0xB9A74A0637CE2EE1}, // 1e216 {0xC8FA8DB6CCDD0437, 0xE8111C87C5C1BA99}, // 1e217 {0x1D9C9892400A22A2, 0x910AB1D4DB9914A0}, // 1e218 {0x2503BEB6D00CAB4B, 0xB54D5E4A127F59C8}, // 1e219 {0x2E44AE64840FD61D, 0xE2A0B5DC971F303A}, // 1e220 {0x5CEAECFED289E5D2, 0x8DA471A9DE737E24}, // 1e221 {0x7425A83E872C5F47, 0xB10D8E1456105DAD}, // 1e222 {0xD12F124E28F77719, 0xDD50F1996B947518}, // 1e223 {0x82BD6B70D99AAA6F, 0x8A5296FFE33CC92F}, // 1e224 {0x636CC64D1001550B, 0xACE73CBFDC0BFB7B}, // 1e225 {0x3C47F7E05401AA4E, 0xD8210BEFD30EFA5A}, // 1e226 {0x65ACFAEC34810A71, 0x8714A775E3E95C78}, // 1e227 {0x7F1839A741A14D0D, 0xA8D9D1535CE3B396}, // 1e228 {0x1EDE48111209A050, 0xD31045A8341CA07C}, // 1e229 {0x934AED0AAB460432, 0x83EA2B892091E44D}, // 1e230 {0xF81DA84D5617853F, 0xA4E4B66B68B65D60}, // 1e231 {0x36251260AB9D668E, 0xCE1DE40642E3F4B9}, // 1e232 {0xC1D72B7C6B426019, 0x80D2AE83E9CE78F3}, // 1e233 {0xB24CF65B8612F81F, 0xA1075A24E4421730}, // 1e234 {0xDEE033F26797B627, 0xC94930AE1D529CFC}, // 1e235 {0x169840EF017DA3B1, 0xFB9B7CD9A4A7443C}, // 1e236 {0x8E1F289560EE864E, 0x9D412E0806E88AA5}, // 1e237 {0xF1A6F2BAB92A27E2, 0xC491798A08A2AD4E}, // 1e238 {0xAE10AF696774B1DB, 0xF5B5D7EC8ACB58A2}, // 1e239 {0xACCA6DA1E0A8EF29, 0x9991A6F3D6BF1765}, // 1e240 {0x17FD090A58D32AF3, 0xBFF610B0CC6EDD3F}, // 1e241 {0xDDFC4B4CEF07F5B0, 0xEFF394DCFF8A948E}, // 1e242 {0x4ABDAF101564F98E, 0x95F83D0A1FB69CD9}, // 1e243 {0x9D6D1AD41ABE37F1, 0xBB764C4CA7A4440F}, // 1e244 {0x84C86189216DC5ED, 0xEA53DF5FD18D5513}, // 1e245 {0x32FD3CF5B4E49BB4, 0x92746B9BE2F8552C}, // 1e246 {0x3FBC8C33221DC2A1, 0xB7118682DBB66A77}, // 1e247 {0x0FABAF3FEAA5334A, 0xE4D5E82392A40515}, // 1e248 {0x29CB4D87F2A7400E, 0x8F05B1163BA6832D}, // 1e249 {0x743E20E9EF511012, 0xB2C71D5BCA9023F8}, // 1e250 {0x914DA9246B255416, 0xDF78E4B2BD342CF6}, // 1e251 {0x1AD089B6C2F7548E, 0x8BAB8EEFB6409C1A}, // 1e252 {0xA184AC2473B529B1, 0xAE9672ABA3D0C320}, // 1e253 {0xC9E5D72D90A2741E, 0xDA3C0F568CC4F3E8}, // 1e254 {0x7E2FA67C7A658892, 0x8865899617FB1871}, // 1e255 {0xDDBB901B98FEEAB7, 0xAA7EEBFB9DF9DE8D}, // 1e256 {0x552A74227F3EA565, 0xD51EA6FA85785631}, // 1e257 {0xD53A88958F87275F, 0x8533285C936B35DE}, // 1e258 {0x8A892ABAF368F137, 0xA67FF273B8460356}, // 1e259 {0x2D2B7569B0432D85, 0xD01FEF10A657842C}, // 1e260 {0x9C3B29620E29FC73, 0x8213F56A67F6B29B}, // 1e261 {0x8349F3BA91B47B8F, 0xA298F2C501F45F42}, // 1e262 {0x241C70A936219A73, 0xCB3F2F7642717713}, // 1e263 {0xED238CD383AA0110, 0xFE0EFB53D30DD4D7}, // 1e264 {0xF4363804324A40AA, 0x9EC95D1463E8A506}, // 1e265 {0xB143C6053EDCD0D5, 0xC67BB4597CE2CE48}, // 1e266 {0xDD94B7868E94050A, 0xF81AA16FDC1B81DA}, // 1e267 {0xCA7CF2B4191C8326, 0x9B10A4E5E9913128}, // 1e268 {0xFD1C2F611F63A3F0, 0xC1D4CE1F63F57D72}, // 1e269 {0xBC633B39673C8CEC, 0xF24A01A73CF2DCCF}, // 1e270 {0xD5BE0503E085D813, 0x976E41088617CA01}, // 1e271 {0x4B2D8644D8A74E18, 0xBD49D14AA79DBC82}, // 1e272 {0xDDF8E7D60ED1219E, 0xEC9C459D51852BA2}, // 1e273 {0xCABB90E5C942B503, 0x93E1AB8252F33B45}, // 1e274 {0x3D6A751F3B936243, 0xB8DA1662E7B00A17}, // 1e275 {0x0CC512670A783AD4, 0xE7109BFBA19C0C9D}, // 1e276 {0x27FB2B80668B24C5, 0x906A617D450187E2}, // 1e277 {0xB1F9F660802DEDF6, 0xB484F9DC9641E9DA}, // 1e278 {0x5E7873F8A0396973, 0xE1A63853BBD26451}, // 1e279 {0xDB0B487B6423E1E8, 0x8D07E33455637EB2}, // 1e280 {0x91CE1A9A3D2CDA62, 0xB049DC016ABC5E5F}, // 1e281 {0x7641A140CC7810FB, 0xDC5C5301C56B75F7}, // 1e282 {0xA9E904C87FCB0A9D, 0x89B9B3E11B6329BA}, // 1e283 {0x546345FA9FBDCD44, 0xAC2820D9623BF429}, // 1e284 {0xA97C177947AD4095, 0xD732290FBACAF133}, // 1e285 {0x49ED8EABCCCC485D, 0x867F59A9D4BED6C0}, // 1e286 {0x5C68F256BFFF5A74, 0xA81F301449EE8C70}, // 1e287 {0x73832EEC6FFF3111, 0xD226FC195C6A2F8C}, // 1e288 }; // wuffs_base__private_implementation__f64_powers_of_10 holds powers of 10 that // can be exactly represented by a float64 (what C calls a double). static const double wuffs_base__private_implementation__f64_powers_of_10[23] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, }; // ---------------- IEEE 754 Floating Point WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u16 // wuffs_base__ieee_754_bit_representation__from_f64_to_u16_truncate(double f) { uint64_t u = 0; if (sizeof(uint64_t) == sizeof(double)) { memcpy(&u, &f, sizeof(uint64_t)); } uint16_t neg = ((uint16_t)((u >> 63) << 15)); u &= 0x7FFFFFFFFFFFFFFF; uint64_t exp = u >> 52; uint64_t man = u & 0x000FFFFFFFFFFFFF; if (exp == 0x7FF) { if (man == 0) { // Infinity. wuffs_base__lossy_value_u16 ret; ret.value = neg | 0x7C00; ret.lossy = false; return ret; } // NaN. Shift the 52 mantissa bits to 10 mantissa bits, keeping the most // significant mantissa bit (quiet vs signaling NaNs). Also set the low 9 // bits of ret.value so that the 10-bit mantissa is non-zero. wuffs_base__lossy_value_u16 ret; ret.value = neg | 0x7DFF | ((uint16_t)(man >> 42)); ret.lossy = false; return ret; } else if (exp > 0x40E) { // Truncate to the largest finite f16. wuffs_base__lossy_value_u16 ret; ret.value = neg | 0x7BFF; ret.lossy = true; return ret; } else if (exp <= 0x3E6) { // Truncate to zero. wuffs_base__lossy_value_u16 ret; ret.value = neg; ret.lossy = (u != 0); return ret; } else if (exp <= 0x3F0) { // Normal f64, subnormal f16. // Convert from a 53-bit mantissa (after realizing the implicit bit) to a // 10-bit mantissa and then adjust for the exponent. man |= 0x0010000000000000; uint32_t shift = ((uint32_t)(1051 - exp)); // 1051 = 0x3F0 + 53 - 10. uint64_t shifted_man = man >> shift; wuffs_base__lossy_value_u16 ret; ret.value = neg | ((uint16_t)shifted_man); ret.lossy = (shifted_man << shift) != man; return ret; } // Normal f64, normal f16. // Re-bias from 1023 to 15 and shift above f16's 10 mantissa bits. exp = (exp - 1008) << 10; // 1008 = 1023 - 15 = 0x3FF - 0xF. // Convert from a 52-bit mantissa (excluding the implicit bit) to a 10-bit // mantissa (again excluding the implicit bit). We lose some information if // any of the bottom 42 bits are non-zero. wuffs_base__lossy_value_u16 ret; ret.value = neg | ((uint16_t)exp) | ((uint16_t)(man >> 42)); ret.lossy = (man << 22) != 0; return ret; } WUFFS_BASE__MAYBE_STATIC wuffs_base__lossy_value_u32 // wuffs_base__ieee_754_bit_representation__from_f64_to_u32_truncate(double f) { uint64_t u = 0; if (sizeof(uint64_t) == sizeof(double)) { memcpy(&u, &f, sizeof(uint64_t)); } uint32_t neg = ((uint32_t)(u >> 63)) << 31; u &= 0x7FFFFFFFFFFFFFFF; uint64_t exp = u >> 52; uint64_t man = u & 0x000FFFFFFFFFFFFF; if (exp == 0x7FF) { if (man == 0) { // Infinity. wuffs_base__lossy_value_u32 ret; ret.value = neg | 0x7F800000; ret.lossy = false; return ret; } // NaN. Shift the 52 mantissa bits to 23 mantissa bits, keeping the most // significant mantissa bit (quiet vs signaling NaNs). Also set the low 22 // bits of ret.value so that the 23-bit mantissa is non-zero. wuffs_base__lossy_value_u32 ret; ret.value = neg | 0x7FBFFFFF | ((uint32_t)(man >> 29)); ret.lossy = false; return ret; } else if (exp > 0x47E) { // Truncate to the largest finite f32. wuffs_base__lossy_value_u32 ret; ret.value = neg | 0x7F7FFFFF; ret.lossy = true; return ret; } else if (exp <= 0x369) { // Truncate to zero. wuffs_base__lossy_value_u32 ret; ret.value = neg; ret.lossy = (u != 0); return ret; } else if (exp <= 0x380) { // Normal f64, subnormal f32. // Convert from a 53-bit mantissa (after realizing the implicit bit) to a // 23-bit mantissa and then adjust for the exponent. man |= 0x0010000000000000; uint32_t shift = ((uint32_t)(926 - exp)); // 926 = 0x380 + 53 - 23. uint64_t shifted_man = man >> shift; wuffs_base__lossy_value_u32 ret; ret.value = neg | ((uint32_t)shifted_man); ret.lossy = (shifted_man << shift) != man; return ret; } // Normal f64, normal f32. // Re-bias from 1023 to 127 and shift above f32's 23 mantissa bits. exp = (exp - 896) << 23; // 896 = 1023 - 127 = 0x3FF - 0x7F. // Convert from a 52-bit mantissa (excluding the implicit bit) to a 23-bit // mantissa (again excluding the implicit bit). We lose some information if // any of the bottom 29 bits are non-zero. wuffs_base__lossy_value_u32 ret; ret.value = neg | ((uint32_t)exp) | ((uint32_t)(man >> 29)); ret.lossy = (man << 35) != 0; return ret; } // -------- #define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE 2047 #define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION 800 // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL is the largest N // such that ((10 << N) < (1 << 64)). #define WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL 60 // wuffs_base__private_implementation__high_prec_dec (abbreviated as HPD) is a // fixed precision floating point decimal number, augmented with ±infinity // values, but it cannot represent NaN (Not a Number). // // "High precision" means that the mantissa holds 800 decimal digits. 800 is // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION. // // An HPD isn't for general purpose arithmetic, only for conversions to and // from IEEE 754 double-precision floating point, where the largest and // smallest positive, finite values are approximately 1.8e+308 and 4.9e-324. // HPD exponents above +2047 mean infinity, below -2047 mean zero. The ±2047 // bounds are further away from zero than ±(324 + 800), where 800 and 2047 is // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION and // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE. // // digits[.. num_digits] are the number's digits in big-endian order. The // uint8_t values are in the range [0 ..= 9], not ['0' ..= '9'], where e.g. '7' // is the ASCII value 0x37. // // decimal_point is the index (within digits) of the decimal point. It may be // negative or be larger than num_digits, in which case the explicit digits are // padded with implicit zeroes. // // For example, if num_digits is 3 and digits is "\x07\x08\x09": // - A decimal_point of -2 means ".00789" // - A decimal_point of -1 means ".0789" // - A decimal_point of +0 means ".789" // - A decimal_point of +1 means "7.89" // - A decimal_point of +2 means "78.9" // - A decimal_point of +3 means "789." // - A decimal_point of +4 means "7890." // - A decimal_point of +5 means "78900." // // As above, a decimal_point higher than +2047 means that the overall value is // infinity, lower than -2047 means zero. // // negative is a sign bit. An HPD can distinguish positive and negative zero. // // truncated is whether there are more than // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION digits, and at // least one of those extra digits are non-zero. The existence of long-tail // digits can affect rounding. // // The "all fields are zero" value is valid, and represents the number +0. typedef struct wuffs_base__private_implementation__high_prec_dec__struct { uint32_t num_digits; int32_t decimal_point; bool negative; bool truncated; uint8_t digits[WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION]; } wuffs_base__private_implementation__high_prec_dec; // wuffs_base__private_implementation__high_prec_dec__trim trims trailing // zeroes from the h->digits[.. h->num_digits] slice. They have no benefit, // since we explicitly track h->decimal_point. // // Preconditions: // - h is non-NULL. static inline void // wuffs_base__private_implementation__high_prec_dec__trim( wuffs_base__private_implementation__high_prec_dec* h) { while ((h->num_digits > 0) && (h->digits[h->num_digits - 1] == 0)) { h->num_digits--; } } // wuffs_base__private_implementation__high_prec_dec__assign sets h to // represent the number x. // // Preconditions: // - h is non-NULL. static void // wuffs_base__private_implementation__high_prec_dec__assign( wuffs_base__private_implementation__high_prec_dec* h, uint64_t x, bool negative) { uint32_t n = 0; // Set h->digits. if (x > 0) { // Calculate the digits, working right-to-left. After we determine n (how // many digits there are), copy from buf to h->digits. // // UINT64_MAX, 18446744073709551615, is 20 digits long. It can be faster to // copy a constant number of bytes than a variable number (20 instead of // n). Make buf large enough (and start writing to it from the middle) so // that can we always copy 20 bytes: the slice buf[(20-n) .. (40-n)]. uint8_t buf[40] = {0}; uint8_t* ptr = &buf[20]; do { uint64_t remaining = x / 10; x -= remaining * 10; ptr--; *ptr = (uint8_t)x; n++; x = remaining; } while (x > 0); memcpy(h->digits, ptr, 20); } // Set h's other fields. h->num_digits = n; h->decimal_point = (int32_t)n; h->negative = negative; h->truncated = false; wuffs_base__private_implementation__high_prec_dec__trim(h); } static wuffs_base__status // wuffs_base__private_implementation__high_prec_dec__parse( wuffs_base__private_implementation__high_prec_dec* h, wuffs_base__slice_u8 s, uint32_t options) { if (!h) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } h->num_digits = 0; h->decimal_point = 0; h->negative = false; h->truncated = false; uint8_t* p = s.ptr; uint8_t* q = s.ptr + s.len; if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (;; p++) { if (p >= q) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } else if (*p != '_') { break; } } } // Parse sign. do { if (*p == '+') { p++; } else if (*p == '-') { h->negative = true; p++; } else { break; } if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (;; p++) { if (p >= q) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } else if (*p != '_') { break; } } } } while (0); // Parse digits, up to (and including) a '.', 'E' or 'e'. Examples for each // limb in this if-else chain: // - "0.789" // - "1002.789" // - ".789" // - Other (invalid input). uint32_t nd = 0; int32_t dp = 0; bool no_digits_before_separator = false; if (('0' == *p) && !(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES)) { p++; for (;; p++) { if (p >= q) { goto after_all; } else if (*p == ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.')) { p++; goto after_sep; } else if ((*p == 'E') || (*p == 'e')) { p++; goto after_exp; } else if ((*p != '_') || !(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } } } else if (('0' <= *p) && (*p <= '9')) { if (*p == '0') { for (; (p < q) && (*p == '0'); p++) { } } else { h->digits[nd++] = (uint8_t)(*p - '0'); dp = (int32_t)nd; p++; } for (;; p++) { if (p >= q) { goto after_all; } else if (('0' <= *p) && (*p <= '9')) { if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[nd++] = (uint8_t)(*p - '0'); dp = (int32_t)nd; } else if ('0' != *p) { // Long-tail non-zeroes set the truncated bit. h->truncated = true; } } else if (*p == ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.')) { p++; goto after_sep; } else if ((*p == 'E') || (*p == 'e')) { p++; goto after_exp; } else if ((*p != '_') || !(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } } } else if (*p == ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.')) { p++; no_digits_before_separator = true; } else { return wuffs_base__make_status(wuffs_base__error__bad_argument); } after_sep: for (;; p++) { if (p >= q) { goto after_all; } else if ('0' == *p) { if (nd == 0) { // Track leading zeroes implicitly. dp--; } else if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[nd++] = (uint8_t)(*p - '0'); } } else if (('0' < *p) && (*p <= '9')) { if (nd < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[nd++] = (uint8_t)(*p - '0'); } else { // Long-tail non-zeroes set the truncated bit. h->truncated = true; } } else if ((*p == 'E') || (*p == 'e')) { p++; goto after_exp; } else if ((*p != '_') || !(options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } } after_exp: do { if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (;; p++) { if (p >= q) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } else if (*p != '_') { break; } } } int32_t exp_sign = +1; if (*p == '+') { p++; } else if (*p == '-') { exp_sign = -1; p++; } int32_t exp = 0; const int32_t exp_large = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION; bool saw_exp_digits = false; for (; p < q; p++) { if ((*p == '_') && (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { // No-op. } else if (('0' <= *p) && (*p <= '9')) { saw_exp_digits = true; if (exp < exp_large) { exp = (10 * exp) + ((int32_t)(*p - '0')); } } else { break; } } if (!saw_exp_digits) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } dp += exp_sign * exp; } while (0); after_all: if (p != q) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } h->num_digits = nd; if (nd == 0) { if (no_digits_before_separator) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } h->decimal_point = 0; } else if (dp < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) { h->decimal_point = -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE - 1; } else if (dp > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) { h->decimal_point = +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE + 1; } else { h->decimal_point = dp; } wuffs_base__private_implementation__high_prec_dec__trim(h); return wuffs_base__make_status(NULL); } // -------- // wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits // returns the number of additional decimal digits when left-shifting by shift. // // See below for preconditions. static uint32_t // wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits( wuffs_base__private_implementation__high_prec_dec* h, uint32_t shift) { // Masking with 0x3F should be unnecessary (assuming the preconditions) but // it's cheap and ensures that we don't overflow the // wuffs_base__private_implementation__hpd_left_shift array. shift &= 63; uint32_t x_a = wuffs_base__private_implementation__hpd_left_shift[shift]; uint32_t x_b = wuffs_base__private_implementation__hpd_left_shift[shift + 1]; uint32_t num_new_digits = x_a >> 11; uint32_t pow5_a = 0x7FF & x_a; uint32_t pow5_b = 0x7FF & x_b; const uint8_t* pow5 = &wuffs_base__private_implementation__powers_of_5[pow5_a]; uint32_t i = 0; uint32_t n = pow5_b - pow5_a; for (; i < n; i++) { if (i >= h->num_digits) { return num_new_digits - 1; } else if (h->digits[i] == pow5[i]) { continue; } else if (h->digits[i] < pow5[i]) { return num_new_digits - 1; } else { return num_new_digits; } } return num_new_digits; } // -------- // wuffs_base__private_implementation__high_prec_dec__rounded_integer returns // the integral (non-fractional) part of h, provided that it is 18 or fewer // decimal digits. For 19 or more digits, it returns UINT64_MAX. Note that: // - (1 << 53) is 9007199254740992, which has 16 decimal digits. // - (1 << 56) is 72057594037927936, which has 17 decimal digits. // - (1 << 59) is 576460752303423488, which has 18 decimal digits. // - (1 << 63) is 9223372036854775808, which has 19 decimal digits. // and that IEEE 754 double precision has 52 mantissa bits. // // That integral part is rounded-to-even: rounding 7.5 or 8.5 both give 8. // // h's negative bit is ignored: rounding -8.6 returns 9. // // See below for preconditions. static uint64_t // wuffs_base__private_implementation__high_prec_dec__rounded_integer( wuffs_base__private_implementation__high_prec_dec* h) { if ((h->num_digits == 0) || (h->decimal_point < 0)) { return 0; } else if (h->decimal_point > 18) { return UINT64_MAX; } uint32_t dp = (uint32_t)(h->decimal_point); uint64_t n = 0; uint32_t i = 0; for (; i < dp; i++) { n = (10 * n) + ((i < h->num_digits) ? h->digits[i] : 0); } bool round_up = false; if (dp < h->num_digits) { round_up = h->digits[dp] >= 5; if ((h->digits[dp] == 5) && (dp + 1 == h->num_digits)) { // We are exactly halfway. If we're truncated, round up, otherwise round // to even. round_up = h->truncated || // ((dp > 0) && (1 & h->digits[dp - 1])); } } if (round_up) { n++; } return n; } // wuffs_base__private_implementation__high_prec_dec__small_xshift shifts h's // number (where 'x' is 'l' or 'r' for left or right) by a small shift value. // // Preconditions: // - h is non-NULL. // - h->decimal_point is "not extreme". // - shift is non-zero. // - shift is "a small shift". // // "Not extreme" means within // ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE. // // "A small shift" means not more than // WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL. // // wuffs_base__private_implementation__high_prec_dec__rounded_integer and // wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits // have the same preconditions. // // wuffs_base__private_implementation__high_prec_dec__lshift keeps the first // two preconditions but not the last two. Its shift argument is signed and // does not need to be "small": zero is a no-op, positive means left shift and // negative means right shift. static void // wuffs_base__private_implementation__high_prec_dec__small_lshift( wuffs_base__private_implementation__high_prec_dec* h, uint32_t shift) { if (h->num_digits == 0) { return; } uint32_t num_new_digits = wuffs_base__private_implementation__high_prec_dec__lshift_num_new_digits( h, shift); uint32_t rx = h->num_digits - 1; // Read index. uint32_t wx = h->num_digits - 1 + num_new_digits; // Write index. uint64_t n = 0; // Repeat: pick up a digit, put down a digit, right to left. while (((int32_t)rx) >= 0) { n += ((uint64_t)(h->digits[rx])) << shift; uint64_t quo = n / 10; uint64_t rem = n - (10 * quo); if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[wx] = (uint8_t)rem; } else if (rem > 0) { h->truncated = true; } n = quo; wx--; rx--; } // Put down leading digits, right to left. while (n > 0) { uint64_t quo = n / 10; uint64_t rem = n - (10 * quo); if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[wx] = (uint8_t)rem; } else if (rem > 0) { h->truncated = true; } n = quo; wx--; } // Finish. h->num_digits += num_new_digits; if (h->num_digits > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->num_digits = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION; } h->decimal_point += (int32_t)num_new_digits; wuffs_base__private_implementation__high_prec_dec__trim(h); } static void // wuffs_base__private_implementation__high_prec_dec__small_rshift( wuffs_base__private_implementation__high_prec_dec* h, uint32_t shift) { uint32_t rx = 0; // Read index. uint32_t wx = 0; // Write index. uint64_t n = 0; // Pick up enough leading digits to cover the first shift. while ((n >> shift) == 0) { if (rx < h->num_digits) { // Read a digit. n = (10 * n) + h->digits[rx++]; } else if (n == 0) { // h's number used to be zero and remains zero. return; } else { // Read sufficient implicit trailing zeroes. while ((n >> shift) == 0) { n = 10 * n; rx++; } break; } } h->decimal_point -= ((int32_t)(rx - 1)); if (h->decimal_point < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) { // After the shift, h's number is effectively zero. h->num_digits = 0; h->decimal_point = 0; h->truncated = false; return; } // Repeat: pick up a digit, put down a digit, left to right. uint64_t mask = (((uint64_t)(1)) << shift) - 1; while (rx < h->num_digits) { uint8_t new_digit = ((uint8_t)(n >> shift)); n = (10 * (n & mask)) + h->digits[rx++]; h->digits[wx++] = new_digit; } // Put down trailing digits, left to right. while (n > 0) { uint8_t new_digit = ((uint8_t)(n >> shift)); n = 10 * (n & mask); if (wx < WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DIGITS_PRECISION) { h->digits[wx++] = new_digit; } else if (new_digit > 0) { h->truncated = true; } } // Finish. h->num_digits = wx; wuffs_base__private_implementation__high_prec_dec__trim(h); } static void // wuffs_base__private_implementation__high_prec_dec__lshift( wuffs_base__private_implementation__high_prec_dec* h, int32_t shift) { if (shift > 0) { while (shift > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) { wuffs_base__private_implementation__high_prec_dec__small_lshift( h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL); shift -= WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL; } wuffs_base__private_implementation__high_prec_dec__small_lshift( h, ((uint32_t)(+shift))); } else if (shift < 0) { while (shift < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) { wuffs_base__private_implementation__high_prec_dec__small_rshift( h, WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL); shift += WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL; } wuffs_base__private_implementation__high_prec_dec__small_rshift( h, ((uint32_t)(-shift))); } } // -------- // wuffs_base__private_implementation__high_prec_dec__round_etc rounds h's // number. For those functions that take an n argument, rounding produces at // most n digits (which is not necessarily at most n decimal places). Negative // n values are ignored, as well as any n greater than or equal to h's number // of digits. The etc__round_just_enough function implicitly chooses an n to // implement WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION. // // Preconditions: // - h is non-NULL. // - h->decimal_point is "not extreme". // // "Not extreme" means within // ±WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE. static void // wuffs_base__private_implementation__high_prec_dec__round_down( wuffs_base__private_implementation__high_prec_dec* h, int32_t n) { if ((n < 0) || (h->num_digits <= (uint32_t)n)) { return; } h->num_digits = (uint32_t)(n); wuffs_base__private_implementation__high_prec_dec__trim(h); } static void // wuffs_base__private_implementation__high_prec_dec__round_up( wuffs_base__private_implementation__high_prec_dec* h, int32_t n) { if ((n < 0) || (h->num_digits <= (uint32_t)n)) { return; } for (n--; n >= 0; n--) { if (h->digits[n] < 9) { h->digits[n]++; h->num_digits = (uint32_t)(n + 1); return; } } // The number is all 9s. Change to a single 1 and adjust the decimal point. h->digits[0] = 1; h->num_digits = 1; h->decimal_point++; } static void // wuffs_base__private_implementation__high_prec_dec__round_nearest( wuffs_base__private_implementation__high_prec_dec* h, int32_t n) { if ((n < 0) || (h->num_digits <= (uint32_t)n)) { return; } bool up = h->digits[n] >= 5; if ((h->digits[n] == 5) && ((n + 1) == ((int32_t)(h->num_digits)))) { up = h->truncated || // ((n > 0) && ((h->digits[n - 1] & 1) != 0)); } if (up) { wuffs_base__private_implementation__high_prec_dec__round_up(h, n); } else { wuffs_base__private_implementation__high_prec_dec__round_down(h, n); } } static void // wuffs_base__private_implementation__high_prec_dec__round_just_enough( wuffs_base__private_implementation__high_prec_dec* h, int32_t exp2, uint64_t mantissa) { // The magic numbers 52 and 53 in this function are because IEEE 754 double // precision has 52 mantissa bits. // // Let f be the floating point number represented by exp2 and mantissa (and // also the number in h): the number (mantissa * (2 ** (exp2 - 52))). // // If f is zero or a small integer, we can return early. if ((mantissa == 0) || ((exp2 < 53) && (h->decimal_point >= ((int32_t)(h->num_digits))))) { return; } // The smallest normal f has an exp2 of -1022 and a mantissa of (1 << 52). // Subnormal numbers have the same exp2 but a smaller mantissa. static const int32_t min_incl_normal_exp2 = -1022; static const uint64_t min_incl_normal_mantissa = 0x0010000000000000ul; // Compute lower and upper bounds such that any number between them (possibly // inclusive) will round to f. First, the lower bound. Our number f is: // ((mantissa + 0) * (2 ** ( exp2 - 52))) // // The next lowest floating point number is: // ((mantissa - 1) * (2 ** ( exp2 - 52))) // unless (mantissa - 1) drops the (1 << 52) bit and exp2 is not the // min_incl_normal_exp2. Either way, call it: // ((l_mantissa) * (2 ** (l_exp2 - 52))) // // The lower bound is halfway between them (noting that 52 became 53): // (((2 * l_mantissa) + 1) * (2 ** (l_exp2 - 53))) int32_t l_exp2 = exp2; uint64_t l_mantissa = mantissa - 1; if ((exp2 > min_incl_normal_exp2) && (mantissa <= min_incl_normal_mantissa)) { l_exp2 = exp2 - 1; l_mantissa = (2 * mantissa) - 1; } wuffs_base__private_implementation__high_prec_dec lower; wuffs_base__private_implementation__high_prec_dec__assign( &lower, (2 * l_mantissa) + 1, false); wuffs_base__private_implementation__high_prec_dec__lshift(&lower, l_exp2 - 53); // Next, the upper bound. Our number f is: // ((mantissa + 0) * (2 ** (exp2 - 52))) // // The next highest floating point number is: // ((mantissa + 1) * (2 ** (exp2 - 52))) // // The upper bound is halfway between them (noting that 52 became 53): // (((2 * mantissa) + 1) * (2 ** (exp2 - 53))) wuffs_base__private_implementation__high_prec_dec upper; wuffs_base__private_implementation__high_prec_dec__assign( &upper, (2 * mantissa) + 1, false); wuffs_base__private_implementation__high_prec_dec__lshift(&upper, exp2 - 53); // The lower and upper bounds are possible outputs only if the original // mantissa is even, so that IEEE round-to-even would round to the original // mantissa and not its neighbors. bool inclusive = (mantissa & 1) == 0; // As we walk the digits, we want to know whether rounding up would fall // within the upper bound. This is tracked by upper_delta: // - When -1, the digits of h and upper are the same so far. // - When +0, we saw a difference of 1 between h and upper on a previous // digit and subsequently only 9s for h and 0s for upper. Thus, rounding // up may fall outside of the bound if !inclusive. // - When +1, the difference is greater than 1 and we know that rounding up // falls within the bound. // // This is a state machine with three states. The numerical value for each // state (-1, +0 or +1) isn't important, other than their order. int upper_delta = -1; // We can now figure out the shortest number of digits required. Walk the // digits until h has distinguished itself from lower or upper. // // The zi and zd variables are indexes and digits, for z in l (lower), h (the // number) and u (upper). // // The lower, h and upper numbers may have their decimal points at different // places. In this case, upper is the longest, so we iterate ui starting from // 0 and iterate li and hi starting from either 0 or -1. int32_t ui = 0; for (;; ui++) { // Calculate hd, the middle number's digit. int32_t hi = ui - upper.decimal_point + h->decimal_point; if (hi >= ((int32_t)(h->num_digits))) { break; } uint8_t hd = (((uint32_t)hi) < h->num_digits) ? h->digits[hi] : 0; // Calculate ld, the lower bound's digit. int32_t li = ui - upper.decimal_point + lower.decimal_point; uint8_t ld = (((uint32_t)li) < lower.num_digits) ? lower.digits[li] : 0; // We can round down (truncate) if lower has a different digit than h or if // lower is inclusive and is exactly the result of rounding down (i.e. we // have reached the final digit of lower). bool can_round_down = (ld != hd) || // (inclusive && ((li + 1) == ((int32_t)(lower.num_digits)))); // Calculate ud, the upper bound's digit, and update upper_delta. uint8_t ud = (((uint32_t)ui) < upper.num_digits) ? upper.digits[ui] : 0; if (upper_delta < 0) { if ((hd + 1) < ud) { // For example: // h = 12345??? // upper = 12347??? upper_delta = +1; } else if (hd != ud) { // For example: // h = 12345??? // upper = 12346??? upper_delta = +0; } } else if (upper_delta == 0) { if ((hd != 9) || (ud != 0)) { // For example: // h = 1234598? // upper = 1234600? upper_delta = +1; } } // We can round up if upper has a different digit than h and either upper // is inclusive or upper is bigger than the result of rounding up. bool can_round_up = (upper_delta > 0) || // ((upper_delta == 0) && // (inclusive || ((ui + 1) < ((int32_t)(upper.num_digits))))); // If we can round either way, round to nearest. If we can round only one // way, do it. If we can't round, continue the loop. if (can_round_down) { if (can_round_up) { wuffs_base__private_implementation__high_prec_dec__round_nearest( h, hi + 1); return; } else { wuffs_base__private_implementation__high_prec_dec__round_down(h, hi + 1); return; } } else { if (can_round_up) { wuffs_base__private_implementation__high_prec_dec__round_up(h, hi + 1); return; } } } } // -------- // wuffs_base__private_implementation__parse_number_f64_eisel_lemire produces // the IEEE 754 double-precision value for an exact mantissa and base-10 // exponent. For example: // - when parsing "12345.678e+02", man is 12345678 and exp10 is -1. // - when parsing "-12", man is 12 and exp10 is 0. Processing the leading // minus sign is the responsibility of the caller, not this function. // // On success, it returns a non-negative int64_t such that the low 63 bits hold // the 11-bit exponent and 52-bit mantissa. // // On failure, it returns a negative value. // // The algorithm is based on an original idea by Michael Eisel that was refined // by Daniel Lemire. See // https://lemire.me/blog/2020/03/10/fast-float-parsing-in-practice/ // and // https://nigeltao.github.io/blog/2020/eisel-lemire.html // // Preconditions: // - man is non-zero. // - exp10 is in the range [-307 ..= 288], the same range of the // wuffs_base__private_implementation__powers_of_10 array. // // The exp10 range (and the fact that man is in the range [1 ..= UINT64_MAX], // approximately [1 ..= 1.85e+19]) means that (man * (10 ** exp10)) is in the // range [1e-307 ..= 1.85e+307]. This is entirely within the range of normal // (neither subnormal nor non-finite) f64 values: DBL_MIN and DBL_MAX are // approximately 2.23e–308 and 1.80e+308. static int64_t // wuffs_base__private_implementation__parse_number_f64_eisel_lemire( uint64_t man, int32_t exp10) { // Look up the (possibly truncated) base-2 representation of (10 ** exp10). // The look-up table was constructed so that it is already normalized: the // table entry's mantissa's MSB (most significant bit) is on. const uint64_t* po10 = &wuffs_base__private_implementation__powers_of_10[exp10 + 307][0]; // Normalize the man argument. The (man != 0) precondition means that a // non-zero bit exists. uint32_t clz = wuffs_base__count_leading_zeroes_u64(man); man <<= clz; // Calculate the return value's base-2 exponent. We might tweak it by ±1 // later, but its initial value comes from a linear scaling of exp10, // converting from power-of-10 to power-of-2, and adjusting by clz. // // The magic constants are: // - 1087 = 1023 + 64. The 1023 is the f64 exponent bias. The 64 is because // the look-up table uses 64-bit mantissas. // - 217706 is such that the ratio 217706 / 65536 ≈ 3.321930 is close enough // (over the practical range of exp10) to log(10) / log(2) ≈ 3.321928. // - 65536 = 1<<16 is arbitrary but a power of 2, so division is a shift. // // Equality of the linearly-scaled value and the actual power-of-2, over the // range of exp10 arguments that this function accepts, is confirmed by // script/print-mpb-powers-of-10.go uint64_t ret_exp2 = ((uint64_t)(((217706 * exp10) >> 16) + 1087)) - ((uint64_t)clz); // Multiply the two mantissas. Normalization means that both mantissas are at // least (1<<63), so the 128-bit product must be at least (1<<126). The high // 64 bits of the product, x_hi, must therefore be at least (1<<62). // // As a consequence, x_hi has either 0 or 1 leading zeroes. Shifting x_hi // right by either 9 or 10 bits (depending on x_hi's MSB) will therefore // leave the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. wuffs_base__multiply_u64__output x = wuffs_base__multiply_u64(man, po10[1]); uint64_t x_hi = x.hi; uint64_t x_lo = x.lo; // Before we shift right by at least 9 bits, recall that the look-up table // entry was possibly truncated. We have so far only calculated a lower bound // for the product (man * e), where e is (10 ** exp10). The upper bound would // add a further (man * 1) to the 128-bit product, which overflows the lower // 64-bit limb if ((x_lo + man) < man). // // If overflow occurs, that adds 1 to x_hi. Since we're about to shift right // by at least 9 bits, that carried 1 can be ignored unless the higher 64-bit // limb's low 9 bits are all on. // // For example, parsing "9999999999999999999" will take the if-true branch // here, since: // - x_hi = 0x4563918244F3FFFF // - x_lo = 0x8000000000000000 // - man = 0x8AC7230489E7FFFF if (((x_hi & 0x1FF) == 0x1FF) && ((x_lo + man) < man)) { // Refine our calculation of (man * e). Before, our approximation of e used // a "low resolution" 64-bit mantissa. Now use a "high resolution" 128-bit // mantissa. We've already calculated x = (man * bits_0_to_63_incl_of_e). // Now calculate y = (man * bits_64_to_127_incl_of_e). wuffs_base__multiply_u64__output y = wuffs_base__multiply_u64(man, po10[0]); uint64_t y_hi = y.hi; uint64_t y_lo = y.lo; // Merge the 128-bit x and 128-bit y, which overlap by 64 bits, to // calculate the 192-bit product of the 64-bit man by the 128-bit e. // As we exit this if-block, we only care about the high 128 bits // (merged_hi and merged_lo) of that 192-bit product. // // For example, parsing "1.234e-45" will take the if-true branch here, // since: // - x_hi = 0x70B7E3696DB29FFF // - x_lo = 0xE040000000000000 // - y_hi = 0x33718BBEAB0E0D7A // - y_lo = 0xA880000000000000 uint64_t merged_hi = x_hi; uint64_t merged_lo = x_lo + y_hi; if (merged_lo < x_lo) { merged_hi++; // Carry the overflow bit. } // The "high resolution" approximation of e is still a lower bound. Once // again, see if the upper bound is large enough to produce a different // result. This time, if it does, give up instead of reaching for an even // more precise approximation to e. // // This three-part check is similar to the two-part check that guarded the // if block that we're now in, but it has an extra term for the middle 64 // bits (checking that adding 1 to merged_lo would overflow). // // For example, parsing "5.9604644775390625e-8" will take the if-true // branch here, since: // - merged_hi = 0x7FFFFFFFFFFFFFFF // - merged_lo = 0xFFFFFFFFFFFFFFFF // - y_lo = 0x4DB3FFC120988200 // - man = 0xD3C21BCECCEDA100 if (((merged_hi & 0x1FF) == 0x1FF) && ((merged_lo + 1) == 0) && (y_lo + man < man)) { return -1; } // Replace the 128-bit x with merged. x_hi = merged_hi; x_lo = merged_lo; } // As mentioned above, shifting x_hi right by either 9 or 10 bits will leave // the top 10 MSBs (bits 54 ..= 63) off and the 11th MSB (bit 53) on. If the // MSB (before shifting) was on, adjust ret_exp2 for the larger shift. // // Having bit 53 on (and higher bits off) means that ret_mantissa is a 54-bit // number. uint64_t msb = x_hi >> 63; uint64_t ret_mantissa = x_hi >> (msb + 9); ret_exp2 -= 1 ^ msb; // IEEE 754 rounds to-nearest with ties rounded to-even. Rounding to-even can // be tricky. If we're half-way between two exactly representable numbers // (x's low 73 bits are zero and the next 2 bits that matter are "01"), give // up instead of trying to pick the winner. // // Technically, we could tighten the condition by changing "73" to "73 or 74, // depending on msb", but a flat "73" is simpler. // // For example, parsing "1e+23" will take the if-true branch here, since: // - x_hi = 0x54B40B1F852BDA00 // - ret_mantissa = 0x002A5A058FC295ED if ((x_lo == 0) && ((x_hi & 0x1FF) == 0) && ((ret_mantissa & 3) == 1)) { return -1; } // If we're not halfway then it's rounding to-nearest. Starting with a 54-bit // number, carry the lowest bit (bit 0) up if it's on. Regardless of whether // it was on or off, shifting right by one then produces a 53-bit number. If // carrying up overflowed, shift again. ret_mantissa += ret_mantissa & 1; ret_mantissa >>= 1; // This if block is equivalent to (but benchmarks slightly faster than) the // following branchless form: // uint64_t overflow_adjustment = ret_mantissa >> 53; // ret_mantissa >>= overflow_adjustment; // ret_exp2 += overflow_adjustment; // // For example, parsing "7.2057594037927933e+16" will take the if-true // branch here, since: // - x_hi = 0x7FFFFFFFFFFFFE80 // - ret_mantissa = 0x0020000000000000 if ((ret_mantissa >> 53) > 0) { ret_mantissa >>= 1; ret_exp2++; } // Starting with a 53-bit number, IEEE 754 double-precision normal numbers // have an implicit mantissa bit. Mask that away and keep the low 52 bits. ret_mantissa &= 0x000FFFFFFFFFFFFF; // Pack the bits and return. return ((int64_t)(ret_mantissa | (ret_exp2 << 52))); } // -------- static wuffs_base__result_f64 // wuffs_base__private_implementation__parse_number_f64_special( wuffs_base__slice_u8 s, uint32_t options) { do { if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) { goto fail; } uint8_t* p = s.ptr; uint8_t* q = s.ptr + s.len; for (; (p < q) && (*p == '_'); p++) { } if (p >= q) { goto fail; } // Parse sign. bool negative = false; do { if (*p == '+') { p++; } else if (*p == '-') { negative = true; p++; } else { break; } for (; (p < q) && (*p == '_'); p++) { } } while (0); if (p >= q) { goto fail; } bool nan = false; switch (p[0]) { case 'I': case 'i': if (((q - p) < 3) || // ((p[1] != 'N') && (p[1] != 'n')) || // ((p[2] != 'F') && (p[2] != 'f'))) { goto fail; } p += 3; if ((p >= q) || (*p == '_')) { break; } else if (((q - p) < 5) || // ((p[0] != 'I') && (p[0] != 'i')) || // ((p[1] != 'N') && (p[1] != 'n')) || // ((p[2] != 'I') && (p[2] != 'i')) || // ((p[3] != 'T') && (p[3] != 't')) || // ((p[4] != 'Y') && (p[4] != 'y'))) { goto fail; } p += 5; if ((p >= q) || (*p == '_')) { break; } goto fail; case 'N': case 'n': if (((q - p) < 3) || // ((p[1] != 'A') && (p[1] != 'a')) || // ((p[2] != 'N') && (p[2] != 'n'))) { goto fail; } p += 3; if ((p >= q) || (*p == '_')) { nan = true; break; } goto fail; default: goto fail; } // Finish. for (; (p < q) && (*p == '_'); p++) { } if (p != q) { goto fail; } wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64( (nan ? 0x7FFFFFFFFFFFFFFF : 0x7FF0000000000000) | (negative ? 0x8000000000000000 : 0)); return ret; } while (0); fail: do { wuffs_base__result_f64 ret; ret.status.repr = wuffs_base__error__bad_argument; ret.value = 0; return ret; } while (0); } WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 // wuffs_base__private_implementation__high_prec_dec__to_f64( wuffs_base__private_implementation__high_prec_dec* h, uint32_t options) { do { // powers converts decimal powers of 10 to binary powers of 2. For example, // (10000 >> 13) is 1. It stops before the elements exceed 60, also known // as WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL. // // This rounds down (1<<13 is a lower bound for 1e4). Adding 1 to the array // element value rounds up (1<<14 is an upper bound for 1e4) while staying // at or below WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL. // // When starting in the range [1e+1 .. 1e+2] (i.e. h->decimal_point == +2), // powers[2] == 6 and so: // - Right shifting by 6+0 produces the range [10/64 .. 100/64] = // [0.156250 .. 1.56250]. The resultant h->decimal_point is +0 or +1. // - Right shifting by 6+1 produces the range [10/128 .. 100/128] = // [0.078125 .. 0.78125]. The resultant h->decimal_point is -1 or -0. // // When starting in the range [1e-3 .. 1e-2] (i.e. h->decimal_point == -2), // powers[2] == 6 and so: // - Left shifting by 6+0 produces the range [0.001*64 .. 0.01*64] = // [0.064 .. 0.64]. The resultant h->decimal_point is -1 or -0. // - Left shifting by 6+1 produces the range [0.001*128 .. 0.01*128] = // [0.128 .. 1.28]. The resultant h->decimal_point is +0 or +1. // // Thus, when targeting h->decimal_point being +0 or +1, use (powers[n]+0) // when right shifting but (powers[n]+1) when left shifting. static const uint32_t num_powers = 19; static const uint8_t powers[19] = { 0, 3, 6, 9, 13, 16, 19, 23, 26, 29, // 33, 36, 39, 43, 46, 49, 53, 56, 59, // }; // Handle zero and obvious extremes. The largest and smallest positive // finite f64 values are approximately 1.8e+308 and 4.9e-324. if ((h->num_digits == 0) || (h->decimal_point < -326)) { goto zero; } else if (h->decimal_point > 310) { goto infinity; } // Try the fast Eisel-Lemire algorithm again. Calculating the (man, exp10) // pair from the high_prec_dec h is more correct but slower than the // approach taken in wuffs_base__parse_number_f64. The latter is optimized // for the common cases (e.g. assuming no underscores or a leading '+' // sign) rather than the full set of cases allowed by the Wuffs API. // // When we have 19 or fewer mantissa digits, run Eisel-Lemire once (trying // for an exact result). When we have more than 19 mantissa digits, run it // twice to get a lower and upper bound. We still have an exact result // (within f64's rounding margin) if both bounds are equal (and valid). uint32_t i_max = h->num_digits; if (i_max > 19) { i_max = 19; } int32_t exp10 = h->decimal_point - ((int32_t)i_max); if ((-307 <= exp10) && (exp10 <= 288)) { uint64_t man = 0; uint32_t i; for (i = 0; i < i_max; i++) { man = (10 * man) + h->digits[i]; } while (man != 0) { // The 'while' is just an 'if' that we can 'break'. int64_t r0 = wuffs_base__private_implementation__parse_number_f64_eisel_lemire( man + 0, exp10); if (r0 < 0) { break; } else if (h->num_digits > 19) { int64_t r1 = wuffs_base__private_implementation__parse_number_f64_eisel_lemire( man + 1, exp10); if (r1 != r0) { break; } } wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64( ((uint64_t)r0) | (((uint64_t)(h->negative)) << 63)); return ret; } } // When Eisel-Lemire fails, fall back to Simple Decimal Conversion. See // https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html // // Scale by powers of 2 until we're in the range [0.1 .. 10]. Equivalently, // that h->decimal_point is +0 or +1. // // First we shift right while at or above 10... const int32_t f64_bias = -1023; int32_t exp2 = 0; while (h->decimal_point > 1) { uint32_t n = (uint32_t)(+h->decimal_point); uint32_t shift = (n < num_powers) ? powers[n] : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL; wuffs_base__private_implementation__high_prec_dec__small_rshift(h, shift); if (h->decimal_point < -WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) { goto zero; } exp2 += (int32_t)shift; } // ...then we shift left while below 0.1. while (h->decimal_point < 0) { uint32_t shift; uint32_t n = (uint32_t)(-h->decimal_point); shift = (n < num_powers) // The +1 is per "when targeting h->decimal_point being +0 or // +1... when left shifting" in the powers comment above. ? (powers[n] + 1) : WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL; wuffs_base__private_implementation__high_prec_dec__small_lshift(h, shift); if (h->decimal_point > +WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__DECIMAL_POINT__RANGE) { goto infinity; } exp2 -= (int32_t)shift; } // To get from "in the range [0.1 .. 10]" to "in the range [1 .. 2]" (which // will give us our exponent in base-2), the mantissa's first 3 digits will // determine the final left shift, equal to 52 (the number of explicit f64 // bits) plus an additional adjustment. int man3 = (100 * h->digits[0]) + ((h->num_digits > 1) ? (10 * h->digits[1]) : 0) + ((h->num_digits > 2) ? h->digits[2] : 0); int32_t additional_lshift = 0; if (h->decimal_point == 0) { // The value is in [0.1 .. 1]. if (man3 < 125) { additional_lshift = +4; } else if (man3 < 250) { additional_lshift = +3; } else if (man3 < 500) { additional_lshift = +2; } else { additional_lshift = +1; } } else { // The value is in [1 .. 10]. if (man3 < 200) { additional_lshift = -0; } else if (man3 < 400) { additional_lshift = -1; } else if (man3 < 800) { additional_lshift = -2; } else { additional_lshift = -3; } } exp2 -= additional_lshift; uint32_t final_lshift = (uint32_t)(52 + additional_lshift); // The minimum normal exponent is (f64_bias + 1). while ((f64_bias + 1) > exp2) { uint32_t n = (uint32_t)((f64_bias + 1) - exp2); if (n > WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL) { n = WUFFS_BASE__PRIVATE_IMPLEMENTATION__HPD__SHIFT__MAX_INCL; } wuffs_base__private_implementation__high_prec_dec__small_rshift(h, n); exp2 += (int32_t)n; } // Check for overflow. if ((exp2 - f64_bias) >= 0x07FF) { // (1 << 11) - 1. goto infinity; } // Extract 53 bits for the mantissa (in base-2). wuffs_base__private_implementation__high_prec_dec__small_lshift( h, final_lshift); uint64_t man2 = wuffs_base__private_implementation__high_prec_dec__rounded_integer(h); // Rounding might have added one bit. If so, shift and re-check overflow. if ((man2 >> 53) != 0) { man2 >>= 1; exp2++; if ((exp2 - f64_bias) >= 0x07FF) { // (1 << 11) - 1. goto infinity; } } // Handle subnormal numbers. if ((man2 >> 52) == 0) { exp2 = f64_bias; } // Pack the bits and return. uint64_t exp2_bits = (uint64_t)((exp2 - f64_bias) & 0x07FF); // (1 << 11) - 1. uint64_t bits = (man2 & 0x000FFFFFFFFFFFFF) | // (1 << 52) - 1. (exp2_bits << 52) | // (h->negative ? 0x8000000000000000 : 0); // (1 << 63). wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits); return ret; } while (0); zero: do { uint64_t bits = h->negative ? 0x8000000000000000 : 0; wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits); return ret; } while (0); infinity: do { if (options & WUFFS_BASE__PARSE_NUMBER_FXX__REJECT_INF_AND_NAN) { wuffs_base__result_f64 ret; ret.status.repr = wuffs_base__error__bad_argument; ret.value = 0; return ret; } uint64_t bits = h->negative ? 0xFFF0000000000000 : 0x7FF0000000000000; wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64(bits); return ret; } while (0); } static inline bool // wuffs_base__private_implementation__is_decimal_digit(uint8_t c) { return ('0' <= c) && (c <= '9'); } WUFFS_BASE__MAYBE_STATIC wuffs_base__result_f64 // wuffs_base__parse_number_f64(wuffs_base__slice_u8 s, uint32_t options) { // In practice, almost all "dd.ddddE±xxx" numbers can be represented // losslessly by a uint64_t mantissa "dddddd" and an int32_t base-10 // exponent, adjusting "xxx" for the position (if present) of the decimal // separator '.' or ','. // // This (u64 man, i32 exp10) data structure is superficially similar to the // "Do It Yourself Floating Point" type from Loitsch (†), but the exponent // here is base-10, not base-2. // // If s's number fits in a (man, exp10), parse that pair with the // Eisel-Lemire algorithm. If not, or if Eisel-Lemire fails, parsing s with // the fallback algorithm is slower but comprehensive. // // † "Printing Floating-Point Numbers Quickly and Accurately with Integers" // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf). // Florian Loitsch is also the primary contributor to // https://github.com/google/double-conversion do { // Calculating that (man, exp10) pair needs to stay within s's bounds. // Provided that s isn't extremely long, work on a NUL-terminated copy of // s's contents. The NUL byte isn't a valid part of "±dd.ddddE±xxx". // // As the pointer p walks the contents, it's faster to repeatedly check "is // *p a valid digit" than "is p within bounds and *p a valid digit". if (s.len >= 256) { goto fallback; } uint8_t z[256]; memcpy(&z[0], s.ptr, s.len); z[s.len] = 0; const uint8_t* p = &z[0]; // Look for a leading minus sign. Technically, we could also look for an // optional plus sign, but the "script/process-json-numbers.c with -p" // benchmark is noticably slower if we do. It's optional and, in practice, // usually absent. Let the fallback catch it. bool negative = (*p == '-'); if (negative) { p++; } // After walking "dd.dddd", comparing p later with p now will produce the // number of "d"s and "."s. const uint8_t* const start_of_digits_ptr = p; // Walk the "d"s before a '.', 'E', NUL byte, etc. If it starts with '0', // it must be a single '0'. If it starts with a non-zero decimal digit, it // can be a sequence of decimal digits. // // Update the man variable during the walk. It's OK if man overflows now. // We'll detect that later. uint64_t man; if (*p == '0') { man = 0; p++; if (wuffs_base__private_implementation__is_decimal_digit(*p)) { goto fallback; } } else if (wuffs_base__private_implementation__is_decimal_digit(*p)) { man = ((uint8_t)(*p - '0')); p++; for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) { man = (10 * man) + ((uint8_t)(*p - '0')); } } else { goto fallback; } // Walk the "d"s after the optional decimal separator ('.' or ','), // updating the man and exp10 variables. int32_t exp10 = 0; if (*p == ((options & WUFFS_BASE__PARSE_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.')) { p++; const uint8_t* first_after_separator_ptr = p; if (!wuffs_base__private_implementation__is_decimal_digit(*p)) { goto fallback; } man = (10 * man) + ((uint8_t)(*p - '0')); p++; for (; wuffs_base__private_implementation__is_decimal_digit(*p); p++) { man = (10 * man) + ((uint8_t)(*p - '0')); } exp10 = ((int32_t)(first_after_separator_ptr - p)); } // Count the number of digits: // - for an input of "314159", digit_count is 6. // - for an input of "3.14159", digit_count is 7. // // This is off-by-one if there is a decimal separator. That's OK for now. // We'll correct for that later. The "script/process-json-numbers.c with // -p" benchmark is noticably slower if we try to correct for that now. uint32_t digit_count = (uint32_t)(p - start_of_digits_ptr); // Update exp10 for the optional exponent, starting with 'E' or 'e'. if ((*p | 0x20) == 'e') { p++; int32_t exp_sign = +1; if (*p == '-') { p++; exp_sign = -1; } else if (*p == '+') { p++; } if (!wuffs_base__private_implementation__is_decimal_digit(*p)) { goto fallback; } int32_t exp_num = ((uint8_t)(*p - '0')); p++; // The rest of the exp_num walking has a peculiar control flow but, once // again, the "script/process-json-numbers.c with -p" benchmark is // sensitive to alternative formulations. if (wuffs_base__private_implementation__is_decimal_digit(*p)) { exp_num = (10 * exp_num) + ((uint8_t)(*p - '0')); p++; } if (wuffs_base__private_implementation__is_decimal_digit(*p)) { exp_num = (10 * exp_num) + ((uint8_t)(*p - '0')); p++; } while (wuffs_base__private_implementation__is_decimal_digit(*p)) { if (exp_num > 0x1000000) { goto fallback; } exp_num = (10 * exp_num) + ((uint8_t)(*p - '0')); p++; } exp10 += exp_sign * exp_num; } // The Wuffs API is that the original slice has no trailing data. It also // allows underscores, which we don't catch here but the fallback should. if (p != &z[s.len]) { goto fallback; } // Check that the uint64_t typed man variable has not overflowed, based on // digit_count. // // For reference: // - (1 << 63) is 9223372036854775808, which has 19 decimal digits. // - (1 << 64) is 18446744073709551616, which has 20 decimal digits. // - 19 nines, 9999999999999999999, is 0x8AC7230489E7FFFF, which has 64 // bits and 16 hexadecimal digits. // - 20 nines, 99999999999999999999, is 0x56BC75E2D630FFFFF, which has 67 // bits and 17 hexadecimal digits. if (digit_count > 19) { // Even if we have more than 19 pseudo-digits, it's not yet definitely an // overflow. Recall that digit_count might be off-by-one (too large) if // there's a decimal separator. It will also over-report the number of // meaningful digits if the input looks something like "0.000dddExxx". // // We adjust by the number of leading '0's and '.'s and re-compare to 19. // Once again, technically, we could skip ','s too, but that perturbs the // "script/process-json-numbers.c with -p" benchmark. const uint8_t* q = start_of_digits_ptr; for (; (*q == '0') || (*q == '.'); q++) { } digit_count -= (uint32_t)(q - start_of_digits_ptr); if (digit_count > 19) { goto fallback; } } // The wuffs_base__private_implementation__parse_number_f64_eisel_lemire // preconditions include that exp10 is in the range [-307 ..= 288]. if ((exp10 < -307) || (288 < exp10)) { goto fallback; } // If both man and (10 ** exp10) are exactly representable by a double, we // don't need to run the Eisel-Lemire algorithm. if ((-22 <= exp10) && (exp10 <= 22) && ((man >> 53) == 0)) { double d = (double)man; if (exp10 >= 0) { d *= wuffs_base__private_implementation__f64_powers_of_10[+exp10]; } else { d /= wuffs_base__private_implementation__f64_powers_of_10[-exp10]; } wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = negative ? -d : +d; return ret; } // The wuffs_base__private_implementation__parse_number_f64_eisel_lemire // preconditions include that man is non-zero. Parsing "0" should be caught // by the "If both man and (10 ** exp10)" above, but "0e99" might not. if (man == 0) { goto fallback; } // Our man and exp10 are in range. Run the Eisel-Lemire algorithm. int64_t r = wuffs_base__private_implementation__parse_number_f64_eisel_lemire( man, exp10); if (r < 0) { goto fallback; } wuffs_base__result_f64 ret; ret.status.repr = NULL; ret.value = wuffs_base__ieee_754_bit_representation__from_u64_to_f64( ((uint64_t)r) | (((uint64_t)negative) << 63)); return ret; } while (0); fallback: do { wuffs_base__private_implementation__high_prec_dec h; wuffs_base__status status = wuffs_base__private_implementation__high_prec_dec__parse(&h, s, options); if (status.repr) { return wuffs_base__private_implementation__parse_number_f64_special( s, options); } return wuffs_base__private_implementation__high_prec_dec__to_f64(&h, options); } while (0); } // -------- static inline size_t // wuffs_base__private_implementation__render_inf(wuffs_base__slice_u8 dst, bool neg, uint32_t options) { if (neg) { if (dst.len < 4) { return 0; } wuffs_base__poke_u32le__no_bounds_check(dst.ptr, 0x666E492D); // '-Inf'le. return 4; } if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) { if (dst.len < 4) { return 0; } wuffs_base__poke_u32le__no_bounds_check(dst.ptr, 0x666E492B); // '+Inf'le. return 4; } if (dst.len < 3) { return 0; } wuffs_base__poke_u24le__no_bounds_check(dst.ptr, 0x666E49); // 'Inf'le. return 3; } static inline size_t // wuffs_base__private_implementation__render_nan(wuffs_base__slice_u8 dst) { if (dst.len < 3) { return 0; } wuffs_base__poke_u24le__no_bounds_check(dst.ptr, 0x4E614E); // 'NaN'le. return 3; } static size_t // wuffs_base__private_implementation__high_prec_dec__render_exponent_absent( wuffs_base__slice_u8 dst, wuffs_base__private_implementation__high_prec_dec* h, uint32_t precision, uint32_t options) { size_t n = (h->negative || (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN)) ? 1 : 0; if (h->decimal_point <= 0) { n += 1; } else { n += (size_t)(h->decimal_point); } if (precision > 0) { n += precision + 1; // +1 for the '.'. } // Don't modify dst if the formatted number won't fit. if (n > dst.len) { return 0; } // Align-left or align-right. uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT) ? &dst.ptr[dst.len - n] : &dst.ptr[0]; // Leading "±". if (h->negative) { *ptr++ = '-'; } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) { *ptr++ = '+'; } // Integral digits. if (h->decimal_point <= 0) { *ptr++ = '0'; } else { uint32_t m = wuffs_base__u32__min(h->num_digits, (uint32_t)(h->decimal_point)); uint32_t i = 0; for (; i < m; i++) { *ptr++ = (uint8_t)('0' | h->digits[i]); } for (; i < (uint32_t)(h->decimal_point); i++) { *ptr++ = '0'; } } // Separator and then fractional digits. if (precision > 0) { *ptr++ = (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.'; uint32_t i = 0; for (; i < precision; i++) { uint32_t j = ((uint32_t)(h->decimal_point)) + i; *ptr++ = (uint8_t)('0' | ((j < h->num_digits) ? h->digits[j] : 0)); } } return n; } static size_t // wuffs_base__private_implementation__high_prec_dec__render_exponent_present( wuffs_base__slice_u8 dst, wuffs_base__private_implementation__high_prec_dec* h, uint32_t precision, uint32_t options) { int32_t exp = 0; if (h->num_digits > 0) { exp = h->decimal_point - 1; } bool negative_exp = exp < 0; if (negative_exp) { exp = -exp; } size_t n = (h->negative || (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN)) ? 4 : 3; // Mininum 3 bytes: first digit and then "e±". if (precision > 0) { n += precision + 1; // +1 for the '.'. } n += (exp < 100) ? 2 : 3; // Don't modify dst if the formatted number won't fit. if (n > dst.len) { return 0; } // Align-left or align-right. uint8_t* ptr = (options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT) ? &dst.ptr[dst.len - n] : &dst.ptr[0]; // Leading "±". if (h->negative) { *ptr++ = '-'; } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) { *ptr++ = '+'; } // Integral digit. if (h->num_digits > 0) { *ptr++ = (uint8_t)('0' | h->digits[0]); } else { *ptr++ = '0'; } // Separator and then fractional digits. if (precision > 0) { *ptr++ = (options & WUFFS_BASE__RENDER_NUMBER_FXX__DECIMAL_SEPARATOR_IS_A_COMMA) ? ',' : '.'; uint32_t i = 1; uint32_t j = wuffs_base__u32__min(h->num_digits, precision + 1); for (; i < j; i++) { *ptr++ = (uint8_t)('0' | h->digits[i]); } for (; i <= precision; i++) { *ptr++ = '0'; } } // Exponent: "e±" and then 2 or 3 digits. *ptr++ = 'e'; *ptr++ = negative_exp ? '-' : '+'; if (exp < 10) { *ptr++ = '0'; *ptr++ = (uint8_t)('0' | exp); } else if (exp < 100) { *ptr++ = (uint8_t)('0' | (exp / 10)); *ptr++ = (uint8_t)('0' | (exp % 10)); } else { int32_t e = exp / 100; exp -= e * 100; *ptr++ = (uint8_t)('0' | e); *ptr++ = (uint8_t)('0' | (exp / 10)); *ptr++ = (uint8_t)('0' | (exp % 10)); } return n; } WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_f64(wuffs_base__slice_u8 dst, double x, uint32_t precision, uint32_t options) { // Decompose x (64 bits) into negativity (1 bit), base-2 exponent (11 bits // with a -1023 bias) and mantissa (52 bits). uint64_t bits = wuffs_base__ieee_754_bit_representation__from_f64_to_u64(x); bool neg = (bits >> 63) != 0; int32_t exp2 = ((int32_t)(bits >> 52)) & 0x7FF; uint64_t man = bits & 0x000FFFFFFFFFFFFFul; // Apply the exponent bias and set the implicit top bit of the mantissa, // unless x is subnormal. Also take care of Inf and NaN. if (exp2 == 0x7FF) { if (man != 0) { return wuffs_base__private_implementation__render_nan(dst); } return wuffs_base__private_implementation__render_inf(dst, neg, options); } else if (exp2 == 0) { exp2 = -1022; } else { exp2 -= 1023; man |= 0x0010000000000000ul; } // Ensure that precision isn't too large. if (precision > 4095) { precision = 4095; } // Convert from the (neg, exp2, man) tuple to an HPD. wuffs_base__private_implementation__high_prec_dec h; wuffs_base__private_implementation__high_prec_dec__assign(&h, man, neg); if (h.num_digits > 0) { wuffs_base__private_implementation__high_prec_dec__lshift( &h, exp2 - 52); // 52 mantissa bits. } // Handle the "%e" and "%f" formats. switch (options & (WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT | WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT)) { case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_ABSENT: // The "%"f" format. if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) { wuffs_base__private_implementation__high_prec_dec__round_just_enough( &h, exp2, man); int32_t p = ((int32_t)(h.num_digits)) - h.decimal_point; precision = ((uint32_t)(wuffs_base__i32__max(0, p))); } else { wuffs_base__private_implementation__high_prec_dec__round_nearest( &h, ((int32_t)precision) + h.decimal_point); } return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent( dst, &h, precision, options); case WUFFS_BASE__RENDER_NUMBER_FXX__EXPONENT_PRESENT: // The "%e" format. if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) { wuffs_base__private_implementation__high_prec_dec__round_just_enough( &h, exp2, man); precision = (h.num_digits > 0) ? (h.num_digits - 1) : 0; } else { wuffs_base__private_implementation__high_prec_dec__round_nearest( &h, ((int32_t)precision) + 1); } return wuffs_base__private_implementation__high_prec_dec__render_exponent_present( dst, &h, precision, options); } // We have the "%g" format and so precision means the number of significant // digits, not the number of digits after the decimal separator. Perform // rounding and determine whether to use "%e" or "%f". int32_t e_threshold = 0; if (options & WUFFS_BASE__RENDER_NUMBER_FXX__JUST_ENOUGH_PRECISION) { wuffs_base__private_implementation__high_prec_dec__round_just_enough( &h, exp2, man); precision = h.num_digits; e_threshold = 6; } else { if (precision == 0) { precision = 1; } wuffs_base__private_implementation__high_prec_dec__round_nearest( &h, ((int32_t)precision)); e_threshold = ((int32_t)precision); int32_t nd = ((int32_t)(h.num_digits)); if ((e_threshold > nd) && (nd >= h.decimal_point)) { e_threshold = nd; } } // Use the "%e" format if the exponent is large. int32_t e = h.decimal_point - 1; if ((e < -4) || (e_threshold <= e)) { uint32_t p = wuffs_base__u32__min(precision, h.num_digits); return wuffs_base__private_implementation__high_prec_dec__render_exponent_present( dst, &h, (p > 0) ? (p - 1) : 0, options); } // Use the "%f" format otherwise. int32_t p = ((int32_t)precision); if (p > h.decimal_point) { p = ((int32_t)(h.num_digits)); } precision = ((uint32_t)(wuffs_base__i32__max(0, p - h.decimal_point))); return wuffs_base__private_implementation__high_prec_dec__render_exponent_absent( dst, &h, precision, options); } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__FLOATCONV) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__INTCONV) // ---------------- Integer // wuffs_base__parse_number__foo_digits entries are 0x00 for invalid digits, // and (0x80 | v) for valid digits, where v is the 4 bit value. static const uint8_t wuffs_base__parse_number__decimal_digits[256] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 ..= 0x07. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x08 ..= 0x0F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x10 ..= 0x17. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x18 ..= 0x1F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20 ..= 0x27. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x28 ..= 0x2F. 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, // 0x30 ..= 0x37. '0'-'7'. 0x88, 0x89, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x38 ..= 0x3F. '8'-'9'. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x40 ..= 0x47. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x48 ..= 0x4F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x50 ..= 0x57. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x58 ..= 0x5F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x60 ..= 0x67. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x68 ..= 0x6F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x70 ..= 0x77. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x78 ..= 0x7F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x80 ..= 0x87. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x88 ..= 0x8F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x90 ..= 0x97. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x98 ..= 0x9F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA0 ..= 0xA7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA8 ..= 0xAF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB0 ..= 0xB7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB8 ..= 0xBF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC0 ..= 0xC7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC8 ..= 0xCF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD0 ..= 0xD7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD8 ..= 0xDF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE0 ..= 0xE7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE8 ..= 0xEF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF0 ..= 0xF7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF8 ..= 0xFF. // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F }; static const uint8_t wuffs_base__parse_number__hexadecimal_digits[256] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 ..= 0x07. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x08 ..= 0x0F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x10 ..= 0x17. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x18 ..= 0x1F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20 ..= 0x27. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x28 ..= 0x2F. 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, // 0x30 ..= 0x37. '0'-'7'. 0x88, 0x89, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x38 ..= 0x3F. '8'-'9'. 0x00, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x00, // 0x40 ..= 0x47. 'A'-'F'. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x48 ..= 0x4F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x50 ..= 0x57. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x58 ..= 0x5F. 0x00, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x00, // 0x60 ..= 0x67. 'a'-'f'. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x68 ..= 0x6F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x70 ..= 0x77. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x78 ..= 0x7F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x80 ..= 0x87. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x88 ..= 0x8F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x90 ..= 0x97. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x98 ..= 0x9F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA0 ..= 0xA7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xA8 ..= 0xAF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB0 ..= 0xB7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xB8 ..= 0xBF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC0 ..= 0xC7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xC8 ..= 0xCF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD0 ..= 0xD7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xD8 ..= 0xDF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE0 ..= 0xE7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xE8 ..= 0xEF. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF0 ..= 0xF7. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0xF8 ..= 0xFF. // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F }; static const uint8_t wuffs_base__private_implementation__encode_base16[16] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, // 0x00 ..= 0x07. 0x38, 0x39, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, // 0x08 ..= 0x0F. }; // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__result_i64 // wuffs_base__parse_number_i64(wuffs_base__slice_u8 s, uint32_t options) { uint8_t* p = s.ptr; uint8_t* q = s.ptr + s.len; if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (; (p < q) && (*p == '_'); p++) { } } bool negative = false; if (p >= q) { goto fail_bad_argument; } else if (*p == '-') { p++; negative = true; } else if (*p == '+') { p++; } do { wuffs_base__result_u64 r = wuffs_base__parse_number_u64( wuffs_base__make_slice_u8(p, (size_t)(q - p)), options); if (r.status.repr != NULL) { wuffs_base__result_i64 ret; ret.status.repr = r.status.repr; ret.value = 0; return ret; } else if (negative) { if (r.value < 0x8000000000000000) { wuffs_base__result_i64 ret; ret.status.repr = NULL; ret.value = -(int64_t)(r.value); return ret; } else if (r.value == 0x8000000000000000) { wuffs_base__result_i64 ret; ret.status.repr = NULL; ret.value = INT64_MIN; return ret; } goto fail_out_of_bounds; } else if (r.value > 0x7FFFFFFFFFFFFFFF) { goto fail_out_of_bounds; } else { wuffs_base__result_i64 ret; ret.status.repr = NULL; ret.value = +(int64_t)(r.value); return ret; } } while (0); fail_bad_argument: do { wuffs_base__result_i64 ret; ret.status.repr = wuffs_base__error__bad_argument; ret.value = 0; return ret; } while (0); fail_out_of_bounds: do { wuffs_base__result_i64 ret; ret.status.repr = wuffs_base__error__out_of_bounds; ret.value = 0; return ret; } while (0); } WUFFS_BASE__MAYBE_STATIC wuffs_base__result_u64 // wuffs_base__parse_number_u64(wuffs_base__slice_u8 s, uint32_t options) { uint8_t* p = s.ptr; uint8_t* q = s.ptr + s.len; if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (; (p < q) && (*p == '_'); p++) { } } if (p >= q) { goto fail_bad_argument; } else if (*p == '0') { p++; if (p >= q) { goto ok_zero; } if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { if (*p == '_') { p++; for (; p < q; p++) { if (*p != '_') { if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES) { goto decimal; } goto fail_bad_argument; } } goto ok_zero; } } if ((*p == 'x') || (*p == 'X')) { p++; if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (; (p < q) && (*p == '_'); p++) { } } if (p < q) { goto hexadecimal; } } else if ((*p == 'd') || (*p == 'D')) { p++; if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES) { for (; (p < q) && (*p == '_'); p++) { } } if (p < q) { goto decimal; } } if (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_MULTIPLE_LEADING_ZEROES) { goto decimal; } goto fail_bad_argument; } decimal: do { uint64_t v = wuffs_base__parse_number__decimal_digits[*p++]; if (v == 0) { goto fail_bad_argument; } v &= 0x0F; // UINT64_MAX is 18446744073709551615, which is ((10 * max10) + max1). const uint64_t max10 = 1844674407370955161u; const uint8_t max1 = 5; for (; p < q; p++) { if ((*p == '_') && (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { continue; } uint8_t digit = wuffs_base__parse_number__decimal_digits[*p]; if (digit == 0) { goto fail_bad_argument; } digit &= 0x0F; if ((v > max10) || ((v == max10) && (digit > max1))) { goto fail_out_of_bounds; } v = (10 * v) + ((uint64_t)(digit)); } wuffs_base__result_u64 ret; ret.status.repr = NULL; ret.value = v; return ret; } while (0); hexadecimal: do { uint64_t v = wuffs_base__parse_number__hexadecimal_digits[*p++]; if (v == 0) { goto fail_bad_argument; } v &= 0x0F; for (; p < q; p++) { if ((*p == '_') && (options & WUFFS_BASE__PARSE_NUMBER_XXX__ALLOW_UNDERSCORES)) { continue; } uint8_t digit = wuffs_base__parse_number__hexadecimal_digits[*p]; if (digit == 0) { goto fail_bad_argument; } digit &= 0x0F; if ((v >> 60) != 0) { goto fail_out_of_bounds; } v = (v << 4) | ((uint64_t)(digit)); } wuffs_base__result_u64 ret; ret.status.repr = NULL; ret.value = v; return ret; } while (0); ok_zero: do { wuffs_base__result_u64 ret; ret.status.repr = NULL; ret.value = 0; return ret; } while (0); fail_bad_argument: do { wuffs_base__result_u64 ret; ret.status.repr = wuffs_base__error__bad_argument; ret.value = 0; return ret; } while (0); fail_out_of_bounds: do { wuffs_base__result_u64 ret; ret.status.repr = wuffs_base__error__out_of_bounds; ret.value = 0; return ret; } while (0); } // -------- // wuffs_base__render_number__first_hundred contains the decimal encodings of // the first one hundred numbers [0 ..= 99]. static const uint8_t wuffs_base__render_number__first_hundred[200] = { '0', '0', '0', '1', '0', '2', '0', '3', '0', '4', // '0', '5', '0', '6', '0', '7', '0', '8', '0', '9', // '1', '0', '1', '1', '1', '2', '1', '3', '1', '4', // '1', '5', '1', '6', '1', '7', '1', '8', '1', '9', // '2', '0', '2', '1', '2', '2', '2', '3', '2', '4', // '2', '5', '2', '6', '2', '7', '2', '8', '2', '9', // '3', '0', '3', '1', '3', '2', '3', '3', '3', '4', // '3', '5', '3', '6', '3', '7', '3', '8', '3', '9', // '4', '0', '4', '1', '4', '2', '4', '3', '4', '4', // '4', '5', '4', '6', '4', '7', '4', '8', '4', '9', // '5', '0', '5', '1', '5', '2', '5', '3', '5', '4', // '5', '5', '5', '6', '5', '7', '5', '8', '5', '9', // '6', '0', '6', '1', '6', '2', '6', '3', '6', '4', // '6', '5', '6', '6', '6', '7', '6', '8', '6', '9', // '7', '0', '7', '1', '7', '2', '7', '3', '7', '4', // '7', '5', '7', '6', '7', '7', '7', '8', '7', '9', // '8', '0', '8', '1', '8', '2', '8', '3', '8', '4', // '8', '5', '8', '6', '8', '7', '8', '8', '8', '9', // '9', '0', '9', '1', '9', '2', '9', '3', '9', '4', // '9', '5', '9', '6', '9', '7', '9', '8', '9', '9', // }; static size_t // wuffs_base__private_implementation__render_number_u64(wuffs_base__slice_u8 dst, uint64_t x, uint32_t options, bool neg) { uint8_t buf[WUFFS_BASE__U64__BYTE_LENGTH__MAX_INCL]; uint8_t* ptr = &buf[0] + sizeof(buf); while (x >= 100) { size_t index = ((size_t)((x % 100) * 2)); x /= 100; uint8_t s0 = wuffs_base__render_number__first_hundred[index + 0]; uint8_t s1 = wuffs_base__render_number__first_hundred[index + 1]; ptr -= 2; ptr[0] = s0; ptr[1] = s1; } if (x < 10) { ptr -= 1; ptr[0] = (uint8_t)('0' + x); } else { size_t index = ((size_t)(x * 2)); uint8_t s0 = wuffs_base__render_number__first_hundred[index + 0]; uint8_t s1 = wuffs_base__render_number__first_hundred[index + 1]; ptr -= 2; ptr[0] = s0; ptr[1] = s1; } if (neg) { ptr -= 1; ptr[0] = '-'; } else if (options & WUFFS_BASE__RENDER_NUMBER_XXX__LEADING_PLUS_SIGN) { ptr -= 1; ptr[0] = '+'; } size_t n = sizeof(buf) - ((size_t)(ptr - &buf[0])); if (n > dst.len) { return 0; } memcpy(dst.ptr + ((options & WUFFS_BASE__RENDER_NUMBER_XXX__ALIGN_RIGHT) ? (dst.len - n) : 0), ptr, n); return n; } WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_i64(wuffs_base__slice_u8 dst, int64_t x, uint32_t options) { uint64_t u = (uint64_t)x; bool neg = x < 0; if (neg) { u = 1 + ~u; } return wuffs_base__private_implementation__render_number_u64(dst, u, options, neg); } WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__render_number_u64(wuffs_base__slice_u8 dst, uint64_t x, uint32_t options) { return wuffs_base__private_implementation__render_number_u64(dst, x, options, false); } // ---------------- Base-16 WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__decode2(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { wuffs_base__transform__output o; size_t src_len2 = src.len / 2; size_t len; if (dst.len < src_len2) { len = dst.len; o.status.repr = wuffs_base__suspension__short_write; } else { len = src_len2; if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; } else if (src.len & 1) { o.status.repr = wuffs_base__error__bad_data; } else { o.status.repr = NULL; } } uint8_t* d = dst.ptr; uint8_t* s = src.ptr; size_t n = len; while (n--) { *d = (uint8_t)((wuffs_base__parse_number__hexadecimal_digits[s[0]] << 4) | (wuffs_base__parse_number__hexadecimal_digits[s[1]] & 0x0F)); d += 1; s += 2; } o.num_dst = len; o.num_src = len * 2; return o; } WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__decode4(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { wuffs_base__transform__output o; size_t src_len4 = src.len / 4; size_t len = dst.len < src_len4 ? dst.len : src_len4; if (dst.len < src_len4) { len = dst.len; o.status.repr = wuffs_base__suspension__short_write; } else { len = src_len4; if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; } else if (src.len & 1) { o.status.repr = wuffs_base__error__bad_data; } else { o.status.repr = NULL; } } uint8_t* d = dst.ptr; uint8_t* s = src.ptr; size_t n = len; while (n--) { *d = (uint8_t)((wuffs_base__parse_number__hexadecimal_digits[s[2]] << 4) | (wuffs_base__parse_number__hexadecimal_digits[s[3]] & 0x0F)); d += 1; s += 4; } o.num_dst = len; o.num_src = len * 4; return o; } WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__encode2(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { wuffs_base__transform__output o; size_t dst_len2 = dst.len / 2; size_t len; if (dst_len2 < src.len) { len = dst_len2; o.status.repr = wuffs_base__suspension__short_write; } else { len = src.len; if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; } else { o.status.repr = NULL; } } uint8_t* d = dst.ptr; uint8_t* s = src.ptr; size_t n = len; while (n--) { uint8_t c = *s; d[0] = wuffs_base__private_implementation__encode_base16[c >> 4]; d[1] = wuffs_base__private_implementation__encode_base16[c & 0x0F]; d += 2; s += 1; } o.num_dst = len * 2; o.num_src = len; return o; } WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_16__encode4(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { wuffs_base__transform__output o; size_t dst_len4 = dst.len / 4; size_t len; if (dst_len4 < src.len) { len = dst_len4; o.status.repr = wuffs_base__suspension__short_write; } else { len = src.len; if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; } else { o.status.repr = NULL; } } uint8_t* d = dst.ptr; uint8_t* s = src.ptr; size_t n = len; while (n--) { uint8_t c = *s; d[0] = '\\'; d[1] = 'x'; d[2] = wuffs_base__private_implementation__encode_base16[c >> 4]; d[3] = wuffs_base__private_implementation__encode_base16[c & 0x0F]; d += 4; s += 1; } o.num_dst = len * 4; o.num_src = len; return o; } // ---------------- Base-64 // The two base-64 alphabets, std and url, differ only in the last two codes. // - std: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" // - url: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_" static const uint8_t wuffs_base__base_64__decode_std[256] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x00 ..= 0x07. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x08 ..= 0x0F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x10 ..= 0x17. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x18 ..= 0x1F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x20 ..= 0x27. 0x80, 0x80, 0x80, 0x3E, 0x80, 0x80, 0x80, 0x3F, // 0x28 ..= 0x2F. 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, // 0x30 ..= 0x37. 0x3C, 0x3D, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x38 ..= 0x3F. 0x80, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, // 0x40 ..= 0x47. 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, // 0x48 ..= 0x4F. 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, // 0x50 ..= 0x57. 0x17, 0x18, 0x19, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x58 ..= 0x5F. 0x80, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, // 0x60 ..= 0x67. 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, // 0x68 ..= 0x6F. 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, // 0x70 ..= 0x77. 0x31, 0x32, 0x33, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x78 ..= 0x7F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x80 ..= 0x87. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x88 ..= 0x8F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x90 ..= 0x97. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x98 ..= 0x9F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xA0 ..= 0xA7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xA8 ..= 0xAF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xB0 ..= 0xB7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xB8 ..= 0xBF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xC0 ..= 0xC7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xC8 ..= 0xCF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xD0 ..= 0xD7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xD8 ..= 0xDF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xE0 ..= 0xE7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xE8 ..= 0xEF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xF0 ..= 0xF7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xF8 ..= 0xFF. // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F }; static const uint8_t wuffs_base__base_64__decode_url[256] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x00 ..= 0x07. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x08 ..= 0x0F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x10 ..= 0x17. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x18 ..= 0x1F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x20 ..= 0x27. 0x80, 0x80, 0x80, 0x80, 0x80, 0x3E, 0x80, 0x80, // 0x28 ..= 0x2F. 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, // 0x30 ..= 0x37. 0x3C, 0x3D, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x38 ..= 0x3F. 0x80, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, // 0x40 ..= 0x47. 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, // 0x48 ..= 0x4F. 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, // 0x50 ..= 0x57. 0x17, 0x18, 0x19, 0x80, 0x80, 0x80, 0x80, 0x3F, // 0x58 ..= 0x5F. 0x80, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, // 0x60 ..= 0x67. 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, // 0x68 ..= 0x6F. 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, // 0x70 ..= 0x77. 0x31, 0x32, 0x33, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x78 ..= 0x7F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x80 ..= 0x87. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x88 ..= 0x8F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x90 ..= 0x97. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0x98 ..= 0x9F. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xA0 ..= 0xA7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xA8 ..= 0xAF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xB0 ..= 0xB7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xB8 ..= 0xBF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xC0 ..= 0xC7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xC8 ..= 0xCF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xD0 ..= 0xD7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xD8 ..= 0xDF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xE0 ..= 0xE7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xE8 ..= 0xEF. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xF0 ..= 0xF7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xF8 ..= 0xFF. // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F }; static const uint8_t wuffs_base__base_64__encode_std[64] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, // 0x00 ..= 0x07. 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, // 0x08 ..= 0x0F. 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, // 0x10 ..= 0x17. 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, // 0x18 ..= 0x1F. 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, // 0x20 ..= 0x27. 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, // 0x28 ..= 0x2F. 0x77, 0x78, 0x79, 0x7A, 0x30, 0x31, 0x32, 0x33, // 0x30 ..= 0x37. 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x2B, 0x2F, // 0x38 ..= 0x3F. }; static const uint8_t wuffs_base__base_64__encode_url[64] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, // 0x00 ..= 0x07. 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, // 0x08 ..= 0x0F. 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, // 0x10 ..= 0x17. 0x59, 0x5A, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, // 0x18 ..= 0x1F. 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, // 0x20 ..= 0x27. 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, // 0x28 ..= 0x2F. 0x77, 0x78, 0x79, 0x7A, 0x30, 0x31, 0x32, 0x33, // 0x30 ..= 0x37. 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x2D, 0x5F, // 0x38 ..= 0x3F. }; // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_64__decode(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { const uint8_t* alphabet = (options & WUFFS_BASE__BASE_64__URL_ALPHABET) ? wuffs_base__base_64__decode_url : wuffs_base__base_64__decode_std; wuffs_base__transform__output o; uint8_t* d_ptr = dst.ptr; size_t d_len = dst.len; const uint8_t* s_ptr = src.ptr; size_t s_len = src.len; bool pad = false; while (s_len >= 4) { uint32_t s = wuffs_base__peek_u32le__no_bounds_check(s_ptr); uint32_t s0 = alphabet[0xFF & (s >> 0)]; uint32_t s1 = alphabet[0xFF & (s >> 8)]; uint32_t s2 = alphabet[0xFF & (s >> 16)]; uint32_t s3 = alphabet[0xFF & (s >> 24)]; if (((s0 | s1 | s2 | s3) & 0xC0) != 0) { if (s_len > 4) { o.status.repr = wuffs_base__error__bad_data; goto done; } else if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; goto done; } else if ((options & WUFFS_BASE__BASE_64__DECODE_ALLOW_PADDING) && (s_ptr[3] == '=')) { pad = true; if (s_ptr[2] == '=') { goto src2; } goto src3; } o.status.repr = wuffs_base__error__bad_data; goto done; } if (d_len < 3) { o.status.repr = wuffs_base__suspension__short_write; goto done; } s_ptr += 4; s_len -= 4; s = (s0 << 18) | (s1 << 12) | (s2 << 6) | (s3 << 0); *d_ptr++ = (uint8_t)(s >> 16); *d_ptr++ = (uint8_t)(s >> 8); *d_ptr++ = (uint8_t)(s >> 0); d_len -= 3; } if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; goto done; } if (s_len == 0) { o.status.repr = NULL; goto done; } else if (s_len == 1) { o.status.repr = wuffs_base__error__bad_data; goto done; } else if (s_len == 2) { goto src2; } src3: do { uint32_t s = wuffs_base__peek_u24le__no_bounds_check(s_ptr); uint32_t s0 = alphabet[0xFF & (s >> 0)]; uint32_t s1 = alphabet[0xFF & (s >> 8)]; uint32_t s2 = alphabet[0xFF & (s >> 16)]; if ((s0 & 0xC0) || (s1 & 0xC0) || (s2 & 0xC3)) { o.status.repr = wuffs_base__error__bad_data; goto done; } if (d_len < 2) { o.status.repr = wuffs_base__suspension__short_write; goto done; } s_ptr += pad ? 4 : 3; s = (s0 << 18) | (s1 << 12) | (s2 << 6); *d_ptr++ = (uint8_t)(s >> 16); *d_ptr++ = (uint8_t)(s >> 8); o.status.repr = NULL; goto done; } while (0); src2: do { uint32_t s = wuffs_base__peek_u16le__no_bounds_check(s_ptr); uint32_t s0 = alphabet[0xFF & (s >> 0)]; uint32_t s1 = alphabet[0xFF & (s >> 8)]; if ((s0 & 0xC0) || (s1 & 0xCF)) { o.status.repr = wuffs_base__error__bad_data; goto done; } if (d_len < 1) { o.status.repr = wuffs_base__suspension__short_write; goto done; } s_ptr += pad ? 4 : 2; s = (s0 << 18) | (s1 << 12); *d_ptr++ = (uint8_t)(s >> 16); o.status.repr = NULL; goto done; } while (0); done: o.num_dst = (size_t)(d_ptr - dst.ptr); o.num_src = (size_t)(s_ptr - src.ptr); return o; } WUFFS_BASE__MAYBE_STATIC wuffs_base__transform__output // wuffs_base__base_64__encode(wuffs_base__slice_u8 dst, wuffs_base__slice_u8 src, bool src_closed, uint32_t options) { const uint8_t* alphabet = (options & WUFFS_BASE__BASE_64__URL_ALPHABET) ? wuffs_base__base_64__encode_url : wuffs_base__base_64__encode_std; wuffs_base__transform__output o; uint8_t* d_ptr = dst.ptr; size_t d_len = dst.len; const uint8_t* s_ptr = src.ptr; size_t s_len = src.len; do { while (s_len >= 3) { if (d_len < 4) { o.status.repr = wuffs_base__suspension__short_write; goto done; } uint32_t s = wuffs_base__peek_u24be__no_bounds_check(s_ptr); s_ptr += 3; s_len -= 3; *d_ptr++ = alphabet[0x3F & (s >> 18)]; *d_ptr++ = alphabet[0x3F & (s >> 12)]; *d_ptr++ = alphabet[0x3F & (s >> 6)]; *d_ptr++ = alphabet[0x3F & (s >> 0)]; d_len -= 4; } if (!src_closed) { o.status.repr = wuffs_base__suspension__short_read; goto done; } if (s_len == 2) { if (d_len < ((options & WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING) ? 4 : 3)) { o.status.repr = wuffs_base__suspension__short_write; goto done; } uint32_t s = ((uint32_t)(wuffs_base__peek_u16be__no_bounds_check(s_ptr))) << 8; s_ptr += 2; *d_ptr++ = alphabet[0x3F & (s >> 18)]; *d_ptr++ = alphabet[0x3F & (s >> 12)]; *d_ptr++ = alphabet[0x3F & (s >> 6)]; if (options & WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING) { *d_ptr++ = '='; } o.status.repr = NULL; goto done; } else if (s_len == 1) { if (d_len < ((options & WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING) ? 4 : 2)) { o.status.repr = wuffs_base__suspension__short_write; goto done; } uint32_t s = ((uint32_t)(wuffs_base__peek_u8__no_bounds_check(s_ptr))) << 16; s_ptr += 1; *d_ptr++ = alphabet[0x3F & (s >> 18)]; *d_ptr++ = alphabet[0x3F & (s >> 12)]; if (options & WUFFS_BASE__BASE_64__ENCODE_EMIT_PADDING) { *d_ptr++ = '='; *d_ptr++ = '='; } o.status.repr = NULL; goto done; } else { o.status.repr = NULL; goto done; } } while (0); done: o.num_dst = (size_t)(d_ptr - dst.ptr); o.num_src = (size_t)(s_ptr - src.ptr); return o; } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__INTCONV) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__MAGIC) // ---------------- Magic Numbers // ICO doesn't start with a magic identifier. Instead, see if the opening bytes // are plausibly ICO. // // Callers should have already verified that (prefix_data.len >= 2) and the // first two bytes are 0x00. // // See: // - https://docs.fileformat.com/image/ico/ static int32_t // wuffs_base__magic_number_guess_fourcc__maybe_ico( wuffs_base__slice_u8 prefix_data, bool prefix_closed) { // Allow-list for the Image Type field. if (prefix_data.len < 4) { return prefix_closed ? 0 : -1; } else if (prefix_data.ptr[3] != 0) { return 0; } switch (prefix_data.ptr[2]) { case 0x01: // ICO case 0x02: // CUR break; default: return 0; } // The Number Of Images should be positive. if (prefix_data.len < 6) { return prefix_closed ? 0 : -1; } else if ((prefix_data.ptr[4] == 0) && (prefix_data.ptr[5] == 0)) { return 0; } // The first ICONDIRENTRY's fourth byte should be zero. if (prefix_data.len < 10) { return prefix_closed ? 0 : -1; } else if (prefix_data.ptr[9] != 0) { return 0; } // TODO: have a separate FourCC for CUR? return 0x49434F20; // 'ICO 'be } // TGA doesn't start with a magic identifier. Instead, see if the opening bytes // are plausibly TGA. // // Callers should have already verified that (prefix_data.len >= 2) and the // second byte (prefix_data.ptr[1], the Color Map Type byte), is either 0x00 or // 0x01. // // See: // - https://docs.fileformat.com/image/tga/ // - https://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf static int32_t // wuffs_base__magic_number_guess_fourcc__maybe_tga( wuffs_base__slice_u8 prefix_data, bool prefix_closed) { // Allow-list for the Image Type field. if (prefix_data.len < 3) { return prefix_closed ? 0 : -1; } switch (prefix_data.ptr[2]) { case 0x01: case 0x02: case 0x03: case 0x09: case 0x0A: case 0x0B: break; default: // TODO: 0x20 and 0x21 are invalid, according to the spec, but are // apparently unofficial extensions. return 0; } // Allow-list for the Color Map Entry Size field (if the Color Map Type field // is non-zero) or else all the Color Map fields should be zero. if (prefix_data.len < 8) { return prefix_closed ? 0 : -1; } else if (prefix_data.ptr[1] != 0x00) { switch (prefix_data.ptr[7]) { case 0x0F: case 0x10: case 0x18: case 0x20: break; default: return 0; } } else if ((prefix_data.ptr[3] | prefix_data.ptr[4] | prefix_data.ptr[5] | prefix_data.ptr[6] | prefix_data.ptr[7]) != 0x00) { return 0; } // Allow-list for the Pixel Depth field. if (prefix_data.len < 17) { return prefix_closed ? 0 : -1; } switch (prefix_data.ptr[16]) { case 0x01: case 0x08: case 0x0F: case 0x10: case 0x18: case 0x20: break; default: return 0; } return 0x54474120; // 'TGA 'be } WUFFS_BASE__MAYBE_STATIC int32_t // wuffs_base__magic_number_guess_fourcc(wuffs_base__slice_u8 prefix_data, bool prefix_closed) { // This is similar to (but different from): // - the magic/Magdir tables under https://github.com/file/file // - the MIME Sniffing algorithm at https://mimesniff.spec.whatwg.org/ // table holds the 'magic numbers' (which are actually variable length // strings). The strings may contain NUL bytes, so the "const char* magic" // value starts with the length-minus-1 of the 'magic number'. // // Keep it sorted by magic[1], then magic[0] descending (prioritizing longer // matches) and finally by magic[2:]. When multiple entries match, the // longest one wins. // // The fourcc field might be negated, in which case there's further // specialization (see § below). static struct { int32_t fourcc; const char* magic; } table[] = { {-0x30302020, "\x01\x00\x00"}, // '00 'be {+0x475A2020, "\x02\x1F\x8B\x08"}, // GZ {+0x5A535444, "\x03\x28\xB5\x2F\xFD"}, // ZSTD {+0x425A3220, "\x02\x42\x5A\x68"}, // BZ2 {+0x424D5020, "\x01\x42\x4D"}, // BMP {+0x47494620, "\x03\x47\x49\x46\x38"}, // GIF {+0x54494646, "\x03\x49\x49\x2A\x00"}, // TIFF (little-endian) {+0x54494646, "\x03\x4D\x4D\x00\x2A"}, // TIFF (big-endian) {-0x52494646, "\x03\x52\x49\x46\x46"}, // RIFF {+0x4E494520, "\x02\x6E\xC3\xAF"}, // NIE {+0x514F4920, "\x03\x71\x6F\x69\x66"}, // QOI {+0x5A4C4942, "\x01\x78\x9C"}, // ZLIB {+0x504E4720, "\x03\x89\x50\x4E\x47"}, // PNG {+0x4A504547, "\x01\xFF\xD8"}, // JPEG }; static const size_t table_len = sizeof(table) / sizeof(table[0]); if (prefix_data.len == 0) { return prefix_closed ? 0 : -1; } uint8_t pre_first_byte = prefix_data.ptr[0]; int32_t fourcc = 0; size_t i; for (i = 0; i < table_len; i++) { uint8_t mag_first_byte = ((uint8_t)(table[i].magic[1])); if (pre_first_byte < mag_first_byte) { break; } else if (pre_first_byte > mag_first_byte) { continue; } fourcc = table[i].fourcc; uint8_t mag_remaining_len = ((uint8_t)(table[i].magic[0])); if (mag_remaining_len == 0) { goto match; } const char* mag_remaining_ptr = table[i].magic + 2; uint8_t* pre_remaining_ptr = prefix_data.ptr + 1; size_t pre_remaining_len = prefix_data.len - 1; if (pre_remaining_len < mag_remaining_len) { if (!memcmp(pre_remaining_ptr, mag_remaining_ptr, pre_remaining_len)) { return prefix_closed ? 0 : -1; } } else { if (!memcmp(pre_remaining_ptr, mag_remaining_ptr, mag_remaining_len)) { goto match; } } } if (prefix_data.len < 2) { return prefix_closed ? 0 : -1; } else if ((prefix_data.ptr[1] == 0x00) || (prefix_data.ptr[1] == 0x01)) { return wuffs_base__magic_number_guess_fourcc__maybe_tga(prefix_data, prefix_closed); } return 0; match: // Negative FourCC values (see § above) are further specialized. if (fourcc < 0) { fourcc = -fourcc; if (fourcc == 0x52494646) { // 'RIFF'be if (prefix_data.len < 12) { return prefix_closed ? 0 : -1; } uint32_t x = wuffs_base__peek_u32be__no_bounds_check(prefix_data.ptr + 8); if (x == 0x57454250) { // 'WEBP'be return 0x57454250; // 'WEBP'be } } else if (fourcc == 0x30302020) { // '00 'be // Binary data starting with multiple 0x00 NUL bytes is quite common. // Unfortunately, some file formats also don't start with a magic // identifier, so we have to use heuristics (where the order matters, the // same as /usr/bin/file's magic/Magdir tables) as best we can. Maybe // it's TGA, ICO/CUR, etc. Maybe it's something else. int32_t tga = wuffs_base__magic_number_guess_fourcc__maybe_tga( prefix_data, prefix_closed); if (tga != 0) { return tga; } int32_t ico = wuffs_base__magic_number_guess_fourcc__maybe_ico( prefix_data, prefix_closed); if (ico != 0) { return ico; } if (prefix_data.len < 4) { return prefix_closed ? 0 : -1; } else if ((prefix_data.ptr[2] != 0x00) && ((prefix_data.ptr[2] >= 0x80) || (prefix_data.ptr[3] != 0x00))) { // Roughly speaking, this could be a non-degenerate (non-0-width and // non-0-height) WBMP image. return 0x57424D50; // 'WBMP'be } return 0; } } return fourcc; } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__MAGIC) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__PIXCONV) // ---------------- Pixel Swizzler static inline uint32_t // wuffs_base__swap_u32_argb_abgr(uint32_t u) { uint32_t o = u & 0xFF00FF00ul; uint32_t r = u & 0x00FF0000ul; uint32_t b = u & 0x000000FFul; return o | (r >> 16) | (b << 16); } static inline uint64_t // wuffs_base__swap_u64_argb_abgr(uint64_t u) { uint64_t o = u & 0xFFFF0000FFFF0000ull; uint64_t r = u & 0x0000FFFF00000000ull; uint64_t b = u & 0x000000000000FFFFull; return o | (r >> 32) | (b << 32); } static inline uint32_t // wuffs_base__color_u64__as__color_u32__swap_u32_argb_abgr(uint64_t c) { uint32_t a = ((uint32_t)(0xFF & (c >> 56))); uint32_t r = ((uint32_t)(0xFF & (c >> 40))); uint32_t g = ((uint32_t)(0xFF & (c >> 24))); uint32_t b = ((uint32_t)(0xFF & (c >> 8))); return (a << 24) | (b << 16) | (g << 8) | (r << 0); } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__color_u32_argb_premul // wuffs_base__pixel_buffer__color_u32_at(const wuffs_base__pixel_buffer* pb, uint32_t x, uint32_t y) { if (!pb || (x >= pb->pixcfg.private_impl.width) || (y >= pb->pixcfg.private_impl.height)) { return 0; } if (wuffs_base__pixel_format__is_planar(&pb->pixcfg.private_impl.pixfmt)) { // TODO: support planar formats. return 0; } size_t stride = pb->private_impl.planes[0].stride; const uint8_t* row = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)); switch (pb->pixcfg.private_impl.pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: return wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x))); case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY: { uint8_t* palette = pb->private_impl.planes[3].ptr; return wuffs_base__peek_u32le__no_bounds_check(palette + (4 * ((size_t)row[x]))); } // Common formats above. Rarer formats below. case WUFFS_BASE__PIXEL_FORMAT__Y: return 0xFF000000 | (0x00010101 * ((uint32_t)(row[x]))); case WUFFS_BASE__PIXEL_FORMAT__Y_16LE: return 0xFF000000 | (0x00010101 * ((uint32_t)(row[(2 * x) + 1]))); case WUFFS_BASE__PIXEL_FORMAT__Y_16BE: return 0xFF000000 | (0x00010101 * ((uint32_t)(row[(2 * x) + 0]))); case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: { uint8_t* palette = pb->private_impl.planes[3].ptr; return wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(palette + (4 * ((size_t)row[x])))); } case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(row + (2 * ((size_t)x)))); case WUFFS_BASE__PIXEL_FORMAT__BGR: return 0xFF000000 | wuffs_base__peek_u24le__no_bounds_check(row + (3 * ((size_t)x))); case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: return wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x)))); case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: return wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u64le__no_bounds_check(row + (8 * ((size_t)x)))); case WUFFS_BASE__PIXEL_FORMAT__BGRX: return 0xFF000000 | wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x))); case WUFFS_BASE__PIXEL_FORMAT__RGB: return wuffs_base__swap_u32_argb_abgr( 0xFF000000 | wuffs_base__peek_u24le__no_bounds_check(row + (3 * ((size_t)x)))); case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: return wuffs_base__swap_u32_argb_abgr( wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x))))); case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: return wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x)))); case WUFFS_BASE__PIXEL_FORMAT__RGBX: return wuffs_base__swap_u32_argb_abgr( 0xFF000000 | wuffs_base__peek_u32le__no_bounds_check(row + (4 * ((size_t)x)))); default: // TODO: support more formats. break; } return 0; } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_buffer__set_color_u32_at( wuffs_base__pixel_buffer* pb, uint32_t x, uint32_t y, wuffs_base__color_u32_argb_premul color) { if (!pb) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if ((x >= pb->pixcfg.private_impl.width) || (y >= pb->pixcfg.private_impl.height)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } if (wuffs_base__pixel_format__is_planar(&pb->pixcfg.private_impl.pixfmt)) { // TODO: support planar formats. return wuffs_base__make_status(wuffs_base__error__unsupported_option); } size_t stride = pb->private_impl.planes[0].stride; uint8_t* row = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)); switch (pb->pixcfg.private_impl.pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRX: wuffs_base__poke_u32le__no_bounds_check(row + (4 * ((size_t)x)), color); break; // Common formats above. Rarer formats below. case WUFFS_BASE__PIXEL_FORMAT__Y: wuffs_base__poke_u8__no_bounds_check( row + ((size_t)x), wuffs_base__color_u32_argb_premul__as__color_u8_gray(color)); break; case WUFFS_BASE__PIXEL_FORMAT__Y_16LE: wuffs_base__poke_u16le__no_bounds_check( row + (2 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u16_gray(color)); break; case WUFFS_BASE__PIXEL_FORMAT__Y_16BE: wuffs_base__poke_u16be__no_bounds_check( row + (2 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u16_gray(color)); break; case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY: wuffs_base__poke_u8__no_bounds_check( row + ((size_t)x), wuffs_base__pixel_palette__closest_element( wuffs_base__pixel_buffer__palette(pb), pb->pixcfg.private_impl.pixfmt, color)); break; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: wuffs_base__poke_u16le__no_bounds_check( row + (2 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565(color)); break; case WUFFS_BASE__PIXEL_FORMAT__BGR: wuffs_base__poke_u24le__no_bounds_check(row + (3 * ((size_t)x)), color); break; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: wuffs_base__poke_u32le__no_bounds_check( row + (4 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( color)); break; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: wuffs_base__poke_u64le__no_bounds_check( row + (8 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul( color)); break; case WUFFS_BASE__PIXEL_FORMAT__RGB: wuffs_base__poke_u24le__no_bounds_check( row + (3 * ((size_t)x)), wuffs_base__swap_u32_argb_abgr(color)); break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: wuffs_base__poke_u32le__no_bounds_check( row + (4 * ((size_t)x)), wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( wuffs_base__swap_u32_argb_abgr(color))); break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBX: wuffs_base__poke_u32le__no_bounds_check( row + (4 * ((size_t)x)), wuffs_base__swap_u32_argb_abgr(color)); break; default: // TODO: support more formats. return wuffs_base__make_status(wuffs_base__error__unsupported_option); } return wuffs_base__make_status(NULL); } // -------- static inline void // wuffs_base__pixel_buffer__set_color_u32_fill_rect__xx( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, uint16_t color) { size_t stride = pb->private_impl.planes[0].stride; uint32_t width = wuffs_base__rect_ie_u32__width(&rect); if ((stride == (2 * ((uint64_t)width))) && (rect.min_incl_x == 0)) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)rect.min_incl_y)); uint32_t height = wuffs_base__rect_ie_u32__height(&rect); size_t n; for (n = ((size_t)width) * ((size_t)height); n > 0; n--) { wuffs_base__poke_u16le__no_bounds_check(ptr, color); ptr += 2; } return; } uint32_t y; for (y = rect.min_incl_y; y < rect.max_excl_y; y++) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)) + (2 * ((size_t)rect.min_incl_x)); uint32_t n; for (n = width; n > 0; n--) { wuffs_base__poke_u16le__no_bounds_check(ptr, color); ptr += 2; } } } static inline void // wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxx( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, uint32_t color) { size_t stride = pb->private_impl.planes[0].stride; uint32_t width = wuffs_base__rect_ie_u32__width(&rect); if ((stride == (3 * ((uint64_t)width))) && (rect.min_incl_x == 0)) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)rect.min_incl_y)); uint32_t height = wuffs_base__rect_ie_u32__height(&rect); size_t n; for (n = ((size_t)width) * ((size_t)height); n > 0; n--) { wuffs_base__poke_u24le__no_bounds_check(ptr, color); ptr += 3; } return; } uint32_t y; for (y = rect.min_incl_y; y < rect.max_excl_y; y++) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)) + (3 * ((size_t)rect.min_incl_x)); uint32_t n; for (n = width; n > 0; n--) { wuffs_base__poke_u24le__no_bounds_check(ptr, color); ptr += 3; } } } static inline void // wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxx( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, uint32_t color) { size_t stride = pb->private_impl.planes[0].stride; uint32_t width = wuffs_base__rect_ie_u32__width(&rect); if ((stride == (4 * ((uint64_t)width))) && (rect.min_incl_x == 0)) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)rect.min_incl_y)); uint32_t height = wuffs_base__rect_ie_u32__height(&rect); size_t n; for (n = ((size_t)width) * ((size_t)height); n > 0; n--) { wuffs_base__poke_u32le__no_bounds_check(ptr, color); ptr += 4; } return; } uint32_t y; for (y = rect.min_incl_y; y < rect.max_excl_y; y++) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)) + (4 * ((size_t)rect.min_incl_x)); uint32_t n; for (n = width; n > 0; n--) { wuffs_base__poke_u32le__no_bounds_check(ptr, color); ptr += 4; } } } static inline void // wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxxxxxx( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, uint64_t color) { size_t stride = pb->private_impl.planes[0].stride; uint32_t width = wuffs_base__rect_ie_u32__width(&rect); if ((stride == (8 * ((uint64_t)width))) && (rect.min_incl_x == 0)) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)rect.min_incl_y)); uint32_t height = wuffs_base__rect_ie_u32__height(&rect); size_t n; for (n = ((size_t)width) * ((size_t)height); n > 0; n--) { wuffs_base__poke_u64le__no_bounds_check(ptr, color); ptr += 8; } return; } uint32_t y; for (y = rect.min_incl_y; y < rect.max_excl_y; y++) { uint8_t* ptr = pb->private_impl.planes[0].ptr + (stride * ((size_t)y)) + (8 * ((size_t)rect.min_incl_x)); uint32_t n; for (n = width; n > 0; n--) { wuffs_base__poke_u64le__no_bounds_check(ptr, color); ptr += 8; } } } WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_buffer__set_color_u32_fill_rect( wuffs_base__pixel_buffer* pb, wuffs_base__rect_ie_u32 rect, wuffs_base__color_u32_argb_premul color) { if (!pb) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } else if (wuffs_base__rect_ie_u32__is_empty(&rect)) { return wuffs_base__make_status(NULL); } wuffs_base__rect_ie_u32 bounds = wuffs_base__pixel_config__bounds(&pb->pixcfg); if (!wuffs_base__rect_ie_u32__contains_rect(&bounds, rect)) { return wuffs_base__make_status(wuffs_base__error__bad_argument); } if (wuffs_base__pixel_format__is_planar(&pb->pixcfg.private_impl.pixfmt)) { // TODO: support planar formats. return wuffs_base__make_status(wuffs_base__error__unsupported_option); } switch (pb->pixcfg.private_impl.pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRX: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxx(pb, rect, color); return wuffs_base__make_status(NULL); // Common formats above. Rarer formats below. case WUFFS_BASE__PIXEL_FORMAT__BGR_565: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xx( pb, rect, wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565(color)); return wuffs_base__make_status(NULL); case WUFFS_BASE__PIXEL_FORMAT__BGR: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxx(pb, rect, color); return wuffs_base__make_status(NULL); case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxx( pb, rect, wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( color)); return wuffs_base__make_status(NULL); case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxxxxxx( pb, rect, wuffs_base__color_u32_argb_premul__as__color_u64_argb_nonpremul( color)); return wuffs_base__make_status(NULL); case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxx( pb, rect, wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( wuffs_base__swap_u32_argb_abgr(color))); return wuffs_base__make_status(NULL); case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBX: wuffs_base__pixel_buffer__set_color_u32_fill_rect__xxxx( pb, rect, wuffs_base__swap_u32_argb_abgr(color)); return wuffs_base__make_status(NULL); } uint32_t y; for (y = rect.min_incl_y; y < rect.max_excl_y; y++) { uint32_t x; for (x = rect.min_incl_x; x < rect.max_excl_x; x++) { wuffs_base__pixel_buffer__set_color_u32_at(pb, x, y, color); } } return wuffs_base__make_status(NULL); } // -------- WUFFS_BASE__MAYBE_STATIC uint8_t // wuffs_base__pixel_palette__closest_element( wuffs_base__slice_u8 palette_slice, wuffs_base__pixel_format palette_format, wuffs_base__color_u32_argb_premul c) { size_t n = palette_slice.len / 4; if (n > (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { n = (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4); } size_t best_index = 0; uint64_t best_score = 0xFFFFFFFFFFFFFFFF; // Work in 16-bit color. uint32_t ca = 0x101 * (0xFF & (c >> 24)); uint32_t cr = 0x101 * (0xFF & (c >> 16)); uint32_t cg = 0x101 * (0xFF & (c >> 8)); uint32_t cb = 0x101 * (0xFF & (c >> 0)); switch (palette_format.repr) { case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY: { bool nonpremul = palette_format.repr == WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL; size_t i; for (i = 0; i < n; i++) { // Work in 16-bit color. uint32_t pb = 0x101 * ((uint32_t)(palette_slice.ptr[(4 * i) + 0])); uint32_t pg = 0x101 * ((uint32_t)(palette_slice.ptr[(4 * i) + 1])); uint32_t pr = 0x101 * ((uint32_t)(palette_slice.ptr[(4 * i) + 2])); uint32_t pa = 0x101 * ((uint32_t)(palette_slice.ptr[(4 * i) + 3])); // Convert to premultiplied alpha. if (nonpremul && (pa != 0xFFFF)) { pb = (pb * pa) / 0xFFFF; pg = (pg * pa) / 0xFFFF; pr = (pr * pa) / 0xFFFF; } // These deltas are conceptually int32_t (signed) but after squaring, // it's equivalent to work in uint32_t (unsigned). pb -= cb; pg -= cg; pr -= cr; pa -= ca; uint64_t score = ((uint64_t)(pb * pb)) + ((uint64_t)(pg * pg)) + ((uint64_t)(pr * pr)) + ((uint64_t)(pa * pa)); if (best_score > score) { best_score = score; best_index = i; } } break; } } return (uint8_t)best_index; } // -------- static inline uint32_t // wuffs_base__composite_nonpremul_nonpremul_u32_axxx(uint32_t dst_nonpremul, uint32_t src_nonpremul) { // Extract 16-bit color components. // // If the destination is transparent then SRC_OVER is equivalent to SRC: just // return src_nonpremul. This isn't just an optimization (skipping the rest // of the function's computation). It also preserves the nonpremul // distinction between e.g. transparent red and transparent blue that would // otherwise be lost by converting from nonpremul to premul and back. uint32_t da = 0x101 * (0xFF & (dst_nonpremul >> 24)); if (da == 0) { return src_nonpremul; } uint32_t dr = 0x101 * (0xFF & (dst_nonpremul >> 16)); uint32_t dg = 0x101 * (0xFF & (dst_nonpremul >> 8)); uint32_t db = 0x101 * (0xFF & (dst_nonpremul >> 0)); uint32_t sa = 0x101 * (0xFF & (src_nonpremul >> 24)); uint32_t sr = 0x101 * (0xFF & (src_nonpremul >> 16)); uint32_t sg = 0x101 * (0xFF & (src_nonpremul >> 8)); uint32_t sb = 0x101 * (0xFF & (src_nonpremul >> 0)); // Convert dst from nonpremul to premul. dr = (dr * da) / 0xFFFF; dg = (dg * da) / 0xFFFF; db = (db * da) / 0xFFFF; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert dst from premul to nonpremul. if (da != 0) { dr = (dr * 0xFFFF) / da; dg = (dg * 0xFFFF) / da; db = (db * 0xFFFF) / da; } // Convert from 16-bit color to 8-bit color. da >>= 8; dr >>= 8; dg >>= 8; db >>= 8; // Combine components. return (db << 0) | (dg << 8) | (dr << 16) | (da << 24); } static inline uint64_t // wuffs_base__composite_nonpremul_nonpremul_u64_axxx(uint64_t dst_nonpremul, uint64_t src_nonpremul) { // Extract components. // // If the destination is transparent then SRC_OVER is equivalent to SRC: just // return src_nonpremul. This isn't just an optimization (skipping the rest // of the function's computation). It also preserves the nonpremul // distinction between e.g. transparent red and transparent blue that would // otherwise be lost by converting from nonpremul to premul and back. uint64_t da = 0xFFFF & (dst_nonpremul >> 48); if (da == 0) { return src_nonpremul; } uint64_t dr = 0xFFFF & (dst_nonpremul >> 32); uint64_t dg = 0xFFFF & (dst_nonpremul >> 16); uint64_t db = 0xFFFF & (dst_nonpremul >> 0); uint64_t sa = 0xFFFF & (src_nonpremul >> 48); uint64_t sr = 0xFFFF & (src_nonpremul >> 32); uint64_t sg = 0xFFFF & (src_nonpremul >> 16); uint64_t sb = 0xFFFF & (src_nonpremul >> 0); // Convert dst from nonpremul to premul. dr = (dr * da) / 0xFFFF; dg = (dg * da) / 0xFFFF; db = (db * da) / 0xFFFF; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint64_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert dst from premul to nonpremul. if (da != 0) { dr = (dr * 0xFFFF) / da; dg = (dg * 0xFFFF) / da; db = (db * 0xFFFF) / da; } // Combine components. return (db << 0) | (dg << 16) | (dr << 32) | (da << 48); } static inline uint32_t // wuffs_base__composite_nonpremul_premul_u32_axxx(uint32_t dst_nonpremul, uint32_t src_premul) { // Extract 16-bit color components. uint32_t da = 0x101 * (0xFF & (dst_nonpremul >> 24)); uint32_t dr = 0x101 * (0xFF & (dst_nonpremul >> 16)); uint32_t dg = 0x101 * (0xFF & (dst_nonpremul >> 8)); uint32_t db = 0x101 * (0xFF & (dst_nonpremul >> 0)); uint32_t sa = 0x101 * (0xFF & (src_premul >> 24)); uint32_t sr = 0x101 * (0xFF & (src_premul >> 16)); uint32_t sg = 0x101 * (0xFF & (src_premul >> 8)); uint32_t sb = 0x101 * (0xFF & (src_premul >> 0)); // Convert dst from nonpremul to premul. dr = (dr * da) / 0xFFFF; dg = (dg * da) / 0xFFFF; db = (db * da) / 0xFFFF; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert dst from premul to nonpremul. if (da != 0) { dr = (dr * 0xFFFF) / da; dg = (dg * 0xFFFF) / da; db = (db * 0xFFFF) / da; } // Convert from 16-bit color to 8-bit color. da >>= 8; dr >>= 8; dg >>= 8; db >>= 8; // Combine components. return (db << 0) | (dg << 8) | (dr << 16) | (da << 24); } static inline uint64_t // wuffs_base__composite_nonpremul_premul_u64_axxx(uint64_t dst_nonpremul, uint64_t src_premul) { // Extract components. uint64_t da = 0xFFFF & (dst_nonpremul >> 48); uint64_t dr = 0xFFFF & (dst_nonpremul >> 32); uint64_t dg = 0xFFFF & (dst_nonpremul >> 16); uint64_t db = 0xFFFF & (dst_nonpremul >> 0); uint64_t sa = 0xFFFF & (src_premul >> 48); uint64_t sr = 0xFFFF & (src_premul >> 32); uint64_t sg = 0xFFFF & (src_premul >> 16); uint64_t sb = 0xFFFF & (src_premul >> 0); // Convert dst from nonpremul to premul. dr = (dr * da) / 0xFFFF; dg = (dg * da) / 0xFFFF; db = (db * da) / 0xFFFF; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint64_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert dst from premul to nonpremul. if (da != 0) { dr = (dr * 0xFFFF) / da; dg = (dg * 0xFFFF) / da; db = (db * 0xFFFF) / da; } // Combine components. return (db << 0) | (dg << 16) | (dr << 32) | (da << 48); } static inline uint32_t // wuffs_base__composite_premul_nonpremul_u32_axxx(uint32_t dst_premul, uint32_t src_nonpremul) { // Extract 16-bit color components. uint32_t da = 0x101 * (0xFF & (dst_premul >> 24)); uint32_t dr = 0x101 * (0xFF & (dst_premul >> 16)); uint32_t dg = 0x101 * (0xFF & (dst_premul >> 8)); uint32_t db = 0x101 * (0xFF & (dst_premul >> 0)); uint32_t sa = 0x101 * (0xFF & (src_nonpremul >> 24)); uint32_t sr = 0x101 * (0xFF & (src_nonpremul >> 16)); uint32_t sg = 0x101 * (0xFF & (src_nonpremul >> 8)); uint32_t sb = 0x101 * (0xFF & (src_nonpremul >> 0)); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 8-bit color. da >>= 8; dr >>= 8; dg >>= 8; db >>= 8; // Combine components. return (db << 0) | (dg << 8) | (dr << 16) | (da << 24); } static inline uint64_t // wuffs_base__composite_premul_nonpremul_u64_axxx(uint64_t dst_premul, uint64_t src_nonpremul) { // Extract components. uint64_t da = 0xFFFF & (dst_premul >> 48); uint64_t dr = 0xFFFF & (dst_premul >> 32); uint64_t dg = 0xFFFF & (dst_premul >> 16); uint64_t db = 0xFFFF & (dst_premul >> 0); uint64_t sa = 0xFFFF & (src_nonpremul >> 48); uint64_t sr = 0xFFFF & (src_nonpremul >> 32); uint64_t sg = 0xFFFF & (src_nonpremul >> 16); uint64_t sb = 0xFFFF & (src_nonpremul >> 0); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint64_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Combine components. return (db << 0) | (dg << 16) | (dr << 32) | (da << 48); } static inline uint32_t // wuffs_base__composite_premul_premul_u32_axxx(uint32_t dst_premul, uint32_t src_premul) { // Extract 16-bit color components. uint32_t da = 0x101 * (0xFF & (dst_premul >> 24)); uint32_t dr = 0x101 * (0xFF & (dst_premul >> 16)); uint32_t dg = 0x101 * (0xFF & (dst_premul >> 8)); uint32_t db = 0x101 * (0xFF & (dst_premul >> 0)); uint32_t sa = 0x101 * (0xFF & (src_premul >> 24)); uint32_t sr = 0x101 * (0xFF & (src_premul >> 16)); uint32_t sg = 0x101 * (0xFF & (src_premul >> 8)); uint32_t sb = 0x101 * (0xFF & (src_premul >> 0)); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). da = sa + ((da * ia) / 0xFFFF); dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert from 16-bit color to 8-bit color. da >>= 8; dr >>= 8; dg >>= 8; db >>= 8; // Combine components. return (db << 0) | (dg << 8) | (dr << 16) | (da << 24); } // -------- static uint64_t // wuffs_base__pixel_swizzler__squash_align4_bgr_565_8888(uint8_t* dst_ptr, size_t dst_len, const uint8_t* src_ptr, size_t src_len, bool nonpremul) { size_t len = (dst_len < src_len ? dst_len : src_len) / 4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n--) { uint32_t argb = wuffs_base__peek_u32le__no_bounds_check(s); if (nonpremul) { argb = wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul(argb); } uint32_t b5 = 0x1F & (argb >> (8 - 5)); uint32_t g6 = 0x3F & (argb >> (16 - 6)); uint32_t r5 = 0x1F & (argb >> (24 - 5)); uint32_t alpha = argb & 0xFF000000; wuffs_base__poke_u32le__no_bounds_check( d, alpha | (r5 << 11) | (g6 << 5) | (b5 << 0)); s += 4; d += 4; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__swap_rgb_bgr(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t len = (dst_len < src_len ? dst_len : src_len) / 3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n--) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s2; d[1] = s1; d[2] = s0; s += 3; d += 3; } return len; } // ‼ WUFFS MULTI-FILE SECTION +x86_sse42 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2") static uint64_t // wuffs_base__pixel_swizzler__swap_rgbx_bgrx__sse42(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t len = (dst_len < src_len ? dst_len : src_len) / 4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; __m128i shuffle = _mm_set_epi8(+0x0F, +0x0C, +0x0D, +0x0E, // +0x0B, +0x08, +0x09, +0x0A, // +0x07, +0x04, +0x05, +0x06, // +0x03, +0x00, +0x01, +0x02); while (n >= 4) { __m128i x; x = _mm_lddqu_si128((const __m128i*)(const void*)s); x = _mm_shuffle_epi8(x, shuffle); _mm_storeu_si128((__m128i*)(void*)d, x); s += 4 * 4; d += 4 * 4; n -= 4; } while (n--) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; uint8_t s3 = s[3]; d[0] = s2; d[1] = s1; d[2] = s0; d[3] = s3; s += 4; d += 4; } return len; } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_sse42 static uint64_t // wuffs_base__pixel_swizzler__swap_rgbx_bgrx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t len = (dst_len < src_len ? dst_len : src_len) / 4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n--) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; uint8_t s3 = s[3]; d[0] = s2; d[1] = s1; d[2] = s0; d[3] = s3; s += 4; d += 4; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__copy_1_1(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t len = (dst_len < src_len) ? dst_len : src_len; if (len > 0) { memmove(dst_ptr, src_ptr, len); } return len; } static uint64_t // wuffs_base__pixel_swizzler__copy_2_2(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len2 = src_len / 2; size_t len = (dst_len2 < src_len2) ? dst_len2 : src_len2; if (len > 0) { memmove(dst_ptr, src_ptr, len * 2); } return len; } static uint64_t // wuffs_base__pixel_swizzler__copy_3_3(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len3 = src_len / 3; size_t len = (dst_len3 < src_len3) ? dst_len3 : src_len3; if (len > 0) { memmove(dst_ptr, src_ptr, len * 3); } return len; } static uint64_t // wuffs_base__pixel_swizzler__copy_4_4(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; if (len > 0) { memmove(dst_ptr, src_ptr, len * 4); } return len; } static uint64_t // wuffs_base__pixel_swizzler__copy_8_8(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len8 = src_len / 8; size_t len = (dst_len8 < src_len8) ? dst_len8 : src_len8; if (len > 0) { memmove(dst_ptr, src_ptr, len * 8); } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgr(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len3 = src_len / 3; size_t len = (dst_len2 < src_len3) ? dst_len2 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t b5 = s[0] >> 3; uint32_t g6 = s[1] >> 2; uint32_t r5 = s[2] >> 3; uint32_t rgb_565 = (r5 << 11) | (g6 << 5) | (b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)rgb_565); s += 1 * 3; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgrx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t b5 = s[0] >> 3; uint32_t g6 = s[1] >> 2; uint32_t r5 = s[2] >> 3; uint32_t rgb_565 = (r5 << 11) | (g6 << 5) | (b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)rgb_565); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))))); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len8 = src_len / 8; size_t len = (dst_len2 < src_len8) ? dst_len2 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8))))); s += 1 * 8; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sr = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sb = 0x101 * ((uint32_t)s[0]); // Convert from 565 color to 16-bit color. uint32_t old_rgb_565 = wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2)); uint32_t old_r5 = 0x1F & (old_rgb_565 >> 11); uint32_t dr = (0x8421 * old_r5) >> 4; uint32_t old_g6 = 0x3F & (old_rgb_565 >> 5); uint32_t dg = (0x1041 * old_g6) >> 2; uint32_t old_b5 = 0x1F & (old_rgb_565 >> 0); uint32_t db = (0x8421 * old_b5) >> 4; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 565 color and combine the components. uint32_t new_r5 = 0x1F & (dr >> 11); uint32_t new_g6 = 0x3F & (dg >> 10); uint32_t new_b5 = 0x1F & (db >> 11); uint32_t new_rgb_565 = (new_r5 << 11) | (new_g6 << 5) | (new_b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)new_rgb_565); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len8 = src_len / 8; size_t len = (dst_len2 < src_len8) ? dst_len2 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t sa = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 6)); uint32_t sr = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 4)); uint32_t sg = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 2)); uint32_t sb = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 0)); // Convert from 565 color to 16-bit color. uint32_t old_rgb_565 = wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2)); uint32_t old_r5 = 0x1F & (old_rgb_565 >> 11); uint32_t dr = (0x8421 * old_r5) >> 4; uint32_t old_g6 = 0x3F & (old_rgb_565 >> 5); uint32_t dg = (0x1041 * old_g6) >> 2; uint32_t old_b5 = 0x1F & (old_rgb_565 >> 0); uint32_t db = (0x8421 * old_b5) >> 4; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 565 color and combine the components. uint32_t new_r5 = 0x1F & (dr >> 11); uint32_t new_g6 = 0x3F & (dg >> 10); uint32_t new_b5 = 0x1F & (db >> 11); uint32_t new_rgb_565 = (new_r5 << 11) | (new_g6 << 5) | (new_b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)new_rgb_565); s += 1 * 8; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_premul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__bgra_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sr = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sb = 0x101 * ((uint32_t)s[0]); // Convert from 565 color to 16-bit color. uint32_t old_rgb_565 = wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2)); uint32_t old_r5 = 0x1F & (old_rgb_565 >> 11); uint32_t dr = (0x8421 * old_r5) >> 4; uint32_t old_g6 = 0x3F & (old_rgb_565 >> 5); uint32_t dg = (0x1041 * old_g6) >> 2; uint32_t old_b5 = 0x1F & (old_rgb_565 >> 0); uint32_t db = (0x8421 * old_b5) >> 4; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert from 16-bit color to 565 color and combine the components. uint32_t new_r5 = 0x1F & (dr >> 11); uint32_t new_g6 = 0x3F & (dg >> 10); uint32_t new_b5 = 0x1F & (db >> 11); uint32_t new_rgb_565 = (new_r5 << 11) | (new_g6 << 5) | (new_b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)new_rgb_565); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__rgb(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len3 = src_len / 3; size_t len = (dst_len2 < src_len3) ? dst_len2 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t r5 = s[0] >> 3; uint32_t g6 = s[1] >> 2; uint32_t b5 = s[2] >> 3; uint32_t rgb_565 = (r5 << 11) | (g6 << 5) | (b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)rgb_565); s += 1 * 3; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__rgba_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__swap_u32_argb_abgr( wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))))); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__rgba_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sb = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sr = 0x101 * ((uint32_t)s[0]); // Convert from 565 color to 16-bit color. uint32_t old_rgb_565 = wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2)); uint32_t old_r5 = 0x1F & (old_rgb_565 >> 11); uint32_t dr = (0x8421 * old_r5) >> 4; uint32_t old_g6 = 0x3F & (old_rgb_565 >> 5); uint32_t dg = (0x1041 * old_g6) >> 2; uint32_t old_b5 = 0x1F & (old_rgb_565 >> 0); uint32_t db = (0x8421 * old_b5) >> 4; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 565 color and combine the components. uint32_t new_r5 = 0x1F & (dr >> 11); uint32_t new_g6 = 0x3F & (dg >> 10); uint32_t new_b5 = 0x1F & (db >> 11); uint32_t new_rgb_565 = (new_r5 << 11) | (new_g6 << 5) | (new_b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)new_rgb_565); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__rgba_premul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))))); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__rgba_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len4 = src_len / 4; size_t len = (dst_len2 < src_len4) ? dst_len2 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sb = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sr = 0x101 * ((uint32_t)s[0]); // Convert from 565 color to 16-bit color. uint32_t old_rgb_565 = wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2)); uint32_t old_r5 = 0x1F & (old_rgb_565 >> 11); uint32_t dr = (0x8421 * old_r5) >> 4; uint32_t old_g6 = 0x3F & (old_rgb_565 >> 5); uint32_t dg = (0x1041 * old_g6) >> 2; uint32_t old_b5 = 0x1F & (old_rgb_565 >> 0); uint32_t db = (0x8421 * old_b5) >> 4; // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert from 16-bit color to 565 color and combine the components. uint32_t new_r5 = 0x1F & (dr >> 11); uint32_t new_g6 = 0x3F & (dg >> 10); uint32_t new_b5 = 0x1F & (db >> 11); uint32_t new_rgb_565 = (new_r5 << 11) | (new_g6 << 5) | (new_b5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)new_rgb_565); s += 1 * 4; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__y(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t len = (dst_len2 < src_len) ? dst_len2 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t y5 = s[0] >> 3; uint32_t y6 = s[0] >> 2; uint32_t rgb_565 = (y5 << 11) | (y6 << 5) | (y5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)rgb_565); s += 1 * 1; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len2 = src_len / 2; size_t len = (dst_len2 < src_len2) ? dst_len2 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t y5 = s[0] >> 3; uint32_t y6 = s[0] >> 2; uint32_t rgb_565 = (y5 << 11) | (y6 << 5) | (y5 << 0); wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)rgb_565); s += 1 * 2; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__index__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len2 = dst_len / 2; size_t len = (dst_len2 < src_len) ? dst_len2 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; const size_t loop_unroll_count = 4; while (n >= loop_unroll_count) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__peek_u16le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4))); wuffs_base__poke_u16le__no_bounds_check( d + (1 * 2), wuffs_base__peek_u16le__no_bounds_check( dst_palette_ptr + ((size_t)s[1] * 4))); wuffs_base__poke_u16le__no_bounds_check( d + (2 * 2), wuffs_base__peek_u16le__no_bounds_check( dst_palette_ptr + ((size_t)s[2] * 4))); wuffs_base__poke_u16le__no_bounds_check( d + (3 * 2), wuffs_base__peek_u16le__no_bounds_check( dst_palette_ptr + ((size_t)s[3] * 4))); s += loop_unroll_count * 1; d += loop_unroll_count * 2; n -= loop_unroll_count; } while (n >= 1) { wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__peek_u16le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4))); s += 1 * 1; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__index_bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len2 = dst_len / 2; size_t len = (dst_len2 < src_len) ? dst_len2 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(d + (0 * 2))); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); wuffs_base__poke_u16le__no_bounds_check( d + (0 * 2), wuffs_base__color_u32_argb_premul__as__color_u16_rgb_565( wuffs_base__composite_premul_nonpremul_u32_axxx(d0, s0))); s += 1 * 1; d += 1 * 2; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr_565__index_binary_alpha__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len2 = dst_len / 2; size_t len = (dst_len2 < src_len) ? dst_len2 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u16le__no_bounds_check(d + (0 * 2), (uint16_t)s0); } s += 1 * 1; d += 1 * 2; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgr__bgr_565(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len2 = src_len / 2; size_t len = (dst_len3 < src_len2) ? dst_len3 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(s + (0 * 2))); wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); s += 1 * 2; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_nonpremul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len8 = src_len / 8; size_t len = (dst_len3 < src_len8) ? dst_len3 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8))); wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); s += 1 * 8; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t dr = 0x101 * ((uint32_t)d[2]); uint32_t dg = 0x101 * ((uint32_t)d[1]); uint32_t db = 0x101 * ((uint32_t)d[0]); uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sr = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sb = 0x101 * ((uint32_t)s[0]); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 8-bit color. d[0] = (uint8_t)(db >> 8); d[1] = (uint8_t)(dg >> 8); d[2] = (uint8_t)(dr >> 8); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len8 = src_len / 8; size_t len = (dst_len3 < src_len8) ? dst_len3 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t dr = 0x101 * ((uint32_t)d[2]); uint32_t dg = 0x101 * ((uint32_t)d[1]); uint32_t db = 0x101 * ((uint32_t)d[0]); uint32_t sa = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 6)); uint32_t sr = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 4)); uint32_t sg = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 2)); uint32_t sb = ((uint32_t)wuffs_base__peek_u16le__no_bounds_check(s + 0)); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 8-bit color. d[0] = (uint8_t)(db >> 8); d[1] = (uint8_t)(dg >> 8); d[2] = (uint8_t)(dr >> 8); s += 1 * 8; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_premul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s0; d[1] = s1; d[2] = s2; s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__bgra_premul__src_over(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { // Extract 16-bit color components. uint32_t dr = 0x101 * ((uint32_t)d[2]); uint32_t dg = 0x101 * ((uint32_t)d[1]); uint32_t db = 0x101 * ((uint32_t)d[0]); uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sr = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sb = 0x101 * ((uint32_t)s[0]); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert from 16-bit color to 8-bit color. d[0] = (uint8_t)(db >> 8); d[1] = (uint8_t)(dg >> 8); d[2] = (uint8_t)(dr >> 8); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__rgba_nonpremul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))); wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__rgba_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { // Extract 16-bit color components. uint32_t dr = 0x101 * ((uint32_t)d[2]); uint32_t dg = 0x101 * ((uint32_t)d[1]); uint32_t db = 0x101 * ((uint32_t)d[0]); uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sb = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sr = 0x101 * ((uint32_t)s[0]); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (nonpremul) over dst (premul). dr = ((sr * sa) + (dr * ia)) / 0xFFFF; dg = ((sg * sa) + (dg * ia)) / 0xFFFF; db = ((sb * sa) + (db * ia)) / 0xFFFF; // Convert from 16-bit color to 8-bit color. d[0] = (uint8_t)(db >> 8); d[1] = (uint8_t)(dg >> 8); d[2] = (uint8_t)(dr >> 8); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__rgba_premul__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s2; d[1] = s1; d[2] = s0; s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgr__rgba_premul__src_over(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { // Extract 16-bit color components. uint32_t dr = 0x101 * ((uint32_t)d[2]); uint32_t dg = 0x101 * ((uint32_t)d[1]); uint32_t db = 0x101 * ((uint32_t)d[0]); uint32_t sa = 0x101 * ((uint32_t)s[3]); uint32_t sb = 0x101 * ((uint32_t)s[2]); uint32_t sg = 0x101 * ((uint32_t)s[1]); uint32_t sr = 0x101 * ((uint32_t)s[0]); // Calculate the inverse of the src-alpha: how much of the dst to keep. uint32_t ia = 0xFFFF - sa; // Composite src (premul) over dst (premul). dr = sr + ((dr * ia) / 0xFFFF); dg = sg + ((dg * ia) / 0xFFFF); db = sb + ((db * ia) / 0xFFFF); // Convert from 16-bit color to 8-bit color. d[0] = (uint8_t)(db >> 8); d[1] = (uint8_t)(dg >> 8); d[2] = (uint8_t)(dr >> 8); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_nonpremul_nonpremul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4))); uint64_t s0 = wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32( wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul(s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_nonpremul_premul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__index_bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_nonpremul_nonpremul_u32_axxx(d0, s0)); s += 1 * 1; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_nonpremul_nonpremul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul(s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_nonpremul_premul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; uint8_t s3 = s[3]; d[0] = s0; d[1] = s0; d[2] = s1; d[3] = s1; d[4] = s2; d[5] = s2; d[6] = s3; d[7] = s3; s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0)); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len8 = src_len / 8; size_t len = (dst_len8 < src_len8) ? dst_len8 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0)); s += 1 * 8; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_premul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t s0 = wuffs_base__color_u32__as__color_u64( wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))); wuffs_base__poke_u64le__no_bounds_check(d + (0 * 8), s0); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_premul_u64_axxx(d0, s0)); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__index_bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len8 = dst_len / 8; size_t len = (dst_len8 < src_len) ? dst_len8 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0)); s += 1 * 1; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; uint8_t s3 = s[3]; d[0] = s2; d[1] = s2; d[2] = s1; d[3] = s1; d[4] = s0; d[5] = s0; d[6] = s3; d[7] = s3; s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__color_u32__as__color_u64(wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0)); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_premul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t s0 = wuffs_base__color_u32__as__color_u64( wuffs_base__color_u32_argb_premul__as__color_u32_argb_nonpremul( wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))))); wuffs_base__poke_u64le__no_bounds_check(d + (0 * 8), s0); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__peek_u64le__no_bounds_check(d + (0 * 8)); uint64_t s0 = wuffs_base__color_u32__as__color_u64(wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__composite_nonpremul_premul_u64_axxx(d0, s0)); s += 1 * 4; d += 1 * 8; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul(s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint64_t s0 = wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul(s0)); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_premul_nonpremul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint64_t d0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4))); uint64_t s0 = wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32( wuffs_base__composite_premul_nonpremul_u64_axxx(d0, s0))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__bgra_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_premul_premul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__index_bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_premul_nonpremul_u32_axxx(d0, s0)); s += 1 * 1; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u32_argb_nonpremul__as__color_u32_argb_premul(s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_premul_nonpremul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint64_t s0 = wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__swap_u32_argb_abgr( wuffs_base__color_u64_argb_nonpremul__as__color_u32_argb_premul( s0))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint64_t d0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4))); uint64_t s0 = wuffs_base__swap_u64_argb_abgr( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32( wuffs_base__composite_premul_nonpremul_u64_axxx(d0, s0))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgra_premul__rgba_premul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t d0 = wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4)); uint32_t s0 = wuffs_base__swap_u32_argb_abgr( wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__composite_premul_premul_u32_axxx(d0, s0)); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgrw__bgr(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len3 = src_len / 3; size_t len = (dst_len4 < src_len3) ? dst_len4 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), 0xFF000000 | wuffs_base__peek_u24le__no_bounds_check(s + (0 * 3))); s += 1 * 3; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw__bgr_565(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len2 = src_len / 2; size_t len = (dst_len4 < src_len2) ? dst_len4 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(s + (0 * 2)))); s += 1 * 2; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw__bgrx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), 0xFF000000 | wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); s += 1 * 4; d += 1 * 4; n -= 1; } return len; } // ‼ WUFFS MULTI-FILE SECTION +x86_sse42 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2") static uint64_t // wuffs_base__pixel_swizzler__bgrw__rgb__sse42(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len3 = src_len / 3; size_t len = (dst_len4 < src_len3) ? dst_len4 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; __m128i shuffle = _mm_set_epi8(+0x00, +0x09, +0x0A, +0x0B, // +0x00, +0x06, +0x07, +0x08, // +0x00, +0x03, +0x04, +0x05, // +0x00, +0x00, +0x01, +0x02); __m128i or_ff = _mm_set_epi8(-0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00); while (n >= 6) { __m128i x; x = _mm_lddqu_si128((const __m128i*)(const void*)s); x = _mm_shuffle_epi8(x, shuffle); x = _mm_or_si128(x, or_ff); _mm_storeu_si128((__m128i*)(void*)d, x); s += 4 * 3; d += 4 * 4; n -= 4; } while (n >= 1) { uint8_t b0 = s[0]; uint8_t b1 = s[1]; uint8_t b2 = s[2]; d[0] = b2; d[1] = b1; d[2] = b0; d[3] = 0xFF; s += 1 * 3; d += 1 * 4; n -= 1; } return len; } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_sse42 static uint64_t // wuffs_base__pixel_swizzler__bgrw__rgb(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len3 = src_len / 3; size_t len = (dst_len4 < src_len3) ? dst_len4 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t b0 = s[0]; uint8_t b1 = s[1]; uint8_t b2 = s[2]; d[0] = b2; d[1] = b1; d[2] = b0; d[3] = 0xFF; s += 1 * 3; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw__rgbx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len4 = src_len / 4; size_t len = (dst_len4 < src_len4) ? dst_len4 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint8_t b0 = s[0]; uint8_t b1 = s[1]; uint8_t b2 = s[2]; d[0] = b2; d[1] = b1; d[2] = b0; d[3] = 0xFF; s += 1 * 4; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__bgrw_4x16le__bgr(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len3 = src_len / 3; size_t len = (dst_len8 < src_len3) ? dst_len8 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s0; d[1] = s0; d[2] = s1; d[3] = s1; d[4] = s2; d[5] = s2; d[6] = 0xFF; d[7] = 0xFF; s += 1 * 3; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw_4x16le__bgr_565(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len2 = src_len / 2; size_t len = (dst_len8 < src_len2) ? dst_len8 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__color_u32__as__color_u64( wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(s + (0 * 2))))); s += 1 * 2; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw_4x16le__bgrx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len4 = src_len / 4; size_t len = (dst_len8 < src_len4) ? dst_len8 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s0; d[1] = s0; d[2] = s1; d[3] = s1; d[4] = s2; d[5] = s2; d[6] = 0xFF; d[7] = 0xFF; s += 1 * 4; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__bgrw_4x16le__rgb(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len3 = src_len / 3; size_t len = (dst_len8 < src_len3) ? dst_len8 : src_len3; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; uint8_t s2 = s[2]; d[0] = s2; d[1] = s2; d[2] = s1; d[3] = s1; d[4] = s0; d[5] = s0; d[6] = 0xFF; d[7] = 0xFF; s += 1 * 3; d += 1 * 8; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__rgba_nonpremul__bgra_nonpremul_4x16le__src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32__swap_u32_argb_abgr( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8)))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__rgba_nonpremul__bgra_nonpremul_4x16le__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len8 = src_len / 8; size_t len = (dst_len4 < src_len8) ? dst_len4 : src_len8; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t d0 = wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check(d + (0 * 4))); uint64_t s0 = wuffs_base__swap_u64_argb_abgr( wuffs_base__peek_u64le__no_bounds_check(s + (0 * 8))); wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__color_u64__as__color_u32( wuffs_base__composite_nonpremul_nonpremul_u64_axxx(d0, s0))); s += 1 * 8; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__rgbw__bgr_565(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len2 = src_len / 2; size_t len = (dst_len4 < src_len2) ? dst_len4 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__swap_u32_argb_abgr( wuffs_base__color_u16_rgb_565__as__color_u32_argb_premul( wuffs_base__peek_u16le__no_bounds_check(s + (0 * 2))))); s += 1 * 2; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__xxx__index__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len3 = dst_len / 3; size_t len = (dst_len3 < src_len) ? dst_len3 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; const size_t loop_unroll_count = 4; // The comparison in the while condition is ">", not ">=", because with // ">=", the last 4-byte store could write past the end of the dst slice. // // Each 4-byte store writes one too many bytes, but a subsequent store // will overwrite that with the correct byte. There is always another // store, whether a 4-byte store in this loop or a 1-byte store in the // next loop. while (n > loop_unroll_count) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 3), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (1 * 3), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[1] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (2 * 3), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[2] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (3 * 3), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[3] * 4))); s += loop_unroll_count * 1; d += loop_unroll_count * 3; n -= loop_unroll_count; } while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); s += 1 * 1; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxx__index_bgra_nonpremul__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len3 = dst_len / 3; size_t len = (dst_len3 < src_len) ? dst_len3 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint32_t d0 = wuffs_base__peek_u24le__no_bounds_check(d + (0 * 3)) | 0xFF000000; uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); wuffs_base__poke_u24le__no_bounds_check( d + (0 * 3), wuffs_base__composite_premul_nonpremul_u32_axxx(d0, s0)); s += 1 * 1; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxx__index_binary_alpha__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len3 = dst_len / 3; size_t len = (dst_len3 < src_len) ? dst_len3 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; const size_t loop_unroll_count = 4; while (n >= loop_unroll_count) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); } uint32_t s1 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[1] * 4)); if (s1) { wuffs_base__poke_u24le__no_bounds_check(d + (1 * 3), s1); } uint32_t s2 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[2] * 4)); if (s2) { wuffs_base__poke_u24le__no_bounds_check(d + (2 * 3), s2); } uint32_t s3 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[3] * 4)); if (s3) { wuffs_base__poke_u24le__no_bounds_check(d + (3 * 3), s3); } s += loop_unroll_count * 1; d += loop_unroll_count * 3; n -= loop_unroll_count; } while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u24le__no_bounds_check(d + (0 * 3), s0); } s += 1 * 1; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxx__xxxx(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len4 = src_len / 4; size_t len = (dst_len3 < src_len4) ? dst_len3 : src_len4; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { wuffs_base__poke_u24le__no_bounds_check( d + (0 * 3), wuffs_base__peek_u32le__no_bounds_check(s + (0 * 4))); s += 1 * 4; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxx__y(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t len = (dst_len3 < src_len) ? dst_len3 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint8_t s0 = s[0]; d[0] = s0; d[1] = s0; d[2] = s0; s += 1 * 1; d += 1 * 3; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxx__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len3 = dst_len / 3; size_t src_len2 = src_len / 2; size_t len = (dst_len3 < src_len2) ? dst_len3 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; // TODO: unroll. while (n >= 1) { uint8_t s0 = s[0]; d[0] = s0; d[1] = s0; d[2] = s0; s += 1 * 2; d += 1 * 3; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__xxxx__index__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; const size_t loop_unroll_count = 4; while (n >= loop_unroll_count) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (1 * 4), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[1] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (2 * 4), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[2] * 4))); wuffs_base__poke_u32le__no_bounds_check( d + (3 * 4), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[3] * 4))); s += loop_unroll_count * 1; d += loop_unroll_count * 4; n -= loop_unroll_count; } while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4))); s += 1 * 1; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxxx__index_binary_alpha__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; const size_t loop_unroll_count = 4; while (n >= loop_unroll_count) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u32le__no_bounds_check(d + (0 * 4), s0); } uint32_t s1 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[1] * 4)); if (s1) { wuffs_base__poke_u32le__no_bounds_check(d + (1 * 4), s1); } uint32_t s2 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[2] * 4)); if (s2) { wuffs_base__poke_u32le__no_bounds_check(d + (2 * 4), s2); } uint32_t s3 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[3] * 4)); if (s3) { wuffs_base__poke_u32le__no_bounds_check(d + (3 * 4), s3); } s += loop_unroll_count * 1; d += loop_unroll_count * 4; n -= loop_unroll_count; } while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u32le__no_bounds_check(d + (0 * 4), s0); } s += 1 * 1; d += 1 * 4; n -= 1; } return len; } // ‼ WUFFS MULTI-FILE SECTION +x86_sse42 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2") static uint64_t // wuffs_base__pixel_swizzler__xxxx__y__sse42(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; __m128i shuffle = _mm_set_epi8(+0x03, +0x03, +0x03, +0x03, // +0x02, +0x02, +0x02, +0x02, // +0x01, +0x01, +0x01, +0x01, // +0x00, +0x00, +0x00, +0x00); __m128i or_ff = _mm_set_epi8(-0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00, // -0x01, +0x00, +0x00, +0x00); while (n >= 4) { __m128i x; x = _mm_cvtsi32_si128((int)(wuffs_base__peek_u32le__no_bounds_check(s))); x = _mm_shuffle_epi8(x, shuffle); x = _mm_or_si128(x, or_ff); _mm_storeu_si128((__m128i*)(void*)d, x); s += 4 * 1; d += 4 * 4; n -= 4; } while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), 0xFF000000 | (0x010101 * (uint32_t)s[0])); s += 1 * 1; d += 1 * 4; n -= 1; } return len; } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_sse42 static uint64_t // wuffs_base__pixel_swizzler__xxxx__y(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t len = (dst_len4 < src_len) ? dst_len4 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), 0xFF000000 | (0x010101 * (uint32_t)s[0])); s += 1 * 1; d += 1 * 4; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxxx__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len4 = dst_len / 4; size_t src_len2 = src_len / 2; size_t len = (dst_len4 < src_len2) ? dst_len4 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u32le__no_bounds_check( d + (0 * 4), 0xFF000000 | (0x010101 * (uint32_t)s[0])); s += 1 * 2; d += 1 * 4; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__xxxxxxxx__index__src(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len8 = dst_len / 8; size_t len = (dst_len8 < src_len) ? dst_len8 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__color_u32__as__color_u64( wuffs_base__peek_u32le__no_bounds_check( dst_palette_ptr + ((size_t)s[0] * 4)))); s += 1 * 1; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxxxxxxx__index_binary_alpha__src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { if (dst_palette_len != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return 0; } size_t dst_len8 = dst_len / 8; size_t len = (dst_len8 < src_len) ? dst_len8 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint32_t s0 = wuffs_base__peek_u32le__no_bounds_check(dst_palette_ptr + ((size_t)s[0] * 4)); if (s0) { wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), wuffs_base__color_u32__as__color_u64(s0)); } s += 1 * 1; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxxxxxxx__y(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t len = (dst_len8 < src_len) ? dst_len8 : src_len; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), 0xFFFF000000000000 | (0x010101010101 * (uint64_t)s[0])); s += 1 * 1; d += 1 * 8; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__xxxxxxxx__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len8 = dst_len / 8; size_t src_len2 = src_len / 2; size_t len = (dst_len8 < src_len2) ? dst_len8 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint64_t s0 = ((uint64_t)(wuffs_base__peek_u16be__no_bounds_check(s + (0 * 2)))); wuffs_base__poke_u64le__no_bounds_check( d + (0 * 8), 0xFFFF000000000000 | (0x000100010001 * s0)); s += 1 * 2; d += 1 * 8; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__y__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t src_len2 = src_len / 2; size_t len = (dst_len < src_len2) ? dst_len : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { d[0] = s[0]; s += 1 * 2; d += 1 * 1; n -= 1; } return len; } static uint64_t // wuffs_base__pixel_swizzler__y_16le__y_16be(uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, const uint8_t* src_ptr, size_t src_len) { size_t dst_len2 = dst_len / 2; size_t src_len2 = src_len / 2; size_t len = (dst_len2 < src_len2) ? dst_len2 : src_len2; uint8_t* d = dst_ptr; const uint8_t* s = src_ptr; size_t n = len; while (n >= 1) { uint8_t s0 = s[0]; uint8_t s1 = s[1]; d[0] = s1; d[1] = s0; s += 1 * 2; d += 1 * 2; n -= 1; } return len; } // -------- static uint64_t // wuffs_base__pixel_swizzler__transparent_black_src( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, uint64_t num_pixels, uint32_t dst_pixfmt_bytes_per_pixel) { uint64_t n = ((uint64_t)dst_len) / dst_pixfmt_bytes_per_pixel; if (n > num_pixels) { n = num_pixels; } memset(dst_ptr, 0, ((size_t)(n * dst_pixfmt_bytes_per_pixel))); return n; } static uint64_t // wuffs_base__pixel_swizzler__transparent_black_src_over( uint8_t* dst_ptr, size_t dst_len, uint8_t* dst_palette_ptr, size_t dst_palette_len, uint64_t num_pixels, uint32_t dst_pixfmt_bytes_per_pixel) { uint64_t n = ((uint64_t)dst_len) / dst_pixfmt_bytes_per_pixel; if (n > num_pixels) { n = num_pixels; } return n; } // -------- static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__y(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__Y: return wuffs_base__pixel_swizzler__copy_1_1; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__bgr_565__y; case WUFFS_BASE__PIXEL_FORMAT__BGR: case WUFFS_BASE__PIXEL_FORMAT__RGB: return wuffs_base__pixel_swizzler__xxx__y; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__xxxx__y__sse42; } #endif return wuffs_base__pixel_swizzler__xxxx__y; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL_4X16LE: return wuffs_base__pixel_swizzler__xxxxxxxx__y; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__y_16be(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__Y: return wuffs_base__pixel_swizzler__y__y_16be; case WUFFS_BASE__PIXEL_FORMAT__Y_16LE: return wuffs_base__pixel_swizzler__y_16le__y_16be; case WUFFS_BASE__PIXEL_FORMAT__Y_16BE: return wuffs_base__pixel_swizzler__copy_2_2; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__bgr_565__y_16be; case WUFFS_BASE__PIXEL_FORMAT__BGR: case WUFFS_BASE__PIXEL_FORMAT__RGB: return wuffs_base__pixel_swizzler__xxx__y_16be; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: return wuffs_base__pixel_swizzler__xxxx__y_16be; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL_4X16LE: return wuffs_base__pixel_swizzler__xxxxxxxx__y_16be; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__indexed__bgra_nonpremul( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_1_1; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: if (wuffs_base__pixel_swizzler__squash_align4_bgr_565_8888( dst_palette.ptr, dst_palette.len, src_palette.ptr, src_palette.len, true) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } return wuffs_base__pixel_swizzler__bgr_565__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } return wuffs_base__pixel_swizzler__bgr_565__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: if (wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } return wuffs_base__pixel_swizzler__xxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } return wuffs_base__pixel_swizzler__xxx__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxxxxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: if (wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } return wuffs_base__pixel_swizzler__bgra_premul__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGB: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: if (wuffs_base__pixel_swizzler__swap_rgbx_bgrx( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: if (wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: if (wuffs_base__pixel_swizzler__swap_rgbx_bgrx( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } return wuffs_base__pixel_swizzler__bgra_premul__index_bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBX: // TODO. break; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__indexed__bgra_binary( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_1_1; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: if (wuffs_base__pixel_swizzler__squash_align4_bgr_565_8888( dst_palette.ptr, dst_palette.len, src_palette.ptr, src_palette.len, false) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__index_binary_alpha__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__xxx__index_binary_alpha__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__xxxx__index_binary_alpha__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE: if (wuffs_base__slice_u8__copy_from_slice(dst_palette, src_palette) != WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxxxxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__xxxxxxxx__index_binary_alpha__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGB: if (wuffs_base__pixel_swizzler__swap_rgbx_bgrx( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__xxx__index_binary_alpha__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: if (wuffs_base__pixel_swizzler__swap_rgbx_bgrx( dst_palette.ptr, dst_palette.len, NULL, 0, src_palette.ptr, src_palette.len) != (WUFFS_BASE__PIXEL_FORMAT__INDEXED__PALETTE_BYTE_LENGTH / 4)) { return NULL; } switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__xxxx__index__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__xxxx__index_binary_alpha__src_over; } return NULL; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgr_565( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__copy_2_2; case WUFFS_BASE__PIXEL_FORMAT__BGR: return wuffs_base__pixel_swizzler__bgr__bgr_565; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: return wuffs_base__pixel_swizzler__bgrw__bgr_565; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE: return wuffs_base__pixel_swizzler__bgrw_4x16le__bgr_565; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: return wuffs_base__pixel_swizzler__rgbw__bgr_565; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgr(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__bgr_565__bgr; case WUFFS_BASE__PIXEL_FORMAT__BGR: return wuffs_base__pixel_swizzler__copy_3_3; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: return wuffs_base__pixel_swizzler__bgrw__bgr; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL_4X16LE: return wuffs_base__pixel_swizzler__bgrw_4x16le__bgr; case WUFFS_BASE__PIXEL_FORMAT__RGB: return wuffs_base__pixel_swizzler__swap_rgb_bgr; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__bgrw__rgb__sse42; } #endif return wuffs_base__pixel_swizzler__bgrw__rgb; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgra_nonpremul( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr__bgra_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_4_4; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGB: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__swap_rgbx_bgrx__sse42; } #endif return wuffs_base__pixel_swizzler__swap_rgbx_bgrx; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: // TODO. break; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgra_nonpremul_4x16le( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__bgra_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr__bgra_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr__bgra_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_8_8; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGB: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__rgba_nonpremul__bgra_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__rgba_nonpremul__bgra_nonpremul_4x16le__src_over; } break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul_4x16le__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul_4x16le__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: // TODO. break; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgra_premul( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__bgra_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr__bgra_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_4_4; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__swap_rgbx_bgrx__sse42; } #endif return wuffs_base__pixel_swizzler__swap_rgbx_bgrx; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__rgba_premul__src_over; } return NULL; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__bgrx(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__bgr_565__bgrx; case WUFFS_BASE__PIXEL_FORMAT__BGR: return wuffs_base__pixel_swizzler__xxx__xxxx; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: return wuffs_base__pixel_swizzler__bgrw__bgrx; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: return wuffs_base__pixel_swizzler__bgrw_4x16le__bgrx; case WUFFS_BASE__PIXEL_FORMAT__BGRX: return wuffs_base__pixel_swizzler__copy_4_4; case WUFFS_BASE__PIXEL_FORMAT__RGB: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: return wuffs_base__pixel_swizzler__bgrw__rgbx; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__rgb(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: return wuffs_base__pixel_swizzler__bgr_565__rgb; case WUFFS_BASE__PIXEL_FORMAT__BGR: return wuffs_base__pixel_swizzler__swap_rgb_bgr; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__bgrw__rgb__sse42; } #endif return wuffs_base__pixel_swizzler__bgrw__rgb; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: return wuffs_base__pixel_swizzler__bgrw_4x16le__rgb; case WUFFS_BASE__PIXEL_FORMAT__RGB: return wuffs_base__pixel_swizzler__copy_3_3; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: return wuffs_base__pixel_swizzler__bgrw__bgr; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__rgba_nonpremul( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__rgba_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr__rgba_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__swap_rgbx_bgrx__sse42; } #endif return wuffs_base__pixel_swizzler__swap_rgbx_bgrx; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__rgba_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__BGRX: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGB: // TODO. break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_4_4; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__bgra_nonpremul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_BINARY: case WUFFS_BASE__PIXEL_FORMAT__RGBX: // TODO. break; } return NULL; } static wuffs_base__pixel_swizzler__func // wuffs_base__pixel_swizzler__prepare__rgba_premul( wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { switch (dst_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__BGR_565: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr_565__rgba_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr_565__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGR: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgr__rgba_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgr__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul_4x16le__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) if (wuffs_base__cpu_arch__have_x86_sse42()) { return wuffs_base__pixel_swizzler__swap_rgbx_bgrx__sse42; } #endif return wuffs_base__pixel_swizzler__swap_rgbx_bgrx; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__rgba_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_nonpremul__bgra_premul__src_over; } return NULL; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: return wuffs_base__pixel_swizzler__copy_4_4; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: return wuffs_base__pixel_swizzler__bgra_premul__bgra_premul__src_over; } return NULL; } return NULL; } // -------- WUFFS_BASE__MAYBE_STATIC wuffs_base__status // wuffs_base__pixel_swizzler__prepare(wuffs_base__pixel_swizzler* p, wuffs_base__pixel_format dst_pixfmt, wuffs_base__slice_u8 dst_palette, wuffs_base__pixel_format src_pixfmt, wuffs_base__slice_u8 src_palette, wuffs_base__pixel_blend blend) { if (!p) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } p->private_impl.func = NULL; p->private_impl.transparent_black_func = NULL; p->private_impl.dst_pixfmt_bytes_per_pixel = 0; p->private_impl.src_pixfmt_bytes_per_pixel = 0; wuffs_base__pixel_swizzler__func func = NULL; wuffs_base__pixel_swizzler__transparent_black_func transparent_black_func = NULL; uint32_t dst_pixfmt_bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&dst_pixfmt); if ((dst_pixfmt_bits_per_pixel == 0) || ((dst_pixfmt_bits_per_pixel & 7) != 0)) { return wuffs_base__make_status( wuffs_base__error__unsupported_pixel_swizzler_option); } uint32_t src_pixfmt_bits_per_pixel = wuffs_base__pixel_format__bits_per_pixel(&src_pixfmt); if ((src_pixfmt_bits_per_pixel == 0) || ((src_pixfmt_bits_per_pixel & 7) != 0)) { return wuffs_base__make_status( wuffs_base__error__unsupported_pixel_swizzler_option); } // TODO: support many more formats. switch (blend) { case WUFFS_BASE__PIXEL_BLEND__SRC: transparent_black_func = wuffs_base__pixel_swizzler__transparent_black_src; break; case WUFFS_BASE__PIXEL_BLEND__SRC_OVER: transparent_black_func = wuffs_base__pixel_swizzler__transparent_black_src_over; break; } switch (src_pixfmt.repr) { case WUFFS_BASE__PIXEL_FORMAT__Y: func = wuffs_base__pixel_swizzler__prepare__y(p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__Y_16BE: func = wuffs_base__pixel_swizzler__prepare__y_16be( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_NONPREMUL: func = wuffs_base__pixel_swizzler__prepare__indexed__bgra_nonpremul( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__INDEXED__BGRA_BINARY: func = wuffs_base__pixel_swizzler__prepare__indexed__bgra_binary( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGR_565: func = wuffs_base__pixel_swizzler__prepare__bgr_565( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGR: func = wuffs_base__pixel_swizzler__prepare__bgr( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL: func = wuffs_base__pixel_swizzler__prepare__bgra_nonpremul( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGRA_NONPREMUL_4X16LE: func = wuffs_base__pixel_swizzler__prepare__bgra_nonpremul_4x16le( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGRA_PREMUL: func = wuffs_base__pixel_swizzler__prepare__bgra_premul( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__BGRX: func = wuffs_base__pixel_swizzler__prepare__bgrx( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__RGB: func = wuffs_base__pixel_swizzler__prepare__rgb( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_NONPREMUL: func = wuffs_base__pixel_swizzler__prepare__rgba_nonpremul( p, dst_pixfmt, dst_palette, src_palette, blend); break; case WUFFS_BASE__PIXEL_FORMAT__RGBA_PREMUL: func = wuffs_base__pixel_swizzler__prepare__rgba_premul( p, dst_pixfmt, dst_palette, src_palette, blend); break; } p->private_impl.func = func; p->private_impl.transparent_black_func = transparent_black_func; p->private_impl.dst_pixfmt_bytes_per_pixel = dst_pixfmt_bits_per_pixel / 8; p->private_impl.src_pixfmt_bytes_per_pixel = src_pixfmt_bits_per_pixel / 8; return wuffs_base__make_status( func ? NULL : wuffs_base__error__unsupported_pixel_swizzler_option); } WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__limited_swizzle_u32_interleaved_from_reader( const wuffs_base__pixel_swizzler* p, uint32_t up_to_num_pixels, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, const uint8_t** ptr_iop_r, const uint8_t* io2_r) { if (p && p->private_impl.func) { const uint8_t* iop_r = *ptr_iop_r; uint64_t src_len = wuffs_base__u64__min( ((uint64_t)up_to_num_pixels) * ((uint64_t)p->private_impl.src_pixfmt_bytes_per_pixel), ((uint64_t)(io2_r - iop_r))); uint64_t n = (*p->private_impl.func)(dst.ptr, dst.len, dst_palette.ptr, dst_palette.len, iop_r, (size_t)src_len); *ptr_iop_r += n * p->private_impl.src_pixfmt_bytes_per_pixel; return n; } return 0; } WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_from_reader( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, const uint8_t** ptr_iop_r, const uint8_t* io2_r) { if (p && p->private_impl.func) { const uint8_t* iop_r = *ptr_iop_r; uint64_t src_len = ((uint64_t)(io2_r - iop_r)); uint64_t n = (*p->private_impl.func)(dst.ptr, dst.len, dst_palette.ptr, dst_palette.len, iop_r, (size_t)src_len); *ptr_iop_r += n * p->private_impl.src_pixfmt_bytes_per_pixel; return n; } return 0; } WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_from_slice( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, wuffs_base__slice_u8 src) { if (p && p->private_impl.func) { return (*p->private_impl.func)(dst.ptr, dst.len, dst_palette.ptr, dst_palette.len, src.ptr, src.len); } return 0; } WUFFS_BASE__MAYBE_STATIC uint64_t // wuffs_base__pixel_swizzler__swizzle_interleaved_transparent_black( const wuffs_base__pixel_swizzler* p, wuffs_base__slice_u8 dst, wuffs_base__slice_u8 dst_palette, uint64_t num_pixels) { if (p && p->private_impl.transparent_black_func) { return (*p->private_impl.transparent_black_func)( dst.ptr, dst.len, dst_palette.ptr, dst_palette.len, num_pixels, p->private_impl.dst_pixfmt_bytes_per_pixel); } return 0; } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__PIXCONV) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__BASE) || \ defined(WUFFS_CONFIG__MODULE__BASE__UTF8) // ---------------- Unicode and UTF-8 WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__utf_8__encode(wuffs_base__slice_u8 dst, uint32_t code_point) { if (code_point <= 0x7F) { if (dst.len >= 1) { dst.ptr[0] = (uint8_t)(code_point); return 1; } } else if (code_point <= 0x07FF) { if (dst.len >= 2) { dst.ptr[0] = (uint8_t)(0xC0 | ((code_point >> 6))); dst.ptr[1] = (uint8_t)(0x80 | ((code_point >> 0) & 0x3F)); return 2; } } else if (code_point <= 0xFFFF) { if ((dst.len >= 3) && ((code_point < 0xD800) || (0xDFFF < code_point))) { dst.ptr[0] = (uint8_t)(0xE0 | ((code_point >> 12))); dst.ptr[1] = (uint8_t)(0x80 | ((code_point >> 6) & 0x3F)); dst.ptr[2] = (uint8_t)(0x80 | ((code_point >> 0) & 0x3F)); return 3; } } else if (code_point <= 0x10FFFF) { if (dst.len >= 4) { dst.ptr[0] = (uint8_t)(0xF0 | ((code_point >> 18))); dst.ptr[1] = (uint8_t)(0x80 | ((code_point >> 12) & 0x3F)); dst.ptr[2] = (uint8_t)(0x80 | ((code_point >> 6) & 0x3F)); dst.ptr[3] = (uint8_t)(0x80 | ((code_point >> 0) & 0x3F)); return 4; } } return 0; } // wuffs_base__utf_8__byte_length_minus_1 is the byte length (minus 1) of a // UTF-8 encoded code point, based on the encoding's initial byte. // - 0x00 is 1-byte UTF-8 (ASCII). // - 0x01 is the start of 2-byte UTF-8. // - 0x02 is the start of 3-byte UTF-8. // - 0x03 is the start of 4-byte UTF-8. // - 0x40 is a UTF-8 tail byte. // - 0x80 is invalid UTF-8. // // RFC 3629 (UTF-8) gives this grammar for valid UTF-8: // UTF8-1 = %x00-7F // UTF8-2 = %xC2-DF UTF8-tail // UTF8-3 = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) / // %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail ) // UTF8-4 = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) / // %xF4 %x80-8F 2( UTF8-tail ) // UTF8-tail = %x80-BF static const uint8_t wuffs_base__utf_8__byte_length_minus_1[256] = { // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00 ..= 0x07. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x08 ..= 0x0F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x10 ..= 0x17. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x18 ..= 0x1F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x20 ..= 0x27. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x28 ..= 0x2F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x30 ..= 0x37. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x38 ..= 0x3F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x40 ..= 0x47. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x48 ..= 0x4F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x50 ..= 0x57. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x58 ..= 0x5F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x60 ..= 0x67. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x68 ..= 0x6F. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x70 ..= 0x77. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x78 ..= 0x7F. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x80 ..= 0x87. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x88 ..= 0x8F. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x90 ..= 0x97. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0x98 ..= 0x9F. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0xA0 ..= 0xA7. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0xA8 ..= 0xAF. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0xB0 ..= 0xB7. 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, // 0xB8 ..= 0xBF. 0x80, 0x80, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, // 0xC0 ..= 0xC7. 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, // 0xC8 ..= 0xCF. 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, // 0xD0 ..= 0xD7. 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, // 0xD8 ..= 0xDF. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xE0 ..= 0xE7. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xE8 ..= 0xEF. 0x03, 0x03, 0x03, 0x03, 0x03, 0x80, 0x80, 0x80, // 0xF0 ..= 0xF7. 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, // 0xF8 ..= 0xFF. // 0 1 2 3 4 5 6 7 // 8 9 A B C D E F }; WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output // wuffs_base__utf_8__next(const uint8_t* s_ptr, size_t s_len) { if (s_len == 0) { return wuffs_base__make_utf_8__next__output(0, 0); } uint32_t c = s_ptr[0]; switch (wuffs_base__utf_8__byte_length_minus_1[c & 0xFF]) { case 0: return wuffs_base__make_utf_8__next__output(c, 1); case 1: if (s_len < 2) { break; } c = wuffs_base__peek_u16le__no_bounds_check(s_ptr); if ((c & 0xC000) != 0x8000) { break; } c = (0x0007C0 & (c << 6)) | (0x00003F & (c >> 8)); return wuffs_base__make_utf_8__next__output(c, 2); case 2: if (s_len < 3) { break; } c = wuffs_base__peek_u24le__no_bounds_check(s_ptr); if ((c & 0xC0C000) != 0x808000) { break; } c = (0x00F000 & (c << 12)) | (0x000FC0 & (c >> 2)) | (0x00003F & (c >> 16)); if ((c <= 0x07FF) || ((0xD800 <= c) && (c <= 0xDFFF))) { break; } return wuffs_base__make_utf_8__next__output(c, 3); case 3: if (s_len < 4) { break; } c = wuffs_base__peek_u32le__no_bounds_check(s_ptr); if ((c & 0xC0C0C000) != 0x80808000) { break; } c = (0x1C0000 & (c << 18)) | (0x03F000 & (c << 4)) | (0x000FC0 & (c >> 10)) | (0x00003F & (c >> 24)); if ((c <= 0xFFFF) || (0x110000 <= c)) { break; } return wuffs_base__make_utf_8__next__output(c, 4); } return wuffs_base__make_utf_8__next__output( WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER, 1); } WUFFS_BASE__MAYBE_STATIC wuffs_base__utf_8__next__output // wuffs_base__utf_8__next_from_end(const uint8_t* s_ptr, size_t s_len) { if (s_len == 0) { return wuffs_base__make_utf_8__next__output(0, 0); } const uint8_t* ptr = &s_ptr[s_len - 1]; if (*ptr < 0x80) { return wuffs_base__make_utf_8__next__output(*ptr, 1); } else if (*ptr < 0xC0) { const uint8_t* too_far = &s_ptr[(s_len > 4) ? (s_len - 4) : 0]; uint32_t n = 1; while (ptr != too_far) { ptr--; n++; if (*ptr < 0x80) { break; } else if (*ptr < 0xC0) { continue; } wuffs_base__utf_8__next__output o = wuffs_base__utf_8__next(ptr, n); if (o.byte_length != n) { break; } return o; } } return wuffs_base__make_utf_8__next__output( WUFFS_BASE__UNICODE_REPLACEMENT_CHARACTER, 1); } WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__utf_8__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len) { // TODO: possibly optimize the all-ASCII case (4 or 8 bytes at a time). // // TODO: possibly optimize this by manually inlining the // wuffs_base__utf_8__next calls. size_t original_len = s_len; while (s_len > 0) { wuffs_base__utf_8__next__output o = wuffs_base__utf_8__next(s_ptr, s_len); if ((o.code_point > 0x7F) && (o.byte_length == 1)) { break; } s_ptr += o.byte_length; s_len -= o.byte_length; } return original_len - s_len; } WUFFS_BASE__MAYBE_STATIC size_t // wuffs_base__ascii__longest_valid_prefix(const uint8_t* s_ptr, size_t s_len) { // TODO: possibly optimize this by checking 4 or 8 bytes at a time. const uint8_t* original_ptr = s_ptr; const uint8_t* p = s_ptr; const uint8_t* q = s_ptr + s_len; for (; (p != q) && ((*p & 0x80) == 0); p++) { } return (size_t)(p - original_ptr); } #endif // !defined(WUFFS_CONFIG__MODULES) || // defined(WUFFS_CONFIG__MODULE__BASE) || // defined(WUFFS_CONFIG__MODULE__BASE__UTF8) #ifdef __cplusplus } // extern "C" #endif #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ADLER32) // ---------------- Status Codes Implementations // ---------------- Private Consts // ---------------- Private Initializer Prototypes // ---------------- Private Function Prototypes static wuffs_base__empty_struct wuffs_adler32__hasher__up( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); static wuffs_base__empty_struct wuffs_adler32__hasher__up__choosy_default( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); #if defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) static wuffs_base__empty_struct wuffs_adler32__hasher__up_arm_neon( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) static wuffs_base__empty_struct wuffs_adler32__hasher__up_x86_sse42( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x); #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ---------------- VTables const wuffs_base__hasher_u32__func_ptrs wuffs_adler32__hasher__func_ptrs_for__wuffs_base__hasher_u32 = { (wuffs_base__empty_struct(*)(void*, uint32_t, bool))(&wuffs_adler32__hasher__set_quirk_enabled), (uint32_t(*)(void*, wuffs_base__slice_u8))(&wuffs_adler32__hasher__update_u32), }; // ---------------- Initializer Implementations wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_adler32__hasher__initialize( wuffs_adler32__hasher* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options){ if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (sizeof(*self) != sizeof_star_self) { return wuffs_base__make_status(wuffs_base__error__bad_sizeof_receiver); } if (((wuffs_version >> 32) != WUFFS_VERSION_MAJOR) || (((wuffs_version >> 16) & 0xFFFF) > WUFFS_VERSION_MINOR)) { return wuffs_base__make_status(wuffs_base__error__bad_wuffs_version); } if ((options & WUFFS_INITIALIZE__ALREADY_ZEROED) != 0) { // The whole point of this if-check is to detect an uninitialized *self. // We disable the warning on GCC. Clang-5.0 does not have this warning. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif if (self->private_impl.magic != 0) { return wuffs_base__make_status(wuffs_base__error__initialize_falsely_claimed_already_zeroed); } #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } else { if ((options & WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED) == 0) { memset(self, 0, sizeof(*self)); options |= WUFFS_INITIALIZE__ALREADY_ZEROED; } else { memset(&(self->private_impl), 0, sizeof(self->private_impl)); } } self->private_impl.choosy_up = &wuffs_adler32__hasher__up__choosy_default; self->private_impl.magic = WUFFS_BASE__MAGIC; self->private_impl.vtable_for__wuffs_base__hasher_u32.vtable_name = wuffs_base__hasher_u32__vtable_name; self->private_impl.vtable_for__wuffs_base__hasher_u32.function_pointers = (const void*)(&wuffs_adler32__hasher__func_ptrs_for__wuffs_base__hasher_u32); return wuffs_base__make_status(NULL); } wuffs_adler32__hasher* wuffs_adler32__hasher__alloc() { wuffs_adler32__hasher* x = (wuffs_adler32__hasher*)(calloc(sizeof(wuffs_adler32__hasher), 1)); if (!x) { return NULL; } if (wuffs_adler32__hasher__initialize( x, sizeof(wuffs_adler32__hasher), WUFFS_VERSION, WUFFS_INITIALIZE__ALREADY_ZEROED).repr) { free(x); return NULL; } return x; } size_t sizeof__wuffs_adler32__hasher() { return sizeof(wuffs_adler32__hasher); } // ---------------- Function Implementations // -------- func adler32.hasher.set_quirk_enabled WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_adler32__hasher__set_quirk_enabled( wuffs_adler32__hasher* self, uint32_t a_quirk, bool a_enabled) { return wuffs_base__make_empty_struct(); } // -------- func adler32.hasher.update_u32 WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_adler32__hasher__update_u32( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x) { if (!self) { return 0; } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return 0; } if ( ! self->private_impl.f_started) { self->private_impl.f_started = true; self->private_impl.f_state = 1; self->private_impl.choosy_up = ( #if defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) wuffs_base__cpu_arch__have_arm_neon() ? &wuffs_adler32__hasher__up_arm_neon : #endif #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) wuffs_base__cpu_arch__have_x86_sse42() ? &wuffs_adler32__hasher__up_x86_sse42 : #endif self->private_impl.choosy_up); } wuffs_adler32__hasher__up(self, a_x); return self->private_impl.f_state; } // -------- func adler32.hasher.up static wuffs_base__empty_struct wuffs_adler32__hasher__up( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x) { return (*self->private_impl.choosy_up)(self, a_x); } static wuffs_base__empty_struct wuffs_adler32__hasher__up__choosy_default( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s1 = 0; uint32_t v_s2 = 0; wuffs_base__slice_u8 v_remaining = {0}; wuffs_base__slice_u8 v_p = {0}; v_s1 = ((self->private_impl.f_state) & 0xFFFF); v_s2 = ((self->private_impl.f_state) >> (32 - (16))); while (((uint64_t)(a_x.len)) > 0) { v_remaining = wuffs_base__slice_u8__subslice_j(a_x, 0); if (((uint64_t)(a_x.len)) > 5552) { v_remaining = wuffs_base__slice_u8__subslice_i(a_x, 5552); a_x = wuffs_base__slice_u8__subslice_j(a_x, 5552); } { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 8) * 8); while (v_p.ptr < i_end0_p) { v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; } v_p.len = 1; uint8_t* i_end1_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end1_p) { v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; } v_p.len = 0; } v_s1 %= 65521; v_s2 %= 65521; a_x = v_remaining; } self->private_impl.f_state = (((v_s2 & 65535) << 16) | (v_s1 & 65535)); return wuffs_base__make_empty_struct(); } // ‼ WUFFS MULTI-FILE SECTION +arm_neon // -------- func adler32.hasher.up_arm_neon #if defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) static wuffs_base__empty_struct wuffs_adler32__hasher__up_arm_neon( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s1 = 0; uint32_t v_s2 = 0; wuffs_base__slice_u8 v_remaining = {0}; wuffs_base__slice_u8 v_p = {0}; uint8x16_t v_p__left = {0}; uint8x16_t v_p_right = {0}; uint32x4_t v_v1 = {0}; uint32x4_t v_v2 = {0}; uint16x8_t v_col0 = {0}; uint16x8_t v_col1 = {0}; uint16x8_t v_col2 = {0}; uint16x8_t v_col3 = {0}; uint32x2_t v_sum1 = {0}; uint32x2_t v_sum2 = {0}; uint32x2_t v_sum12 = {0}; uint32_t v_num_iterate_bytes = 0; uint64_t v_tail_index = 0; v_s1 = ((self->private_impl.f_state) & 0xFFFF); v_s2 = ((self->private_impl.f_state) >> (32 - (16))); while ((((uint64_t)(a_x.len)) > 0) && ((15 & ((uint32_t)(0xFFF & (uintptr_t)(a_x.ptr)))) != 0)) { v_s1 += ((uint32_t)(a_x.ptr[0])); v_s2 += v_s1; a_x = wuffs_base__slice_u8__subslice_i(a_x, 1); } v_s1 %= 65521; v_s2 %= 65521; while (((uint64_t)(a_x.len)) > 0) { v_remaining = wuffs_base__slice_u8__subslice_j(a_x, 0); if (((uint64_t)(a_x.len)) > 5536) { v_remaining = wuffs_base__slice_u8__subslice_i(a_x, 5536); a_x = wuffs_base__slice_u8__subslice_j(a_x, 5536); } v_num_iterate_bytes = ((uint32_t)((((uint64_t)(a_x.len)) & 4294967264))); v_s2 += ((uint32_t)(v_s1 * v_num_iterate_bytes)); v_v1 = vdupq_n_u32(0); v_v2 = vdupq_n_u32(0); v_col0 = vdupq_n_u16(0); v_col1 = vdupq_n_u16(0); v_col2 = vdupq_n_u16(0); v_col3 = vdupq_n_u16(0); { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 32; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 32) * 32); while (v_p.ptr < i_end0_p) { v_p__left = vld1q_u8(v_p.ptr); v_p_right = vld1q_u8(v_p.ptr + 16); v_v2 = vaddq_u32(v_v2, v_v1); v_v1 = vpadalq_u16(v_v1, vpadalq_u8(vpaddlq_u8(v_p__left), v_p_right)); v_col0 = vaddw_u8(v_col0, vget_low_u8(v_p__left)); v_col1 = vaddw_u8(v_col1, vget_high_u8(v_p__left)); v_col2 = vaddw_u8(v_col2, vget_low_u8(v_p_right)); v_col3 = vaddw_u8(v_col3, vget_high_u8(v_p_right)); v_p.ptr += 32; } v_p.len = 0; } v_v2 = vshlq_n_u32(v_v2, 5); v_v2 = vmlal_u16(v_v2, vget_low_u16(v_col0), ((uint16x4_t){32, 31, 30, 29})); v_v2 = vmlal_u16(v_v2, vget_high_u16(v_col0), ((uint16x4_t){28, 27, 26, 25})); v_v2 = vmlal_u16(v_v2, vget_low_u16(v_col1), ((uint16x4_t){24, 23, 22, 21})); v_v2 = vmlal_u16(v_v2, vget_high_u16(v_col1), ((uint16x4_t){20, 19, 18, 17})); v_v2 = vmlal_u16(v_v2, vget_low_u16(v_col2), ((uint16x4_t){16, 15, 14, 13})); v_v2 = vmlal_u16(v_v2, vget_high_u16(v_col2), ((uint16x4_t){12, 11, 10, 9})); v_v2 = vmlal_u16(v_v2, vget_low_u16(v_col3), ((uint16x4_t){8, 7, 6, 5})); v_v2 = vmlal_u16(v_v2, vget_high_u16(v_col3), ((uint16x4_t){4, 3, 2, 1})); v_sum1 = vpadd_u32(vget_low_u32(v_v1), vget_high_u32(v_v1)); v_sum2 = vpadd_u32(vget_low_u32(v_v2), vget_high_u32(v_v2)); v_sum12 = vpadd_u32(v_sum1, v_sum2); v_s1 += vget_lane_u32(v_sum12, 0); v_s2 += vget_lane_u32(v_sum12, 1); v_tail_index = (((uint64_t)(a_x.len)) & 18446744073709551584u); if (v_tail_index < ((uint64_t)(a_x.len))) { { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, v_tail_index); v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; } v_p.len = 0; } } v_s1 %= 65521; v_s2 %= 65521; a_x = v_remaining; } self->private_impl.f_state = (((v_s2 & 65535) << 16) | (v_s1 & 65535)); return wuffs_base__make_empty_struct(); } #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_NEON) // ‼ WUFFS MULTI-FILE SECTION -arm_neon // ‼ WUFFS MULTI-FILE SECTION +x86_sse42 // -------- func adler32.hasher.up_x86_sse42 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2") static wuffs_base__empty_struct wuffs_adler32__hasher__up_x86_sse42( wuffs_adler32__hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s1 = 0; uint32_t v_s2 = 0; wuffs_base__slice_u8 v_remaining = {0}; wuffs_base__slice_u8 v_p = {0}; __m128i v_zeroes = {0}; __m128i v_ones = {0}; __m128i v_weights__left = {0}; __m128i v_weights_right = {0}; __m128i v_q__left = {0}; __m128i v_q_right = {0}; __m128i v_v1 = {0}; __m128i v_v2 = {0}; __m128i v_v2j = {0}; __m128i v_v2k = {0}; uint32_t v_num_iterate_bytes = 0; uint64_t v_tail_index = 0; v_zeroes = _mm_set1_epi16((int16_t)(0)); v_ones = _mm_set1_epi16((int16_t)(1)); v_weights__left = _mm_set_epi8((int8_t)(17), (int8_t)(18), (int8_t)(19), (int8_t)(20), (int8_t)(21), (int8_t)(22), (int8_t)(23), (int8_t)(24), (int8_t)(25), (int8_t)(26), (int8_t)(27), (int8_t)(28), (int8_t)(29), (int8_t)(30), (int8_t)(31), (int8_t)(32)); v_weights_right = _mm_set_epi8((int8_t)(1), (int8_t)(2), (int8_t)(3), (int8_t)(4), (int8_t)(5), (int8_t)(6), (int8_t)(7), (int8_t)(8), (int8_t)(9), (int8_t)(10), (int8_t)(11), (int8_t)(12), (int8_t)(13), (int8_t)(14), (int8_t)(15), (int8_t)(16)); v_s1 = ((self->private_impl.f_state) & 0xFFFF); v_s2 = ((self->private_impl.f_state) >> (32 - (16))); while (((uint64_t)(a_x.len)) > 0) { v_remaining = wuffs_base__slice_u8__subslice_j(a_x, 0); if (((uint64_t)(a_x.len)) > 5536) { v_remaining = wuffs_base__slice_u8__subslice_i(a_x, 5536); a_x = wuffs_base__slice_u8__subslice_j(a_x, 5536); } v_num_iterate_bytes = ((uint32_t)((((uint64_t)(a_x.len)) & 4294967264))); v_s2 += ((uint32_t)(v_s1 * v_num_iterate_bytes)); v_v1 = _mm_setzero_si128(); v_v2j = _mm_setzero_si128(); v_v2k = _mm_setzero_si128(); { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 32; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 32) * 32); while (v_p.ptr < i_end0_p) { v_q__left = _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr)); v_q_right = _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 16)); v_v2j = _mm_add_epi32(v_v2j, v_v1); v_v1 = _mm_add_epi32(v_v1, _mm_sad_epu8(v_q__left, v_zeroes)); v_v1 = _mm_add_epi32(v_v1, _mm_sad_epu8(v_q_right, v_zeroes)); v_v2k = _mm_add_epi32(v_v2k, _mm_madd_epi16(v_ones, _mm_maddubs_epi16(v_q__left, v_weights__left))); v_v2k = _mm_add_epi32(v_v2k, _mm_madd_epi16(v_ones, _mm_maddubs_epi16(v_q_right, v_weights_right))); v_p.ptr += 32; } v_p.len = 0; } v_v1 = _mm_add_epi32(v_v1, _mm_shuffle_epi32(v_v1, (int32_t)(177))); v_v1 = _mm_add_epi32(v_v1, _mm_shuffle_epi32(v_v1, (int32_t)(78))); v_s1 += ((uint32_t)(_mm_cvtsi128_si32(v_v1))); v_v2 = _mm_add_epi32(v_v2k, _mm_slli_epi32(v_v2j, (int32_t)(5))); v_v2 = _mm_add_epi32(v_v2, _mm_shuffle_epi32(v_v2, (int32_t)(177))); v_v2 = _mm_add_epi32(v_v2, _mm_shuffle_epi32(v_v2, (int32_t)(78))); v_s2 += ((uint32_t)(_mm_cvtsi128_si32(v_v2))); v_tail_index = (((uint64_t)(a_x.len)) & 18446744073709551584u); if (v_tail_index < ((uint64_t)(a_x.len))) { { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, v_tail_index); v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s1 += ((uint32_t)(v_p.ptr[0])); v_s2 += v_s1; v_p.ptr += 1; } v_p.len = 0; } } v_s1 %= 65521; v_s2 %= 65521; a_x = v_remaining; } self->private_impl.f_state = (((v_s2 & 65535) << 16) | (v_s1 & 65535)); return wuffs_base__make_empty_struct(); } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_sse42 #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ADLER32) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__CRC32) // ---------------- Status Codes Implementations // ---------------- Private Consts static const uint32_t WUFFS_CRC32__IEEE_TABLE[16][256] WUFFS_BASE__POTENTIALLY_UNUSED = { { 0, 1996959894, 3993919788, 2567524794, 124634137, 1886057615, 3915621685, 2657392035, 249268274, 2044508324, 3772115230, 2547177864, 162941995, 2125561021, 3887607047, 2428444049, 498536548, 1789927666, 4089016648, 2227061214, 450548861, 1843258603, 4107580753, 2211677639, 325883990, 1684777152, 4251122042, 2321926636, 335633487, 1661365465, 4195302755, 2366115317, 997073096, 1281953886, 3579855332, 2724688242, 1006888145, 1258607687, 3524101629, 2768942443, 901097722, 1119000684, 3686517206, 2898065728, 853044451, 1172266101, 3705015759, 2882616665, 651767980, 1373503546, 3369554304, 3218104598, 565507253, 1454621731, 3485111705, 3099436303, 671266974, 1594198024, 3322730930, 2970347812, 795835527, 1483230225, 3244367275, 3060149565, 1994146192, 31158534, 2563907772, 4023717930, 1907459465, 112637215, 2680153253, 3904427059, 2013776290, 251722036, 2517215374, 3775830040, 2137656763, 141376813, 2439277719, 3865271297, 1802195444, 476864866, 2238001368, 4066508878, 1812370925, 453092731, 2181625025, 4111451223, 1706088902, 314042704, 2344532202, 4240017532, 1658658271, 366619977, 2362670323, 4224994405, 1303535960, 984961486, 2747007092, 3569037538, 1256170817, 1037604311, 2765210733, 3554079995, 1131014506, 879679996, 2909243462, 3663771856, 1141124467, 855842277, 2852801631, 3708648649, 1342533948, 654459306, 3188396048, 3373015174, 1466479909, 544179635, 3110523913, 3462522015, 1591671054, 702138776, 2966460450, 3352799412, 1504918807, 783551873, 3082640443, 3233442989, 3988292384, 2596254646, 62317068, 1957810842, 3939845945, 2647816111, 81470997, 1943803523, 3814918930, 2489596804, 225274430, 2053790376, 3826175755, 2466906013, 167816743, 2097651377, 4027552580, 2265490386, 503444072, 1762050814, 4150417245, 2154129355, 426522225, 1852507879, 4275313526, 2312317920, 282753626, 1742555852, 4189708143, 2394877945, 397917763, 1622183637, 3604390888, 2714866558, 953729732, 1340076626, 3518719985, 2797360999, 1068828381, 1219638859, 3624741850, 2936675148, 906185462, 1090812512, 3747672003, 2825379669, 829329135, 1181335161, 3412177804, 3160834842, 628085408, 1382605366, 3423369109, 3138078467, 570562233, 1426400815, 3317316542, 2998733608, 733239954, 1555261956, 3268935591, 3050360625, 752459403, 1541320221, 2607071920, 3965973030, 1969922972, 40735498, 2617837225, 3943577151, 1913087877, 83908371, 2512341634, 3803740692, 2075208622, 213261112, 2463272603, 3855990285, 2094854071, 198958881, 2262029012, 4057260610, 1759359992, 534414190, 2176718541, 4139329115, 1873836001, 414664567, 2282248934, 4279200368, 1711684554, 285281116, 2405801727, 4167216745, 1634467795, 376229701, 2685067896, 3608007406, 1308918612, 956543938, 2808555105, 3495958263, 1231636301, 1047427035, 2932959818, 3654703836, 1088359270, 936918000, 2847714899, 3736837829, 1202900863, 817233897, 3183342108, 3401237130, 1404277552, 615818150, 3134207493, 3453421203, 1423857449, 601450431, 3009837614, 3294710456, 1567103746, 711928724, 3020668471, 3272380065, 1510334235, 755167117, }, { 0, 421212481, 842424962, 724390851, 1684849924, 2105013317, 1448781702, 1329698503, 3369699848, 3519200073, 4210026634, 3824474571, 2897563404, 3048111693, 2659397006, 2274893007, 1254232657, 1406739216, 2029285587, 1643069842, 783210325, 934667796, 479770071, 92505238, 2182846553, 2600511768, 2955803355, 2838940570, 3866582365, 4285295644, 3561045983, 3445231262, 2508465314, 2359236067, 2813478432, 3198777185, 4058571174, 3908292839, 3286139684, 3670389349, 1566420650, 1145479147, 1869335592, 1987116393, 959540142, 539646703, 185010476, 303839341, 3745920755, 3327985586, 3983561841, 4100678960, 3140154359, 2721170102, 2300350837, 2416418868, 396344571, 243568058, 631889529, 1018359608, 1945336319, 1793607870, 1103436669, 1490954812, 4034481925, 3915546180, 3259968903, 3679722694, 2484439553, 2366552896, 2787371139, 3208174018, 950060301, 565965900, 177645455, 328046286, 1556873225, 1171730760, 1861902987, 2011255754, 3132841300, 2745199637, 2290958294, 2442530455, 3738671184, 3352078609, 3974232786, 4126854035, 1919080284, 1803150877, 1079293406, 1498383519, 370020952, 253043481, 607678682, 1025720731, 1711106983, 2095471334, 1472923941, 1322268772, 26324643, 411738082, 866634785, 717028704, 2904875439, 3024081134, 2668790573, 2248782444, 3376948395, 3495106026, 4219356713, 3798300520, 792689142, 908347575, 487136116, 68299317, 1263779058, 1380486579, 2036719216, 1618931505, 3890672638, 4278043327, 3587215740, 3435896893, 2206873338, 2593195963, 2981909624, 2829542713, 998479947, 580430090, 162921161, 279890824, 1609522511, 1190423566, 1842954189, 1958874764, 4082766403, 3930137346, 3245109441, 3631694208, 2536953671, 2385372678, 2768287173, 3155920004, 1900120602, 1750776667, 1131931800, 1517083097, 355290910, 204897887, 656092572, 1040194781, 3113746450, 2692952403, 2343461520, 2461357009, 3723805974, 3304059991, 4022511508, 4141455061, 2919742697, 3072101800, 2620513899, 2234183466, 3396041197, 3547351212, 4166851439, 3779471918, 1725839073, 2143618976, 1424512099, 1307796770, 45282277, 464110244, 813994343, 698327078, 3838160568, 4259225593, 3606301754, 3488152955, 2158586812, 2578602749, 2996767038, 2877569151, 740041904, 889656817, 506086962, 120682355, 1215357364, 1366020341, 2051441462, 1667084919, 3422213966, 3538019855, 4190942668, 3772220557, 2945847882, 3062702859, 2644537544, 2226864521, 52649286, 439905287, 823476164, 672009861, 1733269570, 2119477507, 1434057408, 1281543041, 2167981343, 2552493150, 3004082077, 2853541596, 3847487515, 4233048410, 3613549209, 3464057816, 1239502615, 1358593622, 2077699477, 1657543892, 764250643, 882293586, 532408465, 111204816, 1585378284, 1197851309, 1816695150, 1968414767, 974272232, 587794345, 136598634, 289367339, 2527558116, 2411481253, 2760973158, 3179948583, 4073438432, 3956313505, 3237863010, 3655790371, 347922877, 229101820, 646611775, 1066513022, 1892689081, 1774917112, 1122387515, 1543337850, 3697634229, 3313392372, 3998419255, 4148705398, 3087642289, 2702352368, 2319436851, 2468674930, }, { 0, 29518391, 59036782, 38190681, 118073564, 114017003, 76381362, 89069189, 236147128, 265370511, 228034006, 206958561, 152762724, 148411219, 178138378, 190596925, 472294256, 501532999, 530741022, 509615401, 456068012, 451764635, 413917122, 426358261, 305525448, 334993663, 296822438, 275991697, 356276756, 352202787, 381193850, 393929805, 944588512, 965684439, 1003065998, 973863097, 1061482044, 1049003019, 1019230802, 1023561829, 912136024, 933002607, 903529270, 874031361, 827834244, 815125939, 852716522, 856752605, 611050896, 631869351, 669987326, 640506825, 593644876, 580921211, 551983394, 556069653, 712553512, 733666847, 704405574, 675154545, 762387700, 749958851, 787859610, 792175277, 1889177024, 1901651959, 1931368878, 1927033753, 2006131996, 1985040171, 1947726194, 1976933189, 2122964088, 2135668303, 2098006038, 2093965857, 2038461604, 2017599123, 2047123658, 2076625661, 1824272048, 1836991623, 1866005214, 1861914857, 1807058540, 1786244187, 1748062722, 1777547317, 1655668488, 1668093247, 1630251878, 1625932113, 1705433044, 1684323811, 1713505210, 1742760333, 1222101792, 1226154263, 1263738702, 1251046777, 1339974652, 1310460363, 1281013650, 1301863845, 1187289752, 1191637167, 1161842422, 1149379777, 1103966788, 1074747507, 1112139306, 1133218845, 1425107024, 1429406311, 1467333694, 1454888457, 1408811148, 1379576507, 1350309090, 1371438805, 1524775400, 1528845279, 1499917702, 1487177649, 1575719220, 1546255107, 1584350554, 1605185389, 3778354048, 3774312887, 3803303918, 3816007129, 3862737756, 3892238699, 3854067506, 3833203973, 4012263992, 4007927823, 3970080342, 3982554209, 3895452388, 3924658387, 3953866378, 3932773565, 4245928176, 4241609415, 4271336606, 4283762345, 4196012076, 4225268251, 4187931714, 4166823541, 4076923208, 4072833919, 4035198246, 4047918865, 4094247316, 4123732899, 4153251322, 4132437965, 3648544096, 3636082519, 3673983246, 3678331705, 3732010428, 3753090955, 3723829714, 3694611429, 3614117080, 3601426159, 3572488374, 3576541825, 3496125444, 3516976691, 3555094634, 3525581405, 3311336976, 3298595879, 3336186494, 3340255305, 3260503756, 3281337595, 3251864226, 3222399125, 3410866088, 3398419871, 3368647622, 3372945905, 3427010420, 3448139075, 3485520666, 3456284973, 2444203584, 2423127159, 2452308526, 2481530905, 2527477404, 2539934891, 2502093554, 2497740997, 2679949304, 2659102159, 2620920726, 2650438049, 2562027300, 2574714131, 2603727690, 2599670141, 2374579504, 2353749767, 2383274334, 2412743529, 2323684844, 2336421851, 2298759554, 2294686645, 2207933576, 2186809023, 2149495014, 2178734801, 2224278612, 2236720739, 2266437690, 2262135309, 2850214048, 2820717207, 2858812622, 2879680249, 2934667388, 2938704459, 2909776914, 2897069605, 2817622296, 2788420399, 2759153014, 2780249921, 2700618180, 2704950259, 2742877610, 2730399645, 3049550800, 3020298727, 3057690558, 3078802825, 2999835404, 3004150075, 2974355298, 2961925461, 3151438440, 3121956959, 3092510214, 3113327665, 3168701108, 3172786307, 3210370778, 3197646061, }, { 0, 3099354981, 2852767883, 313896942, 2405603159, 937357362, 627793884, 2648127673, 3316918511, 2097696650, 1874714724, 3607201537, 1255587768, 4067088605, 3772741427, 1482887254, 1343838111, 3903140090, 4195393300, 1118632049, 3749429448, 1741137837, 1970407491, 3452858150, 2511175536, 756094997, 1067759611, 2266550430, 449832999, 2725482306, 2965774508, 142231497, 2687676222, 412010587, 171665333, 2995192016, 793786473, 2548850444, 2237264098, 1038456711, 1703315409, 3711623348, 3482275674, 1999841343, 3940814982, 1381529571, 1089329165, 4166106984, 4029413537, 1217896388, 1512189994, 3802027855, 2135519222, 3354724499, 3577784189, 1845280792, 899665998, 2367928107, 2677414085, 657096608, 3137160985, 37822588, 284462994, 2823350519, 2601801789, 598228824, 824021174, 2309093331, 343330666, 2898962447, 3195996129, 113467524, 1587572946, 3860600759, 4104763481, 1276501820, 3519211397, 1769898208, 2076913422, 3279374443, 3406630818, 1941006535, 1627703081, 3652755532, 1148164341, 4241751952, 3999682686, 1457141531, 247015245, 3053797416, 2763059142, 470583459, 2178658330, 963106687, 735213713, 2473467892, 992409347, 2207944806, 2435792776, 697522413, 3024379988, 217581361, 508405983, 2800865210, 4271038444, 1177467017, 1419450215, 3962007554, 1911572667, 3377213406, 3690561584, 1665525589, 1799331996, 3548628985, 3241568279, 2039091058, 3831314379, 1558270126, 1314193216, 4142438437, 2928380019, 372764438, 75645176, 3158189981, 568925988, 2572515393, 2346768303, 861712586, 3982079547, 1441124702, 1196457648, 4293663189, 1648042348, 3666298377, 3358779879, 1888390786, 686661332, 2421291441, 2196002399, 978858298, 2811169155, 523464422, 226935048, 3040519789, 3175145892, 100435649, 390670639, 2952089162, 841119475, 2325614998, 2553003640, 546822429, 2029308235, 3225988654, 3539796416, 1782671013, 4153826844, 1328167289, 1570739863, 3844338162, 1298864389, 4124540512, 3882013070, 1608431339, 3255406162, 2058742071, 1744848601, 3501990332, 2296328682, 811816591, 584513889, 2590678532, 129869501, 3204563416, 2914283062, 352848211, 494030490, 2781751807, 3078325777, 264757620, 2450577869, 715964072, 941166918, 2158327331, 3636881013, 1618608400, 1926213374, 3396585883, 1470427426, 4011365959, 4255988137, 1158766284, 1984818694, 3471935843, 3695453837, 1693991400, 4180638033, 1100160564, 1395044826, 3952793279, 3019491049, 189112716, 435162722, 2706139399, 1016811966, 2217162459, 2526189877, 774831696, 643086745, 2666061564, 2354934034, 887166583, 2838900430, 294275499, 54519365, 3145957664, 3823145334, 1532818963, 1240029693, 4048895640, 1820460577, 3560857924, 3331051178, 2117577167, 3598663992, 1858283101, 2088143283, 3301633750, 1495127663, 3785470218, 4078182116, 1269332353, 332098007, 2876706482, 3116540252, 25085497, 2628386432, 605395429, 916469259, 2384220526, 2254837415, 1054503362, 745528876, 2496903497, 151290352, 2981684885, 2735556987, 464596510, 1137851976, 4218313005, 3923506883, 1365741990, 3434129695, 1946996346, 1723425172, 3724871409, }, { 0, 1029712304, 2059424608, 1201699536, 4118849216, 3370159984, 2403399072, 2988497936, 812665793, 219177585, 1253054625, 2010132753, 3320900865, 4170237105, 3207642721, 2186319825, 1625331586, 1568718386, 438355170, 658566482, 2506109250, 2818578674, 4020265506, 3535817618, 1351670851, 1844508147, 709922595, 389064339, 2769320579, 2557498163, 3754961379, 3803185235, 3250663172, 4238411444, 3137436772, 2254525908, 876710340, 153198708, 1317132964, 1944187668, 4054934725, 3436268917, 2339452837, 3054575125, 70369797, 961670069, 2129760613, 1133623509, 2703341702, 2621542710, 3689016294, 3867263574, 1419845190, 1774270454, 778128678, 318858390, 2438067015, 2888948471, 3952189479, 3606153623, 1691440519, 1504803895, 504432359, 594620247, 1492342857, 1704161785, 573770537, 525542041, 2910060169, 2417219385, 3618876905, 3939730521, 1753420680, 1440954936, 306397416, 790849880, 2634265928, 2690882808, 3888375336, 3668168600, 940822475, 91481723, 1121164459, 2142483739, 3448989963, 4042473659, 3075684971, 2318603227, 140739594, 889433530, 1923340138, 1338244826, 4259521226, 3229813626, 2267247018, 3124975642, 2570221389, 2756861693, 3824297005, 3734113693, 1823658381, 1372780605, 376603373, 722643805, 2839690380, 2485261628, 3548540908, 4007806556, 1556257356, 1638052860, 637716780, 459464860, 4191346895, 3300051327, 2199040943, 3195181599, 206718479, 825388991, 1989285231, 1274166495, 3382881038, 4106388158, 3009607790, 2382549470, 1008864718, 21111934, 1189240494, 2072147742, 2984685714, 2357631266, 3408323570, 4131834434, 1147541074, 2030452706, 1051084082, 63335554, 2174155603, 3170292451, 4216760371, 3325460867, 1947622803, 1232499747, 248909555, 867575619, 3506841360, 3966111392, 2881909872, 2527485376, 612794832, 434546784, 1581699760, 1663499008, 3782634705, 3692447073, 2612412337, 2799048193, 351717905, 697754529, 1849071985, 1398190273, 1881644950, 1296545318, 182963446, 931652934, 2242328918, 3100053734, 4284967478, 3255255942, 1079497815, 2100821479, 983009079, 133672583, 3050795671, 2293717799, 3474399735, 4067887175, 281479188, 765927844, 1778867060, 1466397380, 3846680276, 3626469220, 2676489652, 2733102084, 548881365, 500656741, 1517752501, 1729575173, 3577210133, 3898068133, 2952246901, 2459410373, 3910527195, 3564487019, 2480257979, 2931134987, 479546907, 569730987, 1716854139, 1530213579, 3647316762, 3825568426, 2745561210, 2663766474, 753206746, 293940330, 1445287610, 1799716618, 2314567513, 3029685993, 4080348217, 3461678473, 2088098201, 1091956777, 112560889, 1003856713, 3112514712, 2229607720, 3276105720, 4263857736, 1275433560, 1902492648, 918929720, 195422344, 685033439, 364179055, 1377080511, 1869921551, 3713294623, 3761522863, 2811507327, 2599689167, 413436958, 633644462, 1650777982, 1594160846, 3978570462, 3494118254, 2548332990, 2860797966, 1211387997, 1968470509, 854852413, 261368461, 3182753437, 2161434413, 3346310653, 4195650637, 2017729436, 1160000044, 42223868, 1071931724, 2378480988, 2963576044, 4144295484, 3395602316, }, { 0, 3411858341, 1304994059, 2257875630, 2609988118, 1355649459, 3596215069, 486879416, 3964895853, 655315400, 2711298918, 1791488195, 2009251963, 3164476382, 973758832, 4048990933, 64357019, 3364540734, 1310630800, 2235723829, 2554806413, 1394316072, 3582976390, 517157411, 4018503926, 618222419, 2722963965, 1762783832, 1947517664, 3209171269, 970744811, 4068520014, 128714038, 3438335635, 1248109629, 2167961496, 2621261600, 1466012805, 3522553387, 447296910, 3959392091, 547575038, 2788632144, 1835791861, 1886307661, 3140622056, 1034314822, 4143626211, 75106221, 3475428360, 1236444838, 2196665603, 2682996155, 1421317662, 3525567664, 427767573, 3895035328, 594892389, 2782995659, 1857943406, 1941489622, 3101955187, 1047553757, 4113347960, 257428076, 3288652233, 1116777319, 2311878850, 2496219258, 1603640287, 3640781169, 308099796, 3809183745, 676813732, 2932025610, 1704983215, 2023410199, 3016104370, 894593820, 4262377657, 210634999, 3352484690, 1095150076, 2316991065, 2535410401, 1547934020, 3671583722, 294336591, 3772615322, 729897279, 2903845777, 1716123700, 2068629644, 2953845545, 914647431, 4258839074, 150212442, 3282623743, 1161604689, 2388688372, 2472889676, 1480171241, 3735940167, 368132066, 3836185911, 805002898, 2842635324, 1647574937, 2134298401, 3026852996, 855535146, 4188192143, 186781121, 3229539940, 1189784778, 2377547631, 2427670487, 1542429810, 3715886812, 371670393, 3882979244, 741170185, 2864262823, 1642462466, 2095107514, 3082559007, 824732849, 4201955092, 514856152, 3589064573, 1400419795, 2552522358, 2233554638, 1316849003, 3370776517, 62202976, 4075001525, 968836368, 3207280574, 1954014235, 1769133219, 2720925446, 616199592, 4024870413, 493229635, 3594175974, 1353627464, 2616354029, 2264355925, 1303087088, 3409966430, 6498043, 4046820398, 979978123, 3170710821, 2007099008, 1789187640, 2717386141, 661419827, 3962610838, 421269998, 3527459403, 1423225061, 2676515648, 2190300152, 1238466653, 3477467891, 68755798, 4115633027, 1041448998, 3095868040, 1943789869, 1860096405, 2776760880, 588673182, 3897205563, 449450869, 3516317904, 1459794558, 2623431131, 2170245475, 1242006214, 3432247400, 131015629, 4137259288, 1036337853, 3142660115, 1879958454, 1829294862, 2790523051, 549483013, 3952910752, 300424884, 3669282065, 1545650111, 2541513754, 2323209378, 1092980487, 3350330793, 216870412, 4256931033, 921128828, 2960342482, 2066738807, 1714085583, 2910195050, 736264132, 3770592353, 306060335, 3647131530, 1610005796, 2494197377, 2309971513, 1123257756, 3295149874, 255536279, 4268596802, 892423655, 3013951305, 2029645036, 1711070292, 2929725425, 674528607, 3815288570, 373562242, 3709388839, 1535949449, 2429577516, 2379569556, 1183418929, 3223189663, 188820282, 4195850735, 827017802, 3084859620, 2089020225, 1636228089, 2866415708, 743340786, 3876759895, 361896217, 3738094268, 1482340370, 2466671543, 2382584591, 1163888810, 3284924932, 144124321, 4190215028, 849168593, 3020503679, 2136336858, 1649465698, 2836138695, 798521449, 3838094284, }, { 0, 2792819636, 2543784233, 837294749, 4098827283, 1379413927, 1674589498, 3316072078, 871321191, 2509784531, 2758827854, 34034938, 3349178996, 1641505216, 1346337629, 4131942633, 1742642382, 3249117050, 4030828007, 1446413907, 2475800797, 904311657, 68069876, 2725880384, 1412551337, 4064729373, 3283010432, 1708771380, 2692675258, 101317902, 937551763, 2442587175, 3485284764, 1774858792, 1478633653, 4266992385, 1005723023, 2642744891, 2892827814, 169477906, 4233263099, 1512406095, 1808623314, 3451546982, 136139752, 2926205020, 2676114113, 972376437, 2825102674, 236236518, 1073525883, 2576072655, 1546420545, 4200303349, 3417542760, 1841601500, 2609703733, 1039917185, 202635804, 2858742184, 1875103526, 3384067218, 4166835727, 1579931067, 1141601657, 3799809741, 3549717584, 1977839588, 2957267306, 372464350, 668680259, 2175552503, 2011446046, 3516084394, 3766168119, 1175200131, 2209029901, 635180217, 338955812, 2990736784, 601221559, 2242044419, 3024812190, 306049834, 3617246628, 1911408144, 1074125965, 3866285881, 272279504, 3058543716, 2275784441, 567459149, 3832906691, 1107462263, 1944752874, 3583875422, 2343980261, 767641425, 472473036, 3126744696, 2147051766, 3649987394, 3899029983, 1309766251, 3092841090, 506333494, 801510315, 2310084639, 1276520081, 3932237093, 3683203000, 2113813516, 3966292011, 1243601823, 2079834370, 3716205238, 405271608, 3192979340, 2411259153, 701492901, 3750207052, 2045810168, 1209569125, 4000285905, 734575199, 2378150379, 3159862134, 438345922, 2283203314, 778166598, 529136603, 3120492655, 2086260449, 3660498261, 3955679176, 1303499900, 3153699989, 495890209, 744928700, 2316418568, 1337360518, 3921775410, 3626602927, 2120129051, 4022892092, 1237286280, 2018993941, 3726666913, 461853231, 3186645403, 2350400262, 711936178, 3693557851, 2052076527, 1270360434, 3989775046, 677911624, 2384402428, 3220639073, 427820757, 1202443118, 3789347034, 3493118535, 1984154099, 3018127229, 362020041, 612099668, 2181885408, 1950653705, 3526596285, 3822816288, 1168934804, 2148251930, 645706414, 395618355, 2984485767, 544559008, 2248295444, 3085590153, 295523645, 3560598451, 1917673479, 1134918298, 3855773998, 328860103, 3052210803, 2214924526, 577903450, 3889505748, 1101147744, 1883911421, 3594338121, 3424493451, 1785369663, 1535282850, 4260726038, 944946072, 2653270060, 2949491377, 163225861, 4294103532, 1501944408, 1752023237, 3457862513, 196998655, 2915761739, 2619532502, 978710370, 2881684293, 229902577, 1012666988, 2586515928, 1603020630, 4193987810, 3356702335, 1852063179, 2553040162, 1046169238, 263412747, 2848217023, 1818454321, 3390333573, 4227627032, 1569420204, 60859927, 2782375331, 2487203646, 843627658, 4159668740, 1368951216, 1617990445, 3322386585, 810543216, 2520310724, 2815490393, 27783917, 3288386659, 1652017111, 1402985802, 4125677310, 1685994201, 3255382381, 4091620336, 1435902020, 2419138250, 910562686, 128847843, 2715354199, 1469150398, 4058414858, 3222168983, 1719234083, 2749255853, 94984985, 876691844, 2453031472, }, { 0, 3433693342, 1109723005, 2391738339, 2219446010, 1222643300, 3329165703, 180685081, 3555007413, 525277995, 2445286600, 1567235158, 1471092047, 2600801745, 361370162, 3642757804, 2092642603, 2953916853, 1050555990, 4063508168, 4176560081, 878395215, 3134470316, 1987983410, 2942184094, 1676945920, 3984272867, 567356797, 722740324, 3887998202, 1764827929, 2778407815, 4185285206, 903635656, 3142804779, 2012833205, 2101111980, 2979425330, 1058630609, 4088621903, 714308067, 3862526333, 1756790430, 2753330688, 2933487385, 1651734407, 3975966820, 542535930, 2244825981, 1231508451, 3353891840, 188896414, 25648519, 3442302233, 1134713594, 2399689316, 1445480648, 2592229462, 336416693, 3634843435, 3529655858, 516441772, 2420588879, 1559052753, 698204909, 3845636723, 1807271312, 2803025166, 2916600855, 1635634313, 4025666410, 593021940, 4202223960, 919787974, 3093159461, 1962401467, 2117261218, 2996361020, 1008193759, 4038971457, 1428616134, 2576151384, 386135227, 3685348389, 3513580860, 499580322, 2471098945, 1608776415, 2260985971, 1248454893, 3303468814, 139259792, 42591881, 3458459159, 1085071860, 2349261162, 3505103035, 474062885, 2463016902, 1583654744, 1419882049, 2550902495, 377792828, 3660491170, 51297038, 3483679632, 1093385331, 2374089965, 2269427188, 1273935210, 3311514249, 164344343, 2890961296, 1627033870, 4000683757, 585078387, 672833386, 3836780532, 1782552599, 2794821769, 2142603813, 3005188795, 1032883544, 4047146438, 4227826911, 928351297, 3118105506, 1970307900, 1396409818, 2677114180, 287212199, 3719594553, 3614542624, 467372990, 2505346141, 1509854403, 2162073199, 1282711281, 3271268626, 240228748, 76845205, 3359543307, 1186043880, 2317064054, 796964081, 3811226735, 1839575948, 2702160658, 2882189835, 1734392469, 3924802934, 625327592, 4234522436, 818917338, 3191908409, 1927981223, 2016387518, 3028656416, 973776579, 4137723485, 2857232268, 1726474002, 3899187441, 616751215, 772270454, 3803048424, 1814228491, 2693328533, 2041117753, 3036871847, 999160644, 4146592730, 4259508931, 826864221, 3217552830, 1936586016, 3606501031, 442291769, 2496909786, 1484378436, 1388107869, 2652297411, 278519584, 3694387134, 85183762, 3384397196, 1194773103, 2342308593, 2170143720, 1307820918, 3279733909, 265733131, 2057717559, 3054258089, 948125770, 4096344276, 4276898253, 843467091, 3167309488, 1885556270, 2839764098, 1709792284, 3949353983, 667704161, 755585656, 3785577190, 1865176325, 2743489947, 102594076, 3401021058, 1144549729, 2291298815, 2186770662, 1325234296, 3228729243, 215514885, 3589828009, 424832311, 2547870420, 1534552650, 1370645331, 2635621325, 328688686, 3745342640, 2211456353, 1333405183, 3254067740, 224338562, 127544219, 3408931589, 1170156774, 2299866232, 1345666772, 2627681866, 303053225, 3736746295, 3565105198, 416624816, 2522494803, 1525692365, 4285207626, 868291796, 3176010551, 1910772649, 2065767088, 3079346734, 956571085, 4121828691, 747507711, 3760459617, 1856702594, 2717976604, 2831417605, 1684930971, 3940615800, 642451174, }, { 0, 393942083, 787884166, 965557445, 1575768332, 1251427663, 1931114890, 1684106697, 3151536664, 2896410203, 2502855326, 2186649309, 3862229780, 4048545623, 3368213394, 3753496529, 2898281073, 3149616690, 2184604407, 2504883892, 4046197629, 3864463166, 3755621371, 3366006712, 387506281, 6550570, 971950319, 781573292, 1257550181, 1569695014, 1677892067, 1937345952, 2196865699, 2508887776, 2886183461, 3145514598, 3743273903, 3362179052, 4058774313, 3868258154, 958996667, 777139448, 400492605, 10755198, 1690661303, 1941857780, 1244879153, 1565019506, 775012562, 961205393, 13101140, 398261271, 1943900638, 1688634781, 1563146584, 1246801179, 2515100362, 2190636681, 3139390028, 2892258831, 3355784134, 3749586821, 3874691904, 4052225795, 3734110983, 3387496260, 4033096577, 3877584834, 2206093835, 2483373640, 2911402637, 3136515790, 1699389727, 1915860316, 1270647193, 1556585946, 950464531, 803071056, 374397077, 19647702, 1917993334, 1697207605, 1554278896, 1272937907, 800985210, 952435769, 21510396, 372452543, 3381322606, 3740399405, 3883715560, 4027047851, 2489758306, 2199758369, 3130039012, 2917895847, 1550025124, 1259902439, 1922410786, 1710144865, 26202280, 385139947, 796522542, 939715693, 3887801276, 4039129087, 3377269562, 3728088953, 3126293168, 2905368307, 2493602358, 2212122229, 4037264341, 3889747862, 3730172755, 3375300368, 2907673305, 3124004506, 2209987167, 2495786524, 1266377165, 1543533966, 1703758155, 1928748296, 379007169, 32253058, 945887303, 790236164, 1716846671, 1898845196, 1218652361, 1608006794, 1002000707, 750929152, 357530053, 36990342, 3717046871, 3405166100, 4084959953, 3825245842, 2153902939, 2535122712, 2929187805, 3119304606, 3398779454, 3723384445, 3831720632, 4078468859, 2541294386, 2147616625, 3113171892, 2935238647, 1900929062, 1714877541, 1606142112, 1220599011, 748794154, 1004184937, 39295404, 355241455, 3835986668, 4091516591, 3394415210, 3710500393, 3108557792, 2922629027, 2545875814, 2160455461, 1601970420, 1208431799, 1904871538, 1727077425, 43020792, 367748539, 744905086, 991776061, 1214562461, 1595921630, 1720903707, 1911159896, 361271697, 49513938, 998160663, 738569556, 4089209477, 3838277318, 3712633347, 3392233024, 2924491657, 3106613194, 2158369551, 2547846988, 3100050248, 2948339467, 2519804878, 2169126797, 3844821572, 4065347079, 3420289730, 3701894785, 52404560, 342144275, 770279894, 982687125, 1593045084, 1233708063, 1879431386, 1736363161, 336019769, 58479994, 988899775, 764050940, 1240141877, 1586496630, 1729968307, 1885744368, 2950685473, 3097818978, 2166999975, 2522013668, 4063474221, 3846743662, 3703937707, 3418263272, 976650731, 760059304, 348170605, 62635310, 1742393575, 1889649828, 1227683937, 1582820386, 2179867635, 2526361520, 2937588597, 3093503798, 3691148031, 3413731004, 4076100217, 3851374138, 2532754330, 2173556697, 3087067932, 2944139103, 3407516310, 3697379029, 3857496592, 4070026835, 758014338, 978679233, 64506116, 346250567, 1891774606, 1740186829, 1580472328, 1229917259, }, { 0, 4022496062, 83218493, 3946298115, 166436986, 3861498692, 220098631, 3806075769, 332873972, 4229245898, 388141257, 4175494135, 440197262, 4127099824, 516501683, 4044053389, 665747944, 3362581206, 593187285, 3432594155, 776282514, 3246869164, 716239279, 3312622225, 880394524, 3686509090, 814485793, 3746462239, 1033003366, 3528460888, 963096923, 3601193573, 1331495888, 2694801646, 1269355501, 2758457555, 1186374570, 2843003028, 1111716759, 2910918825, 1552565028, 3007850522, 1484755737, 3082680359, 1432478558, 3131279456, 1368666979, 3193329757, 1760789048, 2268195078, 1812353541, 2210675003, 1628971586, 2396670332, 1710092927, 2318375233, 2066006732, 2498144754, 2144408305, 2417195471, 1926193846, 2634877320, 1983558283, 2583222709, 2662991776, 1903717534, 2588923805, 1972223139, 2538711002, 2022952164, 2477029351, 2087066841, 2372749140, 1655647338, 2308478825, 1717238871, 2223433518, 1799654416, 2155034387, 1873894445, 3105130056, 1456926070, 3185661557, 1378041163, 2969511474, 1597852940, 3020617231, 1539874097, 2864957116, 1157737858, 2922780289, 1106542015, 2737333958, 1290407416, 2816325371, 1210047941, 3521578096, 1042640718, 3574781005, 986759027, 3624707082, 936300340, 3707335735, 859512585, 3257943172, 770846650, 3334837433, 688390023, 3420185854, 605654976, 3475911875, 552361981, 4132013464, 428600998, 4072428965, 494812827, 4288816610, 274747100, 4216845791, 345349857, 3852387692, 173846098, 3781891409, 245988975, 3967116566, 62328360, 3900749099, 121822741, 3859089665, 164061759, 3807435068, 221426178, 4025395579, 2933317, 3944446278, 81334904, 4124199413, 437265099, 4045904328, 518386422, 4231653775, 335250097, 4174133682, 386814604, 3249244393, 778691543, 3311294676, 714879978, 3359647891, 662848429, 3434477742, 595039120, 3531393053, 1035903779, 3599308832, 961245982, 3684132967, 877986649, 3747788890, 815846244, 2841119441, 1184522735, 2913852140, 1114616274, 2696129195, 1332855189, 2756082326, 1266946472, 3129952805, 1431118107, 3195705880, 1371074854, 3009735263, 1554415969, 3079748194, 1481855324, 2398522169, 1630855175, 2315475716, 1707159610, 2266835779, 1759461501, 2213084030, 1814728768, 2636237773, 1927520499, 2580814832, 1981182158, 2496293815, 2064121993, 2420095882, 2147340468, 2025787041, 2541577631, 2085281436, 2475210146, 1901375195, 2660681189, 1973518054, 2590184920, 1801997909, 2225743211, 1872600680, 2153772374, 1652813359, 2369881361, 1719025170, 2310296876, 1594986313, 2966676599, 1541693300, 3022402634, 1459236659, 3107472397, 1376780046, 3184366640, 1288097725, 2734990467, 1211309952, 2817619134, 1160605639, 2867791097, 1104723962, 2920993988, 937561457, 3626001999, 857201996, 3704993394, 1040821515, 3519792693, 989625654, 3577615880, 607473029, 3421972155, 549494200, 3473077894, 769584639, 3256649409, 690699714, 3337180924, 273452185, 4287555495, 347692196, 4219156378, 430386403, 4133832669, 491977950, 4069562336, 60542061, 3965298515, 124656720, 3903616878, 175139863, 3853649705, 243645482, 3779581716, }, { 0, 3247366080, 1483520449, 2581751297, 2967040898, 1901571138, 3904227907, 691737987, 3133399365, 2068659845, 3803142276, 589399876, 169513671, 3415493895, 1383475974, 2482566342, 2935407819, 1870142219, 4137319690, 924099274, 506443593, 3751897225, 1178799752, 2278412616, 339027342, 3585866318, 1280941135, 2379694991, 2766951948, 1700956620, 4236308429, 1024339981, 2258407383, 1192382487, 3740284438, 528411094, 910556245, 4157285269, 1848198548, 2946996820, 1012887186, 4258378066, 1681119059, 2780629139, 2357599504, 1292419792, 3572147409, 358906641, 678054684, 3924071644, 1879503581, 2978491677, 2561882270, 1497229150, 3235873119, 22109855, 2460592729, 1395094937, 3401913240, 189516888, 577821147, 3825075739, 2048679962, 3146956762, 3595049455, 398902831, 2384764974, 1336573934, 1720805997, 2803873197, 1056822188, 4285729900, 1821112490, 2902796138, 887570795, 4117339819, 3696397096, 500978920, 2218668777, 1169222953, 2025774372, 3106931428, 550659301, 3780950821, 3362238118, 166293862, 2416645991, 1367722151, 3262987361, 66315169, 2584839584, 1537170016, 1923370979, 3005911075, 717813282, 3947244002, 1356109368, 2438613496, 146288633, 3375820857, 3759007162, 562248314, 3093388411, 2045739963, 3927406461, 731490493, 2994458300, 1945440636, 1523451135, 2604718911, 44219710, 3274466046, 4263662323, 1068272947, 2790189874, 1740649714, 1325080945, 2406874801, 379033776, 3608758128, 1155642294, 2238671990, 479005303, 3708016055, 4097359924, 901128180, 2891217397, 1843045941, 2011248031, 3060787807, 797805662, 3993195422, 3342353949, 112630237, 2673147868, 1591353372, 3441611994, 212601626, 2504944923, 1421914843, 2113644376, 3161815192, 630660761, 3826893145, 3642224980, 412692116, 2172340373, 1089836885, 1775141590, 2822790422, 832715543, 4029474007, 1674842129, 2723860433, 1001957840, 4197873168, 3540870035, 310623315, 2338445906, 1257178514, 4051548744, 821257608, 2836464521, 1755307081, 1101318602, 2150241802, 432566283, 3628511179, 1270766349, 2318435533, 332587724, 3529260300, 4217841807, 988411727, 2735444302, 1652903566, 1602977411, 2651169091, 132630338, 3328776322, 4015131905, 786223809, 3074340032, 1991273216, 3846741958, 616972294, 3173262855, 2091579847, 1435626564, 2485072772, 234706309, 3430124101, 2712218736, 1613231024, 4190475697, 944458353, 292577266, 3506339890, 1226630707, 2291284467, 459984181, 3672380149, 1124496628, 2189994804, 2880683703, 1782407543, 4091479926, 844224694, 257943739, 3469817723, 1462980986, 2529005242, 3213269817, 2114471161, 3890881272, 644152632, 3046902270, 1947391550, 3991973951, 746483711, 88439420, 3301680572, 1563018173, 2628197501, 657826727, 3871046759, 2136545894, 3201811878, 2548879397, 1449267173, 3481299428, 235845156, 2650161890, 1551408418, 3315268387, 68429027, 758067552, 3970035360, 1967360161, 3033356129, 2311284588, 1213053100, 3517963949, 270598509, 958010606, 4170500910, 1635167535, 2700636911, 855672361, 4069415401, 1802256360, 2866995240, 2212099499, 1113008747, 3686091882, 440112042, }, { 0, 2611301487, 3963330207, 2006897392, 50740095, 2560849680, 4013794784, 1956178319, 101480190, 2645113489, 3929532513, 1905435662, 84561281, 2662269422, 3912356638, 1922342769, 202960380, 2545787283, 3760419683, 2072395532, 253679235, 2495322860, 3810871324, 2021655667, 169122562, 2444351341, 3861841309, 2106214898, 152215677, 2461527058, 3844685538, 2123133581, 405920760, 2207553431, 4094313831, 1873742088, 456646791, 2157096168, 4144791064, 1823027831, 507358470, 2241388905, 4060492697, 1772322806, 490444409, 2258557462, 4043311334, 1789215881, 338245124, 2408348267, 4161972379, 1672996084, 388959611, 2357870868, 4212429796, 1622269835, 304431354, 2306870421, 4263435877, 1706791434, 287538053, 2324051946, 4246267162, 1723705717, 811841520, 2881944479, 3696765295, 1207788800, 862293135, 2831204576, 3747484176, 1157324415, 913293582, 2915732833, 3662962577, 1106318334, 896137841, 2932651550, 3646055662, 1123494017, 1014716940, 2816349795, 3493905555, 1273334012, 1065181555, 2765630748, 3544645612, 1222882179, 980888818, 2714919069, 3595350637, 1307180546, 963712909, 2731826146, 3578431762, 1324336509, 676490248, 3019317351, 3295277719, 1607253752, 726947703, 2968591128, 3345992168, 1556776327, 777919222, 3053147801, 3261432937, 1505806342, 760750473, 3070062054, 3244539670, 1522987897, 608862708, 3220163995, 3362856811, 1406423812, 659339915, 3169449700, 3413582868, 1355966587, 575076106, 3118709605, 3464325525, 1440228858, 557894773, 3135602714, 3447411434, 1457397381, 1623683040, 4217512847, 2365387135, 391757072, 1673614495, 4167309552, 2415577600, 341804655, 1724586270, 4251866481, 2331019137, 290835438, 1707942497, 4268256782, 2314648830, 307490961, 1826587164, 4152020595, 2162433155, 457265388, 1876539747, 4101829900, 2212636668, 407333779, 1792275682, 4051089549, 2263378557, 491595282, 1775619997, 4067460082, 2246988034, 508239213, 2029433880, 3813931127, 2496473735, 258500328, 2079362919, 3763716872, 2546668024, 208559511, 2130363110, 3848244873, 2462145657, 157552662, 2113730969, 3864638966, 2445764358, 174205801, 1961777636, 4014675339, 2564147067, 57707284, 2011718299, 3964481268, 2614361092, 7778411, 1927425818, 3913769845, 2665066885, 92077546, 1910772837, 3930150922, 2648673018, 108709525, 1352980496, 3405878399, 3164554895, 658115296, 1403183983, 3355946752, 3214507504, 607924639, 1453895406, 3440239233, 3130208369, 557218846, 1437504913, 3456883198, 3113552654, 573589345, 1555838444, 3340335491, 2961681267, 723707676, 1606028947, 3290383100, 3011612684, 673504355, 1521500946, 3239382909, 3062619533, 758026722, 1505130605, 3256038402, 3045975794, 774417053, 1217725416, 3543158663, 2762906999, 1057739032, 1267939479, 3493229816, 2812847624, 1007544935, 1318679830, 3577493881, 2728586121, 956803046, 1302285929, 3594125830, 2711933174, 973184153, 1150152212, 3743982203, 2830528651, 856898788, 1200346475, 3694041348, 2880457716, 806684571, 1115789546, 3643069573, 2931426933, 891243034, 1099408277, 3659722746, 2914794762, 907637093, }, { 0, 3717650821, 1616688459, 3184159950, 3233376918, 489665299, 2699419613, 2104690264, 1510200173, 2274691816, 979330598, 3888758691, 2595928571, 1194090622, 4209380528, 661706037, 3020400346, 1771143007, 3562738577, 164481556, 1958661196, 2837976521, 350386439, 3379863682, 3993269687, 865250354, 2388181244, 1406015865, 784146209, 4079732388, 1323412074, 2474079215, 3011398645, 1860735600, 3542286014, 246687547, 1942430051, 2924607718, 328963112, 3456978349, 3917322392, 887832861, 2300653011, 1421341782, 700772878, 4099025803, 1234716485, 2483986112, 125431087, 3673109674, 1730500708, 3132326369, 3351283641, 441867836, 2812031730, 2047535991, 1568292418, 2163009479, 1025936137, 3769651852, 2646824148, 1079348561, 4255113631, 537475098, 3180171691, 1612400686, 3721471200, 4717925, 2100624189, 2694980280, 493375094, 3237910515, 3884860102, 974691139, 2278750093, 1514417672, 657926224, 4204917205, 1198234907, 2600289438, 160053105, 3558665972, 1775665722, 3024116671, 3375586791, 346391650, 2842683564, 1962488105, 1401545756, 2384412057, 869618007, 3997403346, 2469432970, 1319524111, 4083956673, 788193860, 250862174, 3546612699, 1856990997, 3006903952, 3461001416, 333211981, 2920678787, 1937824774, 1425017139, 2305216694, 883735672, 3912918525, 2487837605, 1239398944, 4095071982, 696455019, 3136584836, 1734518017, 3668494799, 121507914, 2051872274, 2816200599, 437363545, 3347544796, 3774328809, 1029797484, 2158697122, 1564328743, 542033279, 4258798842, 1074950196, 2642717105, 2691310871, 2113731730, 3224801372, 497043929, 1624461185, 3175454212, 9435850, 3709412175, 4201248378, 671035391, 2587181873, 1201904308, 986750188, 3880142185, 1519135143, 2266689570, 342721485, 3388693064, 1949382278, 2846355203, 3570723163, 155332830, 3028835344, 1763607957, 1315852448, 2482538789, 775087595, 4087626862, 2396469814, 1396827059, 4002123645, 857560824, 320106210, 3464673127, 1934154665, 2933785132, 3551331444, 238804465, 3018961215, 1852270778, 1226292623, 2491507722, 692783300, 4108177729, 2309936921, 1412959900, 3924976210, 879016919, 2803091512, 2055541181, 3343875443, 450471158, 1739236014, 3124525867, 133568485, 3663777376, 4245691221, 545702608, 2639048222, 1088059291, 1034514883, 3762268230, 1576387720, 2153979149, 501724348, 3228659001, 2109407735, 2687359090, 3713981994, 13109167, 3171052385, 1620357860, 1206151121, 2591211092, 666423962, 4197321503, 2271022407, 1523307714, 3875649548, 982999433, 2850034278, 1953942499, 3384583981, 338329256, 1767471344, 3033506165, 151375291, 3566408766, 4091789579, 779425934, 2478797888, 1311354309, 861580189, 4006375960, 1392910038, 2391852883, 2929327945, 1930372812, 3469036034, 324244359, 1847629279, 3015068762, 243015828, 3555391761, 4103744548, 688715169, 2496043375, 1229996266, 874727090, 3920994103, 1417671673, 2313759356, 446585235, 3339223062, 2059594968, 2807313757, 3660002053, 129100416, 3128657486, 1743609803, 1084066558, 2634765179, 549535669, 4250396208, 2149900392, 1571961325, 3765982499, 1039043750, }, { 0, 2635063670, 3782132909, 2086741467, 430739227, 2225303149, 4173482934, 1707977408, 861478454, 2924937024, 3526875803, 1329085421, 720736557, 3086643291, 3415954816, 1452586230, 1722956908, 4223524122, 2279405761, 450042295, 2132718455, 3792785921, 2658170842, 58693292, 1441473114, 3370435372, 3028674295, 696911745, 1279765825, 3511176247, 2905172460, 807831706, 3445913816, 1349228974, 738901109, 2969918723, 3569940419, 1237784245, 900084590, 2829701656, 4265436910, 1664255896, 525574723, 2187084597, 3885099509, 2057177219, 117386584, 2616249390, 2882946228, 920233410, 1253605401, 3619119471, 2994391983, 796207833, 1393823490, 3457937012, 2559531650, 92322804, 2044829231, 3840835417, 2166609305, 472659183, 1615663412, 4249022530, 1102706673, 3702920839, 2698457948, 1037619754, 1477802218, 3306854812, 3111894087, 611605809, 1927342535, 4025419953, 2475568490, 243387420, 1800169180, 4131620778, 2317525617, 388842247, 655084445, 3120835307, 3328511792, 1533734470, 1051149446, 2745738736, 3754524715, 1120297309, 340972971, 2304586973, 4114354438, 1748234352, 234773168, 2431761350, 3968900637, 1906278251, 2363330345, 299003487, 1840466820, 4038896370, 2507210802, 142532932, 1948239007, 3910149609, 3213136159, 579563625, 1592415666, 3286611140, 2787646980, 992477042, 1195825833, 3662232543, 3933188933, 2002801203, 184645608, 2517538462, 4089658462, 1858919720, 313391347, 2409765253, 3644239219, 1144605701, 945318366, 2773977256, 3231326824, 1570095902, 569697989, 3170568115, 2205413346, 511446676, 1646078799, 4279421497, 2598330617, 131105167, 2075239508, 3871229218, 2955604436, 757403810, 1363424633, 3427521551, 2844163791, 881434553, 1223211618, 3588709140, 3854685070, 2026779384, 78583587, 2577462869, 4235025557, 1633861091, 486774840, 2148301134, 3600338360, 1268198606, 938871061, 2868504675, 3476308643, 1379640277, 777684494, 3008718712, 1310168890, 3541595724, 2943964055, 846639841, 1471879201, 3400857943, 3067468940, 735723002, 2102298892, 3762382970, 2619362721, 19901655, 1692534295, 4193118049, 2240594618, 411247564, 681945942, 3047836192, 3385552891, 1422167693, 822682701, 2886124859, 3496468704, 1298661782, 469546336, 2264093718, 4203901389, 1738379451, 38812283, 2673859341, 3812556502, 2117148576, 3268024339, 1606809957, 598006974, 3198893512, 3680933640, 1181316734, 973624229, 2802299603, 4052944421, 1822222163, 285065864, 2381456382, 3896478014, 1966106696, 156323219, 2489232613, 2759337087, 964150537, 1159127250, 3625517476, 3184831332, 551242258, 1555722185, 3249901247, 2535537225, 170842943, 1984954084, 3946848146, 2391651666, 327308324, 1877176831, 4075589769, 263086283, 2460058045, 4005602406, 1942963472, 369291216, 2332888742, 4151061373, 1784924683, 1022852861, 2717425547, 3717839440, 1083595558, 626782694, 3092517008, 3291821387, 1497027645, 1763466407, 4094934481, 2289211402, 360544636, 1890636732, 3988730570, 2447251217, 215086695, 1514488465, 3343557607, 3140191804, 639919946, 1139395978, 3739626748, 2726758695, 1065936977, }, { 0, 3120290792, 2827399569, 293431929, 2323408227, 864534155, 586863858, 2600537882, 3481914503, 1987188591, 1729068310, 3740575486, 1173727716, 4228805132, 3983743093, 1418249117, 1147313999, 4254680231, 3974377182, 1428157750, 3458136620, 2011505092, 1721256893, 3747844181, 2347455432, 839944224, 594403929, 2593536433, 26687147, 3094146371, 2836498234, 283794642, 2294627998, 826205558, 541298447, 2578994407, 45702141, 3141697557, 2856315500, 331624836, 1196225049, 4273416689, 4023010184, 1446090848, 3442513786, 1959480466, 1706436331, 3696098563, 3433538001, 1968994873, 1679888448, 3722103720, 1188807858, 4280295258, 3999102243, 1470541515, 53374294, 3134568126, 2879970503, 307431215, 2303854645, 816436189, 567589284, 2553242188, 3405478781, 1929420949, 1652411116, 3682996484, 1082596894, 4185703926, 3892424591, 1375368295, 91404282, 3163122706, 2918450795, 336584067, 2400113305, 922028401, 663249672, 2658384096, 2392450098, 929185754, 639587747, 2682555979, 82149713, 3172883129, 2892181696, 362343208, 1091578037, 4176212829, 3918960932, 1349337804, 3412872662, 1922537022, 1676344391, 3658557359, 1111377379, 4224032267, 3937989746, 1396912026, 3359776896, 1908013928, 1623494929, 3644803833, 2377615716, 877417100, 623982837, 2630542109, 130804743, 3190831087, 2941083030, 381060734, 106748588, 3215393092, 2933549885, 388083925, 2350956495, 903570471, 614862430, 2640172470, 3386185259, 1882115523, 1632872378, 3634920530, 1135178568, 4199721120, 3945775833, 1389631793, 1317531835, 4152109907, 3858841898, 1610259138, 3304822232, 2097172016, 1820140617, 3582394273, 2165193788, 955639764, 696815021, 2423477829, 192043359, 2995356343, 2750736590, 437203750, 182808564, 3005133852, 2724453989, 462947725, 2157513367, 962777471, 673168134, 2447663342, 3312231283, 2090301595, 1844056802, 3557935370, 1326499344, 4142603768, 3885397889, 1584245865, 3326266917, 2142836173, 1858371508, 3611272284, 1279175494, 4123357358, 3837270743, 1564721471, 164299426, 2955991370, 2706223923, 414607579, 2209834945, 978107433, 724686416, 2462715320, 2183156074, 1004243586, 715579643, 2472360723, 140260361, 2980573153, 2698675608, 421617264, 1302961645, 4099032581, 3845074044, 1557460884, 3352688782, 2116952934, 1867729183, 3601371895, 2222754758, 1032278062, 754596439, 2499928511, 234942117, 3086693709, 2793824052, 528319708, 1274365761, 4061043881, 3816027856, 1518873912, 3246989858, 2020800970, 1762628531, 3505670235, 3223196809, 2045103969, 1754834200, 3512958704, 1247965674, 4086934018, 3806642299, 1528765331, 261609486, 3060532198, 2802936223, 518697591, 2246819181, 1007707781, 762121468, 2492913428, 213497176, 3041029808, 2755593417, 499441441, 2261110843, 1061030867, 776167850, 2545465922, 3274734047, 2060165687, 1807140942, 3528266662, 1229724860, 4038575956, 3788156205, 1479636677, 1222322711, 4045468159, 3764231046, 1504067694, 3265744756, 2069664924, 1780612837, 3554288909, 2270357136, 1051278712, 802445057, 2519698665, 221152243, 3033880603, 2779263586, 475261322, }, { 0, 2926088593, 2275419491, 701019378, 3560000647, 2052709654, 1402038756, 4261017717, 1930665807, 3715829470, 4105419308, 1524313021, 2804077512, 155861593, 545453739, 2397726522, 3861331614, 1213181711, 1636244477, 3488582252, 840331801, 2625561480, 3048626042, 467584747, 2503254481, 995897408, 311723186, 3170637091, 1090907478, 4016929991, 3332753461, 1758288292, 390036349, 3109546732, 2426363422, 1056427919, 3272488954, 1835443819, 1152258713, 3938878216, 1680663602, 3393484195, 3817652561, 1306808512, 2954733749, 510998820, 935169494, 2580880455, 4044899811, 1601229938, 1991794816, 3637571857, 623446372, 2336332021, 2726898695, 216120726, 2181814956, 744704829, 95158223, 2881711710, 1446680107, 4166125498, 3516576584, 2146575065, 780072698, 2148951915, 2849952665, 129384968, 4199529085, 1411853292, 2112855838, 3548843663, 1567451573, 4077254692, 3670887638, 1957027143, 2304517426, 657765539, 251396177, 2694091200, 3361327204, 1714510325, 1341779207, 3784408214, 476611811, 2986349938, 2613617024, 899690513, 3142211371, 354600634, 1021997640, 2458051545, 1870338988, 3239283261, 3906682575, 1186180958, 960597383, 2536053782, 3202459876, 277428597, 3983589632, 1125666961, 1792074851, 3300423154, 1246892744, 3829039961, 3455203243, 1671079482, 2657312335, 806080478, 432241452, 3081497277, 3748049689, 1896751752, 1489409658, 4138600427, 190316446, 2772397583, 2365053693, 580864876, 2893360214, 35503559, 735381813, 2243795108, 2017747153, 3593269568, 4293150130, 1368183843, 1560145396, 4069882981, 3680356503, 1966430470, 2295112051, 648294626, 258769936, 2701399425, 804156091, 2173100842, 2823706584, 103204425, 4225711676, 1438101421, 2088704863, 3524758222, 3134903146, 347226875, 1031468553, 2467456920, 1860935661, 3229814396, 3914054286, 1193487135, 3385412645, 1738661300, 1315531078, 3758225623, 502792354, 3012596019, 2589468097, 875607120, 1271043721, 3853125400, 3429020650, 1644831355, 2683558414, 832261023, 408158061, 3057348348, 953223622, 2528745559, 3211865253, 286899508, 3974120769, 1116263632, 1799381026, 3307794867, 2917509143, 59586950, 709201268, 2217549029, 2043995280, 3619452161, 4269064691, 1344032866, 3740677976, 1889445577, 1498812987, 4148069290, 180845535, 2762992206, 2372361916, 588238637, 1921194766, 3706423967, 4112727661, 1531686908, 2796705673, 148555288, 554857194, 2407195515, 26248257, 2952271312, 2251333922, 676868275, 3584149702, 2076793175, 1375858085, 4234771508, 2493785488, 986493953, 319029491, 3178008930, 1083533591, 4009621638, 3342158964, 1767759333, 3887577823, 1239362382, 1612160956, 3464433197, 864482904, 2649647049, 3022443323, 441336490, 1706844275, 3419730402, 3793503504, 1282724993, 2978819316, 535149925, 908921239, 2554697734, 380632892, 3100077741, 2433735263, 1063734222, 3265180603, 1828069930, 1161729752, 3948283721, 2207997677, 770953084, 71007118, 2857626143, 1470763626, 4190274555, 3490330377, 2120394392, 4035494306, 1591758899, 1999168705, 3644880208, 616140069, 2328960180, 2736367686, 225524183, }, }; static const uint8_t WUFFS_CRC32__IEEE_X86_SSE42_K1K2[16] WUFFS_BASE__POTENTIALLY_UNUSED = { 212, 43, 68, 84, 1, 0, 0, 0, 150, 21, 228, 198, 1, 0, 0, 0, }; static const uint8_t WUFFS_CRC32__IEEE_X86_SSE42_K3K4[16] WUFFS_BASE__POTENTIALLY_UNUSED = { 208, 151, 25, 117, 1, 0, 0, 0, 158, 0, 170, 204, 0, 0, 0, 0, }; static const uint8_t WUFFS_CRC32__IEEE_X86_SSE42_K5ZZ[16] WUFFS_BASE__POTENTIALLY_UNUSED = { 36, 97, 205, 99, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; static const uint8_t WUFFS_CRC32__IEEE_X86_SSE42_PXMU[16] WUFFS_BASE__POTENTIALLY_UNUSED = { 65, 6, 113, 219, 1, 0, 0, 0, 65, 22, 1, 247, 1, 0, 0, 0, }; // ---------------- Private Initializer Prototypes // ---------------- Private Function Prototypes static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up__choosy_default( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); #if defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_arm_crc32( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_x86_avx2( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_x86_sse42( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x); #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ---------------- VTables const wuffs_base__hasher_u32__func_ptrs wuffs_crc32__ieee_hasher__func_ptrs_for__wuffs_base__hasher_u32 = { (wuffs_base__empty_struct(*)(void*, uint32_t, bool))(&wuffs_crc32__ieee_hasher__set_quirk_enabled), (uint32_t(*)(void*, wuffs_base__slice_u8))(&wuffs_crc32__ieee_hasher__update_u32), }; // ---------------- Initializer Implementations wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_crc32__ieee_hasher__initialize( wuffs_crc32__ieee_hasher* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options){ if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (sizeof(*self) != sizeof_star_self) { return wuffs_base__make_status(wuffs_base__error__bad_sizeof_receiver); } if (((wuffs_version >> 32) != WUFFS_VERSION_MAJOR) || (((wuffs_version >> 16) & 0xFFFF) > WUFFS_VERSION_MINOR)) { return wuffs_base__make_status(wuffs_base__error__bad_wuffs_version); } if ((options & WUFFS_INITIALIZE__ALREADY_ZEROED) != 0) { // The whole point of this if-check is to detect an uninitialized *self. // We disable the warning on GCC. Clang-5.0 does not have this warning. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif if (self->private_impl.magic != 0) { return wuffs_base__make_status(wuffs_base__error__initialize_falsely_claimed_already_zeroed); } #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } else { if ((options & WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED) == 0) { memset(self, 0, sizeof(*self)); options |= WUFFS_INITIALIZE__ALREADY_ZEROED; } else { memset(&(self->private_impl), 0, sizeof(self->private_impl)); } } self->private_impl.choosy_up = &wuffs_crc32__ieee_hasher__up__choosy_default; self->private_impl.magic = WUFFS_BASE__MAGIC; self->private_impl.vtable_for__wuffs_base__hasher_u32.vtable_name = wuffs_base__hasher_u32__vtable_name; self->private_impl.vtable_for__wuffs_base__hasher_u32.function_pointers = (const void*)(&wuffs_crc32__ieee_hasher__func_ptrs_for__wuffs_base__hasher_u32); return wuffs_base__make_status(NULL); } wuffs_crc32__ieee_hasher* wuffs_crc32__ieee_hasher__alloc() { wuffs_crc32__ieee_hasher* x = (wuffs_crc32__ieee_hasher*)(calloc(sizeof(wuffs_crc32__ieee_hasher), 1)); if (!x) { return NULL; } if (wuffs_crc32__ieee_hasher__initialize( x, sizeof(wuffs_crc32__ieee_hasher), WUFFS_VERSION, WUFFS_INITIALIZE__ALREADY_ZEROED).repr) { free(x); return NULL; } return x; } size_t sizeof__wuffs_crc32__ieee_hasher() { return sizeof(wuffs_crc32__ieee_hasher); } // ---------------- Function Implementations // -------- func crc32.ieee_hasher.set_quirk_enabled WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_crc32__ieee_hasher__set_quirk_enabled( wuffs_crc32__ieee_hasher* self, uint32_t a_quirk, bool a_enabled) { return wuffs_base__make_empty_struct(); } // -------- func crc32.ieee_hasher.update_u32 WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_crc32__ieee_hasher__update_u32( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { if (!self) { return 0; } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return 0; } if (self->private_impl.f_state == 0) { self->private_impl.choosy_up = ( #if defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) wuffs_base__cpu_arch__have_arm_crc32() ? &wuffs_crc32__ieee_hasher__up_arm_crc32 : #endif #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) wuffs_base__cpu_arch__have_x86_avx2() ? &wuffs_crc32__ieee_hasher__up_x86_avx2 : #endif #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) wuffs_base__cpu_arch__have_x86_sse42() ? &wuffs_crc32__ieee_hasher__up_x86_sse42 : #endif self->private_impl.choosy_up); } wuffs_crc32__ieee_hasher__up(self, a_x); return self->private_impl.f_state; } // -------- func crc32.ieee_hasher.up static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { return (*self->private_impl.choosy_up)(self, a_x); } static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up__choosy_default( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s = 0; wuffs_base__slice_u8 v_p = {0}; v_s = (4294967295 ^ self->private_impl.f_state); { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 16; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 32) * 32); while (v_p.ptr < i_end0_p) { v_s ^= ((((uint32_t)(v_p.ptr[0])) << 0) | (((uint32_t)(v_p.ptr[1])) << 8) | (((uint32_t)(v_p.ptr[2])) << 16) | (((uint32_t)(v_p.ptr[3])) << 24)); v_s = (WUFFS_CRC32__IEEE_TABLE[0][v_p.ptr[15]] ^ WUFFS_CRC32__IEEE_TABLE[1][v_p.ptr[14]] ^ WUFFS_CRC32__IEEE_TABLE[2][v_p.ptr[13]] ^ WUFFS_CRC32__IEEE_TABLE[3][v_p.ptr[12]] ^ WUFFS_CRC32__IEEE_TABLE[4][v_p.ptr[11]] ^ WUFFS_CRC32__IEEE_TABLE[5][v_p.ptr[10]] ^ WUFFS_CRC32__IEEE_TABLE[6][v_p.ptr[9]] ^ WUFFS_CRC32__IEEE_TABLE[7][v_p.ptr[8]] ^ WUFFS_CRC32__IEEE_TABLE[8][v_p.ptr[7]] ^ WUFFS_CRC32__IEEE_TABLE[9][v_p.ptr[6]] ^ WUFFS_CRC32__IEEE_TABLE[10][v_p.ptr[5]] ^ WUFFS_CRC32__IEEE_TABLE[11][v_p.ptr[4]] ^ WUFFS_CRC32__IEEE_TABLE[12][(255 & (v_s >> 24))] ^ WUFFS_CRC32__IEEE_TABLE[13][(255 & (v_s >> 16))] ^ WUFFS_CRC32__IEEE_TABLE[14][(255 & (v_s >> 8))] ^ WUFFS_CRC32__IEEE_TABLE[15][(255 & (v_s >> 0))]); v_p.ptr += 16; v_s ^= ((((uint32_t)(v_p.ptr[0])) << 0) | (((uint32_t)(v_p.ptr[1])) << 8) | (((uint32_t)(v_p.ptr[2])) << 16) | (((uint32_t)(v_p.ptr[3])) << 24)); v_s = (WUFFS_CRC32__IEEE_TABLE[0][v_p.ptr[15]] ^ WUFFS_CRC32__IEEE_TABLE[1][v_p.ptr[14]] ^ WUFFS_CRC32__IEEE_TABLE[2][v_p.ptr[13]] ^ WUFFS_CRC32__IEEE_TABLE[3][v_p.ptr[12]] ^ WUFFS_CRC32__IEEE_TABLE[4][v_p.ptr[11]] ^ WUFFS_CRC32__IEEE_TABLE[5][v_p.ptr[10]] ^ WUFFS_CRC32__IEEE_TABLE[6][v_p.ptr[9]] ^ WUFFS_CRC32__IEEE_TABLE[7][v_p.ptr[8]] ^ WUFFS_CRC32__IEEE_TABLE[8][v_p.ptr[7]] ^ WUFFS_CRC32__IEEE_TABLE[9][v_p.ptr[6]] ^ WUFFS_CRC32__IEEE_TABLE[10][v_p.ptr[5]] ^ WUFFS_CRC32__IEEE_TABLE[11][v_p.ptr[4]] ^ WUFFS_CRC32__IEEE_TABLE[12][(255 & (v_s >> 24))] ^ WUFFS_CRC32__IEEE_TABLE[13][(255 & (v_s >> 16))] ^ WUFFS_CRC32__IEEE_TABLE[14][(255 & (v_s >> 8))] ^ WUFFS_CRC32__IEEE_TABLE[15][(255 & (v_s >> 0))]); v_p.ptr += 16; } v_p.len = 16; uint8_t* i_end1_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 16) * 16); while (v_p.ptr < i_end1_p) { v_s ^= ((((uint32_t)(v_p.ptr[0])) << 0) | (((uint32_t)(v_p.ptr[1])) << 8) | (((uint32_t)(v_p.ptr[2])) << 16) | (((uint32_t)(v_p.ptr[3])) << 24)); v_s = (WUFFS_CRC32__IEEE_TABLE[0][v_p.ptr[15]] ^ WUFFS_CRC32__IEEE_TABLE[1][v_p.ptr[14]] ^ WUFFS_CRC32__IEEE_TABLE[2][v_p.ptr[13]] ^ WUFFS_CRC32__IEEE_TABLE[3][v_p.ptr[12]] ^ WUFFS_CRC32__IEEE_TABLE[4][v_p.ptr[11]] ^ WUFFS_CRC32__IEEE_TABLE[5][v_p.ptr[10]] ^ WUFFS_CRC32__IEEE_TABLE[6][v_p.ptr[9]] ^ WUFFS_CRC32__IEEE_TABLE[7][v_p.ptr[8]] ^ WUFFS_CRC32__IEEE_TABLE[8][v_p.ptr[7]] ^ WUFFS_CRC32__IEEE_TABLE[9][v_p.ptr[6]] ^ WUFFS_CRC32__IEEE_TABLE[10][v_p.ptr[5]] ^ WUFFS_CRC32__IEEE_TABLE[11][v_p.ptr[4]] ^ WUFFS_CRC32__IEEE_TABLE[12][(255 & (v_s >> 24))] ^ WUFFS_CRC32__IEEE_TABLE[13][(255 & (v_s >> 16))] ^ WUFFS_CRC32__IEEE_TABLE[14][(255 & (v_s >> 8))] ^ WUFFS_CRC32__IEEE_TABLE[15][(255 & (v_s >> 0))]); v_p.ptr += 16; } v_p.len = 1; uint8_t* i_end2_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end2_p) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ v_p.ptr[0])] ^ (v_s >> 8)); v_p.ptr += 1; } v_p.len = 0; } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } // ‼ WUFFS MULTI-FILE SECTION +arm_crc32 // -------- func crc32.ieee_hasher.up_arm_crc32 #if defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_arm_crc32( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { wuffs_base__slice_u8 v_p = {0}; uint32_t v_s = 0; v_s = (4294967295 ^ self->private_impl.f_state); while ((((uint64_t)(a_x.len)) > 0) && ((15 & ((uint32_t)(0xFFF & (uintptr_t)(a_x.ptr)))) != 0)) { v_s = __crc32b(v_s, a_x.ptr[0]); a_x = wuffs_base__slice_u8__subslice_i(a_x, 1); } { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 8; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 128) * 128); while (v_p.ptr < i_end0_p) { v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; } v_p.len = 8; uint8_t* i_end1_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 8) * 8); while (v_p.ptr < i_end1_p) { v_s = __crc32d(v_s, wuffs_base__peek_u64le__no_bounds_check(v_p.ptr)); v_p.ptr += 8; } v_p.len = 1; uint8_t* i_end2_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end2_p) { v_s = __crc32b(v_s, v_p.ptr[0]); v_p.ptr += 1; } v_p.len = 0; } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } #endif // defined(WUFFS_BASE__CPU_ARCH__ARM_CRC32) // ‼ WUFFS MULTI-FILE SECTION -arm_crc32 // ‼ WUFFS MULTI-FILE SECTION +x86_avx2 // -------- func crc32.ieee_hasher.up_x86_avx2 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2,avx2") static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_x86_avx2( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s = 0; wuffs_base__slice_u8 v_p = {0}; __m128i v_k = {0}; __m128i v_x0 = {0}; __m128i v_x1 = {0}; __m128i v_x2 = {0}; __m128i v_x3 = {0}; __m128i v_y0 = {0}; __m128i v_y1 = {0}; __m128i v_y2 = {0}; __m128i v_y3 = {0}; uint64_t v_tail_index = 0; v_s = (4294967295 ^ self->private_impl.f_state); while ((((uint64_t)(a_x.len)) > 0) && ((15 & ((uint32_t)(0xFFF & (uintptr_t)(a_x.ptr)))) != 0)) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ a_x.ptr[0])] ^ (v_s >> 8)); a_x = wuffs_base__slice_u8__subslice_i(a_x, 1); } if (((uint64_t)(a_x.len)) < 64) { { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ v_p.ptr[0])] ^ (v_s >> 8)); v_p.ptr += 1; } v_p.len = 0; } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } v_x0 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 0)); v_x1 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 16)); v_x2 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 32)); v_x3 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 48)); v_x0 = _mm_xor_si128(v_x0, _mm_cvtsi32_si128((int32_t)(v_s))); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K1K2)); { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, 64); v_p.ptr = i_slice_p.ptr; v_p.len = 64; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 64) * 64); while (v_p.ptr < i_end0_p) { v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_y1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(0)); v_y2 = _mm_clmulepi64_si128(v_x2, v_k, (int32_t)(0)); v_y3 = _mm_clmulepi64_si128(v_x3, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(17)); v_x2 = _mm_clmulepi64_si128(v_x2, v_k, (int32_t)(17)); v_x3 = _mm_clmulepi64_si128(v_x3, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(_mm_xor_si128(v_x0, v_y0), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 0))); v_x1 = _mm_xor_si128(_mm_xor_si128(v_x1, v_y1), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 16))); v_x2 = _mm_xor_si128(_mm_xor_si128(v_x2, v_y2), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 32))); v_x3 = _mm_xor_si128(_mm_xor_si128(v_x3, v_y3), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 48))); v_p.ptr += 64; } v_p.len = 0; } v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K3K4)); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_x0 = _mm_xor_si128(v_x0, v_y0); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x2); v_x0 = _mm_xor_si128(v_x0, v_y0); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x3); v_x0 = _mm_xor_si128(v_x0, v_y0); v_x1 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(16)); v_x2 = _mm_set_epi32((int32_t)(0), (int32_t)(4294967295), (int32_t)(0), (int32_t)(4294967295)); v_x0 = _mm_srli_si128(v_x0, (int32_t)(8)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K5ZZ)); v_x1 = _mm_srli_si128(v_x0, (int32_t)(4)); v_x0 = _mm_and_si128(v_x0, v_x2); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_PXMU)); v_x1 = _mm_and_si128(v_x0, v_x2); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(16)); v_x1 = _mm_and_si128(v_x1, v_x2); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(0)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_s = ((uint32_t)(_mm_extract_epi32(v_x0, (int32_t)(1)))); v_tail_index = (((uint64_t)(a_x.len)) & 18446744073709551552u); if (v_tail_index < ((uint64_t)(a_x.len))) { { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, v_tail_index); v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ v_p.ptr[0])] ^ (v_s >> 8)); v_p.ptr += 1; } v_p.len = 0; } } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_avx2 // ‼ WUFFS MULTI-FILE SECTION +x86_sse42 // -------- func crc32.ieee_hasher.up_x86_sse42 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("pclmul,popcnt,sse4.2") static wuffs_base__empty_struct wuffs_crc32__ieee_hasher__up_x86_sse42( wuffs_crc32__ieee_hasher* self, wuffs_base__slice_u8 a_x) { uint32_t v_s = 0; wuffs_base__slice_u8 v_p = {0}; __m128i v_k = {0}; __m128i v_x0 = {0}; __m128i v_x1 = {0}; __m128i v_x2 = {0}; __m128i v_x3 = {0}; __m128i v_y0 = {0}; __m128i v_y1 = {0}; __m128i v_y2 = {0}; __m128i v_y3 = {0}; uint64_t v_tail_index = 0; v_s = (4294967295 ^ self->private_impl.f_state); while ((((uint64_t)(a_x.len)) > 0) && ((15 & ((uint32_t)(0xFFF & (uintptr_t)(a_x.ptr)))) != 0)) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ a_x.ptr[0])] ^ (v_s >> 8)); a_x = wuffs_base__slice_u8__subslice_i(a_x, 1); } if (((uint64_t)(a_x.len)) < 64) { { wuffs_base__slice_u8 i_slice_p = a_x; v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ v_p.ptr[0])] ^ (v_s >> 8)); v_p.ptr += 1; } v_p.len = 0; } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } v_x0 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 0)); v_x1 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 16)); v_x2 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 32)); v_x3 = _mm_lddqu_si128((const __m128i*)(const void*)(a_x.ptr + 48)); v_x0 = _mm_xor_si128(v_x0, _mm_cvtsi32_si128((int32_t)(v_s))); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K1K2)); { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, 64); v_p.ptr = i_slice_p.ptr; v_p.len = 64; uint8_t* i_end0_p = v_p.ptr + (((i_slice_p.len - (size_t)(v_p.ptr - i_slice_p.ptr)) / 64) * 64); while (v_p.ptr < i_end0_p) { v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_y1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(0)); v_y2 = _mm_clmulepi64_si128(v_x2, v_k, (int32_t)(0)); v_y3 = _mm_clmulepi64_si128(v_x3, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(17)); v_x2 = _mm_clmulepi64_si128(v_x2, v_k, (int32_t)(17)); v_x3 = _mm_clmulepi64_si128(v_x3, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(_mm_xor_si128(v_x0, v_y0), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 0))); v_x1 = _mm_xor_si128(_mm_xor_si128(v_x1, v_y1), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 16))); v_x2 = _mm_xor_si128(_mm_xor_si128(v_x2, v_y2), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 32))); v_x3 = _mm_xor_si128(_mm_xor_si128(v_x3, v_y3), _mm_lddqu_si128((const __m128i*)(const void*)(v_p.ptr + 48))); v_p.ptr += 64; } v_p.len = 0; } v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K3K4)); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_x0 = _mm_xor_si128(v_x0, v_y0); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x2); v_x0 = _mm_xor_si128(v_x0, v_y0); v_y0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(17)); v_x0 = _mm_xor_si128(v_x0, v_x3); v_x0 = _mm_xor_si128(v_x0, v_y0); v_x1 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(16)); v_x2 = _mm_set_epi32((int32_t)(0), (int32_t)(4294967295), (int32_t)(0), (int32_t)(4294967295)); v_x0 = _mm_srli_si128(v_x0, (int32_t)(8)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_K5ZZ)); v_x1 = _mm_srli_si128(v_x0, (int32_t)(4)); v_x0 = _mm_and_si128(v_x0, v_x2); v_x0 = _mm_clmulepi64_si128(v_x0, v_k, (int32_t)(0)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_k = _mm_lddqu_si128((const __m128i*)(const void*)(WUFFS_CRC32__IEEE_X86_SSE42_PXMU)); v_x1 = _mm_and_si128(v_x0, v_x2); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(16)); v_x1 = _mm_and_si128(v_x1, v_x2); v_x1 = _mm_clmulepi64_si128(v_x1, v_k, (int32_t)(0)); v_x0 = _mm_xor_si128(v_x0, v_x1); v_s = ((uint32_t)(_mm_extract_epi32(v_x0, (int32_t)(1)))); v_tail_index = (((uint64_t)(a_x.len)) & 18446744073709551552u); if (v_tail_index < ((uint64_t)(a_x.len))) { { wuffs_base__slice_u8 i_slice_p = wuffs_base__slice_u8__subslice_i(a_x, v_tail_index); v_p.ptr = i_slice_p.ptr; v_p.len = 1; uint8_t* i_end0_p = i_slice_p.ptr + i_slice_p.len; while (v_p.ptr < i_end0_p) { v_s = (WUFFS_CRC32__IEEE_TABLE[0][(((uint8_t)((v_s & 255))) ^ v_p.ptr[0])] ^ (v_s >> 8)); v_p.ptr += 1; } v_p.len = 0; } } self->private_impl.f_state = (4294967295 ^ v_s); return wuffs_base__make_empty_struct(); } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_sse42 #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__CRC32) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__DEFLATE) // ---------------- Status Codes Implementations const char wuffs_deflate__error__bad_huffman_code_over_subscribed[] = "#deflate: bad Huffman code (over-subscribed)"; const char wuffs_deflate__error__bad_huffman_code_under_subscribed[] = "#deflate: bad Huffman code (under-subscribed)"; const char wuffs_deflate__error__bad_huffman_code_length_count[] = "#deflate: bad Huffman code length count"; const char wuffs_deflate__error__bad_huffman_code_length_repetition[] = "#deflate: bad Huffman code length repetition"; const char wuffs_deflate__error__bad_huffman_code[] = "#deflate: bad Huffman code"; const char wuffs_deflate__error__bad_huffman_minimum_code_length[] = "#deflate: bad Huffman minimum code length"; const char wuffs_deflate__error__bad_block[] = "#deflate: bad block"; const char wuffs_deflate__error__bad_distance[] = "#deflate: bad distance"; const char wuffs_deflate__error__bad_distance_code_count[] = "#deflate: bad distance code count"; const char wuffs_deflate__error__bad_literal_length_code_count[] = "#deflate: bad literal/length code count"; const char wuffs_deflate__error__inconsistent_stored_block_length[] = "#deflate: inconsistent stored block length"; const char wuffs_deflate__error__missing_end_of_block_code[] = "#deflate: missing end-of-block code"; const char wuffs_deflate__error__no_huffman_codes[] = "#deflate: no Huffman codes"; const char wuffs_deflate__error__truncated_input[] = "#deflate: truncated input"; const char wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state[] = "#deflate: internal error: inconsistent Huffman decoder state"; const char wuffs_deflate__error__internal_error_inconsistent_i_o[] = "#deflate: internal error: inconsistent I/O"; const char wuffs_deflate__error__internal_error_inconsistent_distance[] = "#deflate: internal error: inconsistent distance"; const char wuffs_deflate__error__internal_error_inconsistent_n_bits[] = "#deflate: internal error: inconsistent n_bits"; // ---------------- Private Consts static const uint8_t WUFFS_DEFLATE__CODE_ORDER[19] WUFFS_BASE__POTENTIALLY_UNUSED = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15, }; static const uint8_t WUFFS_DEFLATE__REVERSE8[256] WUFFS_BASE__POTENTIALLY_UNUSED = { 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255, }; static const uint32_t WUFFS_DEFLATE__LCODE_MAGIC_NUMBERS[32] WUFFS_BASE__POTENTIALLY_UNUSED = { 1073741824, 1073742080, 1073742336, 1073742592, 1073742848, 1073743104, 1073743360, 1073743616, 1073743888, 1073744400, 1073744912, 1073745424, 1073745952, 1073746976, 1073748000, 1073749024, 1073750064, 1073752112, 1073754160, 1073756208, 1073758272, 1073762368, 1073766464, 1073770560, 1073774672, 1073782864, 1073791056, 1073799248, 1073807104, 134217728, 134217728, 134217728, }; static const uint32_t WUFFS_DEFLATE__DCODE_MAGIC_NUMBERS[32] WUFFS_BASE__POTENTIALLY_UNUSED = { 1073741824, 1073742080, 1073742336, 1073742592, 1073742864, 1073743376, 1073743904, 1073744928, 1073745968, 1073748016, 1073750080, 1073754176, 1073758288, 1073766480, 1073774688, 1073791072, 1073807472, 1073840240, 1073873024, 1073938560, 1074004112, 1074135184, 1074266272, 1074528416, 1074790576, 1075314864, 1075839168, 1076887744, 1077936336, 1080033488, 134217728, 134217728, }; #define WUFFS_DEFLATE__HUFFS_TABLE_SIZE 1024 #define WUFFS_DEFLATE__HUFFS_TABLE_MASK 1023 // ---------------- Private Initializer Prototypes // ---------------- Private Function Prototypes static wuffs_base__status wuffs_deflate__decoder__do_transform_io( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); static wuffs_base__status wuffs_deflate__decoder__decode_blocks( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__decode_uncompressed( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__init_fixed_huffman( wuffs_deflate__decoder* self); static wuffs_base__status wuffs_deflate__decoder__init_dynamic_huffman( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__init_huff( wuffs_deflate__decoder* self, uint32_t a_which, uint32_t a_n_codes0, uint32_t a_n_codes1, uint32_t a_base_symbol); #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) static wuffs_base__status wuffs_deflate__decoder__decode_huffman_bmi2( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast32( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast64( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast64__choosy_default( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); static wuffs_base__status wuffs_deflate__decoder__decode_huffman_slow( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src); // ---------------- VTables const wuffs_base__io_transformer__func_ptrs wuffs_deflate__decoder__func_ptrs_for__wuffs_base__io_transformer = { (wuffs_base__empty_struct(*)(void*, uint32_t, bool))(&wuffs_deflate__decoder__set_quirk_enabled), (wuffs_base__status(*)(void*, wuffs_base__io_buffer*, wuffs_base__io_buffer*, wuffs_base__slice_u8))(&wuffs_deflate__decoder__transform_io), (wuffs_base__range_ii_u64(*)(const void*))(&wuffs_deflate__decoder__workbuf_len), }; // ---------------- Initializer Implementations wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_deflate__decoder__initialize( wuffs_deflate__decoder* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options){ if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (sizeof(*self) != sizeof_star_self) { return wuffs_base__make_status(wuffs_base__error__bad_sizeof_receiver); } if (((wuffs_version >> 32) != WUFFS_VERSION_MAJOR) || (((wuffs_version >> 16) & 0xFFFF) > WUFFS_VERSION_MINOR)) { return wuffs_base__make_status(wuffs_base__error__bad_wuffs_version); } if ((options & WUFFS_INITIALIZE__ALREADY_ZEROED) != 0) { // The whole point of this if-check is to detect an uninitialized *self. // We disable the warning on GCC. Clang-5.0 does not have this warning. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif if (self->private_impl.magic != 0) { return wuffs_base__make_status(wuffs_base__error__initialize_falsely_claimed_already_zeroed); } #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } else { if ((options & WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED) == 0) { memset(self, 0, sizeof(*self)); options |= WUFFS_INITIALIZE__ALREADY_ZEROED; } else { memset(&(self->private_impl), 0, sizeof(self->private_impl)); } } self->private_impl.choosy_decode_huffman_fast64 = &wuffs_deflate__decoder__decode_huffman_fast64__choosy_default; self->private_impl.magic = WUFFS_BASE__MAGIC; self->private_impl.vtable_for__wuffs_base__io_transformer.vtable_name = wuffs_base__io_transformer__vtable_name; self->private_impl.vtable_for__wuffs_base__io_transformer.function_pointers = (const void*)(&wuffs_deflate__decoder__func_ptrs_for__wuffs_base__io_transformer); return wuffs_base__make_status(NULL); } wuffs_deflate__decoder* wuffs_deflate__decoder__alloc() { wuffs_deflate__decoder* x = (wuffs_deflate__decoder*)(calloc(sizeof(wuffs_deflate__decoder), 1)); if (!x) { return NULL; } if (wuffs_deflate__decoder__initialize( x, sizeof(wuffs_deflate__decoder), WUFFS_VERSION, WUFFS_INITIALIZE__ALREADY_ZEROED).repr) { free(x); return NULL; } return x; } size_t sizeof__wuffs_deflate__decoder() { return sizeof(wuffs_deflate__decoder); } // ---------------- Function Implementations // -------- func deflate.decoder.add_history WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_deflate__decoder__add_history( wuffs_deflate__decoder* self, wuffs_base__slice_u8 a_hist) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } wuffs_base__slice_u8 v_s = {0}; uint64_t v_n_copied = 0; uint32_t v_already_full = 0; v_s = a_hist; if (((uint64_t)(v_s.len)) >= 32768) { v_s = wuffs_base__slice_u8__suffix(v_s, 32768); wuffs_base__slice_u8__copy_from_slice(wuffs_base__make_slice_u8(self->private_data.f_history, 32768), v_s); self->private_impl.f_history_index = 32768; } else { v_n_copied = wuffs_base__slice_u8__copy_from_slice(wuffs_base__make_slice_u8_ij(self->private_data.f_history, (self->private_impl.f_history_index & 32767), 32768), v_s); if (v_n_copied < ((uint64_t)(v_s.len))) { v_s = wuffs_base__slice_u8__subslice_i(v_s, v_n_copied); v_n_copied = wuffs_base__slice_u8__copy_from_slice(wuffs_base__make_slice_u8(self->private_data.f_history, 32768), v_s); self->private_impl.f_history_index = (((uint32_t)((v_n_copied & 32767))) + 32768); } else { v_already_full = 0; if (self->private_impl.f_history_index >= 32768) { v_already_full = 32768; } self->private_impl.f_history_index = ((self->private_impl.f_history_index & 32767) + ((uint32_t)((v_n_copied & 32767))) + v_already_full); } } wuffs_base__slice_u8__copy_from_slice(wuffs_base__make_slice_u8_ij(self->private_data.f_history, 32768, 33025), wuffs_base__make_slice_u8(self->private_data.f_history, 33025)); return wuffs_base__make_empty_struct(); } // -------- func deflate.decoder.set_quirk_enabled WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_deflate__decoder__set_quirk_enabled( wuffs_deflate__decoder* self, uint32_t a_quirk, bool a_enabled) { return wuffs_base__make_empty_struct(); } // -------- func deflate.decoder.workbuf_len WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_deflate__decoder__workbuf_len( const wuffs_deflate__decoder* self) { if (!self) { return wuffs_base__utility__empty_range_ii_u64(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_range_ii_u64(); } return wuffs_base__utility__make_range_ii_u64(1, 1); } // -------- func deflate.decoder.transform_io WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_deflate__decoder__transform_io( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } if (!a_dst || !a_src) { self->private_impl.magic = WUFFS_BASE__DISABLED; return wuffs_base__make_status(wuffs_base__error__bad_argument); } if ((self->private_impl.active_coroutine != 0) && (self->private_impl.active_coroutine != 1)) { self->private_impl.magic = WUFFS_BASE__DISABLED; return wuffs_base__make_status(wuffs_base__error__interleaved_coroutine_calls); } self->private_impl.active_coroutine = 0; wuffs_base__status status = wuffs_base__make_status(NULL); wuffs_base__status v_status = wuffs_base__make_status(NULL); uint32_t coro_susp_point = self->private_impl.p_transform_io[0]; switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; while (true) { { wuffs_base__status t_0 = wuffs_deflate__decoder__do_transform_io(self, a_dst, a_src, a_workbuf); v_status = t_0; } if ((v_status.repr == wuffs_base__suspension__short_read) && (a_src && a_src->meta.closed)) { status = wuffs_base__make_status(wuffs_deflate__error__truncated_input); goto exit; } status = v_status; WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(1); } ok: self->private_impl.p_transform_io[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_transform_io[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_impl.active_coroutine = wuffs_base__status__is_suspension(&status) ? 1 : 0; goto exit; exit: if (wuffs_base__status__is_error(&status)) { self->private_impl.magic = WUFFS_BASE__DISABLED; } return status; } // -------- func deflate.decoder.do_transform_io static wuffs_base__status wuffs_deflate__decoder__do_transform_io( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { wuffs_base__status status = wuffs_base__make_status(NULL); uint64_t v_mark = 0; wuffs_base__status v_status = wuffs_base__make_status(NULL); uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } uint32_t coro_susp_point = self->private_impl.p_do_transform_io[0]; switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; self->private_impl.choosy_decode_huffman_fast64 = ( #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) wuffs_base__cpu_arch__have_x86_bmi2() ? &wuffs_deflate__decoder__decode_huffman_bmi2 : #endif self->private_impl.choosy_decode_huffman_fast64); while (true) { v_mark = ((uint64_t)(iop_a_dst - io0_a_dst)); { if (a_dst) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } wuffs_base__status t_0 = wuffs_deflate__decoder__decode_blocks(self, a_dst, a_src); v_status = t_0; if (a_dst) { iop_a_dst = a_dst->data.ptr + a_dst->meta.wi; } } if ( ! wuffs_base__status__is_suspension(&v_status)) { status = v_status; if (wuffs_base__status__is_error(&status)) { goto exit; } else if (wuffs_base__status__is_suspension(&status)) { status = wuffs_base__make_status(wuffs_base__error__cannot_return_a_suspension); goto exit; } goto ok; } wuffs_base__u64__sat_add_indirect(&self->private_impl.f_transformed_history_count, wuffs_base__io__count_since(v_mark, ((uint64_t)(iop_a_dst - io0_a_dst)))); wuffs_deflate__decoder__add_history(self, wuffs_base__io__since(v_mark, ((uint64_t)(iop_a_dst - io0_a_dst)), io0_a_dst)); status = v_status; WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(1); } ok: self->private_impl.p_do_transform_io[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_do_transform_io[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } return status; } // -------- func deflate.decoder.decode_blocks static wuffs_base__status wuffs_deflate__decoder__decode_blocks( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint32_t v_final = 0; uint32_t v_b0 = 0; uint32_t v_type = 0; wuffs_base__status v_status = wuffs_base__make_status(NULL); const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } uint32_t coro_susp_point = self->private_impl.p_decode_blocks[0]; if (coro_susp_point) { v_final = self->private_data.s_decode_blocks[0].v_final; } switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; label__outer__continue:; while (v_final == 0) { while (self->private_impl.f_n_bits < 3) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_0 = *iop_a_src++; v_b0 = t_0; } self->private_impl.f_bits |= (v_b0 << (self->private_impl.f_n_bits & 3)); self->private_impl.f_n_bits = ((self->private_impl.f_n_bits & 3) + 8); } v_final = (self->private_impl.f_bits & 1); v_type = ((self->private_impl.f_bits >> 1) & 3); self->private_impl.f_bits >>= 3; self->private_impl.f_n_bits -= 3; if (v_type == 0) { if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); status = wuffs_deflate__decoder__decode_uncompressed(self, a_dst, a_src); if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } if (status.repr) { goto suspend; } goto label__outer__continue; } else if (v_type == 1) { v_status = wuffs_deflate__decoder__init_fixed_huffman(self); if ( ! wuffs_base__status__is_ok(&v_status)) { status = v_status; if (wuffs_base__status__is_error(&status)) { goto exit; } else if (wuffs_base__status__is_suspension(&status)) { status = wuffs_base__make_status(wuffs_base__error__cannot_return_a_suspension); goto exit; } goto ok; } } else if (v_type == 2) { if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } WUFFS_BASE__COROUTINE_SUSPENSION_POINT(3); status = wuffs_deflate__decoder__init_dynamic_huffman(self, a_src); if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } if (status.repr) { goto suspend; } } else { status = wuffs_base__make_status(wuffs_deflate__error__bad_block); goto exit; } self->private_impl.f_end_of_block = false; while (true) { if (sizeof(void*) == 4) { if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } v_status = wuffs_deflate__decoder__decode_huffman_fast32(self, a_dst, a_src); if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } } else { if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } v_status = wuffs_deflate__decoder__decode_huffman_fast64(self, a_dst, a_src); if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } } if (wuffs_base__status__is_error(&v_status)) { status = v_status; goto exit; } if (self->private_impl.f_end_of_block) { goto label__outer__continue; } if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } WUFFS_BASE__COROUTINE_SUSPENSION_POINT(4); status = wuffs_deflate__decoder__decode_huffman_slow(self, a_dst, a_src); if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } if (status.repr) { goto suspend; } if (self->private_impl.f_end_of_block) { goto label__outer__continue; } } } ok: self->private_impl.p_decode_blocks[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_decode_blocks[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_data.s_decode_blocks[0].v_final = v_final; goto exit; exit: if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } // -------- func deflate.decoder.decode_uncompressed static wuffs_base__status wuffs_deflate__decoder__decode_uncompressed( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint32_t v_length = 0; uint32_t v_n_copied = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } uint32_t coro_susp_point = self->private_impl.p_decode_uncompressed[0]; if (coro_susp_point) { v_length = self->private_data.s_decode_uncompressed[0].v_length; } switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } self->private_impl.f_n_bits = 0; self->private_impl.f_bits = 0; { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); uint32_t t_0; if (WUFFS_BASE__LIKELY(io2_a_src - iop_a_src >= 4)) { t_0 = wuffs_base__peek_u32le__no_bounds_check(iop_a_src); iop_a_src += 4; } else { self->private_data.s_decode_uncompressed[0].scratch = 0; WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); while (true) { if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint64_t* scratch = &self->private_data.s_decode_uncompressed[0].scratch; uint32_t num_bits_0 = ((uint32_t)(*scratch >> 56)); *scratch <<= 8; *scratch >>= 8; *scratch |= ((uint64_t)(*iop_a_src++)) << num_bits_0; if (num_bits_0 == 24) { t_0 = ((uint32_t)(*scratch)); break; } num_bits_0 += 8; *scratch |= ((uint64_t)(num_bits_0)) << 56; } } v_length = t_0; } if ((((v_length) & 0xFFFF) + ((v_length) >> (32 - (16)))) != 65535) { status = wuffs_base__make_status(wuffs_deflate__error__inconsistent_stored_block_length); goto exit; } v_length = ((v_length) & 0xFFFF); while (true) { v_n_copied = wuffs_base__io_writer__limited_copy_u32_from_reader( &iop_a_dst, io2_a_dst,v_length, &iop_a_src, io2_a_src); if (v_length <= v_n_copied) { status = wuffs_base__make_status(NULL); goto ok; } v_length -= v_n_copied; if (((uint64_t)(io2_a_dst - iop_a_dst)) == 0) { status = wuffs_base__make_status(wuffs_base__suspension__short_write); WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(3); } else { status = wuffs_base__make_status(wuffs_base__suspension__short_read); WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(4); } } ok: self->private_impl.p_decode_uncompressed[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_decode_uncompressed[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_data.s_decode_uncompressed[0].v_length = v_length; goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } // -------- func deflate.decoder.init_fixed_huffman static wuffs_base__status wuffs_deflate__decoder__init_fixed_huffman( wuffs_deflate__decoder* self) { uint32_t v_i = 0; wuffs_base__status v_status = wuffs_base__make_status(NULL); while (v_i < 144) { self->private_data.f_code_lengths[v_i] = 8; v_i += 1; } while (v_i < 256) { self->private_data.f_code_lengths[v_i] = 9; v_i += 1; } while (v_i < 280) { self->private_data.f_code_lengths[v_i] = 7; v_i += 1; } while (v_i < 288) { self->private_data.f_code_lengths[v_i] = 8; v_i += 1; } while (v_i < 320) { self->private_data.f_code_lengths[v_i] = 5; v_i += 1; } v_status = wuffs_deflate__decoder__init_huff(self, 0, 0, 288, 257); if (wuffs_base__status__is_error(&v_status)) { return v_status; } v_status = wuffs_deflate__decoder__init_huff(self, 1, 288, 320, 0); if (wuffs_base__status__is_error(&v_status)) { return v_status; } return wuffs_base__make_status(NULL); } // -------- func deflate.decoder.init_dynamic_huffman static wuffs_base__status wuffs_deflate__decoder__init_dynamic_huffman( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint32_t v_bits = 0; uint32_t v_n_bits = 0; uint32_t v_b0 = 0; uint32_t v_n_lit = 0; uint32_t v_n_dist = 0; uint32_t v_n_clen = 0; uint32_t v_i = 0; uint32_t v_b1 = 0; wuffs_base__status v_status = wuffs_base__make_status(NULL); uint32_t v_mask = 0; uint32_t v_table_entry = 0; uint32_t v_table_entry_n_bits = 0; uint32_t v_b2 = 0; uint32_t v_n_extra_bits = 0; uint8_t v_rep_symbol = 0; uint32_t v_rep_count = 0; uint32_t v_b3 = 0; const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } uint32_t coro_susp_point = self->private_impl.p_init_dynamic_huffman[0]; if (coro_susp_point) { v_bits = self->private_data.s_init_dynamic_huffman[0].v_bits; v_n_bits = self->private_data.s_init_dynamic_huffman[0].v_n_bits; v_n_lit = self->private_data.s_init_dynamic_huffman[0].v_n_lit; v_n_dist = self->private_data.s_init_dynamic_huffman[0].v_n_dist; v_n_clen = self->private_data.s_init_dynamic_huffman[0].v_n_clen; v_i = self->private_data.s_init_dynamic_huffman[0].v_i; v_mask = self->private_data.s_init_dynamic_huffman[0].v_mask; v_n_extra_bits = self->private_data.s_init_dynamic_huffman[0].v_n_extra_bits; v_rep_symbol = self->private_data.s_init_dynamic_huffman[0].v_rep_symbol; v_rep_count = self->private_data.s_init_dynamic_huffman[0].v_rep_count; } switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; v_bits = self->private_impl.f_bits; v_n_bits = self->private_impl.f_n_bits; while (v_n_bits < 14) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_0 = *iop_a_src++; v_b0 = t_0; } v_bits |= (v_b0 << v_n_bits); v_n_bits += 8; } v_n_lit = (((v_bits) & 0x1F) + 257); if (v_n_lit > 286) { status = wuffs_base__make_status(wuffs_deflate__error__bad_literal_length_code_count); goto exit; } v_bits >>= 5; v_n_dist = (((v_bits) & 0x1F) + 1); if (v_n_dist > 30) { status = wuffs_base__make_status(wuffs_deflate__error__bad_distance_code_count); goto exit; } v_bits >>= 5; v_n_clen = (((v_bits) & 0xF) + 4); v_bits >>= 4; v_n_bits -= 14; v_i = 0; while (v_i < v_n_clen) { while (v_n_bits < 3) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_1 = *iop_a_src++; v_b1 = t_1; } v_bits |= (v_b1 << v_n_bits); v_n_bits += 8; } self->private_data.f_code_lengths[WUFFS_DEFLATE__CODE_ORDER[v_i]] = ((uint8_t)((v_bits & 7))); v_bits >>= 3; v_n_bits -= 3; v_i += 1; } while (v_i < 19) { self->private_data.f_code_lengths[WUFFS_DEFLATE__CODE_ORDER[v_i]] = 0; v_i += 1; } v_status = wuffs_deflate__decoder__init_huff(self, 0, 0, 19, 4095); if (wuffs_base__status__is_error(&v_status)) { status = v_status; goto exit; } v_mask = ((((uint32_t)(1)) << self->private_impl.f_n_huffs_bits[0]) - 1); v_i = 0; label__0__continue:; while (v_i < (v_n_lit + v_n_dist)) { while (true) { v_table_entry = self->private_data.f_huffs[0][(v_bits & v_mask)]; v_table_entry_n_bits = (v_table_entry & 15); if (v_n_bits >= v_table_entry_n_bits) { v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; goto label__1__break; } { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(3); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_2 = *iop_a_src++; v_b2 = t_2; } v_bits |= (v_b2 << v_n_bits); v_n_bits += 8; } label__1__break:; if ((v_table_entry >> 24) != 128) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_table_entry = ((v_table_entry >> 8) & 255); if (v_table_entry < 16) { self->private_data.f_code_lengths[v_i] = ((uint8_t)(v_table_entry)); v_i += 1; goto label__0__continue; } v_n_extra_bits = 0; v_rep_symbol = 0; v_rep_count = 0; if (v_table_entry == 16) { v_n_extra_bits = 2; if (v_i <= 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code_length_repetition); goto exit; } v_rep_symbol = (self->private_data.f_code_lengths[(v_i - 1)] & 15); v_rep_count = 3; } else if (v_table_entry == 17) { v_n_extra_bits = 3; v_rep_symbol = 0; v_rep_count = 3; } else if (v_table_entry == 18) { v_n_extra_bits = 7; v_rep_symbol = 0; v_rep_count = 11; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } while (v_n_bits < v_n_extra_bits) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(4); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_3 = *iop_a_src++; v_b3 = t_3; } v_bits |= (v_b3 << v_n_bits); v_n_bits += 8; } v_rep_count += ((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U32(v_n_extra_bits)); v_bits >>= v_n_extra_bits; v_n_bits -= v_n_extra_bits; while (v_rep_count > 0) { if (v_i >= (v_n_lit + v_n_dist)) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code_length_count); goto exit; } self->private_data.f_code_lengths[v_i] = v_rep_symbol; v_i += 1; v_rep_count -= 1; } } if (v_i != (v_n_lit + v_n_dist)) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code_length_count); goto exit; } if (self->private_data.f_code_lengths[256] == 0) { status = wuffs_base__make_status(wuffs_deflate__error__missing_end_of_block_code); goto exit; } v_status = wuffs_deflate__decoder__init_huff(self, 0, 0, v_n_lit, 257); if (wuffs_base__status__is_error(&v_status)) { status = v_status; goto exit; } v_status = wuffs_deflate__decoder__init_huff(self, 1, v_n_lit, (v_n_lit + v_n_dist), 0); if (wuffs_base__status__is_error(&v_status)) { status = v_status; goto exit; } self->private_impl.f_bits = v_bits; self->private_impl.f_n_bits = v_n_bits; goto ok; ok: self->private_impl.p_init_dynamic_huffman[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_init_dynamic_huffman[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_data.s_init_dynamic_huffman[0].v_bits = v_bits; self->private_data.s_init_dynamic_huffman[0].v_n_bits = v_n_bits; self->private_data.s_init_dynamic_huffman[0].v_n_lit = v_n_lit; self->private_data.s_init_dynamic_huffman[0].v_n_dist = v_n_dist; self->private_data.s_init_dynamic_huffman[0].v_n_clen = v_n_clen; self->private_data.s_init_dynamic_huffman[0].v_i = v_i; self->private_data.s_init_dynamic_huffman[0].v_mask = v_mask; self->private_data.s_init_dynamic_huffman[0].v_n_extra_bits = v_n_extra_bits; self->private_data.s_init_dynamic_huffman[0].v_rep_symbol = v_rep_symbol; self->private_data.s_init_dynamic_huffman[0].v_rep_count = v_rep_count; goto exit; exit: if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } // -------- func deflate.decoder.init_huff static wuffs_base__status wuffs_deflate__decoder__init_huff( wuffs_deflate__decoder* self, uint32_t a_which, uint32_t a_n_codes0, uint32_t a_n_codes1, uint32_t a_base_symbol) { uint16_t v_counts[16] = {0}; uint32_t v_i = 0; uint32_t v_remaining = 0; uint16_t v_offsets[16] = {0}; uint32_t v_n_symbols = 0; uint32_t v_count = 0; uint16_t v_symbols[320] = {0}; uint32_t v_min_cl = 0; uint32_t v_max_cl = 0; uint32_t v_initial_high_bits = 0; uint32_t v_prev_cl = 0; uint32_t v_prev_redirect_key = 0; uint32_t v_top = 0; uint32_t v_next_top = 0; uint32_t v_code = 0; uint32_t v_key = 0; uint32_t v_value = 0; uint32_t v_cl = 0; uint32_t v_redirect_key = 0; uint32_t v_j = 0; uint32_t v_reversed_key = 0; uint32_t v_symbol = 0; uint32_t v_high_bits = 0; uint32_t v_delta = 0; v_i = a_n_codes0; while (v_i < a_n_codes1) { if (v_counts[(self->private_data.f_code_lengths[v_i] & 15)] >= 320) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif v_counts[(self->private_data.f_code_lengths[v_i] & 15)] += 1; #if defined(__GNUC__) #pragma GCC diagnostic pop #endif v_i += 1; } if ((((uint32_t)(v_counts[0])) + a_n_codes0) == a_n_codes1) { return wuffs_base__make_status(wuffs_deflate__error__no_huffman_codes); } v_remaining = 1; v_i = 1; while (v_i <= 15) { if (v_remaining > 1073741824) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_remaining <<= 1; if (v_remaining < ((uint32_t)(v_counts[v_i]))) { return wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code_over_subscribed); } v_remaining -= ((uint32_t)(v_counts[v_i])); v_i += 1; } if (v_remaining != 0) { if ((a_which == 1) && (v_counts[1] == 1) && ((((uint32_t)(v_counts[0])) + a_n_codes0 + 1) == a_n_codes1)) { v_i = 0; while (v_i <= 29) { if (self->private_data.f_code_lengths[(a_n_codes0 + v_i)] == 1) { self->private_impl.f_n_huffs_bits[1] = 1; self->private_data.f_huffs[1][0] = (WUFFS_DEFLATE__DCODE_MAGIC_NUMBERS[v_i] | 1); self->private_data.f_huffs[1][1] = (WUFFS_DEFLATE__DCODE_MAGIC_NUMBERS[31] | 1); return wuffs_base__make_status(NULL); } v_i += 1; } } return wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code_under_subscribed); } v_i = 1; while (v_i <= 15) { v_offsets[v_i] = ((uint16_t)(v_n_symbols)); v_count = ((uint32_t)(v_counts[v_i])); if (v_n_symbols > (320 - v_count)) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_n_symbols = (v_n_symbols + v_count); v_i += 1; } if (v_n_symbols > 288) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_i = a_n_codes0; while (v_i < a_n_codes1) { if (v_i < a_n_codes0) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } if (self->private_data.f_code_lengths[v_i] != 0) { if (v_offsets[(self->private_data.f_code_lengths[v_i] & 15)] >= 320) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_symbols[v_offsets[(self->private_data.f_code_lengths[v_i] & 15)]] = ((uint16_t)((v_i - a_n_codes0))); #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif v_offsets[(self->private_data.f_code_lengths[v_i] & 15)] += 1; #if defined(__GNUC__) #pragma GCC diagnostic pop #endif } v_i += 1; } v_min_cl = 1; while (true) { if (v_counts[v_min_cl] != 0) { goto label__0__break; } if (v_min_cl >= 9) { return wuffs_base__make_status(wuffs_deflate__error__bad_huffman_minimum_code_length); } v_min_cl += 1; } label__0__break:; v_max_cl = 15; while (true) { if (v_counts[v_max_cl] != 0) { goto label__1__break; } if (v_max_cl <= 1) { return wuffs_base__make_status(wuffs_deflate__error__no_huffman_codes); } v_max_cl -= 1; } label__1__break:; if (v_max_cl <= 9) { self->private_impl.f_n_huffs_bits[a_which] = v_max_cl; } else { self->private_impl.f_n_huffs_bits[a_which] = 9; } v_i = 0; if ((v_n_symbols != ((uint32_t)(v_offsets[v_max_cl]))) || (v_n_symbols != ((uint32_t)(v_offsets[15])))) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } if ((a_n_codes0 + ((uint32_t)(v_symbols[0]))) >= 320) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_initial_high_bits = 512; if (v_max_cl < 9) { v_initial_high_bits = (((uint32_t)(1)) << v_max_cl); } v_prev_cl = ((uint32_t)((self->private_data.f_code_lengths[(a_n_codes0 + ((uint32_t)(v_symbols[0])))] & 15))); v_prev_redirect_key = 4294967295; v_top = 0; v_next_top = 512; v_code = 0; v_key = 0; v_value = 0; while (true) { if ((a_n_codes0 + ((uint32_t)(v_symbols[v_i]))) >= 320) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_cl = ((uint32_t)((self->private_data.f_code_lengths[(a_n_codes0 + ((uint32_t)(v_symbols[v_i])))] & 15))); if (v_cl > v_prev_cl) { v_code <<= (v_cl - v_prev_cl); if (v_code >= 32768) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } } v_prev_cl = v_cl; v_key = v_code; if (v_cl > 9) { v_cl -= 9; v_redirect_key = ((v_key >> v_cl) & 511); v_key = ((v_key) & WUFFS_BASE__LOW_BITS_MASK__U32(v_cl)); if (v_prev_redirect_key != v_redirect_key) { v_prev_redirect_key = v_redirect_key; v_remaining = (((uint32_t)(1)) << v_cl); v_j = v_prev_cl; while (v_j <= 15) { if (v_remaining <= ((uint32_t)(v_counts[v_j]))) { goto label__2__break; } v_remaining -= ((uint32_t)(v_counts[v_j])); if (v_remaining > 1073741824) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_remaining <<= 1; v_j += 1; } label__2__break:; if ((v_j <= 9) || (15 < v_j)) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_j -= 9; v_initial_high_bits = (((uint32_t)(1)) << v_j); v_top = v_next_top; if ((v_top + (((uint32_t)(1)) << v_j)) > 1024) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_next_top = (v_top + (((uint32_t)(1)) << v_j)); v_redirect_key = (((uint32_t)(WUFFS_DEFLATE__REVERSE8[(v_redirect_key >> 1)])) | ((v_redirect_key & 1) << 8)); self->private_data.f_huffs[a_which][v_redirect_key] = (268435465 | (v_top << 8) | (v_j << 4)); } } if ((v_key >= 512) || (v_counts[v_prev_cl] <= 0)) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif v_counts[v_prev_cl] -= 1; #if defined(__GNUC__) #pragma GCC diagnostic pop #endif v_reversed_key = (((uint32_t)(WUFFS_DEFLATE__REVERSE8[(v_key >> 1)])) | ((v_key & 1) << 8)); v_reversed_key >>= (9 - v_cl); v_symbol = ((uint32_t)(v_symbols[v_i])); if (v_symbol == 256) { v_value = (536870912 | v_cl); } else if ((v_symbol < 256) && (a_which == 0)) { v_value = (2147483648 | (v_symbol << 8) | v_cl); } else if (v_symbol >= a_base_symbol) { v_symbol -= a_base_symbol; if (a_which == 0) { v_value = (WUFFS_DEFLATE__LCODE_MAGIC_NUMBERS[(v_symbol & 31)] | v_cl); } else { v_value = (WUFFS_DEFLATE__DCODE_MAGIC_NUMBERS[(v_symbol & 31)] | v_cl); } } else { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } v_high_bits = v_initial_high_bits; v_delta = (((uint32_t)(1)) << v_cl); while (v_high_bits >= v_delta) { v_high_bits -= v_delta; if ((v_top + ((v_high_bits | v_reversed_key) & 511)) >= 1024) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } self->private_data.f_huffs[a_which][(v_top + ((v_high_bits | v_reversed_key) & 511))] = v_value; } v_i += 1; if (v_i >= v_n_symbols) { goto label__3__break; } v_code += 1; if (v_code >= 32768) { return wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); } } label__3__break:; return wuffs_base__make_status(NULL); } // ‼ WUFFS MULTI-FILE SECTION +x86_bmi2 // -------- func deflate.decoder.decode_huffman_bmi2 #if defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) WUFFS_BASE__MAYBE_ATTRIBUTE_TARGET("bmi2") static wuffs_base__status wuffs_deflate__decoder__decode_huffman_bmi2( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint64_t v_bits = 0; uint32_t v_n_bits = 0; uint32_t v_table_entry = 0; uint32_t v_table_entry_n_bits = 0; uint64_t v_lmask = 0; uint64_t v_dmask = 0; uint32_t v_redir_top = 0; uint32_t v_redir_mask = 0; uint32_t v_length = 0; uint32_t v_dist_minus_1 = 0; uint32_t v_hlen = 0; uint32_t v_hdist = 0; uint32_t v_hdist_adjustment = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } v_bits = ((uint64_t)(self->private_impl.f_bits)); v_n_bits = self->private_impl.f_n_bits; v_lmask = ((((uint64_t)(1)) << self->private_impl.f_n_huffs_bits[0]) - 1); v_dmask = ((((uint64_t)(1)) << self->private_impl.f_n_huffs_bits[1]) - 1); if (self->private_impl.f_transformed_history_count < (a_dst ? a_dst->meta.pos : 0)) { status = wuffs_base__make_status(wuffs_base__error__bad_i_o_position); goto exit; } v_hdist_adjustment = ((uint32_t)(((self->private_impl.f_transformed_history_count - (a_dst ? a_dst->meta.pos : 0)) & 4294967295))); label__loop__continue:; while ((((uint64_t)(io2_a_dst - iop_a_dst)) >= 266) && (((uint64_t)(io2_a_src - iop_a_src)) >= 8)) { v_bits |= ((uint64_t)(wuffs_base__peek_u64le__no_bounds_check(iop_a_src) << (v_n_bits & 63))); iop_a_src += ((63 - (v_n_bits & 63)) >> 3); v_n_bits |= 56; v_table_entry = self->private_data.f_huffs[0][(v_bits & v_lmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[0][((v_redir_top + (((uint32_t)((v_bits & 4294967295))) & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_length = (((v_table_entry >> 8) & 255) + 3); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_table_entry_n_bits > 0) { v_length = (((v_length + 253 + ((uint32_t)(((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U64(v_table_entry_n_bits))))) & 255) + 3); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } v_table_entry = self->private_data.f_huffs[1][(v_bits & v_dmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 28) == 1) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[1][((v_redir_top + (((uint32_t)((v_bits & 4294967295))) & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } if ((v_table_entry >> 24) != 64) { if ((v_table_entry >> 24) == 8) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_dist_minus_1 = ((v_table_entry >> 8) & 32767); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); v_dist_minus_1 = ((v_dist_minus_1 + ((uint32_t)(((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U64(v_table_entry_n_bits))))) & 32767); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; while (true) { if (((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) { v_hlen = 0; v_hdist = ((uint32_t)((((uint64_t)((v_dist_minus_1 + 1))) - ((uint64_t)(iop_a_dst - io0_a_dst))))); if (v_length > v_hdist) { v_length -= v_hdist; v_hlen = v_hdist; } else { v_hlen = v_length; v_length = 0; } v_hdist += v_hdist_adjustment; if (self->private_impl.f_history_index < v_hdist) { status = wuffs_base__make_status(wuffs_deflate__error__bad_distance); goto exit; } wuffs_base__io_writer__limited_copy_u32_from_slice( &iop_a_dst, io2_a_dst,v_hlen, wuffs_base__make_slice_u8_ij(self->private_data.f_history, ((self->private_impl.f_history_index - v_hdist) & 32767), 33025)); if (v_length == 0) { goto label__loop__continue; } if ((((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) || (((uint64_t)(v_length)) > ((uint64_t)(io2_a_dst - iop_a_dst))) || (((uint64_t)((v_length + 8))) > ((uint64_t)(io2_a_dst - iop_a_dst)))) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_distance); goto exit; } } if ((v_dist_minus_1 + 1) >= 8) { wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } else if ((v_dist_minus_1 + 1) == 1) { wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } else { wuffs_base__io_writer__limited_copy_u32_from_history_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } goto label__0__break; } label__0__break:; } label__loop__break:; if (v_n_bits > 63) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } while (v_n_bits >= 8) { v_n_bits -= 8; if (iop_a_src > io1_a_src) { iop_a_src--; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_i_o); goto exit; } } self->private_impl.f_bits = ((uint32_t)((v_bits & ((((uint64_t)(1)) << v_n_bits) - 1)))); self->private_impl.f_n_bits = v_n_bits; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> self->private_impl.f_n_bits) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } #endif // defined(WUFFS_BASE__CPU_ARCH__X86_FAMILY) // ‼ WUFFS MULTI-FILE SECTION -x86_bmi2 // -------- func deflate.decoder.decode_huffman_fast32 static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast32( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint32_t v_bits = 0; uint32_t v_n_bits = 0; uint32_t v_table_entry = 0; uint32_t v_table_entry_n_bits = 0; uint32_t v_lmask = 0; uint32_t v_dmask = 0; uint32_t v_redir_top = 0; uint32_t v_redir_mask = 0; uint32_t v_length = 0; uint32_t v_dist_minus_1 = 0; uint32_t v_hlen = 0; uint32_t v_hdist = 0; uint32_t v_hdist_adjustment = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } v_bits = self->private_impl.f_bits; v_n_bits = self->private_impl.f_n_bits; v_lmask = ((((uint32_t)(1)) << self->private_impl.f_n_huffs_bits[0]) - 1); v_dmask = ((((uint32_t)(1)) << self->private_impl.f_n_huffs_bits[1]) - 1); if (self->private_impl.f_transformed_history_count < (a_dst ? a_dst->meta.pos : 0)) { status = wuffs_base__make_status(wuffs_base__error__bad_i_o_position); goto exit; } v_hdist_adjustment = ((uint32_t)(((self->private_impl.f_transformed_history_count - (a_dst ? a_dst->meta.pos : 0)) & 4294967295))); label__loop__continue:; while ((((uint64_t)(io2_a_dst - iop_a_dst)) >= 266) && (((uint64_t)(io2_a_src - iop_a_src)) >= 12)) { if (v_n_bits < 15) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } else { } v_table_entry = self->private_data.f_huffs[0][(v_bits & v_lmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { if (v_n_bits < 15) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } else { } v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[0][((v_redir_top + (v_bits & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_length = (((v_table_entry >> 8) & 255) + 3); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_table_entry_n_bits > 0) { if (v_n_bits < 15) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } else { } v_length = (((v_length + 253 + ((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U32(v_table_entry_n_bits))) & 255) + 3); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } else { } if (v_n_bits < 15) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } else { } v_table_entry = self->private_data.f_huffs[1][(v_bits & v_dmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 28) == 1) { if (v_n_bits < 15) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } else { } v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[1][((v_redir_top + (v_bits & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } else { } if ((v_table_entry >> 24) != 64) { if ((v_table_entry >> 24) == 8) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_dist_minus_1 = ((v_table_entry >> 8) & 32767); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_n_bits < v_table_entry_n_bits) { v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; v_bits |= (((uint32_t)(wuffs_base__peek_u8be__no_bounds_check(iop_a_src))) << v_n_bits); iop_a_src += 1; v_n_bits += 8; } v_dist_minus_1 = ((v_dist_minus_1 + ((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U32(v_table_entry_n_bits))) & 32767); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; while (true) { if (((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) { v_hlen = 0; v_hdist = ((uint32_t)((((uint64_t)((v_dist_minus_1 + 1))) - ((uint64_t)(iop_a_dst - io0_a_dst))))); if (v_length > v_hdist) { v_length -= v_hdist; v_hlen = v_hdist; } else { v_hlen = v_length; v_length = 0; } v_hdist += v_hdist_adjustment; if (self->private_impl.f_history_index < v_hdist) { status = wuffs_base__make_status(wuffs_deflate__error__bad_distance); goto exit; } wuffs_base__io_writer__limited_copy_u32_from_slice( &iop_a_dst, io2_a_dst,v_hlen, wuffs_base__make_slice_u8_ij(self->private_data.f_history, ((self->private_impl.f_history_index - v_hdist) & 32767), 33025)); if (v_length == 0) { goto label__loop__continue; } if ((((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) || (((uint64_t)(v_length)) > ((uint64_t)(io2_a_dst - iop_a_dst))) || (((uint64_t)((v_length + 8))) > ((uint64_t)(io2_a_dst - iop_a_dst)))) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_distance); goto exit; } } if ((v_dist_minus_1 + 1) >= 8) { wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } else { wuffs_base__io_writer__limited_copy_u32_from_history_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } goto label__0__break; } label__0__break:; } label__loop__break:; while (v_n_bits >= 8) { v_n_bits -= 8; if (iop_a_src > io1_a_src) { iop_a_src--; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_i_o); goto exit; } } self->private_impl.f_bits = (v_bits & ((((uint32_t)(1)) << v_n_bits) - 1)); self->private_impl.f_n_bits = v_n_bits; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> self->private_impl.f_n_bits) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } // -------- func deflate.decoder.decode_huffman_fast64 static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast64( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { return (*self->private_impl.choosy_decode_huffman_fast64)(self, a_dst, a_src); } static wuffs_base__status wuffs_deflate__decoder__decode_huffman_fast64__choosy_default( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint64_t v_bits = 0; uint32_t v_n_bits = 0; uint32_t v_table_entry = 0; uint32_t v_table_entry_n_bits = 0; uint64_t v_lmask = 0; uint64_t v_dmask = 0; uint32_t v_redir_top = 0; uint32_t v_redir_mask = 0; uint32_t v_length = 0; uint32_t v_dist_minus_1 = 0; uint32_t v_hlen = 0; uint32_t v_hdist = 0; uint32_t v_hdist_adjustment = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } v_bits = ((uint64_t)(self->private_impl.f_bits)); v_n_bits = self->private_impl.f_n_bits; v_lmask = ((((uint64_t)(1)) << self->private_impl.f_n_huffs_bits[0]) - 1); v_dmask = ((((uint64_t)(1)) << self->private_impl.f_n_huffs_bits[1]) - 1); if (self->private_impl.f_transformed_history_count < (a_dst ? a_dst->meta.pos : 0)) { status = wuffs_base__make_status(wuffs_base__error__bad_i_o_position); goto exit; } v_hdist_adjustment = ((uint32_t)(((self->private_impl.f_transformed_history_count - (a_dst ? a_dst->meta.pos : 0)) & 4294967295))); label__loop__continue:; while ((((uint64_t)(io2_a_dst - iop_a_dst)) >= 266) && (((uint64_t)(io2_a_src - iop_a_src)) >= 8)) { v_bits |= ((uint64_t)(wuffs_base__peek_u64le__no_bounds_check(iop_a_src) << (v_n_bits & 63))); iop_a_src += ((63 - (v_n_bits & 63)) >> 3); v_n_bits |= 56; v_table_entry = self->private_data.f_huffs[0][(v_bits & v_lmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[0][((v_redir_top + (((uint32_t)((v_bits & 4294967295))) & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 31) != 0) { (wuffs_base__poke_u8be__no_bounds_check(iop_a_dst, ((uint8_t)(((v_table_entry >> 8) & 255)))), iop_a_dst += 1); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_length = (((v_table_entry >> 8) & 255) + 3); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_table_entry_n_bits > 0) { v_length = (((v_length + 253 + ((uint32_t)(((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U64(v_table_entry_n_bits))))) & 255) + 3); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } v_table_entry = self->private_data.f_huffs[1][(v_bits & v_dmask)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; if ((v_table_entry >> 28) == 1) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); v_table_entry = self->private_data.f_huffs[1][((v_redir_top + (((uint32_t)((v_bits & 4294967295))) & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } if ((v_table_entry >> 24) != 64) { if ((v_table_entry >> 24) == 8) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_dist_minus_1 = ((v_table_entry >> 8) & 32767); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); v_dist_minus_1 = ((v_dist_minus_1 + ((uint32_t)(((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U64(v_table_entry_n_bits))))) & 32767); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; while (true) { if (((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) { v_hlen = 0; v_hdist = ((uint32_t)((((uint64_t)((v_dist_minus_1 + 1))) - ((uint64_t)(iop_a_dst - io0_a_dst))))); if (v_length > v_hdist) { v_length -= v_hdist; v_hlen = v_hdist; } else { v_hlen = v_length; v_length = 0; } v_hdist += v_hdist_adjustment; if (self->private_impl.f_history_index < v_hdist) { status = wuffs_base__make_status(wuffs_deflate__error__bad_distance); goto exit; } wuffs_base__io_writer__limited_copy_u32_from_slice( &iop_a_dst, io2_a_dst,v_hlen, wuffs_base__make_slice_u8_ij(self->private_data.f_history, ((self->private_impl.f_history_index - v_hdist) & 32767), 33025)); if (v_length == 0) { goto label__loop__continue; } if ((((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) || (((uint64_t)(v_length)) > ((uint64_t)(io2_a_dst - iop_a_dst))) || (((uint64_t)((v_length + 8))) > ((uint64_t)(io2_a_dst - iop_a_dst)))) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_distance); goto exit; } } if ((v_dist_minus_1 + 1) >= 8) { wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } else if ((v_dist_minus_1 + 1) == 1) { wuffs_base__io_writer__limited_copy_u32_from_history_8_byte_chunks_distance_1_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } else { wuffs_base__io_writer__limited_copy_u32_from_history_fast( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); } goto label__0__break; } label__0__break:; } label__loop__break:; if (v_n_bits > 63) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } while (v_n_bits >= 8) { v_n_bits -= 8; if (iop_a_src > io1_a_src) { iop_a_src--; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_i_o); goto exit; } } self->private_impl.f_bits = ((uint32_t)((v_bits & ((((uint64_t)(1)) << v_n_bits) - 1)))); self->private_impl.f_n_bits = v_n_bits; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> self->private_impl.f_n_bits) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } // -------- func deflate.decoder.decode_huffman_slow static wuffs_base__status wuffs_deflate__decoder__decode_huffman_slow( wuffs_deflate__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src) { wuffs_base__status status = wuffs_base__make_status(NULL); uint32_t v_bits = 0; uint32_t v_n_bits = 0; uint32_t v_table_entry = 0; uint32_t v_table_entry_n_bits = 0; uint32_t v_lmask = 0; uint32_t v_dmask = 0; uint32_t v_b0 = 0; uint32_t v_redir_top = 0; uint32_t v_redir_mask = 0; uint32_t v_b1 = 0; uint32_t v_length = 0; uint32_t v_b2 = 0; uint32_t v_b3 = 0; uint32_t v_b4 = 0; uint32_t v_dist_minus_1 = 0; uint32_t v_b5 = 0; uint32_t v_n_copied = 0; uint32_t v_hlen = 0; uint32_t v_hdist = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } uint32_t coro_susp_point = self->private_impl.p_decode_huffman_slow[0]; if (coro_susp_point) { v_bits = self->private_data.s_decode_huffman_slow[0].v_bits; v_n_bits = self->private_data.s_decode_huffman_slow[0].v_n_bits; v_table_entry_n_bits = self->private_data.s_decode_huffman_slow[0].v_table_entry_n_bits; v_lmask = self->private_data.s_decode_huffman_slow[0].v_lmask; v_dmask = self->private_data.s_decode_huffman_slow[0].v_dmask; v_redir_top = self->private_data.s_decode_huffman_slow[0].v_redir_top; v_redir_mask = self->private_data.s_decode_huffman_slow[0].v_redir_mask; v_length = self->private_data.s_decode_huffman_slow[0].v_length; v_dist_minus_1 = self->private_data.s_decode_huffman_slow[0].v_dist_minus_1; } switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } v_bits = self->private_impl.f_bits; v_n_bits = self->private_impl.f_n_bits; v_lmask = ((((uint32_t)(1)) << self->private_impl.f_n_huffs_bits[0]) - 1); v_dmask = ((((uint32_t)(1)) << self->private_impl.f_n_huffs_bits[1]) - 1); label__loop__continue:; while ( ! (self->private_impl.p_decode_huffman_slow[0] != 0)) { while (true) { v_table_entry = self->private_data.f_huffs[0][(v_bits & v_lmask)]; v_table_entry_n_bits = (v_table_entry & 15); if (v_n_bits >= v_table_entry_n_bits) { v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; goto label__0__break; } { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_0 = *iop_a_src++; v_b0 = t_0; } v_bits |= (v_b0 << v_n_bits); v_n_bits += 8; } label__0__break:; if ((v_table_entry >> 31) != 0) { self->private_data.s_decode_huffman_slow[0].scratch = ((uint8_t)(((v_table_entry >> 8) & 255))); WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); if (iop_a_dst == io2_a_dst) { status = wuffs_base__make_status(wuffs_base__suspension__short_write); goto suspend; } *iop_a_dst++ = ((uint8_t)(self->private_data.s_decode_huffman_slow[0].scratch)); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); while (true) { v_table_entry = self->private_data.f_huffs[0][((v_redir_top + (v_bits & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); if (v_n_bits >= v_table_entry_n_bits) { v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; goto label__1__break; } { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(3); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_1 = *iop_a_src++; v_b1 = t_1; } v_bits |= (v_b1 << v_n_bits); v_n_bits += 8; } label__1__break:; if ((v_table_entry >> 31) != 0) { self->private_data.s_decode_huffman_slow[0].scratch = ((uint8_t)(((v_table_entry >> 8) & 255))); WUFFS_BASE__COROUTINE_SUSPENSION_POINT(4); if (iop_a_dst == io2_a_dst) { status = wuffs_base__make_status(wuffs_base__suspension__short_write); goto suspend; } *iop_a_dst++ = ((uint8_t)(self->private_data.s_decode_huffman_slow[0].scratch)); goto label__loop__continue; } else if ((v_table_entry >> 30) != 0) { } else if ((v_table_entry >> 29) != 0) { self->private_impl.f_end_of_block = true; goto label__loop__break; } else if ((v_table_entry >> 28) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } } else if ((v_table_entry >> 27) != 0) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } else { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_length = (((v_table_entry >> 8) & 255) + 3); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_table_entry_n_bits > 0) { while (v_n_bits < v_table_entry_n_bits) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(5); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_2 = *iop_a_src++; v_b2 = t_2; } v_bits |= (v_b2 << v_n_bits); v_n_bits += 8; } v_length = (((v_length + 253 + ((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U32(v_table_entry_n_bits))) & 255) + 3); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } while (true) { v_table_entry = self->private_data.f_huffs[1][(v_bits & v_dmask)]; v_table_entry_n_bits = (v_table_entry & 15); if (v_n_bits >= v_table_entry_n_bits) { v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; goto label__2__break; } { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(6); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_3 = *iop_a_src++; v_b3 = t_3; } v_bits |= (v_b3 << v_n_bits); v_n_bits += 8; } label__2__break:; if ((v_table_entry >> 28) == 1) { v_redir_top = ((v_table_entry >> 8) & 65535); v_redir_mask = ((((uint32_t)(1)) << ((v_table_entry >> 4) & 15)) - 1); while (true) { v_table_entry = self->private_data.f_huffs[1][((v_redir_top + (v_bits & v_redir_mask)) & 1023)]; v_table_entry_n_bits = (v_table_entry & 15); if (v_n_bits >= v_table_entry_n_bits) { v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; goto label__3__break; } { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(7); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_4 = *iop_a_src++; v_b4 = t_4; } v_bits |= (v_b4 << v_n_bits); v_n_bits += 8; } label__3__break:; } if ((v_table_entry >> 24) != 64) { if ((v_table_entry >> 24) == 8) { status = wuffs_base__make_status(wuffs_deflate__error__bad_huffman_code); goto exit; } status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_huffman_decoder_state); goto exit; } v_dist_minus_1 = ((v_table_entry >> 8) & 32767); v_table_entry_n_bits = ((v_table_entry >> 4) & 15); if (v_table_entry_n_bits > 0) { while (v_n_bits < v_table_entry_n_bits) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(8); if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint32_t t_5 = *iop_a_src++; v_b5 = t_5; } v_bits |= (v_b5 << v_n_bits); v_n_bits += 8; } v_dist_minus_1 = ((v_dist_minus_1 + ((v_bits) & WUFFS_BASE__LOW_BITS_MASK__U32(v_table_entry_n_bits))) & 32767); v_bits >>= v_table_entry_n_bits; v_n_bits -= v_table_entry_n_bits; } label__inner__continue:; while (true) { if (((uint64_t)((v_dist_minus_1 + 1))) > ((uint64_t)(iop_a_dst - io0_a_dst))) { v_hdist = ((uint32_t)((((uint64_t)((v_dist_minus_1 + 1))) - ((uint64_t)(iop_a_dst - io0_a_dst))))); if (v_hdist < v_length) { v_hlen = v_hdist; } else { v_hlen = v_length; } v_hdist += ((uint32_t)((((uint64_t)(self->private_impl.f_transformed_history_count - (a_dst ? a_dst->meta.pos : 0))) & 4294967295))); if (self->private_impl.f_history_index < v_hdist) { status = wuffs_base__make_status(wuffs_deflate__error__bad_distance); goto exit; } v_n_copied = wuffs_base__io_writer__limited_copy_u32_from_slice( &iop_a_dst, io2_a_dst,v_hlen, wuffs_base__make_slice_u8_ij(self->private_data.f_history, ((self->private_impl.f_history_index - v_hdist) & 32767), 33025)); if (v_n_copied < v_hlen) { v_length -= v_n_copied; status = wuffs_base__make_status(wuffs_base__suspension__short_write); WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(9); goto label__inner__continue; } v_length -= v_hlen; if (v_length == 0) { goto label__loop__continue; } } v_n_copied = wuffs_base__io_writer__limited_copy_u32_from_history( &iop_a_dst, io0_a_dst, io2_a_dst, v_length, (v_dist_minus_1 + 1)); if (v_length <= v_n_copied) { goto label__loop__continue; } v_length -= v_n_copied; status = wuffs_base__make_status(wuffs_base__suspension__short_write); WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(10); } } label__loop__break:; self->private_impl.f_bits = v_bits; self->private_impl.f_n_bits = v_n_bits; if ((self->private_impl.f_n_bits >= 8) || ((self->private_impl.f_bits >> (self->private_impl.f_n_bits & 7)) != 0)) { status = wuffs_base__make_status(wuffs_deflate__error__internal_error_inconsistent_n_bits); goto exit; } ok: self->private_impl.p_decode_huffman_slow[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_decode_huffman_slow[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_data.s_decode_huffman_slow[0].v_bits = v_bits; self->private_data.s_decode_huffman_slow[0].v_n_bits = v_n_bits; self->private_data.s_decode_huffman_slow[0].v_table_entry_n_bits = v_table_entry_n_bits; self->private_data.s_decode_huffman_slow[0].v_lmask = v_lmask; self->private_data.s_decode_huffman_slow[0].v_dmask = v_dmask; self->private_data.s_decode_huffman_slow[0].v_redir_top = v_redir_top; self->private_data.s_decode_huffman_slow[0].v_redir_mask = v_redir_mask; self->private_data.s_decode_huffman_slow[0].v_length = v_length; self->private_data.s_decode_huffman_slow[0].v_dist_minus_1 = v_dist_minus_1; goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__DEFLATE) #if !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ZLIB) // ---------------- Status Codes Implementations const char wuffs_zlib__note__dictionary_required[] = "@zlib: dictionary required"; const char wuffs_zlib__error__bad_checksum[] = "#zlib: bad checksum"; const char wuffs_zlib__error__bad_compression_method[] = "#zlib: bad compression method"; const char wuffs_zlib__error__bad_compression_window_size[] = "#zlib: bad compression window size"; const char wuffs_zlib__error__bad_parity_check[] = "#zlib: bad parity check"; const char wuffs_zlib__error__incorrect_dictionary[] = "#zlib: incorrect dictionary"; const char wuffs_zlib__error__truncated_input[] = "#zlib: truncated input"; // ---------------- Private Consts #define WUFFS_ZLIB__QUIRKS_BASE 2113790976 #define WUFFS_ZLIB__QUIRKS_COUNT 1 // ---------------- Private Initializer Prototypes // ---------------- Private Function Prototypes static wuffs_base__status wuffs_zlib__decoder__do_transform_io( wuffs_zlib__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf); // ---------------- VTables const wuffs_base__io_transformer__func_ptrs wuffs_zlib__decoder__func_ptrs_for__wuffs_base__io_transformer = { (wuffs_base__empty_struct(*)(void*, uint32_t, bool))(&wuffs_zlib__decoder__set_quirk_enabled), (wuffs_base__status(*)(void*, wuffs_base__io_buffer*, wuffs_base__io_buffer*, wuffs_base__slice_u8))(&wuffs_zlib__decoder__transform_io), (wuffs_base__range_ii_u64(*)(const void*))(&wuffs_zlib__decoder__workbuf_len), }; // ---------------- Initializer Implementations wuffs_base__status WUFFS_BASE__WARN_UNUSED_RESULT wuffs_zlib__decoder__initialize( wuffs_zlib__decoder* self, size_t sizeof_star_self, uint64_t wuffs_version, uint32_t options){ if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (sizeof(*self) != sizeof_star_self) { return wuffs_base__make_status(wuffs_base__error__bad_sizeof_receiver); } if (((wuffs_version >> 32) != WUFFS_VERSION_MAJOR) || (((wuffs_version >> 16) & 0xFFFF) > WUFFS_VERSION_MINOR)) { return wuffs_base__make_status(wuffs_base__error__bad_wuffs_version); } if ((options & WUFFS_INITIALIZE__ALREADY_ZEROED) != 0) { // The whole point of this if-check is to detect an uninitialized *self. // We disable the warning on GCC. Clang-5.0 does not have this warning. #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif if (self->private_impl.magic != 0) { return wuffs_base__make_status(wuffs_base__error__initialize_falsely_claimed_already_zeroed); } #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif } else { if ((options & WUFFS_INITIALIZE__LEAVE_INTERNAL_BUFFERS_UNINITIALIZED) == 0) { memset(self, 0, sizeof(*self)); options |= WUFFS_INITIALIZE__ALREADY_ZEROED; } else { memset(&(self->private_impl), 0, sizeof(self->private_impl)); } } { wuffs_base__status z = wuffs_adler32__hasher__initialize( &self->private_data.f_checksum, sizeof(self->private_data.f_checksum), WUFFS_VERSION, options); if (z.repr) { return z; } } { wuffs_base__status z = wuffs_adler32__hasher__initialize( &self->private_data.f_dict_id_hasher, sizeof(self->private_data.f_dict_id_hasher), WUFFS_VERSION, options); if (z.repr) { return z; } } { wuffs_base__status z = wuffs_deflate__decoder__initialize( &self->private_data.f_flate, sizeof(self->private_data.f_flate), WUFFS_VERSION, options); if (z.repr) { return z; } } self->private_impl.magic = WUFFS_BASE__MAGIC; self->private_impl.vtable_for__wuffs_base__io_transformer.vtable_name = wuffs_base__io_transformer__vtable_name; self->private_impl.vtable_for__wuffs_base__io_transformer.function_pointers = (const void*)(&wuffs_zlib__decoder__func_ptrs_for__wuffs_base__io_transformer); return wuffs_base__make_status(NULL); } wuffs_zlib__decoder* wuffs_zlib__decoder__alloc() { wuffs_zlib__decoder* x = (wuffs_zlib__decoder*)(calloc(sizeof(wuffs_zlib__decoder), 1)); if (!x) { return NULL; } if (wuffs_zlib__decoder__initialize( x, sizeof(wuffs_zlib__decoder), WUFFS_VERSION, WUFFS_INITIALIZE__ALREADY_ZEROED).repr) { free(x); return NULL; } return x; } size_t sizeof__wuffs_zlib__decoder() { return sizeof(wuffs_zlib__decoder); } // ---------------- Function Implementations // -------- func zlib.decoder.dictionary_id WUFFS_BASE__MAYBE_STATIC uint32_t wuffs_zlib__decoder__dictionary_id( const wuffs_zlib__decoder* self) { if (!self) { return 0; } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return 0; } return self->private_impl.f_dict_id_want; } // -------- func zlib.decoder.add_dictionary WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_zlib__decoder__add_dictionary( wuffs_zlib__decoder* self, wuffs_base__slice_u8 a_dict) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } if (self->private_impl.f_header_complete) { self->private_impl.f_bad_call_sequence = true; } else { self->private_impl.f_dict_id_got = wuffs_adler32__hasher__update_u32(&self->private_data.f_dict_id_hasher, a_dict); wuffs_deflate__decoder__add_history(&self->private_data.f_flate, a_dict); } self->private_impl.f_got_dictionary = true; return wuffs_base__make_empty_struct(); } // -------- func zlib.decoder.set_quirk_enabled WUFFS_BASE__MAYBE_STATIC wuffs_base__empty_struct wuffs_zlib__decoder__set_quirk_enabled( wuffs_zlib__decoder* self, uint32_t a_quirk, bool a_enabled) { if (!self) { return wuffs_base__make_empty_struct(); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_empty_struct(); } if (self->private_impl.f_header_complete) { self->private_impl.f_bad_call_sequence = true; } else if (a_quirk == 1) { self->private_impl.f_ignore_checksum = a_enabled; } else if (a_quirk >= 2113790976) { a_quirk -= 2113790976; if (a_quirk < 1) { self->private_impl.f_quirks[a_quirk] = a_enabled; } } return wuffs_base__make_empty_struct(); } // -------- func zlib.decoder.workbuf_len WUFFS_BASE__MAYBE_STATIC wuffs_base__range_ii_u64 wuffs_zlib__decoder__workbuf_len( const wuffs_zlib__decoder* self) { if (!self) { return wuffs_base__utility__empty_range_ii_u64(); } if ((self->private_impl.magic != WUFFS_BASE__MAGIC) && (self->private_impl.magic != WUFFS_BASE__DISABLED)) { return wuffs_base__utility__empty_range_ii_u64(); } return wuffs_base__utility__make_range_ii_u64(1, 1); } // -------- func zlib.decoder.transform_io WUFFS_BASE__MAYBE_STATIC wuffs_base__status wuffs_zlib__decoder__transform_io( wuffs_zlib__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { if (!self) { return wuffs_base__make_status(wuffs_base__error__bad_receiver); } if (self->private_impl.magic != WUFFS_BASE__MAGIC) { return wuffs_base__make_status( (self->private_impl.magic == WUFFS_BASE__DISABLED) ? wuffs_base__error__disabled_by_previous_error : wuffs_base__error__initialize_not_called); } if (!a_dst || !a_src) { self->private_impl.magic = WUFFS_BASE__DISABLED; return wuffs_base__make_status(wuffs_base__error__bad_argument); } if ((self->private_impl.active_coroutine != 0) && (self->private_impl.active_coroutine != 1)) { self->private_impl.magic = WUFFS_BASE__DISABLED; return wuffs_base__make_status(wuffs_base__error__interleaved_coroutine_calls); } self->private_impl.active_coroutine = 0; wuffs_base__status status = wuffs_base__make_status(NULL); wuffs_base__status v_status = wuffs_base__make_status(NULL); uint32_t coro_susp_point = self->private_impl.p_transform_io[0]; switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; while (true) { { wuffs_base__status t_0 = wuffs_zlib__decoder__do_transform_io(self, a_dst, a_src, a_workbuf); v_status = t_0; } if ((v_status.repr == wuffs_base__suspension__short_read) && (a_src && a_src->meta.closed)) { status = wuffs_base__make_status(wuffs_zlib__error__truncated_input); goto exit; } status = v_status; WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(1); } ok: self->private_impl.p_transform_io[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_transform_io[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_impl.active_coroutine = wuffs_base__status__is_suspension(&status) ? 1 : 0; goto exit; exit: if (wuffs_base__status__is_error(&status)) { self->private_impl.magic = WUFFS_BASE__DISABLED; } return status; } // -------- func zlib.decoder.do_transform_io static wuffs_base__status wuffs_zlib__decoder__do_transform_io( wuffs_zlib__decoder* self, wuffs_base__io_buffer* a_dst, wuffs_base__io_buffer* a_src, wuffs_base__slice_u8 a_workbuf) { wuffs_base__status status = wuffs_base__make_status(NULL); uint16_t v_x = 0; uint32_t v_checksum_got = 0; wuffs_base__status v_status = wuffs_base__make_status(NULL); uint32_t v_checksum_want = 0; uint64_t v_mark = 0; uint8_t* iop_a_dst = NULL; uint8_t* io0_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io1_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; uint8_t* io2_a_dst WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_dst && a_dst->data.ptr) { io0_a_dst = a_dst->data.ptr; io1_a_dst = io0_a_dst + a_dst->meta.wi; iop_a_dst = io1_a_dst; io2_a_dst = io0_a_dst + a_dst->data.len; if (a_dst->meta.closed) { io2_a_dst = iop_a_dst; } } const uint8_t* iop_a_src = NULL; const uint8_t* io0_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io1_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; const uint8_t* io2_a_src WUFFS_BASE__POTENTIALLY_UNUSED = NULL; if (a_src && a_src->data.ptr) { io0_a_src = a_src->data.ptr; io1_a_src = io0_a_src + a_src->meta.ri; iop_a_src = io1_a_src; io2_a_src = io0_a_src + a_src->meta.wi; } uint32_t coro_susp_point = self->private_impl.p_do_transform_io[0]; if (coro_susp_point) { v_checksum_got = self->private_data.s_do_transform_io[0].v_checksum_got; } switch (coro_susp_point) { WUFFS_BASE__COROUTINE_SUSPENSION_POINT_0; if (self->private_impl.f_bad_call_sequence) { status = wuffs_base__make_status(wuffs_base__error__bad_call_sequence); goto exit; } else if (self->private_impl.f_quirks[0]) { } else if ( ! self->private_impl.f_want_dictionary) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(1); uint16_t t_0; if (WUFFS_BASE__LIKELY(io2_a_src - iop_a_src >= 2)) { t_0 = wuffs_base__peek_u16be__no_bounds_check(iop_a_src); iop_a_src += 2; } else { self->private_data.s_do_transform_io[0].scratch = 0; WUFFS_BASE__COROUTINE_SUSPENSION_POINT(2); while (true) { if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint64_t* scratch = &self->private_data.s_do_transform_io[0].scratch; uint32_t num_bits_0 = ((uint32_t)(*scratch & 0xFF)); *scratch >>= 8; *scratch <<= 8; *scratch |= ((uint64_t)(*iop_a_src++)) << (56 - num_bits_0); if (num_bits_0 == 8) { t_0 = ((uint16_t)(*scratch >> 48)); break; } num_bits_0 += 8; *scratch |= ((uint64_t)(num_bits_0)); } } v_x = t_0; } if (((v_x >> 8) & 15) != 8) { status = wuffs_base__make_status(wuffs_zlib__error__bad_compression_method); goto exit; } if ((v_x >> 12) > 7) { status = wuffs_base__make_status(wuffs_zlib__error__bad_compression_window_size); goto exit; } if ((v_x % 31) != 0) { status = wuffs_base__make_status(wuffs_zlib__error__bad_parity_check); goto exit; } self->private_impl.f_want_dictionary = ((v_x & 32) != 0); if (self->private_impl.f_want_dictionary) { self->private_impl.f_dict_id_got = 1; { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(3); uint32_t t_1; if (WUFFS_BASE__LIKELY(io2_a_src - iop_a_src >= 4)) { t_1 = wuffs_base__peek_u32be__no_bounds_check(iop_a_src); iop_a_src += 4; } else { self->private_data.s_do_transform_io[0].scratch = 0; WUFFS_BASE__COROUTINE_SUSPENSION_POINT(4); while (true) { if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint64_t* scratch = &self->private_data.s_do_transform_io[0].scratch; uint32_t num_bits_1 = ((uint32_t)(*scratch & 0xFF)); *scratch >>= 8; *scratch <<= 8; *scratch |= ((uint64_t)(*iop_a_src++)) << (56 - num_bits_1); if (num_bits_1 == 24) { t_1 = ((uint32_t)(*scratch >> 32)); break; } num_bits_1 += 8; *scratch |= ((uint64_t)(num_bits_1)); } } self->private_impl.f_dict_id_want = t_1; } status = wuffs_base__make_status(wuffs_zlib__note__dictionary_required); goto ok; } else if (self->private_impl.f_got_dictionary) { status = wuffs_base__make_status(wuffs_zlib__error__incorrect_dictionary); goto exit; } } else if (self->private_impl.f_dict_id_got != self->private_impl.f_dict_id_want) { if (self->private_impl.f_got_dictionary) { status = wuffs_base__make_status(wuffs_zlib__error__incorrect_dictionary); goto exit; } status = wuffs_base__make_status(wuffs_zlib__note__dictionary_required); goto ok; } self->private_impl.f_header_complete = true; while (true) { v_mark = ((uint64_t)(iop_a_dst - io0_a_dst)); { if (a_dst) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } wuffs_base__status t_2 = wuffs_deflate__decoder__transform_io(&self->private_data.f_flate, a_dst, a_src, a_workbuf); v_status = t_2; if (a_dst) { iop_a_dst = a_dst->data.ptr + a_dst->meta.wi; } if (a_src) { iop_a_src = a_src->data.ptr + a_src->meta.ri; } } if ( ! self->private_impl.f_ignore_checksum && ! self->private_impl.f_quirks[0]) { v_checksum_got = wuffs_adler32__hasher__update_u32(&self->private_data.f_checksum, wuffs_base__io__since(v_mark, ((uint64_t)(iop_a_dst - io0_a_dst)), io0_a_dst)); } if (wuffs_base__status__is_ok(&v_status)) { goto label__0__break; } status = v_status; WUFFS_BASE__COROUTINE_SUSPENSION_POINT_MAYBE_SUSPEND(5); } label__0__break:; if ( ! self->private_impl.f_quirks[0]) { { WUFFS_BASE__COROUTINE_SUSPENSION_POINT(6); uint32_t t_3; if (WUFFS_BASE__LIKELY(io2_a_src - iop_a_src >= 4)) { t_3 = wuffs_base__peek_u32be__no_bounds_check(iop_a_src); iop_a_src += 4; } else { self->private_data.s_do_transform_io[0].scratch = 0; WUFFS_BASE__COROUTINE_SUSPENSION_POINT(7); while (true) { if (WUFFS_BASE__UNLIKELY(iop_a_src == io2_a_src)) { status = wuffs_base__make_status(wuffs_base__suspension__short_read); goto suspend; } uint64_t* scratch = &self->private_data.s_do_transform_io[0].scratch; uint32_t num_bits_3 = ((uint32_t)(*scratch & 0xFF)); *scratch >>= 8; *scratch <<= 8; *scratch |= ((uint64_t)(*iop_a_src++)) << (56 - num_bits_3); if (num_bits_3 == 24) { t_3 = ((uint32_t)(*scratch >> 32)); break; } num_bits_3 += 8; *scratch |= ((uint64_t)(num_bits_3)); } } v_checksum_want = t_3; } if ( ! self->private_impl.f_ignore_checksum && (v_checksum_got != v_checksum_want)) { status = wuffs_base__make_status(wuffs_zlib__error__bad_checksum); goto exit; } } ok: self->private_impl.p_do_transform_io[0] = 0; goto exit; } goto suspend; suspend: self->private_impl.p_do_transform_io[0] = wuffs_base__status__is_suspension(&status) ? coro_susp_point : 0; self->private_data.s_do_transform_io[0].v_checksum_got = v_checksum_got; goto exit; exit: if (a_dst && a_dst->data.ptr) { a_dst->meta.wi = ((size_t)(iop_a_dst - a_dst->data.ptr)); } if (a_src && a_src->data.ptr) { a_src->meta.ri = ((size_t)(iop_a_src - a_src->data.ptr)); } return status; } #endif // !defined(WUFFS_CONFIG__MODULES) || defined(WUFFS_CONFIG__MODULE__ZLIB) #endif // WUFFS_IMPLEMENTATION #if defined(__GNUC__) #pragma GCC diagnostic pop #elif defined(__clang__) #pragma clang diagnostic pop #endif #endif // WUFFS_INCLUDE_GUARD