
The LATEX3 Sources
The LATEX Project∗

Released 2024-12-09

Abstract

This is the typset sources for the expl3 programming environment; see the matching
interface3 PDF for the API reference manual. The expl3 modules set up a naming
scheme for LATEX commands, which allow the LATEX programmer to systematically
name functions and variables, and specify the argument types of functions.

The TEX and ε-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level LATEX3 programming
language.

The expl3 modules are designed to be loaded on top of LATEX 2ε. With an up-to-
date LATEX 2ε kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

∗E-mail: latex-team@latex-project.org

i

mailto:latex-team@latex-project.org

Contents

I Introduction 1

1 Introduction to expl3 and this document 2
1.1 Naming functions and variables . 2

1.1.1 Scratch variables . 5
1.1.2 Terminological inexactitude . 5

1.2 Documentation conventions . 5
1.3 Formal language conventions which apply generally 7
1.4 TEX concepts not supported by LATEX3 8

II Bootstrapping 9

2 The l3bootstrap module: Bootstrap code 10
2.1 Using the LATEX3 modules . 10

3 The l3names module: Namespace for primitives 12
3.1 Setting up the LATEX3 programming language 12

III Programming Flow 13

4 The l3basics module: Basic definitions 14
4.1 No operation functions . 14
4.2 Grouping material . 14
4.3 Control sequences and functions . 15

4.3.1 Defining functions . 15
4.3.2 Defining new functions using parameter text 16
4.3.3 Defining new functions using the signature 18
4.3.4 Copying control sequences . 20
4.3.5 Deleting control sequences . 21
4.3.6 Showing control sequences . 21
4.3.7 Converting to and from control sequences 22

4.4 Analysing control sequences . 23
4.5 Using or removing tokens and arguments 24

4.5.1 Selecting tokens from delimited arguments 27
4.6 Predicates and conditionals . 28

4.6.1 Tests on control sequences . 29
4.6.2 Primitive conditionals . 29

4.7 Starting a paragraph . 31
4.8 Debugging support . 31

ii

5 The l3expan module: Argument expansion 32
5.1 Defining new variants . 32
5.2 Methods for defining variants . 33
5.3 Introducing the variants . 35
5.4 Manipulating the first argument . 36
5.5 Manipulating two arguments . 38
5.6 Manipulating three arguments . 38
5.7 Unbraced expansion . 40
5.8 Preventing expansion . 41
5.9 Controlled expansion . 42
5.10 Internal functions . 44

6 The l3sort module: Sorting functions 45
6.1 Controlling sorting . 45

7 The l3tl-analysis module: Analysing token lists 47

8 The l3regex module: Regular expressions in TEX 48
8.1 Syntax of regular expressions . 49

8.1.1 Regular expression examples . 49
8.1.2 Characters in regular expressions 50
8.1.3 Characters classes . 50
8.1.4 Structure: alternatives, groups, repetitions 51
8.1.5 Matching exact tokens . 52
8.1.6 Miscellaneous . 54

8.2 Syntax of the replacement text . 54
8.3 Pre-compiling regular expressions . 56
8.4 Matching . 57
8.5 Submatch extraction . 58
8.6 Replacement . 59
8.7 Scratch regular expressions . 61
8.8 Bugs, misfeatures, future work, and other possibilities 61

9 The l3prg module: Control structures 64
9.1 Defining a set of conditional functions . 65
9.2 The boolean data type . 67

9.2.1 Constant and scratch booleans . 69
9.3 Boolean expressions . 69
9.4 Logical loops . 71
9.5 Producing multiple copies . 73
9.6 Detecting TEX’s mode . 73
9.7 Primitive conditionals . 74
9.8 Nestable recursions and mappings . 74

9.8.1 Simple mappings . 75
9.9 Internal programming functions . 75

iii

10 The l3sys module: System/runtime functions 76
10.1 The name of the job . 76
10.2 Date and time . 76
10.3 Engine . 77
10.4 Output format . 78
10.5 Platform . 79
10.6 Random numbers . 79
10.7 Access to the shell . 80
10.8 System queries . 81
10.9 Loading configuration data . 82

10.9.1 Final settings . 82

11 The l3msg module: Messages 83
11.1 Creating new messages . 83
11.2 Customizable information for message modules 84
11.3 Contextual information for messages . 85
11.4 Issuing messages . 86

11.4.1 Messages for showing material . 90
11.4.2 Expandable error messages . 90

11.5 Redirecting messages . 91

12 The l3file module: File and I/O operations 93
12.1 Input–output stream management . 93

12.1.1 Reading from files . 95
12.1.2 Reading from the terminal . 99
12.1.3 Writing to files . 99
12.1.4 Wrapping lines in output . 101
12.1.5 Constant input–output streams, and variables 102
12.1.6 Primitive conditionals . 102

12.2 File operations . 102
12.2.1 Basic file operations . 102
12.2.2 Information about files and file contents 103
12.2.3 Accessing file contents . 106

13 The l3luatex module: LuaTEX-specific functions 108
13.1 Breaking out to Lua . 108
13.2 Lua interfaces . 109

14 The l3legacy module: Interfaces to legacy concepts 111

IV Data types 112

iv

15 The l3tl module: Token lists 113
15.1 Creating and initialising token list variables 113
15.2 Adding data to token list variables . 114
15.3 Token list conditionals . 115

15.3.1 Testing the first token . 117
15.4 Working with token lists as a whole . 118

15.4.1 Using token lists . 118
15.4.2 Counting and reversing token lists 119
15.4.3 Viewing token lists . 120

15.5 Manipulating items in token lists . 121
15.5.1 Mapping over token lists . 121
15.5.2 Head and tail of token lists . 123
15.5.3 Items and ranges in token lists . 125
15.5.4 Sorting token lists . 127

15.6 Manipulating tokens in token lists . 127
15.6.1 Replacing tokens . 127
15.6.2 Reassigning category codes . 129

15.7 Constant token lists . 130
15.8 Scratch token lists . 130

16 The l3tl-build module: Piecewise tl constructions 132
16.1 Constructing ⟨tl var⟩ by accumulation 132

17 The l3str module: Strings 134
17.1 Creating and initialising string variables 135
17.2 Adding data to string variables . 136
17.3 String conditionals . 136
17.4 Mapping over strings . 138
17.5 Working with the content of strings . 140
17.6 Modifying string variables . 143
17.7 String manipulation . 144
17.8 Viewing strings . 145
17.9 Constant strings . 146
17.10 Scratch strings . 146

18 The l3str-convert module: String encoding conversions 147
18.1 Encoding and escaping schemes . 147
18.2 Conversion functions . 149
18.3 Conversion by expansion (for PDF contexts) 149
18.4 Possibilities, and things to do . 149

19 The l3quark module: Quarks and scan marks 151
19.1 Quarks . 151
19.2 Defining quarks . 152
19.3 Quark tests . 152
19.4 Recursion . 153

19.4.1 An example of recursion with quarks 154
19.5 Scan marks . 155

v

20 The l3seq module: Sequences and stacks 156
20.1 Creating and initialising sequences . 156
20.2 Appending data to sequences . 159
20.3 Recovering items from sequences . 159
20.4 Recovering values from sequences with branching 161
20.5 Modifying sequences . 162
20.6 Sequence conditionals . 163
20.7 Mapping over sequences . 163
20.8 Using the content of sequences directly 166
20.9 Sequences as stacks . 167
20.10 Sequences as sets . 168
20.11 Constant and scratch sequences . 169
20.12 Viewing sequences . 170

21 The l3int module: Integers 171
21.1 Integer expressions . 171
21.2 Creating and initialising integers . 173
21.3 Setting and incrementing integers . 174
21.4 Using integers . 175
21.5 Integer expression conditionals . 175
21.6 Integer expression loops . 177
21.7 Integer step functions . 179
21.8 Formatting integers . 180
21.9 Converting from other formats to integers 181
21.10 Random integers . 182
21.11 Viewing integers . 182
21.12 Constant integers . 183
21.13 Scratch integers . 183
21.14 Direct number expansion . 184
21.15 Primitive conditionals . 184

22 The l3flag module: Expandable flags 186
22.1 Setting up flags . 186
22.2 Expandable flag commands . 187

23 The l3clist module: Comma separated lists 189
23.1 Creating and initialising comma lists . 190
23.2 Adding data to comma lists . 191
23.3 Modifying comma lists . 192
23.4 Comma list conditionals . 193
23.5 Mapping over comma lists . 193
23.6 Using the content of comma lists directly 196
23.7 Comma lists as stacks . 197
23.8 Using a single item . 198
23.9 Viewing comma lists . 198
23.10 Constant and scratch comma lists . 199

vi

24 The l3token module: Token manipulation 200
24.1 Creating character tokens . 201
24.2 Manipulating and interrogating character tokens 202
24.3 Generic tokens . 205
24.4 Converting tokens . 206
24.5 Token conditionals . 206
24.6 Peeking ahead at the next token . 210
24.7 Description of all possible tokens . 215

25 The l3prop module: Property lists 218
25.1 Creating and initialising property lists 219
25.2 Adding and updating property list entries 221
25.3 Recovering values from property lists . 222
25.4 Modifying property lists . 223
25.5 Property list conditionals . 223
25.6 Recovering values from property lists with branching 224
25.7 Mapping over property lists . 225
25.8 Viewing property lists . 226
25.9 Scratch property lists . 227
25.10 Constants . 227

26 The l3skip module: Dimensions and skips 228
26.1 Creating and initialising dim variables . 228
26.2 Setting dim variables . 229
26.3 Utilities for dimension calculations . 229
26.4 Dimension expression conditionals . 230
26.5 Dimension expression loops . 232
26.6 Dimension step functions . 233
26.7 Using dim expressions and variables . 234
26.8 Viewing dim variables . 236
26.9 Constant dimensions . 237
26.10 Scratch dimensions . 237
26.11 Creating and initialising skip variables 237
26.12 Setting skip variables . 238
26.13 Skip expression conditionals . 239
26.14 Using skip expressions and variables . 239
26.15 Viewing skip variables . 239
26.16 Constant skips . 240
26.17 Scratch skips . 240
26.18 Inserting skips into the output . 240
26.19 Creating and initialising muskip variables 241
26.20 Setting muskip variables . 241
26.21 Using muskip expressions and variables 242
26.22 Viewing muskip variables . 242
26.23 Constant muskips . 243
26.24 Scratch muskips . 243
26.25 Primitive conditional . 243

vii

27 The l3keys module: Key–value interfaces 244
27.1 Creating keys . 245
27.2 Sub-dividing keys . 250
27.3 Choice and multiple choice keys . 251
27.4 Key usage scope . 253
27.5 Setting keys . 253
27.6 Handling of unknown keys . 254
27.7 Selective key setting . 254
27.8 Precompiling keys . 256
27.9 Utility functions for keys . 257
27.10 Low-level interface for parsing key–val lists 257

28 The l3intarray module: Fast global integer arrays 260
28.1 Creating and initialising integer array variables 260
28.2 Adding data to integer arrays . 261
28.3 Counting entries in integer arrays . 261
28.4 Using a single entry . 261
28.5 Integer array conditional . 261
28.6 Viewing integer arrays . 261
28.7 Implementation notes . 262

29 The l3fp module: Floating points 263
29.1 Creating and initialising floating point variables 265
29.2 Setting floating point variables . 265
29.3 Using floating points . 266
29.4 Floating point conditionals . 267
29.5 Floating point expression loops . 269
29.6 Symbolic expressions . 271
29.7 User-defined functions . 273
29.8 Some useful constants, and scratch variables 274
29.9 Scratch variables . 274
29.10 Floating point exceptions . 275
29.11 Viewing floating points . 276
29.12 Floating point expressions . 276

29.12.1 Input of floating point numbers . 276
29.12.2 Precedence of operators . 277
29.12.3 Operations . 278

29.13 Disclaimer and roadmap . 285

30 The l3fparray module: Fast global floating point arrays 288
30.1 Creating and initialising floating point array variables 288
30.2 Adding data to floating point arrays . 288
30.3 Counting entries in floating point arrays 289
30.4 Using a single entry . 289
30.5 Floating point array conditional . 289

31 The l3bitset module: Bitsets 290
31.1 Creating bitsets . 291
31.2 Setting and unsetting bits . 292
31.3 Using bitsets . 292

viii

32 The l3cctab module: Category code tables 294
32.1 Creating and initialising category code tables 294
32.2 Using category code tables . 295
32.3 Category code table conditionals . 295
32.4 Constant and scratch category code tables 295

V Text manipulation 297

33 The l3unicode module: Unicode support functions 298

34 The l3text module: Text processing 301
34.1 Expanding text . 301
34.2 Case changing . 302
34.3 Removing formatting from text . 304
34.4 Control variables . 304
34.5 Mapping to graphemes . 305

VI Typesetting 306

35 The l3box module: Boxes 307
35.1 Creating and initialising boxes . 307
35.2 Using boxes . 308
35.3 Measuring and setting box dimensions 309
35.4 Box conditionals . 310
35.5 The last box inserted . 310
35.6 Constant boxes . 310
35.7 Scratch boxes . 310
35.8 Viewing box contents . 311
35.9 Boxes and color . 311
35.10 Horizontal mode boxes . 311
35.11 Vertical mode boxes . 312
35.12 Using boxes efficiently . 314
35.13 Affine transformations . 315
35.14 Viewing part of a box . 318
35.15 Primitive box conditionals . 319

36 The l3coffins module: Coffin code layer 320
36.1 Creating and initialising coffins . 320
36.2 Setting coffin content and poles . 321
36.3 Coffin affine transformations . 322
36.4 Joining and using coffins . 323
36.5 Measuring coffins . 323
36.6 Coffin diagnostics . 324
36.7 Constants and variables . 325

ix

37 The l3color module: Color support 326
37.1 Color in boxes . 326
37.2 Color models . 326
37.3 Color expressions . 328
37.4 Named colors . 329
37.5 Selecting colors . 329
37.6 Colors for fills and strokes . 330

37.6.1 Coloring math mode material . 330
37.7 Multiple color models . 330
37.8 Exporting color specifications . 331
37.9 Creating new color models . 332

37.9.1 Color profiles . 333

38 The l3pdf module: Core PDF support 334
38.1 Objects . 334

38.1.1 Named objects . 334
38.1.2 Indexed objects . 335
38.1.3 General functions . 335

38.2 Version . 336
38.3 Page (media) size . 336
38.4 Compression . 336
38.5 Destinations . 337

VII Implementation 338

39 l3bootstrap implementation 339
39.1 The \pdfstrcmp primitive in X ETEX . 339
39.2 Loading support Lua code . 339
39.3 Engine requirements . 340
39.4 The LATEX3 code environment . 341

40 l3names implementation 343

41 l3kernel-functions: kernel-reserved functions 369
41.1 Internal l3debug kernel functions . 369
41.2 Internal kernel functions . 370
41.3 Kernel backend functions . 377

42 l3basics implementation 379
42.1 Renaming some TEX primitives (again) 379
42.2 Defining some constants . 381
42.3 Defining functions . 381
42.4 Selecting tokens . 382
42.5 Gobbling tokens from input . 385
42.6 Debugging and patching later definitions 385
42.7 Conditional processing and definitions 386
42.8 Dissecting a control sequence . 392
42.9 Exist or free . 394
42.10 Preliminaries for new functions . 397

x

42.11 Defining new functions . 398
42.12 Copying definitions . 400
42.13 Undefining functions . 401
42.14 Generating parameter text from argument count 401
42.15 Defining functions from a given number of arguments 402
42.16 Using the signature to define functions 403
42.17 Checking control sequence equality . 406
42.18 Diagnostic functions . 406
42.19 Decomposing a macro definition . 408
42.20 Doing nothing functions . 409
42.21 Breaking out of mapping functions . 409
42.22 Starting a paragraph . 409

43 l3expan implementation 411
43.1 General expansion . 411
43.2 Hand-tuned definitions . 415
43.3 Last-unbraced versions . 418
43.4 Preventing expansion . 420
43.5 Controlled expansion . 420
43.6 Defining function variants . 421
43.7 Definitions with the automated technique 431
43.8 Held-over variant generation . 432

44 l3sort implementation 434
44.1 Variables . 434
44.2 Finding available \toks registers . 435
44.3 Protected user commands . 437
44.4 Merge sort . 439
44.5 Expandable sorting . 442
44.6 Messages . 447

45 l3tl-analysis implementation 450
45.1 Internal functions . 450
45.2 Internal format . 450
45.3 Variables and helper functions . 451
45.4 Plan of attack . 453
45.5 Disabling active characters . 454
45.6 First pass . 455
45.7 Second pass . 460
45.8 Mapping through the analysis . 463
45.9 Showing the results . 464
45.10 Peeking ahead . 467
45.11 Messages . 474

xi

46 l3regex implementation 475
46.1 Plan of attack . 475
46.2 Helpers . 476

46.2.1 Constants and variables . 479
46.2.2 Testing characters . 479
46.2.3 Internal auxiliaries . 480
46.2.4 Character property tests . 483
46.2.5 Simple character escape . 485

46.3 Compiling . 491
46.3.1 Variables used when compiling . 492
46.3.2 Generic helpers used when compiling 493
46.3.3 Mode . 494
46.3.4 Framework . 496
46.3.5 Quantifiers . 499
46.3.6 Raw characters . 502
46.3.7 Character properties . 504
46.3.8 Anchoring and simple assertions 505
46.3.9 Character classes . 505
46.3.10 Groups and alternations . 509
46.3.11 Catcodes and csnames . 511
46.3.12 Raw token lists with \u . 515
46.3.13 Other . 519
46.3.14 Showing regexes . 519

46.4 Building . 526
46.4.1 Variables used while building . 526
46.4.2 Framework . 527
46.4.3 Helpers for building an nfa . 530
46.4.4 Building classes . 531
46.4.5 Building groups . 533
46.4.6 Others . 537

46.5 Matching . 539
46.5.1 Variables used when matching . 539
46.5.2 Matching: framework . 542
46.5.3 Using states of the nfa . 545
46.5.4 Actions when matching . 546

46.6 Replacement . 548
46.6.1 Variables and helpers used in replacement 548
46.6.2 Query and brace balance . 550
46.6.3 Framework . 551
46.6.4 Submatches . 554
46.6.5 Csnames in replacement . 556
46.6.6 Characters in replacement . 557
46.6.7 An error . 561

46.7 User functions . 561
46.7.1 Variables and helpers for user functions 565
46.7.2 Matching . 566
46.7.3 Extracting submatches . 567
46.7.4 Replacement . 572
46.7.5 Peeking ahead . 575

46.8 Messages . 581

xii

46.9 Code for tracing . 587

47 l3prg implementation 589
47.1 Primitive conditionals . 589
47.2 Defining a set of conditional functions . 589
47.3 The boolean data type . 589
47.4 Internal auxiliaries . 591
47.5 Boolean expressions . 593
47.6 Logical loops . 597
47.7 Producing multiple copies . 599
47.8 Detecting TEX’s mode . 600
47.9 Internal programming functions . 601

48 l3sys implementation 603
48.1 Kernel code . 603

48.1.1 Detecting the engine . 603
48.1.2 Platform . 606
48.1.3 Configurations . 607
48.1.4 Access to the shell . 609

48.2 Dynamic (every job) code . 611
48.2.1 The name of the job . 611
48.2.2 Time and date . 612
48.2.3 Random numbers . 613
48.2.4 Access to the shell . 614

48.3 System queries . 614
48.3.1 Held over from l3file . 616

48.4 Last-minute code . 616
48.4.1 Detecting the output . 617
48.4.2 Configurations . 617

49 l3msg implementation 619
49.1 Internal auxiliaries . 619
49.2 Creating messages . 619
49.3 Messages: support functions and text . 621
49.4 Showing messages: low level mechanism 622
49.5 Displaying messages . 624
49.6 Kernel-specific functions . 633
49.7 Internal messages . 634
49.8 Expandable errors . 641
49.9 Message formatting . 642

xiii

50 l3file implementation 643
50.1 Input operations . 643

50.1.1 Variables and constants . 643
50.1.2 Stream management . 644
50.1.3 Reading input . 647

50.2 Output operations . 650
50.2.1 Variables and constants . 650
50.2.2 Internal auxiliaries . 651

50.3 Stream management . 652
50.3.1 Deferred writing . 654
50.3.2 Immediate writing . 655
50.3.3 Special characters for writing . 656
50.3.4 Hard-wrapping lines to a character count 656

50.4 File operations . 665
50.4.1 Internal auxiliaries . 667

50.5 GetIdInfo . 683
50.6 Checking the version of kernel dependencies 684
50.7 Messages . 686
50.8 Functions delayed from earlier modules 686

51 l3luatex implementation 688
51.1 Breaking out to Lua . 688
51.2 Messages . 689
51.3 Lua functions for internal use . 689
51.4 Preserving iniTeX Lua data for runs . 695

52 l3legacy implementation 697

53 l3tl implementation 699
53.1 Functions . 699
53.2 Constant token lists . 701
53.3 Adding to token list variables . 701
53.4 Internal quarks and quark-query functions 704
53.5 Reassigning token list category codes . 705
53.6 Modifying token list variables . 708
53.7 Token list conditionals . 713
53.8 Mapping over token lists . 717
53.9 Using token lists . 720
53.10 Working with the contents of token lists 720
53.11 The first token from a token list . 723
53.12 Token by token changes . 728
53.13 Using a single item . 730
53.14 Viewing token lists . 733
53.15 Internal scan marks . 735
53.16 Scratch token lists . 735

54 l3tl-build implementation 736

xiv

55 l3str implementation 740
55.1 Internal auxiliaries . 740
55.2 Creating and setting string variables . 741
55.3 Modifying string variables . 742
55.4 String comparisons . 743
55.5 Mapping over strings . 747
55.6 Accessing specific characters in a string 749
55.7 Counting characters . 753
55.8 The first character in a string . 755
55.9 String manipulation . 756
55.10 Viewing strings . 759

56 l3str-convert implementation 760
56.1 Helpers . 760

56.1.1 Variables and constants . 760
56.2 String conditionals . 762
56.3 Conversions . 763

56.3.1 Producing one byte or character 763
56.3.2 Mapping functions for conversions 764
56.3.3 Error-reporting during conversion 765
56.3.4 Framework for conversions . 766
56.3.5 Byte unescape and escape . 770
56.3.6 Native strings . 771
56.3.7 clist . 772
56.3.8 8-bit encodings . 772

56.4 Messages . 775
56.5 Escaping definitions . 776

56.5.1 Unescape methods . 777
56.5.2 Escape methods . 781

56.6 Encoding definitions . 783
56.6.1 utf-8 support . 783
56.6.2 utf-16 support . 788
56.6.3 utf-32 support . 793

56.7 PDF names and strings by expansion . 796
56.7.1 iso 8859 support . 797

57 l3quark implementation 814
57.1 Quarks . 814
57.2 Scan marks . 822

xv

58 l3seq implementation 824
58.1 Allocation and initialisation . 825
58.2 Appending data to either end . 829
58.3 Modifying sequences . 830
58.4 Sequence conditionals . 834
58.5 Recovering data from sequences . 836
58.6 Mapping over sequences . 840
58.7 Using sequences . 845
58.8 Sequence stacks . 845
58.9 Viewing sequences . 846
58.10 Scratch sequences . 847

59 l3int implementation 848
59.1 Integer expressions . 849
59.2 Creating and initialising integers . 851
59.3 Setting and incrementing integers . 853
59.4 Using integers . 854
59.5 Integer expression conditionals . 855
59.6 Integer expression loops . 859
59.7 Integer step functions . 860
59.8 Formatting integers . 861
59.9 Converting from other formats to integers 867
59.10 Viewing integer . 870
59.11 Random integers . 870
59.12 Constant integers . 871
59.13 Scratch integers . 871
59.14 Integers for earlier modules . 871

60 l3flag implementation 872
60.1 Protected flag commands . 872
60.2 Expandable flag commands . 873
60.3 Old n-type flag commands . 874

61 l3clist implementation 876
61.1 Removing spaces around items . 877
61.2 Allocation and initialisation . 878
61.3 Adding data to comma lists . 880
61.4 Comma lists as stacks . 881
61.5 Modifying comma lists . 883
61.6 Comma list conditionals . 886
61.7 Mapping over comma lists . 887
61.8 Using comma lists . 891
61.9 Using a single item . 893
61.10 Viewing comma lists . 895
61.11 Scratch comma lists . 896

xvi

62 l3token implementation 897
62.1 Internal auxiliaries . 897
62.2 Manipulating and interrogating character tokens 897
62.3 Creating character tokens . 900
62.4 Generic tokens . 903
62.5 Token conditionals . 905
62.6 Peeking ahead at the next token . 915

63 l3prop implementation 922
63.1 Internal auxiliaries . 923
63.2 Structure of a property list . 924
63.3 Allocation and initialisation . 926
63.4 Accessing data in property lists . 933
63.5 Removing data from property lists . 936
63.6 Adding data to property lists . 939
63.7 Property list conditionals . 941
63.8 Mapping over property lists . 943
63.9 Uses of mapping over property lists . 945
63.10 Viewing property lists . 946

64 l3skip implementation 950
64.1 Length primitives renamed . 950
64.2 Internal auxiliaries . 950
64.3 Creating and initialising dim variables . 950
64.4 Setting dim variables . 951
64.5 Utilities for dimension calculations . 952
64.6 Dimension expression conditionals . 953
64.7 Dimension expression loops . 955
64.8 Dimension step functions . 956
64.9 Using dim expressions and variables . 958
64.10 Conversion of dim to other units . 959
64.11 Viewing dim variables . 964
64.12 Constant dimensions . 964
64.13 Scratch dimensions . 964
64.14 Creating and initialising skip variables 964
64.15 Setting skip variables . 966
64.16 Skip expression conditionals . 966
64.17 Using skip expressions and variables . 967
64.18 Inserting skips into the output . 967
64.19 Viewing skip variables . 968
64.20 Constant skips . 968
64.21 Scratch skips . 968
64.22 Creating and initialising muskip variables 968
64.23 Setting muskip variables . 969
64.24 Using muskip expressions and variables 970
64.25 Viewing muskip variables . 970
64.26 Constant muskips . 971
64.27 Scratch muskips . 971

xvii

65 l3keys implementation 972
65.1 Low-level interface . 972
65.2 Constants and variables . 979

65.2.1 Internal auxiliaries . 981
65.3 The key defining mechanism . 982
65.4 Turning properties into actions . 984
65.5 Creating key properties . 992
65.6 Setting keys . 998
65.7 Utilities . 1007
65.8 Messages . 1009

66 l3intarray implementation 1011
66.1 Lua implementation . 1011

66.1.1 Allocating arrays . 1011
66.1.2 Array items . 1014
66.1.3 Working with contents of integer arrays 1016

66.2 Font dimension based implementation . 1017
66.2.1 Allocating arrays . 1018
66.2.2 Array items . 1019
66.2.3 Working with contents of integer arrays 1021

66.3 Common parts . 1023

67 l3fp implementation 1024

68 l3fp-aux implementation 1025
68.1 Access to primitives . 1025
68.2 Internal representation . 1025
68.3 Using arguments and semicolons . 1026
68.4 Constants, and structure of floating points 1027
68.5 Overflow, underflow, and exact zero . 1030
68.6 Expanding after a floating point number 1030
68.7 Other floating point types . 1031
68.8 Packing digits . 1034
68.9 Decimate (dividing by a power of 10) . 1037
68.10 Functions for use within primitive conditional branches 1039
68.11 Integer floating points . 1040
68.12 Small integer floating points . 1041
68.13 Fast string comparison . 1042
68.14 Name of a function from its l3fp-parse name 1042
68.15 Messages . 1042

69 l3fp-traps implementation 1043
69.1 Flags . 1043
69.2 Traps . 1043
69.3 Errors . 1047
69.4 Messages . 1047

70 l3fp-round implementation 1049
70.1 Rounding tools . 1049
70.2 The round function . 1053

xviii

71 l3fp-parse implementation 1058
71.1 Work plan . 1058

71.1.1 Storing results . 1059
71.1.2 Precedence and infix operators . 1060
71.1.3 Prefix operators, parentheses, and functions 1063
71.1.4 Numbers and reading tokens one by one 1064

71.2 Main auxiliary functions . 1066
71.3 Helpers . 1067
71.4 Parsing one number . 1068

71.4.1 Numbers: trimming leading zeros 1074
71.4.2 Number: small significand . 1075
71.4.3 Number: large significand . 1077
71.4.4 Number: beyond 16 digits, rounding 1079
71.4.5 Number: finding the exponent . 1082

71.5 Constants, functions and prefix operators 1085
71.5.1 Prefix operators . 1085
71.5.2 Constants . 1088
71.5.3 Functions . 1089

71.6 Main functions . 1090
71.7 Infix operators . 1092

71.7.1 Closing parentheses and commas 1093
71.7.2 Usual infix operators . 1095
71.7.3 Juxtaposition . 1096
71.7.4 Multi-character cases . 1096
71.7.5 Ternary operator . 1097
71.7.6 Comparisons . 1097

71.8 Tools for functions . 1099
71.9 Messages . 1102

72 l3fp-assign implementation 1103
72.1 Assigning values . 1103
72.2 Updating values . 1104
72.3 Showing values . 1104
72.4 Some useful constants and scratch variables 1106

73 l3fp-logic implementation 1107
73.1 Syntax of internal functions . 1107
73.2 Tests . 1107
73.3 Comparison . 1108
73.4 Floating point expression loops . 1111
73.5 Extrema . 1114
73.6 Boolean operations . 1116
73.7 Ternary operator . 1117

xix

74 l3fp-basics implementation 1119
74.1 Addition and subtraction . 1119

74.1.1 Sign, exponent, and special numbers 1120
74.1.2 Absolute addition . 1122
74.1.3 Absolute subtraction . 1124

74.2 Multiplication . 1128
74.2.1 Signs, and special numbers . 1128
74.2.2 Absolute multiplication . 1130

74.3 Division . 1132
74.3.1 Signs, and special numbers . 1132
74.3.2 Work plan . 1133
74.3.3 Implementing the significand division 1136

74.4 Square root . 1141
74.5 About the sign and exponent . 1148
74.6 Operations on tuples . 1149

75 l3fp-extended implementation 1151
75.1 Description of fixed point numbers . 1151
75.2 Helpers for numbers with extended precision 1152
75.3 Multiplying a fixed point number by a short one 1153
75.4 Dividing a fixed point number by a small integer 1153
75.5 Adding and subtracting fixed points . 1154
75.6 Multiplying fixed points . 1155
75.7 Combining product and sum of fixed points 1156
75.8 Extended-precision floating point numbers 1159
75.9 Dividing extended-precision numbers . 1161
75.10 Inverse square root of extended precision numbers 1165
75.11 Converting from fixed point to floating point 1167

76 l3fp-expo implementation 1169
76.1 Logarithm . 1169

76.1.1 Work plan . 1169
76.1.2 Some constants . 1170
76.1.3 Sign, exponent, and special numbers 1170
76.1.4 Absolute ln . 1170

76.2 Exponential . 1178
76.2.1 Sign, exponent, and special numbers 1178

76.3 Power . 1182
76.4 Factorial . 1188

xx

77 l3fp-trig implementation 1191
77.1 Direct trigonometric functions . 1192

77.1.1 Filtering special cases . 1192
77.1.2 Distinguishing small and large arguments 1195
77.1.3 Small arguments . 1196
77.1.4 Argument reduction in degrees . 1196
77.1.5 Argument reduction in radians . 1197
77.1.6 Computing the power series . 1205

77.2 Inverse trigonometric functions . 1207
77.2.1 Arctangent and arccotangent . 1208
77.2.2 Arcsine and arccosine . 1213
77.2.3 Arccosecant and arcsecant . 1215

78 l3fp-convert implementation 1217
78.1 Dealing with tuples . 1217
78.2 Trimming trailing zeros . 1217
78.3 Scientific notation . 1218
78.4 Decimal representation . 1219
78.5 Token list representation . 1221
78.6 Formatting . 1222
78.7 Convert to dimension or integer . 1222
78.8 Convert from a dimension . 1223
78.9 Use and eval . 1224
78.10 Convert an array of floating points to a comma list 1225

79 l3fp-random implementation 1227
79.1 Engine support . 1227
79.2 Random floating point . 1230
79.3 Random integer . 1231

80 l3fp-types implementation 1236
80.1 Support for types . 1236
80.2 Dispatch according to the type . 1236

81 l3fp-symbolic implementation 1239
81.1 Misc . 1239
81.2 Building blocks for expressions . 1239
81.3 Expanding after a symbolic expression 1240
81.4 Applying infix operators to expressions 1241
81.5 Applying prefix functions to expressions 1242
81.6 Conversions . 1243
81.7 Identifiers . 1244
81.8 Declaring variables and assigning values 1245
81.9 Messages . 1248
81.10 Road-map . 1248

82 l3fp-functions implementation 1249
82.1 Declaring functions . 1249
82.2 Defining functions by their expression . 1250

xxi

83 l3fparray implementation 1253
83.1 Allocating arrays . 1253
83.2 Array items . 1254

84 l3bitset implementation 1258
84.1 Messages . 1263

85 l3cctab implementation 1264
85.1 Variables . 1264
85.2 Allocating category code tables . 1265
85.3 Saving category code tables . 1266
85.4 Using category code tables . 1267
85.5 Category code table conditionals . 1272
85.6 Constant category code tables . 1274
85.7 Messages . 1275

86 l3unicode implementation 1277
86.1 User functions . 1277
86.2 Data loader . 1281

87 l3text implementation 1292
87.1 Internal auxiliaries . 1292
87.2 Utilities . 1293
87.3 Codepoint utilities . 1296
87.4 Configuration variables . 1298
87.5 Expansion to formatted text . 1300

88 l3text-case implementation 1309
88.1 Case changing . 1309

89 l3text-map implementation 1344
89.1 Mapping to text . 1344

90 l3text-purify implementation 1352
90.1 Purifying text . 1352
90.2 Accent and letter-like data for purifying text 1358

91 l3box implementation 1365
91.1 Support code . 1365
91.2 Creating and initialising boxes . 1365
91.3 Measuring and setting box dimensions 1366
91.4 Using boxes . 1367
91.5 Box conditionals . 1368
91.6 The last box inserted . 1368
91.7 Constant boxes . 1368
91.8 Scratch boxes . 1369
91.9 Viewing box contents . 1369
91.10 Horizontal mode boxes . 1370
91.11 Vertical mode boxes . 1372
91.12 Affine transformations . 1375
91.13 Viewing part of a box . 1384

xxii

92 l3coffins implementation 1387
92.1 Coffins: data structures and general variables 1387
92.2 Basic coffin functions . 1388
92.3 Measuring coffins . 1394
92.4 Coffins: handle and pole management . 1394
92.5 Coffins: calculation of pole intersections 1398
92.6 Affine transformations . 1400
92.7 Aligning and typesetting of coffins . 1408
92.8 Coffin diagnostics . 1413
92.9 Messages . 1419

93 l3color implementation 1420
93.1 Basics . 1420
93.2 Predefined color names . 1421
93.3 Setup . 1422
93.4 Utility functions . 1422
93.5 Model conversion . 1423
93.6 Color expressions . 1424
93.7 Selecting colors (and color models) . 1433
93.8 Math color . 1435
93.9 Fill and stroke color . 1438
93.10 Defining named colors . 1438
93.11 Exporting colors . 1441
93.12 Additional color models . 1443
93.13 Applying profiles . 1458
93.14 Diagnostics . 1458
93.15 Messages . 1459

94 l3pdf implementation 1463
94.1 Compression . 1463
94.2 Objects . 1464
94.3 Version . 1468
94.4 Page size . 1469
94.5 Destinations . 1470
94.6 PDF Page size (media box) . 1470

95 l3deprecation implementation 1472
95.1 Patching definitions to deprecate . 1472
95.2 Deprecated l3basics functions . 1474
95.3 Deprecated l3file functions . 1474
95.4 Deprecated l3keys functions . 1474
95.5 Deprecated l3msg functions . 1475
95.6 Deprecated l3pdf functions . 1475
95.7 Deprecated l3prg functions . 1476
95.8 Deprecated l3str functions . 1476
95.9 Deprecated l3seq functions . 1477
95.10 Deprecated l3sys functions . 1477
95.11 Deprecated l3text functions . 1478
95.12 Deprecated l3tl functions . 1478
95.13 Deprecated l3token functions . 1479

xxiii

95.14 Deprecated l3prop functions . 1481

96 l3debug implementation 1482

Index 1506

xxiv

Part I

Introduction

1

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the LATEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables
LATEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

c This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

2

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for exhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a ⟨space token⟩, it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \l_mya_tl { A }
\tl_set:Nn \l_myb_tl { B }
\tl_set:Nf \l_mya_tl { \l_mya_tl \l_myb_tl }

will leave \l_mya_tl with the content A\l_myb_tl, as A cannot be expanded and
so terminates expansion before \l_myb_tl is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.

3

g Parameters whose value should only be set globally.

l Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module1 name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bitset a set of bits (a string made up of a series of 0 and 1 tokens that are accessed
by position).

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

skip “Rubber” lengths.

str String variables: contain character data.

tl Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.

box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box align-
ment operations.

flag Non-negative integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.

prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

seq “Sequence”: a data type used to implement lists (with access at both ends) and
stacks.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \l_tmpa_int, \l_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \l_int_tmpa_int would be very unreadable.

4

1.1.1 Scratch variables
Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \⟨scope⟩_tmpa_⟨type⟩/\⟨scope⟩_tmpb_⟨type⟩.
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

There are two more special types of constants:

q Quark constants.

s Scan mark constants.

Similarly, each quark or scan mark name starts with the module name, but doesn’t end
with a variable type, because the type is already marked by the prefix q or s. Some
general quarks and scan marks provided by LATEX3 don’t start with a module name, for
example \s_stop. See documentation of quarks and scan marks in Chapter VII for more
info.

1.1.2 Terminological inexactitude
A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.2 On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions
This document is typeset with the experimental l3doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

2TEXnically, functions with no arguments are \long while token list variables are not.

5

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

\ExplSyntaxOn
\ExplSyntaxOff

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N ⟨sequence⟩

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, ⟨sequence⟩ indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

\seq_new:N
\seq_new:c

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N ⟨cs⟩

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a ⟨cs⟩, shorthand for a ⟨control sequence⟩.

\cs_to_str:N ⋆

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN ⟨seq⟩ ⟨function⟩\seq_map_function:NN ✩

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

6

\sys_if_engine_xetex:TF {⟨true code⟩} {⟨false code⟩}

The underlining and italic of TF indicates that three functions are available:

• \sys_if_engine_xetex:T

• \sys_if_engine_xetex:F

• \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both ⟨true code⟩ and ⟨false
code⟩ will be shown. The two variant forms T and F take only ⟨true code⟩ and ⟨false
code⟩, respectively. Here, the star also shows that this function is expandable. With
some minor exceptions, all conditional functions in the expl3 modules should be defined
in this way.

\sys_if_engine_xetex:TF ⋆

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.\l_tmpa_tl

In some cases, the function is similar to one in LATEX 2ε or plain TEX. In these cases,
the text will include an extra “TEXhackers note” section:

\token_to_str:N ⟨token⟩

The normal description text.

TEXhackers note: Detail for the experienced TEX or LATEX 2ε programmer. In this case,
it would point out that this function is the TEX primitive \string.

\token_to_str:N ⋆

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for LATEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the ⟨true code⟩ or the
⟨false code⟩ will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

7

1.4 TEX concepts not supported by LATEX3
The TEX concept of an “\outer” macro is not supported at all by LATEX3. As such, the
functions provided here may break when used on top of LATEX 2ε if \outer tokens are
used in the arguments.

8

Part II

Bootstrapping

9

Chapter 2

The l3bootstrap module
Bootstrap code

2.1 Using the LATEX3 modules
The modules documented in interface3 (and this file) are designed to be used on top of
LATEX 2ε and are already pre-loaded since LATEX 2ε 2020-02-02. To support older formats,
the \usepackage{expl3} or \RequirePackage{expl3} instructions are still available to
load them all as one.

As the modules use a coding syntax different from standard LATEX 2ε it provides a
few functions for setting it up.

\ExplSyntaxOn ⟨code⟩ \ExplSyntaxOff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntaxOff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\ExplSyntaxOn
\ExplSyntaxOff

Updated: 2011-08-13

\ProvidesExplPackage {⟨package⟩} {⟨date⟩} {⟨version⟩} {⟨description⟩}

These functions act broadly in the same way as the corresponding LATEX 2ε kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntaxOff will be called to reverse this. (This is the same concept as
LATEX 2ε provides in turning on \makeatletter within package and class code.) The
⟨date⟩ should be given in the format ⟨year⟩/⟨month⟩/⟨day⟩ or in the ISO date format
⟨year⟩-⟨month⟩-⟨day⟩. If the ⟨version⟩ is given then a leading v is optional: if given as
a “pure” version string, a v will be prepended.

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2023-08-03

10

\GetIdInfo $Id: ⟨SVN info field⟩ $ {⟨description⟩}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

\GetIdInfo

Updated: 2012-06-04

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual LATEX 2ε category codes and the
LATEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

11

Chapter 3

The l3names module
Namespace for primitives

3.1 Setting up the LATEX3 programming language
This module is at the core of the LATEX3 programming language. It performs the following
tasks:

• defines new names for all TEX primitives;

• emulate required primitives not provided by default in LuaTEX;

• switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within LATEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TEXbook, TEX by Topic and the manuals
for pdfTEX, X ETEX, LuaTEX, pTEX and upTEX should be consulted for details of the
primitives. These are named \tex_⟨name⟩:D, typically based on the primitive’s ⟨name⟩
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

12

Part III

Programming Flow

13

Chapter 4

The l3basics module
Basic definitions

As the name suggests, this module holds some basic definitions which are needed by most
or all other modules in this set.

Here we describe those functions that are used all over the place. By that, we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\prg_do_nothing: ⋆

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

\scan_stop:

4.2 Grouping material

\group_begin:
\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

TEXhackers note: These are the TEX primitives \begingroup and \endgroup.

\group_begin:
\group_end:

14

\group_insert_after:N ⟨token⟩

Adds ⟨token⟩ to the list of ⟨tokens⟩ to be inserted when the current group level ends.
The list of ⟨tokens⟩ to be inserted is empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one ⟨token⟩
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group), namely a } if standard category codes apply.

TEXhackers note: This is the TEX primitive \aftergroup.

\group_insert_after:N

\group_show_list:
\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the ε-TEX primitive \showgroups.

\group_show_list:
\group_log_list:

New: 2021-05-11

4.3 Control sequences and functions
As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, ⟨code⟩ is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an e-type or x-type
expansion. In contrast, “protected” functions are not expanded within e and x expan-
sions.

4.3.1 Defining functions
Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new...
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, . . .).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

15

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an e-type or x-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new:Npn
\cs_new:cpn
\cs_new:Npe
\cs_new:cpe
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar:Npe
\cs_new_nopar:cpe
\cs_new_nopar:Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npe
\cs_new_protected:cpe
\cs_new_protected:Npx
\cs_new_protected:cpx

16

\cs_new_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npe
\cs_new_protected_nopar:cpe
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_set:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set:Npn
\cs_set:cpn
\cs_set:Npe
\cs_set:cpe
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npe
\cs_set_nopar:cpe
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.
The ⟨function⟩ will not expand within an e-type or x-type argument.

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npe
\cs_set_protected:cpe
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npe
\cs_set_protected_nopar:cpe
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.
The ⟨function⟩ will not expand within an e-type or x-type argument.

17

\cs_gset:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX group
level: the assignment is global.

\cs_gset:Npn
\cs_gset:cpn
\cs_gset:Npe
\cs_gset:cpe
\cs_gset:Npx
\cs_gset:cpx

\cs_gset_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function.
When the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens.
The assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX
group level: the assignment is global.

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npe
\cs_gset_nopar:cpe
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX group
level: the assignment is global. The ⟨function⟩ will not expand within an e-type or
x-type argument.

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npe
\cs_gset_protected:cpe
\cs_gset_protected:Npx
\cs_gset_protected:cpx

\cs_gset_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function.
When the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens.
The assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX
group level: the assignment is global. The ⟨function⟩ will not expand within an e-type
or x-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new:Nn
\cs_new:(cn|Ne|ce)

\cs_new_nopar:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new_nopar:Nn
\cs_new_nopar:(cn|Ne|ce)

18

\cs_new_protected:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is global
and an error results if the ⟨function⟩ is already defined.

\cs_new_protected:Nn
\cs_new_protected:(cn|Ne|ce)

\cs_new_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:(cn|Ne|ce)

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_set:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set:Nn
\cs_set:(cn|Ne|ce)

\cs_set_nopar:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Ne|ce)

\cs_set_protected:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_protected:Nn
\cs_set_protected:(cn|Ne|ce)

\cs_set_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is restricted to the current TEX group level.

19

\cs_gset:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is global.

\cs_gset:Nn
\cs_gset:(cn|Ne|ce)

\cs_gset_nopar:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is global.

\cs_gset_nopar:Nn
\cs_gset_nopar:(cn|Ne|ce)

\cs_gset_protected:Nn ⟨function⟩ {⟨code⟩}\cs_gset_protected:Nn
\cs_gset_protected:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is global.

\cs_gset_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is global.

\cs_generate_from_arg_count:NNnn ⟨function⟩ ⟨creator⟩ {⟨number⟩}
{⟨code⟩}

\cs_generate_from_arg_count:NNnn
\cs_generate_from_arg_count:(NNno|cNnn|Ncnn)

Updated: 2012-01-14

Uses the ⟨creator⟩ function (which should have signature Npn, for example \cs_-
new:Npn) to define a ⟨function⟩ which takes ⟨number⟩ arguments and has ⟨code⟩ as
replacement text. The ⟨number⟩ of arguments is an integer expression, evaluated as
detailed for \int_eval:n.

4.3.4 Copying control sequences
Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

20

\cs_new_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_new_eq:NN ⟨cs1⟩ ⟨token⟩

Globally creates ⟨control sequence1⟩ and sets it to have the same meaning as ⟨control
sequence2⟩ or ⟨token⟩. The second control sequence may subsequently be altered with-
out affecting the copy.

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_set_eq:NN ⟨cs1⟩ ⟨token⟩

Sets ⟨control sequence1⟩ to have the same meaning as ⟨control sequence2⟩ (or
⟨token⟩). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the ⟨control sequence1⟩ is restricted to the
current TEX group level.

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_gset_eq:NN ⟨cs1⟩ ⟨token⟩

Globally sets ⟨control sequence1⟩ to have the same meaning as ⟨control sequence2⟩
(or ⟨token⟩). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the ⟨control sequence1⟩ is not restricted to
the current TEX group level: the assignment is global.

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

4.3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N ⟨control sequence⟩

Sets ⟨control sequence⟩ to be globally undefined.
\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

4.3.6 Showing control sequences

\cs_meaning:N ⟨control sequence⟩

This function expands to the meaning of the ⟨control sequence⟩ control sequence. For
a macro, this includes the ⟨replacement text⟩.

TEXhackers note: This is the TEX primitive \meaning. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_meaning:N ⋆
\cs_meaning:c ⋆

Updated: 2011-12-22

\cs_show:N ⟨control sequence⟩

Displays the definition of the ⟨control sequence⟩ on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_show:N
\cs_show:c

Updated: 2017-02-14

21

\cs_log:N ⟨control sequence⟩

Writes the definition of the ⟨control sequence⟩ in the log file. See also \cs_show:N
which displays the result in the terminal.

\cs_log:N
\cs_log:c

New: 2014-08-22

Updated: 2017-02-14

4.3.7 Converting to and from control sequences

\use:c {⟨control sequence name⟩}

Expands the ⟨control sequence name⟩ until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-
type arguments the ⟨control sequence name⟩ must, when fully expanded, consist of
character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12
(other).

\use:c ⋆

As an example of the \use:c function, both

\use:c { a b c }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\use:c { \tl_use:N \l_my_tl }

would be equivalent to

\abc

after two expansions of \use:c.

\cs_if_exist_use:N ⟨control sequence⟩
\cs_if_exist_use:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it
is inserts the ⟨control sequence⟩ into the input stream followed by the ⟨true code⟩.
Otherwise the ⟨false code⟩ is used.

\cs_if_exist_use:N ⋆
\cs_if_exist_use:c ⋆
\cs_if_exist_use:NTF ⋆
\cs_if_exist_use:cTF ⋆

New: 2012-11-10

\cs:w ⟨control sequence name⟩ \cs_end:

Converts the given ⟨control sequence name⟩ into a single control sequence token. This
process requires one expansion. The content for ⟨control sequence name⟩ may be
literal material or from other expandable functions. The ⟨control sequence name⟩
must, when fully expanded, consist of character tokens which are not active: typically of
category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

\cs:w ⋆
\cs_end: ⋆

As an example of the \cs:w and \cs_end: functions, both

\cs:w a b c \cs_end:

and

22

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\cs:w \tl_use:N \l_my_tl \cs_end:

would be equivalent to

\abc

after one expansion of \cs:w.

\cs_to_str:N ⟨control sequence⟩

Converts the given ⟨control sequence⟩ into a series of characters with category code
12 (other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an e-type or x-type expansion, or two o-type expansions
are required to convert the ⟨control sequence⟩ to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

\cs_to_str:N ⋆

4.4 Analysing control sequences

\cs_split_function:N ⟨function⟩

Splits the ⟨function⟩ into the ⟨name⟩ (i.e. the part before the colon) and the ⟨signature⟩
(i.e. after the colon). This information is then placed in the input stream in three
parts: the ⟨name⟩, the ⟨signature⟩ and a logic token indicating if a colon was found
(to differentiate variables from function names). The ⟨name⟩ does not include the escape
character, and both the ⟨name⟩ and ⟨signature⟩ are made up of tokens with category
code 12 (other).

\cs_split_function:N ⋆

New: 2018-04-06

The next three functions decompose TEX macros into their constituent parts: if the
⟨token⟩ passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_prefix_spec:N ⋆

New: 2019-02-27

23

\cs_parameter_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_parameter_spec:N ⋆

New: 2022-06-24

\cs_replacement_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1␣y#2 in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N ⋆
\cs_replacement_spec:c ⋆

New: 2019-02-27

4.5 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

24

\use:n {⟨group1⟩}
\use:nn {⟨group1⟩} {⟨group2⟩}
\use:nnn {⟨group1⟩} {⟨group2⟩} {⟨group3⟩}
\use:nnnn {⟨group1⟩} {⟨group2⟩} {⟨group3⟩} {⟨group4⟩}
As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }

results in the input stream containing

abc { def }

i.e. only the outer braces are removed.

TEXhackers note: The \use:n function is equivalent to LATEX 2ε’s \@firstofone.

\use:n ⋆
\use:nn ⋆
\use:nnn ⋆
\use:nnnn ⋆

25

\use_i:nn {⟨arg1⟩} {⟨arg2⟩}
\use_i:nnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}
\use_i:nnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩}
\use_i:nnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩}
\use_i:nnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩}
\use_i:nnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
\use_i:nnnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
{⟨arg8⟩}
\use_i:nnnnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
{⟨arg8⟩} {⟨arg9⟩}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn ⋆
\use_ii:nn ⋆
\use_i:nnn ⋆
\use_ii:nnn ⋆
\use_iii:nnn ⋆
\use_i:nnnn ⋆
\use_ii:nnnn ⋆
\use_iii:nnnn ⋆
\use_iv:nnnn ⋆
\use_i:nnnnn ⋆
\use_ii:nnnnn ⋆
\use_iii:nnnnn ⋆
\use_iv:nnnnn ⋆
\use_v:nnnnn ⋆
\use_i:nnnnnn ⋆
\use_ii:nnnnnn ⋆
\use_iii:nnnnnn ⋆
\use_iv:nnnnnn ⋆
\use_v:nnnnnn ⋆
\use_vi:nnnnnn ⋆
\use_i:nnnnnnn ⋆
\use_ii:nnnnnnn ⋆
\use_iii:nnnnnnn ⋆
\use_iv:nnnnnnn ⋆
\use_v:nnnnnnn ⋆
\use_vi:nnnnnnn ⋆
\use_vii:nnnnnnn ⋆
\use_i:nnnnnnnn ⋆
\use_ii:nnnnnnnn ⋆
\use_iii:nnnnnnnn ⋆
\use_iv:nnnnnnnn ⋆
\use_v:nnnnnnnn ⋆
\use_vi:nnnnnnnn ⋆
\use_vii:nnnnnnnn ⋆
\use_viii:nnnnnnnn ⋆
\use_i:nnnnnnnnn ⋆
\use_ii:nnnnnnnnn ⋆
\use_iii:nnnnnnnnn ⋆
\use_iv:nnnnnnnnn ⋆
\use_v:nnnnnnnnn ⋆
\use_vi:nnnnnnnnn ⋆
\use_vii:nnnnnnnnn ⋆
\use_viii:nnnnnnnnn ⋆
\use_ix:nnnnnnnnn ⋆

26

\use_i_ii:nnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }

results in the input stream containing

abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_i_ii:nnn ⋆

\use_ii_i:nn {⟨arg1⟩} {⟨arg2⟩}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_ii_i:nn ⋆

New: 2019-06-02

\use_none:n {⟨group1⟩}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to LATEX 2ε’s \@gobble, \@gobbletwo, etc.

\use_none:n ⋆
\use_none:nn ⋆
\use_none:nnn ⋆
\use_none:nnnn ⋆
\use_none:nnnnn ⋆
\use_none:nnnnnn ⋆
\use_none:nnnnnnn ⋆
\use_none:nnnnnnnn ⋆
\use_none:nnnnnnnnn ⋆

\use:e {⟨expandable tokens⟩}

Fully expands the ⟨token list⟩ in an e-type manner, in which parameter character
(usually #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

\use:e ⋆

New: 2018-06-18

Updated: 2023-07-05

4.5.1 Selecting tokens from delimited arguments
A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w ⟨balanced text⟩ \q_nil
\use_none_delimit_by_q_stop:w ⟨balanced text⟩ \q_stop
\use_none_delimit_by_q_recursion_stop:w ⟨balanced text⟩
\q_recursion_stop

\use_none_delimit_by_q_nil:w ⋆
\use_none_delimit_by_q_stop:w ⋆
\use_none_delimit_by_q_recursion_stop:w ⋆

Absorb the ⟨balanced text⟩ from the input stream delimited by the marker given in
the function name, leaving nothing in the input stream.

27

\use_i_delimit_by_q_nil:nw {⟨inserted tokens⟩} ⟨balanced text⟩ \q_nil
\use_i_delimit_by_q_stop:nw {⟨inserted tokens⟩} ⟨balanced text⟩
\q_stop
\use_i_delimit_by_q_recursion_stop:nw {⟨inserted tokens⟩} ⟨balanced
text⟩ \q_recursion_stop

\use_i_delimit_by_q_nil:nw ⋆
\use_i_delimit_by_q_stop:nw ⋆
\use_i_delimit_by_q_recursion_stop:nw ⋆

Absorb the ⟨balanced text⟩ from the input stream delimited by the marker given in the
function name, leaving ⟨inserted tokens⟩ in the input stream for further processing.

4.6 Predicates and conditionals
LATEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied as the ⟨true code⟩ or the ⟨false code⟩.
These arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {⟨true code⟩} {⟨false code⟩}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).
These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.
Important to note is that these branching conditionals with ⟨true code⟩ and/or
⟨false code⟩ are always defined in a way that the code of the chosen alternative
can operate on following tokens in the input stream.
These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF
{ \cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl }
{⟨true code⟩} {⟨false code⟩}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

28

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and LATEX 2ε. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN ⟨cs1⟩ ⟨cs2⟩
\cs_if_eq:NNTF ⟨cs1⟩ ⟨cs2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the definition of two ⟨control sequences⟩ and is logically true if they are
the same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_eq_p:NN ⋆
\cs_if_eq_p:(Nc|cN|cc) ⋆
\cs_if_eq:NNTF ⋆
\cs_if_eq:(Nc|cN|cc)TF ⋆

\cs_if_exist_p:N ⟨control sequence⟩
\cs_if_exist:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently defined (whether as a function or an-
other control sequence type). Any definition of ⟨control sequence⟩ other than \relax
evaluates as true.

\cs_if_exist_p:N ⋆
\cs_if_exist_p:c ⋆
\cs_if_exist:NTF ⋆
\cs_if_exist:cTF ⋆

\cs_if_free_p:N ⟨control sequence⟩
\cs_if_free:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently free to be defined. This test is false
if the ⟨control sequence⟩ currently exists (as defined by \cs_if_exist:NTF).

\cs_if_free_p:N ⋆
\cs_if_free_p:c ⋆
\cs_if_free:NTF ⋆
\cs_if_free:cTF ⋆

4.6.2 Primitive conditionals
The ε-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if_int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_, except for \if:w.

\if_true: ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_false: ⟨true code⟩ \else: ⟨false code⟩ \fi:
\reverse_if:N ⟨primitive conditional⟩

\if_true: always executes ⟨true code⟩, while \if_false: always executes ⟨false
code⟩. \reverse_if:N reverses any two-way primitive conditional. \else: and \fi:
delimit the branches of the conditional. The function \or: is documented in l3int and
used in case switches.

TEXhackers note: \if_true: and \if_false: are equivalent to their corresponding TEX
primitive conditionals \iftrue and \iffalse; \else: and \fi: are the TEX primitives \else
and \fi; \reverse_if:N is the ε-TEX primitive \unless.

\if_true: ⋆
\if_false: ⋆
\else: ⋆
\fi: ⋆
\reverse_if:N ⋆

29

\if_meaning:w ⟨arg1⟩ ⟨arg2⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

\if_meaning:w executes ⟨true code⟩ when ⟨arg1⟩ and ⟨arg2⟩ are the same, otherwise
it executes ⟨false code⟩. ⟨arg1⟩ and ⟨arg2⟩ could be functions, variables, tokens; in all
cases the unexpanded definitions are compared.

TEXhackers note: This is the TEX primitive \ifx.

\if_meaning:w ⋆

\if:w ⟨token(s)⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_catcode:w ⟨token(s)⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

\if_charcode:w is an alternative name for \if:w. These conditionals expand ⟨token(s)⟩
until two unexpandable tokens ⟨token1⟩ and ⟨token2⟩ are found; any further tokens up
to the next unbalanced \else: are the true branch, ending with ⟨true code⟩. It is
executed if the condition is fulfilled, otherwise ⟨false code⟩ is executed. You can omit
\else: when just in front of \fi: and you can nest \if...\else:...\fi: constructs
inside the true branch or the ⟨false code⟩. With \exp_not:N, you can prevent the
expansion of a token.

\if_catcode:w tests if ⟨token1⟩ and ⟨token2⟩ have the same category code whereas
\if:w and \if_charcode:w test if they have the same character code.

TEXhackers note: \if:w and \if_charcode:w are both the TEX primitive \if. \if_-
catcode:w is the TEX primitive \ifcat.

\if:w ⋆
\if_charcode:w ⋆
\if_catcode:w ⋆

\if_cs_exist:N ⟨cs⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_cs_exist:w ⟨tokens⟩ \cs_end: ⟨true code⟩ \else: ⟨false code⟩ \fi:

Check if ⟨cs⟩ appears in the hash table or if the control sequence that can be formed
from ⟨tokens⟩ appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are the TEX primitives \ifdefined and \ifcsname.

\if_cs_exist:N ⋆
\if_cs_exist:w ⋆

\if_mode_horizontal: ⟨true code⟩ \else: ⟨false code⟩ \fi:

Execute ⟨true code⟩ if currently in horizontal mode, otherwise execute ⟨false code⟩.
Similar for the other functions.

TEXhackers note: These are the TEX primitives \ifhmode, \ifvmode, \ifmmode,
and \ifinner.

\if_mode_horizontal: ⋆
\if_mode_vertical: ⋆
\if_mode_math: ⋆
\if_mode_inner: ⋆

30

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the LATEX 2ε
\leavevmode approach, no box is used by the method implemented here.

\mode_leave_vertical:

New: 2017-07-04

4.8 Debugging support

\debug_on:n { ⟨comma-separated list⟩ }
\debug_off:n { ⟨comma-separated list⟩ }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the ⟨list⟩ are

• check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

• check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

• deprecation that makes deprecated commands produce errors;

• log-functions that logs function definitions and variable declarations;

• all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_on:n
\debug_off:n

New: 2017-07-16

Updated: 2023-05-23

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors. These pairs of commands can be nested. This can be used around pieces of code
that are known to fail checks, if such failures should be ignored. See for instance l3cctab
and l3coffins.

\debug_suspend:
\debug_resume:

New: 2017-11-28

31

Chapter 5

The l3expan module
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the LATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants
The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
.... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \l_tmpa_tl }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

32

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants
We recall the set of available argument specifiers.

• N is used for single-token arguments while c constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

• Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, f expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

• A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

33

\cs_generate_variant:Nn ⟨parent control sequence⟩ {⟨variant argument specifiers⟩}

This function is used to define argument-specifier variants of the ⟨parent control
sequence⟩ for LATEX3 code-level macros. The ⟨parent control sequence⟩ is first
separated into the ⟨base name⟩ and ⟨original argument specifier⟩. The comma-
separated list of ⟨variant argument specifiers⟩ is then used to define variants of the
⟨original argument specifier⟩ if these are not already defined; entries which corre-
spond to existing functions are silently ignored. For each ⟨variant⟩ given, a function is
created that expands its arguments as detailed and passes them to the ⟨parent control
sequence⟩. So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the ⟨parent control sequence⟩ is al-
ready defined. (This is only enforced if debugging support check-declarations is en-
abled.) If the ⟨parent control sequence⟩ is protected or if the ⟨variant⟩ involves any
x argument, then the ⟨variant control sequence⟩ is also protected. The ⟨variant⟩
is created globally, as is any \exp_args:N⟨variant⟩ function needed to carry out the
expansion. There is no need to re-apply \cs_generate_variant:Nn after changing the
definition of the parent function: the variant will always use the current definition of
the parent. Providing variants repeatedly is safe as \cs_generate_variant:Nn will only
create new definitions if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

• c variant of an N parent;

• o, V, v, f, e, or x variant of an n parent;

• N, n, T, F, or p argument unchanged.

This means the ⟨parent⟩ of a ⟨variant⟩ form is always unambiguous, even in cases
where both an n-type parent and an N-type parent exist, such as for \tl_count:n and
\tl_count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, f, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

\cs_generate_variant:Nn
\cs_generate_variant:cn

Updated: 2017-11-28

34

\exp_args_generate:n {⟨variant argument specifiers⟩}

Defines \exp_args:N⟨variant⟩ functions for each ⟨variant⟩ given in the comma list
{⟨variant argument specifiers⟩}. Each ⟨variant⟩ should consist of the letters N, c, n,
V, v, o, f, e, x, p and the resulting function is protected if the letter x appears in
the ⟨variant⟩. This is only useful for cases where \cs_generate_variant:Nn is not
applicable.

\exp_args_generate:n

New: 2018-04-04

Updated: 2019-02-08

5.3 Introducing the variants
The V type returns the value of a register, which can be one of tl, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside e or x expansion.

The f type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and f-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }

while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

35

at the cost of being protected for x-type. If you use f type expansion in conditional
processing then you should stick to using TF type functions only as the expansion does
not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \l_tmpa_tl { { \g_tmpb_tl } }

and

\tl_set:Nf \l_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_tl unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

• Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

• In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

• Finally f expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants
are used numerous times in a document) the following considerations apply because the
speed of internal functions that expand the arguments of a base function depend on what
needs doing with each argument and where this happens in the list of arguments:

• for fastest processing any c-type arguments should come first followed by all other
modified arguments;

• unchanged N-type args that appear before modified ones have a small performance
hit;

• unchanged n-type args that appear before modified ones have a relative larger
performance hit.

5.4 Manipulating the first argument
These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

36

\exp_args:Nc ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the ⟨function⟩.
Thus the ⟨function⟩ may take more than one argument: all others are left unchanged.

The :cc variant constructs the ⟨function⟩ name in the same manner as described
for the ⟨tokens⟩.

\exp_args:Nc ⋆
\exp_args:cc ⋆

\exp_args:No ⟨function⟩ {⟨tokens⟩} ...

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded once, and the result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:No ⋆

\exp_args:NV ⟨function⟩ ⟨variable⟩

This function absorbs two arguments (the names of the ⟨function⟩ and the ⟨variable⟩).
The content of the ⟨variable⟩ are recovered and placed inside braces into the input
stream after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than
one argument: all others are left unchanged.

\exp_args:NV ⋆

\exp_args:Nv ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded until only characters remain, and are then turned into a control
sequence. This control sequence should be the name of a ⟨variable⟩. The content of the
⟨variable⟩ are recovered and placed inside braces into the input stream after reinsertion
of the ⟨function⟩. Thus the ⟨function⟩ may take more than one argument: all others
are left unchanged.

\exp_args:Nv ⋆

\exp_args:Ne ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩) and
exhaustively expands the ⟨tokens⟩. The result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:Ne ⋆

New: 2018-05-15

\exp_args:Nf ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after
reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one argument:
all others are left unchanged.

\exp_args:Nf ⋆

\exp_args:Nx ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩) and
exhaustively expands the ⟨tokens⟩. The result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:Nx

37

5.5 Manipulating two arguments

\exp_args:NNc ⟨token1⟩ ⟨token2⟩ {⟨tokens⟩}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:NNc ⋆
\exp_args:NNo ⋆
\exp_args:NNV ⋆
\exp_args:NNv ⋆
\exp_args:NNe ⋆
\exp_args:NNf ⋆
\exp_args:Ncc ⋆
\exp_args:Nco ⋆
\exp_args:NcV ⋆
\exp_args:Ncv ⋆
\exp_args:Ncf ⋆
\exp_args:NVV ⋆

Updated: 2018-05-15

\exp_args:Noo ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on the
input stream, followed by the expansion of the second and third arguments.

\exp_args:Nnc ⋆
\exp_args:Nno ⋆
\exp_args:NnV ⋆
\exp_args:Nnv ⋆
\exp_args:Nne ⋆
\exp_args:Nnf ⋆
\exp_args:Noc ⋆
\exp_args:Noo ⋆
\exp_args:Nof ⋆
\exp_args:NVo ⋆
\exp_args:Nfo ⋆
\exp_args:Nff ⋆
\exp_args:Nee ⋆

Updated: 2018-05-15

\exp_args:NNx ⟨token1⟩ ⟨token2⟩ {⟨tokens⟩}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

5.6 Manipulating three arguments

\exp_args:NNNo ⟨token1⟩ ⟨token2⟩ ⟨token3⟩ {⟨tokens⟩}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNNo ⋆
\exp_args:NNNV ⋆
\exp_args:NNNv ⋆
\exp_args:NNNe ⋆
\exp_args:Nccc ⋆
\exp_args:NcNc ⋆
\exp_args:NcNo ⋆
\exp_args:Ncco ⋆

38

\exp_args:NNoo ⟨token1⟩ ⟨token2⟩ {⟨token3⟩} {⟨tokens⟩}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNcf ⋆
\exp_args:NNno ⋆
\exp_args:NNnV ⋆
\exp_args:NNoo ⋆
\exp_args:NNVV ⋆
\exp_args:Ncno ⋆
\exp_args:NcnV ⋆
\exp_args:Ncoo ⋆
\exp_args:NcVV ⋆
\exp_args:Nnnc ⋆
\exp_args:Nnno ⋆
\exp_args:Nnnf ⋆
\exp_args:Nnff ⋆
\exp_args:Nooo ⋆
\exp_args:Noof ⋆
\exp_args:Nffo ⋆
\exp_args:Neee ⋆

\exp_args:NNnx ⟨token1⟩ ⟨token2⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox

New: 2015-08-12

39

5.7 Unbraced expansion

\exp_last_unbraced:Nno ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \q_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:No ⋆
\exp_last_unbraced:NV ⋆
\exp_last_unbraced:Nv ⋆
\exp_last_unbraced:Ne ⋆
\exp_last_unbraced:Nf ⋆
\exp_last_unbraced:NNo ⋆
\exp_last_unbraced:NNV ⋆
\exp_last_unbraced:NNf ⋆
\exp_last_unbraced:Nco ⋆
\exp_last_unbraced:NcV ⋆
\exp_last_unbraced:Nno ⋆
\exp_last_unbraced:Nnf ⋆
\exp_last_unbraced:Noo ⋆
\exp_last_unbraced:Nfo ⋆
\exp_last_unbraced:NNNo ⋆
\exp_last_unbraced:NNNV ⋆
\exp_last_unbraced:NNNf ⋆
\exp_last_unbraced:NnNo ⋆
\exp_last_unbraced:NNNNo ⋆
\exp_last_unbraced:NNNNf ⋆

Updated: 2018-05-15

\exp_last_unbraced:Nx ⟨function⟩ {⟨tokens⟩}

This function fully expands the ⟨tokens⟩ and leaves the result in the input stream after
reinsertion of the ⟨function⟩. This function is not expandable.

\exp_last_unbraced:Nx

\exp_last_two_unbraced:Noo ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}\exp_last_two_unbraced:Noo ⋆

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN ⟨token1⟩ ⟨token2⟩

Carries out a single expansion of ⟨token2⟩ (which may consume arguments) prior to the
expansion of ⟨token1⟩. If ⟨token2⟩ has no expansion (for example, if it is a character)
then it is left unchanged. It is important to notice that ⟨token1⟩ may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX cat-
egory codes). Unless specifically required this should be avoided: expansion should be
carried out using an appropriate argument specifier variant or the appropriate \exp_-
args:N⟨variant⟩ function.

TEXhackers note: This is the TEX primitive \expandafter.

\exp_after:wN ⋆

40

5.8 Preventing expansion
Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N ⟨token⟩

Prevents expansion of the ⟨token⟩ in a context where it would otherwise be expanded, for
example an e-type or x-type argument or the first token in an o-type or f-type argument.

TEXhackers note: This is the TEX primitive \noexpand. It only prevents expansion. At
the beginning of an f-type argument, a space ⟨token⟩ is removed even if it appears as \exp_not:N
\c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:N ⋆

\exp_not:c {⟨tokens⟩}

Expands the ⟨tokens⟩ until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

\exp_not:c ⋆

\exp_not:n {⟨tokens⟩}

Prevents expansion of the ⟨tokens⟩ in an e-type or x-type argument. In all other cases
the ⟨tokens⟩ continue to be expanded, for example in the input stream or in other types
of arguments such as c, f, v. The argument of \exp_not:n must be surrounded by
braces.

TEXhackers note: This is the ε-TEX primitive \unexpanded. In an e-expanding definition
(\cs_new:Npe), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1, and \exp_not:n {#} is equivalent to #, namely it inserts the character #.

\exp_not:n ⋆

\exp_not:o {⟨tokens⟩}

Expands the ⟨tokens⟩ once, then prevents any further expansion in e-type or x-type
arguments using \exp_not:n.

\exp_not:o ⋆

\exp_not:V ⟨variable⟩

Recovers the content of the ⟨variable⟩, then prevents expansion of this material in
e-type or x-type arguments using \exp_not:n.

\exp_not:V ⋆

\exp_not:v {⟨tokens⟩}

Expands the ⟨tokens⟩ until only characters remains, and then converts this into a con-
trol sequence which should be a ⟨variable⟩ name. The content of the ⟨variable⟩
is recovered, and further expansion in e-type or x-type arguments is prevented using
\exp_not:n.

\exp_not:v ⋆

41

\exp_not:e {⟨tokens⟩}

Expands ⟨tokens⟩ exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e-type or x-type arguments
using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:e ⋆

\exp_not:f {⟨tokens⟩}

Expands ⟨tokens⟩ fully until the first unexpandable token is found (if it is a space
it is removed). Expansion then stops, and the result of the expansion (including any
tokens which were not expanded) is protected from further expansion in e-type or x-type
arguments using \exp_not:n.

\exp_not:f ⋆

\foo_bar:f { ⟨tokens⟩ \exp_stop_f: ⟨more tokens⟩ }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of ⟨tokens⟩ are expandable \exp_stop_f: terminates the
expansion of tokens even if ⟨more tokens⟩ are also expandable. The function itself is an
implicit space token. Inside an e-type or x-type expansion, it retains its form, but when
typeset it produces the underlying space (␣).

\exp_stop_f: ⋆

Updated: 2011-06-03

5.9 Controlled expansion
The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of ⟨expandable-tokens⟩ as that will break badly if unexpandable tokens
are encountered in that place!

42

\exp:w ⟨expandable tokens⟩ \exp_end:

Expands ⟨expandable-tokens⟩ until reaching \exp_end: at which point expansion
stops. The full expansion of ⟨expandable tokens⟩ has to be empty. If any token in
⟨expandable tokens⟩ or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end: will be misin-
terpreted later on.3

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
⟨expandable-tokens⟩ rather than being on the same expansion level than \exp:w, e.g.,
you may see code such as

\exp:w \@@_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the ⟨expandable tokens⟩, but this should
not be relied upon.

\exp:w ⋆
\exp_end: ⋆

New: 2015-08-23

\exp:w ⟨expandable-tokens⟩ \exp_end_continue_f:w ⟨further-tokens⟩

Expands ⟨expandable-tokens⟩ until reaching \exp_end_continue_f:w at which point
expansion continues as an f-type expansion expanding ⟨further-tokens⟩ until an un-
expandable token is encountered (or the f-type expansion is explicitly terminated by
\exp_stop_f:). As with all f-type expansions a space ending the expansion gets re-
moved.

The full expansion of ⟨expandable-tokens⟩ has to be empty. If any token in
⟨expandable-tokens⟩ or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.4

In typical use cases ⟨expandable-tokens⟩ contains no tokens at all, e.g., you will
see code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w ⟨expandable-tokens⟩ \exp_end:

can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.

\exp:w \exp_end_continue_f:w ⟨expandable-tokens⟩ \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w ⋆
\exp_end_continue_f:w ⋆

New: 2015-08-23

3Due to the implementation you might get the character in position 0 in the current font (typically
“‘”) in the output without any error message!

43

\exp:w ⟨expandable-tokens⟩ \exp_end_continue_f:nw ⟨further-tokens⟩

The difference to \exp_end_continue_f:w is that we first we pick up an argument which
is then returned to the input stream. If ⟨further-tokens⟩ starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

\exp:w ⋆
\exp_end_continue_f:nw ⋆

New: 2015-08-23

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
LATEX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\::n
\::N
\::p
\::c
\::o
\::e
\::f
\::x
\::v
\::V
\:::

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general LATEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

\::o_unbraced
\::e_unbraced
\::f_unbraced
\::x_unbraced
\::v_unbraced
\::V_unbraced

4In this particular case you may get a character into the output as well as an error message.

44

Chapter 6

The l3sort module
Sorting functions

6.1 Controlling sorting
LATEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \l_foo_clist { 3 , 01 , -2 , 5 , +1 }
\clist_sort:Nn \l_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \l_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a ⟨comparison code⟩ consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a ⟨comparison code⟩ consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from l3sort stores items in \toks registers allocated locally. Thus,
the ⟨comparison code⟩ should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

45

\seq_sort:Nn ⟨seq var⟩
{ ... \sort_return_same: or \sort_return_swapped: ... }

Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_... functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

\sort_return_same:
\sort_return_swapped:

New: 2017-02-06

46

Chapter 7

The l3tl-analysis module
Analysing token lists

This module provides functions that are particularly useful in the l3regex module for
mapping through a token list one ⟨token⟩ at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in l3token finds tokens in the input stream instead. In both cases the user
provides ⟨inline code⟩ that receives three arguments for each ⟨token⟩:

• ⟨tokens⟩, which both o-expand and e/x-expand to the ⟨token⟩. The detailed form
of ⟨tokens⟩ may change in later releases.

• ⟨char code⟩, a decimal representation of the character code of the ⟨token⟩, −1 if
it is a control sequence.

• ⟨catcode⟩, a capital hexadecimal digit which denotes the category code of the
⟨token⟩ (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "⟨catcode⟩.

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:n {⟨token list⟩}
\tl_analysis_log:n {⟨token list⟩}

Displays to the terminal (or log) the detailed decomposition of the ⟨token list⟩ into to-
kens, showing the category code of each character token, the meaning of control sequences
and active characters, and the value of registers.

\tl_analysis_show:N
\tl_analysis_show:n
\tl_analysis_log:N
\tl_analysis_log:n

New: 2021-05-11

\tl_analysis_map_inline:nn {⟨token list⟩} {⟨inline function⟩}

Applies the ⟨inline function⟩ to each individual ⟨token⟩ in the ⟨token list⟩. The
⟨inline function⟩ receives three arguments as explained above. As all other mappings
the mapping is done at the current group level, i.e. any local assignments made by the
⟨inline function⟩ remain in effect after the loop.

\tl_analysis_map_inline:nn
\tl_analysis_map_inline:Nn

New: 2018-04-09

Updated: 2022-03-26

47

Chapter 8

The l3regex module
Regular expressions in TEX

The l3regex module provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the pcre syntax (and very close to posix), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl

the token list variable \l_my_tl holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \l_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \0 denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \l_foo_regex
\regex_set:Nn \l_foo_regex { \c{begin} \cB. (\c[^BE].*) \cE. }

stores in \l_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c[^BE].*), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c[^BE].*, giving us access to the name of the environment when doing
replacements.

48

8.1 Syntax of regular expressions
8.1.1 Regular expression examples
We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

• Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

• [abc] matches one letter among “a”, “b”, “c”; the pattern (a|b|c) matches the
same three possible letters (but see the discussion of submatches below).

• [A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

• \c{[A-Za-z]*} matches a control sequence made of Latin letters.

• _[^_]*_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier *? means to match as few characters as possible,
thus avoiding matching underscores.

• [\+\-]?\d+ matches an explicit integer with at most one sign.

• [\+\-\␣]*\d+\␣* matches an explicit integer with any number of + and − signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

• [\+\-\␣]*(\d+|\d*\.\d+)\␣* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

• [\+\-\␣]*(\d+|\d*\.\d+)\␣*((?i)pt|in|[cem]m|ex|[bs]p|[dn]d|[pcn]c)\␣*
matches an explicit dimension with any unit that TEX knows, where (?i) means
to treat lowercase and uppercase letters identically.

• [\+\-\␣]*((?i)nan|inf|(\d+|\d*\.\d+)(\␣*e[\+\-\␣]*\d+)?)\␣* matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

• [\+\-\␣]*(\d+|\cC.)\␣* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

• \G.*?\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
[\+\-\(]*\d+\)*([\+\-*/][\+\-\(]*\d+\)*)* matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

49

8.1.2 Characters in regular expressions
Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash–letter also have a special meaning (for
instance \d matches any digit). As a rule,

• every alphanumeric character (A–Z, a–z, 0–9) matches exactly itself, and should
not be escaped, because \A, \B, . . . have special meanings;

• non-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(, \), \?, \., \^);

• spaces should always be escaped (even in character classes);

• any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\% matches
the characters \abc% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{⟨regex⟩} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh...} Character with hex code hh...

\xhh Character with hex code hh.

\a Alarm (hex 07).

\e Escape (hex 1B).

\f Form-feed (hex 0C).

\n New line (hex 0A).

\r Carriage return (hex 0D).

\t Horizontal tab (hex 09).

8.1.3 Characters classes
Character properties.

. A single period matches any token.

\d Any decimal digit.

\h Any horizontal space character, equivalent to [\ \^^I]: space and tab.

\s Any space character, equivalent to [\ \^^I\^^J\^^L\^^M].

50

\v Any vertical space character, equivalent to [\^^J\^^K\^^L\^^M]. Note that \^^K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.

\H Any token not matched by \h.

\N Any token other than the \n character (hex 0A).

\S Any token not matched by \s.

\V Any token not matched by \v.

\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.

[^...] Negative character class. Matches any token other than the specified characters.

[x-y] Within a character class, this denotes a range (can be used with escaped characters).

[:⟨name⟩:] Within a character class (one more set of brackets), this denotes the posix character
class ⟨name⟩, which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:^⟨name⟩:] Negative posix character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, ^, -,], \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ^, then the meaning of the character class is inverted; ^ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ^) is] then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and [^6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).

? 0 or 1, greedy.

?? 0 or 1, lazy.

* 0 or more, greedy.

*? 0 or more, lazy.

+ 1 or more, greedy.

51

+? 1 or more, lazy.

{n} Exactly n.

{n,} n or more, greedy.

{n,}? n or more, lazy.

{n, m} At least n, no more than m, greedy.

{n, m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|B|C Either one of A, B, or C, investigating A first.

(...) Capturing group.

(?:...) Non-capturing group.

(?|...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { a123aaxyz } \l_foo_seq

results in \l_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \l_foo_seq

results in \l_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens
The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

• C for control sequences;

• B for begin-group tokens;

• E for end-group tokens;

52

• M for math shift;

• T for alignment tab tokens;

• P for macro parameter tokens;

• U for superscript tokens (up);

• D for subscript tokens (down);

• S for spaces;

• L for letters;

• O for others; and

• A for active characters.

The \c escape sequence is used as follows.

\c{⟨regex⟩} A control sequence whose csname matches the ⟨regex⟩, anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \cO(abc) matches abc where each character has category other.5

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO](..) matches two
tokens of category letter, space, or other.

\c[^XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c[^O]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO][A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{⟨var name⟩} matches the exact contents (both character codes and cate-
gory codes) of the variable \⟨var name⟩, which are obtained by applying \exp_not:v
{⟨var name⟩} at the time the regular expression is compiled. Within a \c{...} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{l_tmpa_regex}D matches the tokens A and

5This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\cO(?:abc).

53

D separated by something that matches the regular expression \l_tmpa_regex. This
behaves as if a non-capturing group were surrounding \l_tmpa_regex, and any group
contained in \l_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \l_tmpa_regex has value B|C, then A\ur{l_tmpa_regex}D is equiv-
alent to A(?:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \l_-
mymodule_BC_tl contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_tl} D }
\regex_show:n { A B | C D }

8.1.6 Miscellaneous
Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

^or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ^ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \l_tmpa_int
yields 2, but replacing \G by ^ would result in \l_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A–Z and a–z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?-i). For instance, in
(?i)(a(?-i)b|c)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i)[\?-B] is equivalent to [\?@ABab]
(and differs from the much larger class [\?-b]), and (?i)[^aeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?i)\u{l_foo_tl}\d\d[[:lower:]].

8.2 Syntax of the replacement text
Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

• \0 is the whole match;

• \1 is the submatch that was matched by the first (capturing) group (...); similarly
for \2, . . . , \9 and \g{⟨number⟩};

• \␣ inserts a space (spaces are ignored when not escaped);

54

• \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

• \c{⟨cs name⟩} inserts a control sequence;

• \c⟨category⟩⟨character⟩ (see below);

• \u{⟨tl var name⟩} inserts the contents of the ⟨tl var⟩ (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \l_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?l|o) . } { (\0--\1) } \l_my_tl

results in \l_my_tl holding H(ell--el)(o,--o) w(or--o)(ld--l)!
The submatches are numbered according to the order in which the opening paren-

thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code regime at the time where the replacement is made,
with two exceptions:

• space characters (with character code 32) inserted with \␣ or \x20 or \x{20} have
category code 10 regardless of the prevailing category code regime;

• if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “. . . ” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{⟨text⟩} Produces the control sequence with csname ⟨text⟩. The ⟨text⟩ may contain ref-
erences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{⟨var name⟩} allows to insert the contents of the variable with
name ⟨var name⟩ directly into the replacement, giving an easier control of category codes.
When nested in \c{. . . } and \u{. . . } constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \l_my_one_tl { first }
\tl_set:Nn \l_my_two_tl { \emph{second} }
\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { [^,]+ } { \u{l_my_\0_tl} } \l_my_tl

55

results in \l_my_tl holding first,\emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary

category codes. For instance

\tl_clear:N \l_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \l_tmpa_tl

results in \l_tmpa_tl containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions
If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the l3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N ⟨regex var⟩

Creates a new ⟨regex var⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨regex var⟩ is initially such that it never matches.

\regex_new:N

New: 2017-05-26

\regex_set:Nn ⟨regex var⟩ {⟨regex⟩}

Stores a compiled version of the ⟨regex⟩ in the ⟨regex var⟩. The assignment is local
for \regex_set:Nn and global for \regex_gset:Nn. For instance, this function can be
used as

\regex_new:N \l_my_regex
\regex_set:Nn \l_my_regex { my\ (simple\)? reg(ex|ular\ expression) }

\regex_set:Nn
\regex_gset:Nn

New: 2017-05-26

\regex_const:Nn ⟨regex var⟩ {⟨regex⟩}

Creates a new constant ⟨regex var⟩ or raises an error if the name is already taken. The
value of the ⟨regex var⟩ is set globally to the compiled version of the ⟨regex⟩.

\regex_const:Nn

New: 2017-05-26

\regex_show:n {⟨regex⟩}
\regex_log:n {⟨regex⟩}

Displays in the terminal or writes in the log file (respectively) how l3regex interprets the
⟨regex⟩. For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)

+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26

Updated: 2021-04-29

56

8.4 Matching
All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_match:nnTF {⟨regex⟩} {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨regex⟩ matches any part of the ⟨token list⟩. For instance,

\regex_match:nnTF { b [cde]* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_match:nnTF
\regex_match:nVTF
\regex_match:NnTF
\regex_match:NVTF

New: 2017-05-26

\regex_count:nnN {⟨regex⟩} {⟨token list⟩} ⟨int var⟩

Sets ⟨int var⟩ within the current TEX group level equal to the number of times ⟨regex⟩
appears in ⟨token list⟩. The search starts by finding the left-most longest match,
respecting greedy and lazy (non-greedy) operators. Then the search starts again from
the character following the last character of the previous match, until reaching the end of
the token list. Infinite loops are prevented in the case where the regular expression can
match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \l_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \l_foo_int

results in \l_foo_int taking the value 5.

\regex_count:nnN
\regex_count:nVN
\regex_count:NnN
\regex_count:NVN

New: 2017-05-26

\regex_match_case:nnTF
{
{⟨regex1⟩} {⟨code case1⟩}
{⟨regex2⟩} {⟨code case2⟩}
...
{⟨regexn⟩} {⟨code casen⟩}

} {⟨token list⟩}
{⟨true code⟩} {⟨false code⟩}

Determines which of the ⟨regular expressions⟩ matches at the earliest point in the
⟨token list⟩, and leaves the corresponding ⟨code⟩ followed by the ⟨true code⟩ in the
input stream. If several ⟨regex⟩ match starting at the same point, then the first one
in the list is selected and the others are discarded. If none of the ⟨regex⟩ match, the
⟨false code⟩ is left in the input stream. Each ⟨regex⟩ can either be given as a regex
variable or as an explicit regular expression.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then the corresponding ⟨code⟩ is used and
everything else is discarded, while if none of the ⟨regex⟩ match at a given position then
the next starting position is attempted. If none of the ⟨regex⟩ match anywhere in the
⟨token list⟩ then nothing is left in the input stream. Note that this differs from nested
\regex_match:nnTF statements since all ⟨regex⟩ are attempted at each position rather
than attempting to match ⟨regex1⟩ at every position before moving on to ⟨regex2⟩.

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

57

8.5 Submatch extraction

\regex_extract_once:nnN {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩
\regex_extract_once:nnNTF {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩} {⟨false
code⟩}

Finds the first match of the ⟨regex⟩ in the ⟨token list⟩. If it exists, the match is
stored as the first item of the ⟨seq var⟩, and further items are the contents of capturing
groups, in the order of their opening parenthesis. The ⟨seq var⟩ is assigned locally. If
there is no match, the ⟨seq var⟩ is cleared. The testing versions insert the ⟨true code⟩
into the input stream if a match was found, and the ⟨false code⟩ otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \l_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \l_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \l_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n − 1) in functions such as \regex_replace_once:nnN.

\regex_extract_once:nnN
\regex_extract_once:nVN
\regex_extract_once:nnNTF
\regex_extract_once:nVNTF
\regex_extract_once:NnN
\regex_extract_once:NVN
\regex_extract_once:NnNTF
\regex_extract_once:NVNTF

New: 2017-05-26

\regex_extract_all:nnN {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩
\regex_extract_all:nnNTF {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩} {⟨false
code⟩}

Finds all matches of the ⟨regex⟩ in the ⟨token list⟩, and stores all the submatch
information in a single sequence (concatenating the results of multiple \regex_extract_-
once:nnN calls). The ⟨seq var⟩ is assigned locally. If there is no match, the ⟨seq var⟩
is cleared. The testing versions insert the ⟨true code⟩ into the input stream if a match
was found, and the ⟨false code⟩ otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \l_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

\regex_extract_all:nnN
\regex_extract_all:nVN
\regex_extract_all:nnNTF
\regex_extract_all:nVNTF
\regex_extract_all:NnN
\regex_extract_all:NVN
\regex_extract_all:NnNTF
\regex_extract_all:NVNTF

New: 2017-05-26

58

\regex_split:nnN {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩
\regex_split:nnNTF {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩} {⟨false code⟩}

Splits the ⟨token list⟩ into a sequence of parts, delimited by matches of the ⟨regex⟩.
If the ⟨regex⟩ has capturing groups, then the token lists that they match are stored as
items of the sequence as well. The assignment to ⟨seq var⟩ is local. If no match is
found the resulting ⟨seq var⟩ has the ⟨token list⟩ as its sole item. If the ⟨regex⟩
matches the empty token list, then the ⟨token list⟩ is split into single tokens. The
testing versions insert the ⟨true code⟩ into the input stream if a match was found, and
the ⟨false code⟩ otherwise. For example, after

\seq_new:N \l_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \l_path_seq
{ true } { false }

the sequence \l_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

\regex_split:nnN
\regex_split:nVN
\regex_split:nnNTF
\regex_split:nVNTF
\regex_split:NnN
\regex_split:NVN
\regex_split:NnNTF
\regex_split:NVNTF

New: 2017-05-26

8.6 Replacement

\regex_replace_once:nnN {⟨regex⟩} {⟨replacement⟩} ⟨tl var⟩
\regex_replace_once:nnNTF {⟨regex⟩} {⟨replacement⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false
code⟩}

Searches for the ⟨regex⟩ in the contents of the ⟨tl var⟩ and replaces the first match with
the ⟨replacement⟩. In the ⟨replacement⟩, \0 represents the full match, \1 represent
the contents of the first capturing group, \2 of the second, etc. The result is assigned
locally to ⟨tl var⟩.

\regex_replace_once:nnN
\regex_replace_once:nVN
\regex_replace_once:nnNTF
\regex_replace_once:nVNTF
\regex_replace_once:NnN
\regex_replace_once:NVN
\regex_replace_once:NnNTF
\regex_replace_once:NVNTF

New: 2017-05-26

\regex_replace_all:nnN {⟨regex⟩} {⟨replacement⟩} ⟨tl var⟩
\regex_replace_all:nnNTF {⟨regex⟩} {⟨replacement⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false
code⟩}

Replaces all occurrences of the ⟨regex⟩ in the contents of the ⟨tl var⟩ by the
⟨replacement⟩, where \0 represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to ⟨tl var⟩.

\regex_replace_all:nnN
\regex_replace_all:nVN
\regex_replace_all:nnNTF
\regex_replace_all:nVNTF
\regex_replace_all:NnN
\regex_replace_all:NVN
\regex_replace_all:NnNTF
\regex_replace_all:NVNTF

New: 2017-05-26

59

\regex_replace_case_once:nNTF
{
{⟨regex1⟩} {⟨replacement1⟩}
{⟨regex2⟩} {⟨replacement2⟩}
...
{⟨regexn⟩} {⟨replacementn⟩}

} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\regex_replace_case_once:nN
\regex_replace_case_once:nNTF

New: 2022-01-10

Replaces the earliest match of the regular expression (?|⟨regex1⟩|. . . |⟨regexn⟩) in
the ⟨token list variable⟩ by the ⟨replacement⟩ corresponding to which ⟨regexi⟩
matched, then leaves the ⟨true code⟩ in the input stream. If none of the ⟨regex⟩
match, then the ⟨tl var⟩ is not modified, and the ⟨false code⟩ is left in the input
stream. Each ⟨regex⟩ can either be given as a regex variable or as an explicit regular
expression.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then it is replaced by the corresponding
⟨replacement⟩ as described for \regex_replace_once:nnN. This is equivalent to check-
ing with \regex_match_case:nn which ⟨regex⟩ matches, then performing the replace-
ment with \regex_replace_once:nnN.

\regex_replace_case_all:nNTF
{
{⟨regex1⟩} {⟨replacement1⟩}
{⟨regex2⟩} {⟨replacement2⟩}
...
{⟨regexn⟩} {⟨replacementn⟩}

} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\regex_replace_case_all:nN
\regex_replace_case_all:nNTF

New: 2022-01-10

Replaces all occurrences of all ⟨regex⟩ in the ⟨token list⟩ by the corresponding
⟨replacement⟩. Every match is treated independently, and matches cannot overlap.
The result is assigned locally to ⟨tl var⟩, and the ⟨true code⟩ or ⟨false code⟩ is left
in the input stream depending on whether any replacement was made or not.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then it is replaced by the corresponding
⟨replacement⟩, and the search resumes at the position that follows this match (and
replacement). For instance

\tl_set:Nn \l_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN
{
{ [A-Za-z]+ } { ‘‘\0’’ }
{ \b } { --- }
{ . } { [\0] }

} \l_tmpa_tl

results in \l_tmpa_tl having the contents ‘‘Hello’’---[,][␣]‘‘world’’---[!]. Note
in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

60

8.7 Scratch regular expressions

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_regex
\l_tmpb_regex

New: 2017-12-11

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

8.8 Bugs, misfeatures, future work, and other possi-
bilities

The following need to be done now.

• Rewrite the documentation in a more ordered way, perhaps add a bnf?

Additional error-checking to come.

• Clean up the use of messages.

• Cleaner error reporting in the replacement phase.

• Add tracing information.

• Detect attempts to use back-references and other non-implemented syntax.

• Test for the maximum register \c_max_register_int.

• Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

• The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.

Code improvements to come.

• Shift arrays so that the useful information starts at position 1.

• Only build \c{...} once.

• Use arrays for the left and right state stacks when compiling a regex.

• Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

• Quantifiers for \u and assertions.

• When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

• If possible, when a state is reused by the same thread, kill other subthreads.

61

• Use an array rather than \g__regex_balance_tl to build the function __regex_-
replacement_balance_one_match:n.

• Reduce the number of epsilon-transitions in alternatives.

• Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

• Optimize groups with no alternative.

• Optimize states with a single __regex_action_free:n.

• Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

• Optimize the use of \int_step_... functions.

• Groups don’t capture within regexes for csnames; optimize and document.

• Better “show” for anchors, properties, and catcode tests.

• Does \K really need a new state for itself?

• When compiling, use a boolean in_cs and less magic numbers.

The following features are likely to be implemented at some point in the future.

• General look-ahead/behind assertions.

• Regex matching on external files.

• Conditional subpatterns with look ahead/behind: “if what follows is [. . .], then
[. . .]”.

• (*..) and (?..) sequences to set some options.

• UTF-8 mode for pdfTEX.

• Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ^, and \Z, \z and $ should differ.

• Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of pcre or Perl may or may not be implemented.

• Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \tl_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

• Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

62

• Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of pcre or Perl will definitely not be implemented.

• Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

• Recursion: this is a non-regular feature.

• Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

• Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

• Backtracking control verbs: intrinsically tied to backtracking.

• \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, . . .), making it harder to produce useful error message.

• \cx, similar to TEX’s own \^^x.

• Comments: TEX already has its own system for comments.

• \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

• \C single byte in UTF-8 mode: X ETEX and LuaTEX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

63

Chapter 9

The l3prg module
Control structures

Conditional processing in LATEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are ⟨true⟩ and ⟨false⟩.

LATEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean ⟨true⟩ or ⟨false⟩.
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean ⟨true⟩ or ⟨false⟩ values to be used
in testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

64

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn \⟨name⟩:⟨arg spec⟩ ⟨parameters⟩ {⟨conditions⟩}
{⟨code⟩}
\prg_new_conditional:Nnn \⟨name⟩:⟨arg spec⟩ {⟨conditions⟩} {⟨code⟩}

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_gset_conditional:Npnn
\prg_new_protected_conditional:Npnn
\prg_set_protected_conditional:Npnn
\prg_gset_protected_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn
\prg_new_protected_conditional:Nnn
\prg_set_protected_conditional:Nnn
\prg_gset_protected_conditional:Nnn

Updated: 2022-11-01

These functions create a family of conditionals using the same ⟨code⟩ to perform the test
created. Those non-protected conditionals are expandable if ⟨code⟩ is. The new versions
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set versions do no check and perform assignments locally (cf. \cs_set:Npn). The
conditionals created are dependent on the comma-separated list of ⟨conditions⟩, which
should be one or more of T, F and TF, and for non-protected conditionals p. For public
conditionals, a full set of forms should be provided: this contrasts with strictly internal
conditionals, where only the required subset need be defined.

The conditionals are defined by \prg_new_conditional:Npnn and friends as:

• \⟨name⟩_p:⟨arg spec⟩ — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

• \⟨name⟩:⟨arg spec⟩T — a function with one more argument than the original ⟨arg
spec⟩ demands. The ⟨true branch⟩ code in this additional argument will be left
on the input stream only if the test is true.

• \⟨name⟩:⟨arg spec⟩F — a function with one more argument than the original ⟨arg
spec⟩ demands. The ⟨false branch⟩ code in this additional argument will be left
on the input stream only if the test is false.

• \⟨name⟩:⟨arg spec⟩TF — a function with two more argument than the original
⟨arg spec⟩ demands. The ⟨true branch⟩ code in the first additional argument
will be left on the input stream if the test is true, while the ⟨false branch⟩ code
in the second argument will be left on the input stream if the test is false.

The ⟨code⟩ of the test may use ⟨parameters⟩ as specified by the second argument to
\prg_set_conditional:Npnn: this should match the ⟨argument specification⟩ but
this is not enforced. The Nnn versions infer the number of arguments from the argument
specification given (cf. \cs_new:Nn, etc.). Within the ⟨code⟩, the functions \prg_-
return_true: and \prg_return_false: are used to indicate the logical outcomes of the
test.

An example can easily clarify matters here:

65

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if_meaning:w \l_tmpa_tl #1
\prg_return_true:

\else:
\if_meaning:w \l_tmpa_tl #2
\prg_return_true:

\else:
\prg_return_false:

\fi:
\fi:

}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the ⟨conditions⟩ list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

The special case where the code of a conditional ends with \prg_return_true:
\else: \prg_return_false: \fi: is optimized.

\prg_new_eq_conditional:NNn \⟨name1⟩:⟨arg spec⟩ \⟨name2⟩:⟨arg spec⟩ {⟨conditions⟩}\prg_new_eq_conditional:NNn
\prg_set_eq_conditional:NNn
\prg_gset_eq_conditional:NNn

Updated: 2023-05-26

These functions copy a family of conditionals. The new version checks for existing defin-
itions (cf. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of ⟨conditions⟩, which
should be one or more of p, T, F and TF.

\prg_return_true:
\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions exactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_return_true: ⋆
\prg_return_false: ⋆

66

\prg_generate_conditional_variant:Nnn \⟨name⟩:⟨arg spec⟩ {⟨variant
argument specifiers⟩} {⟨condition specifiers⟩}

\prg_generate_conditional_variant:Nnn

New: 2017-12-12

Defines argument-specifier variants of conditionals. This is equivalent to running
\cs_generate_variant:Nn ⟨conditional⟩ {⟨variant argument specifiers⟩} on each
⟨conditional⟩ described by the ⟨condition specifiers⟩. These base-form ⟨conditionals⟩
are obtained from the ⟨name⟩ and ⟨arg spec⟩ as described for \prg_new_conditional:Npnn,
and they should be defined.

9.2 The boolean data type
This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, LATEX 2ε and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N ⟨boolean⟩

Creates a new ⟨boolean⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨boolean⟩ is initially false.

\bool_new:N
\bool_new:c

\bool_const:Nn ⟨boolean⟩ {⟨boolexpr⟩}

Creates a new constant ⟨boolean⟩ or raises an error if the name is already taken. The
value of the ⟨boolean⟩ is set globally to the result of evaluating the ⟨boolexpr⟩.

\bool_const:Nn
\bool_const:cn

New: 2017-11-28

\bool_set_false:N ⟨boolean⟩

Sets ⟨boolean⟩ logically false.
\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N ⟨boolean⟩

Sets ⟨boolean⟩ logically true.
\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

67

\bool_set_eq:NN ⟨boolean1⟩ ⟨boolean2⟩

Sets ⟨boolean1⟩ to the current value of ⟨boolean2⟩.
\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn ⟨boolean⟩ {⟨boolexpr⟩}

Evaluates the ⟨boolean expression⟩ as described for \bool_if:nTF, and sets the
⟨boolean⟩ variable to the logical truth of this evaluation.

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_set_inverse:N ⟨boolean⟩

Toggles the ⟨boolean⟩ from true to false and conversely: sets it to the inverse of its
current value.

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

New: 2018-05-10

\bool_if_p:N ⟨boolean⟩
\bool_if:NTF ⟨boolean⟩ {⟨true code⟩} {⟨false code⟩}

Tests the current truth of ⟨boolean⟩, and continues expansion based on this result.

\bool_if_p:N ⋆
\bool_if_p:c ⋆
\bool_if:NTF ⋆
\bool_if:cTF ⋆

Updated: 2017-07-15

\bool_to_str:N ⟨boolean⟩
\bool_to_str:n ⟨boolean expression⟩

Expands to the string true or false depending on the logical truth of the ⟨boolean⟩ or
⟨boolean expression⟩.

\bool_to_str:N ⋆
\bool_to_str:c ⋆
\bool_to_str:n ⋆

New: 2021-11-01

Updated: 2023-11-14

\bool_show:N ⟨boolean⟩

Displays the logical truth of the ⟨boolean⟩ on the terminal.
\bool_show:N
\bool_show:c

New: 2012-02-09

Updated: 2021-04-29

\bool_show:n {⟨boolean expression⟩}

Displays the logical truth of the ⟨boolean expression⟩ on the terminal.
\bool_show:n

New: 2012-02-09

Updated: 2017-07-15

\bool_log:N ⟨boolean⟩

Writes the logical truth of the ⟨boolean⟩ in the log file.
\bool_log:N
\bool_log:c

New: 2014-08-22

Updated: 2021-04-29

\bool_log:n {⟨boolean expression⟩}

Writes the logical truth of the ⟨boolean expression⟩ in the log file.
\bool_log:n

New: 2014-08-22

Updated: 2017-07-15

68

\bool_if_exist_p:N ⟨boolean⟩
\bool_if_exist:NTF ⟨boolean⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨boolean⟩ is currently defined. This does not check that the ⟨boolean⟩
really is a boolean variable.

\bool_if_exist_p:N ⋆
\bool_if_exist_p:c ⋆
\bool_if_exist:NTF ⋆
\bool_if_exist:cTF ⋆

New: 2012-03-03

9.2.1 Constant and scratch booleans

Constants that represent true and false, respectively. Used to implement predicates.\c_true_bool
\c_false_bool

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\l_tmpa_bool
\l_tmpb_bool

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\g_tmpa_bool
\g_tmpb_bool

9.3 Boolean expressions
As we have a boolean datatype and predicate functions returning boolean ⟨true⟩
or ⟨false⟩ values, it seems only fitting that we also provide a parser for ⟨boolean
expressions⟩.

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean ⟨true⟩ or ⟨false⟩. It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than ||). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }

) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.
Contrarily to some other programming languages, the operators && and || evaluate

both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)

69

arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \l_tmpa_bool were true.

(\l_tmpa_bool || \token_if_eq_meaning_p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn
{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 = 3 } }
{ \int_compare_p:n { 4 <= 4 } }
{ \int_compare_p:n { 1 = \error } } % skipped

}
}
{ ! \int_compare_p:n { 2 = 4 } }

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {⟨boolean expression⟩}
\bool_if:nTF {⟨boolean expression⟩} {⟨true code⟩} {⟨false code⟩}

Tests the current truth of ⟨boolean expression⟩, and continues expansion based on this
result. The ⟨boolean expression⟩ should consist of a series of predicates or boolean
variables with the logical relationship between these defined using && (“And”), || (“Or”),
! (“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_if_p:n ⋆
\bool_if:nTF ⋆

Updated: 2017-07-15

\bool_lazy_all_p:n { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} }
\bool_lazy_all:nTF { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} } {⟨true code⟩}
{⟨false code⟩}

Implements the “And” operation on the ⟨boolean expressions⟩, hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the ⟨boolean expressions⟩ which are needed to determine the result of \bool_-
lazy_all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two
⟨boolean expressions⟩.

\bool_lazy_all_p:n ⋆
\bool_lazy_all:nTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_lazy_and_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_lazy_and:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the ⟨boolexpr2⟩ is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two ⟨boolean expressions⟩.

\bool_lazy_and_p:nn ⋆
\bool_lazy_and:nnTF ⋆

New: 2015-11-15

Updated: 2017-07-15

70

\bool_lazy_any_p:n { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} }
\bool_lazy_any:nTF { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} } {⟨true code⟩}
{⟨false code⟩}

Implements the “Or” operation on the ⟨boolean expressions⟩, hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the ⟨boolean expressions⟩ which are needed to determine the result of \bool_-
lazy_any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two
⟨boolean expressions⟩.

\bool_lazy_any_p:n ⋆
\bool_lazy_any:nTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_lazy_or_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_lazy_or:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the ⟨boolexpr2⟩ is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two ⟨boolean expressions⟩.

\bool_lazy_or_p:nn ⋆
\bool_lazy_or:nnTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_not_p:n {⟨boolean expression⟩}

Function version of !(⟨boolean expression⟩) within a boolean expression.
\bool_not_p:n ⋆

Updated: 2017-07-15

\bool_xor_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_xor:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

\bool_xor_p:nn ⋆
\bool_xor:nnTF ⋆

New: 2018-05-09

9.4 Logical loops
Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn ⟨boolean⟩ {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean⟩. If it is false then the ⟨code⟩ is inserted into the input stream
again and the process loops until the ⟨boolean⟩ is true.

\bool_do_until:Nn ✩

\bool_do_until:cn ✩

Updated: 2017-07-15

\bool_do_while:Nn ⟨boolean⟩ {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean⟩. If it is true then the ⟨code⟩ is inserted into the input stream
again and the process loops until the ⟨boolean⟩ is false.

\bool_do_while:Nn ✩

\bool_do_while:cn ✩

Updated: 2017-07-15

\bool_until_do:Nn ⟨boolean⟩ {⟨code⟩}

This function first checks the logical value of the ⟨boolean⟩. If it is false the ⟨code⟩ is
placed in the input stream and expanded. After the completion of the ⟨code⟩ the truth
of the ⟨boolean⟩ is re-evaluated. The process then loops until the ⟨boolean⟩ is true.

\bool_until_do:Nn ✩

\bool_until_do:cn ✩

Updated: 2017-07-15

\bool_while_do:Nn ⟨boolean⟩ {⟨code⟩}

This function first checks the logical value of the ⟨boolean⟩. If it is true the ⟨code⟩ is
placed in the input stream and expanded. After the completion of the ⟨code⟩ the truth
of the ⟨boolean⟩ is re-evaluated. The process then loops until the ⟨boolean⟩ is false.

\bool_while_do:Nn ✩

\bool_while_do:cn ✩

Updated: 2017-07-15

71

\bool_do_until:nn {⟨boolean expression⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical value
of the ⟨boolean expression⟩ as described for \bool_if:nTF. If it is false then the
⟨code⟩ is inserted into the input stream again and the process loops until the ⟨boolean
expression⟩ evaluates to true.

\bool_do_until:nn ✩

Updated: 2017-07-15

\bool_do_while:nn {⟨boolean expression⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean expression⟩ as described for \bool_if:nTF. If it is true then the
⟨code⟩ is inserted into the input stream again and the process loops until the ⟨boolean
expression⟩ evaluates to false.

\bool_do_while:nn ✩

Updated: 2017-07-15

\bool_until_do:nn {⟨boolean expression⟩} {⟨code⟩}

This function first checks the logical value of the ⟨boolean expression⟩ (as described
for \bool_if:nTF). If it is false the ⟨code⟩ is placed in the input stream and ex-
panded. After the completion of the ⟨code⟩ the truth of the ⟨boolean expression⟩ is
re-evaluated. The process then loops until the ⟨boolean expression⟩ is true.

\bool_until_do:nn ✩

Updated: 2017-07-15

\bool_while_do:nn {⟨boolean expression⟩} {⟨code⟩}

This function first checks the logical value of the ⟨boolean expression⟩ (as described for
\bool_if:nTF). If it is true the ⟨code⟩ is placed in the input stream and expanded. After
the completion of the ⟨code⟩ the truth of the ⟨boolean expression⟩ is re-evaluated. The
process then loops until the ⟨boolean expression⟩ is false.

\bool_while_do:nn ✩

Updated: 2017-07-15

72

\bool_case:nTF
{
{⟨boolexpr case1⟩} {⟨code case1⟩}
{⟨boolexpr case2⟩} {⟨code case2⟩}
...
{⟨boolexpr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

Evaluates in turn each of the ⟨boolean expression case⟩s until the first one that eval-
uates to true. The ⟨code⟩ associated to this first case is left in the input stream, followed
by the ⟨true code⟩, and other cases are discarded. If none of the cases match then only
the ⟨false code⟩ is inserted. The function \bool_case:n, which does nothing if there
is no match, is also available. For example

\bool_case:nF
{
{ \dim_compare_p:n { \l__mypkg_wd_dim <= 10pt } }

{ Fits }
{ \int_compare_p:n { \l__mypkg_total_int >= 10 } }

{ Many }
{ \l__mypkg_special_bool }

{ Special }
}
{ No idea! }

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way
similar to some other language’s “if . . . elseif . . . elseif . . . else . . . ”.

\bool_case:n ⋆
\bool_case:nTF ⋆

New: 2023-05-03

9.5 Producing multiple copies

\prg_replicate:nn {⟨integer expression⟩} {⟨tokens⟩}

Evaluates the ⟨integer expression⟩ (which should be zero or positive) and creates the
resulting number of copies of the ⟨tokens⟩. The function is both expandable and safe
for nesting. It yields its result after two expansion steps.

\prg_replicate:nn ⋆

Updated: 2011-07-04

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in horizontal mode.

\mode_if_horizontal_p: ⋆
\mode_if_horizontal:TF ⋆

\mode_if_inner_p:
\mode_if_inner:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in inner mode.

\mode_if_inner_p: ⋆
\mode_if_inner:TF ⋆

73

\mode_if_math_p:
\mode_if_math:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in maths mode.

\mode_if_math_p: ⋆
\mode_if_math:TF ⋆

Updated: 2011-09-05

\mode_if_vertical_p:
\mode_if_vertical:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in vertical mode.

\mode_if_vertical_p: ⋆
\mode_if_vertical:TF ⋆

9.7 Primitive conditionals

\if_predicate:w ⟨predicate⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the ⟨predicate⟩ but
to make the coding clearer this should be done through \if_bool:N.)

\if_predicate:w ⋆

\if_bool:N ⟨boolean⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

This function takes a boolean variable and branches according to the result.
\if_bool:N ⋆

9.8 Nestable recursions and mappings
There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \⟨type⟩_map_break: {⟨code⟩}

Used to mark the end of a recursion or mapping: the functions \⟨type⟩_map_break:
and \⟨type⟩_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the ⟨code⟩ is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

\prg_break_point:Nn ⋆

New: 2018-03-26

\prg_map_break:Nn \⟨type⟩_map_break: {⟨user code⟩}
...
\prg_break_point:Nn \⟨type⟩_map_break: {⟨ending code⟩}

Breaks a recursion in mapping contexts, inserting in the input stream the ⟨user code⟩
after the ⟨ending code⟩ for the loop. The function breaks loops, inserting their ⟨ending
code⟩, until reaching a loop with the same ⟨type⟩ as its first argument. This \⟨type⟩_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
⟨type⟩.

For types with mappings defined in the kernel, \⟨type⟩_map_break: and \⟨type⟩_-
map_break:n are defined as \prg_map_break:Nn \⟨type⟩_map_break: {} and the same
with {} omitted.

\prg_map_break:Nn ⋆

New: 2018-03-26

74

9.8.1 Simple mappings
In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break_point: ⋆

New: 2018-03-27

\prg_break:n {⟨code⟩} ... \prg_break_point:

Breaks a recursion which has no ⟨ending code⟩ and which is not a user-breakable map-
ping (see for instance implementation of \int_step_function:nnnN), and inserts the
⟨code⟩ in the input stream.

\prg_break: ⋆
\prg_break:n ⋆

New: 2018-03-27

9.9 Internal programming functions

\group_align_safe_begin:
...
\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

\group_align_safe_begin: ⋆
\group_align_safe_end: ⋆

Updated: 2011-08-11

75

Chapter 10

The l3sys module
System/runtime functions

10.1 The name of the job

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This is the TEX primitive \jobname. For technical reasons, the string
here is not of the same internal form as other, but may be manipulated using normal string
functions.

\c_sys_jobname_str

New: 2015-09-19

Updated: 2019-10-27

10.2 Date and time

The date and time at which the current job was started: these are all reported as integers.

TEXhackers note: Whilst the underlying TEX primitives \time, \day, \month, and \year
can be altered by the user, this interface to the time and date is intended to be the “real” values.

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int

New: 2015-09-22

The timestamp for the current job: the format is as described for \file_timestamp:n.\c_sys_timestamp_str

New: 2023-08-27

76

10.3 Engine

\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF {⟨true code⟩} {⟨false code⟩}
Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)ptex tests are for ε-pTEX and ε-upTEX
as expl3 requires the ε-TEX extensions. Each conditional is true for exactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for ε-pTEX but false for ε-upTEX.

\sys_if_engine_luatex_p: ⋆
\sys_if_engine_luatex:TF ⋆
\sys_if_engine_pdftex_p: ⋆
\sys_if_engine_pdftex:TF ⋆
\sys_if_engine_ptex_p: ⋆
\sys_if_engine_ptex:TF ⋆
\sys_if_engine_uptex_p: ⋆
\sys_if_engine_uptex:TF ⋆
\sys_if_engine_xetex_p: ⋆
\sys_if_engine_xetex:TF ⋆

New: 2015-09-07

\sys_if_engine_opentype_p:
\sys_if_engine_opentype:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_engine_opentype_p: ⋆
\sys_if_engine_opentype:TF ⋆

New: 2024-11-05

Conditional which allows functionality-specific code to be used. The test is true for
engines which can use OpenType fonts and thus full Unicode typesetting. This tests
for features not engine name, but currently is equivalent to requiring either X ETEX or
LuaTEX.

TEXhackers note: The underlying test here checks for \Umathcode, which is used to
implement OpenType math font typesetting. Any engine which should give a true result here
needs to provide general Unicode support (accepting the full UTF-8 range for character codes),
a mechanism to load system fonts and a suitable interface for math mode typesetting.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

\c_sys_engine_str

New: 2015-09-19

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

\c_sys_engine_exec_str

New: 2020-08-20

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex
for LATEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e. the \fmtname).

\c_sys_engine_format_str

New: 2020-08-20

77

The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdfTEX and LuaTEX this is of the form

⟨major⟩.⟨minor⟩.⟨revision⟩

For X ETEX, the form is

⟨major⟩.⟨minor⟩

For pTEX and upTEX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pTEX version, the upTEX version and the
e-pTEX version.

p⟨major⟩.⟨minor⟩.⟨revision⟩-u⟨major⟩.⟨minor⟩-⟨epTeX⟩

where the u part is only present for upTEX.

\c_sys_engine_version_str

New: 2018-05-02

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2−16 seconds).

\sys_timer: ⋆

New: 2021-05-12

\sys_if_timer_exist_p:
\sys_if_timer_exist:TF {⟨true code⟩} {⟨false code⟩}
Tests whether current engine has timer support.

\sys_if_timer_exist_p: ⋆
\sys_if_timer_exist:TF ⋆

New: 2021-05-12

10.4 Output format

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF {⟨true code⟩} {⟨false code⟩}
Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

\sys_if_output_dvi_p: ⋆
\sys_if_output_dvi:TF ⋆
\sys_if_output_pdf_p: ⋆
\sys_if_output_pdf:TF ⋆

New: 2015-09-19

The current output mode given as a lower case string: one of dvi or pdf.\c_sys_output_str

New: 2015-09-19

78

10.5 Platform

\sys_if_platform_unix_p:
\sys_if_platform_unix:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_platform_unix_p: ⋆
\sys_if_platform_unix:TF ⋆
\sys_if_platform_windows_p: ⋆
\sys_if_platform_windows:TF ⋆

New: 2018-07-27

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, i.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.\c_sys_platform_str

New: 2018-07-27

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_rand_seed: ⋆

New: 2017-05-27

\sys_gset_rand_seed:n {⟨int expr⟩}

Globally sets the seed for the engine’s pseudo-random number generator to the ⟨integer
expression⟩. This random seed affects all \..._rand functions (such as \int_rand:nn
or \clist_rand_item:n) as well as other packages relying on the engine’s random num-
ber generator. In engines without random number support this produces an error.

TEXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute
value is used and any number beyond 228 is divided by an appropriate power of 2. We recommend
using an integer in [0, 228 − 1].

\sys_gset_rand_seed:n

New: 2017-05-27

79

10.7 Access to the shell

\sys_get_shell:nnN {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩
\sys_get_shell:nnNTF {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false
code⟩}

Defines ⟨tl var⟩ to the text returned by the ⟨shell command⟩. The ⟨shell command⟩ is
converted to a string using \tl_to_str:n. Category codes may need to be set appropri-
ately via the ⟨setup⟩ argument, which is run just before running the ⟨shell command⟩
(in a group). If shell escape is disabled, the ⟨tl var⟩ will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the ⟨shell
command⟩. The \sys_get_shell:nnNTF conditional inserts the ⟨true code⟩ if the shell
is available and no quote is detected, and the ⟨false code⟩ otherwise.

Note: It is not possible to tell from TEX if a command is allowed in restricted shell
escape. If restricted escape is enabled, the true branch is taken: if the command is
forbidden at this stage, a low-level TEX error will arise.

\sys_get_shell:nnN
\sys_get_shell:nnNTF

New: 2019-09-20

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled

1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\c_sys_shell_escape_int

New: 2017-05-27

\sys_if_shell_p:
\sys_if_shell:TF {⟨true code⟩} {⟨false code⟩}
Performs a check for whether shell escape is enabled. This returns true if either of
restricted or unrestricted shell escape is enabled.

\sys_if_shell_p: ⋆
\sys_if_shell:TF ⋆

New: 2017-05-27

\sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_shell_unrestricted_p: ⋆
\sys_if_shell_unrestricted:TF ⋆

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

\sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_shell_restricted_p: ⋆
\sys_if_shell_restricted:TF ⋆

New: 2017-05-27

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:TF.

\sys_shell_now:n {⟨tokens⟩}

Execute ⟨tokens⟩ through shell escape immediately.
\sys_shell_now:n
\sys_shell_now:e

New: 2017-05-27

80

\sys_shell_shipout:n {⟨tokens⟩}

Execute ⟨tokens⟩ through shell escape at shipout.
\sys_shell_shipout:n
\sys_shell_shipout:e

New: 2017-05-27

10.8 System queries
Some queries can be made about the file system, etc., without needing to use unrestricted
shell escape. This is carried out using the script l3sys-query, which is documented
separately. The wrappers here use this script, if available, to obtain system information
that is not directly available within the TEX run. Note that if restricted shell escape is
disabled, no results can be obtained.

\sys_get_query:nN {⟨cmd⟩} ⟨tl var⟩
\sys_get_query:nnN {⟨cmd⟩} {⟨spec⟩} ⟨tl var⟩
\sys_get_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the information returned by the l3sys-query ⟨cmd⟩, potentially
supplying the ⟨options⟩ and ⟨spec⟩ to the query call. The valid ⟨cmd⟩ names are at
present

• pwd Returns the present working directory

• ls Returns a directory listing, using the ⟨spec⟩ to select files and applying the
⟨options⟩ if given

The ⟨spec⟩ is likely to contain the wildcards * or ?, and will automatically be passed to
the script without shell expansion. In a glob is needed within the ⟨options⟩, this will
need to be protected from shell expansion using ’ tokens.

The ⟨spec⟩ and ⟨options⟩, if given, are expanded fully before passing to the under-
lying script.

Spaces in the output are stored as active tokens, allowing them to be replaced by
for example a visible space easily. Other non-letter characters in the ASCII range are
set to category code 12. The category codes for characters out of the ASCII range are
left unchanged: typically this will mean that with an 8-bit engine, accented values can
be typeset directly whilst in Unicode engines, standard category code setup will apply.

If more than one line of text is returned by the ⟨cmd⟩, these will be separated by
character 13 (^^M) tokens of category code 12. In most cases, \sys_split_query:nnnN
should be preferred when multi-line output is expected.

\sys_get_query:nN
\sys_get_query:nnN
\sys_get_query:nnnN

New: 2024-03-08

Updated: 2024-04-08

\sys_split_query:nN {⟨cmd⟩} ⟨seq var⟩
\sys_split_query:nnN {⟨cmd⟩} {⟨spec⟩} ⟨seq var⟩
\sys_split_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} ⟨seq var⟩

Works as described for \sys_split_query:nnnN, but sets the ⟨seq var⟩ to contain one
entry for each line returned by l3sys-query. This function should therefore be preferred
where multi-line return is expected, e.g. for the ls command.

\sys_split_query:nN
\sys_split_query:nnN
\sys_split_query:nnnN

New: 2024-03-08

81

10.9 Loading configuration data

\sys_load_backend:n {⟨backend⟩}

Loads the additional configuration file needed for backend support. If the ⟨backend⟩ is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

\sys_load_backend:n

New: 2019-09-12

\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.
\sys_ensure_backend:

New: 2022-07-29

Set to the name of the backend in use by \sys_load_backend:n when issued. Possible
values are

• pdftex

• luatex

• xetex

• dvips

• dvipdfmx

• dvisvgm

\c_sys_backend_str

\sys_load_debug:

Load the additional configuration file for debugging support.
\sys_load_debug:

New: 2019-09-12

10.9.1 Final settings

\sys_finalise:

Finalises all system-dependent functionality: required before loading a backend.
\sys_finalise:

New: 2019-10-06

82

Chapter 11

The l3msg module
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The l3msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by l3msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

11.1 Creating new messages
All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \␣ forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the LATEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.
Some authors may find the need to include spaces as ~ characters tedious. This can

be avoided by locally resetting the category code of ␣.

83

\char_set_catcode_space:n { ‘\ }
\msg_new:nnn { foo } { bar }

{Some message text using ’#1’ and usual message shorthands \{ \ \ \}.}
\char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters
is the method favored by the team.

\msg_new:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩}

Creates a ⟨message⟩ for a given ⟨module⟩. The message is defined to first give ⟨text⟩ and
then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available then a standard
text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters (#1 to #4) can
be used: these will be supplied at the time the message is used. An error is raised if the
⟨message⟩ already exists.

\msg_new:nnnn
\msg_new:nnee
\msg_new:nnn
\msg_new:nne

Updated: 2011-08-16

\msg_set:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩}

Sets up the text for a ⟨message⟩ for a given ⟨module⟩. The message is defined to first
give ⟨text⟩ and then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available
then a standard text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters
(#1 to #4) can be used: these will be supplied at the time the message is used.

\msg_set:nnnn
\msg_set:nnn

\msg_if_exist_p:nn {⟨module⟩} {⟨message⟩}
\msg_if_exist:nnTF {⟨module⟩} {⟨message⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨message⟩ for the ⟨module⟩ is currently defined.

\msg_if_exist_p:nn ⋆
\msg_if_exist:nnTF ⋆

New: 2012-03-03

11.2 Customizable information for message modules

\msg_module_name:n {⟨module⟩}

Expands to the public name of the ⟨module⟩ as defined by \g_msg_module_name_prop
(or otherwise leaves the ⟨module⟩ unchanged).

\msg_module_name:n ⋆

New: 2018-10-10

\msg_module_type:n {⟨module⟩}

Expands to the description which applies to the ⟨module⟩, for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\msg_module_type:n ⋆

New: 2018-10-10

Provides a mapping between the module name used for messages, and that for documen-
tation.

\g_msg_module_name_prop

New: 2018-10-10

Provides a mapping between the module name used for messages, and that type of
module. For example, for LATEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

\g_msg_module_type_prop

New: 2018-10-10

84

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_context: ✩

\msg_line_number:

Prints the current line number when a message is given.
\msg_line_number: ⋆

\msg_fatal_text:n {⟨module⟩}

Produces the standard text

Fatal Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_fatal_text:n ⋆

\msg_critical_text:n {⟨module⟩}

Produces the standard text

Critical Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_critical_text:n ⋆

\msg_error_text:n {⟨module⟩}

Produces the standard text

Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_error_text:n ⋆

\msg_warning_text:n {⟨module⟩}

Produces the standard text

Package ⟨module⟩ Warning

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the ⟨module⟩ name, and will affect all messages using
the expl3 mechanism.

\msg_warning_text:n ⋆

85

\msg_info_text:n {⟨module⟩}

Produces the standard text:

Package ⟨module⟩ Info

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the ⟨module⟩ name, and will affect all messages using
the expl3 mechanism.

\msg_info_text:n ⋆

\msg_see_documentation_text:n {⟨module⟩}\msg_see_documentation_text:n ⋆

Updated: 2018-09-30

Produces the standard text

See the ⟨module⟩ documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. The name of the ⟨module⟩ is produced
using \msg_module_name:n.

11.4 Issuing messages
Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the e-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

• fatal, ending the TEX run;

• critical, ending the file being input;

• error, interrupting the TEX run without ending it;

• warning, written to terminal and log file, for important messages that may require
corrections by the user;

• note (less common than info) for important information messages written to the
terminal and log file;

• info for normal information messages written to the log file only;

• term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

• none for suppressed messages.

86

\msg_fatal:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_fatal:nnnnnn
\msg_fatal:nneeee
\msg_fatal:nnnnn
\msg_fatal:(nneee|nnnee)
\msg_fatal:nnnn
\msg_fatal:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_fatal:nnn
\msg_fatal:(nnV|nne)
\msg_fatal:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

\msg_critical:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩}
{⟨arg three⟩} {⟨arg four⟩}

\msg_critical:nnnnnn
\msg_critical:nneeee
\msg_critical:nnnnn
\msg_critical:(nneee|nnnee)
\msg_critical:nnnn
\msg_critical:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_critical:nnn
\msg_critical:(nnV|nne)
\msg_critical:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_error:nnnnnn
\msg_error:nneeee
\msg_error:nnnnn
\msg_error:(nneee|nnnee)
\msg_error:nnnn
\msg_error:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_error:nnn
\msg_error:(nnV|nne)
\msg_error:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

87

\msg_warning:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_warning:nnnnnn
\msg_warning:nneeee
\msg_warning:nnnnn
\msg_warning:(nneee|nnnee)
\msg_warning:nnnn
\msg_warning:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_warning:nnn
\msg_warning:(nnV|nne)
\msg_warning:nn

Updated: 2012-08-11

Issues ⟨module⟩ warning ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The warning text is added to the log file and the terminal, but
the TEX run is not interrupted.

\msg_note:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}
\msg_info:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_note:nnnnnn
\msg_note:nneeee
\msg_note:nnnnn
\msg_note:(nneee|nnnee)
\msg_note:nnnn
\msg_note:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_note:nnn
\msg_note:(nnV|nne)
\msg_note:nn
\msg_info:nnnnnn
\msg_info:nneeee
\msg_info:nnnnn
\msg_info:(nneee|nnnee)
\msg_info:nnnn
\msg_info:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_info:nnn
\msg_info:(nnV|nne)
\msg_info:nn

New: 2021-05-18

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. For the more common \msg_info:nnnnnn, the information text is
added to the log file only, while \msg_note:nnnnnn adds the info text to both the log file
and the terminal. The TEX run is not interrupted.

88

\msg_term:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}
\msg_log:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_term:nnnnnn
\msg_term:nneeee
\msg_term:nnnnn
\msg_term:(nneee|nnnee)
\msg_term:nnnn
\msg_term:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_term:nnn
\msg_term:(nnV|nne)
\msg_term:nn
\msg_log:nnnnnn
\msg_log:nneeee
\msg_log:nnnnn
\msg_log:(nneee|nnnee)
\msg_log:nnnn
\msg_log:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_log:nnn
\msg_log:(nnV|nne)
\msg_log:nn

Updated: 2012-08-11

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The output is briefer than \msg_info:nnnnnn, omitting for in-
stance the module name. It is added to the log file by \msg_log:nnnnnn while \msg_-
term:nnnnnn also prints it on the terminal.

\msg_none:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_none:nnnnnn
\msg_none:nneeee
\msg_none:nnnnn
\msg_none:(nneee|nnnee)
\msg_none:nnnn
\msg_none:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_none:nnn
\msg_none:(nnV|nne)
\msg_none:nn

Updated: 2012-08-11

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

89

11.4.1 Messages for showing material

\msg_show:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_show:nnnnnn
\msg_show:nneeee
\msg_show:nnnnn
\msg_show:(nneee|nnnee)
\msg_show:nnnn
\msg_show:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_show:nnn
\msg_show:(nnV|nne)
\msg_show:nn

New: 2017-12-04

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The information text is shown on the terminal and the TEX run is
interrupted in a manner similar to \tl_show:n. This is used in conjunction with \msg_-
show_item:n and similar functions to print complex variable contents completely. If the
formatted text does not contain >~ at the start of a line, an additional line >~. will be
put at the end. In addition, a final period is added if not present.

\seq_map_function:NN ⟨seq⟩ \msg_show_item:n
\prop_map_function:NN ⟨prop⟩ \msg_show_item:nn

\msg_show_item:n ⋆
\msg_show_item_unbraced:n ⋆
\msg_show_item:nn ⋆
\msg_show_item_unbraced:nn ⋆

New: 2017-12-04

Used in the text of messages for \msg_show:nnnnnn to show or log a list of items or
key–value pairs. The output of \msg_show_item:n produces a newline, the prefix >,
two spaces, then the braced string representation of its argument. The two-argument
versions separates the key and value using ␣␣=>␣␣, and the unbraced versions don’t
print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_-
function:NN, \prop_map_function:NN, etc. For example, with a sequence \l_tmpa_seq
containing a, {b} and \c,

\seq_map_function:NN \l_tmpa_seq \msg_show_item:n

would expand to three lines:

>␣␣{a}
>␣␣{{b}}
>␣␣{\c␣}

11.4.2 Expandable error messages
In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error:nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools

90

to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

\msg_expandable_error:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩}
{⟨arg three⟩} {⟨arg four⟩}

\msg_expandable_error:nnnnnn ⋆
\msg_expandable_error:nnffff ⋆
\msg_expandable_error:nnnnn ⋆
\msg_expandable_error:nnfff ⋆
\msg_expandable_error:nnnn ⋆
\msg_expandable_error:nnff ⋆
\msg_expandable_error:nnn ⋆
\msg_expandable_error:nnf ⋆
\msg_expandable_error:nn ⋆

New: 2015-08-06

Updated: 2019-02-28

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\??? then prints “! ⟨module⟩: ”⟨error message⟩, which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages
Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }

to define a message, with

\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with

\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even

\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error

91

immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A → B, B → C and C → A in this order, then the A → B redirection is
cancelled.

\msg_redirect_class:nn {⟨class one⟩} {⟨class two⟩}

Changes the behaviour of messages of ⟨class one⟩ so that they are processed using the
code for those of ⟨class two⟩. Each ⟨class⟩ can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn {⟨module⟩} {⟨class one⟩} {⟨class two⟩}

Redirects message of ⟨class one⟩ for ⟨module⟩ to act as though they were from ⟨class
two⟩. Messages of ⟨class one⟩ from sources other than ⟨module⟩ are not affected by
this redirection. This function can be used to make some messages “silent” by default.
For example, all of the warning messages of ⟨module⟩ could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn {⟨module⟩} {⟨message⟩} {⟨class⟩}

Redirects a specific ⟨message⟩ from a specific ⟨module⟩ to act as a member of ⟨class⟩
of messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

\msg_redirect_name:nnn

Updated: 2012-04-27

92

Chapter 12

The l3file module
File and I/O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_..., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a ⟨file name⟩ argument, this argument may contain
both literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \l_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input–output stream management
As TEX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in LATEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

93

\ior_new:N ⟨stream⟩
\iow_new:N ⟨stream⟩

Globally reserves the name of the ⟨stream⟩, either for reading or for writing as appropri-
ate. The ⟨stream⟩ is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a ⟨stream⟩ which has not been opened is an error, and the ⟨stream⟩
will behave as the corresponding \c_term_....

\ior_new:N
\ior_new:c
\iow_new:N
\iow_new:c

New: 2011-09-26

Updated: 2011-12-27

\ior_open:Nn ⟨stream⟩ {⟨file name⟩}

Opens ⟨file name⟩ for reading using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until an \ior_close:N instruction is given or the TEX run ends. If the file is not found,
an error is raised.

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF ⟨stream⟩ {⟨file name⟩} {⟨true code⟩} {⟨false code⟩}

Opens ⟨file name⟩ for reading using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until a \ior_close:N instruction is given or the TEX run ends. The ⟨true code⟩ is then
inserted into the input stream. If the file is not found, no error is raised and the ⟨false
code⟩ is inserted into the input stream.

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

\iow_open:Nn ⟨stream⟩ {⟨file name⟩}

Opens ⟨file name⟩ for writing using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until a \iow_close:N instruction is given or the TEX run ends. Opening a file for writing
clears any existing content in the file (i.e. writing is not additive).

\iow_open:Nn
\iow_open:(NV|cn|cV)

Updated: 2012-02-09

\ior_shell_open:Nn ⟨stream⟩ {⟨shell command⟩}

Opens the pseudo-file created by the output of the ⟨shell command⟩ for reading using
⟨stream⟩ as the control sequence for access. If the ⟨stream⟩ was already open it is closed
before the new operation begins. The ⟨stream⟩ is available for access immediately and
will remain allocated to ⟨shell command⟩ until a \ior_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the ⟨shell command⟩, see \sys_get_shell:nnNTF.

\ior_shell_open:Nn

New: 2019-05-08

\iow_shell_open:Nn ⟨stream⟩ {⟨shell command⟩}

Opens the pseudo-file created by the output of the ⟨shell command⟩ for writing using
⟨stream⟩ as the control sequence for access. If the ⟨stream⟩ was already open it is closed
before the new operation begins. The ⟨stream⟩ is available for access immediately and
will remain allocated to ⟨shell command⟩ until an \iow_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the ⟨shell command⟩, see \sys_get_shell:nnNTF.

\iow_shell_open:Nn

New: 2023-05-25

94

\ior_close:N ⟨stream⟩
\iow_close:N ⟨stream⟩

Closes the ⟨stream⟩. Streams should always be closed when they are finished with as
this ensures that they remain available to other programmers.

\ior_close:N
\ior_close:c
\iow_close:N
\iow_close:c

Updated: 2012-07-31

\ior_show:N ⟨stream⟩
\ior_log:N ⟨stream⟩
\iow_show:N ⟨stream⟩
\iow_log:N ⟨stream⟩

Display (to the terminal or log file) the file name associated to the (read or write)
⟨stream⟩.

\ior_show:N
\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N
\iow_log:c

New: 2021-05-11

\ior_show_list:
\ior_log_list:
\iow_show_list:
\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

\ior_show_list:
\ior_log_list:
\iow_show_list:
\iow_log_list:

New: 2017-06-27

12.1.1 Reading from files
Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

95

\ior_get:NN ⟨stream⟩ ⟨tl var⟩
\ior_get:NNTF ⟨stream⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input ⟨stream⟩ and stores the result locally in the ⟨token list⟩
variable. The material read from the ⟨stream⟩ is tokenized by TEX according to the
category codes and \endlinechar in force when the function is used. Assuming normal
settings, any lines which do not end in a comment character % have the line ending
converted to a space, so for example input

a b c

results in a token list a␣b␣c␣. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \l_my_ior \l_tmpa_tl
\tl_set:Nn \l_tmpb_tl { \par }
\tl_if_eq:NNF \l_tmpa_tl \l_tmpb_tl
...

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the ⟨stream⟩ is not open
the ⟨tl var⟩ is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_get:NN
\ior_get:NNTF

New: 2012-06-24

Updated: 2019-03-23

\ior_str_get:NN ⟨stream⟩ ⟨tl var⟩
\ior_str_get:NNTF ⟨stream⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Function that reads one line from the file input ⟨stream⟩ and stores the result locally in
the ⟨token list⟩ variable. The material is read from the ⟨stream⟩ as a series of tokens
with category code 12 (other), with the exception of space characters which are given
category code 10 (space). Multiple whitespace characters are retained by this process. It
always only reads one line and any blank lines in the input result in the ⟨tl var⟩ being
empty. Unlike \ior_get:NN, line ends do not receive any special treatment. Thus input

a b c

results in a token list a b c with the letters a, b, and c having category code 12. In
the non-branching version, where the⟨stream⟩ is not open the ⟨tl var⟩ is set to \q_-
no_value.

TEXhackers note: This protected macro is a wrapper around the ε-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

\ior_str_get:NN
\ior_str_get:NNTF

New: 2016-12-04

Updated: 2019-03-23

All mappings are done at the current group level, i.e. any local assignments made
by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

96

\ior_map_inline:Nn ⟨stream⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to each set of ⟨lines⟩ obtained by calling \ior_get:NN
until reaching the end of the file. TEX ignores any trailing new-line marker from the file
it reads. The ⟨inline function⟩ should consist of code which receives the ⟨line⟩ as
#1.

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn ⟨stream⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨line⟩ in the ⟨stream⟩. The material is read
from the ⟨stream⟩ as a series of tokens with category code 12 (other), with the exception
of space characters which are given category code 10 (space). The ⟨inline function⟩
should consist of code which receives the ⟨line⟩ as #1. Note that TEX removes trailing
space and tab characters (character codes 32 and 9) from every line upon input. TEX
also ignores any trailing new-line marker from the file it reads.

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_variable:NNn ⟨stream⟩ ⟨tl var⟩ {⟨code⟩}

For each set of ⟨lines⟩ obtained by calling \ior_get:NN until reaching the end of the
file, stores the ⟨lines⟩ in the ⟨tl var⟩ then applies the ⟨code⟩. The ⟨code⟩ will usually
make use of the ⟨variable⟩, but this is not enforced. The assignments to the ⟨variable⟩
are local. Its value after the loop is the last set of ⟨lines⟩, or its original value if the
⟨stream⟩ is empty. TEX ignores any trailing new-line marker from the file it reads. This
function is typically faster than \ior_map_inline:Nn.

\ior_map_variable:NNn

New: 2019-01-13

\ior_str_map_variable:NNn ⟨stream⟩ ⟨variable⟩ {⟨code⟩}

For each ⟨line⟩ in the ⟨stream⟩, stores the ⟨line⟩ in the ⟨variable⟩ then applies the
⟨code⟩. The material is read from the ⟨stream⟩ as a series of tokens with category
code 12 (other), with the exception of space characters which are given category code 10
(space). The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨line⟩,
or its original value if the ⟨stream⟩ is empty. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads. This function is typically faster than
\ior_str_map_inline:Nn.

\ior_str_map_variable:NNn

New: 2019-01-13

97

\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the ⟨stream⟩ have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\ior_map_break:

New: 2012-06-29

\ior_map_break:n {⟨code⟩}

Used to terminate a \ior_map_... function before all lines in the ⟨stream⟩ have been
processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N ⟨stream⟩
\ior_if_eof:NTF ⟨stream⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the end of a file ⟨stream⟩ has been reached during a reading operation. The test
also returns a true value if the ⟨stream⟩ is not open.

\ior_if_eof_p:N ⋆
\ior_if_eof:NTF ⋆

Updated: 2012-02-10

98

12.1.2 Reading from the terminal

\ior_get_term:nN {⟨prompt⟩} ⟨tl var⟩

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the ⟨token list⟩ variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the ⟨prompt⟩ is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the ⟨prompt⟩ is given, it will appear in the terminal followed by an =, e.g.

prompt=

\ior_get_term:nN
\ior_str_get_term:nN

New: 2019-03-23

12.1.3 Writing to files

\iow_now:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ immediately (i.e. the write op-
eration is called on expansion of \iow_now:Nn).

\iow_now:Nn
\iow_now:(NV|Ne|cn|cV|ce)

Updated: 2012-06-05

\iow_log:n {⟨tokens⟩}

This function writes the given ⟨tokens⟩ to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_log:n
\iow_log:e

\iow_term:n {⟨tokens⟩}

This function writes the given ⟨tokens⟩ to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_term:n
\iow_term:e

\iow_shipout:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ when the current page is finalised
(i.e. at shipout). The e-type variants expand the ⟨tokens⟩ at the point where the
function is used but not when the resulting tokens are written to the ⟨stream⟩ (cf. \iow_-
shipout_e:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout:Nn
\iow_shipout:(Ne|cn|ce)

99

\iow_shipout_e:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ when the current page is finalised
(i.e. at shipout). The ⟨tokens⟩ are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than LATEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_shipout_e:Nn
\iow_shipout_e:(Ne|cn|ce)

Updated: 2023-09-17

\iow_char:N \⟨char⟩

Inserts ⟨char⟩ into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Ne \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_char:N ⋆

\iow_newline:

Function to add a new line within the ⟨tokens⟩ written to a file. The function has
no effect if writing is taking place without expansion (e.g. in the second argument of
\iow_now:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_e:Nn and direct
uses of primitive operations.

\iow_newline: ⋆

100

12.1.4 Wrapping lines in output

\iow_wrap:nnnN {⟨text⟩} {⟨run-on text⟩} {⟨set up⟩} ⟨function⟩

This function wraps the ⟨text⟩ to a fixed number of characters per line. At the start
of each line which is wrapped, the ⟨run-on text⟩ is inserted. The line character count
targeted is the value of \l_iow_line_count_int minus the number of characters in the
⟨run-on text⟩ for all lines except the first, for which the target number of characters is
simply \l_iow_line_count_int since there is no run-on text. The ⟨text⟩ and ⟨run-on
text⟩ are exhaustively expanded by the function, with the following substitutions:

• \\ or \iow_newline: may be used to force a new line,

• \␣ may be used to represent a forced space (for example after a control sequence),

• \#, \%, \{, \}, \~ may be used to represent the corresponding character,

• \iow_wrap_allow_break: may be used to allow a line-break without inserting a
space,

• \iow_indent:n may be used to indent a part of the ⟨text⟩ (not the ⟨run-on
text⟩).

Additional functions may be added to the wrapping by using the ⟨set up⟩, which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the ⟨text⟩ which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
⟨function⟩, which is typically a wrapper around a write operation. The output of
\iow_wrap:nnnN (i.e. the argument passed to the ⟨function⟩) consists of characters of
category “other” (category code 12), with the exception of spaces which have category
“space” (category code 10). This means that the output does not expand further when
written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an e-type expansion on the
⟨text⟩ to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the ⟨text⟩.

\iow_wrap:nnnN
\iow_wrap:nenN

New: 2012-06-28

Updated: 2017-12-04

\iow_wrap_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_wrap_allow_break:

New: 2023-04-25

\iow_indent:n {⟨text⟩}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents ⟨text⟩ by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the ⟨text⟩. In case the indented ⟨text⟩ should appear on separate
lines from the surrounding text, use \\ to force line breaks.

\iow_indent:n

New: 2011-09-21

101

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTEX systems.

\l_iow_line_count_int

New: 2012-06-24

12.1.5 Constant input–output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

\c_log_iow
\c_term_iow

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

12.1.6 Primitive conditionals

\if_eof:w ⟨stream⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests if the ⟨stream⟩ returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

\if_eof:w ⋆

12.2 File operations
12.2.1 Basic file operations

Contain the directory, name and extension of the current file. The directory is empty
if the file was loaded without an explicit path (i.e. if it is in the TEX search path), and
does not end in / other than the case that it is exactly equal to the root directory. The
⟨name⟩ and ⟨ext⟩ parts together make up the file name, thus the ⟨name⟩ part may be
thought of as the “job name” for the current file.

Note that TEX does not provide information on the ⟨dir⟩ and ⟨ext⟩ part for the
main (top level) file and that this file always has empty ⟨dir⟩ and ⟨ext⟩ components.
Also, the ⟨name⟩ here will be equal to \c_sys_jobname_str, which may be different from
the real file name (if set using --jobname, for example).

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

102

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and need not include the trailing slash. Spaces need not
be quoted.

TEXhackers note: When working as a package in LATEX 2ε, expl3 will automatically
append the current \input@path to the set of values from \l_file_search_path_seq.

\l_file_search_path_seq

New: 2017-06-18

Updated: 2023-06-15

\file_if_exist_p:n {⟨file name⟩}
\file_if_exist:nTF {⟨file name⟩} {⟨true code⟩} {⟨false code⟩}

Expands the argument of the ⟨file name⟩ to give a string, then searches for this string
using the current TEX search path and the additional paths controlled by \l_file_-
search_path_seq.

\file_if_exist_p:n ⋆
\file_if_exist_p:V ⋆
\file_if_exist:nTF ⋆
\file_if_exist:VTF ⋆

Updated: 2023-09-18

12.2.2 Information about files and file contents
Functions in this section return information about files as expl3 str data, except that the
non-expandable functions set their return token list to \q_no_value if the file requested
is not found. As such, comparison of file names, hashes, sizes, etc., should use \str_-
if_eq:nnTF rather than \tl_if_eq:nnTF and so on.

\file_hex_dump:n {⟨file name⟩}
\file_hex_dump:nnn {⟨file name⟩} {⟨start index⟩} {⟨end index⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the hexadecimal
dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {⟨start index⟩} and {⟨end index⟩} values work as
described for \str_range:nnn.

\file_hex_dump:n ✩

\file_hex_dump:V ✩

\file_hex_dump:nnn ✩

\file_hex_dump:Vnn ✩

New: 2019-11-19

\file_get_hex_dump:nN {⟨file name⟩} ⟨tl var⟩
\file_get_hex_dump:nnnN {⟨file name⟩} {⟨start index⟩} {⟨end index⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the ⟨file⟩. If the file is not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_hex_dump:nN
\file_get_hex_dump:VN
\file_get_hex_dump:nNTF
\file_get_hex_dump:VNTF
\file_get_hex_dump:nnnN
\file_get_hex_dump:VnnN
\file_get_hex_dump:nnnNTF
\file_get_hex_dump:VnnNTF

New: 2019-11-19

103

\file_mdfive_hash:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the MD5 sum gen-
erated from the contents of the file in the input stream. The file is read as bytes, which
means that in contrast to most TEX behaviour there will be a difference in result de-
pending on the line endings used in text files. The same file will produce the same result
between different engines: the algorithm used is the same in all cases. When the file is
not found, the result of expansion is empty.

\file_mdfive_hash:n ✩

\file_mdfive_hash:V ✩

New: 2019-09-03

\file_get_mdfive_hash:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_mdfive_hash:n to the ⟨file⟩. If the
file is not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:VN
\file_get_mdfive_hash:nNTF
\file_get_mdfive_hash:VNTF

New: 2017-07-11

Updated: 2019-02-16

\file_size:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_size:n ✩

\file_size:V ✩

New: 2019-09-03

\file_get_size:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_size:n to the ⟨file⟩. If the file is
not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_size:nN
\file_get_size:VN
\file_get_size:nNTF
\file_get_size:VNTF

New: 2017-07-09

Updated: 2019-02-16

\file_timestamp:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional
paths controlled by \l_file_search_path_seq. It then expands to leave the mod-
ification timestamp of the file in the input stream. The timestamp is of the form
D:⟨year⟩⟨month⟩⟨day⟩⟨hour⟩⟨minute⟩⟨second⟩⟨offset⟩, where the latter may be Z
(UTC) or ⟨plus-minus⟩⟨hours⟩’⟨minutes⟩’. When the file is not found, the result
of expansion is empty.

\file_timestamp:n ✩

\file_timestamp:V ✩

New: 2019-09-03

\file_get_timestamp:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_timestamp:n to the ⟨file⟩. If the file
is not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_timestamp:nN
\file_get_timestamp:VN
\file_get_timestamp:nNTF
\file_get_timestamp:VNTF

New: 2017-07-09

Updated: 2019-02-16

104

\file_compare_timestamp_p:nNn {⟨file-1⟩} ⟨relation⟩ {⟨file-2⟩}
\file_compare_timestamp:nNnTF {⟨file-1⟩} ⟨relation⟩ {⟨file-2⟩} {⟨true
code⟩} {⟨false code⟩}

\file_compare_timestamp_p:nNn ⋆
\file_compare_timestamp_p:(nNV|VNn|VNV) ⋆
\file_compare_timestamp:nNnTF ⋆
\file_compare_timestamp:(nNV|VNn|VNV)TF ⋆

New: 2019-05-13

Updated: 2019-09-20

Compares the file stamps on the two ⟨files⟩ as indicated by the ⟨relation⟩, and inserts
either the ⟨true code⟩ or ⟨false case⟩ as required. A file which is not found is treated
as older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different.

\file_get_full_name:nN {⟨file name⟩} ⟨tl var⟩
\file_get_full_name:nNTF {⟨file name⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
sets the ⟨tl var⟩ the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given ⟨file name⟩ has no extension but the file
found has that extension. In the non-branching version, the ⟨tl var⟩ will be set to
\q_no_value in the case that the file does not exist.

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VNTF

Updated: 2019-02-16

\file_full_name:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream.
This includes an extension .tex when the given ⟨file name⟩ has no extension but the
file found has that extension. If the file is not found on the path, the expansion is empty.

\file_full_name:n ✩

\file_full_name:V ✩

New: 2019-09-03

\file_parse_full_name:nNNN {⟨full name⟩} ⟨dir⟩ ⟨name⟩ ⟨ext⟩

Parses the ⟨full name⟩ and splits it into three parts, each of which is returned by setting
the appropriate local string variable:

• The ⟨dir⟩: everything up to the last / (path separator) in the ⟨file path⟩. As
with system PATH variables and related functions, the ⟨dir⟩ does not include the
trailing / unless it points to the root directory. If there is no path (only a file
name), ⟨dir⟩ is empty.

• The ⟨name⟩: everything after the last / up to the last ., where both of those
characters are optional. The ⟨name⟩ may contain multiple . characters. It is empty
if ⟨full name⟩ consists only of a directory name.

• The ⟨ext⟩: everything after the last . (including the dot). The ⟨ext⟩ is empty if
there is no . after the last /.

Before parsing, the ⟨full name⟩ is expanded until only non-expandable tokens re-
main, except that active characters are also not expanded. Quotes (") are invalid in file
names and are discarded from the input.

\file_parse_full_name:nNNN
\file_parse_full_name:VNNN

New: 2017-06-23

Updated: 2020-06-24

105

\file_parse_full_name:n {⟨full name⟩}

Parses the ⟨full name⟩ as described for \file_parse_full_name:nNNN, and leaves
⟨dir⟩, ⟨name⟩, and ⟨ext⟩ in the input stream, each inside a pair of braces.

\file_parse_full_name:n ⋆
\file_parse_full_name:V ⋆

New: 2020-06-24

\file_parse_full_name_apply:nN {⟨full name⟩} ⟨function⟩\file_parse_full_name_apply:nN ⋆
\file_parse_full_name_apply:VN ⋆

New: 2020-06-24

Parses the ⟨full name⟩ as described for \file_parse_full_name:nNNN, and passes
⟨dir⟩, ⟨name⟩, and ⟨ext⟩ as arguments to ⟨function⟩, as an n-type argument each,
in this order.

12.2.3 Accessing file contents

\file_get:nnN {⟨file name⟩} {⟨setup⟩} ⟨tl var⟩
\file_get:nnNTF {⟨file name⟩} {⟨setup⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Defines ⟨tl var⟩ to the contents of ⟨file name⟩. Category codes may need to be set
appropriately via the ⟨setup⟩ argument. The non-branching version sets the ⟨tl var⟩
to \q_no_value if the file is not found. The branching version runs the ⟨true code⟩
after the assignment to ⟨tl var⟩ if the file is found, and ⟨false code⟩ otherwise. The
file content will be tokenized using the current category code régime,

\file_get:nnN
\file_get:VnN
\file_get:nnNTF
\file_get:VnNTF

New: 2019-01-16

Updated: 2019-02-16

\file_input:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional LATEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_input:n
\file_input:V

Updated: 2017-06-26

\file_input_raw:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional TEX source. No data concerning the file is tracked. If the
file is not found, no action is taken.

TEXhackers note: This function is intended only for contexts where files must be read
purely by expansion, for example at the start of a table cell in an \halign.

\file_input_raw:n ⋆
\file_input_raw:V ⋆

New: 2023-05-18

\file_if_exist_input:n {⟨file name⟩}
\file_if_exist_input:nF {⟨file name⟩} {⟨false code⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
included in \l_file_search_path_seq. If found then reads in the file as additional LATEX
source as described for \file_input:n, otherwise inserts the ⟨false code⟩. Note that
these functions do not raise an error if the file is not found, in contrast to \file_input:n.

\file_if_exist_input:n
\file_if_exist_input:V
\file_if_exist_input:nF
\file_if_exist_input:VF

New: 2014-07-02

106

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TEXhackers note: This function must be used on a line on its own: TEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_input_stop:

New: 2017-07-07

\file_show_list:
\file_log_list:

These functions list all files loaded by LATEX 2ε commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

\file_show_list:
\file_log_list:

107

Chapter 13

The l3luatex module
LuaTEX-specific functions

The LuaTEX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pTEX, upTEX or X ETEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTEX engine are given in the LuaTEX manual.

13.1 Breaking out to Lua

\lua_now:n {⟨token list⟩}

The ⟨token list⟩ is first tokenized by TEX, which includes converting line ends to spaces
in the usual TEX manner and which respects currently-applicable TEX category codes.
The resulting ⟨Lua input⟩ is passed to the Lua interpreter for processing. Each \lua_-
now:n block is treated by Lua as a separate chunk. The Lua interpreter executes the
⟨Lua input⟩ immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTEX is
in use two expansions are required to yield the result of the Lua code.

\lua_now:n ⋆
\lua_now:e ⋆

New: 2018-06-18

\lua_shipout:n {⟨token list⟩}

The ⟨token list⟩ is first tokenized by TEX, which includes converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting ⟨Lua input⟩ is passed to the Lua interpreter when the current
page is finalised (i.e. at shipout). Each \lua_shipout:n block is treated by Lua as
a separate chunk. The Lua interpreter will execute the ⟨Lua input⟩ during the page-
building routine: no TEX expansion of the ⟨Lua input⟩ will occur at this stage.

In the case of the \lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TEX level, the ⟨Lua input⟩ is stored as a “whatsit”.

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

108

\lua_escape:n {⟨token list⟩}

Converts the ⟨token list⟩ such that it can safely be passed to Lua: embedded back-
slashes, double and single quotes, and newlines and carriage returns are escaped. This is
done by prepending an extra token consisting of a backslash with category code 12, and
for the line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTEX is in use two expansions are required to yield the result of the Lua code.

\lua_escape:n ⋆
\lua_escape:e ⋆

New: 2015-06-29

\lua_load_module:n {⟨Lua module name⟩}

Loads a Lua module into the Lua interpreter.
\lua_now:n passes its {⟨token list⟩} argument to the Lua interpreter as a single line,

with characters interpreted under the current catcode regime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TEXhackers note: This is a wrapper around the Lua call require ’⟨module⟩’.

\lua_load_module:n

New: 2022-05-14

13.2 Lua interfaces
As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the ltx.utils table.ltx.utils

⟨dump⟩ = ltx.utils.filedump(⟨file⟩,⟨offset⟩,⟨length⟩)

Returns the uppercase hexadecimal representation of the content of the ⟨file⟩ read as
bytes. If the ⟨length⟩ is given, only this part of the file is returned; similarly, one may
specify the ⟨offset⟩ from the start of the file. If the ⟨length⟩ is not given, the entire
file is read starting at the ⟨offset⟩.

ltx.utils.filedump

⟨hash⟩ = ltx.utils.filemd5sum(⟨file⟩)

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behaviour.
If the ⟨file⟩ is not found, nothing is returned with no error raised.

ltx.utils.filemd5sum

⟨date⟩ = ltx.utils.filemoddate(⟨file⟩)

Returns the date/time of last modification of the ⟨file⟩ in the format

D:⟨year⟩⟨month⟩⟨day⟩⟨hour⟩⟨minute⟩⟨second⟩⟨offset⟩

where the latter may be Z (UTC) or ⟨plus-minus⟩⟨hours⟩’⟨minutes⟩’. If the ⟨file⟩
is not found, nothing is returned with no error raised.

ltx.utils.filemoddate

109

size = ltx.utils.filesize(⟨file⟩)

Returns the size of the ⟨file⟩ in bytes. If the ⟨file⟩ is not found, nothing is returned
with no error raised.

ltx.utils.filesize

110

Chapter 14

The l3legacy module
Interfaces to legacy concepts

There are a small number of TEX or LATEX 2ε concepts which are not used in expl3 code
but which need to be manipulated when working as a LATEX 2ε package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n {⟨name⟩}
\legacy_if:nTF {⟨name⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the LATEX 2ε/plain TEX conditional (generated by \newif) is true or false and
branches accordingly. The ⟨name⟩ of the conditional should omit the leading if.

\legacy_if_p:n ⋆
\legacy_if:nTF ⋆

\legacy_if_set_true:n {⟨name⟩}
\legacy_if_set_false:n {⟨name⟩}

Sets the LATEX 2ε/plain TEX conditional \if⟨name⟩ (generated by \newif) to be true or
false.

\legacy_if_set_true:n
\legacy_if_set_false:n
\legacy_if_gset_true:n
\legacy_if_gset_false:n

New: 2021-05-10

\legacy_if_set:nn {⟨name⟩} {⟨boolexpr⟩}

Sets the LATEX 2ε/plain TEX conditional \if⟨name⟩ (generated by \newif) to the result
of evaluating the ⟨boolean expression⟩.

\legacy_if_set:nn
\legacy_if_gset:nn

New: 2021-05-10

111

Part IV

Data types

112

Chapter 15

The l3tl module
Token lists

TEX works with tokens, and LATEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “tl var” (⟨tl var⟩), which have the suffix tl: a token list
variable can also be used as the argument to a function, for example

\foo:N \l_some_tl

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix tl. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ␣, {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, l and d), but thirteen tokens ({, H, e, l, l, o, }, ␣, w,
o, r, l and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initialising token list variables

\tl_new:N ⟨tl var⟩

Creates a new ⟨tl var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨tl var⟩ is initially empty.

\tl_new:N
\tl_new:c

113

\tl_const:Nn ⟨tl var⟩ {⟨tokens⟩}

Creates a new constant ⟨tl var⟩ or raises an error if the name is already taken. The
value of the ⟨tl var⟩ is set globally to the ⟨tokens⟩.

\tl_const:Nn
\tl_const:(Ne|cn|ce)

\tl_clear:N ⟨tl var⟩

Clears all entries from the ⟨tl var⟩.
\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N ⟨tl var⟩

Ensures that the ⟨tl var⟩ exists globally by applying \tl_new:N if necessary, then ap-
plies \tl_(g)clear:N to leave the ⟨tl var⟩ empty.

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN ⟨tl var1⟩ ⟨tl var2⟩

Sets the content of ⟨tl var1⟩ equal to that of ⟨tl var2⟩.
\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN ⟨tl var1⟩ ⟨tl var2⟩ ⟨tl var3⟩

Concatenates the content of ⟨tl var2⟩ and ⟨tl var3⟩ together and saves the result in
⟨tl var1⟩. The ⟨tl var2⟩ is placed at the left side of the new token list.

\tl_concat:NNN
\tl_concat:ccc
\tl_gconcat:NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N ⟨tl var⟩
\tl_if_exist:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨tl var⟩ is currently defined. This does not check that the ⟨tl var⟩
really is a token list variable.

\tl_if_exist_p:N ⋆
\tl_if_exist_p:c ⋆
\tl_if_exist:NTF ⋆
\tl_if_exist:cTF ⋆

New: 2012-03-03

15.2 Adding data to token list variables

\tl_set:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_set:Nn
\tl_set:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|cf)
\tl_gset:Nn
\tl_gset:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|cf)

Sets ⟨tl var⟩ to contain ⟨tokens⟩, removing any previous content from the variable.

\tl_put_left:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_put_left:Nn
\tl_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\tl_gput_left:Nn
\tl_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends ⟨tokens⟩ to the left side of the current content of ⟨tl var⟩.

114

\tl_put_right:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_put_right:Nn
\tl_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\tl_gput_right:Nn
\tl_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends ⟨tokens⟩ to the right side of the current content of ⟨tl var⟩.

15.3 Token list conditionals

\tl_if_blank_p:n {⟨token list⟩}
\tl_if_blank:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ consists only of blank spaces (i.e. contains no item). The test
is true if ⟨token list⟩ is zero or more explicit space characters (explicit tokens with
character code 32 and category code 10), and is false otherwise.

\tl_if_blank_p:n ⋆
\tl_if_blank_p:(e|V|o) ⋆
\tl_if_blank:nTF ⋆
\tl_if_blank:(e|V|o)TF ⋆

Updated: 2019-09-04

\tl_if_empty_p:N ⟨tl var⟩
\tl_if_empty:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tl var⟩ is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:N ⋆
\tl_if_empty_p:c ⋆
\tl_if_empty:NTF ⋆
\tl_if_empty:cTF ⋆

\tl_if_empty_p:n {⟨token list⟩}
\tl_if_empty:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n ⋆
\tl_if_empty_p:(V|o|e) ⋆
\tl_if_empty:nTF ⋆
\tl_if_empty:(V|o|e)TF ⋆

New: 2012-05-24

Updated: 2012-06-05

\tl_if_eq_p:NN ⟨tl var1⟩ ⟨tl var2⟩
\tl_if_eq:NNTF ⟨tl var1⟩ ⟨tl var2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the content of ⟨tl var1⟩ and ⟨tl var2⟩ and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \l_tmpa_tl { abc }
\tl_set:Ne \l_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \l_tmpa_tl \l_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq_p:NN ⋆
\tl_if_eq_p:(Nc|cN|cc) ⋆
\tl_if_eq:NNTF ⋆
\tl_if_eq:(Nc|cN|cc)TF ⋆

\tl_if_eq:NnTF ⟨tl var1⟩ {⟨token list2⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tl var1⟩ and the ⟨token list2⟩ contain the same list of tokens, both in
respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

\tl_if_eq:NnTF
\tl_if_eq:cnTF

New: 2020-07-14

115

\tl_if_eq:nnTF {⟨token list1⟩} {⟨token list2⟩} {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token list1⟩ and ⟨token list2⟩ contain the same list of tokens, both in respect
of character codes and category codes. This conditional is not expandable: see \tl_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

\tl_if_eq:nnTF
\tl_if_eq:(nV|ne|Vn|en|ee)TF

\tl_if_in:NnTF ⟨tl var⟩ {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ is found in the content of the ⟨tl var⟩. The ⟨token list⟩
cannot contain the tokens {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:NnTF
\tl_if_in:(NV|No|cn|cV|co)TF

\tl_if_in:nnTF {⟨token list1⟩} {⟨token list2⟩} {⟨true code⟩} {⟨false code⟩}\tl_if_in:nnTF
\tl_if_in:(Vn|VV|on|oo|nV|no)TF

Tests if ⟨token list2⟩ is found inside ⟨token list1⟩. The ⟨token list2⟩ cannot con-
tain the tokens {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6). The search does not
enter brace (category code 1/2) groups.

\tl_if_novalue_p:n {⟨token list⟩}
\tl_if_novalue:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ and the special \c_novalue_tl marker contain the same list
of tokens, both in respect of character codes and category codes. This means that
\exp_args:No \tl_if_novalue:nTF { \c_novalue_tl } is logically true but \tl_-
if_novalue:nTF { \c_novalue_tl } is logically false. This function is intended to
allow construction of flexible document interface structures in which missing optional
arguments are detected.

\tl_if_novalue_p:n ⋆
\tl_if_novalue:nTF ⋆

New: 2017-11-14

\tl_if_single_p:N ⟨tl var⟩
\tl_if_single:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the content of the ⟨tl var⟩ consists of a single ⟨item⟩, i.e. is a single normal
token (neither an explicit space character nor a begin-group character) or a single brace
group, surrounded by optional spaces on both sides. In other words, such a token list
has token count 1 according to \tl_count:N.

\tl_if_single_p:N ⋆
\tl_if_single_p:c ⋆
\tl_if_single:NTF ⋆
\tl_if_single:cTF ⋆

Updated: 2011-08-13

\tl_if_single_p:n {⟨token list⟩}
\tl_if_single:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ has exactly one ⟨item⟩, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \tl_count:n.

\tl_if_single_p:n ⋆
\tl_if_single:nTF ⋆

Updated: 2011-08-13

\tl_if_single_token_p:n {⟨token list⟩}
\tl_if_single_token:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}
Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single normal token. Token groups ({. . . }) are not single tokens.

\tl_if_single_token_p:n ⋆
\tl_if_single_token:nTF ⋆

116

\tl_if_regex_match:nnTF {⟨token list⟩} {⟨regex⟩} {⟨true code⟩} {⟨false code⟩}
\tl_if_regex_match:nNTF {⟨token list⟩} ⟨regex var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨regular expression⟩ matches any part of the ⟨token list⟩. For
instance,

\tl_if_regex_match:nnTF { abecdcx } { b [cde]* } { TRUE } { FALSE }
\tl_if_regex_match:nnTF { example } { [b-dq-w] } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream. Theses are alternative names for \regex_-
match:nnTF and friends, with arguments re-ordered for ⟨token list⟩ testing; see l3regex
chapter for more details of the ⟨regex⟩ format.

\tl_if_regex_match:nnTF
\tl_if_regex_match:VnTF
\tl_if_regex_match:nNTF
\tl_if_regex_match:VNTF

New: 2024-12-08

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_catcode:nNTF {⟨token list⟩} ⟨test token⟩
{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_catcode_p:nN ⋆
\tl_if_head_eq_catcode_p:(VN|eN|oN) ⋆
\tl_if_head_eq_catcode:nNTF ⋆
\tl_if_head_eq_catcode:(VN|eN|oN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same category code as the ⟨test
token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_charcode:nNTF {⟨token list⟩} ⟨test token⟩

{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_charcode_p:nN ⋆
\tl_if_head_eq_charcode_p:(VN|eN|fN) ⋆
\tl_if_head_eq_charcode:nNTF ⋆
\tl_if_head_eq_charcode:(VN|eN|fN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same character code as the ⟨test
token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_meaning:nNTF {⟨token list⟩} ⟨test token⟩

{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_meaning_p:nN ⋆
\tl_if_head_eq_meaning_p:(VN|eN) ⋆
\tl_if_head_eq_meaning:nNTF ⋆
\tl_if_head_eq_meaning:(VN|eN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same meaning as the ⟨test token⟩.
In the case where ⟨token list⟩ is empty, the test is always false.

\tl_if_head_is_group_p:n {⟨token list⟩}
\tl_if_head_is_group:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit begin-group character (with
category code 1 and any character code), in other words, if the ⟨token list⟩ starts
with a brace group. In particular, the test is false if the ⟨token list⟩ starts with an
implicit token such as \c_group_begin_token, or if it is empty. This function is useful
to implement actions on token lists on a token by token basis.

\tl_if_head_is_group_p:n ⋆
\tl_if_head_is_group:nTF ⋆

New: 2012-07-08

117

\tl_if_head_is_N_type_p:n {⟨token list⟩}
\tl_if_head_is_N_type:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

\tl_if_head_is_N_type_p:n ⋆
\tl_if_head_is_N_type:nTF ⋆

New: 2012-07-08

Tests if the first ⟨token⟩ in the ⟨token list⟩ is a normal N-type argument. In other
words, it is neither an explicit space character (explicit token with character code 32 and
category code 10) nor an explicit begin-group character (with category code 1 and any
character code). An empty argument yields false, as it does not have a normal first
token. This function is useful to implement actions on token lists on a token by token
basis.

\tl_if_head_is_space_p:n {⟨token list⟩}
\tl_if_head_is_space:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit space character (explicit
token with character code 32 and category code 10). In particular, the test is false
if the ⟨token list⟩ starts with an implicit token such as \c_space_token, or if it is
empty. This function is useful to implement actions on token lists on a token by token
basis.

\tl_if_head_is_space_p:n ⋆
\tl_if_head_is_space:nTF ⋆

Updated: 2012-07-08

15.4 Working with token lists as a whole
15.4.1 Using token lists

\tl_to_str:n {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩, leaving the resulting character tokens in the
input stream. A ⟨string⟩ is a series of tokens with category code 12 (other) with the
exception of spaces, which retain category code 10 (space). The base function requires
only a single expansion. Its argument must be braced.

TEXhackers note: This is the ε-TEX primitive \detokenize. Converting a ⟨token list⟩
to a ⟨string⟩ yields a concatenation of the string representations of every token in the ⟨token
list⟩. The string representation of a control sequence is

• an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

• the control sequence name, as defined by \cs_to_str:N;
• a space, unless the control sequence name is a single character whose category at the time

of expansion of \tl_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:n ⋆
\tl_to_str:(o|V|v|e) ⋆

118

\tl_to_str:N ⟨tl var⟩

Converts the content of the ⟨tl var⟩ into a series of characters with category code
12 (other) with the exception of spaces, which retain category code 10 (space). This
⟨string⟩ is then left in the input stream. For low-level details, see the notes given for
\tl_to_str:n.

\tl_to_str:N ⋆
\tl_to_str:c ⋆

\tl_use:N ⟨tl var⟩

Recovers the content of a ⟨tl var⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
⟨tl var⟩ directly without an accessor function.

\tl_use:N ⋆
\tl_use:c ⋆

15.4.2 Counting and reversing token lists

\tl_count:n {⟨token list⟩}

Counts the number of ⟨items⟩ in the ⟨token list⟩ and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({. . . }). This
process ignores any unprotected spaces within the ⟨token list⟩. See also \tl_count:N.
This function requires three expansions, giving an ⟨integer denotation⟩.

\tl_count:n ⋆
\tl_count:(V|v|e|o) ⋆

New: 2012-05-13

\tl_count:N ⟨tl var⟩

Counts the number of ⟨items⟩ in the ⟨tl var⟩ and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({. . . }). This
process ignores any unprotected spaces within the ⟨tl var⟩. See also \tl_count:n.
This function requires three expansions, giving an ⟨integer denotation⟩.

\tl_count:N ⋆
\tl_count:c ⋆

New: 2012-05-13

\tl_count_tokens:n {⟨token list⟩}

Counts the number of TEX tokens in the ⟨token list⟩ and leaves this information in
the input stream. Every token, including spaces and braces, contributes one to the total;
thus for instance, the token count of a~{bc} is 6.

\tl_count_tokens:n ⋆

New: 2019-02-25

\tl_reverse:n {⟨token list⟩}

Reverses the order of the ⟨items⟩ in the ⟨token list⟩, so that ⟨item1⟩⟨item2⟩⟨item3⟩
. . . ⟨itemn⟩ becomes ⟨itemn⟩. . . ⟨item3⟩⟨item2⟩⟨item1⟩. This process preserves unpro-
tected space within the ⟨token list⟩. Tokens are not reversed within braced token
groups, which keep their outer set of braces. In situations where performance is impor-
tant, consider \tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_reverse:n ⋆
\tl_reverse:(V|o|f|e) ⋆

Updated: 2012-01-08

119

\tl_reverse:N ⟨tl var⟩

Sets the ⟨tl var⟩ to contain the result of reversing the order of its ⟨items⟩, so
that ⟨item1⟩⟨item2⟩⟨item3⟩ . . . ⟨itemn⟩ becomes ⟨itemn⟩. . . ⟨item3⟩⟨item2⟩⟨item1⟩. This
process preserves unprotected spaces within the ⟨tl var⟩. Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n {⟨token list⟩}

Reverses the order of the ⟨items⟩ in the ⟨token list⟩, so that ⟨item1⟩⟨item2⟩⟨item3⟩
. . . ⟨itemn⟩ becomes {⟨itemn⟩} . . . {⟨item3⟩}{⟨item2⟩}{⟨item1⟩}. This process removes
any unprotected space within the ⟨token list⟩. Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \tl_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_reverse_items:n ⋆

New: 2012-01-08

\tl_trim_spaces:n {⟨token list⟩}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the ⟨token list⟩ and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_spaces:n ⋆
\tl_trim_spaces:(V|v|e|o) ⋆

New: 2011-07-09

Updated: 2012-06-25

\tl_trim_spaces_apply:nN {⟨token list⟩} ⟨function⟩

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the ⟨token list⟩ and passes the result to the
⟨function⟩ as an n-type argument.

\tl_trim_spaces_apply:nN ⋆
\tl_trim_spaces_apply:oN ⋆

New: 2018-04-12

\tl_trim_spaces:N ⟨tl var⟩

Sets the ⟨tl var⟩ to contain the result of removing any leading and trailing explicit
space characters (explicit tokens with character code 32 and category code 10) from its
contents.

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

15.4.3 Viewing token lists

\tl_show:N ⟨tl var⟩

Displays the content of the ⟨tl var⟩ on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:N
\tl_show:c

Updated: 2021-04-29

120

\tl_show:n {⟨token list⟩}

Displays the ⟨token list⟩ on the terminal.

TEXhackers note: This is similar to the ε-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_show:n
\tl_show:e

Updated: 2015-08-07

\tl_log:N ⟨tl var⟩

Writes the content of the ⟨tl var⟩ in the log file. See also \tl_show:N which displays
the result in the terminal.

\tl_log:N
\tl_log:c

New: 2014-08-22

Updated: 2021-04-29

\tl_log:n {⟨token list⟩}

Writes the ⟨token list⟩ in the log file. See also \tl_show:n which displays the result
in the terminal.

\tl_log:n
\tl_log:(e|x)

New: 2014-08-22

Updated: 2015-08-07

15.5 Manipulating items in token lists
15.5.1 Mapping over token lists
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\tl_map_function:NN ⟨tl var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ in the ⟨tl var⟩. The ⟨function⟩ receives one
argument for each iteration. This may be a number of tokens if the ⟨item⟩ was stored
within braces. Hence the ⟨function⟩ should anticipate receiving n-type arguments. See
also \tl_map_function:nN.

\tl_map_function:NN ✩

\tl_map_function:cN ✩

Updated: 2012-06-29

\tl_map_function:nN {⟨token list⟩} ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ in the ⟨token list⟩, The ⟨function⟩ receives one
argument for each iteration. This may be a number of tokens if the ⟨item⟩ was stored
within braces. Hence the ⟨function⟩ should anticipate receiving n-type arguments. See
also \tl_map_function:NN.

\tl_map_function:nN ✩

Updated: 2012-06-29

\tl_map_inline:Nn ⟨tl var⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨tl var⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. See also
\tl_map_function:NN.

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn {⟨token list⟩} {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨token list⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. See also
\tl_map_function:nN.

\tl_map_inline:nn

Updated: 2012-06-29

121

\tl_map_tokens:Nn ⟨tl var⟩ {⟨code⟩}
\tl_map_tokens:nn {⟨token list⟩} {⟨code⟩}
Analogue of \tl_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each ⟨item⟩ in the ⟨tl var⟩ or in the ⟨token list⟩ as a
trailing brace group. For instance,

\tl_map_tokens:Nn \l_my_tl { \prg_replicate:nn { 2 } }

expands to twice each ⟨item⟩ in the ⟨tl var⟩: for each ⟨item⟩ in \l_my_tl the function
\prg_replicate:nn receives 2 and ⟨item⟩ as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_tokens:Nn ✩

\tl_map_tokens:cn ✩

\tl_map_tokens:nn ✩

New: 2019-09-02

\tl_map_variable:NNn ⟨tl var⟩ ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨tl var⟩ in turn in the (token list) ⟨variable⟩ and applies the
⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨tl var⟩, or its original value if the ⟨tl var⟩ is blank. See also \tl_map_inline:Nn.

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

\tl_map_variable:nNn {⟨token list⟩} ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨token list⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨tl var⟩, or its original value if the ⟨tl var⟩ is blank. See also \tl_map_inline:nn.

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break:

Used to terminate a \tl_map_... function before all entries in the ⟨token list⟩ have
been processed. This normally takes place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario leads to low level
TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\tl_map_break: ✩

Updated: 2012-06-29

122

\tl_map_break:n {⟨code⟩}

Used to terminate a \tl_map_... function before all entries in the ⟨token list⟩ have
been processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes
place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }

% Do something useful
}

Use outside of a \tl_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\tl_map_break:n ✩

Updated: 2012-06-29

15.5.2 Head and tail of token lists
Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {⟨token list⟩}

Leaves in the input stream the first ⟨item⟩ in the ⟨token list⟩, discarding the rest of
the ⟨token list⟩. All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded; for example

\tl_head:n { abc }

and

\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ ab } c }

yields ␣ab. A blank ⟨token list⟩ (see \tl_if_blank:nTF) results in \tl_head:n leav-
ing nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_head:N ⋆
\tl_head:n ⋆
\tl_head:(V|v|f) ⋆

Updated: 2012-09-09

123

\tl_head:w ⟨token list⟩ { } \q_stop

Leaves in the input stream the first ⟨item⟩ in the ⟨token list⟩, discarding the rest of
the ⟨token list⟩. All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank ⟨token list⟩ (which consists
only of space characters) results in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \tl_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \tl_head:n should be preferred if the
number of expansions is not critical.

\tl_head:w ⋆

\tl_tail:n {⟨token list⟩}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first ⟨item⟩ in the ⟨token list⟩, and leaves the remaining
tokens in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }

and

\tl_tail:n { ~ a ~ {bc} d }

both leave ␣{bc}d in the input stream. A blank ⟨token list⟩ (see \tl_if_blank:nTF)
results in \tl_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_tail:N ⋆
\tl_tail:n ⋆
\tl_tail:(V|v|f) ⋆

Updated: 2012-09-01

If you wish to handle token lists where the first token may be a space, and this
needs to be treated as the head/tail, this can be accomplished using \tl_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }

\cs_new:Npn \mypkg_tl_head_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ ~ }
{ \tl_head:n {#1} }

}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }

}

124

15.5.3 Items and ranges in token lists

\tl_item:nn {⟨token list⟩} {⟨integer expression⟩}

Indexing items in the ⟨token list⟩ from 1 on the left, this function evaluates the
⟨integer expression⟩ and leaves the appropriate item from the ⟨token list⟩ in the
input stream. If the ⟨integer expression⟩ is negative, indexing occurs from the right
of the token list, starting at −1 for the right-most item. If the index is out of bounds,
then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_item:nn ⋆
\tl_item:Nn ⋆
\tl_item:cn ⋆

New: 2014-07-17

\tl_rand_item:N ⟨tl var⟩
\tl_rand_item:n {⟨token list⟩}

Selects a pseudo-random item of the ⟨token list⟩. If the ⟨token list⟩ is blank, the
result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_rand_item:N ⋆
\tl_rand_item:c ⋆
\tl_rand_item:n ⋆

New: 2016-12-06

125

\tl_range:Nnn ⟨tl var⟩ {⟨start index⟩} {⟨end index⟩}
\tl_range:nnn {⟨token list⟩} {⟨start index⟩} {⟨end index⟩}

Leaves in the input stream the items from the ⟨start index⟩ to the ⟨end index⟩ inclu-
sive. Spaces and braces are preserved between the items returned (but never at either end
of the list). Here ⟨start index⟩ and ⟨end index⟩ should be ⟨integer expressions⟩.
For describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let l be the count
of the token list.

The actual start point is determined as M = m if m > 0 and as M = l + m + 1
if m < 0. Similarly the actual end point is N = n if n > 0 and N = l + n + 1 if n < 0.
If M > N , the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s ≤ 0 or s > l.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with l = 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { 1 } { 12 }
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 } { -3 } }

are all equivalent and will print bcd{e{}} on the terminal; similarly

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3 } }

are all equivalent and will print bcd {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } { 2 } { 4 }

will discard the space after ‘d’.
If we want to get the items from, say, the third to the last in a token list <tl>, the

call is \tl_range:nnn { <tl> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <tl> } { 1 } { -2 }.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_range:Nnn ⋆
\tl_range:nnn ⋆

New: 2017-02-17

Updated: 2017-07-15

126

15.5.4 Sorting token lists

\tl_sort:Nn ⟨tl var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨tl var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨tl var⟩. The details of sorting comparison are described in Section 6.1.

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN {⟨token list⟩} ⟨conditional⟩

Sorts the items in the ⟨token list⟩, using the ⟨conditional⟩ to compare items, and
leaves the result in the input stream. The ⟨conditional⟩ should have signature :nnTF,
and return true if the two items being compared should be left in the same order, and
false if the items should be swapped. The details of sorting comparison are described
in Section 6.1.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_sort:nN ⋆

New: 2017-02-06

15.6 Manipulating tokens in token lists
15.6.1 Replacing tokens
Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a category code 1/2 pair).

\tl_replace_once:Nnn ⟨tl var⟩ {⟨old tokens⟩} {⟨new
tokens⟩}

\tl_replace_once:Nnn
\tl_replace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
\tl_greplace_once:Nnn
\tl_greplace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
Updated: 2011-08-11

Replaces the first (leftmost) occurrence of ⟨old tokens⟩ in the ⟨tl var⟩ with ⟨new
tokens⟩. ⟨Old tokens⟩ cannot contain {, } or # (more precisely, explicit character
tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category
code 6).

127

\tl_replace_all:Nnn ⟨tl var⟩ {⟨old tokens⟩} {⟨new tokens⟩}\tl_replace_all:Nnn
\tl_replace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
\tl_greplace_all:Nnn
\tl_greplace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
Updated: 2011-08-11

Replaces all occurrences of ⟨old tokens⟩ in the ⟨tl var⟩ with ⟨new tokens⟩. ⟨Old
tokens⟩ cannot contain {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern ⟨old tokens⟩ may remain after the replacement
(see \tl_remove_all:Nn for an example).

\tl_regex_replace_once:Nnn ⟨tl var⟩ {⟨regex⟩} {⟨replacement⟩}
\tl_regex_replace_once:NNn ⟨tl var⟩ ⟨regex var⟩ {⟨replacement⟩}

\tl_regex_replace_once:Nnn
\tl_regex_replace_once:cnn
\tl_regex_replace_once:NNn
\tl_regex_replace_once:cNn
\tl_regex_greplace_once:Nnn
\tl_regex_greplace_once:cnn
\tl_regex_greplace_once:NNn
\tl_regex_greplace_once:cNn

New: 2024-12-08

Searches for the ⟨regular expression⟩ in the contents of the ⟨tl var⟩ and replaces the
first match with the ⟨replacement⟩. In the ⟨replacement⟩, \0 represents the full match,
\1 represent the contents of the first capturing group, \2 of the second, etc. Theses are
alternative names for \regex_replace_once:nnN and friends, with arguments re-ordered
for ⟨tl var⟩ setting; See l3regex chapter for more details of the ⟨regex⟩ format.

\tl_regex_replace_all:Nnn ⟨tl var⟩ {⟨regex⟩} {⟨replacement⟩}
\tl_regex_replace_all:NNn ⟨tl var⟩ ⟨regex var⟩ {⟨replacement⟩}

Replaces all occurrences of the ⟨regular expression⟩ in the contents of the ⟨tl var⟩
by the ⟨replacement⟩, where \0 represents the full match, \1 represent the contents of
the first capturing group, \2 of the second, etc. Every match is treated independently,
and matches cannot overlap. Theses are alternative names for \regex_replace_all:nnN
and friends, with arguments re-ordered for ⟨tl var⟩ setting; see l3regex chapter for more
details of the ⟨regex⟩ format.

\tl_regex_replace_all:Nnn
\tl_regex_replace_all:cnn
\tl_regex_replace_all:NNn
\tl_regex_replace_all:cNn
\tl_regex_greplace_all:Nnn
\tl_regex_greplace_all:cnn
\tl_regex_greplace_all:NNn
\tl_regex_greplace_all:cNn

New: 2024-12-08

\tl_remove_once:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_remove_once:Nn
\tl_remove_once:(NV|Ne|cn|cV|ce)
\tl_gremove_once:Nn
\tl_gremove_once:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes the first (leftmost) occurrence of ⟨tokens⟩ from the ⟨tl var⟩. The ⟨tokens⟩
cannot contain {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6).

128

\tl_remove_all:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_remove_all:Nn
\tl_remove_all:(NV|Ne|cn|cV|ce)
\tl_gremove_all:Nn
\tl_gremove_all:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes all occurrences of ⟨tokens⟩ from the ⟨tl var⟩. The ⟨tokens⟩ cannot contain
{, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or
2 (end-group), and tokens with category code 6). As this function operates from left to
right, the pattern ⟨tokens⟩ may remain after the removal, for instance,

\tl_set:Nn \l_tmpa_tl {abbccd} \tl_remove_all:Nn \l_tmpa_tl {bc}

results in \l_tmpa_tl containing abcd.

15.6.2 Reassigning category codes
These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

\tl_set_rescan:Nnn ⟨tl var⟩ {⟨setup⟩} {⟨tokens⟩}\tl_set_rescan:Nnn
\tl_set_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)
\tl_gset_rescan:Nnn
\tl_gset_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

Updated: 2015-08-11

Sets ⟨tl var⟩ to contain ⟨tokens⟩, applying the category code régime specified in the
⟨setup⟩ before carrying out the assignment. (Category codes applied to tokens not
explicitly covered by the ⟨setup⟩ are those in force at the point of use of \tl_set_-
rescan:Nnn.) This allows the ⟨tl var⟩ to contain material with category codes other
than those that apply when ⟨tokens⟩ are absorbed. The ⟨setup⟩ is run within a group
and may contain any valid input, although only changes in category codes, such as uses
of \cctab_select:N, are relevant. See also \tl_rescan:nn.

TEXhackers note: The ⟨tokens⟩ are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user ⟨setup⟩), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

129

\tl_rescan:nn {⟨setup⟩} {⟨tokens⟩}

Rescans ⟨tokens⟩ applying the category code régime specified in the ⟨setup⟩, and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the ⟨setup⟩ are those in force at the point of use of \tl_rescan:nn.) The
⟨setup⟩ is run within a group and may contain any valid input, although only changes
in category codes, such as uses of \cctab_select:N, are relevant. See also \tl_set_-
rescan:Nnn, which is more robust than using \tl_set:Nn in the ⟨tokens⟩ argument of
\tl_rescan:nn.

TEXhackers note: The ⟨tokens⟩ are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user ⟨setup⟩), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

Contrarily to the \scantokens ε-TEX primitive, \tl_rescan:nn tokenizes the whole string
in the same category code regime rather than one token at a time, so that directives such as
\verb that rely on changing category codes will not function properly.

\tl_rescan:nn
\tl_rescan:nV

Updated: 2015-08-11

15.7 Constant token lists

Constant that is always empty.\c_empty_tl

A marker for the absence of an argument. This constant tl can safely be typeset (cf. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_tl is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:NnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_tl marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty tl.

\c_novalue_tl

New: 2017-11-14

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

\c_space_tl

15.8 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_tl
\l_tmpb_tl

130

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_tl
\g_tmpb_tl

131

Chapter 16

The l3tl-build module
Piecewise tl constructions

16.1 Constructing ⟨tl var⟩ by accumulation
When creating a ⟨tl var⟩ by accumulation of many tokens, the performance available
using a combination of \tl_set:Nn and \tl_put_right:Nn or similar begins to become
an issue. To address this, a set of functions are available to “build” a ⟨tl var⟩. The per-
formance of this approach is much more efficient than the standard \tl_put_right:Nn,
but the constructed token list cannot be accessed during construction other than by
methods provided in this section.

Whilst the exact performance difference is dependent on the size of each added
block of tokens and the total number of blocks, in general, the \tl_build_(g)put...
functions will out-perform the basic \tl_(g)put... equivalent if more than 100 non-
empty addition operations occur. See https://github.com/latex3/latex3/issues/
1393#issuecomment-1880164756 for a more detailed analysis.

\tl_build_begin:N ⟨tl var⟩

Clears the ⟨tl var⟩ and sets it up to support other \tl_build_... functions. Un-
til \tl_build_end:N ⟨tl var⟩ or \tl_build_gend:N ⟨tl var⟩ is called, applying any
function from l3tl other than \tl_build_... will lead to incorrect results. The begin
and gbegin functions must be used for local and global ⟨tl var⟩ respectively.

\tl_build_begin:N
\tl_build_gbegin:N

New: 2018-04-01

\tl_build_put_left:Nn ⟨tl var⟩ {⟨tokens⟩}
\tl_build_put_right:Nn ⟨tl var⟩ {⟨tokens⟩}

Adds ⟨tokens⟩ to the left or right side of the current contents of ⟨tl var⟩. The ⟨tl var⟩
must have been set up with \tl_build_begin:N or \tl_build_gbegin:N. The put and
gput functions must be used for local and global ⟨tl var⟩ respectively. The right
functions are about twice faster than the left functions.

\tl_build_put_left:Nn
\tl_build_put_left:Ne
\tl_build_gput_left:Nn
\tl_build_gput_left:Ne
\tl_build_put_right:Nn
\tl_build_put_right:Ne
\tl_build_gput_right:Nn
\tl_build_gput_right:Ne

New: 2018-04-01

132

https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756
https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756

\tl_build_end:N ⟨tl var⟩

Gets the contents of ⟨tl var⟩ and stores that into the ⟨tl var⟩ using \tl_set:Nn or
\tl_gset:Nn. The ⟨tl var⟩ must have been set up with \tl_build_begin:N or \tl_-
build_gbegin:N. The end and gend functions must be used for local and global ⟨tl var⟩
respectively. These functions completely remove the setup code that enabled ⟨tl var⟩ to
be used for other \tl_build_... functions. After the action of end/gend, the ⟨tl var⟩
may be manipulated using standard tl functions.

\tl_build_end:N
\tl_build_gend:N

New: 2018-04-01

\tl_build_get_intermediate:NN ⟨tl var1⟩ ⟨tl var2⟩\tl_build_get_intermediate:NN

New: 2023-12-14

Stores the contents of the ⟨tl var1⟩ in the ⟨tl var2⟩. The ⟨tl var1⟩ must have been
set up with \tl_build_begin:N or \tl_build_gbegin:N. The ⟨tl var2⟩ is a “normal”
token list variable, assigned locally using \tl_set:Nn.

133

Chapter 17

The l3str module
Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \tl_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
l3basics, l3tl and l3token, respectively.

Most expandable functions in this module come in three flavours:

• \str_...:N, which expect a token list or string variable as their argument;

• \str_...:n, taking any token list (or string) as an argument;

• \str_..._ignore_spaces:n, which ignores any space encountered during the op-
eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

134

17.1 Creating and initialising string variables

\str_new:N ⟨str var⟩

Creates a new ⟨str var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨str var⟩ is initially empty.

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn ⟨str var⟩ {⟨token list⟩}

Creates a new constant ⟨str var⟩ or raises an error if the name is already taken. The
value of the ⟨str var⟩ is set globally to the ⟨token list⟩, converted to a string.

\str_const:Nn
\str_const:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

\str_clear:N ⟨str var⟩

Clears the content of the ⟨str var⟩.
\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N ⟨str var⟩

Ensures that the ⟨str var⟩ exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the ⟨str var⟩ empty.

\str_clear_new:N
\str_clear_new:c
\str_gclear_new:N
\str_gclear_new:c

New: 2015-09-18

\str_set_eq:NN ⟨str var1⟩ ⟨str var2⟩

Sets the content of ⟨str var1⟩ equal to that of ⟨str var2⟩.
\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat:NNN ⟨str var1⟩ ⟨str var2⟩ ⟨str var3⟩

Concatenates the content of ⟨str var2⟩ and ⟨str var3⟩ together and saves the result in
⟨str var1⟩. The ⟨str var2⟩ is placed at the left side of the new string variable. The
⟨str var2⟩ and ⟨str var3⟩ must indeed be strings, as this function does not convert
their contents to a string.

\str_concat:NNN
\str_concat:ccc
\str_gconcat:NNN
\str_gconcat:ccc

New: 2017-10-08

\str_if_exist_p:N ⟨str var⟩
\str_if_exist:NTF ⟨str var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨str var⟩ is currently defined. This does not check that the ⟨str var⟩
really is a string.

\str_if_exist_p:N ⋆
\str_if_exist_p:c ⋆
\str_if_exist:NTF ⋆
\str_if_exist:cTF ⋆

New: 2015-09-18

135

17.2 Adding data to string variables

\str_set:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩, and stores the result in ⟨str var⟩.
\str_set:Nn
\str_set:(NV|Ne|cn|cV|ce)
\str_gset:Nn
\str_gset:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

\str_put_left:Nn ⟨str var⟩ {⟨token list⟩}\str_put_left:Nn
\str_put_left:(NV|Ne|cn|cV|ce)
\str_gput_left:Nn
\str_gput_left:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

Converts the ⟨token list⟩ to a ⟨string⟩, and prepends the result to ⟨str var⟩. The
current contents of the ⟨str var⟩ are not automatically converted to a string.

\str_put_right:Nn ⟨str var⟩ {⟨token list⟩}\str_put_right:Nn
\str_put_right:(NV|Ne|cn|cV|Ne)
\str_gput_right:Nn
\str_gput_right:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

Converts the ⟨token list⟩ to a ⟨string⟩, and appends the result to ⟨str var⟩. The
current contents of the ⟨str var⟩ are not automatically converted to a string.

17.3 String conditionals

\str_if_empty_p:N ⟨str var⟩
\str_if_empty:NTF ⟨str var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨string variable⟩ is entirely empty (i.e. contains no characters at all).

\str_if_empty_p:N ⋆
\str_if_empty_p:c ⋆
\str_if_empty:NTF ⋆
\str_if_empty:cTF ⋆
\str_if_empty_p:n ⋆
\str_if_empty:nTF ⋆

New: 2015-09-18

Updated: 2022-03-21

\str_if_eq_p:NN ⟨str var1⟩ ⟨str var2⟩
\str_if_eq:NNTF ⟨str var1⟩ ⟨str var2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the content of two ⟨str variables⟩ and is logically true if the two contain the
same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including
their category codes) rather than characters.

\str_if_eq_p:NN ⋆
\str_if_eq_p:(Nc|cN|cc) ⋆
\str_if_eq:NNTF ⋆
\str_if_eq:(Nc|cN|cc)TF ⋆

New: 2015-09-18

136

\str_if_eq_p:nn {⟨tl1⟩} {⟨tl2⟩}
\str_if_eq:nnTF {⟨tl1⟩} {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

\str_if_eq_p:nn ⋆
\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee) ⋆
\str_if_eq:nnTF ⋆
\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF ⋆

Updated: 2018-06-18

Compares the two ⟨token lists⟩ on a character by character basis (namely after con-
verting them to strings), and is true if the two ⟨strings⟩ contain the same characters
in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true. See \tl_if_eq:nnTF to compare tokens (including their category codes)
rather than characters.

\str_if_in:NnTF ⟨str var⟩ {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ and tests if that ⟨string⟩ is found in the
content of the ⟨str var⟩.

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF {⟨tl1⟩} {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

Converts both ⟨token lists⟩ to ⟨strings⟩ and tests whether ⟨string2⟩ is found inside
⟨string1⟩.

\str_if_in:nnTF

New: 2017-10-08

\str_case:nnTF {⟨test string⟩}
{
{⟨string case1⟩} {⟨code case1⟩}
{⟨string case2⟩} {⟨code case2⟩}
...
{⟨string casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

\str_case:nn ⋆
\str_case:(Vn|on|en|nV|nv) ⋆
\str_case:nnTF ⋆
\str_case:(Vn|on|en|nV|nv)TF ⋆
\str_case:Nn ⋆
\str_case:NnTF ⋆

New: 2013-07-24

Updated: 2022-03-21

Compares the ⟨test string⟩ in turn with each of the ⟨string case⟩s until a match
is found (all token lists are converted to strings). If the two are equal (as described for
\str_if_eq:nnTF) then the associated ⟨code⟩ is left in the input stream and other cases
are discarded. If any of the cases are matched, the ⟨true code⟩ is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
⟨false code⟩ is inserted. The function \str_case:nn, which does nothing if there is no
match, is also available.

This set of functions performs no expansion on each ⟨string case⟩ argument,
so any variable in there will be compared as a string. If expansion is needed in the
⟨string case⟩s, then \str_case_e:nn(TF) should be used instead.

137

\str_case_e:nnTF {⟨test string⟩}
{
{⟨string case1⟩} {⟨code case1⟩}
{⟨string case2⟩} {⟨code case2⟩}
...
{⟨string casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

Compares the full expansion of the ⟨test string⟩ in turn with the full expansion of
the ⟨string case⟩s (all token lists are converted to strings). If the two full expansions
are equal (as described for \str_if_eq:eeTF) then the associated ⟨code⟩ is left in the
input stream and other cases are discarded. If any of the cases are matched, the ⟨true
code⟩ is also inserted into the input stream (after the code for the appropriate case),
while if none match then the ⟨false code⟩ is inserted. The function \str_case_e:nn,
which does nothing if there is no match, is also available. In \str_case_e:nn(TF), the
⟨test string⟩ is expanded in each comparison, and must always yield the same result:
for example, random numbers must not be used within this string.

\str_case_e:nn ⋆
\str_case_e:en ⋆
\str_case_e:nnTF ⋆
\str_case_e:enTF ⋆

New: 2018-06-19

\str_compare_p:nNn {⟨tl1⟩} ⟨relation⟩ {⟨tl2⟩}
\str_compare:nNnTF {⟨tl1⟩} ⟨relation⟩ {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

Compares the two ⟨token lists⟩ on a character by character basis (namely after con-
verting them to strings) in a lexicographic order according to the character codes of the
characters. The ⟨relation⟩ can be <, =, or > and the test is true under the following
conditions:

• for <, if the first string is earlier than the second in lexicographic order;

• for =, if the two strings have exactly the same characters;

• for >, if the first string is later than the second in lexicographic order.

Thus for example the following is logically true:

\str_compare_p:nNn { ab } < { abc }

TEXhackers note: This is a wrapper around the TEX primitive \(pdf)strcmp. It is meant for
programming and not for sorting textual contents, as it simply considers character codes and
not more elaborate considerations of grapheme clusters, locale, etc.

\str_compare_p:nNn ⋆
\str_compare_p:eNe ⋆
\str_compare:nNnTF ⋆
\str_compare:eNeTF ⋆

New: 2021-05-17

17.4 Mapping over strings
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\str_map_function:nN {⟨token list⟩} ⟨function⟩
\str_map_function:NN ⟨str var⟩ ⟨function⟩

Converts the ⟨token list⟩ to a ⟨string⟩ then applies ⟨function⟩ to every ⟨character⟩
in the ⟨string⟩ including spaces.

\str_map_function:nN ✩

\str_map_function:NN ✩

\str_map_function:cN ✩

New: 2017-11-14

138

\str_map_inline:nn {⟨token list⟩} {⟨inline function⟩}
\str_map_inline:Nn ⟨str var⟩ {⟨inline function⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then applies the ⟨inline function⟩ to every
⟨character⟩ in the ⟨str var⟩ including spaces. The ⟨inline function⟩ should consist
of code which receives the ⟨character⟩ as #1.

\str_map_inline:nn
\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_tokens:nn {⟨token list⟩} {⟨code⟩}
\str_map_tokens:Nn ⟨str var⟩ {⟨code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then applies ⟨code⟩ to every ⟨character⟩ in
the ⟨string⟩ including spaces. The ⟨code⟩ receives each character as a trailing brace
group. This is equivalent to \str_map_function:nN if the ⟨code⟩ consists of a single
function.

\str_map_tokens:nn ✩

\str_map_tokens:Nn ✩

\str_map_tokens:cn ✩

New: 2021-05-05

\str_map_variable:nNn {⟨token list⟩} ⟨variable⟩ {⟨code⟩}
\str_map_variable:NNn ⟨str var⟩ ⟨variable⟩ {⟨code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then stores each ⟨character⟩ in the ⟨string⟩
(including spaces) in turn in the (string or token list) ⟨variable⟩ and applies the ⟨code⟩.
The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced. The
assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨character⟩
in the ⟨string⟩, or its original value if the ⟨string⟩ is empty. See also \str_map_-
inline:Nn.

\str_map_variable:nNn
\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_break:

Used to terminate a \str_map_... function before all characters in the ⟨string⟩ have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_... scenario leads to low level
TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

\str_map_break: ✩

New: 2017-10-08

139

\str_map_break:n {⟨code⟩}

Used to terminate a \str_map_... function before all characters in the ⟨string⟩ have
been processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }

% Do something useful
}

Use outside of a \str_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\str_map_break:n ✩

New: 2017-10-08

17.5 Working with the content of strings

\str_use:N ⟨str var⟩

Recovers the content of a ⟨str var⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
⟨str⟩ directly without an accessor function.

\str_use:N ⋆
\str_use:c ⋆

New: 2015-09-18

\str_count:n {⟨token list⟩}\str_count:N ⋆
\str_count:c ⋆
\str_count:n ⋆
\str_count_ignore_spaces:n ⋆

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of ⟨token
list⟩, as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {⟨token list⟩}

Leaves in the input stream the number of space characters in the string representation of
⟨token list⟩, as an integer denotation. Of course, this function has no _ignore_spaces
variant.

\str_count_spaces:N ⋆
\str_count_spaces:c ⋆
\str_count_spaces:n ⋆

New: 2015-09-18

140

\str_head:n {⟨token list⟩}\str_head:N ⋆
\str_head:c ⋆
\str_head:n ⋆
\str_head_ignore_spaces:n ⋆

New: 2015-09-18

Converts the ⟨token list⟩ into a ⟨string⟩. The first character in the ⟨string⟩ is
then left in the input stream, with category code “other”. The functions differ if the
first character is a space: \str_head:N and \str_head:n return a space token with
category code 10 (blank space), while the \str_head_ignore_spaces:n function ignores
this space character and leaves the first non-space character in the input stream. If the
⟨string⟩ is empty (or only contains spaces in the case of the _ignore_spaces function),
then nothing is left on the input stream.

\str_tail:n {⟨token list⟩}\str_tail:N ⋆
\str_tail:c ⋆
\str_tail:n ⋆
\str_tail_ignore_spaces:n ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, removes the first character, and leaves the
remaining characters (if any) in the input stream, with category codes 12 and 10 (for
spaces). The functions differ in the case where the first character is a space: \str_tail:N
and \str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the
first non-space character and any space before it. If the ⟨token list⟩ is empty (or blank
in the case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:nn {⟨token list⟩} {⟨integer expression⟩}\str_item:Nn ⋆
\str_item:cn ⋆
\str_item:nn ⋆
\str_item_ignore_spaces:nn ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the char-
acter in position ⟨integer expression⟩ of the ⟨string⟩, starting at 1 for the first
(left-most) character. In the case of \str_item:Nn and \str_item:nn, all characters
including spaces are taken into account. The \str_item_ignore_spaces:nn function
skips spaces when counting characters. If the ⟨integer expression⟩ is negative, char-
acters are counted from the end of the ⟨string⟩. Hence, −1 is the right-most character,
etc.

141

\str_range:nnn {⟨token list⟩} {⟨start index⟩} {⟨end index⟩}\str_range:Nnn ⋆
\str_range:cnn ⋆
\str_range:nnn ⋆
\str_range_ignore_spaces:nnn ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the characters
from the ⟨start index⟩ to the ⟨end index⟩ inclusive. Spaces are preserved and counted
as items (contrast this with \tl_range:nnn where spaces are not counted as items and
are possibly discarded from the output).

Here ⟨start index⟩ and ⟨end index⟩ should be integer denotations. For describing
in detail the functions’ behavior, let m and n be the start and end index respectively.
If either is 0, the result is empty. A positive index means ‘start counting from the left
end’, a negative index means ‘start counting from the right end’. Let l be the count of
the token list.

The actual start point is determined as M = m if m > 0 and as M = l + m + 1
if m < 0. Similarly the actual end point is N = n if n > 0 and N = l + n + 1 if n < 0.
If M > N , the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s ≤ 0 or s > l. For
instance,

\iow_term:e { \str_range:nnn { abcdef } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:e { \str_range:nnn { abcdef } { -2 } { -1 } }
\iow_term:e { \str_range:nnn { abcdef } { 0 } { -1 } }

prints bcde, cdef, ef, and an empty line to the terminal. The ⟨start index⟩ must
always be smaller than or equal to the ⟨end index⟩: if this is not the case then no
output is generated. Thus

\iow_term:e { \str_range:nnn { abcdef } { 5 } { 2 } }
\iow_term:e { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed

before starting the job. The input

\iow_term:e { \str_range:nnn { abcdefg } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range:nnn { abcdefg } { -6 } { -3 } }

\iow_term:e { \str_range:nnn { abc~efg } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abc~efg } { 2 } { -3 } }
\iow_term:e { \str_range:nnn { abc~efg } { -6 } { 5 } }
\iow_term:e { \str_range:nnn { abc~efg } { -6 } { -3 } }

\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

142

\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

17.6 Modifying string variables

\str_replace_once:Nnn ⟨str var⟩ {⟨old⟩} {⟨new⟩}

Converts the ⟨old⟩ and ⟨new⟩ token lists to strings, then replaces the first (leftmost)
occurrence of ⟨old string⟩ in the ⟨str var⟩ with ⟨new string⟩.

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn ⟨str var⟩ {⟨old⟩} {⟨new⟩}

Converts the ⟨old⟩ and ⟨new⟩ token lists to strings, then replaces all occurrences of ⟨old
string⟩ in the ⟨str var⟩ with ⟨new string⟩. As this function operates from left to
right, the pattern ⟨old string⟩ may remain after the replacement (see \str_remove_-
all:Nn for an example).

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then removes the first (leftmost) occurrence
of ⟨string⟩ from the ⟨str var⟩.

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then removes all occurrences of ⟨string⟩ from
the ⟨str var⟩. As this function operates from left to right, the pattern ⟨string⟩ may
remain after the removal, for instance,

\str_set:Nn \l_tmpa_str {abbccd} \str_remove_all:Nn \l_tmpa_str
{bc}

results in \l_tmpa_str containing abcd.

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

143

17.7 String manipulation

\str_lowercase:n {⟨tokens⟩}
\str_uppercase:n {⟨tokens⟩}

Converts the input ⟨tokens⟩ to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2
{
\cs_set_protected:cpn
{
user
\str_uppercase:f { \tl_head:n {#1} }
\str_lowercase:f { \tl_tail:n {#1} }

}
{ #2 }

}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

• Caseless comparisons: use \str_casefold:n for this situation (case folding is dis-
tinct from lower casing).

• Case changing text for typesetting: see the \text_lowercase:n(n), \text_-
uppercase:n(n) and \text_titlecase_(all|first):n(n) functions which cor-
rectly deal with context-dependence and other factors appropriate to text case
changing.

\str_lowercase:n ⋆
\str_lowercase:f ⋆
\str_uppercase:n ⋆
\str_uppercase:f ⋆

New: 2019-11-26

144

\str_casefold:n {⟨tokens⟩}

Converts the input ⟨tokens⟩ to their string representation, as described for \tl_to_-
str:n, and then folds the case of the resulting ⟨string⟩ to remove case information. The
result of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_casefold:n follows the mappings provided by the Unicode
Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined
by the Unicode Consortium (e.g. SS folds to SS). As case-folding is a language-insensitive
process, there is no special treatment of Turkic input (i.e. I always folds to i and not to
ı).

\str_casefold:n ⋆
\str_casefold:V ⋆

New: 2022-10-16

\str_mdfive_hash:n {⟨tokens⟩}

Expands to the MD5 sum generated from the ⟨tokens⟩, which is converted to a ⟨string⟩
as described for \tl_to_str:n.

\str_mdfive_hash:n ⋆
\str_mdfive_hash:e ⋆

New: 2023-05-19

17.8 Viewing strings

\str_show:N ⟨str var⟩

Displays the content of the ⟨str var⟩ on the terminal.
\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

Updated: 2021-04-29

\str_log:N ⟨str var⟩

Writes the content of the ⟨str var⟩ in the log file.
\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15

Updated: 2021-04-29

145

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

17.9 Constant strings

Constant strings, containing a single character token, with category code 12.\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
\c_zero_str

New: 2015-09-19

Updated: 2020-12-22

Constant that is always empty.\c_empty_str

New: 2023-12-07

17.10 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_str
\l_tmpb_str

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str
\g_tmpb_str

146

Chapter 18

The l3str-convert module
String encoding conversions

18.1 Encoding and escaping schemes
Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., pdf string objects, urls). Hence, storing
a string of characters is done in two steps.

• The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be utf-16, iso 8859-1, etc. See Table 1 for a list of supported
encodings.6

• Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.6

6Encodings and escapings will be added as they are requested.

147

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

⟨Encoding⟩ description
utf8 utf-8
utf16 utf-16, with byte-order mark
utf16be utf-16, big-endian
utf16le utf-16, little-endian
utf32 utf-32, with byte-order mark
utf32be utf-32, big-endian
utf32le utf-32, little-endian

iso88591, latin1 iso 8859-1
iso88592, latin2 iso 8859-2
iso88593, latin3 iso 8859-3
iso88594, latin4 iso 8859-4

iso88595 iso 8859-5
iso88596 iso 8859-6
iso88597 iso 8859-7
iso88598 iso 8859-8

iso88599, latin5 iso 8859-9
iso885910, latin6 iso 8859-10

iso885911 iso 8859-11
iso885913, latin7 iso 8859-13
iso885914, latin8 iso 8859-14
iso885915, latin9 iso 8859-15
iso885916, latin10 iso 8859-16

clist comma-list of integers
⟨empty⟩ native (Unicode) string
default like utf8 with 8-bit engines, and like native with unicode-engines

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

⟨Escaping⟩ description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits

name see \pdfescapename
string see \pdfescapestring
url encoding used in urls

148

18.2 Conversion functions

\str_set_convert:Nnnn ⟨str var⟩ {⟨string⟩} {⟨name1⟩} {⟨name2⟩}

This function converts the ⟨string⟩ from the encoding given by ⟨name1⟩ to the encoding
given by ⟨name2⟩, and stores the result in the ⟨str var⟩. Each ⟨name⟩ can have the
form ⟨encoding⟩ or ⟨encoding⟩/⟨escaping⟩, where the possible values of ⟨encoding⟩
and ⟨escaping⟩ are given in Tables 1 and 2, respectively. The default escaping is to
input and output bytes directly. The special case of an empty ⟨name⟩ indicates the use
of “native” strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }

results in the variable \l_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the utf-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the ⟨string⟩ is not valid according to the ⟨escaping 1⟩ and
⟨encoding 1⟩, or if it cannot be reencoded in the ⟨encoding 2⟩ and ⟨escaping 2⟩ (for
instance, if a character does not exist in the ⟨encoding 2⟩). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the ⟨encoding 2⟩,
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF ⟨str var⟩ {⟨string⟩} {⟨name1⟩} {⟨name2⟩} {⟨true code⟩}
{⟨false code⟩}

As \str_set_convert:Nnnn, converts the ⟨string⟩ from the encoding given by ⟨name1⟩
to the encoding given by ⟨name2⟩, and assigns the result to ⟨str var⟩. Contrarily
to \str_set_convert:Nnnn, the conditional variant does not raise errors in case the
⟨string⟩ is not valid according to the ⟨name1⟩ encoding, or cannot be expressed in the
⟨name2⟩ encoding. Instead, the ⟨false code⟩ is performed.

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

18.3 Conversion by expansion (for PDF contexts)
A small number of expandable functions are provided for use in PDF string/name con-
texts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n {⟨string⟩}

As \str_set_convert:Nnnn, converts the ⟨string⟩ on a byte-by-byte basis with non-
ASCII codepoints escaped using hashes.

\str_convert_pdfname:n ⋆

18.4 Possibilities, and things to do
Encoding/escaping-related tasks.

149

• In X ETEX/LuaTEX, would it be better to use the ^^^^.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ^ the category
superscript, and use \scantokens.

• Change \str_set_convert:Nnnn to expand its last two arguments.

• Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

• Add documentation about each encoding and escaping method, and add examples.

• The hex unescaping should raise an error for odd-token count strings.

• Decide what bytes should be escaped in the url escaping. Perhaps the characters
!’()*-./0123456789_ are safe, and all other characters should be escaped?

• Automate generation of 8-bit mapping files.

• Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

• More encodings (see Heiko’s stringenc). CESU?

• More escapings: ascii85, shell escapes, lua escapes, etc.?

150

Chapter 19

The l3quark module
Quarks and scan marks

Two special types of constants in LATEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

19.1 Quarks
Quarks are control sequences (and in fact, token lists) that expand to themselves and
should therefore never be executed directly in the code. This would result in an endless
loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}

one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get:NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \tl_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster.

151

19.2 Defining quarks

\quark_new:N ⟨quark⟩

Creates a new ⟨quark⟩ which expands only to ⟨quark⟩. The ⟨quark⟩ is defined globally,
and an error message is raised if the name was already taken.

\quark_new:N

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

\q_stop

Used as a marker for delimited arguments when \q_stop is already in use.\q_mark

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

\q_nil

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

\q_no_value

19.3 Quark tests
The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N ⟨token⟩
\quark_if_nil:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is equal to \q_nil.

\quark_if_nil_p:N ⋆
\quark_if_nil:NTF ⋆

\quark_if_nil_p:n {⟨token list⟩}
\quark_if_nil:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ contains only \q_nil (distinct from ⟨token list⟩ being empty
or containing \q_nil plus one or more other tokens).

\quark_if_nil_p:n ⋆
\quark_if_nil_p:(o|V) ⋆
\quark_if_nil:nTF ⋆
\quark_if_nil:(o|V)TF ⋆

\quark_if_no_value_p:N ⟨token⟩
\quark_if_no_value:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is equal to \q_no_value.

\quark_if_no_value_p:N ⋆
\quark_if_no_value_p:c ⋆
\quark_if_no_value:NTF ⋆
\quark_if_no_value:cTF ⋆

\quark_if_no_value_p:n {⟨token list⟩}
\quark_if_no_value:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ contains only \q_no_value (distinct from ⟨token list⟩ being
empty or containing \q_no_value plus one or more other tokens).

\quark_if_no_value_p:n ⋆
\quark_if_no_value:nTF ⋆

152

19.4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 19.4.1.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_tail

This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\q_recursion_stop

\quark_if_recursion_tail_stop:N ⟨token⟩\quark_if_recursion_tail_stop:N ⋆

Tests if ⟨token⟩ contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n {⟨token list⟩}\quark_if_recursion_tail_stop:n ⋆
\quark_if_recursion_tail_stop:o ⋆

Updated: 2011-09-06

Tests if the ⟨token list⟩ contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn ⟨token⟩ {⟨insertion⟩}\quark_if_recursion_tail_stop_do:Nn ⋆

Tests if ⟨token⟩ contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The ⟨insertion⟩ code is then added to the
input stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn {⟨token list⟩} {⟨insertion⟩}\quark_if_recursion_tail_stop_do:nn ⋆
\quark_if_recursion_tail_stop_do:on ⋆

Updated: 2011-09-06

Tests if the ⟨token list⟩ contains only \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The ⟨insertion⟩ code is then added to the
input stream after the recursion has ended.

153

\quark_if_recursion_tail_break:nN {⟨token list⟩} \⟨type⟩_map_break:\quark_if_recursion_tail_break:NN ⋆
\quark_if_recursion_tail_break:nN ⋆

New: 2018-04-10

Tests if ⟨token list⟩ contains only \q_recursion_tail, and if so terminates the recur-
sion using \⟨type⟩_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \⟨type⟩_map_break:.

19.4.1 An example of recursion with quarks
Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]~} would produce “[–a–b–] [–c–d–] ”. Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2
{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail
\q_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn
{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to LATEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

154

19.5 Scan marks
Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see l3regex).

\scan_new:N ⟨scan mark⟩

Creates a new ⟨scan mark⟩ which is set equal to \scan_stop:. The ⟨scan mark⟩ is
defined globally, and an error message is raised if the name was already taken by another
scan mark.

\scan_new:N

New: 2018-04-01

Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
none_delimit_by_s_stop:w.

\s_stop

New: 2018-04-01

\use_none_delimit_by_s_stop:w ⟨tokens⟩ \s_stop\use_none_delimit_by_s_stop:w ⋆

New: 2018-04-01

Removes the ⟨tokens⟩ and \s_stop from the input stream. This leads to a low-level
TEX error if \s_stop is absent.

155

Chapter 20

The l3seq module
Sequences and stacks

LATEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any ⟨balanced text⟩. It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in LATEX3. This is achieved
using a number of dedicated stack functions.

20.1 Creating and initialising sequences

\seq_new:N ⟨seq var⟩

Creates a new ⟨seq var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨seq var⟩ initially contains no items.

\seq_new:N
\seq_new:c

\seq_clear:N ⟨seq var⟩

Clears all items from the ⟨seq var⟩.
\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

\seq_clear_new:N ⟨seq var⟩

Ensures that the ⟨seq var⟩ exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the ⟨seq var⟩ empty.

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN ⟨seq var1⟩ ⟨seq var2⟩

Sets the content of ⟨seq var1⟩ equal to that of ⟨seq var2⟩.
\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

156

\seq_set_from_clist:NN ⟨seq var⟩ ⟨comma-list⟩\seq_set_from_clist:NN
\seq_set_from_clist:(cN|Nc|cc)
\seq_set_from_clist:Nn
\seq_set_from_clist:cn
\seq_gset_from_clist:NN
\seq_gset_from_clist:(cN|Nc|cc)
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the ⟨comma list⟩ into a ⟨seq var⟩: the original ⟨comma list⟩ is
unchanged.

\seq_const_from_clist:Nn ⟨seq var⟩ {⟨comma-list⟩}

Creates a new constant ⟨seq var⟩ or raises an error if the name is already taken. The
⟨seq var⟩ is set globally to contain the items in the ⟨comma list⟩.

\seq_const_from_clist:Nn
\seq_const_from_clist:cn

New: 2017-11-28

\seq_set_split:Nnn ⟨seq var⟩ {⟨delimiter⟩} {⟨token list⟩}\seq_set_split:Nnn
\seq_set_split:(NVn|NnV|NVV|Nne|Nee)
\seq_gset_split:Nnn
\seq_gset_split:(NVn|NnV|NVV|Nne|Nee)

New: 2011-08-15

Updated: 2012-07-02

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result
to the ⟨seq var⟩. Spaces on both sides of each ⟨item⟩ are ignored, then one set of outer
braces is removed (if any); this space trimming behaviour is identical to that of l3clist
functions. Empty ⟨items⟩ are preserved by \seq_set_split:Nnn, and can be removed
afterwards using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain
{, } or # (assuming TEX’s normal category code régime). If the ⟨delimiter⟩ is empty,
the ⟨token list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split_-
keep_spaces:Nnn, which omits space stripping.

\seq_set_split_keep_spaces:Nnn ⟨seq var⟩ {⟨delimiter⟩} {⟨token list⟩}\seq_set_split_keep_spaces:Nnn
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn
\seq_gset_split_keep_spaces:NnV

New: 2021-03-24

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result
to the ⟨seq var⟩. One set of outer braces is removed (if any) but any surrounding spaces
are retained: any braces inside one or more spaces are therefore kept. Empty ⟨items⟩
are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards
using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain {, } or #
(assuming TEX’s normal category code régime). If the ⟨delimiter⟩ is empty, the ⟨token
list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split:Nnn, which
removes spaces around the delimiters.

157

\seq_set_filter:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline boolexpr⟩}

Evaluates the ⟨inline boolexpr⟩ for every ⟨item⟩ stored within the ⟨seq var2⟩. The
⟨inline boolexpr⟩ receives the ⟨item⟩ as #1. The sequence of all ⟨items⟩ for which
the ⟨inline boolexpr⟩ evaluated to true is assigned to ⟨seq var1⟩.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_filter:NNn
\seq_gset_filter:NNn

New: 2012-06-15

\seq_set_regex_extract_once:Nnn ⟨seq var⟩ {⟨regex⟩} {⟨token list⟩}
\seq_set_regex_extract_once:NNn ⟨seq var⟩ ⟨regex var⟩ {⟨token list⟩}

\seq_set_regex_extract_once:Nnn
\seq_set_regex_extract_once:cnn
\seq_set_regex_extract_once:NNn
\seq_set_regex_extract_once:cNn
\seq_gset_regex_extract_once:Nnn
\seq_gset_regex_extract_once:cnn
\seq_gset_regex_extract_once:NNn
\seq_gset_regex_extract_once:cNn

New: 2024-12-08

Finds the first match of the ⟨regex⟩ in the ⟨token list⟩. If it exists, the match is
stored as the first item of the ⟨seq var⟩, and further items are the contents of capturing
groups, in the order of their opening parenthesis. If there is no match, the ⟨seq var⟩ is
cleared. Theses are alternative names for \regex_extract_once:nnN and friends, with
arguments re-ordered for ⟨seq var⟩ setting; see l3regex chapter for more details of the
⟨regex⟩ format.

\seq_set_regex_extract_all:Nnn ⟨seq var⟩ {⟨regex⟩} {⟨token list⟩}
\seq_set_regex_extract_all:NNn ⟨seq var⟩ ⟨regex var⟩ {⟨token list⟩}

\seq_set_regex_extract_all:Nnn
\seq_set_regex_extract_all:cnn
\seq_set_regex_extract_all:NNn
\seq_set_regex_extract_all:cNn
\seq_gset_regex_extract_all:Nnn
\seq_gset_regex_extract_all:cnn
\seq_gset_regex_extract_all:NNn
\seq_gset_regex_extract_all:cNn

New: 2024-12-08

Finds all matches of the ⟨regex⟩ in the ⟨token list⟩, and stores all the submatch
information in a single sequence (concatenating the results of multiple \seq_set_regex_-
extract_all:Nnn calls). If there is no match, the ⟨seq var⟩ is cleared. Theses are
alternative names for \regex_extract_all:nnN and friends, with arguments re-ordered
for ⟨seq var⟩ setting; see l3regex chapter for more details of the ⟨regex⟩ format.

158

\seq_set_regex_split:Nnn ⟨seq var⟩ {⟨regex⟩} {⟨token list⟩}
\seq_set_regex_split:NNn ⟨seq var⟩ ⟨regex var⟩ {⟨token list⟩}

Splits the ⟨token list⟩ into a sequence of parts, delimited by matches of the ⟨regular
expression⟩. If the ⟨regular expression⟩ has capturing groups, then the token lists
that they match are stored as items of the sequence as well. If no match is found the
resulting ⟨seq var⟩ has the ⟨token list⟩ as its sole item. If the ⟨regular expression⟩
matches the empty token list, then the ⟨token list⟩ is split into single tokens. For
example, after

\seq_set_regex_split:Nnn \l_path_seq { / } { the/path/for/this/file.tex }

the sequence \l_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}. Theses are alternative names for \regex_split:nnN and friends, with
arguments re-ordered for ⟨seq var⟩ setting; see l3regex chapter for more details of the
⟨regex⟩ format.

\seq_set_regex_split:Nnn
\seq_set_regex_split:cnn
\seq_set_regex_split:NNn
\seq_set_regex_split:cNn
\seq_gset_regex_split:Nnn
\seq_gset_regex_split:cnn
\seq_gset_regex_split:NNn
\seq_gset_regex_split:cNn

New: 2024-12-08

\seq_concat:NNN ⟨seq var1⟩ ⟨seq var2⟩ ⟨seq var3⟩

Concatenates the content of ⟨seq var2⟩ and ⟨seq var3⟩ together and saves the result in
⟨seq var1⟩. The items in ⟨seq var2⟩ are placed at the left side of the new sequence.

\seq_concat:NNN
\seq_concat:ccc
\seq_gconcat:NNN
\seq_gconcat:ccc

\seq_if_exist_p:N ⟨seq var⟩
\seq_if_exist:NTF ⟨seq var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨seq var⟩ is currently defined. This does not check that the ⟨seq var⟩
really is a sequence variable.

\seq_if_exist_p:N ⋆
\seq_if_exist_p:c ⋆
\seq_if_exist:NTF ⋆
\seq_if_exist:cTF ⋆

New: 2012-03-03

20.2 Appending data to sequences

\seq_put_left:Nn ⟨seq var⟩ {⟨item⟩}\seq_put_left:Nn
\seq_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gput_left:Nn
\seq_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the ⟨item⟩ to the left of the ⟨seq var⟩.

\seq_put_right:Nn ⟨seq var⟩ {⟨item⟩}\seq_put_right:Nn
\seq_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gput_right:Nn
\seq_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the ⟨item⟩ to the right of the ⟨seq var⟩.

20.3 Recovering items from sequences
Items can be recovered from either the left or the right of sequences. For implementation
reasons, the actions at the left of the sequence are faster than those acting on the right.

159

These functions all assign the recovered material locally, i.e. setting the ⟨tl var⟩ used
with \tl_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN ⟨seq var⟩ ⟨tl var⟩

Stores the left-most item from a ⟨seq var⟩ in the ⟨tl var⟩ without removing it from
the ⟨seq var⟩. The ⟨tl var⟩ is assigned locally. If ⟨seq var⟩ is empty the ⟨tl var⟩ is
set to the special marker \q_no_value.

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

\seq_get_right:NN ⟨seq var⟩ ⟨tl var⟩

Stores the right-most item from a ⟨seq var⟩ in the ⟨tl var⟩ without removing it from
the ⟨seq var⟩. The ⟨tl var⟩ is assigned locally. If ⟨seq var⟩ is empty the ⟨tl var⟩ is
set to the special marker \q_no_value.

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN ⟨seq var⟩ ⟨tl var⟩

Pops the left-most item from a ⟨seq var⟩ into the ⟨tl var⟩, i.e. removes the item from
the sequence and stores it in the ⟨tl var⟩. Both of the variables are assigned locally. If
⟨seq var⟩ is empty the ⟨tl var⟩ is set to the special marker \q_no_value.

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN ⟨seq var⟩ ⟨tl var⟩

Pops the left-most item from a ⟨seq var⟩ into the ⟨tl var⟩, i.e. removes the item from
the sequence and stores it in the ⟨tl var⟩. The ⟨seq var⟩ is modified globally, while
the assignment of the ⟨tl var⟩ is local. If ⟨seq var⟩ is empty the ⟨tl var⟩ is set to
the special marker \q_no_value.

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN ⟨seq var⟩ ⟨tl var⟩

Pops the right-most item from a ⟨seq var⟩ into the ⟨tl var⟩, i.e. removes the item from
the sequence and stores it in the ⟨tl var⟩. Both of the variables are assigned locally. If
⟨seq var⟩ is empty the ⟨tl var⟩ is set to the special marker \q_no_value.

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN ⟨seq var⟩ ⟨tl var⟩

Pops the right-most item from a ⟨seq var⟩ into the ⟨tl var⟩, i.e. removes the item from
the sequence and stores it in the ⟨tl var⟩. The ⟨seq var⟩ is modified globally, while
the assignment of the ⟨tl var⟩ is local. If ⟨seq var⟩ is empty the ⟨tl var⟩ is set to
the special marker \q_no_value.

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn ⟨seq var⟩ {⟨integer expression⟩}

Indexing items in the ⟨seq var⟩ from 1 at the top (left), this function evaluates the
⟨integer expression⟩ and leaves the appropriate item from the sequence in the input
stream. If the ⟨integer expression⟩ is negative, indexing occurs from the bottom
(right) of the sequence. If the ⟨integer expression⟩ is larger than the number of items
in the ⟨seq var⟩ (as calculated by \seq_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\seq_item:Nn ⋆
\seq_item:(NV|Ne|cn|cV|ce) ⋆

New: 2014-07-17

160

\seq_rand_item:N ⟨seq var⟩

Selects a pseudo-random item of the ⟨seq var⟩. If the ⟨seq var⟩ is empty the result is
empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\seq_rand_item:N ⋆
\seq_rand_item:c ⋆

New: 2016-12-06

20.4 Recovering values from sequences with branch-
ing

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, stores the left-most item from the ⟨seq var⟩ in the ⟨tl var⟩ without
removing it from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The
⟨tl var⟩ is assigned locally.

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_get_right:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, stores the right-most item from the ⟨seq var⟩ in the ⟨tl var⟩ without
removing it from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The
⟨tl var⟩ is assigned locally.

\seq_get_right:NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, pops the left-most item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes
the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. Both
the ⟨seq var⟩ and the ⟨tl var⟩ are assigned locally.

\seq_pop_left:NNTF
\seq_pop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop_left:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, pops the left-most item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes
the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The
⟨seq var⟩ is modified globally, while the ⟨tl var⟩ is assigned locally.

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

161

\seq_pop_right:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes
the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. Both
the ⟨seq var⟩ and the ⟨tl var⟩ are assigned locally.

\seq_pop_right:NNTF
\seq_pop_right:cNTF

New: 2012-05-19

\seq_gpop_right:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes
the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The
⟨seq var⟩ is modified globally, while the ⟨tl var⟩ is assigned locally.

\seq_gpop_right:NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

20.5 Modifying sequences
While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N ⟨seq var⟩

Removes duplicate items from the ⟨seq var⟩, leaving the left most copy of each item in
the ⟨seq var⟩. The ⟨item⟩ comparison takes place on a token basis, as for \tl_if_-
eq:nnTF.

TEXhackers note: This function iterates through every item in the ⟨seq var⟩ and does a
comparison with the ⟨items⟩ already checked. It is therefore relatively slow with large sequences.

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn ⟨seq var⟩ {⟨item⟩}\seq_remove_all:Nn
\seq_remove_all:(NV|Ne|cn|cV|ce)
\seq_gremove_all:Nn
\seq_gremove_all:(NV|Ne|cn|cV|ce)

Removes every occurrence of ⟨item⟩ from the ⟨seq var⟩. The ⟨item⟩ comparison takes
place on a token basis, as for \tl_if_eq:nnTF.

\seq_set_item:Nnn ⟨seq var⟩ {⟨int expr⟩} {⟨item⟩}
\seq_set_item:NnnTF ⟨seq var⟩ {⟨int expr⟩} {⟨item⟩} {⟨true code⟩} {⟨false code⟩}

Removes the item of ⟨seq var⟩ at the position given by evaluating the ⟨int expr⟩ and
replaces it by ⟨item⟩. Items are indexed from 1 on the left/top of the ⟨seq var⟩, or
from −1 on the right/bottom. If the ⟨int expr⟩ is zero or is larger (in absolute value)
than the number of items in the sequence, the ⟨seq var⟩ is not modified. In these cases,
\seq_set_item:Nnn raises an error while \seq_set_item:NnnTF runs the ⟨false code⟩.
In cases where the assignment was successful, ⟨true code⟩ is run afterwards.

\seq_set_item:Nnn
\seq_set_item:cnn
\seq_set_item:NnnTF
\seq_set_item:cnnTF
\seq_gset_item:Nnn
\seq_gset_item:cnn
\seq_gset_item:NnnTF
\seq_gset_item:cnnTF

New: 2021-04-29

162

\seq_reverse:N ⟨seq var⟩

Reverses the order of the items stored in the ⟨seq var⟩.
\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

\seq_sort:Nn ⟨seq var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨seq var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨seq var⟩. The details of sorting comparison are described in Section 6.1.

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

\seq_shuffle:N ⟨seq var⟩

Sets the ⟨seq var⟩ to the result of placing the items of the ⟨seq var⟩ in a random order.
Each item is (roughly) as likely to end up in any given position.

TEXhackers note: For sequences with more than 13 items or so, only a small proportion
of all possible permutations can be reached, because the random seed \sys_rand_seed: only
has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535
items (depending on the engine) cannot be shuffled.

\seq_shuffle:N
\seq_shuffle:c
\seq_gshuffle:N
\seq_gshuffle:c

New: 2018-04-29

20.6 Sequence conditionals

\seq_if_empty_p:N ⟨seq var⟩
\seq_if_empty:NTF ⟨seq var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨seq var⟩ is empty (containing no items).

\seq_if_empty_p:N ⋆
\seq_if_empty_p:c ⋆
\seq_if_empty:NTF ⋆
\seq_if_empty:cTF ⋆

\seq_if_in:NnTF ⟨seq var⟩ {⟨item⟩} {⟨true code⟩} {⟨false code⟩}\seq_if_in:NnTF
\seq_if_in:(NV|Nv|Ne|No|cn|cV|cv|ce|co)TF

Tests if the ⟨item⟩ is present in the ⟨seq var⟩.

20.7 Mapping over sequences
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\seq_map_function:NN ⟨seq var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ stored in the ⟨seq var⟩. The ⟨function⟩ will
receive one argument for each iteration. The ⟨items⟩ are returned from left to right.
To pass further arguments to the ⟨function⟩, see \seq_map_tokens:Nn. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items.

\seq_map_function:NN ✩

\seq_map_function:cN ✩

Updated: 2012-06-29

163

\seq_map_inline:Nn ⟨seq var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The ⟨items⟩ are
returned from left to right.

\seq_map_inline:Nn
\seq_map_inline:cn

Updated: 2012-06-29

\seq_map_tokens:Nn ⟨seq var⟩ {⟨code⟩}

Analogue of \seq_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each item in the ⟨seq var⟩ as a trailing brace group. For
instance,

\seq_map_tokens:Nn \l_my_seq { \prg_replicate:nn { 2 } }

expands to twice each item in the ⟨seq var⟩: for each item in \l_my_seq the function
\prg_replicate:nn receives 2 and ⟨item⟩ as its two arguments. The function \seq_-
map_inline:Nn is typically faster but it is not expandable.

\seq_map_tokens:Nn ✩

\seq_map_tokens:cn ✩

New: 2019-08-30

\seq_map_variable:NNn ⟨seq var⟩ ⟨variable⟩ {⟨code⟩}\seq_map_variable:NNn
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each ⟨item⟩ of the ⟨seq var⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨seq var⟩, or its original value if the ⟨seq var⟩ is empty. The ⟨items⟩ are returned
from left to right.

\seq_map_indexed_function:NN ⟨seq var⟩ ⟨function⟩\seq_map_indexed_function:NN ✩

New: 2018-05-03

Applies ⟨function⟩ to every entry in the ⟨seq var⟩. The ⟨function⟩ should have sig-
nature :nn. It receives two arguments for each iteration: the ⟨index⟩ (namely 1 for the
first entry, then 2 and so on) and the ⟨item⟩.

\seq_map_indexed_inline:Nn ⟨seq var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every entry in the ⟨seq var⟩. The ⟨inline function⟩
should consist of code which receives the ⟨index⟩ (namely 1 for the first entry, then 2
and so on) as #1 and the ⟨item⟩ as #2.

\seq_map_indexed_inline:Nn

New: 2018-05-03

\seq_map_pairwise_function:NNN ⟨seq1⟩ ⟨seq2⟩ ⟨function⟩\seq_map_pairwise_function:NNN ✩

\seq_map_pairwise_function:(NcN|cNN|ccN) ✩

New: 2023-05-10

Applies ⟨function⟩ to every pair of items ⟨seq1-item⟩–⟨seq2-item⟩ from the two se-
quences, returning items from both sequences from left to right. The ⟨function⟩ receives
two n-type arguments for each iteration. The mapping terminates when the end of ei-
ther sequence is reached (i.e. whichever sequence has fewer items determines how many
iterations occur).

164

\seq_map_break:

Used to terminate a \seq_map_... function before all entries in the ⟨seq var⟩ have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\seq_map_break: ✩

Updated: 2012-06-29

\seq_map_break:n {⟨code⟩}

Used to terminate a \seq_map_... function before all entries in the ⟨seq var⟩ have been
processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\seq_map_break:n ✩

Updated: 2012-06-29

\seq_set_map:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var2⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The sequence
resulting from applying ⟨inline function⟩ to each ⟨item⟩ is assigned to ⟨seq var1⟩.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22

Updated: 2020-07-16

165

\seq_set_map_e:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var2⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The sequence
resulting from e-expanding ⟨inline function⟩ applied to each ⟨item⟩ is assigned to
⟨seq var1⟩. As such, the code in ⟨inline function⟩ should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_map_e:NNn
\seq_gset_map_e:NNn

New: 2020-07-16

Updated: 2023-10-26

\seq_count:N ⟨seq var⟩

Leaves the number of items in the ⟨seq var⟩ in the input stream as an ⟨integer
denotation⟩. The total number of items in a ⟨seq var⟩ includes those which are empty
and duplicates, i.e. every item in a ⟨seq var⟩ is unique.

\seq_count:N ⋆
\seq_count:c ⋆

New: 2012-07-13

20.8 Using the content of sequences directly

\seq_use:Nnnn ⟨seq var⟩ {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}

Places the contents of the ⟨seq var⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. Namely, if the sequence has more than two items,
the ⟨separator between more than two⟩ is placed between each pair of items except
the last, for which the ⟨separator between final two⟩ is used. If the sequence has
exactly two items, then they are placed in the input stream separated by the ⟨separator
between two⟩. If the sequence has a single item, it is placed in the input stream, and
an empty sequence produces no output. An error is raised if the variable does not exist
or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\seq_use:Nnnn ⋆
\seq_use:cnnn ⋆

New: 2013-05-26

166

\seq_use:Nn ⟨seq var⟩ {⟨separator⟩}

Places the contents of the ⟨seq var⟩ in the input stream, with the ⟨separator⟩ between
the items. If the sequence has a single item, it is placed in the input stream with no
⟨separator⟩, and an empty sequence produces no output. An error is raised if the
variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nn \l_tmpa_seq { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\seq_use:Nn ⋆
\seq_use:cn ⋆

New: 2013-05-26

20.9 Sequences as stacks
Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN ⟨seq var⟩ ⟨tl var⟩

Reads the top item from a ⟨seq var⟩ into the ⟨tl var⟩ without removing it from the
⟨seq var⟩. The ⟨tl var⟩ is assigned locally. If ⟨seq var⟩ is empty the ⟨tl var⟩ is set
to the special marker \q_no_value.

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN ⟨seq var⟩ ⟨tl var⟩

Pops the top item from a ⟨seq var⟩ into the ⟨tl var⟩. Both of the variables are assigned
locally. If ⟨seq var⟩ is empty the ⟨tl var⟩ is set to the special marker \q_no_value.

\seq_pop:NN
\seq_pop:cN

Updated: 2012-05-14

\seq_gpop:NN ⟨seq var⟩ ⟨tl var⟩

Pops the top item from a ⟨seq var⟩ into the ⟨tl var⟩. The ⟨seq var⟩ is modified
globally, while the ⟨tl var⟩ is assigned locally. If ⟨seq var⟩ is empty the ⟨tl var⟩ is
set to the special marker \q_no_value.

\seq_gpop:NN
\seq_gpop:cN

Updated: 2012-05-14

\seq_get:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, stores the top item from a ⟨seq var⟩ in the ⟨tl var⟩ without removing it
from the ⟨seq var⟩. The ⟨tl var⟩ is assigned locally.

\seq_get:NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

167

\seq_pop:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩
is non-empty, pops the top item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes the
item from the ⟨seq var⟩. Both the ⟨seq var⟩ and the ⟨tl var⟩ are assigned locally.

\seq_pop:NNTF
\seq_pop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF ⟨seq var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the
⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is
non-empty, pops the top item from the ⟨seq var⟩ in the ⟨tl var⟩, i.e. removes the item
from the ⟨seq var⟩. The ⟨seq var⟩ is modified globally, while the ⟨tl var⟩ is assigned
locally.

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_push:Nn ⟨seq var⟩ {⟨item⟩}\seq_push:Nn
\seq_push:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gpush:Nn
\seq_gpush:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Adds the {⟨item⟩} to the top of the ⟨seq var⟩.

20.10 Sequences as sets
Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
⟨seq var⟩ only has distinct items, use \seq_remove_duplicates:N ⟨seq var⟩. This
function is relatively slow, and to avoid performance issues one should only use it when
necessary.

Some operations on a set ⟨seq var⟩ are straightforward. For instance, \seq_-
count:N ⟨seq var⟩ expands to the number of items, while \seq_if_in:NnTF ⟨seq var⟩
{⟨item⟩} tests if the ⟨item⟩ is in the set.

Adding an ⟨item⟩ to a set ⟨seq var⟩ can be done by appending it to the ⟨seq var⟩
if it is not already in the ⟨seq var⟩:

\seq_if_in:NnF ⟨seq var⟩ {⟨item⟩}
{ \seq_put_right:Nn ⟨seq var⟩ {⟨item⟩} }

Removing an ⟨item⟩ from a set ⟨seq var⟩ can be done using \seq_remove_all:Nn,

\seq_remove_all:Nn ⟨seq var⟩ {⟨item⟩}

The intersection of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into
⟨seq var3⟩ by collecting items of ⟨seq var1⟩ which are in ⟨seq var2⟩.

168

\seq_clear:N ⟨seq var3⟩
\seq_map_inline:Nn ⟨seq var1⟩
{
\seq_if_in:NnT ⟨seq var2⟩ {#1}
{ \seq_put_right:Nn ⟨seq var3⟩ {#1} }

}

The code as written here only works if ⟨seq var3⟩ is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\l__⟨pkg⟩_internal_seq, then ⟨seq var3⟩ should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into ⟨seq var3⟩
through

\seq_concat:NNN ⟨seq var3⟩ ⟨seq var1⟩ ⟨seq var2⟩
\seq_remove_duplicates:N ⟨seq var3⟩

or by adding items to (a copy of) ⟨seq var1⟩ one by one
\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{
\seq_if_in:NnF ⟨seq var3⟩ {#1}
{ \seq_put_right:Nn ⟨seq var3⟩ {#1} }

}

The second approach is faster than the first when the ⟨seq var2⟩ is short compared to
⟨seq var1⟩.

The difference of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into ⟨seq var3⟩
by removing items of the ⟨seq var2⟩ from (a copy of) the ⟨seq var1⟩ one by one.

\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{ \seq_remove_all:Nn ⟨seq var3⟩ {#1} }

The symmetric difference of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into
⟨seq var3⟩ by computing the difference between ⟨seq var1⟩ and ⟨seq var2⟩ and stor-
ing the result as \l__⟨pkg⟩_internal_seq, then the difference between ⟨seq var2⟩ and
⟨seq var1⟩, and finally concatenating the two differences to get the symmetric differ-
ences.

\seq_set_eq:NN \l__⟨pkg⟩_internal_seq ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{ \seq_remove_all:Nn \l__⟨pkg⟩_internal_seq {#1} }

\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var2⟩
\seq_map_inline:Nn ⟨seq var1⟩
{ \seq_remove_all:Nn ⟨seq var3⟩ {#1} }

\seq_concat:NNN ⟨seq var3⟩ ⟨seq var3⟩ \l__⟨pkg⟩_internal_seq

20.11 Constant and scratch sequences

Constant that is always empty.\c_empty_seq

New: 2012-07-02

169

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_seq
\l_tmpb_seq

New: 2012-04-26

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

20.12 Viewing sequences

\seq_show:N ⟨seq var⟩

Displays the entries in the ⟨seq var⟩ in the terminal.
\seq_show:N
\seq_show:c

Updated: 2021-04-29

\seq_log:N ⟨seq var⟩

Writes the entries in the ⟨seq var⟩ in the log file.
\seq_log:N
\seq_log:c

New: 2014-08-12

Updated: 2021-04-29

170

Chapter 21

The l3int module
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators +,
-, / and * and parentheses can be used within such expressions to carry arithmetic oper-
ations. This module carries out these functions on integer expressions (“⟨int expr⟩”).

21.1 Integer expressions
Throughout this module, (almost) all n-type argument allow for an ⟨intexpr⟩ argument
with the following syntax. The ⟨integer expression⟩ should consist, after expansion,
of +, -, *, /, (,) and of course integer operands. The result is calculated by applying
standard mathematical rules with the following peculiarities:

• / denotes division rounded to the closest integer with ties rounded away from zero;

• there is an error and the overall expression evaluates to zero whenever the absolute
value of any intermediate result exceeds 231 − 1, except in the case of scaling oper-
ations a*b/c, for which a*b may be arbitrarily large (but the operands a, b, c are
still constrained to an absolute value at most 231 − 1);

• parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_show:n { 5 + 4 * 3 - (3 + 4 * 5) }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { 5 }
\int_new:N \l_my_int
\int_set:Nn \l_my_int { 4 }
\int_show:n { \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) }

171

show the same result −6 because \l_my_tl expands to the integer denotation 5 while
the integer variable \l_my_int takes the value 4. As the ⟨integer expression⟩ is fully
expanded from left to right during evaluation, fully expandable and restricted-expandable
functions can both be used, and \exp_not:n and its variants have no effect while \exp_-
not:N may incorrectly interrupt the expression.

\int_eval:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ and leaves the result in the input stream as an integer deno-
tation: for positive results an explicit sequence of decimal digits not starting with 0, for
negative results - followed by such a sequence, and 0 for zero.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an ⟨internal integer⟩, and therefore requires suitable termination if used in a
TEX-style integer assignment.

As all TEX integers, integer operands can also be dimension or skip variables, converted to
integers in sp, or octal numbers given as ’ followed by digits other than 8 and 9, or hexadecimal
numbers given as " followed by digits or upper case letters from A to F, or the character code of
some character or one-character control sequence, given as ‘⟨char⟩.

\int_eval:n ⋆

\int_eval:w ⟨int expr⟩

Evaluates the ⟨int expr⟩ as described for \int_eval:n. The end of the expression is
the first token encountered that cannot form part of such an expression. If that token
is \scan_stop: it is removed, otherwise not. Spaces do not terminate the expression.
However, spaces terminate explicit integers, and this may terminate the expression: for
instance, \int_eval:w 1␣+␣1␣9 (with explicit space tokens inserted using ~ in a code
setting) expands to 29 since the digit 9 is not part of the expression. Expansion details,
etc., are as given for \int_eval:n.

\int_eval:w ⋆

New: 2018-03-30

\int_sign:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ then leaves 1 or 0 or −1 in the input stream according to the
sign of the result.

\int_sign:n ⋆

New: 2018-11-03

\int_abs:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ as described for \int_eval:n and leaves the absolute value of
the result in the input stream as an ⟨integer denotation⟩ after two expansions.

\int_abs:n ⋆

Updated: 2012-09-26

\int_div_round:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then divides the first value by the
second, and rounds the result to the closest integer. Ties are rounded away from zero.
Note that this is identical to using / directly in an ⟨int expr⟩. The result is left in the
input stream as an ⟨integer denotation⟩ after two expansions.

\int_div_round:nn ⋆

Updated: 2012-09-26

\int_div_truncate:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then divides the first value by the
second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an ⟨integer denotation⟩
after two expansions.

\int_div_truncate:nn ⋆

Updated: 2012-02-09

172

\int_max:nn {⟨int expr1⟩} {⟨int expr2⟩}
\int_min:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the ⟨int expr⟩s as described for \int_eval:n and leaves either the larger or
smaller value in the input stream as an ⟨integer denotation⟩ after two expansions.

\int_max:nn ⋆
\int_min:nn ⋆

Updated: 2012-09-26

\int_mod:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then calculates the integer remainder
of dividing the first expression by the second. This is obtained by subtracting \int_div_-
truncate:nn {⟨int expr1⟩} {⟨int expr2⟩} times ⟨int expr2⟩ from ⟨int expr1⟩. Thus, the
result has the same sign as ⟨int expr1⟩ and its absolute value is strictly less than that of
⟨int expr2⟩. The result is left in the input stream as an ⟨integer denotation⟩ after
two expansions.

\int_mod:nn ⋆

Updated: 2012-09-26

21.2 Creating and initialising integers

\int_new:N ⟨integer⟩

Creates a new ⟨integer⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨integer⟩ is initially equal to 0.

\int_new:N
\int_new:c

\int_const:Nn ⟨integer⟩ {⟨int expr⟩}

Creates a new constant ⟨integer⟩ or raises an error if the name is already taken. The
value of the ⟨integer⟩ is set globally to the ⟨int expr⟩.

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_zero:N ⟨integer⟩

Sets ⟨integer⟩ to 0.
\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N ⟨integer⟩

Ensures that the ⟨integer⟩ exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the ⟨integer⟩ set to zero.

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN ⟨integer1⟩ ⟨integer2⟩

Sets the content of ⟨integer1⟩ equal to that of ⟨integer2⟩.
\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_if_exist_p:N ⟨integer⟩
\int_if_exist:NTF ⟨integer⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨integer⟩ is currently defined. This does not check that the ⟨integer⟩
really is an integer variable.

\int_if_exist_p:N ⋆
\int_if_exist_p:c ⋆
\int_if_exist:NTF ⋆
\int_if_exist:cTF ⋆

New: 2012-03-03

173

21.3 Setting and incrementing integers

\int_add:Nn ⟨integer⟩ {⟨int expr⟩}

Adds the result of the ⟨int expr⟩ to the current content of the ⟨integer⟩.
\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N ⟨integer⟩

Decreases the value stored in ⟨integer⟩ by 1.
\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N ⟨integer⟩

Increases the value stored in ⟨integer⟩ by 1.
\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_set:Nn ⟨integer⟩ {⟨int expr⟩}

Sets ⟨integer⟩ to the value of ⟨int expr⟩, which must evaluate to an integer (as de-
scribed for \int_eval:n).

\int_set:Nn
\int_set:(cn|NV|cV)
\int_gset:Nn
\int_gset:(cn|NV|cV)

Updated: 2011-10-22

\int_set_regex_count:Nnn ⟨int var⟩ {⟨regex⟩} {⟨token list⟩}
\int_set_regex_count:NNn ⟨int var⟩ ⟨regex var⟩ {⟨token list⟩}

Sets ⟨int var⟩ equal to the number of times ⟨regular expression⟩ appears in ⟨token
list⟩. The search starts by finding the left-most longest match, respecting greedy and
lazy (non-greedy) operators. Then the search starts again from the character following
the last character of the previous match, until reaching the end of the token list. Infinite
loops are prevented in the case where the regular expression can match an empty token
list: then we count one match between each pair of characters. For instance,

\int_set_regex_count:Nnn \l_foo_int { (b+|c) } { abbababcbb }

results in \l_foo_int taking the value 5. Theses are alternative names for \regex_-
count:nnN and friends, with arguments re-ordered for ⟨int var⟩ setting; see l3regex
chapter for more details of the ⟨regex⟩ format.

\int_set_regex_count:Nnn
\int_set_regex_count:cnn
\int_set_regex_count:NNn
\int_set_regex_count:cNn
\int_gset_regex_count:Nnn
\int_gset_regex_count:cnn
\int_gset_regex_count:NNn
\int_gset_regex_count:cNn

New: 2024-12-08

\int_sub:Nn ⟨integer⟩ {⟨int expr⟩}

Subtracts the result of the ⟨int expr⟩ from the current content of the ⟨integer⟩.
\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Updated: 2011-10-22

174

21.4 Using integers

\int_use:N ⟨integer⟩

Recovers the content of an ⟨integer⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Can be omitted in places where an
⟨integer⟩ is required (such as in the first and third arguments of \int_compare:nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\int_use:N ⋆
\int_use:c ⋆

Updated: 2011-10-22

21.5 Integer expression conditionals

\int_compare_p:nNn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩}
\int_compare:nNnTF
{⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨int expr⟩s as described for \int_eval:n. The
two results are then compared using the ⟨relation⟩:

Equal =
Greater than >
Less than <

This function is less flexible than \int_compare:nTF but around 5 times faster.

\int_compare_p:nNn ⋆
\int_compare:nNnTF ⋆

175

\int_compare_p:n
{

⟨int expr1⟩ ⟨relation1⟩
...
⟨int exprN ⟩ ⟨relationN ⟩
⟨int exprN+1⟩

}
\int_compare:nTF
{

⟨int expr1⟩ ⟨relation1⟩
...
⟨int exprN ⟩ ⟨relationN ⟩
⟨int exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

This function evaluates the ⟨int expr⟩s as described for \int_eval:n and compares
consecutive result using the corresponding ⟨relation⟩, namely it compares ⟨int expr1⟩
and ⟨int expr2⟩ using the ⟨relation1⟩, then ⟨int expr2⟩ and ⟨int expr3⟩ using
the ⟨relation2⟩, until finally comparing ⟨int exprN ⟩ and ⟨int exprN+1⟩ using the
⟨relationN ⟩. The test yields true if all comparisons are true. Each ⟨int expr⟩ is
evaluated only once, and the evaluation is lazy, in the sense that if one comparison is
false, then no other ⟨integer expression⟩ is evaluated and no other comparison is
performed. The ⟨relations⟩ can be any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

This function is more flexible than \int_compare:nNnTF but around 5 times slower.

\int_compare_p:n ⋆
\int_compare:nTF ⋆

Updated: 2013-01-13

176

\int_case:nnTF {⟨test int expr⟩}
{
{⟨int expr case1⟩} {⟨code case1⟩}
{⟨int expr case2⟩} {⟨code case2⟩}
...
{⟨int expr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

This function evaluates the ⟨test int expr⟩ and compares this in turn to each of the
⟨int expr case⟩s until a match is found. If the two are equal then the associated
⟨code⟩ is left in the input stream and other cases are discarded. If any of the cases are
matched, the ⟨true code⟩ is also inserted into the input stream (after the code for the
appropriate case), while if none match then the ⟨false code⟩ is inserted. The function
\int_case:nn, which does nothing if there is no match, is also available. For example

\int_case:nnF
{ 2 * 5 }
{
{ 5 } { Small }
{ 4 + 6 } { Medium }
{ -2 * 10 } { Negative }

}
{ No idea! }

leaves “Medium” in the input stream. Since evaluation of the test expressions stops at
the first successful case, the order of possible matches should normally be that the most
likely are earlier: this will reduce the average steps required to complete expansion.

\int_case:nn ⋆
\int_case:nnTF ⋆

New: 2013-07-24

\int_if_odd_p:n {⟨int expr⟩}
\int_if_odd:nTF {⟨int expr⟩}

{⟨true code⟩} {⟨false code⟩}

This function first evaluates the ⟨int expr⟩ as described for \int_eval:n. It then
evaluates if this is odd or even, as appropriate.

\int_if_even_p:n ⋆
\int_if_even:nTF ⋆
\int_if_odd_p:n ⋆
\int_if_odd:nTF ⋆

\int_if_zero_p:n {⟨int expr⟩}
\int_if_zero:nTF {⟨int expr⟩}

{⟨true code⟩} {⟨false code⟩}

This function first evaluates the ⟨int expr⟩ as described for \int_eval:n. It then
evaluates if this is zero or not.

\int_if_zero_p:n ⋆
\int_if_zero:nTF ⋆

New: 2023-05-17

21.6 Integer expression loops

\int_do_until:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨int expr⟩s as described for \int_compare:nNnTF. If the test
is false then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is true.

\int_do_until:nNnn ✩

177

\int_do_while:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨int expr⟩s as described for \int_compare:nNnTF. If the test
is true then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is false.

\int_do_while:nNnn ✩

\int_until_do:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨int expr⟩s as described for \int_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
false. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\int_until_do:nNnn ✩

\int_while_do:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨int expr⟩s as described for \int_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
true. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is false.

\int_while_do:nNnn ✩

\int_do_until:nn {⟨integer relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the ⟨integer
relation⟩ as described for \int_compare:nTF. If the test is false then the ⟨code⟩ is
inserted into the input stream again and a loop occurs until the ⟨relation⟩ is true.

\int_do_until:nn ✩

Updated: 2013-01-13

\int_do_while:nn {⟨integer relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the ⟨integer
relation⟩ as described for \int_compare:nTF. If the test is true then the ⟨code⟩ is
inserted into the input stream again and a loop occurs until the ⟨relation⟩ is false.

\int_do_while:nn ✩

Updated: 2013-01-13

\int_until_do:nn {⟨integer relation⟩} {⟨code⟩}

Evaluates the ⟨integer relation⟩ as described for \int_compare:nTF, and then places
the ⟨code⟩ in the input stream if the ⟨relation⟩ is false. After the ⟨code⟩ has been
processed by TEX the test is repeated, and a loop occurs until the test is true.

\int_until_do:nn ✩

Updated: 2013-01-13

\int_while_do:nn {⟨integer relation⟩} {⟨code⟩}

Evaluates the ⟨integer relation⟩ as described for \int_compare:nTF, and then places
the ⟨code⟩ in the input stream if the ⟨relation⟩ is true. After the ⟨code⟩ has been
processed by TEX the test is repeated, and a loop occurs until the test is false.

\int_while_do:nn ✩

Updated: 2013-01-13

178

21.7 Integer step functions

\int_step_function:nN {⟨final value⟩} ⟨function⟩
\int_step_function:nnN {⟨initial value⟩} {⟨final value⟩} ⟨function⟩
\int_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. The ⟨function⟩ is then placed in front of each
⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between
each ⟨value⟩). The ⟨step⟩ must be non-zero. If the ⟨step⟩ is positive, the loop stops
when the ⟨value⟩ becomes larger than the ⟨final value⟩. If the ⟨step⟩ is negative, the
loop stops when the ⟨value⟩ becomes smaller than the ⟨final value⟩. The ⟨function⟩
should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[I saw 1] [I saw 2] [I saw 3] [I saw 4] [I saw 5]

The functions \int_step_function:nN and \int_step_function:nnN both use a
fixed ⟨step⟩ of 1, and in the case of \int_step_function:nN the ⟨initial value⟩ is
also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_function:nN ✩

\int_step_function:nnN ✩

\int_step_function:nnnN ✩

New: 2012-06-04

Updated: 2018-04-22

\int_step_inline:nn {⟨final value⟩} {⟨code⟩}
\int_step_inline:nnn {⟨initial value⟩} {⟨final value⟩} {⟨code⟩}
\int_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. Then for each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted
into the input stream with #1 replaced by the current ⟨value⟩. Thus the ⟨code⟩ should
define a function of one argument (#1).

The functions \int_step_inline:nn and \int_step_inline:nnn both use a fixed
⟨step⟩ of 1, and in the case of \int_step_inline:nn the ⟨initial value⟩ is also fixed
as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_inline:nn
\int_step_inline:nnn
\int_step_inline:nnnn

New: 2012-06-04

Updated: 2018-04-22

\int_step_variable:nNn {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}
\int_step_variable:nnNn {⟨initial value⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}
\int_step_variable:nnnNn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩
{⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. Then for each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted
into the input stream, with the ⟨tl var⟩ defined as the current ⟨value⟩. Thus the ⟨code⟩
should make use of the ⟨tl var⟩.

The functions \int_step_variable:nNn and \int_step_variable:nnNn both use
a fixed ⟨step⟩ of 1, and in the case of \int_step_variable:nNn the ⟨initial value⟩
is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_variable:nNn
\int_step_variable:nnNn
\int_step_variable:nnnNn

New: 2012-06-04

Updated: 2018-04-22

179

21.8 Formatting integers
Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {⟨int expr⟩}

Places the value of the ⟨int expr⟩ in the input stream as digits, with category code 12
(other).

\int_to_arabic:n ⋆
\int_to_arabic:v ⋆

Updated: 2011-10-22

\int_to_alph:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ and converts the result into a series of letters, which are then
left in the input stream. The conversion rule uses the 26 letters of the English alphabet, in
order, adding letters when necessary to increase the total possible range of representable
numbers. Thus

\int_to_alph:n { 1 }

places a in the input stream,

\int_to_alph:n { 26 }

is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_alph:n ⋆
\int_to_Alph:n ⋆

Updated: 2011-09-17

\int_to_symbols:nnn
{⟨int expr⟩} {⟨total symbols⟩}
{⟨value to symbol mapping⟩}

This is the low-level function for conversion of an ⟨int expr⟩ into a symbolic form (often
letters). The ⟨total symbols⟩ available should be given as an integer expression. Values
are actually converted to symbols according to the ⟨value to symbol mapping⟩. This
should be given as ⟨total symbols⟩ pairs of entries, a number and the appropriate
symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1
{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1 } { a }
{ 2 } { b }
...
{ 26 } { z }

}
}

\int_to_symbols:nnn ⋆

Updated: 2011-09-17

180

\int_to_bin:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the binary representation of the result
in the input stream.

\int_to_bin:n ⋆

New: 2014-02-11

\int_to_hex:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the hexadecimal (base 16) represen-
tation of the result in the input stream. Letters are used for digits beyond 9: lower case
letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The resulting tokens
are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_hex:n ⋆
\int_to_Hex:n ⋆

New: 2014-02-11

\int_to_oct:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the octal (base 8) representation of
the result in the input stream. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_oct:n ⋆

New: 2014-02-11

\int_to_base:nn {⟨int expr⟩} {⟨base⟩}

Calculates the value of the ⟨int expr⟩ and converts it into the appropriate representation
in the ⟨base⟩; the later may be given as an integer expression. For bases greater than
10 the higher “digits” are represented by letters from the English alphabet: lower case
letters for \int_to_base:n and upper case ones for \int_to_Base:n. The maximum
⟨base⟩ value is 36. The resulting tokens are digits with category code 12 (other) and
letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_base:nn ⋆
\int_to_Base:nn ⋆

Updated: 2014-02-11

\int_to_roman:n {⟨int expr⟩}

Places the value of the ⟨int expr⟩ in the input stream as Roman numerals, either lower
case (\int_to_roman:n) or upper case (\int_to_Roman:n). If the value is negative or
zero, the output is empty. The Roman numerals are letters with category code 11 (letter).
The letters used are mdclxvi, repeated as needed: the notation with bars (such as v̄ for
5000) is not used. For instance \int_to_roman:n { 8249 } expands to mmmmmmmmccxlix.

\int_to_roman:n ✩

\int_to_Roman:n ✩

Updated: 2011-10-22

21.9 Converting from other formats to integers

\int_from_alph:n {⟨letters⟩}

Converts the ⟨letters⟩ into the integer (base 10) representation and leaves this in the
input stream. The ⟨letters⟩ are first converted to a string, with no expansion. Lower
and upper case letters from the English alphabet may be used, with “a” equal to 1
through to “z” equal to 26. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_alph:n ⋆

Updated: 2014-08-25

\int_from_bin:n {⟨binary number⟩}

Converts the ⟨binary number⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨binary number⟩ is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

\int_from_bin:n ⋆

New: 2014-02-11

Updated: 2014-08-25

181

\int_from_hex:n {⟨hexadecimal number⟩}

Converts the ⟨hexadecimal number⟩ into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the ⟨hexadecimal
number⟩ by upper or lower case letters. The ⟨hexadecimal number⟩ is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_hex:n ⋆

New: 2014-02-11

Updated: 2014-08-25

\int_from_oct:n {⟨octal number⟩}

Converts the ⟨octal number⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨octal number⟩ is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_oct:n ⋆

New: 2014-02-11

Updated: 2014-08-25

\int_from_roman:n {⟨roman numeral⟩}

Converts the ⟨roman numeral⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨roman numeral⟩ is first converted to a string, with no expansion.
The ⟨roman numeral⟩ may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value is −1. This is the inverse function
of \int_to_roman:n and \int_to_Roman:n.

\int_from_roman:n ⋆

Updated: 2014-08-25

\int_from_base:nn {⟨number⟩} {⟨base⟩}

Converts the ⟨number⟩ expressed in ⟨base⟩ into the appropriate value in base 10. The
⟨number⟩ is first converted to a string, with no expansion. The ⟨number⟩ should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum ⟨base⟩ value is 36. This is the inverse function of \int_to_base:nn and
\int_to_Base:nn.

\int_from_base:nn ⋆

Updated: 2014-08-25

21.10 Random integers

\int_rand:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s and produces a pseudo-random number between the two
(with bounds included).

\int_rand:nn ⋆

New: 2016-12-06

Updated: 2018-04-27

\int_rand:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ then produces a pseudo-random number between 1 and the
⟨int expr⟩ (included).

\int_rand:n ⋆

New: 2018-05-05

21.11 Viewing integers

\int_show:N ⟨integer⟩

Displays the value of the ⟨integer⟩ on the terminal.
\int_show:N
\int_show:c

182

\int_show:n {⟨int expr⟩}

Displays the result of evaluating the ⟨int expr⟩ on the terminal.
\int_show:n

New: 2011-11-22

Updated: 2015-08-07

\int_log:N ⟨integer⟩

Writes the value of the ⟨integer⟩ in the log file.
\int_log:N
\int_log:c

New: 2014-08-22

Updated: 2015-08-03

\int_log:n {⟨int expr⟩}

Writes the result of evaluating the ⟨int expr⟩ in the log file.
\int_log:n

New: 2014-08-22

Updated: 2015-08-07

21.12 Constant integers

Integer values used with primitive tests and assignments: their self-terminating nature
makes these more convenient and faster than literal numbers.

\c_zero_int
\c_one_int

New: 2018-05-07

The maximum value that can be stored as an integer.\c_max_int

Maximum number of registers.\c_max_register_int

Maximum character code completely supported by the engine.\c_max_char_int

21.13 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_int
\l_tmpb_int

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_int
\g_tmpb_int

183

21.14 Direct number expansion

\int_value:w ⟨integer⟩
\int_value:w ⟨integer denotation⟩ ⟨optional space⟩

Expands the following tokens until an ⟨integer⟩ is formed, and leaves a normalized form
(no leading sign except for negative numbers, no leading digit 0 except for zero) in the
input stream as category code 12 (other) characters. The ⟨integer⟩ can consist of any
number of signs (with intervening spaces) followed by

• an integer variable (in fact, any TEX register except \toks) or

• explicit digits (or by ’⟨octal digits⟩ or "⟨hexadecimal digits⟩ or ‘⟨character⟩).

In this last case expansion stops once a non-digit is found; if that is a space it is removed
as in f-expansion, and so \exp_stop_f: may be employed as an end marker. Note that
protected functions are expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable
for use in cases where a number is required “directly”. In general, \int_eval:n is the
preferred approach to generating numbers.

TEXhackers note: This is the TEX primitive \number.

\int_value:w ⋆

New: 2018-03-27

21.15 Primitive conditionals

\if_int_compare:w ⟨integer1⟩ ⟨relation⟩ ⟨integer2⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Compare two integers using ⟨relation⟩, which must be one of =, < or > with category
code 12. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifnum.

\if_int_compare:w ⋆

\if_case:w ⟨integer⟩ ⟨case0⟩
\or: ⟨case1⟩
\or: ...
\else: ⟨default⟩

\fi:

Selects a case to execute based on the value of the ⟨integer⟩. The first case (⟨case0⟩) is
executed if ⟨integer⟩ is 0, the second (⟨case1⟩) if the ⟨integer⟩ is 1, etc. The ⟨integer⟩
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_case:w ⋆
\or: ⋆

184

\if_int_odd:w ⟨tokens⟩ ⟨optional space⟩
⟨true code⟩

\else:
⟨true code⟩

\fi:

Expands ⟨tokens⟩ until a non-numeric token or a space is found, and tests whether
the resulting ⟨integer⟩ is odd. If so, ⟨true code⟩ is executed. The \else: branch is
optional.

TEXhackers note: This is the TEX primitive \ifodd.

\if_int_odd:w ⋆

185

Chapter 22

The l3flag module
Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any (small) non-negative value, which we call its ⟨height⟩. In
expansion-only contexts, a flag can only be “raised”: this increases the ⟨height⟩ by 1.
The ⟨height⟩ can also be queried expandably. However, decreasing it, or setting it to
zero requires non-expandable assignments.

Flag variables are always local.
A typical use case of flags would be to keep track of whether an exceptional condition

has occurred during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by l3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height and that the memory cannot be
reclaimed even if the flag is cleared. Flags should not be used unless it is unavoidable.

In earlier versions, flags were referenced by an n-type ⟨flag name⟩ such as fp_-
overflow, used as part of \use:c constructions. All of the commands described below
have n-type analogues that can still appear in old code, but the N-type commands are
to be preferred moving forward. The n-type ⟨flag name⟩ is simply mapped to \l_⟨flag
name⟩_flag, which makes it easier for packages using public flags (such as l3fp) to retain
backwards compatibility.

22.1 Setting up flags

\flag_new:N ⟨flag var⟩

Creates a new ⟨flag var⟩, or raises an error if the name is already taken. The declaration
is global, but flags are always local variables. The ⟨flag var⟩ initially has zero height.

\flag_new:N
\flag_new:c

New: 2024-01-12

186

\flag_clear:N ⟨flag var⟩

Sets the height of the ⟨flag var⟩ to zero. The assignment is local.
\flag_clear:N
\flag_clear:c

New: 2024-01-12

\flag_clear_new:N ⟨flag var⟩

Ensures that the ⟨flag var⟩ exists globally by applying \flag_new:N if necessary, then
applies \flag_clear:N, setting the height to zero locally.

\flag_clear_new:N
\flag_clear_new:c

New: 2024-01-12

\flag_show:N ⟨flag var⟩

Displays the height of the ⟨flag var⟩ in the terminal.
\flag_show:N
\flag_show:c

New: 2024-01-12

\flag_log:N ⟨flag var⟩

Writes the height of the ⟨flag var⟩ in the log file.
\flag_log:N
\flag_log:c

New: 2024-01-12

22.2 Expandable flag commands

\flag_if_exist_p:N ⟨flag var⟩
\flag_if_exist:NTF ⟨flag var⟩ {⟨true code⟩} {⟨false code⟩}

This function returns true if the ⟨flag var⟩ is currently defined, and false otherwise.
This does not check that the ⟨flag var⟩ really is a flag variable.

\flag_if_exist_p:N ⋆
\flag_if_exist_p:c ⋆
\flag_if_exist:NTF ⋆
\flag_if_exist:cTF ⋆

New: 2024-01-12

\flag_if_raised_p:N ⟨flag var⟩
\flag_if_raised:NTF ⟨flag var⟩ {⟨true code⟩} {⟨false code⟩}

This function returns true if the ⟨flag var⟩ has non-zero height, and false if the
⟨flag var⟩ has zero height.

\flag_if_raised_p:N ⋆
\flag_if_raised_p:c ⋆
\flag_if_raised:NTF ⋆
\flag_if_raised:cTF ⋆

New: 2024-01-12

\flag_height:N ⟨flag var⟩

Expands to the height of the ⟨flag var⟩ as an integer denotation.
\flag_height:N ⋆
\flag_height:c ⋆

New: 2024-01-12

\flag_raise:N ⟨flag var⟩

The height of ⟨flag var⟩ is increased by 1 locally.
\flag_raise:N ⋆
\flag_raise:c ⋆

New: 2024-01-12

\flag_ensure_raised:N ⟨flag var⟩

Ensures the ⟨flag var⟩ is raised by making its height at least 1, locally.
\flag_ensure_raised:N ⋆
\flag_ensure_raised:c ⋆

New: 2024-01-12

187

Scratch flag for local assignment. These are never used by the kernel code, and so are safe
for use with any LATEX3-defined function. However, they may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\l_tmpa_flag
\l_tmpb_flag

New: 2024-01-12

188

Chapter 23

The l3clist module
Comma separated lists

Comma lists (in short, clist) contain ordered data where items can be added to the
left or right end of the list. This data type allows basic list manipulations such as
adding/removing items, applying a function to every item, removing duplicate items,
extracting a given item, using the comma list with specified separators, and so on. Se-
quences (defined in l3seq) are safer, faster, and provide more features, so they should
often be preferred to comma lists. Comma lists are mostly useful when interfacing with
LATEX 2ε or other code that expects or provides items separated by commas.

Several items can be added at once. To ease input of comma lists from data provided
by a user outside an \ExplSyntaxOn . . . \ExplSyntaxOff block, spaces are removed
from both sides of each comma-delimited argument upon input. Blank arguments are
ignored, to allow for trailing commas or repeated commas (which may otherwise arise
when concatenating comma lists “by hand”). In addition, a set of braces is removed if
the result of space-trimming is braced: this allows the storage of any item in a comma
list. For instance,

\clist_new:N \l_my_clist
\clist_put_left:Nn \l_my_clist { ~a~ , ~{b}~ , c~\d }
\clist_put_right:Nn \l_my_clist { ~{e~} , , {{f}} , }

results in \l_my_clist containing a,b,c~\d,{e~},{{f}} namely the five items a, b,
c~\d, e~ and {f}. Comma lists normally do not contain empty or blank items so the
following gives an empty comma list:

\clist_clear_new:N \l_my_clist
\clist_set:Nn \l_my_clist { , ~ , , }
\clist_if_empty:NTF \l_my_clist { true } { false }

and it leaves true in the input stream. To include an “unsafe” item (empty, or one that
contains a comma, or starts or ends with a space, or is a single brace group), surround
it with braces.

Any n-type token list is a valid comma list input for l3clist functions, which will
split the token list at every comma and process the items as described above. On the
other hand, N-type functions expect comma list variables, which are particular token
list variables in which this processing of items (and removal of blank items) has already

189

occurred. Because comma list variables are token list variables, expanding them once
yields their items separated by commas, and l3tl functions such as \tl_show:N can be
applied to them. (These functions often have l3clist analogues, which should be preferred.)

Almost all operations on comma lists are noticeably slower than those on sequences
so converting the data to sequences using \seq_set_from_clist:Nn (see l3seq) may be
advisable if speed is important. The exception is that \clist_if_in:NnTF and \clist_-
remove_duplicates:N may be faster than their sequence analogues for large lists. How-
ever, these functions work slowly for “unsafe” items that must be braced, and may pro-
duce errors when their argument contains {, } or # (assuming the usual TEX category
codes apply). The sequence data type should thus certainly be preferred to comma lists
to store such items.

23.1 Creating and initialising comma lists

\clist_new:N ⟨clist var⟩

Creates a new ⟨clist var⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨clist var⟩ initially contains no items.

\clist_new:N
\clist_new:c

\clist_const:Nn ⟨clist var⟩ {⟨comma list⟩}

Creates a new constant ⟨clist var⟩ or raises an error if the name is already taken. The
value of the ⟨clist var⟩ is set globally to the ⟨comma list⟩.

\clist_const:Nn
\clist_const:(Ne|cn|ce)

New: 2014-07-05

\clist_clear:N ⟨clist var⟩

Clears all items from the ⟨clist var⟩.
\clist_clear:N
\clist_clear:c
\clist_gclear:N
\clist_gclear:c

\clist_clear_new:N ⟨clist var⟩

Ensures that the ⟨clist var⟩ exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

\clist_set_eq:NN ⟨clist var1⟩ ⟨clist var2⟩

Sets the content of ⟨clist var1⟩ equal to that of ⟨clist var2⟩. To set a token list
variable equal to a comma list variable, use \tl_set_eq:NN. Conversely, setting a comma
list variable to a token list is unadvisable unless one checks space-trimming and related
issues.

\clist_set_eq:NN
\clist_set_eq:(cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

\clist_set_from_seq:NN ⟨clist var⟩ ⟨seq var⟩\clist_set_from_seq:NN
\clist_set_from_seq:(cN|Nc|cc)
\clist_gset_from_seq:NN
\clist_gset_from_seq:(cN|Nc|cc)

New: 2014-07-17

Converts the data in the ⟨seq var⟩ into a ⟨clist var⟩: the original ⟨seq var⟩ is un-
changed. Items which contain either spaces or commas are surrounded by braces.

190

\clist_concat:NNN ⟨clist var1⟩ ⟨clist var2⟩ ⟨clist var3⟩

Concatenates the content of ⟨clist var2⟩ and ⟨clist var3⟩ together and saves the
result in ⟨clist var1⟩. The items in ⟨clist var2⟩ are placed at the left side of the new
comma list.

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat:NNN
\clist_gconcat:ccc

\clist_if_exist_p:N ⟨clist var⟩
\clist_if_exist:NTF ⟨clist var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨clist var⟩ is currently defined. This does not check that the
⟨clist var⟩ really is a comma list.

\clist_if_exist_p:N ⋆
\clist_if_exist_p:c ⋆
\clist_if_exist:NTF ⋆
\clist_if_exist:cTF ⋆

New: 2012-03-03

23.2 Adding data to comma lists

\clist_set:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_set:Nn
\clist_set:(NV|Ne|No|cn|cV|ce|co)
\clist_gset:Nn
\clist_gset:(NV|Ne|No|cn|cV|ce|co)

New: 2011-09-06

Sets ⟨clist var⟩ to contain the ⟨items⟩, removing any previous content from the vari-
able. Blank items are omitted, spaces are removed from both sides of each item, then
a set of braces is removed if the resulting space-trimmed item is braced. To store some
⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩ contain commas or spaces, add a set of
braces: \clist_set:Nn ⟨clist var⟩ { {⟨tokens⟩} }.

\clist_put_left:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_put_left:Nn
\clist_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\clist_gput_left:Nn
\clist_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Updated: 2011-09-05

Appends the ⟨items⟩ to the left of the ⟨clist var⟩. Blank items are omitted, spaces are
removed from both sides of each item, then a set of braces is removed if the resulting space-
trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩
contain commas or spaces, add a set of braces: \clist_put_left:Nn ⟨clist var⟩ {
{⟨tokens⟩} }.

\clist_put_right:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_put_right:Nn
\clist_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\clist_gput_right:Nn
\clist_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Updated: 2011-09-05

Appends the ⟨items⟩ to the right of the ⟨clist var⟩. Blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if
the ⟨tokens⟩ contain commas or spaces, add a set of braces: \clist_put_right:Nn
⟨clist var⟩ { {⟨tokens⟩} }.

191

23.3 Modifying comma lists
While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N ⟨clist var⟩\clist_remove_duplicates:N
\clist_remove_duplicates:c
\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

Removes duplicate items from the ⟨clist var⟩, leaving the left most copy of each item
in the ⟨clist var⟩. The ⟨item⟩ comparison takes place on a token basis, as for \tl_-
if_eq:nnTF.

TEXhackers note: This function iterates through every item in the ⟨clist var⟩ and
does a comparison with the ⟨items⟩ already checked. It is therefore relatively slow with large
comma lists. Furthermore, it may fail if any of the items in the ⟨clist var⟩ contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn ⟨clist var⟩ {⟨item⟩}\clist_remove_all:Nn
\clist_remove_all:(cn|NV|cV|Ne|ce)
\clist_gremove_all:Nn
\clist_gremove_all:(cn|NV|cV|Ne|ce)

Updated: 2011-09-06

Removes every occurrence of ⟨item⟩ from the ⟨clist var⟩. The ⟨item⟩ comparison
takes place on a token basis, as for \tl_if_eq:nnTF.

TEXhackers note: The function may fail if the ⟨item⟩ contains {, }, or # (assuming the
usual TEX category codes apply).

\clist_reverse:N ⟨clist var⟩

Reverses the order of items stored in the ⟨clist var⟩.
\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n {⟨comma list⟩}

Leaves the items in the ⟨comma list⟩ in the input stream in reverse order. Contrarily
to other what is done for other n-type ⟨comma list⟩ arguments, braces and spaces are
preserved by this process.

TEXhackers note: The result is returned within \unexpanded, which means that the
comma list does not expand further when appearing in an e-type or x-type argument expansion.

\clist_reverse:n ⋆

New: 2014-07-18

192

\clist_sort:Nn ⟨clist var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨clist var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨clist var⟩. The details of sorting comparison are described in Section 6.1.

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

New: 2017-02-06

23.4 Comma list conditionals

\clist_if_empty_p:N ⟨clist var⟩
\clist_if_empty:NTF ⟨clist var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨clist var⟩ is empty (containing no items).

\clist_if_empty_p:N ⋆
\clist_if_empty_p:c ⋆
\clist_if_empty:NTF ⋆
\clist_if_empty:cTF ⋆

\clist_if_empty_p:n {⟨comma list⟩}
\clist_if_empty:nTF {⟨comma list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨comma list⟩ is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_empty_p:n ⋆
\clist_if_empty:nTF ⋆

New: 2014-07-05

\clist_if_in:NnTF ⟨clist var⟩ {⟨item⟩} {⟨true code⟩} {⟨false code⟩}\clist_if_in:NnTF
\clist_if_in:(NV|No|cn|cV|co)TF
\clist_if_in:nnTF
\clist_if_in:(nV|no)TF

Updated: 2011-09-06

Tests if the ⟨item⟩ is present in the ⟨clist var⟩. In the case of an n-type ⟨comma list⟩,
the usual rules of space trimming and brace stripping apply. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , c } { b } {true} {false}

yields true.

TEXhackers note: The function may fail if the ⟨item⟩ contains {, }, or # (assuming the
usual TEX category codes apply).

23.5 Mapping over comma lists
The functions described in this section apply a specified function to each item of a comma
list. All mappings are done at the current group level, i.e. any local assignments made
by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result
is passed to the mapped function. Thus, if the comma list that is being mapped is
{a␣,␣{{b}␣},␣,{},␣{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}␣’, an empty argument, and ‘c’.

193

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN ⟨clist var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ stored in the ⟨clist var⟩. The ⟨function⟩ receives
one argument for each iteration. The ⟨items⟩ are returned from left to right. The func-
tion \clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.

\clist_map_function:NN ✩

\clist_map_function:cN ✩

\clist_map_function:nN ✩

\clist_map_function:eN ✩

Updated: 2012-06-29

\clist_map_inline:Nn ⟨clist var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨clist var⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. The ⟨items⟩
are returned from left to right.

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn ⟨clist var⟩ ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨clist var⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨clist var⟩, or its original value if there were no ⟨item⟩. The ⟨items⟩ are returned
from left to right.

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

\clist_map_tokens:Nn ⟨clist var⟩ {⟨code⟩}
\clist_map_tokens:nn {⟨comma list⟩} {⟨code⟩}

Calls ⟨code⟩ {⟨item⟩} for every ⟨item⟩ stored in the ⟨clist var⟩. The ⟨code⟩ receives
each ⟨item⟩ as a trailing brace group. If the ⟨code⟩ consists of a single function this is
equivalent to \clist_map_function:nN.

\clist_map_tokens:Nn ✩

\clist_map_tokens:cn ✩

\clist_map_tokens:nn ✩

New: 2021-05-05

\clist_map_break:

Used to terminate a \clist_map_... function before all entries in the ⟨comma list⟩ have
been processed. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\clist_map_break: ✩

Updated: 2012-06-29

194

\clist_map_break:n {⟨code⟩}

Used to terminate a \clist_map_... function before all entries in the ⟨comma list⟩
have been processed, inserting the ⟨code⟩ after the mapping has ended. This normally
takes place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\clist_map_break:n ✩

Updated: 2012-06-29

\clist_count:N ⟨clist var⟩

Leaves the number of items in the ⟨clist var⟩ in the input stream as an ⟨integer
denotation⟩. The total number of items in a ⟨clist var⟩ includes those which are
duplicates, i.e. every item in a ⟨clist var⟩ is counted.

\clist_count:N ⋆
\clist_count:c ⋆
\clist_count:n ⋆
\clist_count:e ⋆

New: 2012-07-13

195

23.6 Using the content of comma lists directly

\clist_use:Nnnn ⟨clist var⟩ {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}

Places the contents of the ⟨clist var⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. Namely, if the comma list has more than two items,
the ⟨separator between more than two⟩ is placed between each pair of items except
the last, for which the ⟨separator between final two⟩ is used. If the comma list has
exactly two items, then they are placed in the input stream separated by the ⟨separator
between two⟩. If the comma list has a single item, it is placed in the input stream, and
a comma list with no items produces no output. An error is raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nnnn \l_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not
used in this case because the comma list has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:Nnnn ⋆
\clist_use:cnnn ⋆

New: 2013-05-26

\clist_use:Nn ⟨clist var⟩ {⟨separator⟩}

Places the contents of the ⟨clist var⟩ in the input stream, with the ⟨separator⟩ be-
tween the items. If the comma list has a single item, it is placed in the input stream, and
a comma list with no items produces no output. An error is raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nn \l_tmpa_clist { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:Nn ⋆
\clist_use:cn ⋆

New: 2013-05-26

\clist_use:N ⟨clist var⟩

Places the contents of the ⟨clist var⟩ in the input stream, with a comma between each
item. The result is exaclty the stored ⟨clist⟩, which will include braces around (for
example) entries with retained spaces at the ends.

TEXhackers note: The result is returned as-is, in the same way as \tl_use:N and without
protection from expansion, cf. \clist_use:Nnnnn, etc. It is equivalent to V-type expansion of a
clist.

\clist_use:N ⋆
\clist_use:c ⋆

New: 2024-11-12

196

\clist_use:nnnn {⟨comma list⟩} {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}

\clist_use:nn {⟨comma list⟩} {⟨separator⟩}

Places the contents of the ⟨comma list⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. As for \clist_set:Nn, blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. The ⟨separators⟩ are then inserted in the same way as
for \clist_use:Nnnn and \clist_use:Nn, respectively.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:nnnn ⋆
\clist_use:nn ⋆

New: 2021-05-10

23.7 Comma lists as stacks
Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN ⟨clist var⟩ ⟨tl var⟩

Stores the left-most item from a ⟨clist var⟩ in the ⟨tl var⟩ without removing it from
the ⟨clist var⟩. The ⟨tl var⟩ is assigned locally. In the non-branching version, if the
⟨clist var⟩ is empty the ⟨tl var⟩ is set to the marker value \q_no_value.

\clist_get:NN
\clist_get:cN
\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14

Updated: 2019-02-16

\clist_pop:NN ⟨clist var⟩ ⟨tl var⟩

Pops the left-most item from a ⟨clist var⟩ into the ⟨tl var⟩, i.e. removes the item
from the comma list and stores it in the ⟨tl var⟩. Both of the variables are assigned
locally.

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_gpop:NN ⟨clist var⟩ ⟨tl var⟩

Pops the left-most item from a ⟨clist var⟩ into the ⟨tl var⟩, i.e. removes the item
from the comma list and stores it in the ⟨tl var⟩. The ⟨clist var⟩ is modified globally,
while the assignment of the ⟨tl var⟩ is local.

\clist_gpop:NN
\clist_gpop:cN

\clist_pop:NNTF ⟨clist var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨clist var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨clist var⟩
is non-empty, pops the top item from the ⟨clist var⟩ in the ⟨tl var⟩, i.e. removes the
item from the ⟨clist var⟩. Both the ⟨clist var⟩ and the ⟨tl var⟩ are assigned locally.

\clist_pop:NNTF
\clist_pop:cNTF

New: 2012-05-14

197

\clist_gpop:NNTF ⟨clist var⟩ ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨clist var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨tl var⟩ is not defined in this case and should not be relied upon. If the ⟨clist var⟩
is non-empty, pops the top item from the ⟨clist var⟩ in the ⟨tl var⟩, i.e. removes the
item from the ⟨clist var⟩. The ⟨clist var⟩ is modified globally, while the ⟨tl var⟩
is assigned locally.

\clist_gpop:NNTF
\clist_gpop:cNTF

New: 2012-05-14

\clist_push:Nn ⟨clist var⟩ {⟨items⟩}\clist_push:Nn
\clist_push:(NV|No|cn|cV|co)
\clist_gpush:Nn
\clist_gpush:(NV|No|cn|cV|co)

Adds the {⟨items⟩} to the top of the ⟨clist var⟩. Spaces are removed from both sides
of each item as for any n-type comma list.

23.8 Using a single item

\clist_item:Nn ⟨clist var⟩ {⟨int expr⟩}

Indexing items in the ⟨clist var⟩ from 1 at the top (left), this function evaluates the
⟨int expr⟩ and leaves the appropriate item from the comma list in the input stream.
If the ⟨int expr⟩ is negative, indexing occurs from the bottom (right) of the comma
list. When the ⟨int expr⟩ is larger than the number of items in the ⟨clist var⟩ (as
calculated by \clist_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\clist_item:Nn ⋆
\clist_item:cn ⋆
\clist_item:nn ⋆
\clist_item:en ⋆

New: 2014-07-17

\clist_rand_item:N ⟨clist var⟩
\clist_rand_item:n {⟨comma list⟩}

Selects a pseudo-random item of the ⟨clist var⟩/⟨comma list⟩. If the ⟨comma list⟩
has no item, the result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\clist_rand_item:N ⋆
\clist_rand_item:c ⋆
\clist_rand_item:n ⋆

New: 2016-12-06

23.9 Viewing comma lists

\clist_show:N ⟨clist var⟩

Displays the entries in the ⟨clist var⟩ in the terminal.
\clist_show:N
\clist_show:c

Updated: 2021-04-29

198

\clist_show:n {⟨tokens⟩}

Displays the entries in the comma list in the terminal.
\clist_show:n

Updated: 2013-08-03

\clist_log:N ⟨clist var⟩

Writes the entries in the ⟨clist var⟩ in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:N
\clist_log:c

New: 2014-08-22

Updated: 2021-04-29

\clist_log:n {⟨tokens⟩}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

\clist_log:n

New: 2014-08-22

23.10 Constant and scratch comma lists

Constant that is always empty.\c_empty_clist

New: 2012-07-02

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_clist
\l_tmpb_clist

New: 2011-09-06

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

199

Chapter 24

The l3token module
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TEX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such has two primary function categories:
\token_ for anything that deals with tokens and \peek_ for looking ahead in the token
stream.

Most functions we describe here can be used on control sequences, as those are tokens
as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if:w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below takes everything until
\if:w as an argument, despite the presence of other copies of \if:w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 24.7.

200

24.1 Creating character tokens

\char_set_active_eq:NN ⟨char⟩ ⟨function⟩

Sets the behaviour of the ⟨char⟩ in situations where it is active (category code 13) to be
equivalent to that of the definition of the ⟨function⟩ at the time \char_set_active_-
eq:NN is used. The category code of the ⟨char⟩ is unchanged by this process. The
⟨function⟩ may itself be an active character.

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 2015-11-12

\char_set_active_eq:nN {⟨integer expression⟩} ⟨function⟩

Sets the behaviour of the ⟨char⟩ which has character code as given by the ⟨integer
expression⟩ in situations where it is active (category code 13) to be equivalent to that
of the ⟨function⟩ at the time \char_set_active_eq:nN is used. The category code
of the ⟨char⟩ is unchanged by this process. The ⟨function⟩ may itself be an active
character.

\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

\char_generate:nn {⟨charcode⟩} {⟨catcode⟩}

Generates a character token of the given ⟨charcode⟩ and ⟨catcode⟩ (both of which may
be integer expressions). The ⟨catcode⟩ may be one of

• 1 (begin group)

• 2 (end group)

• 3 (math toggle)

• 4 (alignment)

• 6 (parameter)

• 7 (math superscript)

• 8 (math subscript)

• 10 (space)

• 11 (letter)

• 12 (other)

• 13 (active)

and other values raise an error. The ⟨charcode⟩ may be any one valid for the engine in
use, except that for ⟨catcode⟩ 10, ⟨charcode⟩ 0 is not allowed. Active characters cannot
be generated in older versions of X ETEX. Another way to build token lists with unusual
category codes is \regex_replace_all:nnN {.*} {⟨replacement⟩} ⟨tl var⟩.

TEXhackers note: Exactly two expansions are needed to produce the character.

\char_generate:nn ⋆

New: 2015-09-09

Updated: 2019-01-16

Token list containing one character with category code 13, (“active”), and character code
32 (space).

\c_catcode_active_space_tl

New: 2017-08-07

201

Token list containing one character with category code 12, (“other”), and character code
32 (space).

\c_catcode_other_space_tl

New: 2011-09-05

24.2 Manipulating and interrogating character tokens

\char_set_catcode_letter:N ⟨character⟩\char_set_catcode_escape:N
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the ⟨character⟩ to that indicated in the function name. De-
pending on the current category code of the ⟨token⟩ the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

202

\char_set_catcode_letter:n {⟨integer expression⟩}\char_set_catcode_escape:n
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

Sets the category code of the ⟨character⟩ which has character code as given by the
⟨integer expression⟩. This version can be used to set up characters which cannot
otherwise be given (cf. the N-type variants). The assignment is local.

\char_set_catcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

These functions set the category code of the ⟨character⟩ which has character code as
given by the ⟨integer expression⟩. The first ⟨integer expression⟩ is the character
code and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_⟨type⟩ should be
preferred, but there are cases where these lower-level functions may be useful.

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n {⟨integer expression⟩}

Expands to the current category code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_catcode:n ⋆

\char_show_value_catcode:n {⟨integer expression⟩}

Displays the current category code of the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_show_value_catcode:n

\char_set_lccode:nn {⟨int expr1⟩} {⟨int expr2⟩}

Sets up the behaviour of the ⟨character⟩ when found inside \text_lowercase:n, such
that ⟨character1⟩ will be converted into ⟨character2⟩. The two ⟨characters⟩ may be
specified using an ⟨integer expression⟩ for the character code concerned. This may
include the TEX ‘⟨character⟩ method for converting a single character into its character
code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_set_lccode:nn

Updated: 2015-08-06

203

\char_value_lccode:n {⟨integer expression⟩}

Expands to the current lower case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_lccode:n ⋆

\char_show_value_lccode:n {⟨integer expression⟩}

Displays the current lower case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩ on the terminal.

\char_show_value_lccode:n

\char_set_uccode:nn {⟨int expr1⟩} {⟨int expr2⟩}

Sets up the behaviour of the ⟨character⟩ when found inside \text_uppercase:n, such
that ⟨character1⟩ will be converted into ⟨character2⟩. The two ⟨characters⟩ may be
specified using an ⟨integer expression⟩ for the character code concerned. This may
include the TEX ‘⟨character⟩ method for converting a single character into its character
code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_set_uccode:nn

Updated: 2015-08-06

\char_value_uccode:n {⟨integer expression⟩}

Expands to the current upper case code of the ⟨character⟩ with character code given
by the ⟨integer expression⟩.

\char_value_uccode:n ⋆

\char_show_value_uccode:n {⟨integer expression⟩}

Displays the current upper case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩ on the terminal.

\char_show_value_uccode:n

\char_set_mathcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

This function sets up the math code of ⟨character⟩. The ⟨character⟩ is specified
as an ⟨integer expression⟩ which will be used as the character code of the relevant
character. The setting applies within the current TEX group.

\char_set_mathcode:nn

Updated: 2015-08-06

\char_value_mathcode:n {⟨integer expression⟩}

Expands to the current math code of the ⟨character⟩ with character code given by the
⟨integer expression⟩.

\char_value_mathcode:n ⋆

\char_show_value_mathcode:n {⟨integer expression⟩}\char_show_value_mathcode:n

Displays the current math code of the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_set_sfcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

This function sets up the space factor for the ⟨character⟩. The ⟨character⟩ is specified
as an ⟨integer expression⟩ which will be used as the character code of the relevant
character. The setting applies within the current TEX group.

\char_set_sfcode:nn

Updated: 2015-08-06

204

\char_value_sfcode:n {⟨integer expression⟩}

Expands to the current space factor for the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_sfcode:n ⋆

\char_show_value_sfcode:n {⟨integer expression⟩}

Displays the current space factor for the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_show_value_sfcode:n

Used to track which tokens may require special handling at the document level as they
are (or have been at some point) of category ⟨active⟩ (catcode 13). Each entry in the
sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

\l_char_active_seq

New: 2012-01-23

Updated: 2015-11-11

Used to track which tokens will require special handling when working with verbatim-like
material at the document level as they are not of categories ⟨letter⟩ (catcode 11) or
⟨other⟩ (catcode 12). Each entry in the sequence consists of a single escaped token,
for example \\ for the backslash or \{ for an opening brace. Escaped tokens should be
added to the sequence when they are defined for general document use.

\l_char_special_seq

New: 2012-01-23

Updated: 2015-11-11

24.3 Generic tokens

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

TEXhackers note: The tokens \c_group_begin_token, \c_group_end_token, and \c_-
space_token are expl3 counterparts of LATEX 2ε’s \bgroup, \egroup, and \@sptoken.

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

\c_catcode_letter_token
\c_catcode_other_token

205

24.4 Converting tokens

\token_to_meaning:N ⟨token⟩

Inserts the current meaning of the ⟨token⟩ into the input stream as a series of characters
of category code 12 (other). This is the primitive TEX description of the ⟨token⟩, thus for
example both functions defined by \cs_set_nopar:Npn and token list variables defined
using \tl_new:N are described as macros.

TEXhackers note: This is the TEX primitive \meaning. The ⟨token⟩ can thus be an
explicit space token or an explicit begin-group or end-group character token ({ or } when normal
TEX category codes apply) even though these are not valid N-type arguments.

\token_to_meaning:N ⋆
\token_to_meaning:c ⋆

\token_to_str:N ⟨token⟩

Converts the given ⟨token⟩ into a series of characters with category code 12 (other). If
the ⟨token⟩ is a control sequence, this will start with the current escape character with
category code 12 (the escape character is part of the ⟨token⟩). This function requires
only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string. The ⟨token⟩ can thus
be an explicit space tokens or an explicit begin-group or end-group character token ({ or } when
normal TEX category codes apply) even though these are not valid N-type arguments.

\token_to_str:N ⋆
\token_to_str:c ⋆

\token_to_catcode:N ⟨token⟩

Converts the given ⟨token⟩ into a number describing its category code. If ⟨token⟩ is a
control sequence this expands to 16. This can’t detect the categories 0 (escape character),
5 (end of line), 9 (ignored character), 14 (comment character), or 15 (invalid character).
Control sequences or active characters let to a token of one of the detectable category
codes will yield that category.

\token_to_catcode:N ⋆

New: 2023-10-15

24.5 Token conditionals

\token_if_group_begin_p:N ⟨token⟩
\token_if_group_begin:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_group_begin_p:N ⋆
\token_if_group_begin:NTF ⋆

Tests if ⟨token⟩ has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N ⟨token⟩
\token_if_group_end:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an end group token (} when normal TEX
category codes are in force). Note that an explicit end group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N ⋆
\token_if_group_end:NTF ⋆

206

\token_if_math_toggle_p:N ⟨token⟩
\token_if_math_toggle:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_toggle_p:N ⋆
\token_if_math_toggle:NTF ⋆

Tests if ⟨token⟩ has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N ⟨token⟩
\token_if_alignment:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an alignment token (& when normal TEX
category codes are in force).

\token_if_alignment_p:N ⋆
\token_if_alignment:NTF ⋆

\token_if_parameter_p:N ⟨token⟩
\token_if_parameter:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_parameter_p:N ⋆
\token_if_parameter:NTF ⋆

\token_if_math_superscript_p:N ⟨token⟩
\token_if_math_superscript:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_superscript_p:N ⋆
\token_if_math_superscript:NTF ⋆

Tests if ⟨token⟩ has the category code of a superscript token (^ when normal TEX
category codes are in force).

\token_if_math_subscript_p:N ⟨token⟩
\token_if_math_subscript:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_subscript_p:N ⋆
\token_if_math_subscript:NTF ⋆

Tests if ⟨token⟩ has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N ⟨token⟩
\token_if_space:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a space token. Note that an explicit space
token with character code 32 cannot be tested in this way, as it is not a valid N-type
argument.

\token_if_space_p:N ⋆
\token_if_space:NTF ⋆

\token_if_letter_p:N ⟨token⟩
\token_if_letter:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a letter token.

\token_if_letter_p:N ⋆
\token_if_letter:NTF ⋆

\token_if_other_p:N ⟨token⟩
\token_if_other:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an “other” token.

\token_if_other_p:N ⋆
\token_if_other:NTF ⋆

\token_if_active_p:N ⟨token⟩
\token_if_active:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an active character.

\token_if_active_p:N ⋆
\token_if_active:NTF ⋆

\token_if_eq_catcode_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_catcode:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_catcode_p:NN ⋆
\token_if_eq_catcode:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same category code.

207

\token_if_eq_charcode_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_charcode:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_charcode_p:NN ⋆
\token_if_eq_charcode:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same character code.

\token_if_eq_meaning_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_meaning:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_meaning_p:NN ⋆
\token_if_eq_meaning:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same meaning when expanded.

\token_if_macro_p:N ⟨token⟩
\token_if_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a TEX macro.

\token_if_macro_p:N ⋆
\token_if_macro:NTF ⋆

Updated: 2011-05-23

\token_if_cs_p:N ⟨token⟩
\token_if_cs:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a control sequence.

\token_if_cs_p:N ⋆
\token_if_cs:NTF ⋆

\token_if_expandable_p:N ⟨token⟩
\token_if_expandable:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is expandable. This test returns ⟨false⟩ for an undefined token.

\token_if_expandable_p:N ⋆
\token_if_expandable:NTF ⋆

\token_if_long_macro_p:N ⟨token⟩
\token_if_long_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a long macro with no other prefix; to test for a macro that is both
long and protected, use \token_if_protected_long_macro:N(TF).

\token_if_long_macro_p:N ⋆
\token_if_long_macro:NTF ⋆

Updated: 2012-01-20

\token_if_protected_macro_p:N ⟨token⟩
\token_if_protected_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_protected_macro_p:N ⋆
\token_if_protected_macro:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is a protected macro with no other prefix; to test for a macro that
is both protected and long, use \token_if_protected_long_macro:N(TF).

\token_if_protected_long_macro_p:N ⟨token⟩
\token_if_protected_long_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_protected_long_macro_p:N ⋆
\token_if_protected_long_macro:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is a protected long macro.

\token_if_chardef_p:N ⟨token⟩
\token_if_chardef:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as
\chardefs.

\token_if_chardef_p:N ⋆
\token_if_chardef:NTF ⋆

Updated: 2012-01-20

208

\token_if_mathchardef_p:N ⟨token⟩
\token_if_mathchardef:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_mathchardef_p:N ⋆
\token_if_mathchardef:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a mathchardef.

\token_if_font_selection_p:N ⟨token⟩
\token_if_font_selection:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_font_selection_p:N ⋆
\token_if_font_selection:NTF ⋆

New: 2020-10-27

Tests if the ⟨token⟩ is defined to be a font selection command.

\token_if_dim_register_p:N ⟨token⟩
\token_if_dim_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_dim_register_p:N ⋆
\token_if_dim_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a dimension register.

\token_if_int_register_p:N ⟨token⟩
\token_if_int_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_int_register_p:N ⋆
\token_if_int_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, \chardefs,
or \mathchardefs depending on their value.

\token_if_muskip_register_p:N ⟨token⟩
\token_if_muskip_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_muskip_register_p:N ⋆
\token_if_muskip_register:NTF ⋆

New: 2012-02-15

Tests if the ⟨token⟩ is defined to be a muskip register.

\token_if_skip_register_p:N ⟨token⟩
\token_if_skip_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_skip_register_p:N ⋆
\token_if_skip_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a skip register.

\token_if_toks_register_p:N ⟨token⟩
\token_if_toks_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_toks_register_p:N ⋆
\token_if_toks_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a toks register (not used by LATEX3).

\token_if_primitive_p:N ⟨token⟩
\token_if_primitive:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is an engine primitive. In LuaTEX this includes primitive-like com-
mands defined using token.set_lua.

\token_if_primitive_p:N ⋆
\token_if_primitive:NTF ⋆

Updated: 2020-09-11

209

\token_case_meaning:NnTF ⟨test token⟩
{

⟨token case1⟩ {⟨code case1⟩}
⟨token case2⟩ {⟨code case2⟩}
...
⟨token casen⟩ {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

\token_case_catcode:Nn ⋆
\token_case_catcode:NnTF ⋆
\token_case_charcode:Nn ⋆
\token_case_charcode:NnTF ⋆
\token_case_meaning:Nn ⋆
\token_case_meaning:NnTF ⋆

New: 2020-12-03

This function compares the ⟨test token⟩ in turn with each of the ⟨token case⟩s.
If the two are equal (as described for \token_if_eq_catcode:NNTF, \token_if_eq_-
charcode:NNTF and \token_if_eq_meaning:NNTF, respectively) then the associated
⟨code⟩ is left in the input stream and other cases are discarded. If any of the cases are
matched, the ⟨true code⟩ is also inserted into the input stream (after the code for the
appropriate case), while if none match then the ⟨false code⟩ is inserted. The functions
\token_case_catcode:Nn, \token_case_charcode:Nn, and \token_case_meaning:Nn,
which do nothing if there is no match, are also available.

24.6 Peeking ahead at the next token
There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. Peeking ahead does
not skip spaces: rather, \peek_remove_spaces:n should be used. In addition, using
\peek_analysis_map_inline:n, one can map through the following tokens in the input
stream and repeatedly perform some tests.

\peek_after:Nw ⟨function⟩ ⟨token⟩

Locally sets the test variable \l_peek_token equal to ⟨token⟩ (as an implicit token,
not as a token list), and then expands the ⟨function⟩. The ⟨token⟩ remains in the
input stream as the next item after the ⟨function⟩. The ⟨token⟩ here may be ␣, { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\peek_after:Nw

\peek_gafter:Nw ⟨function⟩ ⟨token⟩

Globally sets the test variable \g_peek_token equal to ⟨token⟩ (as an implicit token,
not as a token list), and then expands the ⟨function⟩. The ⟨token⟩ remains in the
input stream as the next item after the ⟨function⟩. The ⟨token⟩ here may be ␣, { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\peek_gafter:Nw

Token set by \peek_after:Nw and available for testing as described above.\l_peek_token

Token set by \peek_gafter:Nw and available for testing as described above.\g_peek_token

210

\peek_catcode:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same category code as the ⟨test
token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_catcode:NTF

Updated: 2012-12-20

\peek_catcode_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same category code as the ⟨test
token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is removed from the input stream if the test is true. The function
then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate
to the result of the test).

\peek_catcode_remove:NTF

Updated: 2012-12-20

\peek_charcode:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test
token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_charcode:NTF

Updated: 2012-12-20

\peek_charcode_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test
token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected
by the test and the ⟨token⟩ is removed from the input stream if the test is true. The
function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as
appropriate to the result of the test).

\peek_charcode_remove:NTF

Updated: 2012-12-20

\peek_meaning:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same meaning as the ⟨test token⟩
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as
appropriate to the result of the test).

\peek_meaning:NTF

Updated: 2011-07-02

\peek_meaning_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same meaning as the ⟨test token⟩
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the ⟨token⟩ is removed from the input stream if the test is true. The function then
places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to
the result of the test).

\peek_meaning_remove:NTF

Updated: 2011-07-02

\peek_remove_spaces:n {⟨code⟩}

Peeks ahead and detect if the following token is a space (category code 10 and character
code 32). If so, removes the token and checks the next token. Once a non-space token
is found, the ⟨code⟩ will be inserted into the input stream. Typically this will contain a
peek operation, but this is not required.

\peek_remove_spaces:n

New: 2018-10-01

211

\peek_remove_filler:n {⟨code⟩}

Peeks ahead and detect if the following token is a space (category code 10) or has meaning
equal to \scan_stop:. If so, removes the token and checks the next token. If neither
of these cases apply, expands the next token using f-type expansion, then checks the
resulting leading token in the same way. If after expansion the next token is neither of
the two test cases, the ⟨code⟩ will be inserted into the input stream. Typically this will
contain a peek operation, but this is not required.

TEXhackers note: This is essentially a macro-based implementation of how TEX handles
the search for a left brace after for example \everypar, except that any non-expandable token
cleanly ends the ⟨filler⟩ (i.e. it does not lead to a TEX error).

In contrast to TEX’s filler removal, a construct \exp_not:N \foo will be treated in the same
way as \foo.

\peek_remove_filler:n

New: 2022-01-10

\peek_N_type:TF {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream can be safely grabbed as an N-type argument.
The test is ⟨false⟩ if the next ⟨token⟩ is either an explicit or implicit begin-group or
end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), or an outer token (never used in LATEX3)
and ⟨true⟩ in all other cases. Note that a ⟨true⟩ result ensures that the next ⟨token⟩ is
a valid N-type argument. However, if the next ⟨token⟩ is for instance \c_space_token,
the test takes the ⟨false⟩ branch, even though the next ⟨token⟩ is in fact a valid N-type
argument. The ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_N_type:TF

Updated: 2012-12-20

212

\peek_analysis_map_inline:n {⟨inline function⟩}\peek_analysis_map_inline:n

New: 2020-12-03

Updated: 2024-02-07

Repeatedly removes one ⟨token⟩ from the input stream and applies the ⟨inline
function⟩ to it, until \peek_analysis_map_break: is called. The ⟨inline function⟩
receives three arguments for each ⟨token⟩ in the input stream:

• ⟨tokens⟩, which both o-expand and e/x-expand to the ⟨token⟩. The detailed form
of ⟨tokens⟩ may change in later releases.

• ⟨char code⟩, a decimal representation of the character code of the ⟨token⟩, −1 if
it is a control sequence.

• ⟨catcode⟩, a capital hexadecimal digit which denotes the category code of the
⟨token⟩ (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "⟨catcode⟩.

These arguments are the same as for \tl_analysis_map_inline:nn defined in l3tl-
analysis. The ⟨char code⟩ and ⟨catcode⟩ do not take the meaning of a control sequence
or active character into account: for instance, upon encountering the token \c_group_-
begin_token in the input stream, \peek_analysis_map_inline:n calls the ⟨inline
function⟩ with #1 being \exp_not:n { \c_group_begin_token } (with the current
implementation), #2 being −1, and #3 being 0, as for any other control sequence. In
contrast, upon encountering an explicit begin-group token {, the ⟨inline function⟩ is
called with arguments \exp_after:wN { \if_false: } \fi:, 123 and 1.

The mapping is done at the current group level, i.e. any local assignments made by
the ⟨inline function⟩ remain in effect after the loop. Within the code, \l_peek_token
is set equal (as a token, not a token list) to the token under consideration.

Peek functions cannot be used within this mapping function (nor other mapping
functions) since the input stream contains trailing material necessary for the functioning
of the loop.

TEXhackers note: In case the input stream has not yet been tokenized (converted from
characters to tokens), characters are tokenized one by one as needed by \peek_analysis_map_-
inline:n using the current category code regime.

\peek_analysis_map_inline:n
{ ... \peek_analysis_map_break:n {⟨code⟩} }

Stops the \peek_analysis_map_inline:n loop from seeking more tokens, and inserts
⟨code⟩ in the input stream (empty for \peek_analysis_map_break:).

\peek_analysis_map_break:
\peek_analysis_map_break:n

New: 2020-12-03

213

\peek_regex:nTF {⟨regex⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tokens⟩ that follow in the input stream match the ⟨regular expression⟩.
Any ⟨tokens⟩ that have been read are left in the input stream after the ⟨true code⟩ or
⟨false code⟩ (as appropriate to the result of the test). See l3regex for documentation
of the syntax of regular expressions. The ⟨regular expression⟩ is implicitly anchored
at the start, so for instance \peek_regex:nTF { a } is essentially equivalent to \peek_-
charcode:NTF a.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex:nTF
as control sequences, while functions that inspect individual tokens (for instance \peek_-
charcode:NTF) only take into account their meaning.

The \peek_regex:nTF function only inspects as few tokens as necessary to determine
whether the regular expression matches. For instance \peek_regex:nTF { abc | [a-z] }
{ } { } abc will only inspect the first token a even though the first branch abc of the al-
ternative is preferred in functions such as \peek_regex_remove_once:nTF. This may have an
effect on tokenization if the input stream has not yet been tokenized and category codes are
changed.

\peek_regex:nTF
\peek_regex:NTF

New: 2020-12-03

\peek_regex_remove_once:nTF {⟨regex⟩} {⟨true code⟩} {⟨false code⟩}\peek_regex_remove_once:nTF
\peek_regex_remove_once:NTF

New: 2020-12-03

Tests if the ⟨tokens⟩ that follow in the input stream match the ⟨regex⟩. If the test is
true, the ⟨tokens⟩ are removed from the input stream and the ⟨true code⟩ is inserted,
while if the test is false, the ⟨false code⟩ is inserted followed by the ⟨tokens⟩ that
were originally in the input stream. See l3regex for documentation of the syntax of
regular expressions. The ⟨regular expression⟩ is implicitly anchored at the start, so
for instance \peek_regex_remove_once:nTF { a } is essentially equivalent to \peek_-
charcode_remove:NTF a.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
remove_once:nTF as control sequences, while functions that inspect individual tokens (for in-
stance \peek_charcode:NTF) only take into account their meaning.

214

\peek_regex_replace_once:nnTF {⟨regex⟩} {⟨replacement⟩} {⟨true code⟩} {⟨false
code⟩}

\peek_regex_replace_once:nn
\peek_regex_replace_once:nnTF
\peek_regex_replace_once:Nn
\peek_regex_replace_once:NnTF

New: 2020-12-03

If the ⟨tokens⟩ that follow in the input stream match the ⟨regex⟩, replaces them ac-
cording to the ⟨replacement⟩ as for \regex_replace_once:nnN, and leaves the result
in the input stream, after the ⟨true code⟩. Otherwise, leaves ⟨false code⟩ followed by
the ⟨tokens⟩ that were originally in the input stream, with no modifications. See l3regex
for documentation of the syntax of regular expressions and of the ⟨replacement⟩: for in-
stance \0 in the ⟨replacement⟩ is replaced by the tokens that were matched in the input
stream. The ⟨regular expression⟩ is implicitly anchored at the start. In contrast to
\regex_replace_once:nnN, no error arises if the ⟨replacement⟩ leads to an unbalanced
token list: the tokens are inserted into the input stream without issue.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
replace_once:nnTF as control sequences, while functions that inspect individual tokens (for
instance \peek_charcode:NTF) only take into account their meaning.

24.7 Description of all possible tokens
Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.
Two tokens of the same shape must have the same meaning, but the converse does not
hold.

A token has one of the following shapes.

• A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

• An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and X ETEX and less for other engines) and category code 13.

• A character token, characterized by its character code and category code (one of 1,
2, 3, 4, 6, 7, 8, 10, 11 or 12 whose meaning is described below).

There are also a few internal tokens. The following list may be incomplete in some
engines.

• Expanding \the\font results in a token that looks identical to the command that
was used to select the current font (such as \tenrm) but it differs from it in shape.

• A “frozen” \relax, which differs from the primitive in shape (but has the same
meaning), is inserted when the closing \fi of a conditional is encountered before
the conditional is evaluated.

• Expanding \noexpand ⟨token⟩ (when the ⟨token⟩ is expandable) results in an
internal token, displayed (temporarily) as \notexpanded: ⟨token⟩, whose shape
coincides with the ⟨token⟩ and whose meaning differs from \relax.

215

• An \outer endtemplate: can be encountered when peeking ahead at the next
token; this expands to another internal token, end of alignment template.

• Tricky programming might access a frozen \endwrite.

• Some frozen tokens can only be accessed in interactive sessions: \cr, \right,
\endgroup, \fi, \inaccessible.

• In LuaTEX, there is also the strange case of “bytes” ^^^^^^1100xy where x, y
are any two lowercase hexadecimal digits, so that the hexadecimal number ranges
from "11 0000 = 1 114 112 to "110 0ff = 1 114 367. These are used to output indi-
vidual bytes to files, rather than UTF-8. For the purposes of token comparisons
they behave like non-expandable primitive control sequences (not characters) whose
\meaning is the␣character␣ followed by the given byte. If this byte is in the range
80–ff this gives an “invalid utf-8 sequence” error: applying \token_to_str:N or
\token_to_meaning:N to these tokens is unsafe. Unfortunately, they don’t seem
to be detectable safely by any means except perhaps Lua code.

The meaning of a (non-active) character token is fixed by its category code (and
character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample
output of the TEX primitive \meaning, together with their LATEX3 names and most
common example:

1 begin-group character (group_begin, often {),

2 end-group character (group_end, often }),

3 math shift character (math_toggle, often $),

4 alignment tab character (alignment, often &),

6 macro parameter character (parameter, often #),

7 superscript character (math_superscript, often ^),

8 subscript character (math_subscript, often _),

10 blank space (space, often character code 32),

11 the letter (letter, such as A),

12 the character (other, such as 0).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

• a macro, used in LATEX3 for most functions and some variables (tl, fp, seq, . . .),

• a primitive such as \def or \topmark, used in LATEX3 for some functions,

• a register such as \count123, used in LATEX3 for the implementation of some vari-
ables (int, dim, . . .),

216

• a constant integer such as \char"56 or \mathchar"121,

• a font selection command,

• undefined.

Macros can be \protected or not, \long or not (the opposite of what LATEX3 calls
nopar), and \outer or not (unused in LATEX3). Their \meaning takes the form

⟨prefix⟩ macro:⟨argument⟩->⟨replacement⟩

where ⟨prefix⟩ is among \protected\long\outer, ⟨argument⟩ describes parameters
that the macro expects, such as #1#2#3, and ⟨replacement⟩ describes how the parame-
ters are manipulated, such as \int_eval:n{#2+#1*#3}.

Now is perhaps a good time to mention some subtleties relating to tokens with
category code 10 (space). Any input character with this category code (normally, space
and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”, as they are suitable to be used
as an argument for a function with the signature :N.

When a macro takes a delimited argument TEX scans ahead until finding the delim-
iter (outside any pairs of begin-group/end-group explicit characters), and the resulting
list of tokens (with outer braces removed) becomes the argument. Note that explicit
space characters at the start of the argument are not ignored in this case (and they
prevent brace-stripping).

217

Chapter 25

The l3prop module
Property lists

expl3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a ⟨key⟩ (string) and an associated ⟨value⟩ (token list). The
⟨key⟩ and ⟨value⟩ may both be given as any balanced text, and the ⟨key⟩ is processed
using \tl_to_str:n, meaning that category codes are ignored. Entries can be manipu-
lated individually, as well as collectively by applying a function to every key–value pair
within the list.

Each entry in a property list must have a unique ⟨key⟩: if an entry is added to a
property list which already contains the ⟨key⟩ then the new entry overwrites the existing
one. The ⟨keys⟩ are compared on a string basis, using the same method as \str_if_-
eq:nnTF.

Property lists are intended for storing key-based information for use within code.
They can be converted from and to key–value lists, which are a form of input parsed
by the l3keys module. If a key–value list contains a ⟨key⟩ multiple times, only the last
⟨value⟩ associated to it will be kept in the conversion to a property list.

Internally, property lists can use two distinct implementations with different data
storage, which are decided when declaring the property list variable using \prop_new:N
(“flat” storage) or \prop_new_linked:N (“linked” storage). After a property list is de-
clared with \prop_new:N or \prop_new_linked:N, the type of internal data storage can
be changed by \prop_make_flat:N or \prop_make_linked:N, but only at the outermost
group level. All other l3prop functions transparently manipulate either storage method
and convert as needed.

• The (default) “flat” storage method is suited for a relatively small number of en-
tries, or when the property list is likely to be manipulated (copied, mapped) as a
whole rather than entry-wise. It is significantly faster for \prop_set_eq:NN, and
only slightly faster for \prop_clear:N, \prop_concat:NNN, and mapping functions
\prop_map_....

• The “linked” storage method is meant for property lists with a large numbers of
entries. It takes up more of TEX’s memory during a run, but is significantly faster
(for long lists) when accessing or modifying individual entries using functions such
as \prop_if_in:Nn, \prop_item:Nn, \prop_put:Nnn, \prop_get:NnN, \prop_-
pop:NnN, \prop_remove:Nn, as it takes a constant time for these operations (rather

218

than the number of items for a “flat” property list). A technical drawback is that
memory is permanently used7 by ⟨keys⟩ stored in a “linked” property list, even
after they are removed and the property list is deleted.

25.1 Creating and initialising property lists

\prop_new:N ⟨property list⟩

Creates a new “flat” ⟨property list⟩ or raises an error if the name is already taken.
The declaration is global. The ⟨property list⟩ initially contains no entries. See also
\prop_new_linked:N.

\prop_new:N
\prop_new:c

\prop_new_linked:N ⟨property list⟩

Creates a new “linked” ⟨property list⟩ or raises an error if the name is already taken.
The declaration is global. The ⟨property list⟩ initially contains no entries. The in-
ternal data storage differs from that produced by \prop_new:N and it is optimized for
property lists with a large number of entries.

\prop_new_linked:N
\prop_new_linked:c

New: 2024-02-12

\prop_clear:N ⟨property list⟩

Clears all entries from the ⟨property list⟩.
\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

\prop_clear_new:N ⟨property list⟩

Ensures that the ⟨property list⟩ exists globally by applying \prop_new:N if necessary,
then applies \prop_(g)clear:N to leave the list empty.

TEXhackers note: If the property list exists and is of “linked” type, it is cleared but not
made into a flat property list.

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

\prop_clear_new_linked:N ⟨property list⟩

Ensures that the ⟨property list⟩ exists globally by applying \prop_new_linked:N if
necessary, then applies \prop_(g)clear:N to leave the list empty.

TEXhackers note: If the property list exists and is of “flat” type, it is cleared but not
made into a linked property list.

\prop_clear_new_linked:N
\prop_clear_new_linked:c
\prop_gclear_new_linked:N
\prop_gclear_new_linked:c

New: 2024-02-12

\prop_set_eq:NN ⟨property list1⟩ ⟨property list2⟩

Sets the content of ⟨property list1⟩ equal to that of ⟨property list2⟩. This converts
as needed between the two storage types.

\prop_set_eq:NN
\prop_set_eq:(cN|Nc|cc)
\prop_gset_eq:NN
\prop_gset_eq:(cN|Nc|cc)

7Until the end of the run, that is.

219

\prop_set_from_keyval:Nn ⟨property list⟩
{

⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...

}

Sets ⟨property list⟩ to contain key–value pairs given in the second argument. If du-
plicate keys appear only the last of the values is kept. In contrast to most keyval lists
(e.g. those in l3keys), each key here must be followed with an = sign even to specify an
empty ⟨value⟩.

Spaces are trimmed around every ⟨key⟩ and every ⟨value⟩, and if the result of
trimming spaces consists of a single brace group then a set of outer braces is removed.
This enables both the ⟨key⟩ and the ⟨value⟩ to contain spaces, commas or equal signs.
The ⟨key⟩ is then processed by \tl_to_str:n. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_set_from_keyval:Nn
\prop_set_from_keyval:cn
\prop_gset_from_keyval:Nn
\prop_gset_from_keyval:cn

New: 2017-11-28

Updated: 2021-11-07

\prop_const_from_keyval:Nn ⟨property list⟩
{

⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...

}

Creates a new constant “flat” ⟨property list⟩ or raises an error if the name is already
taken. The ⟨property list⟩ is set globally to contain key–value pairs given in the second
argument, processed in the way described for \prop_set_from_keyval:Nn. If duplicate
keys appear only the last of the values is kept. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_const_from_keyval:Nn
\prop_const_from_keyval:cn

New: 2017-11-28

Updated: 2021-11-07

\prop_const_linked_from_keyval:Nn ⟨prop var⟩
{

⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...

}

\prop_const_linked_from_keyval:Nn
\prop_const_linked_from_keyval:cn

New: 2024-02-12

Creates a new constant “linked” ⟨prop var⟩ or raises an error if the name is already
taken. The ⟨prop var⟩ is set globally to contain key–value pairs given in the second
argument, processed in the way described for \prop_set_from_keyval:Nn. If duplicate
keys appear only the last of the values is kept. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_make_flat:N ⟨property list⟩

Changes the internal storage type of the ⟨property list⟩ to be the same “flat” storage
as \prop_new:N. The key–value pairs of the ⟨property list⟩ are preserved by the
change. If the property list was already flat then nothing is done. This function can only
be used at the outermost group level.

\prop_make_flat:N
\prop_make_flat:c

New: 2024-02-12

\prop_make_linked:N ⟨property list⟩

Changes the internal storage type of the ⟨property list⟩ to be the same “linked” storage
as \prop_new_linked:N. The key–value pairs of the ⟨property list⟩ are preserved by
the change. If the property list was already linked then nothing is done. This function
can only be used at the outermost group level.

\prop_make_linked:N
\prop_make_linked:c

New: 2024-02-12

220

25.2 Adding and updating property list entries

\prop_put:Nnn ⟨property list⟩ {⟨key⟩} {⟨value⟩}\prop_put:Nnn
\prop_put:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|Nno|Non|Noo|
cnn|cnV|cnv|cne|cVn|cVV|cVv|cVe|cvn|
cvV|cvv|cve|cen|ceV|cev|cee|cno|con|
coo)

\prop_gput:Nnn
\prop_gput:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|Nno|Non|Noo|
cnn|cnV|cnv|cne|cVn|cVV|cVv|cVe|cvn|
cvV|cvv|cve|cen|ceV|cev|cee|cno|con|
coo)

Updated: 2012-07-09

Adds an entry to the ⟨property list⟩ which may be accessed using the ⟨key⟩ and
which has ⟨value⟩. If the ⟨key⟩ is already present in the ⟨property list⟩, the existing
entry is overwritten by the new ⟨value⟩. Both the ⟨key⟩ and ⟨value⟩ may contain any
⟨balanced text⟩. The ⟨key⟩ is stored after processing with \tl_to_str:n, meaning
that category codes are ignored.

\prop_put_if_not_in:Nnn ⟨property list⟩ {⟨key⟩}
{⟨value⟩}

\prop_put_if_not_in:Nnn
\prop_put_if_not_in:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|cnn|cnV|cnv|
cne|cVn|cVV|cVv|cVe|cvn|cvV|cvv|cve|
cen|ceV|cev|cee)

\prop_gput_if_not_in:Nnn
\prop_gput_if_not_in:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|cnn|cnV|cnv|
cne|cVn|cVV|cVv|cVe|cvn|cvV|cvv|cve|
cen|ceV|cev|cee)

New: 2024-03-30

Updated: 2024-05-07

If the ⟨key⟩ is present in the ⟨property list⟩ then no action is taken. Otherwise, a
new entry is added as described for \prop_put:Nnn.

\prop_concat:NNN ⟨property list1⟩ ⟨property list2⟩ ⟨property list3⟩

Combines the key–value pairs of ⟨property list2⟩ and ⟨property list3⟩, and saves the
result in ⟨property list1⟩. If a key appears in both ⟨property list2⟩ and ⟨property
list3⟩ then the last value, namely the value in ⟨property list3⟩ is kept. This converts
as needed between the two storage types.

\prop_concat:NNN
\prop_concat:ccc
\prop_gconcat:NNN
\prop_gconcat:ccc

New: 2021-05-16

221

\prop_put_from_keyval:Nn ⟨property list⟩
{

⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...

}

Updates the ⟨property list⟩ by adding entries for each key–value pair given in the
second argument. The addition is done through \prop_put:Nnn, hence if the ⟨property
list⟩ already contains some of the keys, the corresponding values are discarded and
replaced by those given in the key–value list. If duplicate keys appear in the key–value
list then only the last of the values is kept.

The function is equivalent to storing the key–value pairs in a temporary property
list using \prop_set_from_keyval:Nn, then combining ⟨property list⟩ with the tem-
porary variable using \prop_concat:NNN. In particular, the ⟨keys⟩ and ⟨values⟩ are
space-trimmed and unbraced as described in \prop_set_from_keyval:Nn. This function
correctly detects the = and , signs provided they have the standard category code 12 or
they are active.

\prop_put_from_keyval:Nn
\prop_put_from_keyval:cn
\prop_gput_from_keyval:Nn
\prop_gput_from_keyval:cn

New: 2021-05-16

Updated: 2021-11-07

25.3 Recovering values from property lists

\prop_get:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_get:NnN
\prop_get:(NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN|

cnc)
Updated: 2011-08-28

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then the
⟨tl var⟩ is set to the special marker \q_no_value. The ⟨token list variable⟩ is set
within the current TEX group. See also \prop_get:NnNTF.

\prop_pop:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_pop:NnN
\prop_pop:(NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-18

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then the
⟨tl var⟩ is set to the special marker \q_no_value. The ⟨key⟩ and ⟨value⟩ are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_gpop:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_gpop:NnN
\prop_gpop:(NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-18

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then
the ⟨tl var⟩ is set to the special marker \q_no_value. The ⟨key⟩ and ⟨value⟩ are
then deleted from the property list. The ⟨property list⟩ is modified globally, while the
assignment of the ⟨tl var⟩ is local. See also \prop_gpop:NnNTF.

222

\prop_item:Nn ⟨property list⟩ {⟨key⟩}\prop_item:Nn ⋆
\prop_item:(NV|Ne|No|cn|cV|ce|co) ⋆

New: 2014-07-17

Expands to the ⟨value⟩ corresponding to the ⟨key⟩ in the ⟨property list⟩. If the
⟨key⟩ is missing, this has an empty expansion.

TEXhackers note: For “flat” property lists, this expandable function iterates through
every key–value pair and is therefore slower than a non-expandable approach based on \prop_-
get:NnN. (For “linked” property lists both functions are fast.)

The result is returned within the \unexpanded primitive (\exp_not:n), which means that
the ⟨value⟩ does not expand further when appearing in an e-type or x-type argument expansion.

\prop_count:N ⟨property list⟩

Leaves the number of key–value pairs in the ⟨property list⟩ in the input stream as an
⟨integer denotation⟩.

\prop_count:N ⋆
\prop_count:c ⋆

\prop_to_keyval:N ⟨property list⟩

Expands to the ⟨property list⟩ in a key–value notation. Keep in mind that a
⟨property list⟩ is unordered, while key–value interfaces are not necessarily, so this
cannot be used for arbitrary interfaces.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the key–value list does not expand further when appearing in an e-type or
x-type argument expansion. It also needs exactly two steps of expansion.

\prop_to_keyval:N ⋆

25.4 Modifying property lists

\prop_remove:Nn ⟨property list⟩ {⟨key⟩}\prop_remove:Nn
\prop_remove:(NV|Ne|cn|cV|ce)
\prop_gremove:Nn
\prop_gremove:(NV|Ne|cn|cV|ce)

New: 2012-05-12

Removes the entry listed under ⟨key⟩ from the ⟨property list⟩. If the ⟨key⟩ is not
found in the ⟨property list⟩ no change occurs, i.e there is no need to test for the
existence of a key before deleting it.

25.5 Property list conditionals

\prop_if_exist_p:N ⟨property list⟩
\prop_if_exist:NTF ⟨property list⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨property list⟩ is currently defined. This does not check that the
⟨property list⟩ really is a property list variable.

\prop_if_exist_p:N ⋆
\prop_if_exist_p:c ⋆
\prop_if_exist:NTF ⋆
\prop_if_exist:cTF ⋆

New: 2012-03-03

223

\prop_if_empty_p:N ⟨property list⟩
\prop_if_empty:NTF ⟨property list⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨property list⟩ is empty (containing no entries).

\prop_if_empty_p:N ⋆
\prop_if_empty_p:c ⋆
\prop_if_empty:NTF ⋆
\prop_if_empty:cTF ⋆

\prop_if_in_p:Nn ⟨property list⟩ {⟨key⟩}
\prop_if_in:NnTF ⟨property list⟩ {⟨key⟩} {⟨true code⟩} {⟨false code⟩}

\prop_if_in_p:Nn ⋆
\prop_if_in_p:(NV|Ne|No|cn|cV|ce|co) ⋆
\prop_if_in:NnTF ⋆
\prop_if_in:(NV|Ne|No|cn|cV|ce|co)TF ⋆

Updated: 2011-09-15

Tests if the ⟨key⟩ is present in the ⟨property list⟩, making the comparison using the
method described by \str_if_eq:nnTF.

TEXhackers note: For “flat” property lists, this expandable function iterates through
every key–value pair and is therefore slower than a non-expandable approach based on \prop_-
get:NnNTF. (For “linked” property lists both functions are fast.)

25.6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
code follows depending on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get:NnNTF ⟨property list⟩ {⟨key⟩} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\prop_get:NnNTF
\prop_get:(NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN|

cnc)TF

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the input
stream. The value of the ⟨tl var⟩ is not defined in this case and should not be relied
upon. If the ⟨key⟩ is present in the ⟨property list⟩, stores the corresponding ⟨value⟩
in the ⟨tl var⟩ without removing it from the ⟨property list⟩, then leaves the ⟨true
code⟩ in the input stream. The ⟨tl var⟩ is assigned locally.

\prop_pop:NnNTF ⟨property list⟩ {⟨key⟩} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\prop_pop:NnNTF
\prop_pop:(NVN|NoN|cnN|cVN|coN)TF

New: 2011-08-18

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the input
stream. The value of the ⟨tl var⟩ is not defined in this case and should not be relied
upon. If the ⟨key⟩ is present in the ⟨property list⟩, pops the corresponding ⟨value⟩
in the ⟨tl var⟩, i.e. removes the item from the ⟨property list⟩. Both the ⟨property
list⟩ and the ⟨tl var⟩ are assigned locally.

224

\prop_gpop:NnNTF ⟨property list⟩ {⟨key⟩} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\prop_gpop:NnNTF
\prop_gpop:(NVN|NoN|cnN|cVN|coN)TF

New: 2011-08-18

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the input
stream. The value of the ⟨tl var⟩ is not defined in this case and should not be relied
upon. If the ⟨key⟩ is present in the ⟨property list⟩, pops the corresponding ⟨value⟩ in
the ⟨tl var⟩, i.e. removes the item from the ⟨property list⟩. The ⟨property list⟩
is modified globally, while the ⟨tl var⟩ is assigned locally.

25.7 Mapping over property lists
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\prop_map_function:NN ⟨property list⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨entry⟩ stored in the ⟨property list⟩. The ⟨function⟩
receives two arguments for each iteration: the ⟨key⟩ and associated ⟨value⟩. The order
in which ⟨entries⟩ are returned is not defined and should not be relied upon. To pass
further arguments to the ⟨function⟩, see \prop_map_inline:Nn (non-expandable) or
\prop_map_tokens:Nn.

\prop_map_function:NN ✩

\prop_map_function:cN ✩

Updated: 2013-01-08

\prop_map_inline:Nn ⟨property list⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨entry⟩ stored within the ⟨property list⟩. The
⟨inline function⟩ should consist of code which receives the ⟨key⟩ as #1 and the ⟨value⟩
as #2. The order in which ⟨entries⟩ are returned is not defined and should not be relied
upon.

\prop_map_inline:Nn
\prop_map_inline:cn

Updated: 2013-01-08

\prop_map_tokens:Nn ⟨property list⟩ {⟨code⟩}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each key–value pair in the ⟨property list⟩ as two trailing
brace groups. For instance,

\prop_map_tokens:Nn \l_my_prop { \str_if_eq:nnT { mykey } }

expands to the value corresponding to mykey: for each pair in \l_my_prop the function
\str_if_eq:nnT receives mykey, the ⟨key⟩ and the ⟨value⟩ as its three arguments. For
that specific task, \prop_item:Nn is faster.

\prop_map_tokens:Nn ✩

\prop_map_tokens:cn ✩

225

\prop_map_break:

Used to terminate a \prop_map_... function before all entries in the ⟨property list⟩
have been processed. This normally takes place within a conditional statement, for
example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\prop_map_break: ✩

Updated: 2012-06-29

\prop_map_break:n {⟨code⟩}

Used to terminate a \prop_map_... function before all entries in the ⟨property list⟩
have been processed, inserting the ⟨code⟩ after the mapping has ended. This normally
takes place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\prop_map_break:n ✩

Updated: 2012-06-29

25.8 Viewing property lists

\prop_show:N ⟨property list⟩

Displays the entries in the ⟨property list⟩ in the terminal, and specifies its storage
type.

\prop_show:N
\prop_show:c

Updated: 2021-04-29

226

\prop_log:N ⟨property list⟩

Writes the entries in the ⟨property list⟩ in the log file, and specifies its storage type.
\prop_log:N
\prop_log:c

New: 2014-08-12

Updated: 2021-04-29

25.9 Scratch property lists
There is no need to include both flat and linked property lists as scratch variables. We
arbitrarily pick the older implementation.

Scratch “flat” property lists for local assignment. These are never used by the kernel
code, and so are safe for use with any LATEX3-defined function. However, they may be
overwritten by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_prop
\l_tmpb_prop

New: 2012-06-23

Scratch “flat” property lists for global assignment. These are never used by the kernel
code, and so are safe for use with any LATEX3-defined function. However, they may be
overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

25.10 Constants

A permanently-empty property list used for internal comparisons.\c_empty_prop

227

Chapter 26

The l3skip module
Dimensions and skips

LATEX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

Many functions take dimension expressions (“⟨dim expr⟩”) or skip expressions
(“⟨skip expr⟩”) as arguments.

26.1 Creating and initialising dim variables

\dim_new:N ⟨dimension⟩

Creates a new ⟨dimension⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨dimension⟩ is initially equal to 0 pt.

\dim_new:N
\dim_new:c

\dim_const:Nn ⟨dimension⟩ {⟨dim expr⟩}

Creates a new constant ⟨dimension⟩ or raises an error if the name is already taken. The
value of the ⟨dimension⟩ is set globally to the ⟨dim expr⟩.

\dim_const:Nn
\dim_const:cn

New: 2012-03-05

\dim_zero:N ⟨dimension⟩

Sets ⟨dimension⟩ to 0 pt.
\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

\dim_zero_new:N ⟨dimension⟩

Ensures that the ⟨dimension⟩ exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the ⟨dimension⟩ set to zero.

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

New: 2012-01-07

228

\dim_if_exist_p:N ⟨dimension⟩
\dim_if_exist:NTF ⟨dimension⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨dimension⟩ is currently defined. This does not check that the
⟨dimension⟩ really is a dimension variable.

\dim_if_exist_p:N ⋆
\dim_if_exist_p:c ⋆
\dim_if_exist:NTF ⋆
\dim_if_exist:cTF ⋆

New: 2012-03-03

26.2 Setting dim variables

\dim_add:Nn ⟨dimension⟩ {⟨dim expr⟩}

Adds the result of the ⟨dim expr⟩ to the current content of the ⟨dimension⟩.
\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn ⟨dimension⟩ {⟨dim expr⟩}

Sets ⟨dimension⟩ to the value of ⟨dim expr⟩, which must evaluate to a length with units.
\dim_set:Nn
\dim_set:(cn|NV|cV)
\dim_gset:Nn
\dim_gset:(cn|NV|cV)

Updated: 2011-10-22

\dim_set_eq:NN ⟨dimension1⟩ ⟨dimension2⟩

Sets the content of ⟨dimension1⟩ equal to that of ⟨dimension2⟩.
\dim_set_eq:NN
\dim_set_eq:(cN|Nc|cc)
\dim_gset_eq:NN
\dim_gset_eq:(cN|Nc|cc)

\dim_sub:Nn ⟨dimension⟩ {⟨dim expr⟩}

Subtracts the result of the ⟨dim expr⟩ from the current content of the ⟨dimension⟩.
\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Updated: 2011-10-22

26.3 Utilities for dimension calculations

\dim_abs:n {⟨dim expr⟩}

Converts the ⟨dim expr⟩ to its absolute value, leaving the result in the input stream as
a ⟨dimension denotation⟩.

\dim_abs:n ⋆

Updated: 2012-09-26

\dim_max:nn {⟨dim expr1⟩} {⟨dim expr2⟩}
\dim_min:nn {⟨dim expr1⟩} {⟨dim expr2⟩}

Evaluates the two ⟨dim exprs⟩ and leaves either the maximum or minimum value in the
input stream as appropriate, as a ⟨dimension denotation⟩.

\dim_max:nn ⋆
\dim_min:nn ⋆

New: 2012-09-09

Updated: 2012-09-26

229

\dim_ratio:nn {⟨dim expr1⟩} {⟨dim expr2⟩}

Parses the two ⟨dim exprs⟩ and converts the ratio of the two to a form suitable for use
inside a ⟨dim expr⟩. This ratio is then left in the input stream, allowing syntax such as

\dim_set:Nn \l_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ratio expression between two integers,
with all distances converted to scaled points. Thus

\tl_set:Ne \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \l_my_tl

displays 327680/655360 on the terminal.

\dim_ratio:nn ✩

Updated: 2011-10-22

26.4 Dimension expression conditionals

\dim_compare_p:nNn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩}
\dim_compare:nNnTF
{⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨dim exprs⟩ as described for \dim_eval:n. The
two results are then compared using the ⟨relation⟩:

Equal =
Greater than >
Less than <

This function is less flexible than \dim_compare:nTF but around 5 times faster.

\dim_compare_p:nNn ⋆
\dim_compare:nNnTF ⋆

230

\dim_compare_p:n
{

⟨dim expr1⟩ ⟨relation1⟩
...
⟨dim exprN ⟩ ⟨relationN ⟩
⟨dim exprN+1⟩

}
\dim_compare:nTF
{

⟨dim expr1⟩ ⟨relation1⟩
...
⟨dim exprN ⟩ ⟨relationN ⟩
⟨dim exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

This function evaluates the ⟨dim exprs⟩ as described for \dim_eval:n and compares
consecutive result using the corresponding ⟨relation⟩, namely it compares ⟨dim expr1⟩
and ⟨dim expr2⟩ using the ⟨relation1⟩, then ⟨dim expr2⟩ and ⟨dim expr3⟩ using
the ⟨relation2⟩, until finally comparing ⟨dim exprN ⟩ and ⟨dim exprN+1⟩ using the
⟨relationN ⟩. The test yields true if all comparisons are true. Each ⟨dim expr⟩ is
evaluated only once, and the evaluation is lazy, in the sense that if one comparison is
false, then no other ⟨dim expr⟩ is evaluated and no other comparison is performed.
The ⟨relations⟩ can be any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

This function is more flexible than \dim_compare:nNnTF but around 5 times slower.

\dim_compare_p:n ⋆
\dim_compare:nTF ⋆

Updated: 2013-01-13

231

\dim_case:nnTF {⟨test dim expr⟩}
{
{⟨dim expr case1⟩} {⟨code case1⟩}
{⟨dim expr case2⟩} {⟨code case2⟩}
...
{⟨dim expr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

This function evaluates the ⟨test dim expr⟩ and compares this in turn to each of the
⟨dim expr case⟩s until a match is found. If the two are equal then the associated
⟨code⟩ is left in the input stream and other cases are discarded. If any of the cases are
matched, the ⟨true code⟩ is also inserted into the input stream (after the code for the
appropriate case), while if none match then the ⟨false code⟩ is inserted. The function
\dim_case:nn, which does nothing if there is no match, is also available. For example

\dim_set:Nn \l_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \l_tmpa_dim }
{
{ 5 pt } { Small }
{ 4 pt + 6 pt } { Medium }
{ - 10 pt } { Negative }

}
{ No idea! }

leaves “Medium” in the input stream. Since evaluation of the test expressions stops at
the first successful case, the order of possible matches should normally be that the most
likely are earlier: this will reduce the average steps required to complete expansion.

\dim_case:nn ⋆
\dim_case:nnTF ⋆

New: 2013-07-24

26.5 Dimension expression loops

\dim_do_until:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨dim exprs⟩ as described for \dim_compare:nNnTF. If the test
is false then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is true.

\dim_do_until:nNnn ✩

\dim_do_while:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨dim exprs⟩ as described for \dim_compare:nNnTF. If the test
is true then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is false.

\dim_do_while:nNnn ✩

232

\dim_until_do:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨dim exprs⟩ as described for \dim_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
false. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\dim_until_do:nNnn ✩

\dim_while_do:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨dim exprs⟩ as described for \dim_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
true. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is false.

\dim_while_do:nNnn ✩

\dim_do_until:nn {⟨dimension relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
⟨dimension relation⟩ as described for \dim_compare:nTF. If the test is false then
the ⟨code⟩ is inserted into the input stream again and a loop occurs until the ⟨relation⟩
is true.

\dim_do_until:nn ✩

Updated: 2013-01-13

\dim_do_while:nn {⟨dimension relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
⟨dimension relation⟩ as described for \dim_compare:nTF. If the test is true then the
⟨code⟩ is inserted into the input stream again and a loop occurs until the ⟨relation⟩ is
false.

\dim_do_while:nn ✩

Updated: 2013-01-13

\dim_until_do:nn {⟨dimension relation⟩} {⟨code⟩}

Evaluates the ⟨dimension relation⟩ as described for \dim_compare:nTF, and then
places the ⟨code⟩ in the input stream if the ⟨relation⟩ is false. After the ⟨code⟩
has been processed by TEX the test is repeated, and a loop occurs until the test is true.

\dim_until_do:nn ✩

Updated: 2013-01-13

\dim_while_do:nn {⟨dimension relation⟩} {⟨code⟩}

Evaluates the ⟨dimension relation⟩ as described for \dim_compare:nTF, and then
places the ⟨code⟩ in the input stream if the ⟨relation⟩ is true. After the ⟨code⟩
has been processed by TEX the test is repeated, and a loop occurs until the test is false.

\dim_while_do:nn ✩

Updated: 2013-01-13

26.6 Dimension step functions

\dim_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. The ⟨function⟩ is then placed in front of each
⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between
each ⟨value⟩). The ⟨step⟩ must be non-zero. If the ⟨step⟩ is positive, the loop stops
when the ⟨value⟩ becomes larger than the ⟨final value⟩. If the ⟨step⟩ is negative, the
loop stops when the ⟨value⟩ becomes smaller than the ⟨final value⟩. The ⟨function⟩
should absorb one argument.

\dim_step_function:nnnN ✩

New: 2018-02-18

233

\dim_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. Then for each ⟨value⟩ from the ⟨initial
value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩
is inserted into the input stream with #1 replaced by the current ⟨value⟩. Thus the
⟨code⟩ should define a function of one argument (#1).

\dim_step_inline:nnnn

New: 2018-02-18

\dim_step_variable:nnnNn
{⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. Then for each ⟨value⟩ from the ⟨initial
value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩
is inserted into the input stream, with the ⟨tl var⟩ defined as the current ⟨value⟩. Thus
the ⟨code⟩ should make use of the ⟨tl var⟩.

\dim_step_variable:nnnNn

New: 2018-02-18

26.7 Using dim expressions and variables

\dim_eval:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, expanding any dimensions and token list variables within the
⟨expression⟩ to their content (without requiring \dim_use:N/\tl_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a ⟨dimension denotation⟩ after two expansions. This is expressed in points (pt), and
requires suitable termination if used in a TEX-style assignment as it is not an ⟨internal
dimension⟩.

\dim_eval:n ⋆

Updated: 2011-10-22

\dim_sign:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩ then leaves 1 or 0 or −1 in the input stream according to the
sign of the result.

\dim_sign:n ⋆

New: 2018-11-03

\dim_use:N ⟨dimension⟩

Recovers the content of a ⟨dimension⟩ and places it directly in the input stream. An
error is raised if the variable does not exist or if it is invalid. Can be omitted in places
where a ⟨dimension⟩ is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\dim_use:N ⋆
\dim_use:c ⋆

\dim_to_decimal:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in points (pt) in the input
stream, with no units. The result is rounded by TEX to at most five decimal places. If
the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted
to (TEX) points.

\dim_to_decimal:n ⋆

New: 2014-07-15

234

\dim_to_decimal_in_bp:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in big points (bp) in the input
stream, with no units. The result is rounded by TEX to at most five decimal places. If
the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, i.e. the magnitude of one (TEX) point when converted
to big points.

TEXhackers note: The implementation of this function is re-entrant: the result of
\dim_compare:nNnTF
{ <x>bp } =
{ \dim_to_decimal_in_bp:n { <x>bp } bp }

will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

\dim_to_decimal_in_bp:n ⋆

New: 2014-07-15

Updated: 2023-05-20

\dim_to_decimal_in_cm:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed with the appropriate scaling
in the input stream, with no units. If the decimal part of the result is zero, it is omitted,
together with the decimal marker. The precisions of the result is limited to a maximum
of five decimal places with trailing zeros omitted.

The maximum TEX allowable dimension value (available as \maxdimen in plain TEX
and LATEX and \c_max_dim in expl3) can only be expressed exactly in the units pt, bp
and sp. The maximum allowable input values to five decimal places are

1276.00215 cc
575.83174 cm

15312.02584 dd
226.70540 in

5758.31742 mm
1365.33333 pc

(Note that these are not all equal, but rather any larger value will overflow due to the
way TEX converts to sp.) Values given to five decimal places larger that these will result
in TEX errors; the behavior if additional decimal places are given depends on the TEX
internals and thus larger values are not supported by expl3.

TEXhackers note: The implementation of these functions is re-entrant: the result of
\dim_compare:nNnTF
{ <x><unit> } =
{ \dim_to_decimal_in_<unit>:n { <x><unit> } <unit> }

will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

\dim_to_decimal_in_cc:n ⋆
\dim_to_decimal_in_cm:n ⋆
\dim_to_decimal_in_dd:n ⋆
\dim_to_decimal_in_in:n ⋆
\dim_to_decimal_in_mm:n ⋆
\dim_to_decimal_in_pc:n ⋆

New: 2023-05-20

235

\dim_to_decimal_in_sp:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in scaled points (sp) in the
input stream, with no units. The result is necessarily an integer.

\dim_to_decimal_in_sp:n ⋆

New: 2015-05-18

\dim_to_decimal_in_unit:nn {⟨dim expr1⟩} {⟨dim expr2⟩}\dim_to_decimal_in_unit:nn ⋆

New: 2014-07-15

Updated: 2023-05-20

Evaluates the ⟨dim exprs⟩, and leaves the value of ⟨dim expr1⟩, expressed in a unit
given by ⟨dim expr2⟩, in the input stream. If the decimal part of the result is zero, it is
omitted, together with the decimal marker. The precisions of the result is limited to a
maximum of five decimal places with trailing zeros omitted.

For example

\dim_to_decimal_in_unit:nn { 1bp } { 1mm }

leaves 0.35278 in the input stream, i.e. the magnitude of one big point when expressed
in millimetres. The conversions do not guarantee that TEX would yield identical results
for the direct input in an equality test, thus for instance

\dim_compare:nNnTF
{ 1bp } =
{ \dim_to_decimal_in_unit:nn { 1bp } { 1mm } mm }

will take the false branch.

\dim_to_fp:n {⟨dim expr⟩}

Expands to an internal floating point number equal to the value of the ⟨dim expr⟩ in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision and a smaller range are acceptable.

\dim_to_fp:n ⋆

New: 2012-05-08

26.8 Viewing dim variables

\dim_show:N ⟨dimension⟩

Displays the value of the ⟨dimension⟩ on the terminal.
\dim_show:N
\dim_show:c

\dim_show:n {⟨dim expr⟩}

Displays the result of evaluating the ⟨dim expr⟩ on the terminal.
\dim_show:n

New: 2011-11-22

Updated: 2015-08-07

\dim_log:N ⟨dimension⟩

Writes the value of the ⟨dimension⟩ in the log file.
\dim_log:N
\dim_log:c

New: 2014-08-22

Updated: 2015-08-03

236

\dim_log:n {⟨dim expr⟩}

Writes the result of evaluating the ⟨dim expr⟩ in the log file.
\dim_log:n

New: 2014-08-22

Updated: 2015-08-07

26.9 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

\c_max_dim

A zero length as a dimension. This can also be used as a component of a skip.\c_zero_dim

26.10 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_dim
\l_tmpb_dim

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_dim
\g_tmpb_dim

26.11 Creating and initialising skip variables

\skip_new:N ⟨skip⟩

Creates a new ⟨skip⟩ or raises an error if the name is already taken. The declaration is
global. The ⟨skip⟩ is initially equal to 0 pt.

\skip_new:N
\skip_new:c

\skip_const:Nn ⟨skip⟩ {⟨skip expr⟩}

Creates a new constant ⟨skip⟩ or raises an error if the name is already taken. The value
of the ⟨skip⟩ is set globally to the ⟨skip expr⟩.

\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N ⟨skip⟩

Sets ⟨skip⟩ to 0 pt.
\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

237

\skip_zero_new:N ⟨skip⟩

Ensures that the ⟨skip⟩ exists globally by applying \skip_new:N if necessary, then ap-
plies \skip_(g)zero:N to leave the ⟨skip⟩ set to zero.

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N ⟨skip⟩
\skip_if_exist:NTF ⟨skip⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨skip⟩ is currently defined. This does not check that the ⟨skip⟩ really
is a skip variable.

\skip_if_exist_p:N ⋆
\skip_if_exist_p:c ⋆
\skip_if_exist:NTF ⋆
\skip_if_exist:cTF ⋆

New: 2012-03-03

26.12 Setting skip variables

\skip_add:Nn ⟨skip⟩ {⟨skip expr⟩}

Adds the result of the ⟨skip expr⟩ to the current content of the ⟨skip⟩.
\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn ⟨skip⟩ {⟨skip expr⟩}

Sets ⟨skip⟩ to the value of ⟨skip expr⟩, which must evaluate to a length with units and
may include a rubber component (for example 1 cm plus 0.5 cm).

\skip_set:Nn
\skip_set:(cn|NV|cV)
\skip_gset:Nn
\skip_gset:(cn|NV|cV)

Updated: 2011-10-22

\skip_set_eq:NN ⟨skip1⟩ ⟨skip2⟩

Sets the content of ⟨skip1⟩ equal to that of ⟨skip2⟩.
\skip_set_eq:NN
\skip_set_eq:(cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn ⟨skip⟩ {⟨skip expr⟩}

Subtracts the result of the ⟨skip expr⟩ from the current content of the ⟨skip⟩.
\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Updated: 2011-10-22

238

26.13 Skip expression conditionals

\skip_if_eq_p:nn {⟨skip expr1⟩} {⟨skip expr2⟩}
\skip_if_eq:nnTF
{⟨skip expr1⟩} {⟨skip expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨skip exprs⟩ as described for \skip_eval:n.
The two results are then compared for exact equality, i.e. both the fixed and rubber
components must be the same for the test to be true.

\skip_if_eq_p:nn ⋆
\skip_if_eq:nnTF ⋆

\skip_if_finite_p:n {⟨skip expr⟩}
\skip_if_finite:nTF {⟨skip expr⟩} {⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨skip expr⟩ as described for \skip_eval:n, and then tests if all of its
components are finite.

\skip_if_finite_p:n ⋆
\skip_if_finite:nTF ⋆

New: 2012-03-05

26.14 Using skip expressions and variables

\skip_eval:n {⟨skip expr⟩}

Evaluates the ⟨skip expr⟩, expanding any skips and token list variables within the
⟨expression⟩ to their content (without requiring \skip_use:N/\tl_use:N) and apply-
ing the standard mathematical rules. The result of the calculation is left in the in-
put stream as a ⟨glue denotation⟩ after two expansions. This is expressed in points
(pt), and requires suitable termination if used in a TEX-style assignment as it is not an
⟨internal glue⟩.

\skip_eval:n ⋆

Updated: 2011-10-22

\skip_use:N ⟨skip⟩

Recovers the content of a ⟨skip⟩ and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
⟨dimension⟩ or ⟨skip⟩ is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\skip_use:N ⋆
\skip_use:c ⋆

26.15 Viewing skip variables

\skip_show:N ⟨skip⟩

Displays the value of the ⟨skip⟩ on the terminal.
\skip_show:N
\skip_show:c

Updated: 2015-08-03

\skip_show:n {⟨skip expr⟩}

Displays the result of evaluating the ⟨skip expr⟩ on the terminal.
\skip_show:n

New: 2011-11-22

Updated: 2015-08-07

239

\skip_log:N ⟨skip⟩

Writes the value of the ⟨skip⟩ in the log file.
\skip_log:N
\skip_log:c

New: 2014-08-22

Updated: 2015-08-03

\skip_log:n {⟨skip expr⟩}

Writes the result of evaluating the ⟨skip expr⟩ in the log file.
\skip_log:n

New: 2014-08-22

Updated: 2015-08-07

26.16 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

\c_max_skip

Updated: 2012-11-02

A zero length as a skip, with no stretch nor shrink component.\c_zero_skip

Updated: 2012-11-01

26.17 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_skip
\l_tmpb_skip

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_skip
\g_tmpb_skip

26.18 Inserting skips into the output

\skip_horizontal:N ⟨skip⟩
\skip_horizontal:n {⟨skip expr⟩}

Inserts a horizontal ⟨skip⟩ into the current list. The argument can also be a ⟨dim⟩.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip.

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

Updated: 2011-10-22

240

\skip_vertical:N ⟨skip⟩
\skip_vertical:n {⟨skip expr⟩}

Inserts a vertical ⟨skip⟩ into the current list. The argument can also be a ⟨dim⟩.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip.

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Updated: 2011-10-22

26.19 Creating and initialising muskip variables

\muskip_new:N ⟨muskip⟩

Creates a new ⟨muskip⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨muskip⟩ is initially equal to 0 mu.

\muskip_new:N
\muskip_new:c

\muskip_const:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Creates a new constant ⟨muskip⟩ or raises an error if the name is already taken. The
value of the ⟨muskip⟩ is set globally to the ⟨muskip expr⟩.

\muskip_const:Nn
\muskip_const:cn

New: 2012-03-05

\skip_zero:N ⟨muskip⟩

Sets ⟨muskip⟩ to 0 mu.
\muskip_zero:N
\muskip_zero:c
\muskip_gzero:N
\muskip_gzero:c

\muskip_zero_new:N ⟨muskip⟩

Ensures that the ⟨muskip⟩ exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the ⟨muskip⟩ set to zero.

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

New: 2012-01-07

\muskip_if_exist_p:N ⟨muskip⟩
\muskip_if_exist:NTF ⟨muskip⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨muskip⟩ is currently defined. This does not check that the ⟨muskip⟩
really is a muskip variable.

\muskip_if_exist_p:N ⋆
\muskip_if_exist_p:c ⋆
\muskip_if_exist:NTF ⋆
\muskip_if_exist:cTF ⋆

New: 2012-03-03

26.20 Setting muskip variables

\muskip_add:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Adds the result of the ⟨muskip expr⟩ to the current content of the ⟨muskip⟩.
\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn

Updated: 2011-10-22

241

\muskip_set:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Sets ⟨muskip⟩ to the value of ⟨muskip expr⟩, which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set:Nn
\muskip_set:(cn|NV|cV)
\muskip_gset:Nn
\muskip_gset:(cn|NV|cV)

Updated: 2011-10-22

\muskip_set_eq:NN ⟨muskip1⟩ ⟨muskip2⟩

Sets the content of ⟨muskip1⟩ equal to that of ⟨muskip2⟩.
\muskip_set_eq:NN
\muskip_set_eq:(cN|Nc|cc)
\muskip_gset_eq:NN
\muskip_gset_eq:(cN|Nc|cc)

\muskip_sub:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Subtracts the result of the ⟨muskip expr⟩ from the current content of the ⟨muskip⟩.
\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Updated: 2011-10-22

26.21 Using muskip expressions and variables

\muskip_eval:n {⟨muskip expr⟩}

Evaluates the ⟨muskip expr⟩, expanding any skips and token list variables within the
⟨expression⟩ to their content (without requiring \muskip_use:N/\tl_use:N) and ap-
plying the standard mathematical rules. The result of the calculation is left in the input
stream as a ⟨muglue denotation⟩ after two expansions. This is expressed in mu, and
requires suitable termination if used in a TEX-style assignment as it is not an ⟨internal
muglue⟩.

\muskip_eval:n ⋆

Updated: 2011-10-22

\muskip_use:N ⟨muskip⟩

Recovers the content of a ⟨skip⟩ and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
⟨dimension⟩ is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\muskip_use:N ⋆
\muskip_use:c ⋆

26.22 Viewing muskip variables

\muskip_show:N ⟨muskip⟩

Displays the value of the ⟨muskip⟩ on the terminal.
\muskip_show:N
\muskip_show:c

Updated: 2015-08-03

242

\muskip_show:n {⟨muskip expr⟩}

Displays the result of evaluating the ⟨muskip expr⟩ on the terminal.
\muskip_show:n

New: 2011-11-22

Updated: 2015-08-07

\muskip_log:N ⟨muskip⟩

Writes the value of the ⟨muskip⟩ in the log file.
\muskip_log:N
\muskip_log:c

New: 2014-08-22

Updated: 2015-08-03

\muskip_log:n {⟨muskip expr⟩}

Writes the result of evaluating the ⟨muskip expr⟩ in the log file.
\muskip_log:n

New: 2014-08-22

Updated: 2015-08-07

26.23 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

\c_max_muskip

A zero length as a muskip, with no stretch nor shrink component.\c_zero_muskip

26.24 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_muskip
\l_tmpb_muskip

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip
\g_tmpb_muskip

26.25 Primitive conditional

\if_dim:w ⟨dimen1⟩ ⟨relation⟩ ⟨dimen2⟩
⟨true code⟩

\else:
⟨false⟩

\fi:

Compare two dimensions. The ⟨relation⟩ is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

\if_dim:w ⋆

243

Chapter 27

The l3keys module
Key–value interfaces

The key–value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro[
key-one = value one,
key-two = value two

]{argument}

for the user.
The high level functions here are intended as a method to create key–value controls.

Keys are themselves created using a key–value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n = code including parameter #1,
key-two .tl_set:N = \l_mymodule_store_tl

}

These values can then be set as with other key–value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

}

244

As illustrated, keys are created inside a ⟨module⟩: a set of related keys, typically those
for a single module/LATEX 2ε package. See Section 27.2 for suggestions on how to divide
large numbers of keys for a single module.

At a document level, \keys_set:nn is used within a document function, for example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } }

\DeclareDocumentCommand \MyModuleMacro { o m }
{
\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro

\group_end:
}

Key names may contain any tokens, as they are handled internally using \tl_to_-
str:n. As discussed in section 27.2, it is suggested that the character / is reserved for
sub-division of keys into different subsets. Functions and variables are not expanded
when creating key names, and so

\tl_set:Nn \l_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\l_mymodule_tmp_tl .code:n = code

}

creates a key called \l_mymodule_tmp_tl, and not one called key.

27.1 Creating keys

\keys_define:nn {⟨module⟩} {⟨keyval list⟩}

Parses the ⟨keyval list⟩ and defines the keys listed there for ⟨module⟩. The ⟨module⟩
name is treated as a string. In practice the ⟨module⟩ should be chosen to be unique to
the module in question (unless deliberately adding keys to an existing module).

The ⟨keyval list⟩ should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}

where the properties of the key begin from the . after the key name.

\keys_define:nn
\keys_define:ne

Updated: 2017-11-14

The various properties available take either no arguments at all, or require one
or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary ⟨key⟩, which when used may be supplied with a ⟨value⟩. All key definitions
are local.

245

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., override one
another. Some other properties are mutually exclusive, notably .value_required:n and
.value_forbidden:n, and so they replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
definitions are equivalent.
\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}
\keys_define:nn { mymodule }
{
keyname .value_required:n = true,
keyname .code:n = Some~code~using~#1

}

Note that all key properties define the key within the current TEX group, with an ex-
ception that the special .undefine: property undefines the key within the current TEX
group.

⟨key⟩ .bool_set:N = ⟨boolean variable⟩

Defines ⟨key⟩ to set ⟨boolean variable⟩ to ⟨value⟩ (which must be either “true” or
“false”). If the variable does not exist, it will be created globally at the point that the
key is set up.

.bool_set:N

.bool_set:c

.bool_gset:N

.bool_gset:c

Updated: 2013-07-08

⟨key⟩ .bool_set_inverse:N = ⟨boolean variable⟩

Defines ⟨key⟩ to set ⟨boolean variable⟩ to the logical inverse of ⟨value⟩ (which must
be either “true” or “false”). If the ⟨boolean variable⟩ does not exist, it will be
created globally at the point that the key is set up.

.bool_set_inverse:N

.bool_set_inverse:c

.bool_gset_inverse:N

.bool_gset_inverse:c

New: 2011-08-28

Updated: 2013-07-08

⟨key⟩ .choice:

Sets ⟨key⟩ to act as a choice key. Each valid choice for ⟨key⟩ must then be created, as
discussed in section 27.3.

.choice:

⟨key⟩ .choices:nn = {⟨choices⟩} {⟨code⟩}

Sets ⟨key⟩ to act as a choice key, and defines a series ⟨choices⟩ which are implemented
using the ⟨code⟩. Inside ⟨code⟩, \l_keys_choice_tl will be the name of the choice
made, and \l_keys_choice_int will be the position of the choice in the list of ⟨choices⟩
(indexed from 1). Choices are discussed in detail in section 27.3.

.choices:nn

.choices:(Vn|en|on)

New: 2011-08-21

Updated: 2013-07-10

⟨key⟩ .clist_set:N = ⟨comma list variable⟩

Defines ⟨key⟩ to set ⟨comma list variable⟩ to ⟨value⟩. Spaces around commas and
empty items will be stripped. If the variable does not exist, it is created globally at the
point that the key is set up.

.clist_set:N

.clist_set:c

.clist_gset:N

.clist_gset:c

New: 2011-09-11

246

⟨key⟩ .code:n = {⟨code⟩}

Stores the ⟨code⟩ for execution when ⟨key⟩ is used. The ⟨code⟩ can include one para-
meter (#1), which will be the ⟨value⟩ given for the ⟨key⟩.

.code:n

Updated: 2013-07-10

⟨key⟩ .cs_set:Np = ⟨control sequence⟩ ⟨arg. spec.⟩

Defines ⟨key⟩ to set ⟨control sequence⟩ to have ⟨arg. spec.⟩ and replacement text
⟨value⟩.

.cs_set:Np

.cs_set:cp

.cs_set_protected:Np

.cs_set_protected:cp

.cs_gset:Np

.cs_gset:cp

.cs_gset_protected:Np

.cs_gset_protected:cp

New: 2020-01-11

⟨key⟩ .default:n = {⟨default⟩}

Creates a ⟨default⟩ value for ⟨key⟩, which is used if no value is given. This will be used
if only the key name is given, but not if a blank ⟨value⟩ is given:

\keys_define:nn { mymodule }
{
key .code:n = Hello~#1,
key .default:n = World

}
\keys_set:nn { mymodule }
{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value does not trigger an error.

When no value is given for a key as part of \keys_set:nn, the .default:n value
provides the value before key properties are considered. The only exception is when
the .value_required:n property is active: a required value cannot be supplied by the
default, and must be explicitly given as part of \keys_set:nn.

.default:n

.default:(V|e|o)

Updated: 2013-07-09

⟨key⟩ .dim_set:N = ⟨dimension⟩

Defines ⟨key⟩ to set ⟨dimension⟩ to ⟨value⟩ (which must a dimension expression). If
the variable does not exist, it is created globally at the point that the key is set up. The
key will require a value at point-of-use unless a default is set.

.dim_set:N

.dim_set:c

.dim_gset:N

.dim_gset:c

Updated: 2020-01-17

⟨key⟩ .fp_set:N = ⟨floating point⟩

Defines ⟨key⟩ to set ⟨floating point⟩ to ⟨value⟩ (which must a floating point expres-
sion). If the variable does not exist, it is created globally at the point that the key is set
up. The key will require a value at point-of-use unless a default is set.

.fp_set:N

.fp_set:c

.fp_gset:N

.fp_gset:c

Updated: 2020-01-17

247

⟨key⟩ .groups:n = {⟨groups⟩}

Defines ⟨key⟩ as belonging to the ⟨groups⟩ (a comma-separated list). Groups provide a
“secondary axis” for selectively setting keys, and are described in Section 27.7.

TEXhackers note: The ⟨groups⟩ argument is turned into a string then interpreted as a
comma-separated list, so group names cannot contain commas nor start or end with a space
character.

.groups:n

New: 2013-07-14

⟨key⟩ .inherit:n = {⟨parents⟩}

Specifies that the ⟨key⟩ path should inherit the keys listed as any of the ⟨parents⟩ (a
comma list), which can be a module or a sub-division thereof. For example, after setting

\keys_define:nn { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:nn { } { bar .inherit:n = foo }

setting

\keys_set:nn { bar } { test = a }

will be equivalent to

\keys_set:nn { foo } { test = a }

Inheritance applies at point of use, not at definition, thus keys may be added to the
⟨parent⟩ after the use of .inherit:n and will be active. If more than one ⟨parent⟩ is
specified, the presence of the ⟨key⟩ will be tested for each in turn, with the first successful
hit taking priority.

.inherit:n

New: 2016-11-22

⟨key⟩ .initial:n = {⟨value⟩}

Initialises the ⟨key⟩ with the ⟨value⟩, equivalent to

\keys_set:nn {⟨module⟩} { ⟨key⟩ = ⟨value⟩ }

.initial:n

.initial:(V|e|o)

Updated: 2013-07-09

⟨key⟩ .int_set:N = ⟨integer⟩

Defines ⟨key⟩ to set ⟨integer⟩ to ⟨value⟩ (which must be an integer expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

.int_set:N

.int_set:c

.int_gset:N

.int_gset:c

Updated: 2020-01-17

⟨key⟩ .legacy_if_set:n = ⟨switch⟩

Defines ⟨key⟩ to set legacy \if⟨switch⟩ to ⟨value⟩ (which must be either “true” or
“false”). The ⟨switch⟩ is the name of the switch without the leading if.

The inverse versions will set the ⟨switch⟩ to the logical opposite of the ⟨value⟩.

.legacy_if_set:n

.legacy_if_gset:n

.legacy_if_set_inverse:n

.legacy_if_gset_inverse:n

Updated: 2022-01-15

⟨key⟩ .meta:n = {⟨keyval list⟩}

Makes ⟨key⟩ a meta-key, which will set ⟨keyval list⟩ in one go. The ⟨keyval list⟩
can refer as #1 to the value given at the time the ⟨key⟩ is used (or, if no value is given,
the ⟨key⟩’s default value).

.meta:n

Updated: 2013-07-10

248

⟨key⟩ .meta:nn = {⟨path⟩} {⟨keyval list⟩}

Makes ⟨key⟩ a meta-key, which will set ⟨keyval list⟩ in one go using the ⟨path⟩ in
place of the current one. The ⟨keyval list⟩ can refer as #1 to the value given at the
time the ⟨key⟩ is used (or, if no value is given, the ⟨key⟩’s default value).

.meta:nn

New: 2013-07-10

⟨key⟩ .multichoice:

Sets ⟨key⟩ to act as a multiple choice key. Each valid choice for ⟨key⟩ must then be
created, as discussed in section 27.3.

.multichoice:

New: 2011-08-21

⟨key⟩ .multichoices:nn {⟨choices⟩} {⟨code⟩}

Sets ⟨key⟩ to act as a multiple choice key, and defines a series ⟨choices⟩ which are
implemented using the ⟨code⟩. Inside ⟨code⟩, \l_keys_choice_tl will be the name of
the choice made, and \l_keys_choice_int will be the position of the choice in the list
of ⟨choices⟩ (indexed from 1). Choices are discussed in detail in section 27.3.

.multichoices:nn

.multichoices:(Vn|en|on)

New: 2011-08-21

Updated: 2013-07-10

⟨key⟩ .muskip_set:N = ⟨muskip⟩

Defines ⟨key⟩ to set ⟨muskip⟩ to ⟨value⟩ (which must be a muskip expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

.muskip_set:N

.muskip_set:c

.muskip_gset:N

.muskip_gset:c

New: 2019-05-05

Updated: 2020-01-17

⟨key⟩ .prop_put:N = ⟨property list⟩

Defines ⟨key⟩ to put the ⟨value⟩ onto the ⟨property list⟩ stored under the ⟨key⟩. If
the variable does not exist, it is created globally at the point that the key is set up.

.prop_put:N

.prop_put:c

.prop_gput:N

.prop_gput:c

New: 2019-01-31

⟨key⟩ .skip_set:N = ⟨skip⟩

Defines ⟨key⟩ to set ⟨skip⟩ to ⟨value⟩ (which must be a skip expression). If the variable
does not exist, it is created globally at the point that the key is set up. The key will
require a value at point-of-use unless a default is set.

.skip_set:N

.skip_set:c

.skip_gset:N

.skip_gset:c

Updated: 2020-01-17

⟨key⟩ .str_set:N = ⟨string variable⟩

Defines ⟨key⟩ to set ⟨string variable⟩ to ⟨value⟩. If the variable does not exist, it is
created globally at the point that the key is set up.

.str_set:N

.str_set:c

.str_gset:N

.str_gset:c

New: 2021-10-30

⟨key⟩ .str_set_e:N = ⟨string variable⟩

Defines ⟨key⟩ to set ⟨string variable⟩ to ⟨value⟩, which will be subjected to an e-type
expansion (i.e. using \str_set:Ne). If the variable does not exist, it is created globally
at the point that the key is set up.

.str_set_e:N

.str_set_e:c

.str_gset_e:N

.str_gset_e:c

New: 2023-09-18

249

⟨key⟩ .tl_set:N = ⟨tl var⟩

Defines ⟨key⟩ to set ⟨tl var⟩ to ⟨value⟩. If the variable does not exist, it is created
globally at the point that the key is set up.

.tl_set:N

.tl_set:c

.tl_gset:N

.tl_gset:c

⟨key⟩ .tl_set_e:N = ⟨tl var⟩

Defines ⟨key⟩ to set ⟨tl var⟩ to ⟨value⟩, which will be subjected to an e-type expansion
(i.e. using \tl_set:Ne). If the variable does not exist, it is created globally at the point
that the key is set up.

.tl_set_e:N

.tl_set_e:c

.tl_gset_e:N

.tl_gset_e:c

New: 2023-09-18

⟨key⟩ .undefine:

Removes the definition of the ⟨key⟩ within the current TEX group.
.undefine:

New: 2015-07-14

⟨key⟩ .value_forbidden:n = true|false

Specifies that ⟨key⟩ cannot receive a ⟨value⟩ when used. If a ⟨value⟩ is given then an
error will be issued. Setting the property “false” cancels the restriction.

.value_forbidden:n

New: 2015-07-14

⟨key⟩ .value_required:n = true|false

Specifies that ⟨key⟩ must receive a ⟨value⟩ when used. If a ⟨value⟩ is not given then
an error will be issued. Setting the property “false” cancels the restriction.

.value_required:n

New: 2015-07-14

27.2 Sub-dividing keys
When creating large numbers of keys, it may be desirable to divide them into several
subsets for a given module. This can be achieved either by adding a sub-division to the
module name:

\keys_define:nn { mymodule / subset }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subset / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name mymodule/subset/key.

As illustrated in the next section, this subdivision is particularly relevant to making
multiple choices.

250

27.3 Choice and multiple choice keys
The l3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependent only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

The index \l_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \l_keys_-
choice_tl and \l_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the
choice name) is also available as #1.

\l_keys_choice_int
\l_keys_choice_tl

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

It is possible to mix the two methods, but manually-created choices should not
use \l_keys_choice_tl or \l_keys_choice_int. These variables do not have defined

251

behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 27.6. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =
\msg_error:nneee { mymodule } { unknown-choice }
{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

}

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are defined as sub-keys. Thus both

\keys_define:nn { mymodule }
{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~
\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

and

\keys_define:nn { mymodule }
{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

are valid.
When a multiple choice key is set

\keys_set:nn { mymodule }
{
key = { a , b , c } % ’key’ defined as a multiple choice

}

252

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }
{
key = a ,
key = b ,
key = c ,

}

Thus each separate choice will have passed to it the \l_keys_choice_tl and \l_keys_-
choice_int in exactly the same way as described for .choices:nn.

27.4 Key usage scope
Some keys will be used as settings which have a strictly limited scope of usage. Some
will be only available once, others will only be valid until typesetting begins. To allow
formats to support this in a structured way, l3keys allows this information to be specified
using the .usage:n property.

⟨key⟩ .usage:n = ⟨scope⟩

Defines the ⟨key⟩ to have usage within the ⟨scope⟩, which should be one of general,
preamble or load.

.usage:n

New: 2022-01-10

\l_keys_usage_load_prop
\l_keys_usage_preamble_prop

New: 2022-01-10

l3keys itself does not attempt to redefine keys based on the usage scope. Rather, this
information is made available with these two property lists. These hold an entry for each
module (prefix); the value of each entry is a comma-separated list of the usage-restricted
key(s).

27.5 Setting keys

\keys_set:nn {⟨module⟩} {⟨keyval list⟩}

Parses the ⟨keyval list⟩, and sets those keys which are defined for ⟨module⟩. The
behaviour on finding an unknown key can be set by defining a special unknown key: this
is illustrated later.

\keys_set:nn
\keys_set:(nV|nv|ne|no)

Updated: 2017-11-14

253

For each key processed, information of the full path of the key, the name of the key and
the value of the key is available within two string and one token list variables. These
may be used within the code of the key.

The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }

has path mymodule/key-a while

\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \l_keys_path_str.
The name of the key is the part of the path after the last /, and thus is not unique.

In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \l_keys_key_str.

The value is everything after the =, which may be empty if no value was given. This
is stored in \l_keys_value_tl, and is not processed in any way by \keys_set:nn.

\l_keys_path_str
\l_keys_key_str
\l_keys_value_tl

Updated: 2020-02-08

27.6 Handling of unknown keys
If a key has not previously been defined (is unknown), \keys_set:nn looks for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts. The unknown key also supports the .default:n property.

\keys_define:nn { mymodule }
{
unknown .code:n =
You~tried~to~set~key~’\l_keys_key_str’~to~’#1’. ,

unknown .default:V = \c_novalue_tl
}

27.7 Selective key setting
In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys_define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \l_my_a_tl ,
key-three .tl_set:N = \l_my_b_tl ,
key-four .fp_set:N = \l_my_a_fp ,

}

the use of \keys_set:nn attempts to set all four keys. However, in some contexts it may
only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

254

\keys_define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \l_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \l_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \l_my_a_fp ,

}

assigns key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_known:nn {⟨module⟩} {⟨keyval list⟩}
\keys_set_known:nnN {⟨module⟩} {⟨keyval list⟩} ⟨tl var⟩
\keys_set_known:nnnN {⟨module⟩} {⟨keyval list⟩} {⟨root⟩} ⟨tl var⟩

\keys_set_known:nn
\keys_set_known:(nV|nv|ne|no)
\keys_set_known:nnN
\keys_set_known:(nVN|nvN|neN|noN)
\keys_set_known:nnnN
\keys_set_known:(nVnN|nvnN|nenN|nonN)

New: 2011-08-23

Updated: 2019-01-29

These functions set keys which are known for the ⟨module⟩, and simply ignore other keys.
The \keys_set_known:nn function parses the ⟨keyval list⟩, and sets those keys which
are defined for ⟨module⟩. Any keys which are unknown are not processed further by the
parser.

In addition, \keys_set_known:nnN and \keys_set_known:nnnN store the key–value
pairs for unknown keys in the ⟨tl var⟩ in comma-separated form (i.e. an edited version
of the ⟨keyval list⟩). When a ⟨root⟩ is given (\keys_set_known:nnnN), the key–value
entries are returned relative to this point in the key tree. When it is absent, only the key
name and value are provided. The correct list is returned by nested calls.

255

\keys_set_groups:nnn {⟨module⟩} {⟨groups⟩} {⟨keyval list⟩}
\keys_set_groups:nnnN {⟨module⟩} {⟨groups⟩} {⟨keyval list⟩} ⟨tl var⟩
\keys_set_groups:nnnnN {⟨module⟩} {⟨groups⟩} {⟨keyval list⟩} {⟨root⟩}
⟨tl var⟩

\keys_set_groups:nnn
\keys_set_groups:(nnV|nnv|nno)
\keys_set_groups:nnnN
\keys_set_groups:(nnVN|nnvN|nnoN)
\keys_set_groups:nnnnN
\keys_set_groups:(nnVnN|nnvnN|nnonN)

New: 2013-07-14

Updated: 2024-05-08

These functions activate key selection in an “opt-in” sense: only keys assigned to one or
more of the ⟨groups⟩ specified are set. The ⟨groups⟩ are given as a comma-separated
list. Unknown keys are not assigned to any group and are thus never set.

In addition, \keys_set_groups:nnnN and \keys_set_groups:nnnnN store the key–
value pairs for skipped keys in the ⟨tl var⟩ in comma-separated form (i.e. an edited
version of the ⟨keyval list⟩). When a ⟨root⟩ is given (\keys_set_groups:nnnnN),
the key–value entries are returned relative to this point in the key tree. When it is
absent, only the key name and value are provided. The correct list is returned by nested
calls.

\keys_set_exclude_groups:nnn {⟨module⟩} {⟨groups⟩} {⟨keyval list⟩}
\keys_set_exclude_groups:nnnN {⟨module⟩} {⟨groups⟩} {⟨keyval
list⟩} ⟨tl var⟩
\keys_set_exclude_groups:nnnnN {⟨module⟩} {⟨groups⟩} {⟨keyval
list⟩} {⟨root⟩} ⟨tl var⟩

\keys_set_exclude_groups:nnn
\keys_set_exclude_groups:(nnV|nnv|nno)
\keys_set_exclude_groups:nnnN
\keys_set_exclude_groups:(nnVN|nnvN|nnoN)
\keys_set_exclude_groups:nnnnN
\keys_set_exclude_groups:(nnVnN|nnvnN|nnonN)

New: 2024-01-10

These functions activate key selection in an “opt-out” sense: keys assigned to one or more
of the ⟨groups⟩ specified are not set. The ⟨groups⟩ are given as a comma-separated list.
Unknown keys are not assigned to any group and are thus always set.

In addition, \keys_set_exclude_groups:nnnN and \keys_set_exclude_groups:nnnnN
store the key–value pairs for skipped keys in the ⟨tl var⟩ in comma-separated form
(i.e. an edited version of the ⟨keyval list⟩). When a ⟨root⟩ is given (\keys_set_-
exclude_groups:nnnnN), the key–value entries are returned relative to this point in the
key tree. When it is absent, only the key name and value are provided. The correct list
is returned by nested calls.

27.8 Precompiling keys

\keys_precompile:nnN {⟨module⟩} {⟨keyval list⟩} ⟨tl var⟩

Parses the ⟨keyval list⟩ as for \keys_set:nn, placing the resulting code for those
which set variables or functions into the ⟨tl var⟩. Thus this function “precompiles” the
keyval list into a set of results which can be applied rapidly.

It is important to note that when precompiling keys, no expansion of variables takes
place. This means that any key setting which simply stores variable names, rather than
variable values, will not work correctly. Most notably, any key setting which uses \l_-
keys_key_str, \l_keys_path_str or \l_keys_value_tl will yield unpredictable out-
comes. As such, keys intended to be precompiled should fully expand any values at the
point of setting.

\keys_precompile:nnN

New: 2022-03-09

256

27.9 Utility functions for keys

\keys_if_exist_p:nn {⟨module⟩} {⟨key⟩}
\keys_if_exist:nnTF {⟨module⟩} {⟨key⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨key⟩ exists for ⟨module⟩, i.e. if any code has been defined for ⟨key⟩.

\keys_if_exist_p:nn ⋆
\keys_if_exist_p:ne ⋆
\keys_if_exist:nnTF ⋆
\keys_if_exist:neTF ⋆

Updated: 2022-01-10

\keys_if_choice_exist_p:nnn {⟨module⟩} {⟨key⟩} {⟨choice⟩}
\keys_if_choice_exist:nnnTF {⟨module⟩} {⟨key⟩} {⟨choice⟩} {⟨true code⟩} {⟨false
code⟩}

\keys_if_choice_exist_p:nnn ⋆
\keys_if_choice_exist:nnnTF ⋆

New: 2011-08-21

Updated: 2017-11-14

Tests if the ⟨choice⟩ is defined for the ⟨key⟩ within the ⟨module⟩, i.e. if any code has
been defined for ⟨key⟩/⟨choice⟩. The test is false if the ⟨key⟩ itself is not defined.

\keys_show:nn {⟨module⟩} {⟨key⟩}

Displays in the terminal the information associated to the ⟨key⟩ for a ⟨module⟩, including
the function which is used to actually implement it.

\keys_show:nn

Updated: 2015-08-09

\keys_log:nn {⟨module⟩} {⟨key⟩}

Writes in the log file the information associated to the ⟨key⟩ for a ⟨module⟩. See also
\keys_show:nn which displays the result in the terminal.

\keys_log:nn

New: 2014-08-22

Updated: 2015-08-09

27.10 Low-level interface for parsing key–val lists
To re-cap from earlier, a key–value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key–value pair is separated by a comma from the rest of the list, and each
key–value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The low-
level parsing system converts a ⟨key–value list⟩ into ⟨keys⟩ and associated ⟨values⟩.
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key–value
list. One function is needed to process key–value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the

257

parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces have exactly one
set removed (after space trimming), thus

key = {value here},

and

key = value here,

are treated identically.

\keyval_parse:nnn {⟨code1⟩} {⟨code2⟩} {⟨key–value list⟩}

Parses the ⟨key–value list⟩ into a series of ⟨keys⟩ and associated ⟨values⟩, or keys
alone (if no ⟨value⟩ was given). ⟨code1⟩ receives each ⟨key⟩ (with no ⟨value⟩) as a
trailing brace group, whereas ⟨code2⟩ is appended by two brace groups, the ⟨key⟩ and
⟨value⟩. The order of the ⟨keys⟩ in the ⟨key–value list⟩ is preserved. Thus

\keyval_parse:nnn
{ \use_none:nn { code 1 } }
{ \use_none:nnn { code 2 } }
{ key1 = value1 , key2 = value2, key3 = , key4 }

is converted into an input stream

\use_none:nnn { code 2 } { key1 } { value1 }
\use_none:nnn { code 2 } { key2 } { value2 }
\use_none:nnn { code 2 } { key3 } { }
\use_none:nn { code 1 } { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
⟨key⟩ and ⟨value⟩, then one outer set of braces is removed from the ⟨key⟩ and ⟨value⟩
as part of the processing. If you need exactly the output shown above, you’ll need to
either e-type or x-type expand the function.

TEXhackers note: The result of each list element is returned within \exp_not:n, which
means that the converted input stream does not expand further when appearing in an e-type or
x-type argument expansion.

\keyval_parse:nnn ✩

\keyval_parse:(nnV|nnv) ✩

New: 2020-12-19

Updated: 2021-05-10

258

\keyval_parse:NNn ⟨function1⟩ ⟨function2⟩ {⟨key–value list⟩}

Parses the ⟨key–value list⟩ into a series of ⟨keys⟩ and associated ⟨values⟩, or
keys alone (if no ⟨value⟩ was given). ⟨function1⟩ should take one argument, while
⟨function2⟩ should absorb two arguments. After \keyval_parse:NNn has parsed
the ⟨key–value list⟩, ⟨function1⟩ is used to process keys given with no value and
⟨function2⟩ is used to process keys given with a value. The order of the ⟨keys⟩ in the
⟨key–value list⟩ is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ key1 = value1 , key2 = value2, key3 = , key4 }

is converted into an input stream

\function:nn { key1 } { value1 }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
⟨key⟩ and ⟨value⟩, then one outer set of braces is removed from the ⟨key⟩ and ⟨value⟩
as part of the processing.

This shares the implementation of \keyval_parse:nnn, the difference is only se-
mantically.

TEXhackers note: The result is returned within \exp_not:n, which means that the con-
verted input stream does not expand further when appearing in an e-type or x-type argument
expansion.

\keyval_parse:NNn ✩

\keyval_parse:(NNV|NNv) ✩

Updated: 2021-05-10

259

Chapter 28

The l3intarray module
Fast global integer arrays

For applications requiring heavy use of integers, this module provides arrays which can
be accessed in constant time (contrast l3seq, where access time is linear). These arrays
have several important features

• The size of the array is fixed and must be given at point of initialisation

• The absolute value of each entry has maximum 230 − 1 (i.e. one power lower than
the usual \c_max_int ceiling of 231 − 1)

The use of intarray data is therefore recommended for cases where the need for fast
access is of paramount importance.

28.1 Creating and initialising integer array variables

\intarray_new:Nn ⟨intarray var⟩ {⟨size⟩}

Evaluates the integer expression ⟨size⟩ and allocates an ⟨integer array variable⟩
with that number of (zero) entries. The variable name should start with \g_ because
assignments are always global.

\intarray_new:Nn
\intarray_new:cn

New: 2018-03-29

\intarray_const_from_clist:Nn ⟨intarray var⟩ {⟨int expr clist⟩}\intarray_const_from_clist:Nn
\intarray_const_from_clist:cn

New: 2018-05-04

Creates a new constant ⟨integer array variable⟩ or raises an error if the name is
already taken. The ⟨integer array variable⟩ is set (globally) to contain as its items
the results of evaluating each ⟨integer expression⟩ in the ⟨comma list⟩.

\intarray_gzero:N ⟨intarray var⟩

Sets all entries of the ⟨integer array variable⟩ to zero. Assignments are always global.
\intarray_gzero:N
\intarray_gzero:c

New: 2018-05-04

260

28.2 Adding data to integer arrays

\intarray_gset:Nnn ⟨intarray var⟩ {⟨position⟩} {⟨value⟩}

Stores the result of evaluating the integer expression ⟨value⟩ into the ⟨integer array
variable⟩ at the (integer expression) ⟨position⟩. If the ⟨position⟩ is not between 1
and the \intarray_count:N, or the ⟨value⟩’s absolute value is bigger than 230 − 1, an
error occurs. Assignments are always global.

\intarray_gset:Nnn
\intarray_gset:cnn

New: 2018-03-29

28.3 Counting entries in integer arrays

\intarray_count:N ⟨intarray var⟩

Expands to the number of entries in the ⟨integer array variable⟩. Contrarily to
\seq_count:N this is performed in constant time.

\intarray_count:N ⋆
\intarray_count:c ⋆

New: 2018-03-29

28.4 Using a single entry

\intarray_item:Nn ⟨intarray var⟩ {⟨position⟩}

Expands to the integer entry stored at the (integer expression) ⟨position⟩ in the
⟨integer array variable⟩. If the ⟨position⟩ is not between 1 and the \intarray_-
count:N, an error occurs.

\intarray_item:Nn ⋆
\intarray_item:cn ⋆

New: 2018-03-29

\intarray_rand_item:N ⟨intarray var⟩

Selects a pseudo-random item of the ⟨integer array⟩. If the ⟨integer array⟩ is empty,
produce an error.

\intarray_rand_item:N ⋆
\intarray_rand_item:c ⋆

New: 2018-05-05

28.5 Integer array conditional

\intarray_if_exist_p:N ⟨intarray var⟩
\intarray_if_exist:NTF ⟨intarray var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨intarray var⟩ is currently defined. This does not check that the
⟨intarray var⟩ really is an integer array variable.

\intarray_if_exist_p:N ⋆
\intarray_if_exist_p:c ⋆
\intarray_if_exist:NTF ⋆
\intarray_if_exist:cTF ⋆

New: 2024-03-31

28.6 Viewing integer arrays

\intarray_show:N ⟨intarray var⟩
\intarray_log:N ⟨intarray var⟩

Displays the items in the ⟨integer array variable⟩ in the terminal or writes them in
the log file.

\intarray_show:N
\intarray_show:c
\intarray_log:N
\intarray_log:c

New: 2018-05-04

261

28.7 Implementation notes
It is a wrapper around the \fontdimen primitive, used to store arrays of integers (with
a restricted range: absolute value at most 230 − 1). In contrast to l3seq sequences the
access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the l3intarray module transparently converts these from/to integers. Assignments are
always global.

While LuaTEX’s memory is extensible, other engines can “only” deal with a bit less
than 4 × 106 entries in all \fontdimen arrays combined (with default TEX Live settings).

262

Chapter 29

The l3fp module
Floating points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions (“⟨fp expr⟩”) support the following operations
with their usual precedence.

• Basic arithmetic: addition x + y, subtraction x − y, multiplication x ∗ y, division
x/y, square root

√
x, and parentheses.

• Comparison operators: x < y, x <= y, x >? y, x ! = y etc.

• Boolean logic: sign sign x, negation ! x, conjunction x && y, disjunction x || y,
ternary operator x ? y : z.

• Exponentials: exp x, ln x, xy, logb x.

• Integer factorial: fact x.

• Trigonometry: sin x, cos x, tan x, cot x, sec x, csc x expecting their arguments in
radians, and sind x, cosd x, tand x, cotd x, secd x, cscd x expecting their arguments
in degrees.

• Inverse trigonometric functions: asin x, acos x, atan x, acot x, asec x, acsc x giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

(not yet) Hyperbolic functions and their inverse functions: sinh x, cosh x, tanh x, coth x,
sech x, csch, and asinh x, acosh x, atanh x, acoth x, asech x, acsch x.

• Extrema: max(x1, x2, . . .), min(x1, x2, . . .), abs(x).

• Rounding functions, controlled by two optional values, n (number of places, 0 by
default) and t (behavior on a tie, nan by default):

– trunc(x, n) rounds towards zero,
– floor(x, n) rounds towards −∞,

263

– ceil(x, n) rounds towards +∞,
– round(x, n, t) rounds to the closest value, with ties rounded to an even value

by default, towards zero if t = 0, towards +∞ if t > 0 and towards −∞ if
t < 0.

And (not yet) modulo, and “quantize”.

• Random numbers: rand(), randint(m, n).

• Constants: pi, deg (one degree in radians).

• Dimensions, automatically expressed in points, e.g., pc is 12.

• Automatic conversion (no need for \⟨type⟩_use:N) of integer, dimension, and skip
variables to floating point numbers, expressing dimensions in points and ignoring
the stretch and shrink components of skips.

• Tuples: (x1, . . . , xn) that can be stored in variables, added together, multiplied or
divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. A “floating point” is a floating point number or a tuple thereof. See sec-
tion 29.12.1 for a description of what a floating point is, section 29.12.2 for details about
how an expression is parsed, and section 29.12.3 to know what the various operations do.
Some operations may raise exceptions (error messages), described in section 29.10.

An example of use could be the following.

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin(3.5)/2 + 2e-3} $.

The operation round can be used to limit the result’s precision. Adding +0 avoids the
possibly undesirable output -0, replacing it by +0. However, the l3fp module is mostly
meant as an underlying tool for higher-level commands. For example, one could provide
a function to typeset nicely the result of floating point computations.

\documentclass{article}
\usepackage{siunitx}
\ExplSyntaxOn
\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff
\begin{document}
\calcnum { 2 pi * sin (2.3 ^ 5) }
\end{document}

See the documentation of siunitx for various options of \num.

264

29.1 Creating and initialising floating point variables

\fp_new:N ⟨fp var⟩

Creates a new ⟨fp var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨fp var⟩ is initially +0.

\fp_new:N
\fp_new:c

Updated: 2012-05-08

\fp_const:Nn ⟨fp var⟩ {⟨fp expr⟩}

Creates a new constant ⟨fp var⟩ or raises an error if the name is already taken. The
⟨fp var⟩ is set globally equal to the result of evaluating the ⟨fp expr⟩.

\fp_const:Nn
\fp_const:cn

Updated: 2012-05-08

\fp_zero:N ⟨fp var⟩

Sets the ⟨fp var⟩ to +0.
\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Updated: 2012-05-08

\fp_zero_new:N ⟨fp var⟩

Ensures that the ⟨fp var⟩ exists globally by applying \fp_new:N if necessary, then ap-
plies \fp_(g)zero:N to leave the ⟨fp var⟩ set to +0.

\fp_zero_new:N
\fp_zero_new:c
\fp_gzero_new:N
\fp_gzero_new:c

Updated: 2012-05-08

29.2 Setting floating point variables

\fp_set:Nn ⟨fp var⟩ {⟨fp expr⟩}

Sets ⟨fp var⟩ equal to the result of computing the ⟨fp expr⟩.
\fp_set:Nn
\fp_set:(cn|NV|cV)
\fp_gset:Nn
\fp_gset:(cn|NV|cV)

Updated: 2012-05-08

\fp_set_eq:NN ⟨fp var1⟩ ⟨fp var2⟩

Sets the floating point variable ⟨fp var1⟩ equal to the current value of ⟨fp var2⟩.
\fp_set_eq:NN
\fp_set_eq:(cN|Nc|cc)
\fp_gset_eq:NN
\fp_gset_eq:(cN|Nc|cc)

Updated: 2012-05-08

\fp_add:Nn ⟨fp var⟩ {⟨fp expr⟩}

Adds the result of computing the ⟨fp expr⟩ to the ⟨fp var⟩. This also applies if
⟨fp var⟩ and ⟨floating point expression⟩ evaluate to tuples of the same size.

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn

Updated: 2012-05-08

265

\fp_sub:Nn ⟨fp var⟩ {⟨fp expr⟩}

Subtracts the result of computing the ⟨floating point expression⟩ from the ⟨fp var⟩.
This also applies if ⟨fp var⟩ and ⟨floating point expression⟩ evaluate to tuples of
the same size.

\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

Updated: 2012-05-08

29.3 Using floating points

\fp_eval:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_eval:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1
and (⟨fp1⟩,) or () for fewer items. This function is identical to \fp_to_decimal:n.

\fp_eval:n ⋆

New: 2012-05-08

Updated: 2012-07-08

\fp_sign:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and leaves its sign in the input stream using \fp_eval:n
{sign(⟨result⟩)}: +1 for positive numbers and for +∞, −1 for negative numbers and
for −∞, ±0 for ±0. If the operand is a tuple or is nan, then “invalid operation” occurs
and the result is 0.

\fp_sign:n ⋆

New: 2018-11-03

\fp_to_decimal:N ⟨fp var⟩
\fp_to_decimal:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩)
if n > 1 and (⟨fp1⟩,) or () for fewer items.

\fp_to_decimal:N ⋆
\fp_to_decimal:c ⋆
\fp_to_decimal:n ⋆

New: 2012-05-08

Updated: 2012-07-08

\fp_to_dim:N ⟨fp var⟩
\fp_to_dim:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a dimension (in pt) suitable for
use in dimension expressions. The output is identical to \fp_to_decimal:n, with an
additional trailing pt (both letter tokens). In particular, the result may be outside the
range [−214 +2−17, 214 −2−17] of valid TEX dimensions, leading to overflow errors if used
as a dimension. Tuples, as well as the values ±∞ and nan, trigger an “invalid operation”
exception.

\fp_to_dim:N ⋆
\fp_to_dim:c ⋆
\fp_to_dim:n ⋆

Updated: 2016-03-22

\fp_to_int:N ⟨fp var⟩
\fp_to_int:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩, and rounds the result to the closest integer, rounding exact
ties to an even integer. The result may be outside the range [−231 + 1, 231 − 1] of valid
TEX integers, leading to overflow errors if used in an integer expression. Tuples, as well
as the values ±∞ and nan, trigger an “invalid operation” exception.

\fp_to_int:N ⋆
\fp_to_int:c ⋆
\fp_to_int:n ⋆

Updated: 2012-07-08

266

\fp_to_scientific:N ⟨fp var⟩
\fp_to_scientific:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result in scientific notation:

⟨optional -⟩⟨digit⟩.⟨15 digits⟩e⟨optional sign⟩⟨exponent⟩

The leading ⟨digit⟩ is non-zero except in the case of ±0. The values ±∞ and nan trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and
they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1 and (⟨fp1⟩,) or () for fewer
items.

\fp_to_scientific:N ⋆
\fp_to_scientific:c ⋆
\fp_to_scientific:n ⋆

New: 2012-05-08

Updated: 2016-03-22

\fp_to_tl:N ⟨fp var⟩
\fp_to_tl:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result in (almost) the shortest possible form.
Numbers in the ranges (0, 10−3) and [1016, ∞) are expressed in scientific notation with
trailing zeros trimmed and no decimal separator when there is a single significant digit
(this differs from \fp_to_scientific:n). Numbers in the range [10−3, 1016) are ex-
pressed in a decimal notation without exponent, with trailing zeros trimmed, and no
decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start
with -. The special values ±0, ±∞ and nan are rendered as 0, -0, inf, -inf, and nan
respectively. Normal category codes apply and thus inf or nan, if produced, are made up
of letters. For a tuple, each item is converted using \fp_to_tl:n and they are combined
as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1 and (⟨fp1⟩,) or () for fewer items.

\fp_to_tl:N ⋆
\fp_to_tl:c ⋆
\fp_to_tl:n ⋆

Updated: 2016-03-22

\fp_use:N ⟨fp var⟩

Inserts the value of the ⟨fp var⟩ into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-
significant trailing zeros are trimmed. Integers are expressed without a decimal separator.
The values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩)
if n > 1 and (⟨fp1⟩,) or () for fewer items. This function is identical to \fp_to_-
decimal:N.

\fp_use:N ⋆
\fp_use:c ⋆

Updated: 2012-07-08

29.4 Floating point conditionals

\fp_if_exist_p:N ⟨fp var⟩
\fp_if_exist:NTF ⟨fp var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨fp var⟩ is currently defined. This does not check that the ⟨fp var⟩
really is a floating point variable.

\fp_if_exist_p:N ⋆
\fp_if_exist_p:c ⋆
\fp_if_exist:NTF ⋆
\fp_if_exist:cTF ⋆

Updated: 2012-05-08

267

\fp_compare_p:nNn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩}
\fp_compare:nNnTF {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨true code⟩} {⟨false code⟩}

Compares the ⟨fp expr1⟩ and the ⟨fp expr2⟩, and returns true if the ⟨relation⟩ is
obeyed. Two floating points x and y may obey four mutually exclusive relations: x < y,
x = y, x > y, or x?y (“not ordered”). The last case occurs exactly if one or both operands
is nan or is a tuple, unless they are equal tuples. Note that a nan is distinct from any
value, even another nan, hence x = x is not true for a nan. To test if a value is nan,
compare it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } ? { 0 }
{ } % <value> is nan
{ } % <value> is not nan

Tuples are equal if they have the same number of items and items compare equal (in
particular there must be no nan). At present any other comparison with tuples yields ?
(not ordered). This is experimental.

This function is less flexible than \fp_compare:nTF but slightly faster. It is provided
for consistency with \int_compare:nNnTF and \dim_compare:nNnTF.

\fp_compare_p:nNn ⋆
\fp_compare:nNnTF ⋆

Updated: 2012-05-08

268

\fp_compare_p:n
{

⟨fp expr1⟩ ⟨relation1⟩
...
⟨fp exprN ⟩ ⟨relationN ⟩
⟨fp exprN+1⟩

}
\fp_compare:nTF
{

⟨fp expr1⟩ ⟨relation1⟩
...
⟨fp exprN ⟩ ⟨relationN ⟩
⟨fp exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨fp exprs⟩ as described for \fp_eval:n and compares consecutive result
using the corresponding ⟨relation⟩, namely it compares ⟨fp expr1⟩ and ⟨fp expr2⟩
using the ⟨relation1⟩, then ⟨fp expr2⟩ and ⟨fp expr3⟩ using the ⟨relation2⟩, until
finally comparing ⟨fp exprN ⟩ and ⟨fp exprN+1⟩ using the ⟨relationN ⟩. The test yields
true if all comparisons are true. Each ⟨floating point expression⟩ is evaluated
only once. Contrarily to \int_compare:nTF, all ⟨fp exprs⟩ are computed, even if one
comparison is false. Two floating points x and y may obey four mutually exclusive
relations: x < y, x = y, x > y, or x?y (“not ordered”). The last case occurs exactly if
one or both operands is nan or is a tuple, unless they are equal tuples. Each ⟨relation⟩
can be any (non-empty) combination of <, =, >, and ?, plus an optional leading ! (which
negates the ⟨relation⟩), with the restriction that the ⟨relation⟩ may not start with ?,
as this symbol has a different meaning (in combination with :) within floating point
expressions. The comparison x ⟨relation⟩ y is then true if the ⟨relation⟩ does not
start with ! and the actual relation (<, =, >, or ?) between x and y appears within the
⟨relation⟩, or on the contrary if the ⟨relation⟩ starts with ! and the relation between
x and y does not appear within the ⟨relation⟩. Common choices of ⟨relation⟩ include
>= (greater or equal), != (not equal), !? or <=> (comparable).

This function is more flexible than \fp_compare:nNnTF and only slightly slower.

\fp_compare_p:n ⋆
\fp_compare:nTF ⋆

Updated: 2013-12-14

\fp_if_nan_p:n {⟨fp expr⟩}
\fp_if_nan:nTF {⟨fp expr⟩} {⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨fp expr⟩ and tests whether the result is exactly nan. The test returns
false for any other result, even a tuple containing nan.

\fp_if_nan_p:n ⋆
\fp_if_nan:nTF ⋆

New: 2019-08-25

29.5 Floating point expression loops

\fp_do_until:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nNnTF. If the test is false then the ⟨code⟩ is inserted into the input stream
again and a loop occurs until the ⟨relation⟩ is true.

\fp_do_until:nNnn ✩

New: 2012-08-16

269

\fp_do_while:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nNnTF. If the test is true then the ⟨code⟩ is inserted into the input stream
again and a loop occurs until the ⟨relation⟩ is false.

\fp_do_while:nNnn ✩

New: 2012-08-16

\fp_until_do:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nNnTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is false. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is true.

\fp_until_do:nNnn ✩

New: 2012-08-16

\fp_while_do:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nNnTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is true. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is false.

\fp_while_do:nNnn ✩

New: 2012-08-16

\fp_do_until:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nTF. If the test is false then the ⟨code⟩ is inserted into the input stream again
and a loop occurs until the ⟨relation⟩ is true.

\fp_do_until:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_do_while:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nTF. If the test is true then the ⟨code⟩ is inserted into the input stream again
and a loop occurs until the ⟨relation⟩ is false.

\fp_do_while:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_until_do:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is false. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is true.

\fp_until_do:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_while_do:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is true. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is false.

\fp_while_do:nn ✩

New: 2012-08-16

Updated: 2013-12-14

270

\fp_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, each of
which should be a floating point expression evaluating to a floating point number, not a
tuple. The ⟨function⟩ is then placed in front of each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩). The ⟨step⟩ must
be non-zero. If the ⟨step⟩ is positive, the loop stops when the ⟨value⟩ becomes larger
than the ⟨final value⟩. If the ⟨step⟩ is negative, the loop stops when the ⟨value⟩
becomes smaller than the ⟨final value⟩. The ⟨function⟩ should absorb one numerical
argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\fp_step_function:nnnN { 1.0 } { 0.1 } { 1.5 } \my_func:n

would print

[I saw 1.0] [I saw 1.1] [I saw 1.2] [I saw 1.3] [I saw 1.4] [I saw 1.5]

TEXhackers note: Due to rounding, it may happen that adding the ⟨step⟩ to the ⟨value⟩
does not change the ⟨value⟩; such cases give an error, as they would otherwise lead to an infinite
loop.

\fp_step_function:nnnN ✩

\fp_step_function:nnnc ✩

New: 2016-11-21

Updated: 2016-12-06

\fp_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be floating point expressions evaluating to a floating point number, not a
tuple. Then for each ⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn
(using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted into the input stream with
#1 replaced by the current ⟨value⟩. Thus the ⟨code⟩ should define a function of one
argument (#1).

\fp_step_inline:nnnn

New: 2016-11-21

Updated: 2016-12-06

\fp_step_variable:nnnNn
{⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be floating point expressions evaluating to a floating point number, not a
tuple. Then for each ⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn
(using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted into the input stream, with
the ⟨tl var⟩ defined as the current ⟨value⟩. Thus the ⟨code⟩ should make use of the
⟨tl var⟩.

\fp_step_variable:nnnNn

New: 2017-04-12

29.6 Symbolic expressions
Floating point expressions support variables: these can only be set locally, so act like
standard \l_... variables.

\fp_new_variable:n { A }
\fp_set:Nn \l_tmpb_fp { 1 * sin(A) + 3**2 }
\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp
\fp_set_variable:nn { A } { pi/2 }

271

\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp
\fp_set_variable:nn { A } { 0 }
\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp

defines A to be a variable, then defines \l_tmpb_fp to stand for 1*sin(A)+9 (note that
3**2 is evaluated, but the 1* product is not simplified away). Until \l_tmpb_fp is
changed, \fp_show:N \l_tmpb_fp will show ((1*sin(A))+9) regardless of the value
of A. The next step defines A to be equal to pi/2: then \fp_show:n { \l_tmpb_fp }
will evaluate \l_tmpb_fp and show 10. We then redefine A to be 0: since \l_tmpb_-
fp still stands for 1*sin(A)+9, the value shown is then 9. Variables can be set with
\fp_set_variable:nn to arbitrary floating point expressions including other variables.

\fp_new_variable:n {⟨identifier⟩}

Declares the ⟨identifier⟩ as a variable, which allows it to be used in floating point
expressions. For instance,

\fp_new_variable:n { A }
\fp_show:n { A**2 - A + 1 }

shows (((A^2)-A)+1). If the declaration was missing, the parser would complain about
an “Unknown fp word ’A’”. The ⟨identifier⟩ must consist entirely of Latin letters
among [a-zA-Z].

\fp_new_variable:n

New: 2023-10-19

\fp_set_variable:nn {⟨identifier⟩} {⟨fp expr⟩}

Defines the ⟨identifier⟩ to stand in any further expression for the result of evaluating
the ⟨floating point expression⟩ as much as possible. The result may contain other
variables, which are then replaced by their values if they have any. For instance,

\fp_new_variable:n { A }
\fp_new_variable:n { B }
\fp_new_variable:n { C }
\fp_set_variable:nn { A } { 3 }
\fp_set_variable:nn { C } { A ** 2 + B * 1 }
\fp_show:n { C + 4 }
\fp_set_variable:nn { A } { 4 }
\fp_show:n { C + 4 }

shows ((9+(B*1))+4) twice: changing the value of A to 4 does not alter C because A was
replaced by its value 3 when evaluating A**2+B*1.

\fp_set_variable:nn

New: 2023-10-19

272

\fp_clear_variable:n {⟨identifier⟩}

Removes any value given by \fp_set_variable:nn to the variable with this ⟨identifier⟩.
For instance,

\fp_new_variable:n { A }
\fp_set_variable:nn { A } { 3 }
\fp_show:n { A ^ 2 }
\fp_clear_variable:n { A }
\fp_show:n { A ^ 2 }

shows 9, then (A^2).

\fp_clear_variable:n

New: 2023-10-19

29.7 User-defined functions
It is possible to define new user functions which can be used inside the argument to
\fp_eval:n, etc. These functions may take one or more named arguments, and should
be implemented using expansion methods only.

\fp_new_function:n {⟨identifier⟩}

Declares the ⟨identifier⟩ as a function, which allows it to be used in floating point
expressions. For instance,

\fp_new_function:n { foo }
\fp_show:n { foo (1 + 2 , foo(3), A) ** 2 } }

shows (foo(3, foo(3), A))^(2). If the declaration was missing, the parser would
complain about an “Unknown fp word ’foo’”. The ⟨identifier⟩ must consist entirely
of Latin letters [a-zA-Z].

\fp_new_function:n

New: 2023-10-19

\fp_set_function:nnn {⟨identifier⟩} {⟨vars⟩} {⟨fp expr⟩}

Defines the ⟨identifier⟩ to stand in any further expression for the result of evaluating
the ⟨floating point expression⟩, with the ⟨identifier⟩ accepting the ⟨vars⟩ (a
non-empty comma-separated list). The result may contain other functions, which are
then replaced by their results if they have any. For instance,

\fp_new_function:n { npow }
\fp_set_function:nnn { npow } { a,b } { a**b }
\fp_show:n { npow(16,0.25) }

shows 2. The names of the ⟨vars⟩ must consist entirely of Latin letters [a-zA-Z], but
are otherwise not restricted: in particular, they are independent of any variables declared
by \fp_new_variable:n.

\fp_set_function:nnn

New: 2023-10-19

\fp_clear_function:n {⟨identifier⟩}

Removes any definition given by \fp_set_function:nnn to the function with this
⟨identifier⟩.

\fp_clear_function:n

New: 2023-10-19

273

29.8 Some useful constants, and scratch variables

Zero, with either sign.\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

One as an fp: useful for comparisons in some places.\c_one_fp

New: 2012-05-08

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

Not a number. This can be input directly in a floating point expression as nan.\c_nan_fp

New: 2012-05-08

The value of the base of the natural logarithm, e = exp(1).\c_e_fp

Updated: 2012-05-08

The value of π. This can be input directly in a floating point expression as pi.\c_pi_fp

Updated: 2013-11-17

The value of 1◦ in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

\c_one_degree_fp

New: 2012-05-08

Updated: 2013-11-17

29.9 Scratch variables

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_fp
\l_tmpb_fp

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any LATEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_fp
\g_tmpb_fp

274

29.10 Floating point exceptions
The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0, or 10 ** 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

• Overflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in ±∞.

• Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in ±0.

• Invalid operation occurs for operations with no defined outcome, for instance 0/0
or sin(∞), and results in a nan. It also occurs for conversion functions whose target
type does not have the appropriate infinite or nan value (e.g., \fp_to_dim:n).

• Division by zero occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., ln(0) or cot(0). This results in ±∞.

(not yet) Inexact occurs whenever the result of a computation is not exact, in other words,
almost always. At the moment, this exception is entirely ignored in LATEX3.

To each exception we associate a “flag”: \l_fp_overflow_flag, \l_fp_underflow_-
flag, \l_fp_invalid_operation_flag and \l_fp_division_by_zero_flag. The state
of these flags can be tested and modified with commands from l3flag

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_-
trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.

\fp_trap:nn {⟨exception⟩} {⟨trap type⟩}

All occurrences of the ⟨exception⟩ (overflow, underflow, invalid_operation or
division_by_zero) within the current group are treated as ⟨trap type⟩, which can
be

• none: the ⟨exception⟩ will be entirely ignored, and leave no trace;

• flag: the ⟨exception⟩ will turn the corresponding flag on when it occurs;

• error: additionally, the ⟨exception⟩ will halt the TEX run and display some
information about the current operation in the terminal.

\fp_trap:nn

New: 2012-07-19

Updated: 2017-02-13

\l_fp_overflow_flag
\l_fp_underflow_flag
\l_fp_invalid_operation_flag
\l_fp_division_by_zero_flag

Flags denoting the occurrence of various floating-point exceptions.

275

29.11 Viewing floating points

\fp_show:N ⟨fp var⟩
\fp_show:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and displays the result in the terminal.

\fp_show:N
\fp_show:c
\fp_show:n

New: 2012-05-08

Updated: 2021-04-29

\fp_log:N ⟨fp var⟩
\fp_log:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and writes the result in the log file.

\fp_log:N
\fp_log:c
\fp_log:n

New: 2014-08-22

Updated: 2021-04-29

29.12 Floating point expressions
29.12.1 Input of floating point numbers
We support four types of floating point numbers:

• ±m · 10n, a floating point number, with integer 1 ≤ m ≤ 1016, and −10000 ≤ n ≤
10000;

• ±0, zero, with a given sign;

• ±∞, infinity, with a given sign;

• nan, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.
On input, a normal floating point number consists of:

• ⟨sign⟩: a possibly empty string of + and - characters;

• ⟨significand⟩: a non-empty string of digits together with zero or one dot;

• ⟨exponent⟩ optionally: the character e or E, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

The sign of the resulting number is + if ⟨sign⟩ contains an even number of -, and -
otherwise, hence, an empty ⟨sign⟩ denotes a non-negative input. The stored significand
is obtained from ⟨significand⟩ by omitting the decimal separator and leading zeros,
and rounding to 16 significant digits, filling with trailing zeros if necessary. In particular,
the value stored is exact if the input ⟨significand⟩ has at most 16 digits. The stored
⟨exponent⟩ is obtained by combining the input ⟨exponent⟩ (0 if absent) with a shift
depending on the position of the significand and the number of leading zeros.

A special case arises if the resulting ⟨exponent⟩ is either too large or too small
for the floating point number to be represented. This results either in an overflow (the
number is then replaced by ±∞), or an underflow (resulting in ±0).

276

The result is thus ±0 if and only if ⟨significand⟩ contains no non-zero digit (i.e.,
consists only in characters 0, and an optional period), or if there is an underflow. Note
that a single dot is currently a valid floating point number, equal to +0, but that is not
guaranteed to remain true.

The ⟨significand⟩ must be non-empty, so e1 and e-1 are not valid floating point
numbers. Note that the latter could be mistaken with the difference of “e” and 1. To
avoid confusions, the base of natural logarithms cannot be input as e and should be input
as exp(1) or \c_e_fp (which is faster).

Special numbers are input as follows:

• inf represents +∞, and can be preceded by any ⟨sign⟩, yielding ±∞ as appropri-
ate.

• nan represents a (quiet) non-number. It can be preceded by any sign, but that sign
is ignored.

• Any unrecognizable string triggers an error, and produces a nan.

• Note that commands such as \infty, \pi, or \sin do not work in floating point
expressions. They may silently be interpreted as completely unexpected numbers,
because integer constants (allowed in expressions) are commonly stored as mathe-
matical characters.

29.12.2 Precedence of operators
We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

• Function calls (sin, ln, etc).

• Binary ** and ^ (right associative).

• Unary +, -, !.

• Implicit multiplication by juxtaposition (2pi) when neither factor is in parentheses.

• Binary * and /, implicit multiplication by juxtaposition with parentheses (for in-
stance 3(4+5)).

• Binary + and -.

• Comparisons >=, !=, <?, etc.

• Logical and, denoted by &&.

• Logical or, denoted by ||.

• Ternary operator ?: (right associative).

• Comma (to build tuples).

277

The precedence of operations can be overridden using parentheses. In particular, the
precedence of juxtaposition implies that

1/2pi = 1/(2π),
1/2pi(pi + pi) = (2π)−1(π + π) ≃ 1,

sin2pi = sin(2)π ̸= 0,

2ˆ2max(3, 5) = 22 max(3, 5) = 20,

1in/1cm = (1in)/(1cm) = 2.54.

Functions are called on the value of their argument, contrarily to TEX macros.

29.12.3 Operations
We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is ±0, and true otherwise, including when it is nan or a tuple such as (0, 0).
Tuples are only supported to some extent by operations that work with truth values
(?:, ||, &&, !), by comparisons (!<=>?), and by +, -, *, /. Unless otherwise specified,
providing a tuple as an argument of any other operation yields the “invalid operation”
exception and a nan result.

\fp_eval:n { ⟨operand1⟩ ? ⟨operand2⟩ : ⟨operand3⟩ }

The ternary operator ?: results in ⟨operand2⟩ if ⟨operand1⟩ is true (not ±0), and
⟨operand3⟩ if ⟨operand1⟩ is false (±0). All three ⟨operands⟩ are evaluated in all cases;
they may be tuples. The operator is right associative, hence

\fp_eval:n
{
1 + 3 > 4 ? 1 :
2 + 4 > 5 ? 2 :
3 + 5 > 6 ? 3 : 4

}

first tests whether 1 + 3 > 4; since this isn’t true, the branch following : is taken, and
2+4 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

?:

\fp_eval:n { ⟨operand1⟩ || ⟨operand2⟩ }

If ⟨operand1⟩ is true (not ±0), use that value, otherwise the value of ⟨operand2⟩. Both
⟨operands⟩ are evaluated in all cases; they may be tuples. In ⟨operand1⟩ || ⟨operand2⟩
|| . . . || ⟨operandsn⟩, the first true (nonzero) ⟨operand⟩ is used and if all are zero the
last one (±0) is used.

||

\fp_eval:n { ⟨operand1⟩ && ⟨operand2⟩ }

If ⟨operand1⟩ is false (equal to ±0), use that value, otherwise the value of ⟨operand2⟩.
Both ⟨operands⟩ are evaluated in all cases; they may be tuples. In ⟨operand1⟩ &&
⟨operand2⟩ && . . . && ⟨operandsn⟩, the first false (±0) ⟨operand⟩ is used and if none is
zero the last one is used.

&&

278

\fp_eval:n
{

⟨operand1⟩ ⟨relation1⟩
...
⟨operandN ⟩ ⟨relationN ⟩
⟨operandN+1⟩

}

Each ⟨relation⟩ consists of a non-empty string of <, =, >, and ?, optionally preceded
by !, and may not start with ?. This evaluates to +1 if all comparisons ⟨operandi⟩
⟨relationi⟩ ⟨operandi+1⟩ are true, and +0 otherwise. All ⟨operands⟩ are evaluated
(once) in all cases. See \fp_compare:nTF for details.

<
=
>
?

Updated: 2013-12-14

\fp_eval:n { ⟨operand1⟩ + ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ - ⟨operand2⟩ }

Computes the sum or the difference of its two ⟨operands⟩. The “invalid operation”
exception occurs for ∞−∞. “Underflow” and “overflow” occur when appropriate. These
operations supports the itemwise addition or subtraction of two tuples, but if they have a
different number of items the “invalid operation” exception occurs and the result is nan.

+
-

\fp_eval:n { ⟨operand1⟩ * ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ / ⟨operand2⟩ }

Computes the product or the ratio of its two ⟨operands⟩. The “invalid operation” ex-
ception occurs for ∞/∞, 0/0, or 0 ∗ ∞. “Division by zero” occurs when dividing a
finite non-zero number by ±0. “Underflow” and “overflow” occur when appropriate.
When ⟨operand1⟩ is a tuple and ⟨operand2⟩ is a floating point number, each item of
⟨operand1⟩ is multiplied or divided by ⟨operand2⟩. Multiplication also supports the case
where ⟨operand1⟩ is a floating point number and ⟨operand2⟩ a tuple. Other combinations
yield an “invalid operation” exception and a nan result.

*
/

\fp_eval:n { + ⟨operand⟩ }
\fp_eval:n { - ⟨operand⟩ }
\fp_eval:n { ! ⟨operand⟩ }

The unary + does nothing, the unary - changes the sign of the ⟨operand⟩ (for a tuple,
of all its components), and ! ⟨operand⟩ evaluates to 1 if ⟨operand⟩ is false (is ±0) and
0 otherwise (this is the not boolean function). Those operations never raise exceptions.

+
-
!

\fp_eval:n { ⟨operand1⟩ ** ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ ^ ⟨operand2⟩ }

Raises ⟨operand1⟩ to the power ⟨operand2⟩. This operation is right associative, hence 2
** 2 ** 3 equals 223 = 256. If ⟨operand1⟩ is negative or −0 then: the result’s sign is +
if the ⟨operand2⟩ is infinite and (−1)p if the ⟨operand2⟩ is p/5q with p, q integers; the
result is +0 if abs(⟨operand1⟩)^⟨operand2⟩ evaluates to zero; in other cases the “invalid
operation” exception occurs because the sign cannot be determined. “Division by zero”
occurs when raising ±0 to a finite strictly negative power. “Underflow” and “overflow”
occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

**
^

\fp_eval:n { abs(⟨fp expr⟩) }

Computes the absolute value of the ⟨fp expr⟩. If the operand is a tuple, “invalid opera-
tion” occurs. This operation does not raise exceptions in other cases. See also \fp_abs:n.

abs

279

\fp_eval:n { exp(⟨fp expr⟩) }

Computes the exponential of the ⟨fp expr⟩. “Underflow” and “overflow” occur when
appropriate. If the operand is a tuple, “invalid operation” occurs.

exp

\fp_eval:n { fact(⟨fp expr⟩) }

Computes the factorial of the ⟨fp expr⟩. If the ⟨fp expr⟩ is an integer between −0 and
3248 included, the result is finite and correctly rounded. Larger positive integers give
+∞ with “overflow”, while fact(+∞) = +∞ and fact(nan) = nan with no exception.
All other inputs give nan with the “invalid operation” exception.

fact

\fp_eval:n { ln(⟨fp expr⟩) }

Computes the natural logarithm of the ⟨fp expr⟩. Negative numbers have no (real)
logarithm, hence the “invalid operation” is raised in that case, including for ln(−0).
“Division by zero” occurs when evaluating ln(+0) = −∞. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

ln

\fp_eval:n { logb(⟨fp expr⟩) }

Determines the exponent of the ⟨fp expr⟩, namely the floor of the base-10 logarithm of
its absolute value. “Division by zero” occurs when evaluating logb(±0) = −∞. Other
special values are logb(±∞) = +∞ and logb(nan) = nan. If the operand is a tuple or is
nan, then “invalid operation” occurs and the result is nan.

logb ⋆

New: 2018-11-03

\fp_eval:n { max(⟨fp expr1⟩ , ⟨fp expr2⟩ , ...) }
\fp_eval:n { min(⟨fp expr1⟩ , ⟨fp expr2⟩ , ...) }

Evaluates each ⟨fp expr⟩ and computes the largest (smallest) of those. If any of the ⟨fp
expr⟩ is a nan or tuple, the result is nan. If any operand is a tuple, “invalid operation”
occurs; these operations do not raise exceptions in other cases.

max
min

280

\fp_eval:n { round (⟨fp expr⟩) }
\fp_eval:n { round (⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { round (⟨fp expr1⟩ , ⟨fp expr2⟩ , ⟨fp expr3⟩) }

Only round accepts a third argument. Evaluates ⟨fp expr1⟩ = x and ⟨fp expr2⟩ = n
and ⟨fp expr3⟩ = t then rounds x to n places. If n is an integer, this rounds x to a
multiple of 10−n; if n = +∞, this always yields x; if n = −∞, this yields one of ±0, ±∞,
or nan; if n = nan, this yields nan; if n is neither ±∞ nor an integer, then an “invalid
operation” exception is raised. When ⟨fp expr2⟩ is omitted, n = 0, i.e., ⟨fp expr1⟩ is
rounded to an integer. The rounding direction depends on the function.

• round yields the multiple of 10−n closest to x, with ties (x half-way between two
such multiples) rounded as follows. If t is nan (or not given) the even multiple is
chosen (“ties to even”), if t = ±0 the multiple closest to 0 is chosen (“ties to zero”),
if t is positive/negative the multiple closest to ∞/−∞ is chosen (“ties towards
positive/negative infinity”).

• floor yields the largest multiple of 10−n smaller or equal to x (“round towards
negative infinity”);

• ceil yields the smallest multiple of 10−n greater or equal to x (“round towards
positive infinity”);

• trunc yields a multiple of 10−n with the same sign as x and with the largest
absolute value less than that of x (“round towards zero”).

“Overflow” occurs if x is finite and the result is infinite (this can only happen if
⟨fp expr2⟩ < −9984). If any operand is a tuple, “invalid operation” occurs.

round
trunc
ceil
floor

New: 2013-12-14

Updated: 2015-08-08

\fp_eval:n { sign(⟨fp expr⟩) }

Evaluates the ⟨fp expr⟩ and determines its sign: +1 for positive numbers and for +∞,
−1 for negative numbers and for −∞, ±0 for ±0, and nan for nan. If the operand is a
tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases.

sign

\fp_eval:n { sin(⟨fp expr⟩) }
\fp_eval:n { cos(⟨fp expr⟩) }
\fp_eval:n { tan(⟨fp expr⟩) }
\fp_eval:n { cot(⟨fp expr⟩) }
\fp_eval:n { csc(⟨fp expr⟩) }
\fp_eval:n { sec(⟨fp expr⟩) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the ⟨fp expr⟩ given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

281

\fp_eval:n { sind(⟨fp expr⟩) }
\fp_eval:n { cosd(⟨fp expr⟩) }
\fp_eval:n { tand(⟨fp expr⟩) }
\fp_eval:n { cotd(⟨fp expr⟩) }
\fp_eval:n { cscd(⟨fp expr⟩) }
\fp_eval:n { secd(⟨fp expr⟩) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the ⟨fp expr⟩
given in degrees. For arguments given in radians, see sin, cos, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

\fp_eval:n { asin(⟨fp expr⟩) }
\fp_eval:n { acos(⟨fp expr⟩) }
\fp_eval:n { acsc(⟨fp expr⟩) }
\fp_eval:n { asec(⟨fp expr⟩) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the ⟨fp expr⟩ and returns
the result in radians, in the range [−π/2, π/2] for asin and acsc and [0, π] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [−1, 1], or the argument of acsc or asec inside the range (−1, 1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

asin
acos
acsc
asec

New: 2013-11-02

\fp_eval:n { asind(⟨fp expr⟩) }
\fp_eval:n { acosd(⟨fp expr⟩) }
\fp_eval:n { acscd(⟨fp expr⟩) }
\fp_eval:n { asecd(⟨fp expr⟩) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the ⟨fp expr⟩ and returns
the result in degrees, in the range [−90, 90] for asind and acscd and [0, 180] for acosd
and asecd. For a result in radians, use asin, etc. If the argument of asind or acosd lies
outside the range [−1, 1], or the argument of acscd or asecd inside the range (−1, 1), an
“invalid operation” exception is raised. “Underflow” and “overflow” occur when appro-
priate. If the operand is a tuple, “invalid operation” occurs.

asind
acosd
acscd
asecd

New: 2013-11-02

282

\fp_eval:n { atan(⟨fp expr⟩) }
\fp_eval:n { atan(⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { acot(⟨fp expr⟩) }
\fp_eval:n { acot(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Those functions yield an angle in radians: atand and acotd are their analogs in de-
grees. The one-argument versions compute the arctangent or arccotangent of the ⟨fp
expr⟩: arctangent takes values in the range [−π/2, π/2], and arccotangent in the range
[0, π]. The two-argument arctangent computes the angle in polar coordinates of the
point with Cartesian coordinates (⟨fp expr2⟩, ⟨fp expr1⟩): this is the arctangent of
⟨fp expr1⟩/⟨fp expr2⟩, possibly shifted by π depending on the signs of ⟨fp expr1⟩ and
⟨fp expr2⟩. The two-argument arccotangent computes the angle in polar coordinates of
the point (⟨fp expr1⟩, ⟨fp expr2⟩), equal to the arccotangent of ⟨fp expr1⟩/⟨fp expr2⟩,
possibly shifted by π. Both two-argument functions take values in the wider range [−π, π].
The ratio ⟨fp expr1⟩/⟨fp expr2⟩ need not be defined for the two-argument arctangent:
when both expressions yield ±0, or when both yield ±∞, the resulting angle is one
of {±π/4, ±3π/4} depending on signs. The “underflow” exception can occur. If any
operand is a tuple, “invalid operation” occurs.

atan
acot

New: 2013-11-02

\fp_eval:n { atand(⟨fp expr⟩) }
\fp_eval:n { atand(⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { acotd(⟨fp expr⟩) }
\fp_eval:n { acotd(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Those functions yield an angle in degrees: atan and acot are their analogs in radi-
ans. The one-argument versions compute the arctangent or arccotangent of the ⟨fp
expr⟩: arctangent takes values in the range [−90, 90], and arccotangent in the range
[0, 180]. The two-argument arctangent computes the angle in polar coordinates of the
point with Cartesian coordinates (⟨fp expr2⟩, ⟨fp expr1⟩): this is the arctangent of
⟨fp expr1⟩/⟨fp expr2⟩, possibly shifted by 180 depending on the signs of ⟨fp expr1⟩ and
⟨fp expr2⟩. The two-argument arccotangent computes the angle in polar coordinates of
the point (⟨fp expr1⟩, ⟨fp expr2⟩), equal to the arccotangent of ⟨fp expr1⟩/⟨fp expr2⟩,
possibly shifted by 180. Both two-argument functions take values in the wider range
[−180, 180]. The ratio ⟨fp expr1⟩/⟨fp expr2⟩ need not be defined for the two-argument
arctangent: when both expressions yield ±0, or when both yield ±∞, the resulting angle
is one of {±45, ±135} depending on signs. The “underflow” exception can occur. If any
operand is a tuple, “invalid operation” occurs.

atand
acotd

New: 2013-11-02

\fp_eval:n { sqrt(⟨fp expr⟩) }

Computes the square root of the ⟨fp expr⟩. The “invalid operation” is raised when the
⟨fp expr⟩ is negative or is a tuple; no other exception can occur. Special values yield√

−0 = −0,
√

+0 = +0,
√

+∞ = +∞ and
√
nan = nan.

sqrt

New: 2013-12-14

283

\fp_eval:n { rand() }

Produces a pseudo-random floating-point number (multiple of 10−16) between 0 included
and 1 excluded. This is not available in older versions of X ETEX. The random seed can
be queried using \sys_rand_seed: and set using \sys_gset_rand_seed:n.

TEXhackers note: This is based on pseudo-random numbers provided by the engine’s
primitive \pdfuniformdeviate in pdfTEX, pTEX, upTEX and \uniformdeviate in LuaTEX and
X ETEX. The underlying code is based on Metapost, which follows an additive scheme recom-
mended in Section 3.6 of “The Art of Computer Programming, Volume 2”.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying
stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be
relied upon for serious numerical computations nor cryptography.

rand

New: 2016-12-05

\fp_eval:n { randint(⟨fp expr⟩) }
\fp_eval:n { randint(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Produces a pseudo-random integer between 1 and ⟨fp expr⟩ or between ⟨fp expr1⟩ and
⟨fp expr2⟩ inclusive. The bounds must be integers in the range (−1016, 1016) and the
first must be smaller or equal to the second. See rand for important comments on how
these pseudo-random numbers are generated.

randint

New: 2016-12-05

The special values +∞, −∞, and nan are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_fp).

inf
nan

The value of π (see \c_pi_fp).pi

The value of 1◦ in radians (see \c_one_degree_fp).deg

284

Those units of measurement are equal to their values in pt, namely

1 in = 72.27 pt
1 pt = 1 pt
1 pc = 12 pt

1 cm = 1
2.54 in = 28.45275590551181 pt

1 mm = 1
25.4 in = 2.845275590551181 pt

1 dd = 0.376065 mm = 1.07000856496063 pt
1 cc = 12 dd = 12.84010277952756 pt
1 nd = 0.375 mm = 1.066978346456693 pt
1 nc = 12 nd = 12.80374015748031 pt

1 bp = 1
72 in = 1.00375 pt

1 sp = 2−16 pt = 1.52587890625 × 10−5 pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

em
ex
in
pt
pc
cm
mm
dd
cc
nd
nc
bp
sp

Other names for 1 and +0.true
false

\fp_abs:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ as described for \fp_eval:n and leaves the absolute value of
the result in the input stream. If the argument is ±∞, nan or a tuple, “invalid operation”
occurs. Within floating point expressions, abs() can be used; it accepts ±∞ and nan as
arguments.

\fp_abs:n ⋆

New: 2012-05-14

Updated: 2012-07-08

\fp_max:nn {⟨fp expr1⟩} {⟨fp expr2⟩}

Evaluates the ⟨fp exprs⟩ as described for \fp_eval:n and leaves the resulting larger
(max) or smaller (min) value in the input stream. If the argument is a tuple, “invalid
operation” occurs, but no other case raises exceptions. Within floating point expressions,
max() and min() can be used.

\fp_max:nn ⋆
\fp_min:nn ⋆

New: 2012-09-26

29.13 Disclaimer and roadmap
This module may break if the escape character is among 0123456789_+, or if it receives
a TEX primitive conditional affected by \exp_not:N.

The following need to be done. I’ll try to time-order the items.

• Function to count items in a tuple (and to determine if something is a tuple).

• Decide what exponent range to consider.

285

• Support signalling nan.

• Modulo and remainder, and rounding function quantize (and its friends analogous
to trunc, ceil, floor).

• \fp_format:nn {⟨fp expr⟩} {⟨format⟩}, but what should ⟨format⟩ be? More gen-
eral pretty printing?

• Add and, or, xor? Perhaps under the names all, any, and xor?

• Add log(x, b) for logarithm of x in base b.

• hypot (Euclidean length). Cartesian-to-polar transform.

• Hyperbolic functions cosh, sinh, tanh.

• Inverse hyperbolics.

• Base conversion, input such as 0xAB.CDEF.

• Factorial (not with !), gamma function.

• Improve coefficients of the sin and tan series.

• Treat upper and lower case letters identically in identifiers, and ignore underscores.

• Add an array(1,2,3) and i=complex(0,1).

• Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)?

• Provide an isnan function analogue of \fp_if_nan:nTF?

• Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs, and tests to add.

• Check that functions are monotonic when they should.

• Add exceptions to ?:, !<=>?, &&, ||, and !.

• Logarithms of numbers very close to 1 are inaccurate.

• When rounding towards −∞, \dim_to_fp:n {0pt} should return −0, not +0.

• The result of (±0) + (±0), of x + (−x), and of (−x) + x should depend on the
rounding mode.

• 0e9999999999 gives a TEX “number too large” error.

• Subnormals are not implemented.

Possible optimizations/improvements.

• Document that l3trial/l3fp-types introduces tools for adding new types.

• In subsection 29.12.1, write a grammar.

286

• It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in l3fp-parse.

• Some functions should get an _o ending to indicate that they expand after their
result.

• More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

• The code for the ternary set of functions is ugly.

• There are many ~ missing in the doc to avoid bad line-breaks.

• The algorithm for computing the logarithm of the significand could be made to use
a 5 terms Taylor series instead of 10 terms by taking c = 2000/(⌊200x⌋+1) ∈ [10, 95]
instead of c ∈ [1, 10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

• Improve notations in the explanations of the division algorithm (l3fp-basics).

• Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to l3fp-aux under a better name.

• Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

• Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. . .

• Also take into account the “inexact” exception?

• Support multi-character prefix operators (e.g., @/ or whatever)?

287

Chapter 30

The l3fparray module
Fast global floating point
arrays

For applications requiring heavy use of floating points, this module provides arrays which
can be accessed in constant time (contrast l3seq, where access time is linear). The
interface is very close to that of l3intarray. The size of the array is fixed and must be
given at point of initialisation

30.1 Creating and initialising floating point array
variables

\fparray_new:Nn ⟨fparray var⟩ {⟨size⟩}

Evaluates the integer expression ⟨size⟩ and allocates an ⟨floating point array
variable⟩ with that number of (zero) entries. The variable name should start with
\g_ because assignments are always global.

\fparray_new:Nn
\fparray_new:cn

New: 2018-05-05

\fparray_gzero:N ⟨fparray var⟩

Sets all entries of the ⟨floating point array variable⟩ to +0. Assignments are al-
ways global.

\fparray_gzero:N
\fparray_gzero:c

New: 2018-05-05

30.2 Adding data to floating point arrays

\fparray_gset:Nnn ⟨fparray var⟩ {⟨position⟩} {⟨value⟩}

Stores the result of evaluating the floating point expression ⟨value⟩ into the ⟨floating
point array variable⟩ at the (integer expression) ⟨position⟩. If the ⟨position⟩ is
not between 1 and the \fparray_count:N, an error occurs. Assignments are always
global.

\fparray_gset:Nnn
\fparray_gset:cnn

New: 2018-05-05

288

30.3 Counting entries in floating point arrays

\fparray_count:N ⟨fparray var⟩

Expands to the number of entries in the ⟨floating point array variable⟩. This is
performed in constant time.

\fparray_count:N ⋆
\fparray_count:c ⋆

New: 2018-05-05

30.4 Using a single entry

\fparray_item:Nn ⟨fparray var⟩ {⟨position⟩}

Applies \fp_use:N or \fp_to_tl:N (respectively) to the floating point entry stored at
the (integer expression) ⟨position⟩ in the ⟨floating point array variable⟩. If the
⟨position⟩ is not between 1 and the \fparray_count:N ⟨fparray var⟩, an error occurs.

\fparray_item:Nn ⋆
\fparray_item:cn ⋆
\fparray_item_to_tl:Nn ⋆
\fparray_item_to_tl:cn ⋆

New: 2018-05-05

30.5 Floating point array conditional

\fparray_if_exist_p:N ⟨fparray var⟩
\fparray_if_exist:NTF ⟨fparray var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨fparray var⟩ is currently defined. This does not check that the
⟨fparray var⟩ really is a floating point array variable.

\fparray_if_exist_p:N ⋆
\fparray_if_exist_p:c ⋆
\fparray_if_exist:NTF ⋆
\fparray_if_exist:cTF ⋆

New: 2024-03-31

289

Chapter 31

The l3bitset module
Bitsets

This module defines and implements the data type bitset, a vector of bits. The size
of the vector may grow dynamically. Individual bits can be set and unset by names
pointing to an index position. The names 1, 2, 3, . . . are predeclared and point to
the index positions 1, 2, 3,. . . . More names can be added and existing names can be
changed. The index is like all other indices in expl3 modules 1-based. A bitset can be
output as binary number or—as needed e.g. in a PDF dictionary—as decimal (arabic)
number. Currently only a small subset of the functions provided by the bitset package
are implemented here, mainly the functions needed to use bitsets in PDF dictionaries.

The bitset is stored as a string (but one shouldn’t rely on the internal representation)
and so the vector size is theoretically unlimited, only restricted by TEX-memory. But
the functions to set and clear bits use integer functions for the index so bitsets can’t be
longer than 231 − 1. The export function \bitset_to_arabic:N can use functions from
the int module only if the largest index used for this bitset is smaller than 32, for longer
bitsets fp is used and this is slower.

290

31.1 Creating bitsets

\bitset_new:N ⟨bitset var⟩
\bitset_new:Nn ⟨bitset var⟩
{

⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...

}

Creates a new ⟨bitset var⟩ or raises an error if the name is already taken. The decla-
ration is global. The ⟨bitset var⟩ is initially 0.

Bitsets are implemented as string variables consisting of 1’s and 0’s. The rightmost
number is the index position 1, so the string variable can be viewed directly as the binary
number. But one shouldn’t rely on the internal representation, but use the dedicated
\bitset_to_bin:N instead to get the binary number.

The name–index pairs given in the second argument of \bitset_new:Nn declares
names for some indices, which can be used to set and unset bits. The names 1, 2, 3, . . .
are predeclared and point to the index positions 1, 2, 3,

⟨index...⟩ should be a positive number or an ⟨integer expression⟩ which eval-
uates to a positive number. The expression is evaluated when the index is used, not at
declaration time. The names ⟨name...⟩ should be unique. Using a number as name,
e.g. 10=1, is allowed, it then overwrites the predeclared name 10, but the index position
10 can then only be reached if some other name for it exists, e.g. ten=10. It is not
necessary to give every index a name, and an index can have more than one name. The
named index can be extended or changed with the next function.

\bitset_new:N
\bitset_new:c
\bitset_new:Nn
\bitset_new:cn

New: 2023-11-15

\bitset_addto_named_index:Nn ⟨bitset var⟩
{

⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...

}

\bitset_addto_named_index:Nn

New: 2023-11-15

This extends or changes the name–index pairs for ⟨bitset var⟩ globally as described
for \bitset_new:Nn.

For example after these settings

\bitset_new:Nn \l_pdfannot_F_bitset
{
Invisible = 1,
Hidden = 2,
Print = 3,
NoZoom = 4,
NoRotate = 5,
NoView = 6,
ReadOnly = 7,
Locked = 8,
ToggleNoView = 9,
LockedContents = 10

}
\bitset_addto_named_index:Nn \l_pdfannot_F_bitset
{

291

print = 3
}

it is possible to set bit 3 by using any of these alternatives:

\bitset_set_true:Nn \l_pdfannot_F_bitset {Print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {3}

\bitset_if_exist_p:N ⟨bitset var⟩
\bitset_if_exist:NTF ⟨bitset var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨bitset var⟩ exist.

\bitset_if_exist_p:N ⋆
\bitset_if_exist_p:c ⋆
\bitset_if_exist:NTF ⋆
\bitset_if_exist:cTF ⋆

New: 2023-11-15

31.2 Setting and unsetting bits

\bitset_set_true:Nn ⟨bitset var⟩ {⟨name⟩}

This sets the bit of the index position represented by {⟨name⟩} to 1. ⟨name⟩ should be
either one of the predeclared names 1, 2, 3, . . . , or one of the names added manually.
Index position are 1-based. If needed the length of the bit vector is enlarged.

\bitset_set_true:Nn
\bitset_set_true:cn
\bitset_gset_true:Nn
\bitset_gset_true:cn

New: 2023-11-15

\bitset_set_false:Nn ⟨bitset var⟩ {⟨name⟩}

This unsets the bit of the index position represented by {⟨name⟩} (sets it to 0). ⟨name⟩
should be either one of the predeclared names 1, 2, 3, . . . , or one of the names added
manually. The index is 1-based. If the index position is larger than the current length
of the bit vector nothing happens. If the leading (left most) bit is unset, zeros are not
trimmed but stay in the bit vector and are still shown by \bitset_show:N.

\bitset_set_false:Nn
\bitset_set_false:cn
\bitset_gset_false:Nn
\bitset_gset_false:cn

New: 2023-11-15

\bitset_clear:N ⟨bitset var⟩

This resets the bitset to the initial state. The declared names are not changed.
\bitset_clear:N
\bitset_clear:c
\bitset_gclear:N
\bitset_gclear:c

New: 2023-11-15

31.3 Using bitsets

\bitset_item:Nn ⟨bitset var⟩ {⟨name⟩}

\bitset_item:Nn outputs 1 if the bit with the index number represented by ⟨name⟩ is
set and 0 otherwise. ⟨name⟩ is either one of the predeclared names 1, 2, 3, . . . , or one of
the names added manually.

\bitset_item:Nn ⋆
\bitset_item:cn ⋆

New: 2023-11-15

292

\bitset_to_bin:N ⟨bitset var⟩

This leaves the current value of the bitset expressed as a binary (string) number in the
input stream. If no bit has been set yet, the output is zero.

\bitset_to_bin:N ⋆
\bitset_to_bin:c ⋆

New: 2023-11-15

\bitset_to_arabic:N ⟨bitset var⟩

This leaves the current value of the bitset expressed as a decimal number in the input
stream. If no bit has been set yet, the output is zero. The function uses \int_from_-
bin:n if the largest index that have been set or unset is smaller than 32, and a slower
implementation based on \fp_eval:n otherwise.

\bitset_to_arabic:N ⋆
\bitset_to_arabic:c ⋆

New: 2023-11-15

\bitset_use:N ⟨bitset var⟩

This leaves the current value of the bitset expressed as a binary (string) number in the
input stream. If no bit has been set yet, the output is zero. This is functionally equivalent
to \bitset_to_bin:N.

\bitset_use:N ⋆
\bitset_use:c ⋆

New: 2024-11-12

\bitset_show:N ⟨bitset var⟩

Displays the binary and decimal values of the ⟨bitset var⟩ on the terminal.
\bitset_show:N
\bitset_show:c

New: 2023-11-15

\bitset_log:N ⟨bitset var⟩

Writes the binary and decimal values of the ⟨bitset var⟩ in the log file.
\bitset_log:N
\bitset_log:c

New: 2023-11-15

\bitset_show_named_index:N ⟨bitset var⟩

Displays declared name–index pairs of the ⟨bitset var⟩ on the terminal.
\bitset_show_named_index:N
\bitset_show_named_index:c

New: 2023-11-15

\bitset_log_named_index:N ⟨bitset var⟩

Writes declared name–index pairs of the ⟨bitset var⟩ in the log file.
\bitset_log_named_index:N
\bitset_log_named_index:c

New: 2023-12-11

293

Chapter 32

The l3cctab module
Category code tables

A category code table enables rapid switching of all category codes in one operation. For
LuaTEX, this is possible over the entire Unicode range. For other engines, only the 8-bit
range (0–255) is covered by such tables. The implementation of category code tables in
expl3 also saves and restores the TEX \endlinechar primitive value, meaning they could
be used for example to implement \ExplSyntaxOn.

32.1 Creating and initialising category code tables

\cctab_new:N ⟨category code table⟩

Creates a new ⟨category code table⟩ variable or raises an error if the name is already
taken. The declaration is global. The ⟨category code table⟩ is initialised with the
codes as used by iniTEX.

\cctab_new:N
\cctab_new:c

Updated: 2020-07-02

\cctab_const:Nn ⟨category code table⟩ {⟨category code set up⟩}

Creates a new ⟨category code table⟩, applies (in a group) the ⟨category code set
up⟩ on top of iniTEX settings, then saves them globally as a constant table. The
⟨category code set up⟩ can include a call to \cctab_select:N.

\cctab_const:Nn
\cctab_const:cn

Updated: 2020-07-07

\cctab_gset:Nn ⟨category code table⟩ {⟨category code set up⟩}

Starting from the iniTEX category codes, applies (in a group) the ⟨category code set
up⟩, then saves them globally in the ⟨category code table⟩. The ⟨category code set
up⟩ can include a call to \cctab_select:N.

\cctab_gset:Nn
\cctab_gset:cn

Updated: 2020-07-07

\cctab_gsave_current:N ⟨category code table⟩

Saves the current prevailing category codes in the ⟨category code table⟩.
\cctab_gsave_current:N
\cctab_gsave_current:c

New: 2023-05-26

294

32.2 Using category code tables

\cctab_begin:N ⟨category code table⟩

Switches locally the category codes in force to those stored in the ⟨category code
table⟩. The prevailing codes before the function is called are added to a stack, for
use with \cctab_end:. This function does not start a TEX group.

\cctab_begin:N
\cctab_begin:c

Updated: 2020-07-02

\cctab_end:

Ends the scope of a ⟨category code table⟩ started using \cctab_begin:N, returning
the codes to those in force before the matching \cctab_begin:N was used. This must
be used within the same TEX group (and at the same TEX group level) as the matching
\cctab_begin:N.

\cctab_end:

Updated: 2020-07-02

\cctab_select:N ⟨category code table⟩

Selects the ⟨category code table⟩ for the scope of the current group. This is in particu-
lar useful in the ⟨setup⟩ arguments of \tl_set_rescan:Nnn, \tl_rescan:nn, \cctab_-
const:Nn, and \cctab_gset:Nn.

\cctab_select:N
\cctab_select:c

New: 2020-05-19

Updated: 2020-07-02

\cctab_item:Nn ⟨category code table⟩ {⟨int expr⟩}

Determines the ⟨character⟩ with character code given by the ⟨int expr⟩ and expands
to its category code specified by the ⟨category code table⟩.

\cctab_item:Nn ⋆
\cctab_item:cn ⋆

New: 2021-05-10

32.3 Category code table conditionals

\cctab_if_exist_p:N ⟨category code table⟩
\cctab_if_exist:NTF ⟨category code table⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨category code table⟩ is currently defined. This does not check
that the ⟨category code table⟩ really is a category code table.

\cctab_if_exist_p:N ⋆
\cctab_if_exist_p:c ⋆
\cctab_if_exist:NTF ⋆
\cctab_if_exist:cTF ⋆

32.4 Constant and scratch category code tables

Category code table for the expl3 code environment; this does not include @, which is
retained as an “other” character. Sets the \endlinechar value to 32 (a space).

\c_code_cctab

Updated: 2020-07-10

Category code table for a standard LATEX document, as set by the LATEX kernel. In
particular, the upper-half of the 8-bit range will be set to “active” with pdfTEX only.
No babel shorthands will be activated. Sets the \endlinechar value to 13 (normal line
ending).

\c_document_cctab

Updated: 2020-07-08

295

Category code table as set up by iniTEX.\c_initex_cctab

Updated: 2020-07-02

Category code table where all characters have category code 12 (other). Sets the
\endlinechar value to −1.

\c_other_cctab

Updated: 2020-07-02

Category code table where all characters have category code 12 (other) with the exception
of spaces, which have category code 10 (space). Sets the \endlinechar value to −1.

\c_str_cctab

Updated: 2020-07-02

Scratch category code tables.\g_tmpa_cctab
\g_tmpb_cctab

New: 2023-05-26

296

Part V

Text manipulation

297

Chapter 33

The l3unicode module
Unicode support functions

This module provides Unicode-specific functions along with loading data from a range
of Unicode Consortium files. Most of the code here is internal, but there are a small set
of public functions. These work with Unicode ⟨codepoints⟩ and are designed to give
usable results with both Unicode-aware and 8-bit engines.

298

\codepoint_generate:nn {⟨codepoint⟩} {⟨catcode⟩}

Generates one or more character tokens representing the ⟨codepoint⟩. With Unicode
engines, exactly one character token will be generated, and this will have the ⟨catcode⟩
specified as the second argument:

• 1 (begin group)

• 2 (end group)

• 3 (math toggle)

• 4 (alignment)

• 6 (parameter)

• 7 (math superscript)

• 8 (math subscript)

• 10 (space)

• 11 (letter)

• 12 (other)

• 13 (active)

For 8-bit engines, between one and four character tokens will be produced: these will be
the bytes of the UTF-8 representation of the ⟨codepoint⟩. For all codepoints outside of
the classical ASCII range, the generated character tokens will be active (category code
13); for codepoints in the ASCII range, the given ⟨catcode⟩ will be used. To allow the
result of this function to be used inside an expansion context, the result is protected by
\exp_not:n.

TEXhackers note: Users of (u)pTEX note that these engines are treated as 8-bit in this
context. In particular, for upTEX, irrespective of the \kcatcode of the ⟨codepoint⟩, any value
outside the ASCII range will result in a series of active bytes being generated.

\codepoint_generate:nn ⋆

New: 2022-10-09

Updated: 2022-11-09

\codepoint_str_generate:n {⟨codepoint⟩}\codepoint_str_generate:n ⋆

New: 2022-10-09

Generates one or more character tokens representing the ⟨codepoint⟩. With Unicode
engines, exactly one character token will be generated. For 8-bit engines, between one
and four character tokens will be produced: these will be the bytes of the UTF-8 repre-
sentation of the ⟨codepoint⟩. All of the generated character tokens will be of category
code 12, except any spaces (codepoint 32), which will be category code 10.

299

\codepoint_to_category:n {⟨codepoint⟩}

Expands to the Unicode general category identifier of the ⟨codepoint⟩. The general
category identifier is a string made up of two letter characters, the first uppercase and
the second lowercase. The uppercase letters divide codepoints into broader groups, which
are then refined by the lowercase letter. For example, codepoints representing letters all
have identifiers starting L, for example Lu (uppercase letter), Lt (titlecase letter), etc.
Full details are available in the documentation provided by the Unicode Consortium: see
https://www.unicode.org/reports/tr44/#General_Category_Values

\codepoint_to_category:n ⋆

New: 2023-06-19

\codepoint_to_nfd:n {⟨codepoint⟩}

Converts the ⟨codepoint⟩ to the Unicode Normalization Form Canonical Decomposition.
The generated character(s) will have the current category code as they would if typed in
directly for Unicode engines; for 8-bit engines, active characters are used for all codepoints
outside of the ASCII range.

\codepoint_to_nfd:n ⋆

New: 2022-10-09

300

https://www.unicode.org/reports/tr44/#General_Category_Values

Chapter 34

The l3text module
Text processing

This module deals with manipulation of (formatted) text; such material is comprised of
a restricted set of token list content. The functions provided here concern conversion of
textual content for example in case changing, generation of bookmarks and extraction
to tags. All of the major functions operate by expansion. Begin-group and end-group
tokens in the ⟨text⟩ are normalized and become { and }, respectively.

34.1 Expanding text

\text_expand:n {⟨text⟩}

Takes user input ⟨text⟩ and expands the content. Protected commands (typically for-
matting) are left in place, and no processing of math mode material (as delimited by pairs
given in \l_text_math_delims_tl or as the argument to commands listed in \l_text_-
math_arg_tl) takes place. Commands which are neither engine- nor LATEX-protected
are expanded exhaustively. Any commands listed in \l_text_expand_exclude_tl are
excluded from expansion, as are those in \l_text_case_exclude_arg_tl and \l_text_-
math_arg_tl.

\text_expand:n ⋆

New: 2020-01-02

Updated: 2023-06-09

\text_declare_expand_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_expand_equivalent:Nn
\text_declare_expand_equivalent:cn

New: 2020-01-22

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered. The ⟨replacement⟩ tokens should be expandable. A token can
be “replaced” by itself if the defined replacement wraps it in \exp_not:n, for example

\text_declare_expand_equivalent:Nn \’ { \exp_not:n { \’ } }

301

34.2 Case changing

\text_uppercase:n {⟨tokens⟩}
\text_uppercase:nn {⟨BCP-47⟩} {⟨tokens⟩}

Takes user input ⟨text⟩ first applies \text_expand:n, then transforms the case of char-
acter tokens as specified by the function name. The category code of letters are not
changed by this process when Unicode engines are used; in 8-bit engines, case changed
charters in the ASCII range will have the current prevailing category code, while those
outside of it will be represented by active characters.

\text_lowercase:n ⋆
\text_uppercase:n ⋆
\text_titlecase_all:n ⋆
\text_titlecase_first:n ⋆
\text_lowercase:nn ⋆
\text_uppercase:nn ⋆
\text_titlecase_all:nn ⋆
\text_titlecase_first:nn ⋆

New: 2019-11-20

Updated: 2023-07-08

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded
informally as converting the first non-space character of the ⟨tokens⟩ to uppercase.
However, the process is more complex than this as there are some situations where
a single lowercase character maps to a special form, for example ij in Dutch which
becomes IJ. There are two functions available for titlecasing: one which applies the
change to each “word” and a second which only applies at the start of the input. (Here,
“word” boundaries are spaces: at present, full Unicode word breaking is not attempted.)

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the l3str module and discussion
there of \str_lowercase:n, \str_uppercase:n and \str_casefold:n.

Case changing does not take place within math mode material so for example

\text_uppercase:n { Some~text~$y = mx + c$~with~{Braces} }

becomes

SOME TEXT $y = mx + c$ WITH {BRACES}

The first mandatory argument of commands listed in \l_text_case_exclude_arg_-
tl is excluded from case changing; the latter are entirely non-textual content (such as
labels).

The standard mappings here follow those defined by the Unicode Consortium in
UnicodeData.txt and SpecialCasing.txt. For pTEX, only the ASCII range is covered
as the engine treats input outside of this range as east Asian.

Locale-sensitive conversions are enabled using the ⟨BCP-47⟩ argument, and follow
Unicode Consortium guidelines. Currently, the locale strings recognized for special han-
dling are as follows.

• Armenian (hy and hy-x-yiwn) The setting hy maps the codepoint U+0587, the
ligature of letters ech and yiwn, to the codepoints for capital ech and vew when
uppercasing: this follows the spelling reform which is used in Armenia. The alter-
native hy-x-yiwn maps U+0587 to capital ech and yiwn on uppercasing (also the
output if Armenian is not selected at all).

• Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated
for these languages. The combining dot mark is removed when lowercasing I-dot
and introduced when upper casing i-dotless.

• German (de-x-eszett). An alternative mapping for German in which the lower-
case Eszett maps to a großes Eszett.

302

http://www.unicode.org

• Greek (el). Removes accents from Greek letters when uppercasing; titlecasing
leaves accents in place. A variant el-x-iota is available which converts the ypoge-
grammeni (subscript muted iota) to capital iota when uppercasing: the standard
version retains the subscript versions.

• Lithuanian (lt). The lowercase letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lowercasing of the
relevant uppercase letters both when input as single Unicode codepoints and when
using combining accents. The combining dot is removed when uppercasing in these
cases. Note that only the accents used in Lithuanian are covered: the behaviour of
other accents are not modified.

• Medieval Latin (la-x-medieval). The characters u and V are interchanged on case
changing.

• Dutch (nl). Capitalisation of ij at the beginning of titlecased input produces IJ
rather than Ij.

Determining whether non-letter characters at the start of text should count as the
uppercase element is controllable. When \l_text_titlecase_check_letter_bool is
true, codepoints which are not letters (Unicode general category L) are not changed,
and only the first letter is uppercased. When \l_text_titlecase_check_letter_-
bool is false, the first codepoint is uppercased, irrespective of the general code of the
character.

\text_declare_case_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_case_equivalent:Nn

New: 2022-07-04

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered during case changing.

\text_declare_lowercase_mapping:nn {⟨codepoint⟩} {⟨replacement⟩}
\text_declare_lowercase_mapping:nnn {⟨BCP-47⟩} {⟨codepoint⟩}

{⟨replacement⟩}

\text_declare_lowercase_mapping:nn
\text_declare_lowercase_mapping:nnn
\text_declare_titlecase_mapping:nn
\text_declare_titlecase_mapping:nnn
\text_declare_uppercase_mapping:nn
\text_declare_uppercase_mapping:nnn

New: 2023-04-11

Updated: 2023-04-20

Declares that the ⟨replacement⟩ tokens should be used when case mapping the
⟨codepoint⟩, rather than the standard mapping given in the Unicode data files. The
nnn version takes a BCP-47 tag, which can be used to specify that the customisation
only applies to that locale.

\text_case_switch:nnnn {⟨normal⟩} {⟨upper⟩} {⟨lower⟩} {⟨title⟩}

Context-sensitive function which will expand to one of the ⟨normal⟩, ⟨upper⟩, ⟨lower⟩
or ⟨title⟩ tokens depending on the current case changing operation. Outside of case
changing, the ⟨normal⟩ tokens are produced. Within case changing, the appropriate
mapping tokens are inserted.

\text_case_switch:nnnn ⋆

New: 2022-07-04

303

34.3 Removing formatting from text

\text_purify:n {⟨text⟩}

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then removes all
functions from the resulting text. Math mode material (as delimited by pairs given in
\l_text_math_delims_tl or as the argument to commands listed in \l_text_math_-
arg_tl) is left contained in a pair of $ delimiters. Non-expandable functions present
in the ⟨text⟩ must either have a defined equivalent (see \text_declare_purify_-
equivalent:Nn) or will be removed from the result. Implicit tokens are converted to
their explicit equivalent.

\text_purify:n ⋆

New: 2020-03-05

Updated: 2020-05-14

\text_declare_purify_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_purify_equivalent:Nn
\text_declare_purify_equivalent:Ne

New: 2020-03-05

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered. The ⟨replacement⟩ tokens should be expandable.

34.4 Control variables

Lists commands present in the ⟨text⟩ where the argument of the command should
be treated as math mode material. The treatment here is similar to \l_text_math_-
delims_tl but for a command rather than paired delimiters.

\l_text_math_arg_tl

Lists pairs of tokens which delimit (in-line) math mode content; such content may be
excluded from processing.

\l_text_math_delims_tl

\l_text_case_exclude_arg_tl

Lists commands where the first mandatory argument is excluded from case changing.

Lists commands which are excluded from expansion. This protection includes everything
up to and including their first braced argument.

\l_text_expand_exclude_tl

\l_text_titlecase_check_letter_bool

Controls how the start of titlecasing is handled: when true, the first letter in text is
considered. The standard setting is true.

304

34.5 Mapping to graphemes
Grapheme splitting is implemented using the algorithm described in Unicode Standard
Annex #29. This includes support for extended grapheme clusters. Text starting with a
line feed or carriage return character will drop this due to standard TEX processing. At
present extended pictograms are not supported: these may be added in a future release.

\text_map_function:nN {⟨text⟩} ⟨function⟩

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the ⟨function⟩. Broadly a
grapheme is a “user perceived character”: the Unicode Consortium describe the decom-
position of input to graphemes in depth, and the approach used here implements that
algorithm. The ⟨function⟩ should accept one argument as ⟨balanced text⟩: this may
be comprise codepoints or may be a control sequence. With 8-bit engines, the code-
point(s) themselves may of course be made up of multiple bytes: the mapping will pass
the correct codepoints independent of the engine in use. See also \text_map_inline:nn.

\text_map_function:nN ✩

New: 2022-08-04

\text_map_inline:nn {⟨text⟩} {⟨inline function⟩}

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the ⟨inline function⟩.
Broadly a grapheme is a “user perceived character”: the Unicode Consortium describe
the decomposition of input to graphemes in depth, and the approach used here imple-
ments that algorithm. The ⟨inline function⟩ should consist of code which receives the
grapheme as ⟨balanced text⟩: this may be comprise codepoints or may be a control
sequence. With 8-bit engines, the codepoint(s) themselves may of course be made up of
multiple bytes: the mapping will pass the correct codepoints independent of the engine
in use. See also \text_map_function:nN.

\text_map_inline:nn

New: 2022-08-04

\text_map_break:
\text_map_break:n {⟨code⟩}

Used to terminate a \text_map_... function before all entries in the ⟨text⟩ have been
processed. This normally takes place within a conditional statement.

\text_map_break: ✩

\text_map_break:n ✩

New: 2022-08-04

305

Part VI

Typesetting

306

Chapter 35

The l3box module
Boxes

Box variables contain typeset material that can be inserted on the page or in other
boxes. Their contents cannot be converted back to lists of tokens. There are three
kinds of box operations: horizontal mode denoted with prefix \hbox_, vertical mode
with prefix \vbox_, and the generic operations working in both modes with prefix \box_.
For instance, a new box variable containing the words “Hello, world!” (in a horizontal
box) can be obtained by the following code.

\box_new:N \l_hello_box
\hbox_set:Nn \l_hello_box { Hello, ~ world! }

The argument is typeset inside a TEX group so that any variables assigned during the
construction of this box restores its value afterwards.

Box variables from l3box are compatible with those of LATEX 2ε and plain TEX and
can be used interchangeably. The l3box commands to construct boxes, such as \hbox:n
or \hbox_set:Nn, are “color-safe”, meaning that

\hbox:n { \color_select:n { blue } Hello, } ~ world!

will result in “Hello,” taking the color blue, but “world!” remaining with the prevailing
color outside the box.

35.1 Creating and initialising boxes

\box_new:N ⟨box⟩

Creates a new ⟨box⟩ or raises an error if the name is already taken. The declaration is
global. The ⟨box⟩ is initially void.

\box_new:N
\box_new:c

\box_clear:N ⟨box⟩

Clears the content of the ⟨box⟩ by setting the box equal to \c_empty_box.
\box_clear:N
\box_clear:c
\box_gclear:N
\box_gclear:c

307

\box_clear_new:N ⟨box⟩

Ensures that the ⟨box⟩ exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the ⟨box⟩ empty.

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

\box_set_eq:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ equal to that of ⟨box2⟩.
\box_set_eq:NN
\box_set_eq:(cN|Nc|cc)
\box_gset_eq:NN
\box_gset_eq:(cN|Nc|cc)

\box_if_exist_p:N ⟨box⟩
\box_if_exist:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨box⟩ is currently defined. This does not check that the ⟨box⟩ really
is a box.

\box_if_exist_p:N ⋆
\box_if_exist_p:c ⋆
\box_if_exist:NTF ⋆
\box_if_exist:cTF ⋆

New: 2012-03-03

35.2 Using boxes

\box_use:N ⟨box⟩

Inserts the current content of the ⟨box⟩ onto the current list for typesetting. An error is
raised if the variable does not exist or if it is invalid.

TEXhackers note: This is the TEX primitive \copy.

\box_use:N
\box_use:c

\box_move_right:nn {⟨dim expr⟩} {⟨box function⟩}

This function operates in vertical mode, and inserts the material specified by the ⟨box
function⟩ such that its reference point is displaced horizontally by the given ⟨dim expr⟩
from the reference point for typesetting, to the right or left as appropriate. The ⟨box
function⟩ should be a box operation such as \box_use:N \<box> or a “raw” box speci-
fication such as \vbox:n { xyz }.

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn {⟨dim expr⟩} {⟨box function⟩}

This function operates in horizontal mode, and inserts the material specified by the ⟨box
function⟩ such that its reference point is displaced vertically by the given ⟨dim expr⟩
from the reference point for typesetting, up or down as appropriate. The ⟨box function⟩
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

\box_move_up:nn
\box_move_down:nn

308

35.3 Measuring and setting box dimensions

\box_dp:N ⟨box⟩

Calculates the depth (below the baseline) of the ⟨box⟩ in a form suitable for use in a
⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \dp.

\box_dp:N
\box_dp:c

\box_ht:N ⟨box⟩

Calculates the height (above the baseline) of the ⟨box⟩ in a form suitable for use in a
⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \ht.

\box_ht:N
\box_ht:c

\box_wd:N ⟨box⟩

Calculates the width of the ⟨box⟩ in a form suitable for use in a ⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \wd.

\box_wd:N
\box_wd:c

\box_ht_plus_dp:N ⟨box⟩

Calculates the total vertical size (height plus depth) of the ⟨box⟩ in a form suitable for
use in a ⟨dim expr⟩.

\box_ht_plus_dp:N
\box_ht_plus_dp:c

New: 2021-05-05

\box_set_dp:Nn ⟨box⟩ {⟨dim expr⟩}

Set the depth (below the baseline) of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_dp:Nn
\box_set_dp:cn
\box_gset_dp:Nn
\box_gset_dp:cn

Updated: 2019-01-22

\box_set_ht:Nn ⟨box⟩ {⟨dim expr⟩}

Set the height (above the baseline) of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_ht:Nn
\box_set_ht:cn
\box_gset_ht:Nn
\box_gset_ht:cn

Updated: 2019-01-22

\box_set_wd:Nn ⟨box⟩ {⟨dim expr⟩}

Set the width of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_wd:Nn
\box_set_wd:cn
\box_gset_wd:Nn
\box_gset_wd:cn

Updated: 2019-01-22

309

35.4 Box conditionals

\box_if_empty_p:N ⟨box⟩
\box_if_empty:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a empty (equal to \c_empty_box).

\box_if_empty_p:N ⋆
\box_if_empty_p:c ⋆
\box_if_empty:NTF ⋆
\box_if_empty:cTF ⋆

\box_if_horizontal_p:N ⟨box⟩
\box_if_horizontal:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a horizontal box.

\box_if_horizontal_p:N ⋆
\box_if_horizontal_p:c ⋆
\box_if_horizontal:NTF ⋆
\box_if_horizontal:cTF ⋆

\box_if_vertical_p:N ⟨box⟩
\box_if_vertical:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a vertical box.

\box_if_vertical_p:N ⋆
\box_if_vertical_p:c ⋆
\box_if_vertical:NTF ⋆
\box_if_vertical:cTF ⋆

35.5 The last box inserted

\box_set_to_last:N ⟨box⟩

Sets the ⟨box⟩ equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the ⟨box⟩ is
always void as it is not possible to recover the last added item.

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

35.6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

TEXhackers note: At the TEX level this is a void box.

\c_empty_box

Updated: 2012-11-04

35.7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_box
\l_tmpb_box

Updated: 2012-11-04

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_box
\g_tmpb_box

310

35.8 Viewing box contents

\box_show:N ⟨box⟩

Shows full details of the content of the ⟨box⟩ in the terminal.
\box_show:N
\box_show:c

Updated: 2012-05-11

\box_show:Nnn ⟨box⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Display the contents of ⟨box⟩ in the terminal, showing the first ⟨int expr1⟩ items of the
box, and descending into ⟨int expr2⟩ group levels.

\box_show:Nnn
\box_show:cnn

New: 2012-05-11

\box_log:N ⟨box⟩

Writes full details of the content of the ⟨box⟩ to the log.
\box_log:N
\box_log:c

New: 2012-05-11

\box_log:Nnn ⟨box⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Writes the contents of ⟨box⟩ to the log, showing the first ⟨int expr1⟩ items of the box,
and descending into ⟨int expr2⟩ group levels.

\box_log:Nnn
\box_log:cnn

New: 2012-05-11

35.9 Boxes and color
All LATEX3 boxes are “color safe”: a color set inside the box stops applying after the end
of the box has occurred.

35.10 Horizontal mode boxes

\hbox:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of natural width and then includes this
box in the current list for typesetting.

\hbox:n

Updated: 2017-04-05

\hbox_to_wd:nn {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of width ⟨dim expr⟩ and then includes
this box in the current list for typesetting.

\hbox_to_wd:nn

Updated: 2017-04-05

\hbox_to_zero:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width and then includes this box
in the current list for typesetting.

\hbox_to_zero:n

Updated: 2017-04-05

\hbox_set:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural width and then stores the result inside the ⟨box⟩.
\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

Updated: 2017-04-05

311

\hbox_set_to_wd:Nnn ⟨box⟩ {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ to the width given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩.

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Updated: 2017-04-05

\hbox_overlap_center:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
equally to both sides of the insertion point.

\hbox_overlap_center:n

New: 2020-08-25

\hbox_overlap_right:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
to the right of the insertion point.

\hbox_overlap_right:n

Updated: 2017-04-05

\hbox_overlap_left:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
to the left of the insertion point.

\hbox_overlap_left:n

Updated: 2017-04-05

\hbox_set:Nw ⟨box⟩ ⟨contents⟩ \hbox_set_end:

Typesets the ⟨contents⟩ at natural width and then stores the result inside the ⟨box⟩.
In contrast to \hbox_set:Nn this function does not absorb the argument when finding
the ⟨content⟩, and so can be used in circumstances where the ⟨content⟩ may not be a
simple argument.

\hbox_set:Nw
\hbox_set:cw
\hbox_set_end:
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end:

Updated: 2017-04-05

\hbox_set_to_wd:Nnw ⟨box⟩ {⟨dim expr⟩} ⟨contents⟩ \hbox_set_end:

Typesets the ⟨contents⟩ to the width given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩. In contrast to \hbox_set_to_wd:Nnn this function does not absorb the
argument when finding the ⟨content⟩, and so can be used in circumstances where the
⟨content⟩ may not be a simple argument

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

New: 2017-06-08

\hbox_unpack:N ⟨box⟩

Unpacks the content of the horizontal ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set.

TEXhackers note: This is the TEX primitive \unhcopy.

\hbox_unpack:N
\hbox_unpack:c

35.11 Vertical mode boxes
Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box. This
means that the box has no depth unless the last item added to it had depth. As a result
most vertical boxes have a large height value and small or zero depth. The exception are

312

_top boxes, where the reference point is that of the first item added. These tend to have
a large depth and small height, although the latter is typically non-zero.

\vbox:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in
the current list for typesetting.

\vbox:n

Updated: 2017-04-05

\vbox_top:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in
the current list for typesetting. The baseline of the box is equal to that of the first item
added to the box.

\vbox_top:n

Updated: 2017-04-05

\vbox_to_ht:nn {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of height ⟨dim expr⟩ and then includes this
box in the current list for typesetting.

\vbox_to_ht:nn

Updated: 2017-04-05

\vbox_to_zero:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_to_zero:n

Updated: 2017-04-05

\vbox_set:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Updated: 2017-04-05

\vbox_set_top:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
The baseline of the box is equal to that of the first item added to the box.

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Updated: 2017-04-05

\vbox_set_to_ht:Nnn ⟨box⟩ {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ to the height given by the ⟨dim expr⟩ and then stores the
result inside the ⟨box⟩.

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Updated: 2017-04-05

\vbox_set:Nw ⟨box⟩ ⟨contents⟩ \vbox_set_end:

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
In contrast to \vbox_set:Nn this function does not absorb the argument when finding
the ⟨content⟩, and so can be used in circumstances where the ⟨content⟩ may not be a
simple argument.

\vbox_set:Nw
\vbox_set:cw
\vbox_set_end:
\vbox_gset:Nw
\vbox_gset:cw
\vbox_gset_end:

Updated: 2017-04-05

313

\vbox_set_to_ht:Nnw ⟨box⟩ {⟨dim expr⟩} ⟨contents⟩ \vbox_set_end:

Typesets the ⟨contents⟩ to the height given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩. In contrast to \vbox_set_to_ht:Nnn this function does not absorb the
argument when finding the ⟨content⟩, and so can be used in circumstances where the
⟨content⟩ may not be a simple argument

\vbox_set_to_ht:Nnw
\vbox_set_to_ht:cnw
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:cnw

New: 2017-06-08

\vbox_set_split_to_ht:NNn ⟨box1⟩ ⟨box2⟩ {⟨dim expr⟩}\vbox_set_split_to_ht:NNn
\vbox_set_split_to_ht:(cNn|Ncn|ccn)
\vbox_gset_split_to_ht:NNn
\vbox_gset_split_to_ht:(cNn|Ncn|ccn)

Updated: 2018-12-29

Sets ⟨box1⟩ to contain material to the height given by the ⟨dim expr⟩ by removing
content from the top of ⟨box2⟩ (which must be a vertical box).

\vbox_unpack:N ⟨box⟩

Unpacks the content of the vertical ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set.

TEXhackers note: This is the TEX primitive \unvcopy.

\vbox_unpack:N
\vbox_unpack:c

35.12 Using boxes efficiently
The functions above for using box contents work in exactly the same way as for any other
expl3 variable. However, for efficiency reasons, it is also useful to have functions which
drop box contents on use. When a box is dropped, the box becomes empty at the group
level where the box was originally set rather than necessarily at the current group level.
For example, with

\hbox_set:Nn \l_tmpa_box { A }
\group_begin:
\hbox_set:Nn \l_tmpa_box { B }
\group_begin:
\box_use_drop:N \l_tmpa_box
\group_end:
\box_show:N \l_tmpa_box

\group_end:
\box_show:N \l_tmpa_box

the first use of \box_show:N will show an entirely cleared (void) box, and the second will
show the letter A in the box.

These functions should be preferred when the content of the box is no longer required
after use. Note that due to the unusual scoping behaviour of drop functions they may be
applied to both local and global boxes: the latter will naturally be set and thus cleared
at a global level.

314

\box_use_drop:N ⟨box⟩

Inserts the current content of the ⟨box⟩ onto the current list for typesetting then drops
the box content. An error is raised if the variable does not exist or if it is invalid. This
function may be applied to local or global boxes.

TEXhackers note: This is the TEX primitive \box.

\box_use_drop:N
\box_use_drop:c

\box_set_eq_drop:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ equal to that of ⟨box2⟩, then drops ⟨box2⟩.
\box_set_eq_drop:NN
\box_set_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\box_gset_eq_drop:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ globally equal to that of ⟨box2⟩, then drops ⟨box2⟩.
\box_gset_eq_drop:NN
\box_gset_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\hbox_unpack_drop:N ⟨box⟩

Unpacks the content of the horizontal ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set. The original ⟨box⟩ is then dropped.

TEXhackers note: This is the TEX primitive \unhbox.

\hbox_unpack_drop:N
\hbox_unpack_drop:c

New: 2019-01-17

\vbox_unpack_drop:N ⟨box⟩

Unpacks the content of the vertical ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set. The original ⟨box⟩ is then dropped.

TEXhackers note: This is the TEX primitive \unvbox.

\vbox_unpack_drop:N
\vbox_unpack_drop:c

New: 2019-01-17

35.13 Affine transformations
Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

315

\box_autosize_to_wd_and_ht:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_autosize_to_wd_and_ht:Nnn
\box_autosize_to_wd_and_ht:cnn
\box_gautosize_to_wd_and_ht:Nnn
\box_gautosize_to_wd_and_ht:cnn

New: 2017-04-04

Updated: 2019-01-22

Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (verti-
cally); both of the sizes are dimension expressions. The ⟨y-size⟩ is the height only: it
does not include any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature
of the ⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of
{⟨x-size⟩} and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative
sizes cause the material in the ⟨box⟩ to be reversed in direction, but the reference point
of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth
dependent on the height of the original and vice versa.

\box_autosize_to_wd_and_ht_plus_dp:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_autosize_to_wd_and_ht_plus_dp:Nnn
\box_autosize_to_wd_and_ht_plus_dp:cnn
\box_gautosize_to_wd_and_ht_plus_dp:Nnn
\box_gautosize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-04

Updated: 2019-01-22

Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (verti-
cally); both of the sizes are dimension expressions. The ⟨y-size⟩ is the total vertical
size (height plus depth). The updated ⟨box⟩ is an hbox, irrespective of the nature of the
⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of {⟨x-size⟩}
and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative sizes cause
the material in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩
is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth dependent
on the height of the original and vice versa.

\box_resize_to_ht:Nn ⟨box⟩ {⟨y-size⟩}

Resizes the ⟨box⟩ to ⟨y-size⟩ (vertically), scaling the horizontal size by the same amount;
⟨y-size⟩ is a dimension expression. The ⟨y-size⟩ is the height only: it does not include
any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before
the resizing is applied. A negative ⟨y-size⟩ causes the material in the ⟨box⟩ to be
reversed in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative
⟨y-size⟩ results in the ⟨box⟩ having a depth dependent on the height of the original and
vice versa.

\box_resize_to_ht:Nn
\box_resize_to_ht:cn
\box_gresize_to_ht:Nn
\box_gresize_to_ht:cn

Updated: 2019-01-22

316

\box_resize_to_ht_plus_dp:Nn ⟨box⟩ {⟨y-size⟩}\box_resize_to_ht_plus_dp:Nn
\box_resize_to_ht_plus_dp:cn
\box_gresize_to_ht_plus_dp:Nn
\box_gresize_to_ht_plus_dp:cn

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨y-size⟩ (vertically), scaling the horizontal size by the same amount;
⟨y-size⟩ is a dimension expression. The ⟨y-size⟩ is the total vertical size (height plus
depth). The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the
resizing is applied. A negative ⟨y-size⟩ causes the material in the ⟨box⟩ to be reversed
in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩
results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd:Nn ⟨box⟩ {⟨x-size⟩}

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally), scaling the vertical size by the same amount;
⟨x-size⟩ is a dimension expression. The updated ⟨box⟩ is an hbox, irrespective of the
nature of the ⟨box⟩ before the resizing is applied. A negative ⟨x-size⟩ causes the material
in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩ is unchanged.
Thus a negative ⟨x-size⟩ results in the ⟨box⟩ having a depth dependent on the height
of the original and vice versa.

\box_resize_to_wd:Nn
\box_resize_to_wd:cn
\box_gresize_to_wd:Nn
\box_gresize_to_wd:cn

Updated: 2019-01-22

\box_resize_to_wd_and_ht:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_resize_to_wd_and_ht:Nnn
\box_resize_to_wd_and_ht:cnn
\box_gresize_to_wd_and_ht:Nnn
\box_gresize_to_wd_and_ht:cnn

New: 2014-07-03

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically): both of the sizes
are dimension expressions. The ⟨y-size⟩ is the height only and does not include any
depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before
the resizing is applied. Negative sizes cause the material in the ⟨box⟩ to be reversed in
direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩
results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd_and_ht_plus_dp:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_resize_to_wd_and_ht_plus_dp:Nnn
\box_resize_to_wd_and_ht_plus_dp:cnn
\box_gresize_to_wd_and_ht_plus_dp:Nnn
\box_gresize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-06

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically): both of the sizes
are dimension expressions. The ⟨y-size⟩ is the total vertical size (height plus depth).
The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the resizing
is applied. Negative sizes cause the material in the ⟨box⟩ to be reversed in direction, but
the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the
⟨box⟩ having a depth dependent on the height of the original and vice versa.

317

\box_rotate:Nn ⟨box⟩ {⟨angle⟩}

Rotates the ⟨box⟩ by ⟨angle⟩ (a ⟨fp expr⟩ in degrees) anti-clockwise about its reference
point. The reference point of the updated box is moved horizontally such that it is at
the left side of the smallest rectangle enclosing the rotated material. The updated ⟨box⟩
is an hbox, irrespective of the nature of the ⟨box⟩ before the rotation is applied.

\box_rotate:Nn
\box_rotate:cn
\box_grotate:Nn
\box_grotate:cn

Updated: 2019-01-22

\box_scale:Nnn ⟨box⟩ {⟨x-scale⟩} {⟨y-scale⟩}

Scales the ⟨box⟩ by factors ⟨x-scale⟩ and ⟨y-scale⟩ in the horizontal and vertical
directions, respectively (both scales are ⟨fp expr⟩). The updated ⟨box⟩ is an hbox,
irrespective of the nature of the ⟨box⟩ before the scaling is applied. Negative scalings
cause the material in the ⟨box⟩ to be reversed in direction, but the reference point of
the ⟨box⟩ is unchanged. Thus a negative ⟨y-scale⟩ results in the ⟨box⟩ having a depth
dependent on the height of the original and vice versa.

\box_scale:Nnn
\box_scale:cnn
\box_gscale:Nnn
\box_gscale:cnn

Updated: 2019-01-22

35.14 Viewing part of a box

\box_set_clipped:N ⟨box⟩

Clips the ⟨box⟩ in the output so that only material inside the bounding box is displayed
in the output. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩
before the clipping is applied. Additional box levels are also generated by this operation.

TEXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

\box_set_clipped:N
\box_set_clipped:c
\box_gset_clipped:N
\box_gset_clipped:c

Updated: 2023-04-14

\box_set_trim:Nnnnn ⟨box⟩ {⟨left⟩} {⟨bottom⟩} {⟨right⟩} {⟨top⟩}

Adjusts the bounding box of the ⟨box⟩: ⟨left⟩ is removed from the left-hand edge of
the bounding box, ⟨right⟩ from the right-hand edge, and so forth. All adjustments
are ⟨dim exprs⟩. Material outside of the bounding box is still displayed in the output
unless \box_set_clipped:N is subsequently applied. The updated ⟨box⟩ is an hbox,
irrespective of the nature of the ⟨box⟩ before the trim operation is applied. Additional
box levels are also generated by this operation. The behavior of the operation where the
trims requested is greater than the size of the box is undefined.

\box_set_trim:Nnnnn
\box_set_trim:cnnnn
\box_gset_trim:Nnnnn
\box_gset_trim:cnnnn

New: 2019-01-23

\box_set_viewport:Nnnnn ⟨box⟩ {⟨llx⟩} {⟨lly⟩} {⟨urx⟩} {⟨ury⟩}

Adjusts the bounding box of the ⟨box⟩ such that it has lower-left coordinates (⟨llx⟩,
⟨lly⟩) and upper-right coordinates (⟨urx⟩, ⟨ury⟩). All four coordinate positions are
⟨dim exprs⟩. Material outside of the bounding box is still displayed in the output unless
\box_set_clipped:N is subsequently applied. The updated ⟨box⟩ is an hbox, irrespective
of the nature of the ⟨box⟩ before the viewport operation is applied. Additional box levels
are also generated by this operation.

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn
\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn

New: 2019-01-23

318

35.15 Primitive box conditionals

\if_hbox:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_hbox:N ⋆

\if_vbox:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_vbox:N ⋆

\if_box_empty:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

\if_box_empty:N ⋆

319

Chapter 36

The l3coffins module
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the l3experimental bundle).

36.1 Creating and initialising coffins

\coffin_new:N ⟨coffin⟩

Creates a new ⟨coffin⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨coffin⟩ is initially empty.

\coffin_new:N
\coffin_new:c

New: 2011-08-17

\coffin_clear:N ⟨coffin⟩

Clears the content of the ⟨coffin⟩.
\coffin_clear:N
\coffin_clear:c
\coffin_gclear:N
\coffin_gclear:c

New: 2011-08-17

Updated: 2019-01-21

\coffin_set_eq:NN ⟨coffin1⟩ ⟨coffin2⟩

Sets both the content and poles of ⟨coffin1⟩ equal to those of ⟨coffin2⟩.
\coffin_set_eq:NN
\coffin_set_eq:(Nc|cN|cc)
\coffin_gset_eq:NN
\coffin_gset_eq:(Nc|cN|cc)

New: 2011-08-17

Updated: 2019-01-21

\coffin_if_exist_p:N ⟨coffin⟩
\coffin_if_exist:NTF ⟨coffin⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨coffin⟩ is currently defined.

\coffin_if_exist_p:N ⋆
\coffin_if_exist_p:c ⋆
\coffin_if_exist:NTF ⋆
\coffin_if_exist:cTF ⋆

New: 2012-06-20

320

36.2 Setting coffin content and poles

\hcoffin_set:Nn ⟨coffin⟩ {⟨material⟩}

Typesets the ⟨material⟩ in horizontal mode, storing the result in the ⟨coffin⟩. The
standard poles for the ⟨coffin⟩ are then set up based on the size of the typeset material.

\hcoffin_set:Nn
\hcoffin_set:cn
\hcoffin_gset:Nn
\hcoffin_gset:cn

New: 2011-08-17

Updated: 2019-01-21

\hcoffin_set:Nw ⟨coffin⟩ ⟨material⟩ \hcoffin_set_end:

Typesets the ⟨material⟩ in horizontal mode, storing the result in the ⟨coffin⟩. The
standard poles for the ⟨coffin⟩ are then set up based on the size of the typeset material.
These functions are useful for setting the entire contents of an environment in a coffin.

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_set_end:
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_gset_end:

New: 2011-09-10

Updated: 2019-01-21

\vcoffin_set:Nnn ⟨coffin⟩ {⟨width⟩} {⟨material⟩}

Typesets the ⟨material⟩ in vertical mode constrained to the given ⟨width⟩ and stores
the result in the ⟨coffin⟩. The standard poles for the ⟨coffin⟩ are then set up based
on the size of the typeset material.

\vcoffin_set:Nnn
\vcoffin_set:cnn
\vcoffin_gset:Nnn
\vcoffin_gset:cnn

New: 2011-08-17

Updated: 2023-02-03

\vcoffin_set:Nnw ⟨coffin⟩ {⟨width⟩} ⟨material⟩ \vcoffin_set_end:

Typesets the ⟨material⟩ in vertical mode constrained to the given ⟨width⟩ and stores
the result in the ⟨coffin⟩. The standard poles for the ⟨coffin⟩ are then set up based on
the size of the typeset material. These functions are useful for setting the entire contents
of an environment in a coffin.

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
\vcoffin_gset_end:

New: 2011-09-10

Updated: 2023-02-03

\coffin_set_horizontal_pole:Nnn ⟨coffin⟩
{⟨pole⟩} {⟨offset⟩}

\coffin_set_horizontal_pole:Nnn
\coffin_set_horizontal_pole:cnn
\coffin_gset_horizontal_pole:Nnn
\coffin_gset_horizontal_pole:cnn

New: 2012-07-20

Updated: 2019-01-21

Sets the ⟨pole⟩ to run horizontally through the ⟨coffin⟩. The ⟨pole⟩ is placed at
the ⟨offset⟩ from the baseline of the ⟨coffin⟩. The ⟨offset⟩ should be given as a
dimension expression.

321

\coffin_set_vertical_pole:Nnn ⟨coffin⟩ {⟨pole⟩} {⟨offset⟩}\coffin_set_vertical_pole:Nnn
\coffin_set_vertical_pole:cnn
\coffin_gset_vertical_pole:Nnn
\coffin_gset_vertical_pole:cnn

New: 2012-07-20

Updated: 2019-01-21

Sets the ⟨pole⟩ to run vertically through the ⟨coffin⟩. The ⟨pole⟩ is placed at the
⟨offset⟩ from the left-hand edge of the bounding box of the ⟨coffin⟩. The ⟨offset⟩
should be given as a dimension expression.

\coffin_reset_poles:N ⟨coffin⟩

Resets the poles of the ⟨coffin⟩ to the standard set, removing any custom or inherited
poles. The poles will therefore be equal to those that would be obtained from \hcoffin_-
set:Nn or similar; the bounding box of the coffin is not reset, so any material outside of
the formal bounding box will not influence the poles.

\coffin_reset_poles:N
\coffin_greset_poles:N

New: 2023-05-17

36.3 Coffin affine transformations

\coffin_resize:Nnn ⟨coffin⟩ {⟨width⟩} {⟨total-height⟩}

Resized the ⟨coffin⟩ to ⟨width⟩ and ⟨total-height⟩, both of which should be given as
dimension expressions.

\coffin_resize:Nnn
\coffin_resize:cnn
\coffin_gresize:Nnn
\coffin_gresize:cnn

Updated: 2019-01-23

\coffin_rotate:Nn ⟨coffin⟩ {⟨angle⟩}

Rotates the ⟨coffin⟩ by the given ⟨angle⟩ (given in degrees counter-clockwise). This
process rotates both the coffin content and poles. Multiple rotations do not result in the
bounding box of the coffin growing unnecessarily.

\coffin_rotate:Nn
\coffin_rotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn

\coffin_scale:Nnn ⟨coffin⟩ {⟨x-scale⟩} {⟨y-scale⟩}

Scales the ⟨coffin⟩ by a factors ⟨x-scale⟩ and ⟨y-scale⟩ in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

\coffin_scale:Nnn
\coffin_scale:cnn
\coffin_gscale:Nnn
\coffin_gscale:cnn

Updated: 2019-01-23

322

36.4 Joining and using coffins

\coffin_attach:NnnNnnnn
⟨coffin1⟩ {⟨coffin1-pole1⟩} {⟨coffin1-pole2⟩}
⟨coffin2⟩ {⟨coffin2-pole1⟩} {⟨coffin2-pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

\coffin_attach:NnnNnnnn
\coffin_attach:(cnnNnnnn|Nnncnnnn|cnncnnnn)
\coffin_gattach:NnnNnnnn
\coffin_gattach:(cnnNnnnn|Nnncnnnn|cnncnnnn)

Updated: 2019-01-22

This function attaches ⟨coffin2⟩ to ⟨coffin1⟩ such that the bounding box of ⟨coffin1⟩
is not altered, i.e. ⟨coffin2⟩ can protrude outside of the bounding box of the coffin.
The alignment is carried out by first calculating ⟨handle1⟩, the point of intersection
of ⟨coffin1-pole1⟩ and ⟨coffin1-pole2⟩, and ⟨handle2⟩, the point of intersection of
⟨coffin2-pole1⟩ and ⟨coffin2-pole2⟩. ⟨coffin2⟩ is then attached to ⟨coffin1⟩ such
that the relationship between ⟨handle1⟩ and ⟨handle2⟩ is described by the ⟨x-offset⟩
and ⟨y-offset⟩. The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn
⟨coffin1⟩ {⟨coffin1-pole1⟩} {⟨coffin1-pole2⟩}
⟨coffin2⟩ {⟨coffin2-pole1⟩} {⟨coffin2-pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

\coffin_join:NnnNnnnn
\coffin_join:(cnnNnnnn|Nnncnnnn|cnncnnnn)
\coffin_gjoin:NnnNnnnn
\coffin_gjoin:(cnnNnnnn|Nnncnnnn|cnncnnnn)

Updated: 2019-01-22

This function joins ⟨coffin2⟩ to ⟨coffin1⟩ such that the bounding box of ⟨coffin1⟩
may expand. The new bounding box covers the area containing the bounding boxes of
the two original coffins. The alignment is carried out by first calculating ⟨handle1⟩, the
point of intersection of ⟨coffin1-pole1⟩ and ⟨coffin1-pole2⟩, and ⟨handle2⟩, the point
of intersection of ⟨coffin2-pole1⟩ and ⟨coffin2-pole2⟩. ⟨coffin2⟩ is then attached to
⟨coffin1⟩ such that the relationship between ⟨handle1⟩ and ⟨handle2⟩ is described by the
⟨x-offset⟩ and ⟨y-offset⟩. The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn ⟨coffin⟩ {⟨pole1⟩} {⟨pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

Typesetting is carried out by first calculating ⟨handle⟩, the point of intersection of
⟨pole1⟩ and ⟨pole2⟩. The coffin is then typeset in horizontal mode such that the re-
lationship between the current reference point in the document and the ⟨handle⟩ is
described by the ⟨x-offset⟩ and ⟨y-offset⟩. The two offsets should be given as dimen-
sion expressions. Typesetting a coffin is therefore analogous to carrying out an alignment
where the “parent” coffin is the current insertion point.

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Updated: 2012-07-20

36.5 Measuring coffins

\coffin_dp:N ⟨coffin⟩

Calculates the depth (below the baseline) of the ⟨coffin⟩ in a form suitable for use in a
⟨dim expr⟩.

\coffin_dp:N
\coffin_dp:c

323

\coffin_ht:N ⟨coffin⟩

Calculates the height (above the baseline) of the ⟨coffin⟩ in a form suitable for use in
a ⟨dim expr⟩.

\coffin_ht:N
\coffin_ht:c

\coffin_ht_plus_dp:N ⟨coffin⟩

Calculates the total vertical size (height plus depth) of the ⟨coffin⟩ in a form suitable
for use in a ⟨dim expr⟩.

\coffin_ht_plus_dp:N
\coffin_ht_plus_dp:c

New: 2024-10-01

\coffin_wd:N ⟨coffin⟩

Calculates the width of the ⟨coffin⟩ in a form suitable for use in a ⟨dim expr⟩.
\coffin_wd:N
\coffin_wd:c

36.6 Coffin diagnostics

\coffin_display_handles:Nn ⟨coffin⟩ {⟨color⟩}

This function first calculates the intersections between all of the ⟨poles⟩ of the ⟨coffin⟩
to give a set of ⟨handles⟩. It then prints the ⟨coffin⟩ at the current location in the
source, with the position of the ⟨handles⟩ marked on the coffin. The ⟨handles⟩ are
labelled as part of this process: the locations of the ⟨handles⟩ and the labels are both
printed in the ⟨color⟩ specified.

\coffin_display_handles:Nn
\coffin_display_handles:cn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn ⟨coffin⟩ {⟨pole1⟩} {⟨pole2⟩} {⟨color⟩}

This function first calculates the ⟨handle⟩ for the ⟨coffin⟩ as defined by the intersection
of ⟨pole1⟩ and ⟨pole2⟩. It then marks the position of the ⟨handle⟩ on the ⟨coffin⟩.
The ⟨handle⟩ are labelled as part of this process: the location of the ⟨handle⟩ and the
label are both printed in the ⟨color⟩ specified.

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

Updated: 2011-09-02

\coffin_show_structure:N ⟨coffin⟩

This function shows the structural information about the ⟨coffin⟩ in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y coordinates
of a point that the pole passes through and the x- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

\coffin_show_structure:N
\coffin_show_structure:c

Updated: 2015-08-01

\coffin_log_structure:N ⟨coffin⟩

This function writes the structural information about the ⟨coffin⟩ in the log file. See
also \coffin_show_structure:N which displays the result in the terminal.

\coffin_log_structure:N
\coffin_log_structure:c

New: 2014-08-22

Updated: 2015-08-01

\coffin_show:N ⟨coffin⟩
\coffin_log:N ⟨coffin⟩

Shows full details of poles and contents of the ⟨coffin⟩ in the terminal or log file. See
\coffin_show_structure:N and \box_show:N to show separately the pole structure and
the contents.

\coffin_show:N
\coffin_show:c
\coffin_log:N
\coffin_log:c

New: 2021-05-11

324

\coffin_show:Nnn ⟨coffin⟩ {⟨int expr1⟩} {⟨int expr2⟩}
\coffin_log:Nnn ⟨coffin⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Shows poles and contents of the ⟨coffin⟩ in the terminal or log file, showing the first ⟨int
expr1⟩ items in the coffin, and descending into ⟨int expr2⟩ group levels. See \coffin_-
show_structure:N and \box_show:Nnn to show separately the pole structure and the
contents.

\coffin_show:Nnn
\coffin_show:cnn
\coffin_log:Nnn
\coffin_log:cnn

New: 2021-05-11

36.7 Constants and variables

A permanently empty coffin.\c_empty_coffin

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_coffin
\l_tmpb_coffin

New: 2012-06-19

Scratch coffins for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_coffin
\g_tmpb_coffin

New: 2019-01-24

325

Chapter 37

The l3color module
Color support

37.1 Color in boxes
Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:
...
\color_group_end:

Creates a color group: one used to “trap” color settings. This grouping is built in to for
example \hbox_set:Nn.

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

Ensures that material inside a box uses the foreground color at the point where the box
is set, rather than that in force when the box is used. This function should usually be
used within a \color_group_begin: . . . \color_group_end: group.

\color_ensure_current:

New: 2011-09-03

37.2 Color models
A color model is a way to represent sets of colors. Different models are particularly
suitable for different output methods, e.g. screen or print. Parameter-based models can
describe a very large number of unique colors, and have a varying number of axes which
define a color space. In contrast, various proprietary models are available which define
spot colors (more formally separations).

Core models are used to pass color information to output; these are “native” to
l3color. Core models use real numbers in the range [0, 1] to represent values. The core
models supported here are

• gray Grayscale color, with a single axis running from 0 (fully black) to 1 (fully
white)

• rgb Red-green-blue color, with three axes, one for each of the components

326

• cmyk Cyan-magenta-yellow-black color, with four axes, one for each of the compo-
nents

There are also interface models: these are convenient for users but have to be manipu-
lated before storing/passing to the backend. Interface models are primarily integer-based:
see below for more detail. The supported interface models are

• Gray Grayscale color, with a single axis running from 0 (fully black) to 15 (fully
white)

• hsb Hue-saturation-brightness color, with three axes, all real values in the range
[0, 1] for hue saturation and brightness

• Hsb Hue-saturation-brightness color, with three axes, integer in the range [0, 360]
for hue, real values in the range [0, 1] for saturation and brightness

• HSB Hue-saturation-brightness color, with three axes, integers in the range [0, 240]
for hue, saturation and brightness

• HTML HTML format representation of RGB color given as a single six-digit hexadec-
imal number

• RGB Red-green-blue color, with three axes, one for each of the components, values
as integers from 0 to 255

• wave Light wavelength, a real number in the range 380 to 780 (nanometres)

All interface models are internally stored as rgb.
Finally, there are a small number of models which are parsed to allow data transfer

from xcolor but which should not be used by end-users. These are

• cmy Cyan-magenta-yellow color with three axes, one for each of the components;
converted to cmyk

• tHsb “Tuned” hue-saturation-brightness color with three axes, integer in the range
[0, 360] for hue, real values in the range [0, 1] for saturation and brightness; converted
to rgb using the standard tuning map defined by xcolor

• &spot Spot color tint with one value; treated as a gray tint as spot color data is
not available for extraction

To allow parsing of data from xcolor, any leading model up the first : will be
discarded; the approach of selecting an internal form for data is not used in l3color.

Additional models may be created to allow mixing of separation colors with each
other or with those from other models. See Section 37.9 for more detail of color support
for additional models.

When color is selected by model, the ⟨values⟩ given are specified as a comma-
separated list. The length of the list will therefore be determined by the detail of the
model involved.

Color models (and interconversion) are complex, and more details are given in the
manual to the LATEX 2ε xcolor package and in the PostScript Language Reference Manual,
published by Addison–Wesley.

327

37.3 Color expressions
In addition to allowing specification of color by model and values, l3color also supports
color expressions. These are created by combining one or more color names, with the
amount of each specified as a value in the range 0–100. The value should be given between
! symbols in the expression. Thus for example

red!50!green

is a mixture of 50 % red and 50 % green. A trailing value is interpreted as implicitly
followed by !white, and so

red!25

specifies 25 % red mixed with 75 % white.
Where the models for the mixed colors are different, the model of the first color is

used. Thus

red!50!cyan

will result in a color specification using the rgb model, made up of 50 % red and 50 %
of cyan expressed in rgb. This may be important as color model interconversion is not
exact.

The one exception to the above is where the first model in an expression is gray. In
this case, the order of mixing is “swapped” internally, so that for example

black!50!red

has the same result as

red!50!black

(the predefined colors black and white use the gray model).
Where more than two colors are mixed in an expression, evaluation takes place in a

stepwise fashion. Thus in

cyan!50!magenta!10!yellow

the sub-expression

cyan!50!magenta

is first evaluated to give an intermediate color specification, before the second step

<intermediate>!10!yellow

where <intermediate> represents this transitory calculated value.
Within a color expression, . may be used to represent the color active for typesetting

(the current color). This allows for example

.!50

to mean a mixture of 50 % of current color with white.
(Color expressions supported here are a subset of those provided by the LATEX 2ε

xcolor package. At present, only such features as are clearly useful have been added
here.)

328

37.4 Named colors
Color names are stored in a single namespace, which makes them accessible as part of
color expressions. Whilst they are not reserved in a technical sense, the names black,
white, red, green, blue, cyan, magenta and yellow have special meaning and should
not be redefined. Color names should be made up of letters, numbers and spaces only:
other characters are reserved for use in color expressions. In particular, . represents the
current color at the start of a color expression.

\color_set:nn {⟨name⟩} {⟨color expression⟩}

Evaluates the ⟨color expression⟩ and stores the resulting color specification as the
⟨name⟩.

\color_set:nn

\color_set:nnn {⟨name⟩} {⟨model(s)⟩} {⟨value(s)⟩}

Stores the color specification equivalent to the ⟨model(s)⟩ and ⟨values⟩ as the ⟨name⟩.
\color_set:nnn

\color_set_eq:nn {⟨name1⟩} {⟨name2⟩}

Copies the color specification in ⟨name2⟩ to ⟨name1⟩. The special name . may be used to
represent the current color, allowing it to be saved to a name.

\color_set_eq:nn

\color_if_exist_p:n {⟨name⟩}
\color_if_exist:nTF {⟨name⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether ⟨name⟩ is currently defined to provide a color specification.

\color_if_exist_p:n ⋆
\color_if_exist:nTF ⋆

New: 2022-08-12

\color_show:n {⟨name⟩}
\color_log:n {⟨name⟩}

Displays the color specification stored in the ⟨name⟩ on the terminal or log file.

\color_show:n
\color_log:n

New: 2021-05-11

37.5 Selecting colors
General selection of color is safe when split across pages: a stack is used to ensure that
the correct color is re-selected on the new page.

These commands set the current color (.): other more specialised functions such as
fill and stroke selectors do not adjust this value.

\color_select:n {⟨color expression⟩}

Parses the ⟨color expression⟩ and then activates the resulting color specification for
typeset material.

\color_select:n

\color_select:nn {⟨model(s)⟩} {⟨value(s)⟩}

Activates the color specification equivalent to the ⟨model(s)⟩ and ⟨value(s)⟩ for typeset
material.

\color_select:nn

When this is set to a non-empty value, colors will be converted to the specified model
when they are selected. Note that included images and similar are not influenced by this
setting.

\l_color_fixed_model_tl

329

37.6 Colors for fills and strokes
Colors for drawing operations and so forth are split into strokes and fills (the latter may
also be referred to as non-stroke color). The fill color is used for text under normal
circumstances. Depending on the backend, stroke color may use a stack, in which case
it exhibits the same page breaking behavior as general color. However, dvips/dvisvgm
do not support this, and so color will need to be contained within a scope, such as
\draw_begin:/\draw_end:.

\color_fill:n {⟨color expression⟩}

Parses the ⟨color expression⟩ and then activates the resulting color specification for
filling or stroking.

\color_fill:n
\color_stroke:n

\color_fill:nn {⟨model(s)⟩} {⟨value(s)⟩}

Activates the color specification equivalent to the ⟨model(s)⟩ and ⟨value(s)⟩ for filling
or stroking.

\color_fill:nn
\color_stroke:nn

When using dvips, this PostScript variable holds the stroke color.color.sc

37.6.1 Coloring math mode material
Coloring math mode material using \color_select:nn(n) has some restrictions and
often leads to spacing issues and/or poor input syntax. Avoiding generating \mathord
atoms whilst coloring only those parts of the input which are required needs careful
handling. The functionality here covers this important use case.

\color_math:nn {⟨color expression⟩} {⟨content⟩}
\color_math:nnn {⟨model(s)⟩} {⟨value(s)⟩} {⟨content⟩}

Works as for \color_select:n(n) but applies color only to the math mode ⟨content⟩.
The function does not generate a group and the ⟨content⟩ therefore retains its math
atom states. Sub/superscripts are also properly handled.

\color_math:nn
\color_math:nnn

New: 2022-01-26

This list controls which tokens are considered as math active and should therefore be
replaced by their definition during searching for sub/superscripts.

\l_color_math_active_tl

New: 2022-01-26

37.7 Multiple color models
When selecting or setting a color with an explicit model, it is possible to give values for
more than one model at one time. This is particularly useful where automated conversion
between models does not give the desired outcome. To do this, the list of models and list
of values are both subdivided using / characters (as for the similar function in xcolor).
For example, to save a color with explicit cmyk and rgb values, one could use

\color_set:nnn { foo } { cmyk / rgb }
{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

330

The manually-specified conversion will be used in preference to automated calculation
whenever the model(s) listed are used: both in expressions and when a fixed model is
active.

Similarly, the same syntax can be applied to directly selecting a color.

\color_select:nn { cmyk / rgb }
{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

Again, this list is used when a fixed model is active: the first entry is used unless there
is a fixed model matching one of the other entries.

37.8 Exporting color specifications
The major use of color expressions is in setting typesetting output, but there are other
places in which some form of color information is required. These may need data in a
different format or using a different model to the internal representation. Thus a set of
functions are available to export colors in different formats.

Valid export targets are

• backend Two brace groups: the first containing the model, the second containing
space-separated values appropriate for the model; this is the format required by
backend functions of expl3

• comma-sep-cmyk Comma-separated cyan-magenta-yellow-black values

• comma-sep-rgb Comma-separated red-green-blue values suitable for use as a PDF
annotation color

• HTML Uppercase two-digit hexadecimal values, expressing a red-green-blue color;
the digits are not separated

• space-sep-cmyk Space-separated cyan-magenta-yellow-black values

• space-sep-rgb Space-separated red-green-blue values suitable for use as a PDF
annotation color

\color_export:nnN {⟨color expression⟩} {⟨format⟩} ⟨tl var⟩

Parses the ⟨color expression⟩ as described earlier, then converts to the ⟨format⟩ spec-
ified and assigns the data to the ⟨tl var⟩.

\color_export:nnN

\color_export:nnnN {⟨model⟩} {⟨value(s)⟩} {⟨format⟩} ⟨tl var⟩

Expresses the combination of ⟨model⟩ and ⟨value(s)⟩ in an internal representation, then
converts to the ⟨format⟩ specified and assigns the data to the ⟨tl var⟩.

\color_export:nnnN

331

37.9 Creating new color models
Additional color models are required to support specialist workflows, for example those in-
volving separations (see https://helpx.adobe.com/indesign/using/spot-process-colors.
html for details of the use of separations in print). Color models may be split into fami-
lies; for the standard device-based color models (DeviceCMYK, DeviceRGB, DeviceGray),
these are synonymous. This is not generally the case: see the PDF reference for more
details. (Note that l3color uses the shorter names cmyk, etc.)

\color_model_new:nnn {⟨model⟩} {⟨family⟩} {⟨params⟩}

Creates a new ⟨model⟩ which is derived from the color model ⟨family⟩. The latter should
be one of

• DeviceN

• ICCBased

• Separation

(The ⟨family⟩ may be given in mixed case as-in the PDF reference: internally, case of
these strings is folded.) Depending on the ⟨family⟩, one or more ⟨params⟩ are mandatory
or optional.

\color_model_new:nnn

For a Separation space, there are three compulsory keys.

• name The name of the Separation, for example the formal name of a spot color ink.
Such a ⟨name⟩ may contain spaces, etc., which are not permitted in the ⟨model⟩.

• alternative-model An alternative device colorspace, one of cmyk, rgb, gray or
CIELAB. The three parameter-based models work as described above; see below for
details of CIELAB colors.

• alternative-values A comma-separated list of values appropriate to the alternative-model.
This information is used by the PDF application if the Separation is not available.

CIELAB color separations are created using the alternative-model = CIELAB set-
ting. These colors must also have an illuminant key, one of a, c, e, d50, d55, d65 or
d75. The alternative-values in this case are the three parameters L∗, a∗ and b∗ of
the CIELAB model. Full details of this device-independent color approach are given in
the documentation to the colorspace package.

CIELAB colors cannot be converted into other device-dependent color spaces, and
as such, mixing can only occur if colors set up using the CIELAB model are also given
with an alternative parameter-based model. If that is not the case, l3color will fallback
to using black as the colorant in any mixing.

For a DeviceN space, there is one compulsory key.

• names The names of the components of the DeviceN space. Each should be either
the ⟨name⟩ of a Separation model, a process color name (cyan, etc.) or the special
name none.

For a ICCBased space, there is one compulsory key.

• file The name of the file containing the profile.

332

https://helpx.adobe.com/indesign/using/spot-process-colors.html
https://helpx.adobe.com/indesign/using/spot-process-colors.html

37.9.1 Color profiles
Color profiles are used to ensure color accuracy by linking to collaboration. Applying a
profile can be used to standardise color which is otherwise device-dependent.

\color_profile_apply:nn {⟨profile⟩} {⟨model⟩}

This function applies a ⟨profile⟩ to one of the device ⟨models⟩. The profile will then
apply to all color of the selected ⟨model⟩. The ⟨profile⟩ should specify an ICC profile
file. The ⟨model⟩ has to be one the standard device models: cmyk, gray or rgb.

\color_profile_apply:nn

New: 2021-02-23

333

Chapter 38

The l3pdf module
Core PDF support

38.1 Objects
38.1.1 Named objects
An ⟨object⟩ name should fully expand to tokens suitable for use in a label-like context.

\pdf_object_new:n {⟨object⟩}

Declares ⟨object⟩ as a PDF object. The object may be referenced from this point on,
and written later using \pdf_object_write:nnn.

\pdf_object_new:n

New: 2022-08-23

\pdf_object_write:nnn {⟨object⟩} {⟨type⟩} {⟨content⟩}

Writes the ⟨content⟩ as content of the ⟨object⟩. Depending on the ⟨type⟩ declared for
the object, the format required for ⟨content⟩ will vary:

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨file name⟩ and ⟨file content⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

\pdf_object_write:nnn
\pdf_object_write:nne

New: 2022-08-23

\pdf_object_ref:n {⟨object⟩}

Inserts the appropriate information to reference the ⟨object⟩ in for example page re-
source allocation. If the ⟨object⟩ does not exist then the function expands to a reference
to object zero; no PDF indirect object ever has this number, so this is a marker for error.

\pdf_object_ref:n ⋆

New: 2021-02-10

\pdf_object_if_exist_p:n {⟨object⟩}
\pdf_object_if_exist:nTF {⟨object⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether an object with name {⟨object⟩} has been defined.

\pdf_object_if_exist_p:n ⋆
\pdf_object_if_exist:nTF ⋆

New: 2020-05-15

334

38.1.2 Indexed objects
Objects can also be created using a pair of ⟨class⟩ and index; the ⟨class⟩ argument
should expand to character tokens, whilst the ⟨index⟩ is an ⟨int expr⟩ and starts at 1.
For large families of objects, this approach is more efficient than using individual names.

\pdf_object_new_indexed:nn {⟨class⟩} {⟨index⟩}

Declares a PDF object of ⟨class⟩ and ⟨index⟩. The object may be referenced from this
point on, and written later using \pdf_object_write_indexed:nnnn.

\pdf_object_new_indexed:nn

New: 2024-04-01

\pdf_object_write_indexed:nnnn {⟨class⟩} {⟨index⟩} {⟨type⟩} {⟨content⟩}\pdf_object_write_indexed:nnnn
\pdf_object_write_indexed:nnne

New: 2024-04-01

Writes the ⟨content⟩ as content of the object of ⟨class⟩ and ⟨index⟩. Depending on
the ⟨type⟩ declared for the object, the format required for the ⟨content⟩ will vary

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨file name⟩ and ⟨file content⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

\pdf_object_ref_indexed:nn {⟨class⟩} {⟨index⟩}\pdf_object_ref_indexed:nn ⋆

New: 2024-04-01

Inserts the appropriate information to reference the object of ⟨class⟩ and ⟨index⟩ in
for example page resource allocation. If the ⟨class⟩/⟨index⟩ combination does not exist
then the function expands to a reference to object zero; no PDF indirect object ever has
this number, so this is a marker for error.

38.1.3 General functions

\pdf_object_unnamed_write:nn {⟨type⟩} {⟨content⟩}\pdf_object_unnamed_write:nn
\pdf_object_unnamed_write:ne

New: 2021-02-10

Writes the ⟨content⟩ as content of an anonymous object. Depending on the ⟨type⟩, the
format required for ⟨content⟩ will vary:

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨file name⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

335

\pdf_object_ref_last:

Inserts the appropriate information to reference the last ⟨object⟩ created. This is par-
ticularly useful for anonymous objects.

\pdf_object_ref_last: ⋆

New: 2021-02-10

\pdf_pageobject_ref:n {⟨abspage⟩}

Inserts the appropriate information to reference the ⟨abspage⟩; the latter is expanded
fully before further processing.

\pdf_pageobject_ref:n ⋆

New: 2021-02-10

Updated: 2024-04-22

38.2 Version

\pdf_version_compare_p:Nn ⟨relation⟩ {⟨version⟩}
\pdf_version_compare:NnTF ⟨relation⟩ {⟨version⟩} {⟨true code⟩} {⟨false code⟩}

\pdf_version_compare_p:Nn ⋆
\pdf_version_compare:NnTF ⋆

New: 2021-02-10

Compares the version of the PDF being created with the ⟨version⟩ string specified,
using the ⟨relation⟩. Either the ⟨true code⟩ or ⟨false code⟩ will be left in the output
stream.

\pdf_version_gset:n {⟨version⟩}

Sets the ⟨version⟩ of the PDF being created. The min version will not alter the output
version unless it is currently lower than the ⟨version⟩ requested.

This function may only be used up to the point where the PDF file is initialised. With
dvips it sets \pdf_version_major: and \pdf_version_minor: and allows to compare
the values with \pdf_version_compare:Nn, but the PDF version itself still has to be set
with the command line option -dCompatibilityLevel of ps2pdf.

\pdf_version_gset:n
\pdf_version_min_gset:n

New: 2021-02-10

\pdf_version:

Expands to the currently-active PDF version.
\pdf_version: ⋆
\pdf_version_major: ⋆
\pdf_version_minor: ⋆

New: 2021-02-10

38.3 Page (media) size

\pdf_pagesize_gset:nn {⟨width⟩} {⟨height⟩}

Sets the page size (mediabox) of the PDF being created to the ⟨width⟩ and ⟨height⟩,
both of which are ⟨dimexpr⟩. The page size can only be set at the start of the output
with dvips; with other backends, this can be adjusted on a per-page basis.

\pdf_pagesize_gset:nn

New: 2023-01-14

38.4 Compression

\pdf_uncompress:

Disables any compression of the PDF, where possible.
This function may only be used up to the point where the PDF file is initialised.

\pdf_uncompress:

New: 2021-02-10

336

38.5 Destinations
Destinations are the places a link jumped to. Unlike the name may suggest, they don’t
describe an exact location in the PDF. Instead, a destination contains a reference to a
page along with an instruction how to display this page. The normally used “XYZ top
left zoom” for example instructs the viewer to show the page with the given zoom and the
top left corner at the top left coordinates—which then gives the impression that there is
an anchor at this position.

If an instruction takes a coordinate, it is calculated by the following commands
relative to the location the command is issued. So to get a specific coordinate one has to
move the command to the right place.

\pdf_destination:nn {⟨name⟩} {⟨type or integer⟩}

This creates a destination. {⟨type or integer⟩} can be one of fit, fith, fitv, fitb,
fitbh, fitbv, fitr, xyz or an integer representing a scale factor in percent. fitr here
gives only a lightweight version of /FitR: The backend code defines fitr so that it will
with pdfLATEX and LuaLATEX use the coordinates of the surrounding box, with dvips
and dvipdfmx it falls back to fit. For full control use \pdf_destination:nnnn.

The keywords match to the PDF names as described in the following tabular.

Keyword PDF Remarks
fit /Fit Fits the page to the window
fith /FitH top Fits the width of the page to the

window
fitv /FitV left Fits the height of the page to the

window
fitb /FitB Fits the page bounding box to the

window
fitbh /FitBH top Fits the width of the page bounding

box to the window.
fitbv /FitBV left Fits the height of the page bounding

box to the window.
fitr /FitR left bottom right top Fits the rectangle specified by the four

coordinates to the window (see above
for the restrictions)

xyz /XYZ left top null Sets a coordinate but doesn’t change
the zoom.

{⟨integer⟩} /XYZ left top zoom Sets a coordinate and a zoom meaning
{⟨integer⟩}%.

\pdf_destination:nn

New: 2021-01-03

\pdf_destination:nnnn {⟨name⟩} {⟨width⟩} {⟨height⟩} {⟨depth⟩}

This creates a destination with /FitR type with the given dimensions relative to the cur-
rent location. The destination is in a box of size zero, but it doesn’t switch to horizontal
mode.

\pdf_destination:nnnn

New: 2021-01-17

337

Part VII

Implementation

338

Chapter 39

l3bootstrap implementation

1 ⟨∗package⟩
2 ⟨@@=kernel⟩

39.1 The \pdfstrcmp primitive in X ETEX
Only pdfTEX has a primitive called \pdfstrcmp. The X ETEX version is just \strcmp, so
there is some shuffling to do. As this is still a real primitive, using the pdfTEX name is
“safe”.

3 \begingroup\expandafter\expandafter\expandafter\endgroup
4 \expandafter\ifx\csname pdfstrcmp\endcsname\relax
5 \let\pdfstrcmp\strcmp
6 \fi

39.2 Loading support Lua code
When LuaTEX is used there are various pieces of Lua code which need to be loaded. The
code itself is defined in l3luatex and is extracted into a separate file. Thus here the task
is to load the Lua code both now and (if required) at the start of each job.

7 \begingroup\expandafter\expandafter\expandafter\endgroup
8 \expandafter\ifx\csname directlua\endcsname\relax
9 \else

10 \ifnum\luatexversion<110 %
11 \else

For LuaTEX we make sure the basic support is loaded: this is only necessary in plain.
12 \begingroup\expandafter\expandafter\expandafter\endgroup
13 \expandafter\ifx\csname newcatcodetable\endcsname\relax
14 \input{ltluatex}%
15 \fi
16 \begingroup\expandafter\expandafter\expandafter\endgroup
17 \expandafter\ifx\csname newluabytecode\endcsname\relax
18 \else
19 \newluabytecode\@expl@luadata@bytecode
20 \fi
21 \directlua{require("expl3")}%

339

As the user might be making a custom format, no assumption is made about matching
package mode with only loading the Lua code once. Instead, a query to Lua reveals what
mode is in operation.

22 \ifnum 0%
23 \directlua{
24 if status.ini_version then
25 tex.write("1")
26 end
27 }>0 %
28 \everyjob\expandafter{%
29 \the\expandafter\everyjob
30 \csname\detokenize{lua_now:n}\endcsname{require("expl3")}%
31 }%
32 \fi
33 \fi
34 \fi

39.3 Engine requirements
The code currently requires ε-TEX, the set of “pdfTEX extensions” including \expanded,
and for Unicode engines the ability to generate arbitrary character tokens by expansion.
That is covered by all supported engines since TEX Live 2019, which we therefore use as
a baseline for engine and LATEX format support. For LuaTEX, we require at least Lua
5.3 and the token.set_lua function. This is available at least since LuaTEX 1.10, which
again is the one in TEX Live 2019. (u)pTEX only gained \ifincsname for TEX Live 2020,
but at present that primitive is unused in expl3 so for the present it’s not tested. If and
when that changes, we will need to revisit the code here.

35 \begingroup
36 \def\next{\endgroup}%
37 \def\ShortText{Required primitives not found}%
38 \def\LongText%
39 {%
40 The L3 programming layer requires the e-TeX primitives and the
41 \LineBreak ’pdfTeX utilities’ as described in the README file.
42 \LineBreak
43 These are available in the engines\LineBreak
44 - pdfTeX v1.40.20\LineBreak
45 - XeTeX v0.999991\LineBreak
46 - LuaTeX v1.10\LineBreak
47 - e-(u)pTeX v3.8.2\LineBreak
48 - Prote (2021)\LineBreak
49 or later.\LineBreak
50 \LineBreak
51 }%
52 \ifnum0%
53 \expandafter\ifx\csname luatexversion\endcsname\relax
54 \expandafter\ifx\csname expanded\endcsname\relax\else 1\fi
55 \else
56 \ifnum\luatexversion<110 \else 1\fi
57 \fi
58 =0 %
59 \newlinechar‘\^^J %

340

60 \def\LineBreak{\noexpand\MessageBreak}%
61 \expandafter\ifx\csname PackageError\endcsname\relax
62 \def\LineBreak{^^J}%
63 \begingroup
64 \lccode‘\~=‘\ \lccode‘\}=‘\ %
65 \lccode‘\T=‘\T\lccode‘\H=‘\H%
66 \catcode‘\ =11 %
67 \lowercase{\endgroup\def\PackageError#1#2#3{%
68 \begingroup\errorcontextlines-1\immediate\write0{}\errhelp{#3}\def%
69 \ {#1 Error: #2.^^J^^J
70 Type H <return> for immediate help}\def~{\errmessage{%
71 \ }}~\endgroup}}%
72 \fi
73 \edef\next
74 {%
75 \noexpand\PackageError{expl3}{\ShortText}
76 {\LongText Loading of expl3 will abort!}%
77 \endgroup
78 \noexpand\endinput
79 }%
80 \fi
81 \next

39.4 The LATEX3 code environment
The code environment is now set up.

\ExplSyntaxOff Before changing any category codes, in package mode we need to save the situation before
loading. Note the set up here means that once applied \ExplSyntaxOff becomes a “do
nothing” command until \ExplSyntaxOn is used.

82 \protected\edef\ExplSyntaxOff
83 {%
84 \protected\def\noexpand\ExplSyntaxOff{}%
85 \catcode 9 = \the\catcode 9\relax
86 \catcode 32 = \the\catcode 32\relax
87 \catcode 34 = \the\catcode 34\relax
88 \catcode 58 = \the\catcode 58\relax
89 \catcode 94 = \the\catcode 94\relax
90 \catcode 95 = \the\catcode 95\relax
91 \catcode 124 = \the\catcode 124\relax
92 \catcode 126 = \the\catcode 126\relax
93 \endlinechar = \the\endlinechar\relax
94 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = 0\relax
95 }%

(End of definition for \ExplSyntaxOff. This function is documented on page 10.)
The code environment is now set up.

96 \catcode 9 = 9\relax
97 \catcode 32 = 9\relax
98 \catcode 34 = 12\relax
99 \catcode 58 = 11\relax

100 \catcode 94 = 7\relax
101 \catcode 95 = 11\relax

341

102 \catcode 124 = 12\relax
103 \catcode 126 = 10\relax
104 \endlinechar = 32\relax

\l__kernel_expl_bool The status for code syntax: this is on at present.
105 \global\chardef\l__kernel_expl_bool = 1\relax

(End of definition for \l__kernel_expl_bool.)

\ExplSyntaxOn The idea here is that multiple \ExplSyntaxOn calls are not going to mess up category
codes, and that multiple calls to \ExplSyntaxOff are also not wasting time. Applying
\ExplSyntaxOn alters the definition of \ExplSyntaxOff and so in package mode this
function should not be used until after the end of the loading process!

106 \protected \def \ExplSyntaxOn
107 {
108 \bool_if:NF \l__kernel_expl_bool
109 {
110 \cs_set_protected:Npe \ExplSyntaxOff
111 {
112 \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
113 \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
114 \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
115 \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
116 \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
117 \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
118 \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
119 \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
120 \tex_endlinechar:D =
121 \tex_the:D \tex_endlinechar:D \scan_stop:
122 \bool_set_false:N \l__kernel_expl_bool
123 \cs_set_protected:Npn \ExplSyntaxOff { }
124 }
125 }
126 \char_set_catcode_ignore:n { 9 } % tab
127 \char_set_catcode_ignore:n { 32 } % space
128 \char_set_catcode_other:n { 34 } % double quote
129 \char_set_catcode_letter:n { 58 } % colon
130 \char_set_catcode_math_superscript:n { 94 } % circumflex
131 \char_set_catcode_letter:n { 95 } % underscore
132 \char_set_catcode_other:n { 124 } % pipe
133 \char_set_catcode_space:n { 126 } % tilde
134 \tex_endlinechar:D = 32 \scan_stop:
135 \bool_set_true:N \l__kernel_expl_bool
136 }

(End of definition for \ExplSyntaxOn. This function is documented on page 10.)

137 ⟨/package⟩

342

Chapter 40

l3names implementation

138 ⟨∗package & tex⟩

The prefix here is kernel. A few places need @@ to be left as is; this is obtained as
@@@@.

139 ⟨@@=kernel⟩
The code here simply renames all of the primitives to new, internal, names.
The \let primitive is renamed by hand first as it is essential for the entire process

to follow. This also uses \global, as that way we avoid leaving an unneeded csname in
the hash table.

140 \let \tex_global:D \global
141 \let \tex_let:D \let

Everything is inside a (rather long) group, which keeps __kernel_primitive:NN
trapped.

142 \begingroup

__kernel_primitive:NN A temporary function to actually do the renaming.
143 \long \def __kernel_primitive:NN #1#2
144 { \tex_global:D \tex_let:D #2 #1 }

(End of definition for __kernel_primitive:NN.)
To allow extracting “just the names”, a bit of DocStrip fiddling.

145 ⟨/package & tex⟩
146 ⟨∗names | tex⟩
147 ⟨∗names | package⟩

In the current incarnation of this module, all TEX primitives are given a new name
of the form \tex_oldname:D. But first three special cases which have symbolic original
names. These are given modified new names, so that they may be entered without
catcode tricks.

148 __kernel_primitive:NN \ \tex_space:D
149 __kernel_primitive:NN \/ \tex_italiccorrection:D
150 __kernel_primitive:NN \- \tex_hyphen:D

Now all the other primitives.
151 __kernel_primitive:NN \above \tex_above:D
152 __kernel_primitive:NN \abovedisplayshortskip \tex_abovedisplayshortskip:D
153 __kernel_primitive:NN \abovedisplayskip \tex_abovedisplayskip:D
154 __kernel_primitive:NN \abovewithdelims \tex_abovewithdelims:D

343

155 __kernel_primitive:NN \accent \tex_accent:D
156 __kernel_primitive:NN \adjdemerits \tex_adjdemerits:D
157 __kernel_primitive:NN \advance \tex_advance:D
158 __kernel_primitive:NN \afterassignment \tex_afterassignment:D
159 __kernel_primitive:NN \aftergroup \tex_aftergroup:D
160 __kernel_primitive:NN \atop \tex_atop:D
161 __kernel_primitive:NN \atopwithdelims \tex_atopwithdelims:D
162 __kernel_primitive:NN \badness \tex_badness:D
163 __kernel_primitive:NN \baselineskip \tex_baselineskip:D
164 __kernel_primitive:NN \batchmode \tex_batchmode:D
165 __kernel_primitive:NN \begingroup \tex_begingroup:D
166 __kernel_primitive:NN \belowdisplayshortskip \tex_belowdisplayshortskip:D
167 __kernel_primitive:NN \belowdisplayskip \tex_belowdisplayskip:D
168 __kernel_primitive:NN \binoppenalty \tex_binoppenalty:D
169 __kernel_primitive:NN \botmark \tex_botmark:D
170 __kernel_primitive:NN \box \tex_box:D
171 __kernel_primitive:NN \boxmaxdepth \tex_boxmaxdepth:D
172 __kernel_primitive:NN \brokenpenalty \tex_brokenpenalty:D
173 __kernel_primitive:NN \catcode \tex_catcode:D
174 __kernel_primitive:NN \char \tex_char:D
175 __kernel_primitive:NN \chardef \tex_chardef:D
176 __kernel_primitive:NN \cleaders \tex_cleaders:D
177 __kernel_primitive:NN \closein \tex_closein:D
178 __kernel_primitive:NN \closeout \tex_closeout:D
179 __kernel_primitive:NN \clubpenalty \tex_clubpenalty:D
180 __kernel_primitive:NN \copy \tex_copy:D
181 __kernel_primitive:NN \count \tex_count:D
182 __kernel_primitive:NN \countdef \tex_countdef:D
183 __kernel_primitive:NN \cr \tex_cr:D
184 __kernel_primitive:NN \crcr \tex_crcr:D
185 __kernel_primitive:NN \csname \tex_csname:D
186 __kernel_primitive:NN \day \tex_day:D
187 __kernel_primitive:NN \deadcycles \tex_deadcycles:D
188 __kernel_primitive:NN \def \tex_def:D
189 __kernel_primitive:NN \defaulthyphenchar \tex_defaulthyphenchar:D
190 __kernel_primitive:NN \defaultskewchar \tex_defaultskewchar:D
191 __kernel_primitive:NN \delcode \tex_delcode:D
192 __kernel_primitive:NN \delimiter \tex_delimiter:D
193 __kernel_primitive:NN \delimiterfactor \tex_delimiterfactor:D
194 __kernel_primitive:NN \delimitershortfall \tex_delimitershortfall:D
195 __kernel_primitive:NN \dimen \tex_dimen:D
196 __kernel_primitive:NN \dimendef \tex_dimendef:D
197 __kernel_primitive:NN \discretionary \tex_discretionary:D
198 __kernel_primitive:NN \displayindent \tex_displayindent:D
199 __kernel_primitive:NN \displaylimits \tex_displaylimits:D
200 __kernel_primitive:NN \displaystyle \tex_displaystyle:D
201 __kernel_primitive:NN \displaywidowpenalty \tex_displaywidowpenalty:D
202 __kernel_primitive:NN \displaywidth \tex_displaywidth:D
203 __kernel_primitive:NN \divide \tex_divide:D
204 __kernel_primitive:NN \doublehyphendemerits \tex_doublehyphendemerits:D
205 __kernel_primitive:NN \dp \tex_dp:D
206 __kernel_primitive:NN \dump \tex_dump:D
207 __kernel_primitive:NN \edef \tex_edef:D
208 __kernel_primitive:NN \else \tex_else:D

344

209 __kernel_primitive:NN \emergencystretch \tex_emergencystretch:D
210 __kernel_primitive:NN \end \tex_end:D
211 __kernel_primitive:NN \endcsname \tex_endcsname:D
212 __kernel_primitive:NN \endgroup \tex_endgroup:D
213 __kernel_primitive:NN \endinput \tex_endinput:D
214 __kernel_primitive:NN \endlinechar \tex_endlinechar:D
215 __kernel_primitive:NN \eqno \tex_eqno:D
216 __kernel_primitive:NN \errhelp \tex_errhelp:D
217 __kernel_primitive:NN \errmessage \tex_errmessage:D
218 __kernel_primitive:NN \errorcontextlines \tex_errorcontextlines:D
219 __kernel_primitive:NN \errorstopmode \tex_errorstopmode:D
220 __kernel_primitive:NN \escapechar \tex_escapechar:D
221 __kernel_primitive:NN \everycr \tex_everycr:D
222 __kernel_primitive:NN \everydisplay \tex_everydisplay:D
223 __kernel_primitive:NN \everyhbox \tex_everyhbox:D
224 __kernel_primitive:NN \everyjob \tex_everyjob:D
225 __kernel_primitive:NN \everymath \tex_everymath:D
226 __kernel_primitive:NN \everypar \tex_everypar:D
227 __kernel_primitive:NN \everyvbox \tex_everyvbox:D
228 __kernel_primitive:NN \exhyphenpenalty \tex_exhyphenpenalty:D
229 __kernel_primitive:NN \expandafter \tex_expandafter:D
230 __kernel_primitive:NN \fam \tex_fam:D
231 __kernel_primitive:NN \fi \tex_fi:D
232 __kernel_primitive:NN \finalhyphendemerits \tex_finalhyphendemerits:D
233 __kernel_primitive:NN \firstmark \tex_firstmark:D
234 __kernel_primitive:NN \floatingpenalty \tex_floatingpenalty:D
235 __kernel_primitive:NN \font \tex_font:D
236 __kernel_primitive:NN \fontdimen \tex_fontdimen:D
237 __kernel_primitive:NN \fontname \tex_fontname:D
238 __kernel_primitive:NN \futurelet \tex_futurelet:D
239 __kernel_primitive:NN \gdef \tex_gdef:D
240 __kernel_primitive:NN \global \tex_global:D
241 __kernel_primitive:NN \globaldefs \tex_globaldefs:D
242 __kernel_primitive:NN \halign \tex_halign:D
243 __kernel_primitive:NN \hangafter \tex_hangafter:D
244 __kernel_primitive:NN \hangindent \tex_hangindent:D
245 __kernel_primitive:NN \hbadness \tex_hbadness:D
246 __kernel_primitive:NN \hbox \tex_hbox:D
247 __kernel_primitive:NN \hfil \tex_hfil:D
248 __kernel_primitive:NN \hfill \tex_hfill:D
249 __kernel_primitive:NN \hfilneg \tex_hfilneg:D
250 __kernel_primitive:NN \hfuzz \tex_hfuzz:D
251 __kernel_primitive:NN \hoffset \tex_hoffset:D
252 __kernel_primitive:NN \holdinginserts \tex_holdinginserts:D
253 __kernel_primitive:NN \hrule \tex_hrule:D
254 __kernel_primitive:NN \hsize \tex_hsize:D
255 __kernel_primitive:NN \hskip \tex_hskip:D
256 __kernel_primitive:NN \hss \tex_hss:D
257 __kernel_primitive:NN \ht \tex_ht:D
258 __kernel_primitive:NN \hyphenation \tex_hyphenation:D
259 __kernel_primitive:NN \hyphenchar \tex_hyphenchar:D
260 __kernel_primitive:NN \hyphenpenalty \tex_hyphenpenalty:D
261 __kernel_primitive:NN \if \tex_if:D
262 __kernel_primitive:NN \ifcase \tex_ifcase:D

345

263 __kernel_primitive:NN \ifcat \tex_ifcat:D
264 __kernel_primitive:NN \ifdim \tex_ifdim:D
265 __kernel_primitive:NN \ifeof \tex_ifeof:D
266 __kernel_primitive:NN \iffalse \tex_iffalse:D
267 __kernel_primitive:NN \ifhbox \tex_ifhbox:D
268 __kernel_primitive:NN \ifhmode \tex_ifhmode:D
269 __kernel_primitive:NN \ifinner \tex_ifinner:D
270 __kernel_primitive:NN \ifmmode \tex_ifmmode:D
271 __kernel_primitive:NN \ifnum \tex_ifnum:D
272 __kernel_primitive:NN \ifodd \tex_ifodd:D
273 __kernel_primitive:NN \iftrue \tex_iftrue:D
274 __kernel_primitive:NN \ifvbox \tex_ifvbox:D
275 __kernel_primitive:NN \ifvmode \tex_ifvmode:D
276 __kernel_primitive:NN \ifvoid \tex_ifvoid:D
277 __kernel_primitive:NN \ifx \tex_ifx:D
278 __kernel_primitive:NN \ignorespaces \tex_ignorespaces:D
279 __kernel_primitive:NN \immediate \tex_immediate:D
280 __kernel_primitive:NN \indent \tex_indent:D
281 __kernel_primitive:NN \input \tex_input:D
282 __kernel_primitive:NN \inputlineno \tex_inputlineno:D
283 __kernel_primitive:NN \insert \tex_insert:D
284 __kernel_primitive:NN \insertpenalties \tex_insertpenalties:D
285 __kernel_primitive:NN \interlinepenalty \tex_interlinepenalty:D
286 __kernel_primitive:NN \jobname \tex_jobname:D
287 __kernel_primitive:NN \kern \tex_kern:D
288 __kernel_primitive:NN \language \tex_language:D
289 __kernel_primitive:NN \lastbox \tex_lastbox:D
290 __kernel_primitive:NN \lastkern \tex_lastkern:D
291 __kernel_primitive:NN \lastpenalty \tex_lastpenalty:D
292 __kernel_primitive:NN \lastskip \tex_lastskip:D
293 __kernel_primitive:NN \lccode \tex_lccode:D
294 __kernel_primitive:NN \leaders \tex_leaders:D
295 __kernel_primitive:NN \left \tex_left:D
296 __kernel_primitive:NN \lefthyphenmin \tex_lefthyphenmin:D
297 __kernel_primitive:NN \leftskip \tex_leftskip:D
298 __kernel_primitive:NN \leqno \tex_leqno:D
299 __kernel_primitive:NN \let \tex_let:D
300 __kernel_primitive:NN \limits \tex_limits:D
301 __kernel_primitive:NN \linepenalty \tex_linepenalty:D
302 __kernel_primitive:NN \lineskip \tex_lineskip:D
303 __kernel_primitive:NN \lineskiplimit \tex_lineskiplimit:D
304 __kernel_primitive:NN \long \tex_long:D
305 __kernel_primitive:NN \looseness \tex_looseness:D
306 __kernel_primitive:NN \lower \tex_lower:D
307 __kernel_primitive:NN \lowercase \tex_lowercase:D
308 __kernel_primitive:NN \mag \tex_mag:D
309 __kernel_primitive:NN \mark \tex_mark:D
310 __kernel_primitive:NN \mathaccent \tex_mathaccent:D
311 __kernel_primitive:NN \mathbin \tex_mathbin:D
312 __kernel_primitive:NN \mathchar \tex_mathchar:D
313 __kernel_primitive:NN \mathchardef \tex_mathchardef:D
314 __kernel_primitive:NN \mathchoice \tex_mathchoice:D
315 __kernel_primitive:NN \mathclose \tex_mathclose:D
316 __kernel_primitive:NN \mathcode \tex_mathcode:D

346

317 __kernel_primitive:NN \mathinner \tex_mathinner:D
318 __kernel_primitive:NN \mathop \tex_mathop:D
319 __kernel_primitive:NN \mathopen \tex_mathopen:D
320 __kernel_primitive:NN \mathord \tex_mathord:D
321 __kernel_primitive:NN \mathpunct \tex_mathpunct:D
322 __kernel_primitive:NN \mathrel \tex_mathrel:D
323 __kernel_primitive:NN \mathsurround \tex_mathsurround:D
324 __kernel_primitive:NN \maxdeadcycles \tex_maxdeadcycles:D
325 __kernel_primitive:NN \maxdepth \tex_maxdepth:D
326 __kernel_primitive:NN \meaning \tex_meaning:D
327 __kernel_primitive:NN \medmuskip \tex_medmuskip:D
328 __kernel_primitive:NN \message \tex_message:D
329 __kernel_primitive:NN \mkern \tex_mkern:D
330 __kernel_primitive:NN \month \tex_month:D
331 __kernel_primitive:NN \moveleft \tex_moveleft:D
332 __kernel_primitive:NN \moveright \tex_moveright:D
333 __kernel_primitive:NN \mskip \tex_mskip:D
334 __kernel_primitive:NN \multiply \tex_multiply:D
335 __kernel_primitive:NN \muskip \tex_muskip:D
336 __kernel_primitive:NN \muskipdef \tex_muskipdef:D
337 __kernel_primitive:NN \newlinechar \tex_newlinechar:D
338 __kernel_primitive:NN \noalign \tex_noalign:D
339 __kernel_primitive:NN \noboundary \tex_noboundary:D
340 __kernel_primitive:NN \noexpand \tex_noexpand:D
341 __kernel_primitive:NN \noindent \tex_noindent:D
342 __kernel_primitive:NN \nolimits \tex_nolimits:D
343 __kernel_primitive:NN \nonscript \tex_nonscript:D
344 __kernel_primitive:NN \nonstopmode \tex_nonstopmode:D
345 __kernel_primitive:NN \nulldelimiterspace \tex_nulldelimiterspace:D
346 __kernel_primitive:NN \nullfont \tex_nullfont:D
347 __kernel_primitive:NN \number \tex_number:D
348 __kernel_primitive:NN \omit \tex_omit:D
349 __kernel_primitive:NN \openin \tex_openin:D
350 __kernel_primitive:NN \openout \tex_openout:D
351 __kernel_primitive:NN \or \tex_or:D
352 __kernel_primitive:NN \outer \tex_outer:D
353 __kernel_primitive:NN \output \tex_output:D
354 __kernel_primitive:NN \outputpenalty \tex_outputpenalty:D
355 __kernel_primitive:NN \over \tex_over:D
356 __kernel_primitive:NN \overfullrule \tex_overfullrule:D
357 __kernel_primitive:NN \overline \tex_overline:D
358 __kernel_primitive:NN \overwithdelims \tex_overwithdelims:D
359 __kernel_primitive:NN \pagedepth \tex_pagedepth:D
360 __kernel_primitive:NN \pagefilllstretch \tex_pagefilllstretch:D
361 __kernel_primitive:NN \pagefillstretch \tex_pagefillstretch:D
362 __kernel_primitive:NN \pagefilstretch \tex_pagefilstretch:D
363 __kernel_primitive:NN \pagegoal \tex_pagegoal:D
364 __kernel_primitive:NN \pageshrink \tex_pageshrink:D
365 __kernel_primitive:NN \pagestretch \tex_pagestretch:D
366 __kernel_primitive:NN \pagetotal \tex_pagetotal:D
367 __kernel_primitive:NN \par \tex_par:D
368 __kernel_primitive:NN \parfillskip \tex_parfillskip:D
369 __kernel_primitive:NN \parindent \tex_parindent:D
370 __kernel_primitive:NN \parshape \tex_parshape:D

347

371 __kernel_primitive:NN \parskip \tex_parskip:D
372 __kernel_primitive:NN \patterns \tex_patterns:D
373 __kernel_primitive:NN \pausing \tex_pausing:D
374 __kernel_primitive:NN \penalty \tex_penalty:D
375 __kernel_primitive:NN \postdisplaypenalty \tex_postdisplaypenalty:D
376 __kernel_primitive:NN \predisplaypenalty \tex_predisplaypenalty:D
377 __kernel_primitive:NN \predisplaysize \tex_predisplaysize:D
378 __kernel_primitive:NN \pretolerance \tex_pretolerance:D
379 __kernel_primitive:NN \prevdepth \tex_prevdepth:D
380 __kernel_primitive:NN \prevgraf \tex_prevgraf:D
381 __kernel_primitive:NN \radical \tex_radical:D
382 __kernel_primitive:NN \raise \tex_raise:D
383 __kernel_primitive:NN \read \tex_read:D
384 __kernel_primitive:NN \relax \tex_relax:D
385 __kernel_primitive:NN \relpenalty \tex_relpenalty:D
386 __kernel_primitive:NN \right \tex_right:D
387 __kernel_primitive:NN \righthyphenmin \tex_righthyphenmin:D
388 __kernel_primitive:NN \rightskip \tex_rightskip:D
389 __kernel_primitive:NN \romannumeral \tex_romannumeral:D
390 __kernel_primitive:NN \scriptfont \tex_scriptfont:D
391 __kernel_primitive:NN \scriptscriptfont \tex_scriptscriptfont:D
392 __kernel_primitive:NN \scriptscriptstyle \tex_scriptscriptstyle:D
393 __kernel_primitive:NN \scriptspace \tex_scriptspace:D
394 __kernel_primitive:NN \scriptstyle \tex_scriptstyle:D
395 __kernel_primitive:NN \scrollmode \tex_scrollmode:D
396 __kernel_primitive:NN \setbox \tex_setbox:D
397 __kernel_primitive:NN \setlanguage \tex_setlanguage:D
398 __kernel_primitive:NN \sfcode \tex_sfcode:D
399 __kernel_primitive:NN \shipout \tex_shipout:D
400 __kernel_primitive:NN \show \tex_show:D
401 __kernel_primitive:NN \showbox \tex_showbox:D
402 __kernel_primitive:NN \showboxbreadth \tex_showboxbreadth:D
403 __kernel_primitive:NN \showboxdepth \tex_showboxdepth:D
404 __kernel_primitive:NN \showlists \tex_showlists:D
405 __kernel_primitive:NN \showthe \tex_showthe:D
406 __kernel_primitive:NN \skewchar \tex_skewchar:D
407 __kernel_primitive:NN \skip \tex_skip:D
408 __kernel_primitive:NN \skipdef \tex_skipdef:D
409 __kernel_primitive:NN \spacefactor \tex_spacefactor:D
410 __kernel_primitive:NN \spaceskip \tex_spaceskip:D
411 __kernel_primitive:NN \span \tex_span:D
412 __kernel_primitive:NN \special \tex_special:D
413 __kernel_primitive:NN \splitbotmark \tex_splitbotmark:D
414 __kernel_primitive:NN \splitfirstmark \tex_splitfirstmark:D
415 __kernel_primitive:NN \splitmaxdepth \tex_splitmaxdepth:D
416 __kernel_primitive:NN \splittopskip \tex_splittopskip:D
417 __kernel_primitive:NN \string \tex_string:D
418 __kernel_primitive:NN \tabskip \tex_tabskip:D
419 __kernel_primitive:NN \textfont \tex_textfont:D
420 __kernel_primitive:NN \textstyle \tex_textstyle:D
421 __kernel_primitive:NN \the \tex_the:D
422 __kernel_primitive:NN \thickmuskip \tex_thickmuskip:D
423 __kernel_primitive:NN \thinmuskip \tex_thinmuskip:D
424 __kernel_primitive:NN \time \tex_time:D

348

425 __kernel_primitive:NN \toks \tex_toks:D
426 __kernel_primitive:NN \toksdef \tex_toksdef:D
427 __kernel_primitive:NN \tolerance \tex_tolerance:D
428 __kernel_primitive:NN \topmark \tex_topmark:D
429 __kernel_primitive:NN \topskip \tex_topskip:D
430 __kernel_primitive:NN \tracingcommands \tex_tracingcommands:D
431 __kernel_primitive:NN \tracinglostchars \tex_tracinglostchars:D
432 __kernel_primitive:NN \tracingmacros \tex_tracingmacros:D
433 __kernel_primitive:NN \tracingonline \tex_tracingonline:D
434 __kernel_primitive:NN \tracingoutput \tex_tracingoutput:D
435 __kernel_primitive:NN \tracingpages \tex_tracingpages:D
436 __kernel_primitive:NN \tracingparagraphs \tex_tracingparagraphs:D
437 __kernel_primitive:NN \tracingrestores \tex_tracingrestores:D
438 __kernel_primitive:NN \tracingstats \tex_tracingstats:D
439 __kernel_primitive:NN \uccode \tex_uccode:D
440 __kernel_primitive:NN \uchyph \tex_uchyph:D
441 __kernel_primitive:NN \underline \tex_underline:D
442 __kernel_primitive:NN \unhbox \tex_unhbox:D
443 __kernel_primitive:NN \unhcopy \tex_unhcopy:D
444 __kernel_primitive:NN \unkern \tex_unkern:D
445 __kernel_primitive:NN \unpenalty \tex_unpenalty:D
446 __kernel_primitive:NN \unskip \tex_unskip:D
447 __kernel_primitive:NN \unvbox \tex_unvbox:D
448 __kernel_primitive:NN \unvcopy \tex_unvcopy:D
449 __kernel_primitive:NN \uppercase \tex_uppercase:D
450 __kernel_primitive:NN \vadjust \tex_vadjust:D
451 __kernel_primitive:NN \valign \tex_valign:D
452 __kernel_primitive:NN \vbadness \tex_vbadness:D
453 __kernel_primitive:NN \vbox \tex_vbox:D
454 __kernel_primitive:NN \vcenter \tex_vcenter:D
455 __kernel_primitive:NN \vfil \tex_vfil:D
456 __kernel_primitive:NN \vfill \tex_vfill:D
457 __kernel_primitive:NN \vfilneg \tex_vfilneg:D
458 __kernel_primitive:NN \vfuzz \tex_vfuzz:D
459 __kernel_primitive:NN \voffset \tex_voffset:D
460 __kernel_primitive:NN \vrule \tex_vrule:D
461 __kernel_primitive:NN \vsize \tex_vsize:D
462 __kernel_primitive:NN \vskip \tex_vskip:D
463 __kernel_primitive:NN \vsplit \tex_vsplit:D
464 __kernel_primitive:NN \vss \tex_vss:D
465 __kernel_primitive:NN \vtop \tex_vtop:D
466 __kernel_primitive:NN \wd \tex_wd:D
467 __kernel_primitive:NN \widowpenalty \tex_widowpenalty:D
468 __kernel_primitive:NN \write \tex_write:D
469 __kernel_primitive:NN \xdef \tex_xdef:D
470 __kernel_primitive:NN \xleaders \tex_xleaders:D
471 __kernel_primitive:NN \xspaceskip \tex_xspaceskip:D
472 __kernel_primitive:NN \year \tex_year:D

Primitives introduced by ε-TEX.
473 __kernel_primitive:NN \beginL \tex_beginL:D
474 __kernel_primitive:NN \beginR \tex_beginR:D
475 __kernel_primitive:NN \botmarks \tex_botmarks:D
476 __kernel_primitive:NN \clubpenalties \tex_clubpenalties:D
477 __kernel_primitive:NN \currentgrouplevel \tex_currentgrouplevel:D

349

478 __kernel_primitive:NN \currentgrouptype \tex_currentgrouptype:D
479 __kernel_primitive:NN \currentifbranch \tex_currentifbranch:D
480 __kernel_primitive:NN \currentiflevel \tex_currentiflevel:D
481 __kernel_primitive:NN \currentiftype \tex_currentiftype:D
482 __kernel_primitive:NN \detokenize \tex_detokenize:D
483 __kernel_primitive:NN \dimexpr \tex_dimexpr:D
484 __kernel_primitive:NN \displaywidowpenalties \tex_displaywidowpenalties:D
485 __kernel_primitive:NN \endL \tex_endL:D
486 __kernel_primitive:NN \endR \tex_endR:D
487 __kernel_primitive:NN \eTeXrevision \tex_eTeXrevision:D
488 __kernel_primitive:NN \eTeXversion \tex_eTeXversion:D
489 __kernel_primitive:NN \everyeof \tex_everyeof:D
490 __kernel_primitive:NN \firstmarks \tex_firstmarks:D
491 __kernel_primitive:NN \fontchardp \tex_fontchardp:D
492 __kernel_primitive:NN \fontcharht \tex_fontcharht:D
493 __kernel_primitive:NN \fontcharic \tex_fontcharic:D
494 __kernel_primitive:NN \fontcharwd \tex_fontcharwd:D
495 __kernel_primitive:NN \glueexpr \tex_glueexpr:D
496 __kernel_primitive:NN \glueshrink \tex_glueshrink:D
497 __kernel_primitive:NN \glueshrinkorder \tex_glueshrinkorder:D
498 __kernel_primitive:NN \gluestretch \tex_gluestretch:D
499 __kernel_primitive:NN \gluestretchorder \tex_gluestretchorder:D
500 __kernel_primitive:NN \gluetomu \tex_gluetomu:D
501 __kernel_primitive:NN \ifcsname \tex_ifcsname:D
502 __kernel_primitive:NN \ifdefined \tex_ifdefined:D
503 __kernel_primitive:NN \iffontchar \tex_iffontchar:D
504 __kernel_primitive:NN \interactionmode \tex_interactionmode:D
505 __kernel_primitive:NN \interlinepenalties \tex_interlinepenalties:D
506 __kernel_primitive:NN \lastlinefit \tex_lastlinefit:D
507 __kernel_primitive:NN \lastnodetype \tex_lastnodetype:D
508 __kernel_primitive:NN \marks \tex_marks:D
509 __kernel_primitive:NN \middle \tex_middle:D
510 __kernel_primitive:NN \muexpr \tex_muexpr:D
511 __kernel_primitive:NN \mutoglue \tex_mutoglue:D
512 __kernel_primitive:NN \numexpr \tex_numexpr:D
513 __kernel_primitive:NN \pagediscards \tex_pagediscards:D
514 __kernel_primitive:NN \parshapedimen \tex_parshapedimen:D
515 __kernel_primitive:NN \parshapeindent \tex_parshapeindent:D
516 __kernel_primitive:NN \parshapelength \tex_parshapelength:D
517 __kernel_primitive:NN \predisplaydirection \tex_predisplaydirection:D
518 __kernel_primitive:NN \protected \tex_protected:D
519 __kernel_primitive:NN \readline \tex_readline:D
520 __kernel_primitive:NN \savinghyphcodes \tex_savinghyphcodes:D
521 __kernel_primitive:NN \savingvdiscards \tex_savingvdiscards:D
522 __kernel_primitive:NN \scantokens \tex_scantokens:D
523 __kernel_primitive:NN \showgroups \tex_showgroups:D
524 __kernel_primitive:NN \showifs \tex_showifs:D
525 __kernel_primitive:NN \showtokens \tex_showtokens:D
526 __kernel_primitive:NN \splitbotmarks \tex_splitbotmarks:D
527 __kernel_primitive:NN \splitdiscards \tex_splitdiscards:D
528 __kernel_primitive:NN \splitfirstmarks \tex_splitfirstmarks:D
529 __kernel_primitive:NN \TeXXeTstate \tex_TeXXeTstate:D
530 __kernel_primitive:NN \topmarks \tex_topmarks:D
531 __kernel_primitive:NN \tracingassigns \tex_tracingassigns:D

350

532 __kernel_primitive:NN \tracinggroups \tex_tracinggroups:D
533 __kernel_primitive:NN \tracingifs \tex_tracingifs:D
534 __kernel_primitive:NN \tracingnesting \tex_tracingnesting:D
535 __kernel_primitive:NN \tracingscantokens \tex_tracingscantokens:D
536 __kernel_primitive:NN \unexpanded \tex_unexpanded:D
537 __kernel_primitive:NN \unless \tex_unless:D
538 __kernel_primitive:NN \widowpenalties \tex_widowpenalties:D

Post-ε-TEX primitives do not always end up with the same name in all engines, if indeed
they are available cross-engine anyway. We therefore take the approach of preferring the
shortest name that makes sense. First, we deal with the primitives introduced by pdfTEX
which directly relate to PDF output: these are copied with the names unchanged.

539 __kernel_primitive:NN \pdfannot \tex_pdfannot:D
540 __kernel_primitive:NN \pdfcatalog \tex_pdfcatalog:D
541 __kernel_primitive:NN \pdfcompresslevel \tex_pdfcompresslevel:D
542 __kernel_primitive:NN \pdfcolorstack \tex_pdfcolorstack:D
543 __kernel_primitive:NN \pdfcolorstackinit \tex_pdfcolorstackinit:D
544 __kernel_primitive:NN \pdfdecimaldigits \tex_pdfdecimaldigits:D
545 __kernel_primitive:NN \pdfdest \tex_pdfdest:D
546 __kernel_primitive:NN \pdfdestmargin \tex_pdfdestmargin:D
547 __kernel_primitive:NN \pdfendlink \tex_pdfendlink:D
548 __kernel_primitive:NN \pdfendthread \tex_pdfendthread:D
549 __kernel_primitive:NN \pdffakespace \tex_pdffakespace:D
550 __kernel_primitive:NN \pdffontattr \tex_pdffontattr:D
551 __kernel_primitive:NN \pdffontname \tex_pdffontname:D
552 __kernel_primitive:NN \pdffontobjnum \tex_pdffontobjnum:D
553 __kernel_primitive:NN \pdfgamma \tex_pdfgamma:D
554 __kernel_primitive:NN \pdfgentounicode \tex_pdfgentounicode:D
555 __kernel_primitive:NN \pdfglyphtounicode \tex_pdfglyphtounicode:D
556 __kernel_primitive:NN \pdfhorigin \tex_pdfhorigin:D
557 __kernel_primitive:NN \pdfimageapplygamma \tex_pdfimageapplygamma:D
558 __kernel_primitive:NN \pdfimagegamma \tex_pdfimagegamma:D
559 __kernel_primitive:NN \pdfimagehicolor \tex_pdfimagehicolor:D
560 __kernel_primitive:NN \pdfimageresolution \tex_pdfimageresolution:D
561 __kernel_primitive:NN \pdfincludechars \tex_pdfincludechars:D
562 __kernel_primitive:NN \pdfinclusioncopyfonts \tex_pdfinclusioncopyfonts:D
563 __kernel_primitive:NN \pdfinclusionerrorlevel
564 \tex_pdfinclusionerrorlevel:D
565 __kernel_primitive:NN \pdfinfo \tex_pdfinfo:D
566 __kernel_primitive:NN \pdfinfoomitdate \tex_pdfinfoomitdate:D
567 __kernel_primitive:NN \pdfinterwordspaceoff \tex_pdfinterwordspaceoff:D
568 __kernel_primitive:NN \pdfinterwordspaceon \tex_pdfinterwordspaceon:D
569 __kernel_primitive:NN \pdflastannot \tex_pdflastannot:D
570 __kernel_primitive:NN \pdflastlink \tex_pdflastlink:D
571 __kernel_primitive:NN \pdflastobj \tex_pdflastobj:D
572 __kernel_primitive:NN \pdflastxform \tex_pdflastxform:D
573 __kernel_primitive:NN \pdflastximage \tex_pdflastximage:D
574 __kernel_primitive:NN \pdflastximagecolordepth
575 \tex_pdflastximagecolordepth:D
576 __kernel_primitive:NN \pdflastximagepages \tex_pdflastximagepages:D
577 __kernel_primitive:NN \pdflinkmargin \tex_pdflinkmargin:D
578 __kernel_primitive:NN \pdfliteral \tex_pdfliteral:D
579 __kernel_primitive:NN \pdfmapfile \tex_pdfmapfile:D
580 __kernel_primitive:NN \pdfmapline \tex_pdfmapline:D

351

581 __kernel_primitive:NN \pdfmajorversion \tex_pdfmajorversion:D
582 __kernel_primitive:NN \pdfminorversion \tex_pdfminorversion:D
583 __kernel_primitive:NN \pdfnames \tex_pdfnames:D
584 __kernel_primitive:NN \pdfnobuiltintounicode \tex_pdfnobuiltintounicode:D
585 __kernel_primitive:NN \pdfobj \tex_pdfobj:D
586 __kernel_primitive:NN \pdfobjcompresslevel \tex_pdfobjcompresslevel:D
587 __kernel_primitive:NN \pdfomitcharset \tex_pdfomitcharset:D
588 __kernel_primitive:NN \pdfoutline \tex_pdfoutline:D
589 __kernel_primitive:NN \pdfoutput \tex_pdfoutput:D
590 __kernel_primitive:NN \pdfpageattr \tex_pdfpageattr:D
591 __kernel_primitive:NN \pdfpagebox \tex_pdfpagebox:D
592 __kernel_primitive:NN \pdfpageref \tex_pdfpageref:D
593 __kernel_primitive:NN \pdfpageresources \tex_pdfpageresources:D
594 __kernel_primitive:NN \pdfpagesattr \tex_pdfpagesattr:D
595 __kernel_primitive:NN \pdfrefobj \tex_pdfrefobj:D
596 __kernel_primitive:NN \pdfrefxform \tex_pdfrefxform:D
597 __kernel_primitive:NN \pdfrefximage \tex_pdfrefximage:D
598 __kernel_primitive:NN \pdfrestore \tex_pdfrestore:D
599 __kernel_primitive:NN \pdfretval \tex_pdfretval:D
600 __kernel_primitive:NN \pdfrunninglinkoff \tex_pdfrunninglinkoff:D
601 __kernel_primitive:NN \pdfrunninglinkon \tex_pdfrunninglinkon:D
602 __kernel_primitive:NN \pdfsave \tex_pdfsave:D
603 __kernel_primitive:NN \pdfsetmatrix \tex_pdfsetmatrix:D
604 __kernel_primitive:NN \pdfstartlink \tex_pdfstartlink:D
605 __kernel_primitive:NN \pdfstartthread \tex_pdfstartthread:D
606 __kernel_primitive:NN \pdfsuppressptexinfo \tex_pdfsuppressptexinfo:D
607 __kernel_primitive:NN \pdfsuppresswarningdupdest
608 \tex_pdfsuppresswarningdupdest:D
609 __kernel_primitive:NN \pdfsuppresswarningdupmap
610 \tex_pdfsuppresswarningdupmap:D
611 __kernel_primitive:NN \pdfsuppresswarningpagegroup
612 \tex_pdfsuppresswarningpagegroup:D
613 __kernel_primitive:NN \pdfthread \tex_pdfthread:D
614 __kernel_primitive:NN \pdfthreadmargin \tex_pdfthreadmargin:D
615 __kernel_primitive:NN \pdftrailer \tex_pdftrailer:D
616 __kernel_primitive:NN \pdftrailerid \tex_pdftrailerid:D
617 __kernel_primitive:NN \pdfuniqueresname \tex_pdfuniqueresname:D
618 __kernel_primitive:NN \pdfvorigin \tex_pdfvorigin:D
619 __kernel_primitive:NN \pdfxform \tex_pdfxform:D
620 __kernel_primitive:NN \pdfxformname \tex_pdfxformname:D
621 __kernel_primitive:NN \pdfximage \tex_pdfximage:D
622 __kernel_primitive:NN \pdfximagebbox \tex_pdfximagebbox:D

These are not related to PDF output and either already appear in other engines without
the \pdf prefix, or might reasonably do so at some future stage. We therefore drop the
leading pdf here.

623 __kernel_primitive:NN \ifpdfabsdim \tex_ifabsdim:D
624 __kernel_primitive:NN \ifpdfabsnum \tex_ifabsnum:D
625 __kernel_primitive:NN \ifpdfprimitive \tex_ifprimitive:D
626 __kernel_primitive:NN \pdfadjustinterwordglue
627 \tex_adjustinterwordglue:D
628 __kernel_primitive:NN \pdfadjustspacing \tex_adjustspacing:D
629 __kernel_primitive:NN \pdfappendkern \tex_appendkern:D
630 __kernel_primitive:NN \pdfcopyfont \tex_copyfont:D

352

631 __kernel_primitive:NN \pdfcreationdate \tex_creationdate:D
632 __kernel_primitive:NN \pdfdraftmode \tex_draftmode:D
633 __kernel_primitive:NN \pdfeachlinedepth \tex_eachlinedepth:D
634 __kernel_primitive:NN \pdfeachlineheight \tex_eachlineheight:D
635 __kernel_primitive:NN \pdfelapsedtime \tex_elapsedtime:D
636 __kernel_primitive:NN \pdfescapehex \tex_escapehex:D
637 __kernel_primitive:NN \pdfescapename \tex_escapename:D
638 __kernel_primitive:NN \pdfescapestring \tex_escapestring:D
639 __kernel_primitive:NN \pdffirstlineheight \tex_firstlineheight:D
640 __kernel_primitive:NN \pdffontexpand \tex_fontexpand:D
641 __kernel_primitive:NN \pdffontsize \tex_fontsize:D
642 __kernel_primitive:NN \pdfignoreddimen \tex_ignoreddimen:D
643 __kernel_primitive:NN \pdfinsertht \tex_insertht:D
644 __kernel_primitive:NN \pdflastlinedepth \tex_lastlinedepth:D
645 __kernel_primitive:NN \pdflastmatch \tex_lastmatch:D
646 __kernel_primitive:NN \pdflastxpos \tex_lastxpos:D
647 __kernel_primitive:NN \pdflastypos \tex_lastypos:D
648 __kernel_primitive:NN \pdfmatch \tex_match:D
649 __kernel_primitive:NN \pdfnoligatures \tex_noligatures:D
650 __kernel_primitive:NN \pdfnormaldeviate \tex_normaldeviate:D
651 __kernel_primitive:NN \pdfpageheight \tex_pageheight:D
652 __kernel_primitive:NN \pdfpagewidth \tex_pagewidth:D
653 __kernel_primitive:NN \pdfpkmode \tex_pkmode:D
654 __kernel_primitive:NN \pdfpkresolution \tex_pkresolution:D
655 __kernel_primitive:NN \pdfprimitive \tex_primitive:D
656 __kernel_primitive:NN \pdfprependkern \tex_prependkern:D
657 __kernel_primitive:NN \pdfprotrudechars \tex_protrudechars:D
658 __kernel_primitive:NN \pdfpxdimen \tex_pxdimen:D
659 __kernel_primitive:NN \pdfrandomseed \tex_randomseed:D
660 __kernel_primitive:NN \pdfresettimer \tex_resettimer:D
661 __kernel_primitive:NN \pdfsavepos \tex_savepos:D
662 __kernel_primitive:NN \pdfsetrandomseed \tex_setrandomseed:D
663 __kernel_primitive:NN \pdfshellescape \tex_shellescape:D
664 __kernel_primitive:NN \pdftracingfonts \tex_tracingfonts:D
665 __kernel_primitive:NN \pdfunescapehex \tex_unescapehex:D
666 __kernel_primitive:NN \pdfuniformdeviate \tex_uniformdeviate:D

The version primitives are not related to PDF mode but are pdfTEX-specific, so again
are carried forward unchanged.

667 __kernel_primitive:NN \pdftexbanner \tex_pdftexbanner:D
668 __kernel_primitive:NN \pdftexrevision \tex_pdftexrevision:D
669 __kernel_primitive:NN \pdftexversion \tex_pdftexversion:D

These ones appear in pdfTEX but don’t have pdf in the name at all: no decisions to
make.

670 __kernel_primitive:NN \efcode \tex_efcode:D
671 __kernel_primitive:NN \ifincsname \tex_ifincsname:D
672 __kernel_primitive:NN \knaccode \tex_knaccode:D
673 __kernel_primitive:NN \knbccode \tex_knbccode:D
674 __kernel_primitive:NN \knbscode \tex_knbscode:D
675 __kernel_primitive:NN \leftmarginkern \tex_leftmarginkern:D
676 __kernel_primitive:NN \letterspacefont \tex_letterspacefont:D
677 __kernel_primitive:NN \lpcode \tex_lpcode:D
678 __kernel_primitive:NN \quitvmode \tex_quitvmode:D
679 __kernel_primitive:NN \rightmarginkern \tex_rightmarginkern:D

353

680 __kernel_primitive:NN \rpcode \tex_rpcode:D
681 __kernel_primitive:NN \shbscode \tex_shbscode:D
682 __kernel_primitive:NN \stbscode \tex_stbscode:D
683 __kernel_primitive:NN \synctex \tex_synctex:D
684 __kernel_primitive:NN \tagcode \tex_tagcode:D

Post pdfTEX primitive availability gets more complex. Both X ETEX and LuaTEX have
varying names for some primitives from pdfTEX. Particularly for LuaTEX tracking all of
that would be hard. Instead, we now check that we only save primitives if they actually
exist.

685 ⟨/names | package⟩
686 ⟨∗package⟩
687 \tex_long:D \tex_def:D \use_ii:nn #1#2 {#2}
688 \tex_long:D \tex_def:D \use_none:n #1 { }
689 \tex_long:D \tex_def:D __kernel_primitive:NN #1#2
690 {
691 \tex_ifdefined:D #1
692 \tex_expandafter:D \use_ii:nn
693 \tex_fi:D
694 \use_none:n { \tex_global:D \tex_let:D #2 #1 }
695 }
696 ⟨/package⟩
697 ⟨∗names | package⟩

Some pdfTEX primitives are handled here because they got dropped in LuaTEX but the
corresponding internal names are emulated later. The Lua code is already loaded at this
point, so we shouldn’t overwrite them.

698 __kernel_primitive:NN \pdfstrcmp \tex_strcmp:D
699 __kernel_primitive:NN \pdffilesize \tex_filesize:D
700 __kernel_primitive:NN \pdfmdfivesum \tex_mdfivesum:D
701 __kernel_primitive:NN \pdffilemoddate \tex_filemoddate:D
702 __kernel_primitive:NN \pdffiledump \tex_filedump:D

X ETEX-specific primitives. Note that X ETEX’s \strcmp is handled earlier and is “rolled
up” into \pdfstrcmp. A few cross-compatibility names which lack the pdf of the original
are handled later.

703 __kernel_primitive:NN \suppressfontnotfounderror
704 \tex_suppressfontnotfounderror:D
705 __kernel_primitive:NN \XeTeXcharclass \tex_XeTeXcharclass:D
706 __kernel_primitive:NN \XeTeXcharglyph \tex_XeTeXcharglyph:D
707 __kernel_primitive:NN \XeTeXcountfeatures \tex_XeTeXcountfeatures:D
708 __kernel_primitive:NN \XeTeXcountglyphs \tex_XeTeXcountglyphs:D
709 __kernel_primitive:NN \XeTeXcountselectors \tex_XeTeXcountselectors:D
710 __kernel_primitive:NN \XeTeXcountvariations \tex_XeTeXcountvariations:D
711 __kernel_primitive:NN \XeTeXdefaultencoding \tex_XeTeXdefaultencoding:D
712 __kernel_primitive:NN \XeTeXdashbreakstate \tex_XeTeXdashbreakstate:D
713 __kernel_primitive:NN \XeTeXfeaturecode \tex_XeTeXfeaturecode:D
714 __kernel_primitive:NN \XeTeXfeaturename \tex_XeTeXfeaturename:D
715 __kernel_primitive:NN \XeTeXfindfeaturebyname
716 \tex_XeTeXfindfeaturebyname:D
717 __kernel_primitive:NN \XeTeXfindselectorbyname
718 \tex_XeTeXfindselectorbyname:D
719 __kernel_primitive:NN \XeTeXfindvariationbyname
720 \tex_XeTeXfindvariationbyname:D
721 __kernel_primitive:NN \XeTeXfirstfontchar \tex_XeTeXfirstfontchar:D

354

722 __kernel_primitive:NN \XeTeXfonttype \tex_XeTeXfonttype:D
723 __kernel_primitive:NN \XeTeXgenerateactualtext
724 \tex_XeTeXgenerateactualtext:D
725 __kernel_primitive:NN \XeTeXglyph \tex_XeTeXglyph:D
726 __kernel_primitive:NN \XeTeXglyphbounds \tex_XeTeXglyphbounds:D
727 __kernel_primitive:NN \XeTeXglyphindex \tex_XeTeXglyphindex:D
728 __kernel_primitive:NN \XeTeXglyphname \tex_XeTeXglyphname:D
729 __kernel_primitive:NN \XeTeXinputencoding \tex_XeTeXinputencoding:D
730 __kernel_primitive:NN \XeTeXinputnormalization
731 \tex_XeTeXinputnormalization:D
732 __kernel_primitive:NN \XeTeXinterchartokenstate
733 \tex_XeTeXinterchartokenstate:D
734 __kernel_primitive:NN \XeTeXinterchartoks \tex_XeTeXinterchartoks:D
735 __kernel_primitive:NN \XeTeXisdefaultselector
736 \tex_XeTeXisdefaultselector:D
737 __kernel_primitive:NN \XeTeXisexclusivefeature
738 \tex_XeTeXisexclusivefeature:D
739 __kernel_primitive:NN \XeTeXlastfontchar \tex_XeTeXlastfontchar:D
740 __kernel_primitive:NN \XeTeXlinebreakskip \tex_XeTeXlinebreakskip:D
741 __kernel_primitive:NN \XeTeXlinebreaklocale \tex_XeTeXlinebreaklocale:D
742 __kernel_primitive:NN \XeTeXlinebreakpenalty \tex_XeTeXlinebreakpenalty:D
743 __kernel_primitive:NN \XeTeXOTcountfeatures \tex_XeTeXOTcountfeatures:D
744 __kernel_primitive:NN \XeTeXOTcountlanguages \tex_XeTeXOTcountlanguages:D
745 __kernel_primitive:NN \XeTeXOTcountscripts \tex_XeTeXOTcountscripts:D
746 __kernel_primitive:NN \XeTeXOTfeaturetag \tex_XeTeXOTfeaturetag:D
747 __kernel_primitive:NN \XeTeXOTlanguagetag \tex_XeTeXOTlanguagetag:D
748 __kernel_primitive:NN \XeTeXOTscripttag \tex_XeTeXOTscripttag:D
749 __kernel_primitive:NN \XeTeXpdffile \tex_XeTeXpdffile:D
750 __kernel_primitive:NN \XeTeXpdfpagecount \tex_XeTeXpdfpagecount:D
751 __kernel_primitive:NN \XeTeXpicfile \tex_XeTeXpicfile:D
752 __kernel_primitive:NN \XeTeXrevision \tex_XeTeXrevision:D
753 __kernel_primitive:NN \XeTeXselectorname \tex_XeTeXselectorname:D
754 __kernel_primitive:NN \XeTeXtracingfonts \tex_XeTeXtracingfonts:D
755 __kernel_primitive:NN \XeTeXupwardsmode \tex_XeTeXupwardsmode:D
756 __kernel_primitive:NN \XeTeXuseglyphmetrics \tex_XeTeXuseglyphmetrics:D
757 __kernel_primitive:NN \XeTeXvariation \tex_XeTeXvariation:D
758 __kernel_primitive:NN \XeTeXvariationdefault \tex_XeTeXvariationdefault:D
759 __kernel_primitive:NN \XeTeXvariationmax \tex_XeTeXvariationmax:D
760 __kernel_primitive:NN \XeTeXvariationmin \tex_XeTeXvariationmin:D
761 __kernel_primitive:NN \XeTeXvariationname \tex_XeTeXvariationname:D
762 __kernel_primitive:NN \XeTeXversion \tex_XeTeXversion:D
763 __kernel_primitive:NN \XeTeXselectorcode \tex_XeTeXselectorcode:D
764 __kernel_primitive:NN \XeTeXinterwordspaceshaping
765 \tex_XeTeXinterwordspaceshaping:D
766 __kernel_primitive:NN \XeTeXhyphenatablelength
767 \tex_XeTeXhyphenatablelength:D

Primitives from pdfTEX that X ETEX renames: also helps with LuaTEX.
768 __kernel_primitive:NN \creationdate \tex_creationdate:D
769 __kernel_primitive:NN \elapsedtime \tex_elapsedtime:D
770 __kernel_primitive:NN \filedump \tex_filedump:D
771 __kernel_primitive:NN \filemoddate \tex_filemoddate:D
772 __kernel_primitive:NN \filesize \tex_filesize:D
773 __kernel_primitive:NN \mdfivesum \tex_mdfivesum:D
774 __kernel_primitive:NN \ifprimitive \tex_ifprimitive:D

355

775 __kernel_primitive:NN \primitive \tex_primitive:D
776 __kernel_primitive:NN \resettimer \tex_resettimer:D
777 __kernel_primitive:NN \shellescape \tex_shellescape:D
778 __kernel_primitive:NN \XeTeXprotrudechars \tex_protrudechars:D

Primitives from LuaTEX, some of which have been ported back to X ETEX.
779 __kernel_primitive:NN \alignmark \tex_alignmark:D
780 __kernel_primitive:NN \aligntab \tex_aligntab:D
781 __kernel_primitive:NN \attribute \tex_attribute:D
782 __kernel_primitive:NN \attributedef \tex_attributedef:D
783 __kernel_primitive:NN \automaticdiscretionary
784 \tex_automaticdiscretionary:D
785 __kernel_primitive:NN \automatichyphenmode \tex_automatichyphenmode:D
786 __kernel_primitive:NN \automatichyphenpenalty
787 \tex_automatichyphenpenalty:D
788 __kernel_primitive:NN \begincsname \tex_begincsname:D
789 __kernel_primitive:NN \bodydir \tex_bodydir:D
790 __kernel_primitive:NN \bodydirection \tex_bodydirection:D
791 __kernel_primitive:NN \boundary \tex_boundary:D
792 __kernel_primitive:NN \boxdir \tex_boxdir:D
793 __kernel_primitive:NN \boxdirection \tex_boxdirection:D
794 __kernel_primitive:NN \breakafterdirmode \tex_breakafterdirmode:D
795 __kernel_primitive:NN \catcodetable \tex_catcodetable:D
796 __kernel_primitive:NN \clearmarks \tex_clearmarks:D
797 % __kernel_primitive:NN \compoundhyphenmode
798 % \tex_compoundhyphenmode:D % not documented in manual
799 __kernel_primitive:NN \crampeddisplaystyle \tex_crampeddisplaystyle:D
800 __kernel_primitive:NN \crampedscriptscriptstyle
801 \tex_crampedscriptscriptstyle:D
802 __kernel_primitive:NN \crampedscriptstyle \tex_crampedscriptstyle:D
803 __kernel_primitive:NN \crampedtextstyle \tex_crampedtextstyle:D
804 __kernel_primitive:NN \csstring \tex_csstring:D
805 __kernel_primitive:NN \deferred \tex_deferred:D
806 __kernel_primitive:NN \discretionaryligaturemode
807 \tex_discretionaryligaturemode:D
808 __kernel_primitive:NN \directlua \tex_directlua:D
809 __kernel_primitive:NN \dviextension \tex_dviextension:D
810 __kernel_primitive:NN \dvifeedback \tex_dvifeedback:D
811 __kernel_primitive:NN \dvivariable \tex_dvivariable:D
812 __kernel_primitive:NN \eTeXglueshrinkorder \tex_eTeXglueshrinkorder:D
813 __kernel_primitive:NN \eTeXgluestretchorder \tex_eTeXgluestretchorder:D
814 __kernel_primitive:NN \endlocalcontrol \tex_endlocalcontrol:D
815 __kernel_primitive:NN \etoksapp \tex_etoksapp:D
816 __kernel_primitive:NN \etokspre \tex_etokspre:D
817 __kernel_primitive:NN \exceptionpenalty \tex_exceptionpenalty:D
818 __kernel_primitive:NN \exhyphenchar \tex_exhyphenchar:D
819 __kernel_primitive:NN \explicithyphenpenalty \tex_explicithyphenpenalty:D
820 __kernel_primitive:NN \expanded \tex_expanded:D
821 __kernel_primitive:NN \explicitdiscretionary \tex_explicitdiscretionary:D
822 __kernel_primitive:NN \firstvalidlanguage \tex_firstvalidlanguage:D
823 % __kernel_primitive:NN \fixupboxesmode
824 % \tex_fixupboxesmode:D % not documented in manual
825 __kernel_primitive:NN \fontid \tex_fontid:D
826 __kernel_primitive:NN \formatname \tex_formatname:D
827 __kernel_primitive:NN \hjcode \tex_hjcode:D

356

828 __kernel_primitive:NN \hpack \tex_hpack:D
829 __kernel_primitive:NN \hyphenationbounds \tex_hyphenationbounds:D
830 __kernel_primitive:NN \hyphenationmin \tex_hyphenationmin:D
831 __kernel_primitive:NN \hyphenpenaltymode \tex_hyphenpenaltymode:D
832 __kernel_primitive:NN \gleaders \tex_gleaders:D
833 __kernel_primitive:NN \glet \tex_glet:D
834 __kernel_primitive:NN \glyphdimensionsmode \tex_glyphdimensionsmode:D
835 __kernel_primitive:NN \gtoksapp \tex_gtoksapp:D
836 __kernel_primitive:NN \gtokspre \tex_gtokspre:D
837 __kernel_primitive:NN \ifcondition \tex_ifcondition:D
838 __kernel_primitive:NN \immediateassigned \tex_immediateassigned:D
839 __kernel_primitive:NN \immediateassignment \tex_immediateassignment:D
840 __kernel_primitive:NN \initcatcodetable \tex_initcatcodetable:D
841 __kernel_primitive:NN \lastnamedcs \tex_lastnamedcs:D
842 __kernel_primitive:NN \latelua \tex_latelua:D
843 __kernel_primitive:NN \lateluafunction \tex_lateluafunction:D
844 __kernel_primitive:NN \leftghost \tex_leftghost:D
845 __kernel_primitive:NN \letcharcode \tex_letcharcode:D
846 __kernel_primitive:NN \linedir \tex_linedir:D
847 __kernel_primitive:NN \linedirection \tex_linedirection:D
848 __kernel_primitive:NN \localbrokenpenalty \tex_localbrokenpenalty:D
849 __kernel_primitive:NN \localinterlinepenalty \tex_localinterlinepenalty:D
850 __kernel_primitive:NN \luabytecode \tex_luabytecode:D
851 __kernel_primitive:NN \luabytecodecall \tex_luabytecodecall:D
852 __kernel_primitive:NN \luacopyinputnodes \tex_luacopyinputnodes:D
853 __kernel_primitive:NN \luadef \tex_luadef:D
854 __kernel_primitive:NN \localleftbox \tex_localleftbox:D
855 __kernel_primitive:NN \localrightbox \tex_localrightbox:D
856 __kernel_primitive:NN \luaescapestring \tex_luaescapestring:D
857 __kernel_primitive:NN \luafunction \tex_luafunction:D
858 __kernel_primitive:NN \luafunctioncall \tex_luafunctioncall:D
859 __kernel_primitive:NN \luatexbanner \tex_luatexbanner:D
860 __kernel_primitive:NN \luatexrevision \tex_luatexrevision:D
861 __kernel_primitive:NN \luatexversion \tex_luatexversion:D
862 __kernel_primitive:NN \mathdefaultsmode \tex_mathdefaultsmode:D
863 __kernel_primitive:NN \mathdelimitersmode \tex_mathdelimitersmode:D
864 __kernel_primitive:NN \mathdir \tex_mathdir:D
865 __kernel_primitive:NN \mathdirection \tex_mathdirection:D
866 __kernel_primitive:NN \mathdisplayskipmode \tex_mathdisplayskipmode:D
867 __kernel_primitive:NN \matheqdirmode \tex_matheqdirmode:D
868 __kernel_primitive:NN \matheqnogapstep \tex_matheqnogapstep:D
869 __kernel_primitive:NN \mathflattenmode \tex_mathflattenmode:D
870 __kernel_primitive:NN \mathitalicsmode \tex_mathitalicsmode:D
871 __kernel_primitive:NN \mathnolimitsmode \tex_mathnolimitsmode:D
872 __kernel_primitive:NN \mathoption \tex_mathoption:D
873 __kernel_primitive:NN \mathpenaltiesmode \tex_mathpenaltiesmode:D
874 __kernel_primitive:NN \mathrulesfam \tex_mathrulesfam:D
875 % __kernel_primitive:NN \mathrulesmode
876 % \tex_mathrulesmode:D % not documented in manual
877 % __kernel_primitive:NN \mathrulethicknessmode
878 % \tex_mathrulethicknessmode:D % not documented in manual
879 __kernel_primitive:NN \mathscriptsmode \tex_mathscriptsmode:D
880 __kernel_primitive:NN \mathscriptboxmode \tex_mathscriptboxmode:D
881 __kernel_primitive:NN \mathscriptcharmode \tex_mathscriptcharmode:D

357

882 __kernel_primitive:NN \mathstyle \tex_mathstyle:D
883 __kernel_primitive:NN \mathsurroundmode \tex_mathsurroundmode:D
884 __kernel_primitive:NN \mathsurroundskip \tex_mathsurroundskip:D
885 __kernel_primitive:NN \nohrule \tex_nohrule:D
886 __kernel_primitive:NN \nokerns \tex_nokerns:D
887 __kernel_primitive:NN \noligs \tex_noligs:D
888 __kernel_primitive:NN \nospaces \tex_nospaces:D
889 __kernel_primitive:NN \novrule \tex_novrule:D
890 __kernel_primitive:NN \outputbox \tex_outputbox:D
891 __kernel_primitive:NN \pagebottomoffset \tex_pagebottomoffset:D
892 __kernel_primitive:NN \pagedir \tex_pagedir:D
893 __kernel_primitive:NN \pagedirection \tex_pagedirection:D
894 __kernel_primitive:NN \pageleftoffset \tex_pageleftoffset:D
895 __kernel_primitive:NN \pagerightoffset \tex_pagerightoffset:D
896 __kernel_primitive:NN \pagetopoffset \tex_pagetopoffset:D
897 __kernel_primitive:NN \pardir \tex_pardir:D
898 __kernel_primitive:NN \pardirection \tex_pardirection:D
899 __kernel_primitive:NN \pdfextension \tex_pdfextension:D
900 __kernel_primitive:NN \pdffeedback \tex_pdffeedback:D
901 __kernel_primitive:NN \pdfvariable \tex_pdfvariable:D
902 __kernel_primitive:NN \postexhyphenchar \tex_postexhyphenchar:D
903 __kernel_primitive:NN \posthyphenchar \tex_posthyphenchar:D
904 __kernel_primitive:NN \prebinoppenalty \tex_prebinoppenalty:D
905 __kernel_primitive:NN \predisplaygapfactor \tex_predisplaygapfactor:D
906 __kernel_primitive:NN \preexhyphenchar \tex_preexhyphenchar:D
907 __kernel_primitive:NN \prehyphenchar \tex_prehyphenchar:D
908 __kernel_primitive:NN \prerelpenalty \tex_prerelpenalty:D
909 __kernel_primitive:NN \protrusionboundary \tex_protrusionboundary:D
910 __kernel_primitive:NN \rightghost \tex_rightghost:D
911 __kernel_primitive:NN \savecatcodetable \tex_savecatcodetable:D
912 __kernel_primitive:NN \scantextokens \tex_scantextokens:D
913 __kernel_primitive:NN \setfontid \tex_setfontid:D
914 __kernel_primitive:NN \shapemode \tex_shapemode:D
915 __kernel_primitive:NN \suppressifcsnameerror \tex_suppressifcsnameerror:D
916 __kernel_primitive:NN \suppresslongerror \tex_suppresslongerror:D
917 __kernel_primitive:NN \suppressmathparerror \tex_suppressmathparerror:D
918 __kernel_primitive:NN \suppressoutererror \tex_suppressoutererror:D
919 __kernel_primitive:NN \suppressprimitiveerror
920 \tex_suppressprimitiveerror:D
921 __kernel_primitive:NN \textdir \tex_textdir:D
922 __kernel_primitive:NN \textdirection \tex_textdirection:D
923 __kernel_primitive:NN \toksapp \tex_toksapp:D
924 __kernel_primitive:NN \tokspre \tex_tokspre:D
925 __kernel_primitive:NN \tpack \tex_tpack:D
926 __kernel_primitive:NN \variablefam \tex_variablefam:D
927 __kernel_primitive:NN \vpack \tex_vpack:D
928 __kernel_primitive:NN \wordboundary \tex_wordboundary:D
929 __kernel_primitive:NN \xtoksapp \tex_xtoksapp:D
930 __kernel_primitive:NN \xtokspre \tex_xtokspre:D

Primitives from pdfTEX that LuaTEX renames.
931 __kernel_primitive:NN \adjustspacing \tex_adjustspacing:D
932 __kernel_primitive:NN \copyfont \tex_copyfont:D
933 __kernel_primitive:NN \draftmode \tex_draftmode:D
934 __kernel_primitive:NN \expandglyphsinfont \tex_fontexpand:D

358

935 __kernel_primitive:NN \ifabsdim \tex_ifabsdim:D
936 __kernel_primitive:NN \ifabsnum \tex_ifabsnum:D
937 __kernel_primitive:NN \ignoreligaturesinfont \tex_ignoreligaturesinfont:D
938 __kernel_primitive:NN \insertht \tex_insertht:D
939 __kernel_primitive:NN \lastsavedboxresourceindex
940 \tex_pdflastxform:D
941 __kernel_primitive:NN \lastsavedimageresourceindex
942 \tex_pdflastximage:D
943 __kernel_primitive:NN \lastsavedimageresourcepages
944 \tex_pdflastximagepages:D
945 __kernel_primitive:NN \lastxpos \tex_lastxpos:D
946 __kernel_primitive:NN \lastypos \tex_lastypos:D
947 __kernel_primitive:NN \normaldeviate \tex_normaldeviate:D
948 __kernel_primitive:NN \outputmode \tex_pdfoutput:D
949 __kernel_primitive:NN \pageheight \tex_pageheight:D
950 __kernel_primitive:NN \pagewidth \tex_pagewidth:D
951 __kernel_primitive:NN \protrudechars \tex_protrudechars:D
952 __kernel_primitive:NN \pxdimen \tex_pxdimen:D
953 __kernel_primitive:NN \randomseed \tex_randomseed:D
954 __kernel_primitive:NN \useboxresource \tex_pdfrefxform:D
955 __kernel_primitive:NN \useimageresource \tex_pdfrefximage:D
956 __kernel_primitive:NN \savepos \tex_savepos:D
957 __kernel_primitive:NN \saveboxresource \tex_pdfxform:D
958 __kernel_primitive:NN \saveimageresource \tex_pdfximage:D
959 __kernel_primitive:NN \setrandomseed \tex_setrandomseed:D
960 __kernel_primitive:NN \tracingfonts \tex_tracingfonts:D
961 __kernel_primitive:NN \uniformdeviate \tex_uniformdeviate:D

The set of Unicode math primitives were introduced by X ETEX and LuaTEX in a some-
what complex fashion: a few first as \XeTeX... which were then renamed with LuaTEX
having a lot more. These names now all start \U... and mainly \Umath....

962 __kernel_primitive:NN \Uchar \tex_Uchar:D
963 __kernel_primitive:NN \Ucharcat \tex_Ucharcat:D
964 __kernel_primitive:NN \Udelcode \tex_Udelcode:D
965 __kernel_primitive:NN \Udelcodenum \tex_Udelcodenum:D
966 __kernel_primitive:NN \Udelimiter \tex_Udelimiter:D
967 __kernel_primitive:NN \Udelimiterover \tex_Udelimiterover:D
968 __kernel_primitive:NN \Udelimiterunder \tex_Udelimiterunder:D
969 __kernel_primitive:NN \Uhextensible \tex_Uhextensible:D
970 __kernel_primitive:NN \Uleft \tex_Uleft:D
971 __kernel_primitive:NN \Umathaccent \tex_Umathaccent:D
972 __kernel_primitive:NN \Umathaxis \tex_Umathaxis:D
973 __kernel_primitive:NN \Umathbinbinspacing \tex_Umathbinbinspacing:D
974 __kernel_primitive:NN \Umathbinclosespacing \tex_Umathbinclosespacing:D
975 __kernel_primitive:NN \Umathbininnerspacing \tex_Umathbininnerspacing:D
976 __kernel_primitive:NN \Umathbinopenspacing \tex_Umathbinopenspacing:D
977 __kernel_primitive:NN \Umathbinopspacing \tex_Umathbinopspacing:D
978 __kernel_primitive:NN \Umathbinordspacing \tex_Umathbinordspacing:D
979 __kernel_primitive:NN \Umathbinpunctspacing \tex_Umathbinpunctspacing:D
980 __kernel_primitive:NN \Umathbinrelspacing \tex_Umathbinrelspacing:D
981 __kernel_primitive:NN \Umathchar \tex_Umathchar:D
982 __kernel_primitive:NN \Umathcharclass \tex_Umathcharclass:D
983 __kernel_primitive:NN \Umathchardef \tex_Umathchardef:D
984 __kernel_primitive:NN \Umathcharfam \tex_Umathcharfam:D

359

985 __kernel_primitive:NN \Umathcharnum \tex_Umathcharnum:D
986 __kernel_primitive:NN \Umathcharnumdef \tex_Umathcharnumdef:D
987 __kernel_primitive:NN \Umathcharslot \tex_Umathcharslot:D
988 __kernel_primitive:NN \Umathclosebinspacing \tex_Umathclosebinspacing:D
989 __kernel_primitive:NN \Umathcloseclosespacing
990 \tex_Umathcloseclosespacing:D
991 __kernel_primitive:NN \Umathcloseinnerspacing
992 \tex_Umathcloseinnerspacing:D
993 __kernel_primitive:NN \Umathcloseopenspacing \tex_Umathcloseopenspacing:D
994 __kernel_primitive:NN \Umathcloseopspacing \tex_Umathcloseopspacing:D
995 __kernel_primitive:NN \Umathcloseordspacing \tex_Umathcloseordspacing:D
996 __kernel_primitive:NN \Umathclosepunctspacing
997 \tex_Umathclosepunctspacing:D
998 __kernel_primitive:NN \Umathcloserelspacing \tex_Umathcloserelspacing:D
999 __kernel_primitive:NN \Umathcode \tex_Umathcode:D

1000 __kernel_primitive:NN \Umathcodenum \tex_Umathcodenum:D
1001 __kernel_primitive:NN \Umathconnectoroverlapmin
1002 \tex_Umathconnectoroverlapmin:D
1003 __kernel_primitive:NN \Umathfractiondelsize \tex_Umathfractiondelsize:D
1004 __kernel_primitive:NN \Umathfractiondenomdown
1005 \tex_Umathfractiondenomdown:D
1006 __kernel_primitive:NN \Umathfractiondenomvgap
1007 \tex_Umathfractiondenomvgap:D
1008 __kernel_primitive:NN \Umathfractionnumup \tex_Umathfractionnumup:D
1009 __kernel_primitive:NN \Umathfractionnumvgap \tex_Umathfractionnumvgap:D
1010 __kernel_primitive:NN \Umathfractionrule \tex_Umathfractionrule:D
1011 __kernel_primitive:NN \Umathinnerbinspacing \tex_Umathinnerbinspacing:D
1012 __kernel_primitive:NN \Umathinnerclosespacing
1013 \tex_Umathinnerclosespacing:D
1014 __kernel_primitive:NN \Umathinnerinnerspacing
1015 \tex_Umathinnerinnerspacing:D
1016 __kernel_primitive:NN \Umathinneropenspacing \tex_Umathinneropenspacing:D
1017 __kernel_primitive:NN \Umathinneropspacing \tex_Umathinneropspacing:D
1018 __kernel_primitive:NN \Umathinnerordspacing \tex_Umathinnerordspacing:D
1019 __kernel_primitive:NN \Umathinnerpunctspacing
1020 \tex_Umathinnerpunctspacing:D
1021 __kernel_primitive:NN \Umathinnerrelspacing \tex_Umathinnerrelspacing:D
1022 __kernel_primitive:NN \Umathlimitabovebgap \tex_Umathlimitabovebgap:D
1023 __kernel_primitive:NN \Umathlimitabovekern \tex_Umathlimitabovekern:D
1024 __kernel_primitive:NN \Umathlimitabovevgap \tex_Umathlimitabovevgap:D
1025 __kernel_primitive:NN \Umathlimitbelowbgap \tex_Umathlimitbelowbgap:D
1026 __kernel_primitive:NN \Umathlimitbelowkern \tex_Umathlimitbelowkern:D
1027 __kernel_primitive:NN \Umathlimitbelowvgap \tex_Umathlimitbelowvgap:D
1028 __kernel_primitive:NN \Umathnolimitsubfactor \tex_Umathnolimitsubfactor:D
1029 __kernel_primitive:NN \Umathnolimitsupfactor \tex_Umathnolimitsupfactor:D
1030 __kernel_primitive:NN \Umathopbinspacing \tex_Umathopbinspacing:D
1031 __kernel_primitive:NN \Umathopclosespacing \tex_Umathopclosespacing:D
1032 __kernel_primitive:NN \Umathopenbinspacing \tex_Umathopenbinspacing:D
1033 __kernel_primitive:NN \Umathopenclosespacing \tex_Umathopenclosespacing:D
1034 __kernel_primitive:NN \Umathopeninnerspacing \tex_Umathopeninnerspacing:D
1035 __kernel_primitive:NN \Umathopenopenspacing \tex_Umathopenopenspacing:D
1036 __kernel_primitive:NN \Umathopenopspacing \tex_Umathopenopspacing:D
1037 __kernel_primitive:NN \Umathopenordspacing \tex_Umathopenordspacing:D
1038 __kernel_primitive:NN \Umathopenpunctspacing \tex_Umathopenpunctspacing:D

360

1039 __kernel_primitive:NN \Umathopenrelspacing \tex_Umathopenrelspacing:D
1040 __kernel_primitive:NN \Umathoperatorsize \tex_Umathoperatorsize:D
1041 __kernel_primitive:NN \Umathopinnerspacing \tex_Umathopinnerspacing:D
1042 __kernel_primitive:NN \Umathopopenspacing \tex_Umathopopenspacing:D
1043 __kernel_primitive:NN \Umathopopspacing \tex_Umathopopspacing:D
1044 __kernel_primitive:NN \Umathopordspacing \tex_Umathopordspacing:D
1045 __kernel_primitive:NN \Umathoppunctspacing \tex_Umathoppunctspacing:D
1046 __kernel_primitive:NN \Umathoprelspacing \tex_Umathoprelspacing:D
1047 __kernel_primitive:NN \Umathordbinspacing \tex_Umathordbinspacing:D
1048 __kernel_primitive:NN \Umathordclosespacing \tex_Umathordclosespacing:D
1049 __kernel_primitive:NN \Umathordinnerspacing \tex_Umathordinnerspacing:D
1050 __kernel_primitive:NN \Umathordopenspacing \tex_Umathordopenspacing:D
1051 __kernel_primitive:NN \Umathordopspacing \tex_Umathordopspacing:D
1052 __kernel_primitive:NN \Umathordordspacing \tex_Umathordordspacing:D
1053 __kernel_primitive:NN \Umathordpunctspacing \tex_Umathordpunctspacing:D
1054 __kernel_primitive:NN \Umathordrelspacing \tex_Umathordrelspacing:D
1055 __kernel_primitive:NN \Umathoverbarkern \tex_Umathoverbarkern:D
1056 __kernel_primitive:NN \Umathoverbarrule \tex_Umathoverbarrule:D
1057 __kernel_primitive:NN \Umathoverbarvgap \tex_Umathoverbarvgap:D
1058 __kernel_primitive:NN \Umathoverdelimiterbgap
1059 \tex_Umathoverdelimiterbgap:D
1060 __kernel_primitive:NN \Umathoverdelimitervgap
1061 \tex_Umathoverdelimitervgap:D
1062 __kernel_primitive:NN \Umathpunctbinspacing \tex_Umathpunctbinspacing:D
1063 __kernel_primitive:NN \Umathpunctclosespacing
1064 \tex_Umathpunctclosespacing:D
1065 __kernel_primitive:NN \Umathpunctinnerspacing
1066 \tex_Umathpunctinnerspacing:D
1067 __kernel_primitive:NN \Umathpunctopenspacing \tex_Umathpunctopenspacing:D
1068 __kernel_primitive:NN \Umathpunctopspacing \tex_Umathpunctopspacing:D
1069 __kernel_primitive:NN \Umathpunctordspacing \tex_Umathpunctordspacing:D
1070 __kernel_primitive:NN \Umathpunctpunctspacing
1071 \tex_Umathpunctpunctspacing:D
1072 __kernel_primitive:NN \Umathpunctrelspacing \tex_Umathpunctrelspacing:D
1073 __kernel_primitive:NN \Umathquad \tex_Umathquad:D
1074 __kernel_primitive:NN \Umathradicaldegreeafter
1075 \tex_Umathradicaldegreeafter:D
1076 __kernel_primitive:NN \Umathradicaldegreebefore
1077 \tex_Umathradicaldegreebefore:D
1078 __kernel_primitive:NN \Umathradicaldegreeraise
1079 \tex_Umathradicaldegreeraise:D
1080 __kernel_primitive:NN \Umathradicalkern \tex_Umathradicalkern:D
1081 __kernel_primitive:NN \Umathradicalrule \tex_Umathradicalrule:D
1082 __kernel_primitive:NN \Umathradicalvgap \tex_Umathradicalvgap:D
1083 __kernel_primitive:NN \Umathrelbinspacing \tex_Umathrelbinspacing:D
1084 __kernel_primitive:NN \Umathrelclosespacing \tex_Umathrelclosespacing:D
1085 __kernel_primitive:NN \Umathrelinnerspacing \tex_Umathrelinnerspacing:D
1086 __kernel_primitive:NN \Umathrelopenspacing \tex_Umathrelopenspacing:D
1087 __kernel_primitive:NN \Umathrelopspacing \tex_Umathrelopspacing:D
1088 __kernel_primitive:NN \Umathrelordspacing \tex_Umathrelordspacing:D
1089 __kernel_primitive:NN \Umathrelpunctspacing \tex_Umathrelpunctspacing:D
1090 __kernel_primitive:NN \Umathrelrelspacing \tex_Umathrelrelspacing:D
1091 __kernel_primitive:NN \Umathskewedfractionhgap
1092 \tex_Umathskewedfractionhgap:D

361

1093 __kernel_primitive:NN \Umathskewedfractionvgap
1094 \tex_Umathskewedfractionvgap:D
1095 __kernel_primitive:NN \Umathspaceafterscript \tex_Umathspaceafterscript:D
1096 __kernel_primitive:NN \Umathstackdenomdown \tex_Umathstackdenomdown:D
1097 __kernel_primitive:NN \Umathstacknumup \tex_Umathstacknumup:D
1098 __kernel_primitive:NN \Umathstackvgap \tex_Umathstackvgap:D
1099 __kernel_primitive:NN \Umathsubshiftdown \tex_Umathsubshiftdown:D
1100 __kernel_primitive:NN \Umathsubshiftdrop \tex_Umathsubshiftdrop:D
1101 __kernel_primitive:NN \Umathsubsupshiftdown \tex_Umathsubsupshiftdown:D
1102 __kernel_primitive:NN \Umathsubsupvgap \tex_Umathsubsupvgap:D
1103 __kernel_primitive:NN \Umathsubtopmax \tex_Umathsubtopmax:D
1104 __kernel_primitive:NN \Umathsupbottommin \tex_Umathsupbottommin:D
1105 __kernel_primitive:NN \Umathsupshiftdrop \tex_Umathsupshiftdrop:D
1106 __kernel_primitive:NN \Umathsupshiftup \tex_Umathsupshiftup:D
1107 __kernel_primitive:NN \Umathsupsubbottommax \tex_Umathsupsubbottommax:D
1108 __kernel_primitive:NN \Umathunderbarkern \tex_Umathunderbarkern:D
1109 __kernel_primitive:NN \Umathunderbarrule \tex_Umathunderbarrule:D
1110 __kernel_primitive:NN \Umathunderbarvgap \tex_Umathunderbarvgap:D
1111 __kernel_primitive:NN \Umathunderdelimiterbgap
1112 \tex_Umathunderdelimiterbgap:D
1113 __kernel_primitive:NN \Umathunderdelimitervgap
1114 \tex_Umathunderdelimitervgap:D
1115 __kernel_primitive:NN \Umiddle \tex_Umiddle:D
1116 __kernel_primitive:NN \Unosubscript \tex_Unosubscript:D
1117 __kernel_primitive:NN \Unosuperscript \tex_Unosuperscript:D
1118 __kernel_primitive:NN \Uoverdelimiter \tex_Uoverdelimiter:D
1119 __kernel_primitive:NN \Uradical \tex_Uradical:D
1120 __kernel_primitive:NN \Uright \tex_Uright:D
1121 __kernel_primitive:NN \Uroot \tex_Uroot:D
1122 __kernel_primitive:NN \Uskewed \tex_Uskewed:D
1123 __kernel_primitive:NN \Uskewedwithdelims \tex_Uskewedwithdelims:D
1124 __kernel_primitive:NN \Ustack \tex_Ustack:D
1125 __kernel_primitive:NN \Ustartdisplaymath \tex_Ustartdisplaymath:D
1126 __kernel_primitive:NN \Ustartmath \tex_Ustartmath:D
1127 __kernel_primitive:NN \Ustopdisplaymath \tex_Ustopdisplaymath:D
1128 __kernel_primitive:NN \Ustopmath \tex_Ustopmath:D
1129 __kernel_primitive:NN \Usubscript \tex_Usubscript:D
1130 __kernel_primitive:NN \Usuperscript \tex_Usuperscript:D
1131 __kernel_primitive:NN \Uunderdelimiter \tex_Uunderdelimiter:D
1132 __kernel_primitive:NN \Uvextensible \tex_Uvextensible:D

Primitives from pTEX.
1133 __kernel_primitive:NN \autospacing \tex_autospacing:D
1134 __kernel_primitive:NN \autoxspacing \tex_autoxspacing:D
1135 __kernel_primitive:NN \currentcjktoken \tex_currentcjktoken:D
1136 __kernel_primitive:NN \currentspacingmode \tex_currentspacingmode:D
1137 __kernel_primitive:NN \currentxspacingmode \tex_currentxspacingmode:D
1138 __kernel_primitive:NN \disinhibitglue \tex_disinhibitglue:D
1139 __kernel_primitive:NN \dtou \tex_dtou:D
1140 __kernel_primitive:NN \epTeXinputencoding \tex_epTeXinputencoding:D
1141 __kernel_primitive:NN \epTeXversion \tex_epTeXversion:D
1142 __kernel_primitive:NN \euc \tex_euc:D
1143 __kernel_primitive:NN \hfi \tex_hfi:D
1144 __kernel_primitive:NN \ifdbox \tex_ifdbox:D
1145 __kernel_primitive:NN \ifddir \tex_ifddir:D

362

1146 __kernel_primitive:NN \ifjfont \tex_ifjfont:D
1147 __kernel_primitive:NN \ifmbox \tex_ifmbox:D
1148 __kernel_primitive:NN \ifmdir \tex_ifmdir:D
1149 __kernel_primitive:NN \iftbox \tex_iftbox:D
1150 __kernel_primitive:NN \iftfont \tex_iftfont:D
1151 __kernel_primitive:NN \iftdir \tex_iftdir:D
1152 __kernel_primitive:NN \ifybox \tex_ifybox:D
1153 __kernel_primitive:NN \ifydir \tex_ifydir:D
1154 __kernel_primitive:NN \inhibitglue \tex_inhibitglue:D
1155 __kernel_primitive:NN \inhibitxspcode \tex_inhibitxspcode:D
1156 __kernel_primitive:NN \jcharwidowpenalty \tex_jcharwidowpenalty:D
1157 __kernel_primitive:NN \jfam \tex_jfam:D
1158 __kernel_primitive:NN \jfont \tex_jfont:D
1159 __kernel_primitive:NN \jis \tex_jis:D
1160 __kernel_primitive:NN \kanjiskip \tex_kanjiskip:D
1161 __kernel_primitive:NN \kansuji \tex_kansuji:D
1162 __kernel_primitive:NN \kansujichar \tex_kansujichar:D
1163 __kernel_primitive:NN \kcatcode \tex_kcatcode:D
1164 __kernel_primitive:NN \kuten \tex_kuten:D
1165 __kernel_primitive:NN \lastnodechar \tex_lastnodechar:D
1166 __kernel_primitive:NN \lastnodefont \tex_lastnodefont:D
1167 __kernel_primitive:NN \lastnodesubtype \tex_lastnodesubtype:D
1168 __kernel_primitive:NN \noautospacing \tex_noautospacing:D
1169 __kernel_primitive:NN \noautoxspacing \tex_noautoxspacing:D
1170 __kernel_primitive:NN \pagefistretch \tex_pagefistretch:D
1171 __kernel_primitive:NN \postbreakpenalty \tex_postbreakpenalty:D
1172 __kernel_primitive:NN \prebreakpenalty \tex_prebreakpenalty:D
1173 __kernel_primitive:NN \ptexfontname \tex_ptexfontname:D
1174 __kernel_primitive:NN \ptexlineendmode \tex_lineendmode:D
1175 __kernel_primitive:NN \ptexminorversion \tex_ptexminorversion:D
1176 __kernel_primitive:NN \ptexrevision \tex_ptexrevision:D
1177 __kernel_primitive:NN \ptextracingfonts \tex_ptextracingfonts:D
1178 __kernel_primitive:NN \ptexversion \tex_ptexversion:D
1179 __kernel_primitive:NN \readpapersizespecial \tex_readpapersizespecial:D
1180 __kernel_primitive:NN \scriptbaselineshiftfactor
1181 \tex_scriptbaselineshiftfactor:D
1182 __kernel_primitive:NN \scriptscriptbaselineshiftfactor
1183 \tex_scriptscriptbaselineshiftfactor:D
1184 __kernel_primitive:NN \showmode \tex_showmode:D
1185 __kernel_primitive:NN \sjis \tex_sjis:D
1186 __kernel_primitive:NN \tate \tex_tate:D
1187 __kernel_primitive:NN \tbaselineshift \tex_tbaselineshift:D
1188 __kernel_primitive:NN \textbaselineshiftfactor
1189 \tex_textbaselineshiftfactor:D
1190 __kernel_primitive:NN \tfont \tex_tfont:D
1191 __kernel_primitive:NN \tojis \tex_tojis:D
1192 __kernel_primitive:NN \toucs \tex_toucs:D
1193 __kernel_primitive:NN \ucs \tex_ucs:D
1194 __kernel_primitive:NN \xkanjiskip \tex_xkanjiskip:D
1195 __kernel_primitive:NN \xspcode \tex_xspcode:D
1196 __kernel_primitive:NN \ybaselineshift \tex_ybaselineshift:D
1197 __kernel_primitive:NN \yoko \tex_yoko:D
1198 __kernel_primitive:NN \vfi \tex_vfi:D

363

Primitives from upTEX.
1199 __kernel_primitive:NN \disablecjktoken \tex_disablecjktoken:D
1200 __kernel_primitive:NN \enablecjktoken \tex_enablecjktoken:D
1201 __kernel_primitive:NN \forcecjktoken \tex_forcecjktoken:D
1202 __kernel_primitive:NN \kchar \tex_kchar:D
1203 __kernel_primitive:NN \kchardef \tex_kchardef:D
1204 __kernel_primitive:NN \uptexrevision \tex_uptexrevision:D
1205 __kernel_primitive:NN \uptexversion \tex_uptexversion:D

Omega primitives provided by pTEX (listed separately mainly to allow understanding of
their source).

1206 __kernel_primitive:NN \odelcode \tex_odelcode:D
1207 __kernel_primitive:NN \odelimiter \tex_odelimiter:D
1208 __kernel_primitive:NN \omathaccent \tex_omathaccent:D
1209 __kernel_primitive:NN \omathchar \tex_omathchar:D
1210 __kernel_primitive:NN \omathchardef \tex_omathchardef:D
1211 __kernel_primitive:NN \omathcode \tex_omathcode:D
1212 __kernel_primitive:NN \oradical \tex_oradical:D

Newer cross-engine primitives.
1213 __kernel_primitive:NN \partokencontext \tex_partokencontext:D
1214 __kernel_primitive:NN \partokenname \tex_partokenname:D
1215 __kernel_primitive:NN \showstream \tex_showstream:D
1216 __kernel_primitive:NN \tracingstacklevels \tex_tracingstacklevels:D

End of the “just the names” part of the source.
1217 ⟨/names | package⟩
1218 ⟨/names | tex⟩
1219 ⟨∗package⟩
1220 ⟨∗tex⟩

The job is done: close the group (using the primitive renamed!).
1221 \tex_endgroup:D

LATEX 2ε moves a few primitives, so these are sorted out. In newer versions of
LATEX 2ε, expl3 is loaded rather early, so only some primitives are already renamed, so we
need two tests here. At the beginning of the LATEX 2ε format, the primitives \end and
\input are renamed, and only later on the other ones.

1222 \tex_ifdefined:D \@@end
1223 \tex_let:D \tex_end:D \@@end
1224 \tex_let:D \tex_input:D \@@input
1225 \tex_fi:D

If \@@@@hyph is defined, we are loading expl3 in a pre-2020/10/01 release of LATEX 2ε,
so a few other primitives have to be tested as well.

1226 \tex_ifdefined:D \@@hyph
1227 \tex_let:D \tex_everydisplay:D \frozen@everydisplay
1228 \tex_let:D \tex_everymath:D \frozen@everymath
1229 \tex_let:D \tex_hyphen:D \@@hyph
1230 \tex_let:D \tex_italiccorrection:D \@@italiccorr
1231 \tex_let:D \tex_underline:D \@@underline

The \shipout primitive is particularly tricky as a number of packages want to hook
in here. First, we see if a sufficiently-new kernel has saved a copy: if it has, just use
that. Otherwise, we need to check each of the possible packages/classes that might move
it: here, we are looking for those which do not delay action to the \AtBeginDocument

364

hook. (We cannot use \primitive as that doesn’t allow us to make a direct copy of the
primitive itself.) As we know that LATEX 2ε is in use, we use it’s \@tfor loop here.

1232 \tex_ifdefined:D \@@shipout
1233 \tex_let:D \tex_shipout:D \@@shipout
1234 \tex_fi:D
1235 \tex_begingroup:D
1236 \tex_edef:D \l_tmpa_tl { \tex_string:D \shipout }
1237 \tex_edef:D \l_tmpb_tl { \tex_meaning:D \shipout }
1238 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1239 \tex_else:D
1240 \tex_expandafter:D \@tfor \tex_expandafter:D \@tempa \tex_string:D :=
1241 \CROP@shipout
1242 \dup@shipout
1243 \GPTorg@shipout
1244 \LL@shipout
1245 \mem@oldshipout
1246 \opem@shipout
1247 \pgfpages@originalshipout
1248 \pr@shipout
1249 \Shipout
1250 \verso@orig@shipout
1251 \do
1252 {
1253 \tex_edef:D \l_tmpb_tl
1254 { \tex_expandafter:D \tex_meaning:D \@tempa }
1255 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1256 \tex_global:D \tex_expandafter:D \tex_let:D
1257 \tex_expandafter:D \tex_shipout:D \@tempa
1258 \tex_fi:D
1259 }
1260 \tex_fi:D
1261 \tex_endgroup:D

Some tidying up is needed for \(pdf)tracingfonts. Newer LuaTEX has this simply
as \tracingfonts, but that is overwritten by the LATEX 2ε kernel. So any spurious
definition has to be removed, then the real version saved either from the pdfTEX name
or from LuaTEX. In the latter case, we leave \@@tracingfonts available: this might be
useful and almost all LATEX 2ε users will have expl3 loaded by fontspec. (We follow the
usual kernel convention that @@ is used for saved primitives.)

1262 \tex_let:D \tex_tracingfonts:D \tex_undefined:D
1263 \tex_ifdefined:D \pdftracingfonts
1264 \tex_let:D \tex_tracingfonts:D \pdftracingfonts
1265 \tex_else:D
1266 \tex_ifdefined:D \tex_directlua:D
1267 \tex_directlua:D { tex.enableprimitives("@@", {"tracingfonts"}) }
1268 \tex_let:D \tex_tracingfonts:D \@@tracingfonts
1269 \tex_fi:D
1270 \tex_fi:D
1271 \tex_fi:D

Only pdfTEX and LuaTEX define \pdfmapfile and \pdfmapline: Tidy up the fact that
some format-building processes leave a couple of questionable decisions about that!

1272 \tex_ifnum:D 0
1273 \tex_ifdefined:D \tex_pdftexversion:D 1 \tex_fi:D

365

1274 \tex_ifdefined:D \tex_luatexversion:D 1 \tex_fi:D
1275 = 0 %
1276 \tex_let:D \tex_pdfmapfile:D \tex_undefined:D
1277 \tex_let:D \tex_pdfmapline:D \tex_undefined:D
1278 \tex_fi:D

A few packages do unfortunate things to date-related primitives.
1279 \tex_begingroup:D
1280 \tex_edef:D \l_tmpa_tl { \tex_meaning:D \tex_time:D }
1281 \tex_edef:D \l_tmpb_tl { \tex_string:D \time }
1282 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1283 \tex_else:D
1284 \tex_global:D \tex_let:D \tex_time:D \tex_undefined:D
1285 \tex_fi:D
1286 \tex_edef:D \l_tmpa_tl { \tex_meaning:D \tex_day:D }
1287 \tex_edef:D \l_tmpb_tl { \tex_string:D \day }
1288 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1289 \tex_else:D
1290 \tex_global:D \tex_let:D \tex_day:D \tex_undefined:D
1291 \tex_fi:D
1292 \tex_edef:D \l_tmpa_tl { \tex_meaning:D \tex_month:D }
1293 \tex_edef:D \l_tmpb_tl { \tex_string:D \month }
1294 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1295 \tex_else:D
1296 \tex_global:D \tex_let:D \tex_month:D \tex_undefined:D
1297 \tex_fi:D
1298 \tex_edef:D \l_tmpa_tl { \tex_meaning:D \tex_year:D }
1299 \tex_edef:D \l_tmpb_tl { \tex_string:D \year }
1300 \tex_ifx:D \l_tmpa_tl \l_tmpb_tl
1301 \tex_else:D
1302 \tex_global:D \tex_let:D \tex_year:D \tex_undefined:D
1303 \tex_fi:D
1304 \tex_endgroup:D

cslatex moves a couple of primitives which we recover here; as there is no other marker,
we can only work by looking for the names.

1305 \tex_ifdefined:D \orieveryjob
1306 \tex_let:D \tex_everyjob:D \orieveryjob
1307 \tex_fi:D
1308 \tex_ifdefined:D \oripdfoutput
1309 \tex_let:D \tex_pdfoutput:D \oripdfoutput
1310 \tex_fi:D

For ConTEXt, two tests are needed. Both Mark II and Mark IV move several primi-
tives: these are all covered by the first test, again using \end as a marker. For Mark IV,
a few more primitives are moved: they are implemented using some Lua code in the
current ConTEXt.

1311 \tex_ifdefined:D \normalend
1312 \tex_let:D \tex_end:D \normalend
1313 \tex_let:D \tex_everyjob:D \normaleveryjob
1314 \tex_let:D \tex_input:D \normalinput
1315 \tex_let:D \tex_language:D \normallanguage
1316 \tex_let:D \tex_mathop:D \normalmathop
1317 \tex_let:D \tex_month:D \normalmonth
1318 \tex_let:D \tex_outer:D \normalouter

366

1319 \tex_let:D \tex_over:D \normalover
1320 \tex_let:D \tex_vcenter:D \normalvcenter
1321 \tex_let:D \tex_unexpanded:D \normalunexpanded
1322 \tex_let:D \tex_expanded:D \normalexpanded
1323 \tex_fi:D
1324 \tex_ifdefined:D \normalitaliccorrection
1325 \tex_let:D \tex_hoffset:D \normalhoffset
1326 \tex_let:D \tex_italiccorrection:D \normalitaliccorrection
1327 \tex_let:D \tex_voffset:D \normalvoffset
1328 \tex_let:D \tex_showtokens:D \normalshowtokens
1329 \tex_let:D \tex_bodydir:D \spac_directions_normal_body_dir
1330 \tex_let:D \tex_pagedir:D \spac_directions_normal_page_dir
1331 \tex_fi:D
1332 \tex_ifdefined:D \normalleft
1333 \tex_let:D \tex_left:D \normalleft
1334 \tex_let:D \tex_middle:D \normalmiddle
1335 \tex_let:D \tex_right:D \normalright
1336 \tex_fi:D

1337 ⟨/tex⟩

In LuaTEX, we additionally emulate some primitives using Lua code.
1338 ⟨∗lua⟩

\tex_strcmp:D Compare two strings, expanding to 0 if they are equal, -1 if the first one is smaller and
1 if the second one is smaller. Here “smaller” refers to codepoint order which does not
correspond to the user expected order for most non-ASCII strings.

1339 local minus_tok = token_new(string.byte’-’, 12)
1340 local zero_tok = token_new(string.byte’0’, 12)
1341 local one_tok = token_new(string.byte’1’, 12)
1342 luacmd(’tex_strcmp:D’, function()
1343 local first = scan_string()
1344 local second = scan_string()
1345 if first < second then
1346 put_next(minus_tok, one_tok)
1347 else
1348 put_next(first == second and zero_tok or one_tok)
1349 end
1350 end, ’global’)

(End of definition for \tex_strcmp:D.)

\tex_Ucharcat:D Creating arbitrary chars using tex.cprint. The alternative approach using token.new(...)
is about 10% slower but needed to create arbitrary space tokens.

1351 local sprint = tex.sprint
1352 local cprint = tex.cprint
1353 luacmd(’tex_Ucharcat:D’, function()
1354 local charcode = scan_int()
1355 local catcode = scan_int()
1356 if catcode == 10 then
1357 sprint(token_new(charcode, 10))
1358 else
1359 cprint(catcode, utf8_char(charcode))
1360 end
1361 end, ’global’)

367

(End of definition for \tex_Ucharcat:D.)

\tex_filesize:D Wrap the function from ltxutils.
1362 luacmd(’tex_filesize:D’, function()
1363 local size = filesize(scan_string())
1364 if size then write(size) end
1365 end, ’global’)

(End of definition for \tex_filesize:D.)

\tex_mdfivesum:D There are two cases: Either hash a file or a string. Both are already implemented in
l3luatex or built-in.

1366 luacmd(’tex_mdfivesum:D’, function()
1367 local hash
1368 if scan_keyword"file" then
1369 hash = filemd5sum(scan_string())
1370 else
1371 hash = md5_HEX(scan_string())
1372 end
1373 if hash then write(hash) end
1374 end, ’global’)

(End of definition for \tex_mdfivesum:D.)

\tex_filemoddate:D A primitive for getting the modification date of a file.
1375 luacmd(’tex_filemoddate:D’, function()
1376 local date = filemoddate(scan_string())
1377 if date then write(date) end
1378 end, ’global’)

(End of definition for \tex_filemoddate:D.)

\tex_filedump:D An emulated primitive for getting a hexdump from a (partial) file. The length has a
default of 0. This is consistent with pdfTEX, but it effectively makes the primitive
useless without an explicit length. Therefore we allow the keyword whole to be used
instead of a length, indicating that the whole remaining file should be read.

1379 luacmd(’tex_filedump:D’, function()
1380 local offset = scan_keyword’offset’ and scan_int() or nil
1381 local length = scan_keyword’length’ and scan_int()
1382 or not scan_keyword’whole’ and 0 or nil
1383 local data = filedump(scan_string(), offset, length)
1384 if data then write(data) end
1385 end, ’global’)

(End of definition for \tex_filedump:D.)

1386 ⟨/lua⟩

1387 ⟨/package⟩

368

Chapter 41

l3kernel-functions:
kernel-reserved functions

41.1 Internal l3debug kernel functions
These function are only created if debugging is enabled, hence they are actually defined
in l3debug.

__kernel_chk_var_local:N ⟨var⟩
__kernel_chk_var_global:N ⟨var⟩

Applies __kernel_chk_var_exist:N ⟨var⟩ as well as __kernel_chk_var_scope:NN
⟨scope⟩ ⟨var⟩, where ⟨scope⟩ is l or g.

__kernel_chk_var_local:N
__kernel_chk_var_global:N

__kernel_chk_var_scope:NN ⟨scope⟩ ⟨var⟩

Checks the ⟨var⟩ has the correct ⟨scope⟩, and if not raises a kernel-level error. The
⟨scope⟩ is a single letter l, g, c denoting local variables, global variables, or con-
stants. More precisely, if the variable name starts with a letter and an underscore (nor-
mal expl3 convention) the function checks that this single letter matches the ⟨scope⟩.
Otherwise the function cannot know the scope ⟨var⟩ the first time: instead, it defines
__debug_chk_/⟨var name⟩ to store that information for the next call. Thus, if a given
⟨var⟩ is subject to assignments of different scopes a kernel error will result.

__kernel_chk_var_scope:NN

__kernel_chk_cs_exist:N ⟨cs⟩
__kernel_chk_var_exist:N ⟨var⟩
Checks that their argument is defined according to the criteria for \cs_if_exist_p:N,
and if not raises a kernel-level error. Error messages are different.

__kernel_chk_cs_exist:N
__kernel_chk_cs_exist:c
__kernel_chk_var_exist:N

__kernel_chk_flag_exist:NN
⟨function⟩ ⟨flag⟩

__kernel_chk_flag_exist:NN ⋆

Checks that the ⟨flag⟩ is defined according to the criterion for \flag_if_exist_p:N,
and if not raises a kernel-level error and calls the function with the argument \l_tmpa_-
flag to proceed somehow without producing too many errors.

369

__kernel_debug_log:e {⟨message text⟩}

If the log-functions option is active, this function writes the ⟨message text⟩ to the log
file using \iow_log:e. Otherwise, the ⟨message text⟩ is ignored using \use_none:n.

__kernel_debug_log:e

41.2 Internal kernel functions

__kernel_chk_defined:NT ⟨variable⟩ {⟨true code⟩}

If ⟨variable⟩ is not defined (according to \cs_if_exist:NTF), this triggers an error,
otherwise the ⟨true code⟩ is run.

__kernel_chk_defined:NT

__kernel_chk_expr:nNnN {⟨expr⟩} ⟨eval⟩ {⟨convert⟩} ⟨caller⟩

This function is only created if debugging is enabled. By default it is equivalent to
\use_i:nnnn. When expression checking is enabled, it leaves in the input stream the
result of \tex_the:D ⟨eval⟩ ⟨expr⟩ \tex_relax:D after checking that no token was left
over. If any token was not taken as part of the expression, there is an error message
displaying the result of the evaluation as well as the ⟨caller⟩. For instance ⟨eval⟩ can
be __int_eval:w and ⟨caller⟩ can be \int_eval:n or \int_set:Nn. The argument
⟨convert⟩ is empty except for mu expressions where it is \tex_mutoglue:D, used for
internal purposes.

__kernel_chk_expr:nNnN

__kernel_chk_tl_type:NnnT ⟨control sequence⟩ {⟨specific type⟩}
{⟨reconstruction⟩} {⟨true code⟩}

Helper to test that the ⟨control sequence⟩ is a variable of the given ⟨specific type⟩
of token list. Produces suitable error messages if the ⟨control sequence⟩ does not exist,
or if it is not a token list variable at all, or if the ⟨control sequence⟩ differs from the
result of e-expanding ⟨reconstruction⟩. If all of these tests succeed then the ⟨true
code⟩ is run.

__kernel_chk_tl_type:NnnT

__kernel_codepoint_to_bytes:n {⟨codepoint⟩}__kernel_codepoint_to_bytes:n ⋆

Converts the ⟨codepoint⟩ to UTF-8 bytes. The expansion of this function comprises
four brace groups, each of which will contain a hexadecimal value: the appropriate byte.
As UTF-8 is a variable-length, one or more of the groups may be empty: the bytes read
in the logical order, such that a two-byte codepoint will have groups #1 and #2 filled and
#3 and #4 empty.

__kernel_cs_parm_from_arg_count:nnF {⟨follow-on⟩} {⟨args⟩} {⟨false
code⟩}

__kernel_cs_parm_from_arg_count:nnF

Evaluates the number of ⟨args⟩ and leaves the ⟨follow-on⟩ code followed by a brace
group containing the required number of primitive parameter markers (#1, etc.). If the
number of ⟨args⟩ is outside the range [0, 9], the ⟨false code⟩ is inserted instead of the
⟨follow-on⟩.

370

__kernel_dependency_version_check:Nn {⟨\date⟩} {⟨file⟩}
__kernel_dependency_version_check:nn {⟨date⟩} {⟨file⟩}

__kernel_dependency_version_check:Nn
__kernel_dependency_version_check:nn

Checks if the loaded version of the expl3 kernel is at least ⟨date⟩, required by ⟨file⟩.
If the kernel date is older than ⟨date⟩, the loading of ⟨file⟩ is aborted and an error is
raised.

__kernel_deprecation_code:nn {⟨error code⟩} {⟨working code⟩}__kernel_deprecation_code:nn

Stores both an ⟨error⟩ and ⟨working⟩ definition for given material such that they can
be exchanged by \debug_on:n and \debug_off:n.

__kernel_exp_not:w ⟨expandable tokens⟩ {⟨content⟩}

Carries out expansion on the ⟨expandable tokens⟩ before preventing further expansion
of the ⟨content⟩ as for \exp_not:n. Typically, the ⟨expandable tokens⟩ will alter the
nature of the ⟨content⟩, i.e. allow it to be generated in some way.

__kernel_exp_not:w ⋆

\l__kernel_expl_bool A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntaxOff.

(End of definition for \l__kernel_expl_bool.)

\c__kernel_expl_date_tl A token list containing the release date of the l3kernel preloaded in LATEX 2ε used to check
if dependencies match.

(End of definition for \c__kernel_expl_date_tl.)

__kernel_file_missing:n {⟨name⟩}

Expands the ⟨name⟩ as per __kernel_file_name_sanitize:n then produces an error
message indicating that this file was not found.

__kernel_file_missing:n

__kernel_file_name_sanitize:n {⟨name⟩}__kernel_file_name_sanitize:n ⋆

Updated: 2021-04-17

Expands the file name using a \csname-based approach, and relies on active characters
(for example from UTF-8 characters) being properly set up to expand to a expansion-
safe version using \ifcsname. This is less conservative than the token-by-token approach
used before, but it is much faster.

__kernel_file_input_push:n {⟨name⟩}
__kernel_file_input_pop:

__kernel_file_input_push:n
__kernel_file_input_pop:

Used to push and pop data from the internal file stack: needed only in package mode,
where interfacing with the LATEX 2ε kernel is necessary.

__kernel_int_add:nnn {⟨integer1⟩} {⟨integer2⟩} {⟨integer3⟩}

Expands to the result of adding the three ⟨integers⟩ (which must be suitable input
for \int_eval:w), avoiding intermediate overflow. Overflow occurs only if the overall
result is outside [−231 + 1, 231 − 1]. The ⟨integers⟩ may be of the form \int_eval:w
. . . \scan_stop: but may be evaluated more than once.

__kernel_int_add:nnn ⋆

371

__kernel_intarray_gset:Nnn ⟨intarray var⟩ {⟨index⟩} {⟨value⟩}__kernel_intarray_gset:Nnn

New: 2018-03-31

Faster version of \intarray_gset:Nnn. Stores the ⟨value⟩ into the ⟨integer array
variable⟩ at the ⟨position⟩. The ⟨index⟩ and ⟨value⟩ must be suitable for a direct
assignment to a TEX count register, for instance expanding to an integer denotation or
obtained through the primitive \numexpr (which may be un-terminated). No bound
checking is performed: the caller is responsible for ensuring that the ⟨position⟩ is be-
tween 1 and the \intarray_count:N, and the ⟨value⟩’s absolute value is at most 230 −1.
Assignments are always global.

__kernel_intarray_item:Nn ⟨intarray var⟩ {⟨index⟩}__kernel_intarray_item:Nn ⋆

New: 2018-03-31

Faster version of \intarray_item:Nn. Expands to the integer entry stored at the ⟨index⟩
in the ⟨integer array variable⟩. The ⟨index⟩ must be suitable for a direct assignment
to a TEX count register and must be between 1 and the \intarray_count:N, lest a low-
level TEX error occur.

__kernel_intarray_range_to_clist:Nnn ⟨intarray var⟩ {⟨start index⟩}
{⟨end index⟩}

__kernel_intarray_range_to_clist:Nnn ✩

New: 2020-07-12

Converts to integer denotations separated by commas the entries of the ⟨intarray⟩
from positions ⟨start index⟩ to ⟨end index⟩ included. The ⟨start index⟩ and ⟨end
index⟩ must be suitable for a direct assignment to a TEX count register, must be between
1 and the \intarray_count:N, and be suitably ordered. All tokens have category code
other.

__kernel_intarray_gset_range_from_clist:Nnn ⟨intarray var⟩
{⟨start index⟩} {⟨integer clist⟩}

__kernel_intarray_gset_range_from_clist:Nnn

New: 2020-07-12

Stores the entries of the ⟨clist⟩ as entries of the ⟨intarray var⟩ starting from the
⟨start index⟩, upwards. This is done without any bound checking. The ⟨start index⟩
and all entries of the ⟨integer comma list⟩ (which do not undergo space trimming and
brace stripping as in normal clist mappings) must be suitable for a direct assignment to
a TEX count register. An empty entry may stop the loop.

__kernel_ior_open:Nn ⟨stream⟩ {⟨file name⟩}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the ⟨file name⟩, and it does not attempt to add
a ⟨path⟩ to the ⟨file name⟩: it is therefore intended to be used by higher-level functions
which have already fully expanded the ⟨file name⟩ and which need to perform multiple
open or close operations. See for example the implementation of \ior_shell_open:Nn.

__kernel_ior_open:Nn
__kernel_ior_open:No

__kernel_iow_open:Nn ⟨stream⟩ {⟨file name⟩}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the ⟨file name⟩, and it does not attempt to add
a ⟨path⟩ to the ⟨file name⟩: it is therefore intended to be used by higher-level functions
which have already fully expanded the ⟨file name⟩ and which need to perform multiple
open or close operations. See for example the implementation of \iow_shell_open:Nn.

__kernel_iow_open:Nn
__kernel_iow_open:No

372

__kernel_iow_with:Nnn ⟨integer⟩ {⟨value⟩} {⟨code⟩}

If the ⟨integer⟩ is equal to the ⟨value⟩ then this function simply runs the ⟨code⟩.
Otherwise it saves the current value of the ⟨integer⟩, sets it to the ⟨value⟩, runs the
⟨code⟩, and restores the ⟨integer⟩ to its former value. This is used to ensure that the
\newlinechar is 10 when writing to a stream, which lets \iow_newline: work, and that
\errorcontextlines is −1 when displaying a message.

__kernel_iow_with:Nnn

__kernel_kern:n __kernel_kern:n {⟨length⟩}
Inserts a kern of the specified ⟨length⟩, a dimension expression.

(End of definition for __kernel_kern:n.)

__kernel_msg_show_eval:Nn ⟨function⟩ {⟨expression⟩}

Shows or logs the ⟨expression⟩ (turned into a string), an equal sign, and the result of
applying the ⟨function⟩ to the {⟨expression⟩} (with f-expansion). For instance, if the
⟨function⟩ is \int_eval:n and the ⟨expression⟩ is 1+2 then this logs > 1+2=3.

__kernel_msg_show_eval:Nn
__kernel_msg_log_eval:Nn

__kernel_pdf_object_id:n {⟨object⟩}
__kernel_pdf_object_id_indexed:nn {⟨class⟩} {⟨number⟩}

__kernel_pdf_object_id:n ⋆
__kernel_pdf_object_id_indexed:nn ⋆

Expands to the ID of ⟨object⟩ (or object of ⟨number⟩ within the ⟨class⟩), in for example
page resource allocation. Depending on the backend, the result may be the same as
\pdf_object_id:n/\pdf_object_id_indexed:nn.

\g__kernel_prg_map_int This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions \⟨type⟩_map_1:w, \⟨type⟩_map_2:w, etc., labelled by \g__-
kernel_prg_map_int hold functions to be mapped over various list datatypes in inline
and variable mappings.

(End of definition for \g__kernel_prg_map_int.)

373

__kernel_quark_new_test:N \⟨name⟩:⟨arg spec⟩

Defines a quark-test function \⟨name⟩:⟨arg spec⟩ which tests if its argument is \q__-
⟨namespace⟩_recursion_tail, then acts accordingly, as described below for each possi-
ble ⟨arg spec⟩.

The ⟨namespace⟩ is determined as the first (nonempty) _-delimited word in ⟨name⟩
and is used internally in the definition of auxiliaries. The function __kernel_-
quark_new_test:N does not define the \q__⟨namespace⟩_recursion_tail and \q__-
⟨namespace⟩_recursion_stop quarks. They should be manually defined with \quark_-
new:N.

There are 6 different types of quark-test functions. Which one is defined depends on
the ⟨arg spec⟩, which must be one of the options listed now. Four of them are modeled
after \quark_if_recursion_tail:(N|n) and \quark_if_recursion_tail_do:(N|n)n.

n defines \⟨name⟩:n such that it checks if #1 contains only \q__⟨namespace⟩_-
recursion_tail, and if so consumes all tokens up to \q__⟨namespace⟩_recursion_-
stop (c.f. \quark_if_recursion_tail_stop:n).

nn defines \⟨name⟩:nn such that it checks if #1 contains only \q__⟨namespace⟩_-
recursion_tail, and if so consumes all tokens up to \q__⟨namespace⟩_recursion_-
stop, then executes the code #2 after that (c.f. \quark_if_recursion_tail_-
stop_do:nn).

N defines \⟨name⟩:N such that it checks if #1 is \q__⟨namespace⟩_recursion_tail, and
if so consumes all tokens up to \q__⟨namespace⟩_recursion_stop (c.f. \quark_-
if_recursion_tail_stop:N).

Nn defines \⟨name⟩:Nn such that it checks if #1 is \q__⟨namespace⟩_recursion_tail,
and if so consumes all tokens up to \q__⟨namespace⟩_recursion_stop, then exe-
cutes the code #2 after that (c.f. \quark_if_recursion_tail_stop_do:Nn).

The last two are modeled after \quark_if_recursion_tail_break:(n|N)N, and in those
cases the quark \q__⟨namespace⟩_recursion_stop is not used (and thus needs not be
defined).

nN defines \⟨name⟩:nN such that it checks if #1 contains only \q__⟨namespace⟩_-
recursion_tail, and if so uses the \⟨type⟩_map_break: function #2.

NN defines \⟨name⟩:NN such that it checks if #1 is \q__⟨namespace⟩_recursion_tail,
and if so uses the \⟨type⟩_map_break: function #2.

Any other signature, as well as a function without signature are errors, and in such case
the definition is aborted.

__kernel_quark_new_test:N

374

__kernel_quark_new_conditional:Nn __⟨namespace⟩_quark_if_⟨name⟩:⟨arg
spec⟩ {⟨conditions⟩}

__kernel_quark_new_conditional:Nn

Defines a collection of quark conditionals that test if their argument is the quark \q_-
⟨namespace⟩⟨name⟩ and perform suitable actions. The ⟨conditions⟩ are a comma-
separated list of one or more of p, T, F, and TF, and one conditional is defined for each
⟨condition⟩ in the list, as described for \prg_new_conditional:Npnn. The conditionals
are defined using \prg_new_conditional:Npnn, so that their name is obtained by adding
p, T, F, or TF to the base name __⟨namespace⟩_quark_if_⟨name⟩:⟨arg spec⟩.

The first argument of __kernel_quark_new_conditional:Nn must contain _quark_if_
and :, as these markers are used to determine the ⟨name⟩ of the quark \q__⟨namespace⟩_-
⟨name⟩ to be tested. This quark should be manually defined with \quark_new:N, as
__kernel_quark_new_conditional:Nn does not define it.

The function __kernel_quark_new_conditional:Nn can define 2 different types
of quark conditionals. Which one is defined depends on the ⟨arg spec⟩, which must be
one of the following options, modeled after \quark_if_nil:(N|n)(TF).

n defines __⟨namespace⟩_quark_if_⟨name⟩:n(TF) such that it checks if #1 contains
only \q__⟨namespace⟩_⟨name⟩, and executes the proper conditional branch.

N defines __⟨namespace⟩_quark_if_⟨name⟩:N(TF) such that it checks if #1 is \q__-
⟨namespace⟩_⟨name⟩, and executes the proper conditional branch.

Any other signature, as well as a function without signature are errors, and in such case
the definition is aborted.

__kernel_sys_everyjob:

Inserts the internal token list required at the start of every run (job).
__kernel_sys_everyjob:

\c__kernel_randint_max_int Maximal allowed argument to __kernel_randint:n. Equal to 217 − 1.

(End of definition for \c__kernel_randint_max_int.)

__kernel_randint:n {⟨max⟩}

Used in an integer expression this gives a pseudo-random number between 1 and ⟨max⟩
included. One must have ⟨max⟩ ≤ 217 −1. The ⟨max⟩ must be suitable for \int_value:w
(and any \int_eval:w must be terminated by \scan_stop: or equivalent).

__kernel_randint:n

__kernel_randint:nn {⟨min⟩} {⟨max⟩}

Used in an integer expression this gives a pseudo-random number between ⟨min⟩ and
⟨max⟩ included. The ⟨min⟩ and ⟨max⟩ must be suitable for \int_value:w (and any
\int_eval:w must be terminated by \scan_stop: or equivalent). For small ranges
R = ⟨max⟩ − ⟨min⟩ + 1 ≤ 217 − 1, ⟨min⟩ − 1 + __kernel_randint:n{R} is faster.

__kernel_randint:nn

__kernel_register_show:N ⟨register⟩

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

__kernel_register_show:N
__kernel_register_show:c

__kernel_register_log:N ⟨register⟩

Used to write the contents of a TEX register to the log file in a form similar to __kernel_-
register_show:N.

__kernel_register_log:N
__kernel_register_log:c

375

__kernel_str_to_other:n {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨other string⟩, where spaces have category code
“other”. This function can be f-expanded without fear of losing a leading space, since
spaces do not have category code 10 in its result. It takes a time quadratic in the character
count of the string.

__kernel_str_to_other:n ⋆

__kernel_str_to_other_fast:n {⟨token list⟩}__kernel_str_to_other_fast:n ✩

Same behaviour __kernel_str_to_other:n but only restricted-expandable. It takes a
time linear in the character count of the string.

__kernel_tl_to_str:w ⟨expandable tokens⟩ {⟨tokens⟩}

Carries out expansion on the ⟨expandable tokens⟩ before conversion of the ⟨tokens⟩
to a string as describe for \tl_to_str:n. Typically, the ⟨expandable tokens⟩ will alter
the nature of the ⟨tokens⟩, i.e. allow it to be generated in some way. This function
requires only a single expansion.

__kernel_tl_to_str:w ⋆

__kernel_tl_set:Nx ⟨tl var⟩ {⟨tokens⟩}

Fully expands ⟨tokens⟩ and assigns the result to ⟨tl var⟩. ⟨tokens⟩ must be given in
braces and there must be no token between ⟨tl var⟩ and ⟨tokens⟩.

__kernel_tl_set:Nx
__kernel_tl_gset:Nx

__kernel_codepoint_data:nn {⟨type⟩} {⟨codepoint⟩}__kernel_codepoint_data:nn ⋆

Expands to the appropriate value for the ⟨type⟩ of data requested for a ⟨codepoint⟩.
The current list of ⟨types⟩ and results are

lowercase The single codepoint specified by UnicodeData.txt for lowercase mapping
of the codepoint: will be equal to the input ⟨codepoint⟩ if there is no mapping
specified in UnicodeData.txt

uppercase The single codepoint specified by UnicodeData.txt for uppercase mapping
of the codepoint: will be equal to the input ⟨codepoint⟩ if there is no mapping
specified in UnicodeData.txt

__kernel_codepoint_case:nn {⟨mapping⟩} {⟨codepoint⟩}__kernel_codepoint_case:nn ⋆

Expands to a list of three balanced text, of which at least the first will contain a code-
point. This list of up to three codepoints specifies the full case mapping for the input
⟨codepoint⟩. The ⟨mapping⟩ should be one of

• casefold

• lowercase

• titlecase

• uppercase

376

41.3 Kernel backend functions
These functions are required to pass information to the backend. The nature of these
means that they are defined only when the relevant backend is in use.

__kernel_backend_literal:n {⟨content⟩}__kernel_backend_literal:n
__kernel_backend_literal:(e|e)

Adds the ⟨content⟩ literally to the current vertical list as a whatsit. The nature of the
⟨content⟩ will depend on the backend in use.

__kernel_backend_literal_postscript:n {⟨PostScript⟩}__kernel_backend_literal_postscript:n
__kernel_backend_literal_postscript:e

Adds the ⟨PostScript⟩ literally to the current vertical list as a whatsit. No positioning
is applied.

__kernel_backend_literal_pdf:n {⟨PDF instructions⟩}__kernel_backend_literal_pdf:n
__kernel_backend_literal_pdf:e

Adds the ⟨PDF instructions⟩ literally to the current vertical list as a whatsit. No
positioning is applied.

__kernel_backend_literal_svg:n {⟨SVG instructions⟩}__kernel_backend_literal_svg:n
__kernel_backend_literal_svg:e

Adds the ⟨SVG instructions⟩ literally to the current vertical list as a whatsit. No
positioning is applied.

__kernel_backend_postscript:n {⟨PostScript⟩}__kernel_backend_postscript:n
__kernel_backend_postscript:e

Adds the ⟨PostScript⟩ to the current vertical list as a whatsit. The PostScript reference
point is adjusted to match the current position. The PostScript is inserted inside a
SDict begin/end pair.

__kernel_backend_align_begin:
⟨PostScript literals⟩
__kernel_backend_align_end:

__kernel_backend_align_begin:
__kernel_backend_align_end:

Arranges to align the PostScript and DVI current positions and scales.

__kernel_backend_scope_begin:
⟨content⟩
__kernel_backend_scope_end:

__kernel_backend_scope_begin:
__kernel_backend_scope_end:

Creates a scope for instructions at the backend level.

__kernel_backend_matrix:n {⟨matrix⟩}

Applies the ⟨matrix⟩ to the current transformation matrix.
__kernel_backend_matrix:n
__kernel_backend_matrix:e

\g__kernel_backend_header_bool

Specifies whether to write headers for the backend.

377

The color stack used in pdfTEX and LuaTEX for the main color.\l__kernel_color_stack_int

378

Chapter 42

l3basics implementation

1388 ⟨∗package⟩

42.1 Renaming some TEX primitives (again)
Having given all the TEX primitives a consistent name, we need to give sensible names
to the ones we actually want to use. These will be defined as needed in the appropriate
modules, but we do a few now, just to get started.8

\if_true:
\if_false:

\or:
\else:
\fi:

\reverse_if:N
\if:w

\if_charcode:w
\if_catcode:w
\if_meaning:w

Then some conditionals.
1389 \tex_global:D \tex_let:D \if_true: \tex_iftrue:D
1390 \tex_global:D \tex_let:D \if_false: \tex_iffalse:D
1391 \tex_global:D \tex_let:D \or: \tex_or:D
1392 \tex_global:D \tex_let:D \else: \tex_else:D
1393 \tex_global:D \tex_let:D \fi: \tex_fi:D
1394 \tex_global:D \tex_let:D \reverse_if:N \tex_unless:D
1395 \tex_global:D \tex_let:D \if:w \tex_if:D
1396 \tex_global:D \tex_let:D \if_charcode:w \tex_if:D
1397 \tex_global:D \tex_let:D \if_catcode:w \tex_ifcat:D
1398 \tex_global:D \tex_let:D \if_meaning:w \tex_ifx:D
1399 \tex_global:D \tex_let:D \if_bool:N \tex_ifodd:D

(End of definition for \if_true: and others. These functions are documented on page 29.)

\if_mode_math:
\if_mode_horizontal:
\if_mode_vertical:

\if_mode_inner:

TEX lets us detect some if its modes.
1400 \tex_global:D \tex_let:D \if_mode_math: \tex_ifmmode:D
1401 \tex_global:D \tex_let:D \if_mode_horizontal: \tex_ifhmode:D
1402 \tex_global:D \tex_let:D \if_mode_vertical: \tex_ifvmode:D
1403 \tex_global:D \tex_let:D \if_mode_inner: \tex_ifinner:D

(End of definition for \if_mode_math: and others. These functions are documented on page 30.)

\if_cs_exist:N
\if_cs_exist:w

\cs:w
\cs_end:

Building csnames and testing if control sequences exist.
1404 \tex_global:D \tex_let:D \if_cs_exist:N \tex_ifdefined:D
1405 \tex_global:D \tex_let:D \if_cs_exist:w \tex_ifcsname:D
1406 \tex_global:D \tex_let:D \cs:w \tex_csname:D
1407 \tex_global:D \tex_let:D \cs_end: \tex_endcsname:D

8This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use
the \tex_...:D name in the cases where no good alternative exists.

379

(End of definition for \if_cs_exist:N and others. These functions are documented on page 30.)

\exp_after:wN
\exp_not:N
\exp_not:n

The five \exp_ functions are used in the l3expan module where they are described.
1408 \tex_global:D \tex_let:D \exp_after:wN \tex_expandafter:D
1409 \tex_global:D \tex_let:D \exp_not:N \tex_noexpand:D
1410 \tex_global:D \tex_let:D \exp_not:n \tex_unexpanded:D
1411 \tex_global:D \tex_let:D \exp:w \tex_romannumeral:D
1412 \tex_global:D \tex_chardef:D \exp_end: = 0 ~

(End of definition for \exp_after:wN , \exp_not:N , and \exp_not:n. These functions are documented
on page 40.)

\token_to_meaning:N
\cs_meaning:N

Examining a control sequence or token.
1413 \tex_global:D \tex_let:D \token_to_meaning:N \tex_meaning:D
1414 \tex_global:D \tex_let:D \cs_meaning:N \tex_meaning:D

(End of definition for \token_to_meaning:N and \cs_meaning:N. These functions are documented on
page 206.)

\tl_to_str:n
\token_to_str:N

__kernel_tl_to_str:w

Making strings.
1415 \tex_global:D \tex_let:D \tl_to_str:n \tex_detokenize:D
1416 \tex_global:D \tex_let:D \token_to_str:N \tex_string:D
1417 \tex_global:D \tex_let:D __kernel_tl_to_str:w \tex_detokenize:D

(End of definition for \tl_to_str:n , \token_to_str:N , and __kernel_tl_to_str:w. These functions
are documented on page 118.)

\scan_stop:
\group_begin:

\group_end:

The next three are basic functions for which there also exist versions that are safe inside
alignments. These safe versions are defined in the l3prg module.

1418 \tex_global:D \tex_let:D \scan_stop: \tex_relax:D
1419 \tex_global:D \tex_let:D \group_begin: \tex_begingroup:D
1420 \tex_global:D \tex_let:D \group_end: \tex_endgroup:D

(End of definition for \scan_stop: , \group_begin: , and \group_end:. These functions are documented
on page 14.)

1421 ⟨@@=int⟩

\if_int_compare:w
__int_to_roman:w

For integers.
1422 \tex_global:D \tex_let:D \if_int_compare:w \tex_ifnum:D
1423 \tex_global:D \tex_let:D __int_to_roman:w \tex_romannumeral:D

(End of definition for \if_int_compare:w and __int_to_roman:w. This function is documented on page
184.)

\group_insert_after:N Adding material after the end of a group.
1424 \tex_global:D \tex_let:D \group_insert_after:N \tex_aftergroup:D

(End of definition for \group_insert_after:N. This function is documented on page 15.)

\exp_args:Nc
\exp_args:cc

Discussed in l3expan, but needed much earlier.
1425 \tex_long:D \tex_gdef:D \exp_args:Nc #1#2
1426 { \exp_after:wN #1 \cs:w #2 \cs_end: }
1427 \tex_long:D \tex_gdef:D \exp_args:cc #1#2
1428 { \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }

(End of definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 37.)

380

\token_to_meaning:c
\token_to_str:c
\cs_meaning:c

A small number of variants defined by hand. Some of the necessary functions (\use_-
i:nn, \use_ii:nn, and \exp_args:NNc) are not defined at that point yet, but will be
defined before those variants are used. The \cs_meaning:c command must check for an
undefined control sequence to avoid defining it mistakenly.

1429 \tex_gdef:D \token_to_str:c { \exp_args:Nc \token_to_str:N }
1430 \tex_long:D \tex_gdef:D \cs_meaning:c #1
1431 {
1432 \if_cs_exist:w #1 \cs_end:
1433 \exp_after:wN \use_i:nn
1434 \else:
1435 \exp_after:wN \use_ii:nn
1436 \fi:
1437 { \exp_args:Nc \cs_meaning:N {#1} }
1438 { \tl_to_str:n {undefined} }
1439 }
1440 \tex_global:D \tex_let:D \token_to_meaning:c = \cs_meaning:c

(End of definition for \token_to_meaning:N. This function is documented on page 206.)

42.2 Defining some constants
\c_zero_int We need the constant \c_zero_int which is used by some functions in current module.

The rest are defined in the l3int module – at least for the ones that can be defined
with \tex_chardef:D or \tex_mathchardef:D. For other constants the l3int module is
required but it can’t be used until the allocation has been set up properly!

1441 \tex_global:D \tex_chardef:D \c_zero_int = 0 ~

(End of definition for \c_zero_int. This variable is documented on page 183.)

\c_max_register_int This is here as this particular integer is needed in modules loaded before l3int, and is
documented in l3int. LuaTEX and those which contain parts of the Omega extensions
have more registers available than ε-TEX.

1442 \tex_ifdefined:D \tex_luatexversion:D
1443 \tex_global:D \tex_chardef:D \c_max_register_int = 65 535 ~
1444 \tex_else:D
1445 \tex_ifdefined:D \tex_omathchardef:D
1446 \tex_global:D \tex_omathchardef:D \c_max_register_int = 65535 ~
1447 \tex_else:D
1448 \tex_global:D \tex_mathchardef:D \c_max_register_int = 32767 ~
1449 \tex_fi:D
1450 \tex_fi:D

(End of definition for \c_max_register_int. This variable is documented on page 183.)

42.3 Defining functions
We start by providing functions for the typical definition functions. First the global ones.

\cs_gset_nopar:Npn
\cs_gset_nopar:Npe
\cs_gset_nopar:Npx

\cs_gset:Npn
\cs_gset:Npe
\cs_gset:Npx

\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:Npx

\cs_gset_protected:Npn
\cs_gset_protected:Npe
\cs_gset_protected:Npx

All assignment functions in LATEX3 should be naturally protected; after all, the TEX
primitives for assignments are and it can be a cause of problems if others aren’t.

1451 \tex_global:D \tex_let:D \cs_gset_nopar:Npn \tex_gdef:D
1452 \tex_global:D \tex_let:D \cs_gset_nopar:Npe \tex_xdef:D

381

1453 \tex_global:D \tex_let:D \cs_gset_nopar:Npx \tex_xdef:D
1454 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset:Npn
1455 { \tex_long:D \tex_gdef:D }
1456 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset:Npe
1457 { \tex_long:D \tex_xdef:D }
1458 \tex_global:D \tex_let:D \cs_gset:Npx \cs_gset:Npe
1459 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset_protected_nopar:Npn
1460 { \tex_protected:D \tex_gdef:D }
1461 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset_protected_nopar:Npe
1462 { \tex_protected:D \tex_xdef:D }
1463 \tex_global:D \tex_let:D \cs_gset_protected_nopar:Npx \cs_gset_protected_nopar:Npe
1464 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset_protected:Npn
1465 { \tex_protected:D \tex_long:D \tex_gdef:D }
1466 \tex_protected:D \tex_long:D \tex_gdef:D \cs_gset_protected:Npe
1467 { \tex_protected:D \tex_long:D \tex_xdef:D }
1468 \tex_global:D \tex_let:D \cs_gset_protected:Npx \cs_gset_protected:Npe

(End of definition for \cs_gset_nopar:Npn and others. These functions are documented on page 18.)

\cs_set_nopar:Npn
\cs_set_nopar:Npe
\cs_set_nopar:Npx

\cs_set:Npn
\cs_set:Npe
\cs_set:Npx

\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:Npe
\cs_set_protected_nopar:Npx

\cs_set_protected:Npn
\cs_set_protected:Npe
\cs_set_protected:Npx

Local versions of the above functions.
1469 \tex_global:D \tex_let:D \cs_set_nopar:Npn \tex_def:D
1470 \tex_global:D \tex_let:D \cs_set_nopar:Npe \tex_edef:D
1471 \tex_global:D \tex_let:D \cs_set_nopar:Npx \tex_edef:D
1472 \cs_gset_protected:Npn \cs_set:Npn
1473 { \tex_long:D \tex_def:D }
1474 \cs_gset_protected:Npn \cs_set:Npe
1475 { \tex_long:D \tex_edef:D }
1476 \tex_global:D \tex_let:D \cs_set:Npx \cs_set:Npe
1477 \cs_gset_protected:Npn \cs_set_protected_nopar:Npn
1478 { \tex_protected:D \tex_def:D }
1479 \cs_gset_protected:Npn \cs_set_protected_nopar:Npe
1480 { \tex_protected:D \tex_edef:D }
1481 \tex_global:D \tex_let:D \cs_set_protected_nopar:Npx \cs_set_protected_nopar:Npe
1482 \cs_gset_protected:Npn \cs_set_protected:Npn
1483 { \tex_protected:D \tex_long:D \tex_def:D }
1484 \cs_gset_protected:Npn \cs_set_protected:Npe
1485 { \tex_protected:D \tex_long:D \tex_edef:D }
1486 \tex_global:D \tex_let:D \cs_set_protected:Npx \cs_set_protected:Npe

(End of definition for \cs_set_nopar:Npn and others. These functions are documented on page 17.)

42.4 Selecting tokens
1487 ⟨@@=exp⟩

\l__exp_internal_tl Scratch token list variable for l3expan, used by \use:x, used in defining conditionals. We
don’t use tl methods because l3basics is loaded earlier.

1488 \cs_gset_nopar:Npn \l__exp_internal_tl { }

(End of definition for \l__exp_internal_tl.)

\use:c This macro grabs its argument and returns a csname from it.
1489 \cs_gset:Npn \use:c #1 { \cs:w #1 \cs_end: }

(End of definition for \use:c. This function is documented on page 22.)

382

\use:x Fully expands its argument and passes it to the input stream. Uses the reserved \l__-
exp_internal_tl which we’ve set up above.

1490 \cs_gset_protected:Npn \use:x #1
1491 {
1492 \cs_set_nopar:Npx \l__exp_internal_tl {#1}
1493 \l__exp_internal_tl
1494 }

(End of definition for \use:x.)

1495 ⟨@@=use⟩

\use:e

1496 \cs_gset:Npn \use:e #1 { \tex_expanded:D {#1} }

(End of definition for \use:e. This function is documented on page 27.)

1497 ⟨@@=exp⟩

\use:n
\use:nn
\use:nnn
\use:nnnn

These macros grab their arguments and return them back to the input (with outer braces
removed).

1498 \cs_gset:Npn \use:n #1 {#1}
1499 \cs_gset:Npn \use:nn #1#2 {#1#2}
1500 \cs_gset:Npn \use:nnn #1#2#3 {#1#2#3}
1501 \cs_gset:Npn \use:nnnn #1#2#3#4 {#1#2#3#4}

(End of definition for \use:n and others. These functions are documented on page 25.)

\use_i:nn
\use_ii:nn

The equivalent to LATEX 2ε’s \@firstoftwo and \@secondoftwo.
1502 \cs_gset:Npn \use_i:nn #1#2 {#1}
1503 \cs_gset:Npn \use_ii:nn #1#2 {#2}

(End of definition for \use_i:nn and \use_ii:nn. These functions are documented on page 26.)

\use_i:nnn
\use_ii:nnn
\use_iii:nnn
\use_i:nnnn
\use_ii:nnnn

\use_iii:nnnn
\use_iv:nnnn
\use_i:nnnnn

\use_ii:nnnnn
\use_iii:nnnnn
\use_iv:nnnnn
\use_v:nnnnn

\use_i:nnnnnn
\use_ii:nnnnnn
\use_iii:nnnnnn
\use_iv:nnnnnn
\use_v:nnnnnn
\use_vi:nnnnnn
\use_i:nnnnnnn
\use_ii:nnnnnnn

\use_iii:nnnnnnn
\use_iv:nnnnnnn
\use_v:nnnnnnn
\use_vi:nnnnnnn

\use_vii:nnnnnnn
\use_i:nnnnnnnn

\use_ii:nnnnnnnn
\use_iii:nnnnnnnn
\use_iv:nnnnnnnn
\use_v:nnnnnnnn

\use_vi:nnnnnnnn
\use_vii:nnnnnnnn
\use_viii:nnnnnnnn
\use_i:nnnnnnnnn
\use_ii:nnnnnnnnn
\use_iii:nnnnnnnnn
\use_iv:nnnnnnnnn
\use_v:nnnnnnnnn
\use_vi:nnnnnnnnn
\use_vii:nnnnnnnnn

\use_viii:nnnnnnnnn
\use_ix:nnnnnnnnn

We also need something for picking up arguments from a longer list.
1504 \cs_gset:Npn \use_i:nnn #1#2#3 {#1}
1505 \cs_gset:Npn \use_ii:nnn #1#2#3 {#2}
1506 \cs_gset:Npn \use_iii:nnn #1#2#3 {#3}
1507 \cs_gset:Npn \use_i:nnnn #1#2#3#4 {#1}
1508 \cs_gset:Npn \use_ii:nnnn #1#2#3#4 {#2}
1509 \cs_gset:Npn \use_iii:nnnn #1#2#3#4 {#3}
1510 \cs_gset:Npn \use_iv:nnnn #1#2#3#4 {#4}
1511 \cs_gset:Npn \use_i:nnnnn #1#2#3#4#5 {#1}
1512 \cs_gset:Npn \use_ii:nnnnn #1#2#3#4#5 {#2}
1513 \cs_gset:Npn \use_iii:nnnnn #1#2#3#4#5 {#3}
1514 \cs_gset:Npn \use_iv:nnnnn #1#2#3#4#5 {#4}
1515 \cs_gset:Npn \use_v:nnnnn #1#2#3#4#5 {#5}
1516 \cs_gset:Npn \use_i:nnnnnn #1#2#3#4#5#6 {#1}
1517 \cs_gset:Npn \use_ii:nnnnnn #1#2#3#4#5#6 {#2}
1518 \cs_gset:Npn \use_iii:nnnnnn #1#2#3#4#5#6 {#3}
1519 \cs_gset:Npn \use_iv:nnnnnn #1#2#3#4#5#6 {#4}
1520 \cs_gset:Npn \use_v:nnnnnn #1#2#3#4#5#6 {#5}
1521 \cs_gset:Npn \use_vi:nnnnnn #1#2#3#4#5#6 {#6}
1522 \cs_gset:Npn \use_i:nnnnnnn #1#2#3#4#5#6#7 {#1}
1523 \cs_gset:Npn \use_ii:nnnnnnn #1#2#3#4#5#6#7 {#2}
1524 \cs_gset:Npn \use_iii:nnnnnnn #1#2#3#4#5#6#7 {#3}

383

1525 \cs_gset:Npn \use_iv:nnnnnnn #1#2#3#4#5#6#7 {#4}
1526 \cs_gset:Npn \use_v:nnnnnnn #1#2#3#4#5#6#7 {#5}
1527 \cs_gset:Npn \use_vi:nnnnnnn #1#2#3#4#5#6#7 {#6}
1528 \cs_gset:Npn \use_vii:nnnnnnn #1#2#3#4#5#6#7 {#7}
1529 \cs_gset:Npn \use_i:nnnnnnnn #1#2#3#4#5#6#7#8 {#1}
1530 \cs_gset:Npn \use_ii:nnnnnnnn #1#2#3#4#5#6#7#8 {#2}
1531 \cs_gset:Npn \use_iii:nnnnnnnn #1#2#3#4#5#6#7#8 {#3}
1532 \cs_gset:Npn \use_iv:nnnnnnnn #1#2#3#4#5#6#7#8 {#4}
1533 \cs_gset:Npn \use_v:nnnnnnnn #1#2#3#4#5#6#7#8 {#5}
1534 \cs_gset:Npn \use_vi:nnnnnnnn #1#2#3#4#5#6#7#8 {#6}
1535 \cs_gset:Npn \use_vii:nnnnnnnn #1#2#3#4#5#6#7#8 {#7}
1536 \cs_gset:Npn \use_viii:nnnnnnnn #1#2#3#4#5#6#7#8 {#8}
1537 \cs_gset:Npn \use_i:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#1}
1538 \cs_gset:Npn \use_ii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#2}
1539 \cs_gset:Npn \use_iii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#3}
1540 \cs_gset:Npn \use_iv:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#4}
1541 \cs_gset:Npn \use_v:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#5}
1542 \cs_gset:Npn \use_vi:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#6}
1543 \cs_gset:Npn \use_vii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#7}
1544 \cs_gset:Npn \use_viii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#8}
1545 \cs_gset:Npn \use_ix:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#9}

(End of definition for \use_i:nnn and others. These functions are documented on page 26.)

\use_i_ii:nnn

1546 \cs_gset:Npn \use_i_ii:nnn #1#2#3 {#1#2}

(End of definition for \use_i_ii:nnn. This function is documented on page 27.)

\use_ii_i:nn

1547 \cs_gset:Npn \use_ii_i:nn #1#2 { #2 #1 }

(End of definition for \use_ii_i:nn. This function is documented on page 27.)

\use_none_delimit_by_q_nil:w
\use_none_delimit_by_q_stop:w

\use_none_delimit_by_q_recursion_stop:w

Functions that gobble everything until they see either \q_nil, \q_stop, or \q_-
recursion_stop, respectively.

1548 \cs_gset:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
1549 \cs_gset:Npn \use_none_delimit_by_q_stop:w #1 \q_stop { }
1550 \cs_gset:Npn \use_none_delimit_by_q_recursion_stop:w #1 \q_recursion_stop { }

(End of definition for \use_none_delimit_by_q_nil:w , \use_none_delimit_by_q_stop:w , and \use_-
none_delimit_by_q_recursion_stop:w. These functions are documented on page 27.)

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw

\use_i_delimit_by_q_recursion_stop:nw

Same as above but execute first argument after gobbling. Very useful when you need to
skip the rest of a mapping sequence but want an easy way to control what should be
expanded next.

1551 \cs_gset:Npn \use_i_delimit_by_q_nil:nw #1#2 \q_nil {#1}
1552 \cs_gset:Npn \use_i_delimit_by_q_stop:nw #1#2 \q_stop {#1}
1553 \cs_gset:Npn \use_i_delimit_by_q_recursion_stop:nw
1554 #1#2 \q_recursion_stop {#1}

(End of definition for \use_i_delimit_by_q_nil:nw , \use_i_delimit_by_q_stop:nw , and \use_i_-
delimit_by_q_recursion_stop:nw. These functions are documented on page 28.)

384

42.5 Gobbling tokens from input
\use_none:n
\use_none:nn

\use_none:nnn
\use_none:nnnn
\use_none:nnnnn

\use_none:nnnnnn
\use_none:nnnnnnn
\use_none:nnnnnnnn

\use_none:nnnnnnnnn

To gobble tokens from the input we use a standard naming convention: the number of
tokens gobbled is given by the number of n’s following the : in the name. Although we
could define functions to remove ten arguments or more using separate calls of \use_-
none:nnnnn, this is very non-intuitive to the programmer who will assume that expanding
such a function once takes care of gobbling all the tokens in one go.

1555 \cs_gset:Npn \use_none:n #1 { }
1556 \cs_gset:Npn \use_none:nn #1#2 { }
1557 \cs_gset:Npn \use_none:nnn #1#2#3 { }
1558 \cs_gset:Npn \use_none:nnnn #1#2#3#4 { }
1559 \cs_gset:Npn \use_none:nnnnn #1#2#3#4#5 { }
1560 \cs_gset:Npn \use_none:nnnnnn #1#2#3#4#5#6 { }
1561 \cs_gset:Npn \use_none:nnnnnnn #1#2#3#4#5#6#7 { }
1562 \cs_gset:Npn \use_none:nnnnnnnn #1#2#3#4#5#6#7#8 { }
1563 \cs_gset:Npn \use_none:nnnnnnnnn #1#2#3#4#5#6#7#8#9 { }

(End of definition for \use_none:n and others. These functions are documented on page 27.)

42.6 Debugging and patching later definitions
1564 ⟨@@=debug⟩

__kernel_if_debug:TF A more meaningful test of whether debugging is enabled than messing up with guards.
We can also more easily change the logic in one place then. This is needed primarily for
deprecations.

1565 \cs_gset_protected:Npn __kernel_if_debug:TF #1#2 {#2}

(End of definition for __kernel_if_debug:TF.)

\debug_on:n
\debug_off:n

Stubs.
1566 \cs_gset_protected:Npn \debug_on:n #1
1567 {
1568 \sys_load_debug:
1569 \cs_if_exist:NT __debug_all_on:
1570 { \debug_on:n {#1} }
1571 }
1572 \cs_gset_protected:Npn \debug_off:n #1
1573 {
1574 \sys_load_debug:
1575 \cs_if_exist:NT __debug_all_on:
1576 { \debug_off:n {#1} }
1577 }

(End of definition for \debug_on:n and \debug_off:n. These functions are documented on page 31.)

\debug_suspend:
\debug_resume: 1578 \cs_gset_protected:Npn \debug_suspend: { }

1579 \cs_gset_protected:Npn \debug_resume: { }

(End of definition for \debug_suspend: and \debug_resume:. These functions are documented on page
31.)

385

__kernel_deprecation_code:nn
\g__debug_deprecation_on_tl
\g__debug_deprecation_off_tl

Make deprecated commands throw errors if the user requests it. This relies on two token
lists, filled up in l3deprecation.

1580 \cs_gset_nopar:Npn \g__debug_deprecation_on_tl { }
1581 \cs_gset_nopar:Npn \g__debug_deprecation_off_tl { }
1582 \cs_gset_protected:Npn __kernel_deprecation_code:nn #1#2
1583 {
1584 \tl_gput_right:Nn \g__debug_deprecation_on_tl {#1}
1585 \tl_gput_right:Nn \g__debug_deprecation_off_tl {#2}
1586 }

(End of definition for __kernel_deprecation_code:nn , \g__debug_deprecation_on_tl , and \g__-
debug_deprecation_off_tl.)

42.7 Conditional processing and definitions
1587 ⟨@@=prg⟩

Underneath any predicate function (_p) or other conditional forms (TF, etc.) is a
built-in logic saying that it after all of the testing and processing must return the ⟨state⟩
this leaves TEX in. Therefore, a simple user interface could be something like
\if_meaning:w #1#2
\prg_return_true:

\else:
\if_meaning:w #1#3
\prg_return_true:

\else:
\prg_return_false:

\fi:
\fi:

Usually, a TEX programmer would have to insert a number of \exp_after:wNs to ensure
the state value is returned at exactly the point where the last conditional is finished.
However, that obscures the code and forces the TEX programmer to prove that he/she
knows the 2n − 1 table. We therefore provide the simpler interface.

\prg_return_true:
\prg_return_false:

The idea here is that \exp:w expands fully any \else: and \fi: that are waiting to be
discarded, before reaching the \exp_end: which leaves an empty expansion. The code
can then leave either the first or second argument in the input stream. This means that
all of the branching code has to contain at least two tokens: see how the logical tests are
actually implemented to see this.

1588 \cs_gset:Npn \prg_return_true:
1589 { \exp_after:wN \use_i:nn \exp:w }
1590 \cs_gset:Npn \prg_return_false:
1591 { \exp_after:wN \use_ii:nn \exp:w}

An extended state space could be implemented by including a more elaborate function
in place of \use_i:nn/\use_ii:nn. Provided two arguments are absorbed then the code
would work.

(End of definition for \prg_return_true: and \prg_return_false:. These functions are documented
on page 66.)

386

__prg_use_none_delimit_by_q_recursion_stop:w Private version of \use_none_delimit_by_q_recursion_stop:w.
1592 \cs_gset:Npn __prg_use_none_delimit_by_q_recursion_stop:w
1593 #1 \q__prg_recursion_stop { }

(End of definition for __prg_use_none_delimit_by_q_recursion_stop:w.)

\prg_set_conditional:Npnn
\prg_gset_conditional:Npnn
\prg_new_conditional:Npnn

\prg_set_protected_conditional:Npnn
\prg_gset_protected_conditional:Npnn
\prg_new_protected_conditional:Npnn

__prg_generate_conditional_parm:NNNpnn

The user functions for the types using parameter text from the programmer. The various
functions only differ by which function is used for the assignment. For those Npnn type
functions, we must grab the parameter text, reading everything up to a left brace before
continuing. Then split the base function into name and signature, and feed {⟨name⟩}
{⟨signature⟩} ⟨boolean⟩ {⟨set or new⟩} {⟨maybe protected⟩} {⟨parameters⟩} {TF,...}
{⟨code⟩} to the auxiliary function responsible for defining all conditionals. Note that e
stands for expandable and p for protected.

1594 \cs_gset_protected:Npn \prg_set_conditional:Npnn
1595 { __prg_generate_conditional_parm:NNNpnn \cs_set:Npn e }
1596 \cs_gset_protected:Npn \prg_gset_conditional:Npnn
1597 { __prg_generate_conditional_parm:NNNpnn \cs_gset:Npn e }
1598 \cs_gset_protected:Npn \prg_new_conditional:Npnn
1599 { __prg_generate_conditional_parm:NNNpnn \cs_new:Npn e }
1600 \cs_gset_protected:Npn \prg_set_protected_conditional:Npnn
1601 { __prg_generate_conditional_parm:NNNpnn \cs_set_protected:Npn p }
1602 \cs_gset_protected:Npn \prg_gset_protected_conditional:Npnn
1603 { __prg_generate_conditional_parm:NNNpnn \cs_gset_protected:Npn p }
1604 \cs_gset_protected:Npn \prg_new_protected_conditional:Npnn
1605 { __prg_generate_conditional_parm:NNNpnn \cs_new_protected:Npn p }
1606 \cs_gset_protected:Npn __prg_generate_conditional_parm:NNNpnn #1#2#3#4#
1607 {
1608 \use:e
1609 {
1610 __prg_generate_conditional:nnNNNnnn
1611 \cs_split_function:N #3
1612 }
1613 #1 #2 {#4}
1614 }

(End of definition for \prg_set_conditional:Npnn and others. These functions are documented on page
65.)

\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn
\prg_new_conditional:Nnn

\prg_set_protected_conditional:Nnn
\prg_gset_protected_conditional:Nnn
\prg_new_protected_conditional:Nnn

__prg_generate_conditional_count:NNNnn
__prg_generate_conditional_count:nnNNNnn

The user functions for the types automatically inserting the correct parameter text based
on the signature. The various functions only differ by which function is used for the
assignment. Split the base function into name and signature. The second auxiliary
generates the parameter text from the number of letters in the signature. Then feed
{⟨name⟩} {⟨signature⟩} ⟨boolean⟩ {⟨set or new⟩} {⟨maybe protected⟩} {⟨parameters⟩}
{TF,...} {⟨code⟩} to the auxiliary function responsible for defining all conditionals. If
the ⟨signature⟩ has more than 9 letters, the definition is aborted since TEX macros have
at most 9 arguments. The erroneous case where the function name contains no colon is
captured later.

1615 \cs_gset_protected:Npn \prg_set_conditional:Nnn
1616 { __prg_generate_conditional_count:NNNnn \cs_set:Npn e }
1617 \cs_gset_protected:Npn \prg_gset_conditional:Nnn
1618 { __prg_generate_conditional_count:NNNnn \cs_set:Npn e }
1619 \cs_gset_protected:Npn \prg_new_conditional:Nnn
1620 { __prg_generate_conditional_count:NNNnn \cs_new:Npn e }

387

1621 \cs_gset_protected:Npn \prg_set_protected_conditional:Nnn
1622 { __prg_generate_conditional_count:NNNnn \cs_set_protected:Npn p }
1623 \cs_gset_protected:Npn \prg_gset_protected_conditional:Nnn
1624 { __prg_generate_conditional_count:NNNnn \cs_gset_protected:Npn p }
1625 \cs_gset_protected:Npn \prg_new_protected_conditional:Nnn
1626 { __prg_generate_conditional_count:NNNnn \cs_new_protected:Npn p }
1627 \cs_gset_protected:Npn __prg_generate_conditional_count:NNNnn #1#2#3
1628 {
1629 \use:e
1630 {
1631 __prg_generate_conditional_count:nnNNNnn
1632 \cs_split_function:N #3
1633 }
1634 #1 #2
1635 }
1636 \cs_gset_protected:Npn __prg_generate_conditional_count:nnNNNnn #1#2#3#4#5
1637 {
1638 __kernel_cs_parm_from_arg_count:nnF
1639 { __prg_generate_conditional:nnNNNnnn {#1} {#2} #3 #4 #5 }
1640 { \tl_count:n {#2} }
1641 {
1642 \msg_error:nnee { kernel } { bad-number-of-arguments }
1643 { \token_to_str:c { #1 : #2 } }
1644 { \tl_count:n {#2} }
1645 \use_none:nn
1646 }
1647 }

(End of definition for \prg_set_conditional:Nnn and others. These functions are documented on page
65.)

__prg_generate_conditional:nnNNNnnn
__prg_generate_conditional:NNnnnnNw

__prg_generate_conditional_test:w
__prg_generate_conditional_fast:nw

The workhorse here is going through a list of desired forms, i.e., p, TF, T and F. The first
three arguments come from splitting up the base form of the conditional, which gives the
name, signature and a boolean to signal whether or not there was a colon in the name.
In the absence of a colon, we throw an error and don’t define any conditional. The fourth
and fifth arguments build up the defining function. The sixth is the parameters to use
(possibly empty), the seventh is the list of forms to define, the eighth is the replacement
text which we will augment when defining the forms. The use of \tl_to_str:n makes
the later loop more robust.

A large number of our low-level conditionals look like ⟨code⟩ \prg_return_true:
\else: \prg_return_false: \fi: so we optimize this special case by calling __prg_-
generate_conditional_fast:nw {⟨code⟩}. This passes \use_i:nn instead of \use_-
i_ii:nnn to functions such as __prg_generate_p_form:wNNnnnnN.

1648 \cs_gset_protected:Npn __prg_generate_conditional:nnNNNnnn #1#2#3#4#5#6#7#8
1649 {
1650 \if_meaning:w \c_false_bool #3
1651 \msg_error:nne { kernel } { missing-colon }
1652 { \token_to_str:c {#1} }
1653 \exp_after:wN \use_none:nn
1654 \fi:
1655 \use:e
1656 {
1657 \exp_not:N __prg_generate_conditional:NNnnnnNw

388

1658 \exp_not:n { #4 #5 {#1} {#2} {#6} }
1659 __prg_generate_conditional_test:w
1660 #8 \s__prg_mark
1661 __prg_generate_conditional_fast:nw
1662 \prg_return_true: \else: \prg_return_false: \fi: \s__prg_mark
1663 \use_none:n
1664 \exp_not:n { {#8} \use_i_ii:nnn }
1665 \tl_to_str:n {#7}
1666 \exp_not:n { , \q__prg_recursion_tail , \q__prg_recursion_stop }
1667 }
1668 }
1669 \cs_gset:Npn __prg_generate_conditional_test:w
1670 #1 \prg_return_true: \else: \prg_return_false: \fi: \s__prg_mark #2
1671 { #2 {#1} }
1672 \cs_gset:Npn __prg_generate_conditional_fast:nw #1#2 \exp_not:n #3
1673 { \exp_not:n { {#1} \use_i:nn } }

Looping through the list of desired forms. First are six arguments and seventh is the
form. Use the form to call the correct type. If the form does not exist, the \use:c
construction results in \relax, and the error message is displayed (unless the form is
empty, to allow for {T, , F}), then \use_none:nnnnnnnn cleans up. Otherwise, the
error message is removed by the variant form.

1674 \cs_gset_protected:Npn __prg_generate_conditional:NNnnnnNw #1#2#3#4#5#6#7#8 ,
1675 {
1676 \if_meaning:w \q__prg_recursion_tail #8
1677 \exp_after:wN __prg_use_none_delimit_by_q_recursion_stop:w
1678 \fi:
1679 \use:c { __prg_generate_ #8 _form:wNNnnnnN }
1680 \tl_if_empty:nF {#8}
1681 {
1682 \msg_error:nnee
1683 { kernel } { conditional-form-unknown }
1684 {#8} { \token_to_str:c { #3 : #4 } }
1685 }
1686 \use_none:nnnnnnnn
1687 \s__prg_stop
1688 #1 #2 {#3} {#4} {#5} {#6} #7
1689 __prg_generate_conditional:NNnnnnNw #1 #2 {#3} {#4} {#5} {#6} #7
1690 }

(End of definition for __prg_generate_conditional:nnNNNnnn and others.)

__prg_generate_p_form:wNNnnnnN
__prg_generate_TF_form:wNNnnnnN
__prg_generate_T_form:wNNnnnnN
__prg_generate_F_form:wNNnnnnN

__prg_p_true:w
__prg_T_true:w
__prg_F_true:w

__prg_TF_true:w

How to generate the various forms. Those functions take the following arguments: 1:
junk, 2: \cs_set:Npn or similar, 3: p (for protected conditionals) or e, 4: function
name, 5: signature, 6: parameter text, 7: replacement (possibly trimmed by __prg_-
generate_conditional_fast:nw), 8: \use_i_ii:nnn or \use_i:nn (for “fast” condi-
tionals). Remember that the logic-returning functions expect two arguments to be present
after \exp_end:: notice the construction of the different variants relies on this, and that
the TF and F variants will be slightly faster than the T version. The p form is only
valid for expandable tests, we check for that by making sure that the second argument
is empty. For “fast” conditionals, #7 has an extra \if_.... To optimize a bit further we
don’t use \exp_after:wN \use_ii:nnn and similar but instead use __prg_TF_true:w
and similar to swap out the macro after \fi:. It would be a tiny bit faster if we directly

389

grabbed the T and F arguments there, but if those are actually missing, the recovery from
the runaway argument would not insert \fi: back, messing up nesting of conditionals.

1691 \cs_gset_protected:Npn __prg_generate_p_form:wNNnnnnN
1692 #1 \s__prg_stop #2#3#4#5#6#7#8
1693 {
1694 \if_meaning:w e #3
1695 \exp_after:wN \use_i:nn
1696 \else:
1697 \exp_after:wN \use_ii:nn
1698 \fi:
1699 {
1700 #8
1701 { \exp_args:Nc #2 { #4 _p: #5 } #6 }
1702 { { #7 \exp_end: \c_true_bool \c_false_bool } }
1703 { #7 __prg_p_true:w \fi: \c_false_bool }
1704 }
1705 {
1706 \msg_error:nne { kernel } { protected-predicate }
1707 { \token_to_str:c { #4 _p: #5 } }
1708 }
1709 }
1710 \cs_gset_protected:Npn __prg_generate_T_form:wNNnnnnN
1711 #1 \s__prg_stop #2#3#4#5#6#7#8
1712 {
1713 #8
1714 { \exp_args:Nc #2 { #4 : #5 T } #6 }
1715 { { #7 \exp_end: \use:n \use_none:n } }
1716 { #7 __prg_T_true:w \fi: \use_none:n }
1717 }
1718 \cs_gset_protected:Npn __prg_generate_F_form:wNNnnnnN
1719 #1 \s__prg_stop #2#3#4#5#6#7#8
1720 {
1721 #8
1722 { \exp_args:Nc #2 { #4 : #5 F } #6 }
1723 { { #7 \exp_end: { } } }
1724 { #7 __prg_F_true:w \fi: \use:n }
1725 }
1726 \cs_gset_protected:Npn __prg_generate_TF_form:wNNnnnnN
1727 #1 \s__prg_stop #2#3#4#5#6#7#8
1728 {
1729 #8
1730 { \exp_args:Nc #2 { #4 : #5 TF } #6 }
1731 { { #7 \exp_end: } }
1732 { #7 __prg_TF_true:w \fi: \use_ii:nn }
1733 }
1734 \cs_gset:Npn __prg_p_true:w \fi: \c_false_bool { \fi: \c_true_bool }
1735 \cs_gset:Npn __prg_T_true:w \fi: \use_none:n { \fi: \use:n }
1736 \cs_gset:Npn __prg_F_true:w \fi: \use:n { \fi: \use_none:n }
1737 \cs_gset:Npn __prg_TF_true:w \fi: \use_ii:nn { \fi: \use_i:nn }

(End of definition for __prg_generate_p_form:wNNnnnnN and others.)

\prg_set_eq_conditional:NNn
\prg_gset_eq_conditional:NNn
\prg_new_eq_conditional:NNn

__prg_set_eq_conditional:NNNn

The setting-equal functions. Split both functions and feed {⟨name1⟩} {⟨signature1⟩}
⟨boolean1⟩ {⟨name2⟩} {⟨signature2⟩} ⟨boolean2⟩ ⟨copying function⟩ ⟨conditions⟩ ,

390

\q__prg_recursion_tail , \q__prg_recursion_stop to a first auxiliary.
1738 \cs_gset_protected:Npn \prg_set_eq_conditional:NNn
1739 { __prg_set_eq_conditional:NNNn \cs_set_eq:cc }
1740 \cs_gset_protected:Npn \prg_gset_eq_conditional:NNn
1741 { __prg_set_eq_conditional:NNNn \cs_gset_eq:cc }
1742 \cs_gset_protected:Npn \prg_new_eq_conditional:NNn
1743 { __prg_set_eq_conditional:NNNn \cs_new_eq:cc }
1744 \cs_gset_protected:Npn __prg_set_eq_conditional:NNNn #1#2#3#4
1745 {
1746 \use:e
1747 {
1748 \exp_not:N __prg_set_eq_conditional:nnNnnNNw
1749 \cs_split_function:N #2
1750 \cs_split_function:N #3
1751 \exp_not:N #1
1752 \tl_to_str:n {#4}
1753 \exp_not:n { , \q__prg_recursion_tail , \q__prg_recursion_stop }
1754 }
1755 }

(End of definition for \prg_set_eq_conditional:NNn and others. These functions are documented on
page 66.)

__prg_set_eq_conditional:nnNnnNNw
__prg_set_eq_conditional_loop:nnnnNw
__prg_set_eq_conditional_p_form:nnn

__prg_set_eq_conditional_TF_form:nnn
__prg_set_eq_conditional_T_form:nnn
__prg_set_eq_conditional_F_form:nnn

Split the function to be defined, and setup a manual clist loop over argument #6 of the
first auxiliary. The second auxiliary receives twice three arguments coming from splitting
the function to be defined and the function to copy. Make sure that both functions
contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call
the looping macro, with arguments {⟨name1⟩} {⟨signature1⟩} {⟨name2⟩} {⟨signature2⟩}
⟨copying function⟩ and followed by the comma list. At each step in the loop, make
sure that the conditional form we copy is defined, and copy it, otherwise abort.

1756 \cs_gset_protected:Npn __prg_set_eq_conditional:nnNnnNNw #1#2#3#4#5#6
1757 {
1758 \if_meaning:w \c_false_bool #3
1759 \msg_error:nne { kernel } { missing-colon }
1760 { \token_to_str:c {#1} }
1761 \exp_after:wN __prg_use_none_delimit_by_q_recursion_stop:w
1762 \fi:
1763 \if_meaning:w \c_false_bool #6
1764 \msg_error:nne { kernel } { missing-colon }
1765 { \token_to_str:c {#4} }
1766 \exp_after:wN __prg_use_none_delimit_by_q_recursion_stop:w
1767 \fi:
1768 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#4} {#5}
1769 }
1770 \cs_gset_protected:Npn __prg_set_eq_conditional_loop:nnnnNw #1#2#3#4#5#6 ,
1771 {
1772 \if_meaning:w \q__prg_recursion_tail #6
1773 \exp_after:wN __prg_use_none_delimit_by_q_recursion_stop:w
1774 \fi:
1775 \use:c { __prg_set_eq_conditional_ #6 _form:wNnnnn }
1776 \tl_if_empty:nF {#6}
1777 {
1778 \msg_error:nnee
1779 { kernel } { conditional-form-unknown }

391

1780 {#6} { \token_to_str:c { #1 : #2 } }
1781 }
1782 \use_none:nnnnnn
1783 \s__prg_stop
1784 #5 {#1} {#2} {#3} {#4}
1785 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#3} {#4} #5
1786 }
1787 \cs_gset:Npn __prg_set_eq_conditional_p_form:wNnnnn #1 \s__prg_stop #2#3#4#5#6
1788 { #2 { #3 _p : #4 } { #5 _p : #6 } }
1789 \cs_gset:Npn __prg_set_eq_conditional_TF_form:wNnnnn #1 \s__prg_stop #2#3#4#5#6
1790 { #2 { #3 : #4 TF } { #5 : #6 TF } }
1791 \cs_gset:Npn __prg_set_eq_conditional_T_form:wNnnnn #1 \s__prg_stop #2#3#4#5#6
1792 { #2 { #3 : #4 T } { #5 : #6 T } }
1793 \cs_gset:Npn __prg_set_eq_conditional_F_form:wNnnnn #1 \s__prg_stop #2#3#4#5#6
1794 { #2 { #3 : #4 F } { #5 : #6 F } }

(End of definition for __prg_set_eq_conditional:nnNnnNNw and others.)
All that is left is to define the canonical boolean true and false. I think Michael

originated the idea of expandable boolean tests. At first these were supposed to expand
into either TT or TF to be tested using \if:w but this was later changed to 00 and 01,
so they could be used in logical operations. Later again they were changed to being
numerical constants with values of 1 for true and 0 for false. We need this from the
get-go.

\c_true_bool
\c_false_bool

Here are the canonical boolean values.
1795 \tex_global:D \tex_chardef:D \c_true_bool = 1 ~
1796 \tex_global:D \tex_chardef:D \c_false_bool = 0 ~

(End of definition for \c_true_bool and \c_false_bool. These variables are documented on page 69.)

42.8 Dissecting a control sequence
1797 ⟨@@=cs⟩

__cs_count_signature:N ⟨function⟩

Splits the ⟨function⟩ into the ⟨name⟩ (i.e. the part before the colon) and the ⟨signature⟩
(i.e. after the colon). The ⟨number⟩ of tokens in the ⟨signature⟩ is then left in the input
stream. If there was no ⟨signature⟩ then the result is the marker value −1.

__cs_count_signature:N ⋆

Function used for various short-term usages, for instance defining functions whose defin-
ition involves tokens which are hard to insert normally (spaces, characters with category
other).

__cs_tmp:w

\cs_to_str:N
__cs_to_str:N
__cs_to_str:w

This converts a control sequence into the character string of its name, removing the
leading escape character. This turns out to be a non-trivial matter as there a different
cases:

• The usual case of a printable escape character;

• the case of a non-printable escape characters, e.g., when the value of the
\escapechar is negative;

392

• when the escape character is a space.

One approach to solve this is to test how many tokens result from \token_to_str:N \a.
If there are two tokens, then the escape character is printable, while if it is non-printable
then only one is present.

However, there is an additional complication: the control sequence itself may start
with a space. Clearly that should not be lost in the process of converting to a string. So
the approach adopted is a little more intricate still. When the escape character is print-
able, \token_to_str:N␣\␣ yields the escape character itself and a space. The character
codes are different, thus the \if:w test is false, and TEX reads __cs_to_str:N after turn-
ing the following control sequence into a string; this auxiliary removes the escape char-
acter, and stops the expansion of the initial \tex_romannumeral:D. The second case is
that the escape character is not printable. Then the \if:w test is unfinished after reading
a the space from \token_to_str:N␣\␣, and the auxiliary __cs_to_str:w is expanded,
feeding - as a second character for the test; the test is false, and TEX skips to \fi:, then
performs \token_to_str:N, and stops the \tex_romannumeral:D with \c_zero_int.
The last case is that the escape character is itself a space. In this case, the \if:w test
is true, and the auxiliary __cs_to_str:w comes into play, inserting -\int_value:w,
which expands \c_zero_int to the character 0. The initial \tex_romannumeral:D then
sees 0, which is not a terminated number, followed by the escape character, a space,
which is removed, terminating the expansion of \tex_romannumeral:D. In all three
cases, \cs_to_str:N takes two expansion steps to be fully expanded.

1798 \cs_gset:Npn \cs_to_str:N
1799 {

We implement the expansion scheme using \tex_romannumeral:D terminating it with
\c_zero_int rather than using \exp:w and \exp_end: as we normally do. The reason
is that the code heavily depends on terminating the expansion with \c_zero_int so we
make this dependency explicit.

1800 \tex_romannumeral:D
1801 \if:w \token_to_str:N \ __cs_to_str:w \fi:
1802 \exp_after:wN __cs_to_str:N \token_to_str:N
1803 }
1804 \cs_gset:Npn __cs_to_str:N #1 { \c_zero_int }
1805 \cs_gset:Npn __cs_to_str:w #1 __cs_to_str:N
1806 { - \int_value:w \fi: \exp_after:wN \c_zero_int }

If speed is a concern we could use \csstring in LuaTEX. For the empty csname that
primitive gives an empty result while the current \cs_to_str:N gives incorrect results
in all engines (this is impossible to fix without huge performance hit).

(End of definition for \cs_to_str:N , __cs_to_str:N , and __cs_to_str:w. This function is docu-
mented on page 23.)

\cs_split_function:N
__cs_split_function_auxi:w
__cs_split_function_auxii:w

This function takes a function name and splits it into name with the escape char removed
and argument specification. In addition to this, a third argument, a boolean ⟨true⟩ or
⟨false⟩ is returned with ⟨true⟩ for when there is a colon in the function and ⟨false⟩ if
there is not.

First ensure that we actually get a properly evaluated string by expanding \cs_-
to_str:N twice. If the function contained a colon, the auxiliary takes as #1 the function
name, delimited by the first colon, then the signature #2, delimited by \s__cs_mark, then
\c_true_bool as #3, and #4 cleans up until \s__cs_stop. Otherwise, the #1 contains
the function name and \s__cs_mark \c_true_bool, #2 is empty, #3 is \c_false_bool,

393

and #4 cleans up. The second auxiliary trims the trailing \s__cs_mark from the function
name if present (that is, if the original function had no colon).

1807 \cs_gset_protected:Npn __cs_tmp:w #1
1808 {
1809 \cs_gset:Npn \cs_split_function:N ##1
1810 {
1811 \exp_after:wN \exp_after:wN \exp_after:wN
1812 __cs_split_function_auxi:w
1813 \cs_to_str:N ##1 \s__cs_mark \c_true_bool
1814 #1 \s__cs_mark \c_false_bool \s__cs_stop
1815 }
1816 \cs_gset:Npn __cs_split_function_auxi:w
1817 ##1 #1 ##2 \s__cs_mark ##3##4 \s__cs_stop
1818 { __cs_split_function_auxii:w ##1 \s__cs_mark \s__cs_stop {##2} ##3 }
1819 \cs_gset:Npn __cs_split_function_auxii:w ##1 \s__cs_mark ##2 \s__cs_stop
1820 { {##1} }
1821 }
1822 \exp_after:wN __cs_tmp:w \token_to_str:N :

(End of definition for \cs_split_function:N , __cs_split_function_auxi:w , and __cs_split_-
function_auxii:w. This function is documented on page 23.)

42.9 Exist or free
A control sequence is said to exist (to be used) if has an entry in the hash table and its
meaning is different from the primitive \relax token. A control sequence is said to be
free (to be defined) if it does not already exist.

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:cTF

__cs_if_exist_c_aux:
__cs_if_exist_c_aux:w

Two versions for checking existence. For the N form we firstly check for \scan_stop: and
then if it is in the hash table. There is no problem when inputting something like \else:
or \fi: as TEX will only ever skip input in case the token tested against is \scan_stop:.

In both the N and c form we use the way \prg_set_conditional:Npnn optimizes
the conditionals to negate the tests using \else: (the \else: in the top level functions
will be removed by the optimization, and this usage of \else: will be fine).

1823 \prg_gset_conditional:Npnn \cs_if_exist:N #1 { p , T , F , TF }
1824 {
1825 \if_meaning:w #1 \scan_stop:
1826 \use_i:nnnn
1827 \else:
1828 \fi:
1829 \if_cs_exist:N #1
1830 \prg_return_true:
1831 \else:
1832 \prg_return_false:
1833 \fi:
1834 }

For the c form we firstly check if it is in the hash table and then for \scan_stop: so
that we do not add it to the hash table unless it was already there. Here we have to be
careful as the text to be skipped if the first test is false may contain tokens that disturb
the scanner. Therefore, we ensure that the second test is performed after the first one
has concluded completely.

394

1835 \cs_if_exist:NTF \tex_lastnamedcs:D
1836 {
1837 \prg_gset_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }
1838 {
1839 \if_cs_exist:w #1 \cs_end:
1840 __cs_if_exist_c_aux:
1841 \prg_return_true:
1842 \else:
1843 \prg_return_false:
1844 \fi:
1845 }
1846 \cs_gset:Npn __cs_if_exist_c_aux:
1847 { \fi: \exp_after:wN \if_meaning:w \tex_lastnamedcs:D \scan_stop: \else: }
1848 }
1849 {
1850 \prg_gset_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }
1851 {
1852 \if_cs_exist:w #1 \cs_end:
1853 __cs_if_exist_c_aux:w
1854 \fi:
1855 \use_none:n {#1}
1856 \if_false:
1857 \prg_return_true:
1858 \else:
1859 \prg_return_false:
1860 \fi:
1861 }
1862 \cs_gset:Npn __cs_if_exist_c_aux:w \fi: \use_none:n #1 \if_false:
1863 { \fi: \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop: \else: }
1864 }

(End of definition for \cs_if_exist:NTF , __cs_if_exist_c_aux: , and __cs_if_exist_c_aux:w. This
function is documented on page 29.)

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

The logical reversal of the above.
1865 \prg_gset_conditional:Npnn \cs_if_free:N #1 { p , T , F , TF }
1866 {
1867 \if_cs_exist:N #1
1868 \else:
1869 \use_none:nnnn
1870 \fi:
1871 \if_meaning:w #1 \scan_stop:
1872 \prg_return_true:
1873 \else:
1874 \prg_return_false:
1875 \fi:
1876 }
1877 \cs_if_exist:NTF \tex_lastnamedcs:D
1878 {
1879 \prg_gset_conditional:Npnn \cs_if_free:c #1 { p , T , F , TF }
1880 {
1881 \if_cs_exist:w #1 \cs_end:
1882 __cs_if_free_c_aux:w
1883 \fi:

395

1884 \if_true:
1885 \prg_return_true:
1886 \else:
1887 \prg_return_false:
1888 \fi:
1889 }
1890 \cs_gset:Npn __cs_if_free_c_aux:w \fi: \if_true:
1891 { \fi: \exp_after:wN \if_meaning:w \tex_lastnamedcs:D \scan_stop: }
1892 }
1893 {
1894 \prg_gset_conditional:Npnn \cs_if_free:c #1 { p , T , F , TF }
1895 {
1896 \if_cs_exist:w #1 \cs_end:
1897 __cs_if_free_c_aux:w
1898 \fi:
1899 \use_none:n {#1}
1900 \if_true:
1901 \prg_return_true:
1902 \else:
1903 \prg_return_false:
1904 \fi:
1905 }
1906 \cs_gset:Npn __cs_if_free_c_aux:w \fi: \use_none:n #1 \if_true:
1907 { \fi: \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop: }
1908 }

(End of definition for \cs_if_free:NTF. This function is documented on page 29.)

\cs_if_exist_use:N
\cs_if_exist_use:c

\cs_if_exist_use:NTF
\cs_if_exist_use:cTF

__cs_if_exist_use_aux:w
__cs_if_exist_use_aux:Nnn

The \cs_if_exist_use:... functions cannot be implemented as conditionals because
the true branch must leave both the control sequence itself and the true code in the input
stream. For the c variants, we are careful not to put the control sequence in the hash
table if it does not exist. If available we use the \lastnamedcs primitive.

1909 \cs_gset:Npn \cs_if_exist_use:NTF #1#2
1910 { \cs_if_exist:NTF #1 { #1 #2 } }
1911 \cs_gset:Npn \cs_if_exist_use:NF #1
1912 { \cs_if_exist:NTF #1 #1 }
1913 \cs_gset:Npn \cs_if_exist_use:NT #1 #2
1914 { \cs_if_exist:NT #1 { #1 #2 } }
1915 \cs_gset:Npn \cs_if_exist_use:N #1
1916 { \cs_if_exist:NT #1 #1 }
1917 \cs_if_exist:NTF \tex_lastnamedcs:D
1918 {
1919 \cs_gset:Npn \cs_if_exist_use:cTF #1
1920 {
1921 \if_cs_exist:w #1 \cs_end:
1922 __cs_if_exist_use_aux:w
1923 \fi:
1924 \use_ii:nn
1925 }
1926 \cs_gset:Npn __cs_if_exist_use_aux:w \fi: \use_ii:nn
1927 { \fi: \exp_after:wN __cs_if_exist_use_aux:Nnn \tex_lastnamedcs:D }
1928 }
1929 {
1930 \cs_gset:Npn \cs_if_exist_use:cTF #1

396

1931 {
1932 \if_cs_exist:w #1 \cs_end:
1933 __cs_if_exist_use_aux:w
1934 \fi:
1935 \use_iii:nnn {#1}
1936 }
1937 \cs_gset:Npn __cs_if_exist_use_aux:w \fi: \use_iii:nnn #1
1938 { \fi: \exp_after:wN __cs_if_exist_use_aux:Nnn \cs:w #1 \cs_end: }
1939 }
1940 \cs_gset:Npn __cs_if_exist_use_aux:Nnn #1#2
1941 {
1942 \if_meaning:w #1 \scan_stop:
1943 \exp_after:wN \use_iii:nnn
1944 \fi:
1945 \use_i:nn { #1 #2 }
1946 }
1947 \cs_gset:Npn \cs_if_exist_use:cF #1
1948 { \cs_if_exist_use:cTF {#1} {} }
1949 \cs_gset:Npn \cs_if_exist_use:cT #1#2
1950 { \cs_if_exist_use:cTF {#1} {#2} {} }
1951 \cs_gset:Npn \cs_if_exist_use:c #1
1952 { \cs_if_exist_use:cTF {#1} {} {} }

(End of definition for \cs_if_exist_use:NTF , __cs_if_exist_use_aux:w , and __cs_if_exist_use_-
aux:Nnn. This function is documented on page 22.)

42.10 Preliminaries for new functions
We provide two kinds of functions that can be used to define control sequences. On the
one hand we have functions that check if their argument doesn’t already exist, they are
called \..._new. The second type of defining functions doesn’t check if the argument is
already defined.

Before we can define them, we need some auxiliary macros that allow us to generate
error messages. The next few definitions here are only temporary, they will be redefined
later on.

\msg_error:nnee
\msg_error:nne
\msg_error:nn

If an internal error occurs before LATEX3 has loaded l3msg then the code should issue a
usable if terse error message and halt. This can only happen if a coding error is made by
the team, so this is a reasonable response. Setting the \newlinechar is needed, to turn
^^J into a proper line break in plain TEX.

1953 \cs_gset_protected:Npn \msg_error:nnee #1#2#3#4
1954 {
1955 \tex_newlinechar:D = ‘\^^J \scan_stop:
1956 \tex_errmessage:D
1957 {
1958 !!!~! ^^J
1959 Argh,~internal~LaTeX3~error! ^^J ^^J
1960 Module ~ #1 , ~ message~name~"#2": ^^J
1961 Arguments~’#3’~and~’#4’ ^^J ^^J
1962 This~is~one~for~The~LaTeX3~Project:~bailing~out
1963 }
1964 \tex_end:D
1965 }

397

1966 \cs_gset_protected:Npn \msg_error:nne #1#2#3
1967 { \msg_error:nnee {#1} {#2} {#3} { } }
1968 \cs_gset_protected:Npn \msg_error:nn #1#2
1969 { \msg_error:nnee {#1} {#2} { } { } }

(End of definition for \msg_error:nnnn. This function is documented on page 87.)

\msg_line_context: Another one from l3msg which will be altered later.
1970 \cs_gset:Npn \msg_line_context:
1971 { on~line~ \tex_the:D \tex_inputlineno:D }

(End of definition for \msg_line_context:. This function is documented on page 85.)

\iow_log:e
\iow_term:e

We define a routine to write only to the log file. And a similar one for writing to both
the log file and the terminal. These will be redefined later by l3file.

1972 \cs_gset_protected:Npn \iow_log:e
1973 { \tex_immediate:D \tex_write:D -1 }
1974 \cs_gset_protected:Npn \iow_term:e
1975 { \tex_immediate:D \tex_write:D 16 }

(End of definition for \iow_log:n. This function is documented on page 99.)

__kernel_chk_if_free_cs:N
__kernel_chk_if_free_cs:c

This command is called by \cs_new_nopar:Npn and \cs_new_eq:NN etc. to make sure
that the argument sequence is not already in use. If it is, an error is signalled. It checks
if ⟨csname⟩ is undefined or \scan_stop:. Otherwise an error message is issued. We have
to make sure we don’t put the argument into the conditional processing since it may be
an \if... type function!

1976 \cs_gset_protected:Npn __kernel_chk_if_free_cs:N #1
1977 {
1978 \cs_if_free:NF #1
1979 {
1980 \msg_error:nnee { kernel } { command-already-defined }
1981 { \token_to_str:N #1 } { \token_to_meaning:N #1 }
1982 }
1983 }
1984 \cs_gset_protected:Npn __kernel_chk_if_free_cs:c
1985 { \exp_args:Nc __kernel_chk_if_free_cs:N }

(End of definition for __kernel_chk_if_free_cs:N.)

42.11 Defining new functions
1986 ⟨@@=cs⟩

\cs_new_nopar:Npn
\cs_new_nopar:Npe
\cs_new_nopar:Npx

\cs_new:Npn
\cs_new:Npe
\cs_new:Npx

\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:Npe
\cs_new_protected_nopar:Npx

\cs_new_protected:Npn
\cs_new_protected:Npe
\cs_new_protected:Npx

__cs_tmp:w

Function which check that the control sequence is free before defining it.
1987 \cs_set:Npn __cs_tmp:w #1#2
1988 {
1989 \cs_gset_protected:Npn #1 ##1
1990 {
1991 __kernel_chk_if_free_cs:N ##1
1992 #2 ##1
1993 }
1994 }
1995 __cs_tmp:w \cs_new_nopar:Npn \cs_gset_nopar:Npn

398

1996 __cs_tmp:w \cs_new_nopar:Npe \cs_gset_nopar:Npe
1997 __cs_tmp:w \cs_new_nopar:Npx \cs_gset_nopar:Npx
1998 __cs_tmp:w \cs_new:Npn \cs_gset:Npn
1999 __cs_tmp:w \cs_new:Npe \cs_gset:Npe
2000 __cs_tmp:w \cs_new:Npx \cs_gset:Npx
2001 __cs_tmp:w \cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
2002 __cs_tmp:w \cs_new_protected_nopar:Npe \cs_gset_protected_nopar:Npe
2003 __cs_tmp:w \cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx
2004 __cs_tmp:w \cs_new_protected:Npn \cs_gset_protected:Npn
2005 __cs_tmp:w \cs_new_protected:Npe \cs_gset_protected:Npe
2006 __cs_tmp:w \cs_new_protected:Npx \cs_gset_protected:Npx

(End of definition for \cs_new_nopar:Npn and others. These functions are documented on page 16.)

\cs_set_nopar:cpn
\cs_set_nopar:cpe
\cs_set_nopar:cpx
\cs_gset_nopar:cpn
\cs_gset_nopar:cpe
\cs_gset_nopar:cpx
\cs_new_nopar:cpn
\cs_new_nopar:cpe
\cs_new_nopar:cpx

Like \cs_set_nopar:Npn and \cs_new_nopar:Npn, except that the first argument con-
sists of the sequence of characters that should be used to form the name of the desired
control sequence (the c stands for csname argument, see the expansion module). Global
versions are also provided.

\cs_set_nopar:cpn⟨string⟩⟨rep-text⟩ turns ⟨string⟩ into a csname and then
assigns ⟨rep-text⟩ to it by using \cs_set_nopar:Npn. This means that there might be
a parameter string between the two arguments.

2007 \cs_set:Npn __cs_tmp:w #1#2
2008 { \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
2009 __cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
2010 __cs_tmp:w \cs_set_nopar:cpe \cs_set_nopar:Npe
2011 __cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx
2012 __cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
2013 __cs_tmp:w \cs_gset_nopar:cpe \cs_gset_nopar:Npe
2014 __cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
2015 __cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn
2016 __cs_tmp:w \cs_new_nopar:cpe \cs_new_nopar:Npe
2017 __cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx

(End of definition for \cs_set_nopar:Npn. This function is documented on page 17.)

\cs_set:cpn
\cs_set:cpe
\cs_set:cpx

\cs_gset:cpn
\cs_gset:cpe
\cs_gset:cpx
\cs_new:cpn
\cs_new:cpe
\cs_new:cpx

Variants of the \cs_set:Npn versions which make a csname out of the first arguments.
We may also do this globally.

2018 __cs_tmp:w \cs_set:cpn \cs_set:Npn
2019 __cs_tmp:w \cs_set:cpe \cs_set:Npe
2020 __cs_tmp:w \cs_set:cpx \cs_set:Npx
2021 __cs_tmp:w \cs_gset:cpn \cs_gset:Npn
2022 __cs_tmp:w \cs_gset:cpe \cs_gset:Npe
2023 __cs_tmp:w \cs_gset:cpx \cs_gset:Npx
2024 __cs_tmp:w \cs_new:cpn \cs_new:Npn
2025 __cs_tmp:w \cs_new:cpe \cs_new:Npe
2026 __cs_tmp:w \cs_new:cpx \cs_new:Npx

(End of definition for \cs_set:Npn. This function is documented on page 17.)

\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:cpe
\cs_set_protected_nopar:cpx
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:cpx
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:cpe
\cs_new_protected_nopar:cpx

Variants of the \cs_set_protected_nopar:Npn versions which make a csname out of
the first arguments. We may also do this globally.

2027 __cs_tmp:w \cs_set_protected_nopar:cpn \cs_set_protected_nopar:Npn
2028 __cs_tmp:w \cs_set_protected_nopar:cpe \cs_set_protected_nopar:Npe
2029 __cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:Npx

399

2030 __cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn
2031 __cs_tmp:w \cs_gset_protected_nopar:cpe \cs_gset_protected_nopar:Npe
2032 __cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx
2033 __cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npn
2034 __cs_tmp:w \cs_new_protected_nopar:cpe \cs_new_protected_nopar:Npe
2035 __cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx

(End of definition for \cs_set_protected_nopar:Npn. This function is documented on page 17.)

\cs_set_protected:cpn
\cs_set_protected:cpe
\cs_set_protected:cpx
\cs_gset_protected:cpn
\cs_gset_protected:cpe
\cs_gset_protected:cpx
\cs_new_protected:cpn
\cs_new_protected:cpe
\cs_new_protected:cpx

Variants of the \cs_set_protected:Npn versions which make a csname out of the first
arguments. We may also do this globally.

2036 __cs_tmp:w \cs_set_protected:cpn \cs_set_protected:Npn
2037 __cs_tmp:w \cs_set_protected:cpe \cs_set_protected:Npe
2038 __cs_tmp:w \cs_set_protected:cpx \cs_set_protected:Npx
2039 __cs_tmp:w \cs_gset_protected:cpn \cs_gset_protected:Npn
2040 __cs_tmp:w \cs_gset_protected:cpe \cs_gset_protected:Npe
2041 __cs_tmp:w \cs_gset_protected:cpx \cs_gset_protected:Npx
2042 __cs_tmp:w \cs_new_protected:cpn \cs_new_protected:Npn
2043 __cs_tmp:w \cs_new_protected:cpe \cs_new_protected:Npe
2044 __cs_tmp:w \cs_new_protected:cpx \cs_new_protected:Npx

(End of definition for \cs_set_protected:Npn. This function is documented on page 17.)

42.12 Copying definitions
\cs_set_eq:NN
\cs_set_eq:cN
\cs_set_eq:Nc
\cs_set_eq:cc
\cs_gset_eq:NN
\cs_gset_eq:cN
\cs_gset_eq:Nc
\cs_gset_eq:cc
\cs_new_eq:NN
\cs_new_eq:cN
\cs_new_eq:Nc
\cs_new_eq:cc

These macros allow us to copy the definition of a control sequence to another control
sequence.

The = sign allows us to define funny char tokens like = itself or ␣ with this function.
For the definition of \c_space_char{~} to work we need the ~ after the =.

\cs_set_eq:NN is long to avoid problems with a literal argument of \par. While
\cs_new_eq:NN will probably never be correct with a first argument of \par, define it
long in order to throw an “already defined” error rather than “runaway argument”.

2045 \cs_new_protected:Npn \cs_set_eq:NN #1 { \tex_let:D #1 =~ }
2046 \cs_new_protected:Npn \cs_set_eq:cN { \exp_args:Nc \cs_set_eq:NN }
2047 \cs_new_protected:Npn \cs_set_eq:Nc { \exp_args:NNc \cs_set_eq:NN }
2048 \cs_new_protected:Npn \cs_set_eq:cc { \exp_args:Ncc \cs_set_eq:NN }
2049 \cs_new_protected:Npn \cs_gset_eq:NN { \tex_global:D \cs_set_eq:NN }
2050 \cs_new_protected:Npn \cs_gset_eq:Nc { \exp_args:NNc \cs_gset_eq:NN }
2051 \cs_new_protected:Npn \cs_gset_eq:cN { \exp_args:Nc \cs_gset_eq:NN }
2052 \cs_new_protected:Npn \cs_gset_eq:cc { \exp_args:Ncc \cs_gset_eq:NN }
2053 \cs_new_protected:Npn \cs_new_eq:NN #1
2054 {
2055 __kernel_chk_if_free_cs:N #1
2056 \tex_global:D \cs_set_eq:NN #1
2057 }
2058 \cs_new_protected:Npn \cs_new_eq:cN { \exp_args:Nc \cs_new_eq:NN }
2059 \cs_new_protected:Npn \cs_new_eq:Nc { \exp_args:NNc \cs_new_eq:NN }
2060 \cs_new_protected:Npn \cs_new_eq:cc { \exp_args:Ncc \cs_new_eq:NN }

(End of definition for \cs_set_eq:NN , \cs_gset_eq:NN , and \cs_new_eq:NN. These functions are docu-
mented on page 21.)

400

42.13 Undefining functions
\cs_undefine:N
\cs_undefine:c

The following function is used to free the main memory from the definition of some
function that isn’t in use any longer. The c variant is careful not to add the control
sequence to the hash table if it isn’t there yet, and it also avoids nesting TEX conditionals
in case #1 is unbalanced in this matter. We optimize the case where the command exists
by reducing as much as possible the tokens in the conditional.

2061 \cs_new_protected:Npn \cs_undefine:N #1
2062 { \cs_gset_eq:NN #1 \tex_undefined:D }
2063 \cs_new_protected:Npn \cs_undefine:c #1
2064 {
2065 \if_cs_exist:w #1 \cs_end:
2066 \else:
2067 \use_i:nnnn
2068 \fi:
2069 \exp_args:Nc \cs_undefine:N {#1}
2070 }

(End of definition for \cs_undefine:N. This function is documented on page 21.)

42.14 Generating parameter text from argument count
2071 ⟨@@=cs⟩

__kernel_cs_parm_from_arg_count:nnF
__cs_parm_from_arg_count_test:nnF

LATEX3 provides shorthands to define control sequences and conditionals with a simple
parameter text, derived directly from the signature, or more generally from knowing the
number of arguments, between 0 and 9. This function expands to its first argument,
untouched, followed by a brace group containing the parameter text {#1. . . #n}, where
n is the result of evaluating the second argument (as described in \int_eval:n). If the
second argument gives a result outside the range [0, 9], the third argument is returned
instead, normally an error message. Some of the functions use here are not defined yet,
but will be defined before this function is called.

2072 \cs_new_protected:Npn __kernel_cs_parm_from_arg_count:nnF #1#2
2073 {
2074 \exp_args:Ne __cs_parm_from_arg_count_test:nnF
2075 {
2076 \exp_after:wN \exp_not:n
2077 \if_case:w \int_eval:n {#2}
2078 { }
2079 \or: { ##1 }
2080 \or: { ##1##2 }
2081 \or: { ##1##2##3 }
2082 \or: { ##1##2##3##4 }
2083 \or: { ##1##2##3##4##5 }
2084 \or: { ##1##2##3##4##5##6 }
2085 \or: { ##1##2##3##4##5##6##7 }
2086 \or: { ##1##2##3##4##5##6##7##8 }
2087 \or: { ##1##2##3##4##5##6##7##8##9 }
2088 \else: { \c_false_bool }
2089 \fi:
2090 }
2091 {#1}

401

2092 }
2093 \cs_new_protected:Npn __cs_parm_from_arg_count_test:nnF #1#2
2094 {
2095 \if_meaning:w \c_false_bool #1
2096 \exp_after:wN \use_ii:nn
2097 \else:
2098 \exp_after:wN \use_i:nn
2099 \fi:
2100 { #2 {#1} }
2101 }

(End of definition for __kernel_cs_parm_from_arg_count:nnF and __cs_parm_from_arg_count_-
test:nnF.)

42.15 Defining functions from a given number of ar-
guments

2102 ⟨@@=cs⟩

__cs_count_signature:N
__cs_count_signature:c
__cs_count_signature:n

__cs_count_signature:nnN

Counting the number of tokens in the signature, i.e., the number of arguments the func-
tion should take. Since this is not used in any time-critical function, we simply use
\tl_count:n if there is a signature, otherwise −1 arguments to signal an error. We need
a variant form right away.

2103 \cs_new:Npn __cs_count_signature:N #1
2104 { \exp_args:Nf __cs_count_signature:n { \cs_split_function:N #1 } }
2105 \cs_new:Npn __cs_count_signature:n #1
2106 { \int_eval:n { __cs_count_signature:nnN #1 } }
2107 \cs_new:Npn __cs_count_signature:nnN #1#2#3
2108 {
2109 \if_meaning:w \c_true_bool #3
2110 \tl_count:n {#2}
2111 \else:
2112 -1
2113 \fi:
2114 }
2115 \cs_new:Npn __cs_count_signature:c
2116 { \exp_args:Nc __cs_count_signature:N }

(End of definition for __cs_count_signature:N , __cs_count_signature:n , and __cs_count_signature:nnN.)

\cs_generate_from_arg_count:NNnn
\cs_generate_from_arg_count:cNnn
\cs_generate_from_arg_count:Ncnn

We provide a constructor function for defining functions with a given number of argu-
ments. For this we need to choose the correct parameter text and then use that when
defining. Since TEX supports from zero to nine arguments, we use a simple switch to
choose the correct parameter text, ensuring the result is returned after finishing the
conditional. If it is not between zero and nine, we throw an error.

1: function to define, 2: with what to define it, 3: the number of args it requires and
4: the replacement text

2117 \cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4
2118 {
2119 __kernel_cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}
2120 {
2121 \msg_error:nnee { kernel } { bad-number-of-arguments }
2122 { \token_to_str:N #1 } { \int_eval:n {#3} }

402

2123 \use_none:n
2124 }
2125 {#4}
2126 }

A variant form we need right away, plus one which is used elsewhere but which is most
logically created here.

2127 \cs_new_protected:Npn \cs_generate_from_arg_count:cNnn
2128 { \exp_args:Nc \cs_generate_from_arg_count:NNnn }
2129 \cs_new_protected:Npn \cs_generate_from_arg_count:Ncnn
2130 { \exp_args:NNc \cs_generate_from_arg_count:NNnn }

(End of definition for \cs_generate_from_arg_count:NNnn. This function is documented on page 20.)

42.16 Using the signature to define functions
2131 ⟨@@=cs⟩

We can now combine some of the tools we have to provide a simple interface for
defining functions, where the number of arguments is read from the signature. For
instance, \cs_set:Nn \foo_bar:nn {#1,#2}.

\cs_set:Nn
\cs_set:Ne
\cs_set:Nx

\cs_set_nopar:Nn
\cs_set_nopar:Ne
\cs_set_nopar:Nx

\cs_set_protected:Nn
\cs_set_protected:Ne
\cs_set_protected:Nx

\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:Ne
\cs_set_protected_nopar:Nx

\cs_gset:Nn
\cs_gset:Ne
\cs_gset:Nx

\cs_gset_nopar:Nn
\cs_gset_nopar:Ne
\cs_gset_nopar:Nx

\cs_gset_protected:Nn
\cs_gset_protected:Ne
\cs_gset_protected:Nx

\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:Ne
\cs_gset_protected_nopar:Nx

\cs_new:Nn
\cs_new:Ne
\cs_new:Nx

\cs_new_nopar:Nn
\cs_new_nopar:Ne
\cs_new_nopar:Nx

\cs_new_protected:Nn
\cs_new_protected:Ne
\cs_new_protected:Nx

\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:Ne
\cs_new_protected_nopar:Nx

We want to define \cs_set:Nn as

\cs_set_protected:Npn \cs_set:Nn #1#2
{
\cs_generate_from_arg_count:NNnn #1 \cs_set:Npn
{ \@@_count_signature:N #1 } {#2}

}

In short, to define \cs_set:Nn we need just use \cs_set:Npn, everything else is the same
for each variant. Therefore, we can make it simpler by temporarily defining a function
to do this for us.

2132 \cs_set:Npn __cs_tmp:w #1#2#3
2133 {
2134 \cs_new_protected:cpx { cs_ #1 : #2 }
2135 {
2136 \exp_not:N __cs_generate_from_signature:NNn
2137 \exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end:
2138 }
2139 }
2140 \cs_new_protected:Npn __cs_generate_from_signature:NNn #1#2
2141 {
2142 \use:e
2143 {
2144 __cs_generate_from_signature:nnNNNn
2145 \cs_split_function:N #2
2146 }
2147 #1 #2
2148 }
2149 \cs_new_protected:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
2150 {
2151 \bool_if:NTF #3
2152 {
2153 \cs_set_nopar:Npx __cs_tmp:w

403

2154 { \tl_map_function:nN {#2} __cs_generate_from_signature:n }
2155 \tl_if_empty:oF __cs_tmp:w
2156 {
2157 \msg_error:nneee { kernel } { non-base-function }
2158 { \token_to_str:N #5 } {#2} { __cs_tmp:w }
2159 }
2160 \cs_generate_from_arg_count:NNnn
2161 #5 #4 { \tl_count:n {#2} } {#6}
2162 }
2163 {
2164 \msg_error:nne { kernel } { missing-colon }
2165 { \token_to_str:N #5 }
2166 }
2167 }
2168 \cs_new:Npn __cs_generate_from_signature:n #1
2169 {
2170 \if:w n #1 \else: \if:w N #1 \else:
2171 \if:w T #1 \else: \if:w F #1 \else: #1 \fi: \fi: \fi: \fi:
2172 }

Then we define the 24 variants beginning with N.
2173 __cs_tmp:w { set } { Nn } { Npn }
2174 __cs_tmp:w { set } { Ne } { Npe }
2175 __cs_tmp:w { set } { Nx } { Npx }
2176 __cs_tmp:w { set_nopar } { Nn } { Npn }
2177 __cs_tmp:w { set_nopar } { Ne } { Npe }
2178 __cs_tmp:w { set_nopar } { Nx } { Npx }
2179 __cs_tmp:w { set_protected } { Nn } { Npn }
2180 __cs_tmp:w { set_protected } { Ne } { Npe }
2181 __cs_tmp:w { set_protected } { Nx } { Npx }
2182 __cs_tmp:w { set_protected_nopar } { Nn } { Npn }
2183 __cs_tmp:w { set_protected_nopar } { Ne } { Npe }
2184 __cs_tmp:w { set_protected_nopar } { Nx } { Npx }
2185 __cs_tmp:w { gset } { Nn } { Npn }
2186 __cs_tmp:w { gset } { Ne } { Npe }
2187 __cs_tmp:w { gset } { Nx } { Npx }
2188 __cs_tmp:w { gset_nopar } { Nn } { Npn }
2189 __cs_tmp:w { gset_nopar } { Ne } { Npe }
2190 __cs_tmp:w { gset_nopar } { Nx } { Npx }
2191 __cs_tmp:w { gset_protected } { Nn } { Npn }
2192 __cs_tmp:w { gset_protected } { Ne } { Npe }
2193 __cs_tmp:w { gset_protected } { Nx } { Npx }
2194 __cs_tmp:w { gset_protected_nopar } { Nn } { Npn }
2195 __cs_tmp:w { gset_protected_nopar } { Ne } { Npe }
2196 __cs_tmp:w { gset_protected_nopar } { Nx } { Npx }
2197 __cs_tmp:w { new } { Nn } { Npn }
2198 __cs_tmp:w { new } { Ne } { Npe }
2199 __cs_tmp:w { new } { Nx } { Npx }
2200 __cs_tmp:w { new_nopar } { Nn } { Npn }
2201 __cs_tmp:w { new_nopar } { Ne } { Npe }
2202 __cs_tmp:w { new_nopar } { Nx } { Npx }
2203 __cs_tmp:w { new_protected } { Nn } { Npn }
2204 __cs_tmp:w { new_protected } { Ne } { Npe }
2205 __cs_tmp:w { new_protected } { Nx } { Npx }
2206 __cs_tmp:w { new_protected_nopar } { Nn } { Npn }

404

2207 __cs_tmp:w { new_protected_nopar } { Ne } { Npe }
2208 __cs_tmp:w { new_protected_nopar } { Nx } { Npx }

(End of definition for \cs_set:Nn and others. These functions are documented on page 19.)

\cs_set:cn
\cs_set:ce
\cs_set:cx

\cs_set_nopar:cn
\cs_set_nopar:ce
\cs_set_nopar:cx

\cs_set_protected:cn
\cs_set_protected:ce
\cs_set_protected:cx

\cs_set_protected_nopar:cn
\cs_set_protected_nopar:ce
\cs_set_protected_nopar:cx

\cs_gset:cn
\cs_gset:ce
\cs_gset:cx

\cs_gset_nopar:cn
\cs_gset_nopar:ce
\cs_gset_nopar:cx

\cs_gset_protected:cn
\cs_gset_protected:ce
\cs_gset_protected:cx

\cs_gset_protected_nopar:cn
\cs_gset_protected_nopar:ce
\cs_gset_protected_nopar:cx

\cs_new:cn
\cs_new:ce
\cs_new:cx

\cs_new_nopar:cn
\cs_new_nopar:ce
\cs_new_nopar:cx

\cs_new_protected:cn
\cs_new_protected:ce
\cs_new_protected:cx

\cs_new_protected_nopar:cn
\cs_new_protected_nopar:ce
\cs_new_protected_nopar:cx

The 24 c variants simply use \exp_args:Nc.
2209 \cs_set:Npn __cs_tmp:w #1#2
2210 {
2211 \cs_new_protected:cpx { cs_ #1 : c #2 }
2212 {
2213 \exp_not:N \exp_args:Nc
2214 \exp_after:wN \exp_not:N \cs:w cs_ #1 : N #2 \cs_end:
2215 }
2216 }
2217 __cs_tmp:w { set } { n }
2218 __cs_tmp:w { set } { e }
2219 __cs_tmp:w { set } { x }
2220 __cs_tmp:w { set_nopar } { n }
2221 __cs_tmp:w { set_nopar } { e }
2222 __cs_tmp:w { set_nopar } { x }
2223 __cs_tmp:w { set_protected } { n }
2224 __cs_tmp:w { set_protected } { e }
2225 __cs_tmp:w { set_protected } { x }
2226 __cs_tmp:w { set_protected_nopar } { n }
2227 __cs_tmp:w { set_protected_nopar } { e }
2228 __cs_tmp:w { set_protected_nopar } { x }
2229 __cs_tmp:w { gset } { n }
2230 __cs_tmp:w { gset } { e }
2231 __cs_tmp:w { gset } { x }
2232 __cs_tmp:w { gset_nopar } { n }
2233 __cs_tmp:w { gset_nopar } { e }
2234 __cs_tmp:w { gset_nopar } { x }
2235 __cs_tmp:w { gset_protected } { n }
2236 __cs_tmp:w { gset_protected } { e }
2237 __cs_tmp:w { gset_protected } { x }
2238 __cs_tmp:w { gset_protected_nopar } { n }
2239 __cs_tmp:w { gset_protected_nopar } { e }
2240 __cs_tmp:w { gset_protected_nopar } { x }
2241 __cs_tmp:w { new } { n }
2242 __cs_tmp:w { new } { e }
2243 __cs_tmp:w { new } { x }
2244 __cs_tmp:w { new_nopar } { n }
2245 __cs_tmp:w { new_nopar } { e }
2246 __cs_tmp:w { new_nopar } { x }
2247 __cs_tmp:w { new_protected } { n }
2248 __cs_tmp:w { new_protected } { e }
2249 __cs_tmp:w { new_protected } { x }
2250 __cs_tmp:w { new_protected_nopar } { n }
2251 __cs_tmp:w { new_protected_nopar } { e }
2252 __cs_tmp:w { new_protected_nopar } { x }

(End of definition for \cs_set:Nn. This function is documented on page 19.)

405

42.17 Checking control sequence equality
\cs_if_eq_p:NN
\cs_if_eq_p:cN
\cs_if_eq_p:Nc
\cs_if_eq_p:cc
\cs_if_eq:NNTF
\cs_if_eq:cNTF
\cs_if_eq:NcTF
\cs_if_eq:ccTF

Check if two control sequences are identical.
2253 \prg_new_conditional:Npnn \cs_if_eq:NN #1#2 { p , T , F , TF }
2254 {
2255 \if_meaning:w #1#2
2256 \prg_return_true: \else: \prg_return_false: \fi:
2257 }
2258 \cs_new:Npn \cs_if_eq_p:cN { \exp_args:Nc \cs_if_eq_p:NN }
2259 \cs_new:Npn \cs_if_eq:cNTF { \exp_args:Nc \cs_if_eq:NNTF }
2260 \cs_new:Npn \cs_if_eq:cNT { \exp_args:Nc \cs_if_eq:NNT }
2261 \cs_new:Npn \cs_if_eq:cNF { \exp_args:Nc \cs_if_eq:NNF }
2262 \cs_new:Npn \cs_if_eq_p:Nc { \exp_args:NNc \cs_if_eq_p:NN }
2263 \cs_new:Npn \cs_if_eq:NcTF { \exp_args:NNc \cs_if_eq:NNTF }
2264 \cs_new:Npn \cs_if_eq:NcT { \exp_args:NNc \cs_if_eq:NNT }
2265 \cs_new:Npn \cs_if_eq:NcF { \exp_args:NNc \cs_if_eq:NNF }
2266 \cs_new:Npn \cs_if_eq_p:cc { \exp_args:Ncc \cs_if_eq_p:NN }
2267 \cs_new:Npn \cs_if_eq:ccTF { \exp_args:Ncc \cs_if_eq:NNTF }
2268 \cs_new:Npn \cs_if_eq:ccT { \exp_args:Ncc \cs_if_eq:NNT }
2269 \cs_new:Npn \cs_if_eq:ccF { \exp_args:Ncc \cs_if_eq:NNF }

(End of definition for \cs_if_eq:NNTF. This function is documented on page 29.)

42.18 Diagnostic functions
2270 ⟨@@=kernel⟩

__kernel_chk_defined:NT Error if the variable #1 is not defined.
2271 \cs_new_protected:Npn __kernel_chk_defined:NT #1#2
2272 {
2273 \cs_if_exist:NTF #1
2274 {#2}
2275 {
2276 \msg_error:nne { kernel } { variable-not-defined }
2277 { \token_to_str:N #1 }
2278 }
2279 }

(End of definition for __kernel_chk_defined:NT.)

__kernel_register_show:N
__kernel_register_show:c
__kernel_register_log:N
__kernel_register_log:c

__kernel_register_show_aux:NN
__kernel_register_show_aux:nNN

Simply using the \showthe primitive does not allow for line-wrapping, so instead use
\tl_show:n and \tl_log:n (defined in l3tl and that performs line-wrapping). This dis-
plays >~⟨variable⟩=⟨value⟩. We expand the value before-hand as otherwise some inte-
gers (such as \currentgrouplevel or \currentgrouptype) altered by the line-wrapping
code would show wrong values.

2280 \cs_new_protected:Npn __kernel_register_show:N
2281 { __kernel_register_show_aux:NN \tl_show:n }
2282 \cs_new_protected:Npn __kernel_register_show:c
2283 { \exp_args:Nc __kernel_register_show:N }
2284 \cs_new_protected:Npn __kernel_register_log:N
2285 { __kernel_register_show_aux:NN \tl_log:n }
2286 \cs_new_protected:Npn __kernel_register_log:c
2287 { \exp_args:Nc __kernel_register_log:N }

406

2288 \cs_new_protected:Npn __kernel_register_show_aux:NN #1#2
2289 {
2290 __kernel_chk_defined:NT #2
2291 {
2292 \exp_args:No __kernel_register_show_aux:nNN
2293 { \tex_the:D #2 } #2 #1
2294 }
2295 }
2296 \cs_new_protected:Npn __kernel_register_show_aux:nNN #1#2#3
2297 { \exp_args:No #3 { \token_to_str:N #2 = #1 } }

(End of definition for __kernel_register_show:N and others.)

\cs_show:N
\cs_show:c
\cs_log:N
\cs_log:c

__kernel_show:NN

Some control sequences have a very long name or meaning. Thus, simply using TEX’s
primitive \show could lead to overlong lines. The output of this primitive is mimicked
to some extent, then the re-built string is given to \tl_show:n or \tl_log:n for line-
wrapping. We must expand the meaning before passing it to the wrapping code as
otherwise we would wrongly see the definitions that are in place there. To get correct
escape characters, set the \escapechar in a group; this also localizes the assignment
performed by e-expansion. The \cs_show:c and \cs_log:c commands convert their
argument to a control sequence within a group to avoid showing \relax for undefined
control sequences.

2298 \cs_new_protected:Npn \cs_show:N { __kernel_show:NN \tl_show:n }
2299 \cs_new_protected:Npn \cs_show:c
2300 { \group_begin: \exp_args:NNc \group_end: \cs_show:N }
2301 \cs_new_protected:Npn \cs_log:N { __kernel_show:NN \tl_log:n }
2302 \cs_new_protected:Npn \cs_log:c
2303 { \group_begin: \exp_args:NNc \group_end: \cs_log:N }
2304 \cs_new_protected:Npn __kernel_show:NN #1#2
2305 {
2306 \group_begin:
2307 \int_set:Nn \tex_escapechar:D { ‘\\ }
2308 \exp_args:NNe
2309 \group_end:
2310 #1 { \token_to_str:N #2 = \cs_meaning:N #2 }
2311 }

(End of definition for \cs_show:N , \cs_log:N , and __kernel_show:NN. These functions are documented
on page 21.)

\group_show_list:
\group_log_list:

__kernel_group_show:NN

Wrapper around \showgroups. Getting TEX to write to the log without interruption the
run is done by altering the interaction mode.

2312 \cs_new_protected:Npn \group_show_list:
2313 { __kernel_group_show:NN \use_none:n 1 }
2314 \cs_new_protected:Npn \group_log_list:
2315 { __kernel_group_show:NN \int_gzero:N 0 }
2316 \cs_new_protected:Npn __kernel_group_show:NN #1#2
2317 {
2318 \use:e
2319 {
2320 #1 \tex_interactionmode:D
2321 \int_set:Nn \tex_tracingonline:D {#2}
2322 \int_set:Nn \tex_errorcontextlines:D { -1 }
2323 \exp_not:N \exp_after:wN \scan_stop:

407

2324 \tex_showgroups:D
2325 \int_gset:Nn \tex_interactionmode:D
2326 { \int_use:N \tex_interactionmode:D }
2327 \int_set:Nn \tex_tracingonline:D
2328 { \int_use:N \tex_tracingonline:D }
2329 \int_set:Nn \tex_errorcontextlines:D
2330 { \int_use:N \tex_errorcontextlines:D }
2331 }
2332 }

(End of definition for \group_show_list: , \group_log_list: , and __kernel_group_show:NN. These
functions are documented on page 15.)

42.19 Decomposing a macro definition
\cs_prefix_spec:N

\cs_parameter_spec:N
\cs_replacement_spec:N

__kernel_prefix_arg_replacement:wN

We sometimes want to test if a control sequence can be expanded to reveal a hidden value.
However, we cannot just expand the macro blindly as it may have arguments and none
might be present. Therefore we define these functions to pick either the prefix(es), the
parameter specification, or the replacement text from a macro. All of this information is
returned as characters with catcode 12. If the token in question isn’t a macro, the token
\scan_stop: is returned instead.

2333 \use:e
2334 {
2335 \exp_not:n { \cs_new:Npn __kernel_prefix_arg_replacement:wN #1 }
2336 \tl_to_str:n { macro : } \exp_not:n { #2 -> #3 \s__kernel_stop #4 }
2337 }
2338 { #4 {#1} {#2} {#3} }
2339 \cs_new:Npn \cs_prefix_spec:N #1
2340 {
2341 \token_if_macro:NTF #1
2342 {
2343 \exp_after:wN __kernel_prefix_arg_replacement:wN
2344 \token_to_meaning:N #1 \s__kernel_stop \use_i:nnn
2345 }
2346 { \scan_stop: }
2347 }
2348 \cs_new:Npn \cs_parameter_spec:N #1
2349 {
2350 \token_if_macro:NTF #1
2351 {
2352 \exp_after:wN __kernel_prefix_arg_replacement:wN
2353 \token_to_meaning:N #1 \s__kernel_stop \use_ii:nnn
2354 }
2355 { \scan_stop: }
2356 }
2357 \cs_new:Npn \cs_replacement_spec:N #1
2358 {
2359 \token_if_macro:NTF #1
2360 {
2361 \exp_after:wN __kernel_prefix_arg_replacement:wN
2362 \token_to_meaning:N #1 \s__kernel_stop \use_iii:nnn
2363 }
2364 { \scan_stop: }

408

2365 }

(End of definition for \cs_prefix_spec:N and others. These functions are documented on page 23.)

42.20 Doing nothing functions
\prg_do_nothing: This does not fit anywhere else!

2366 \cs_new:Npn \prg_do_nothing: { }

(End of definition for \prg_do_nothing:. This function is documented on page 14.)

42.21 Breaking out of mapping functions
2367 ⟨@@=prg⟩

\prg_break_point:Nn
\prg_map_break:Nn

In inline mappings, the nesting level must be reset at the end of the mapping, even when
the user decides to break out. This is done by putting the code that must be performed
as an argument of __prg_break_point:Nn. The breaking functions are then defined to
jump to that point and perform the argument of __prg_break_point:Nn, before the
user’s code (if any). There is a check that we close the correct loop, otherwise we continue
breaking.

2368 \cs_new_eq:NN \prg_break_point:Nn \use_ii:nn
2369 \cs_new:Npn \prg_map_break:Nn #1#2#3 \prg_break_point:Nn #4#5
2370 {
2371 #5
2372 \if_meaning:w #1 #4
2373 \exp_after:wN \use_iii:nnn
2374 \fi:
2375 \prg_map_break:Nn #1 {#2}
2376 }

(End of definition for \prg_break_point:Nn and \prg_map_break:Nn. These functions are documented
on page 74.)

\prg_break_point:
\prg_break:

\prg_break:n

Very simple analogues of \prg_break_point:Nn and \prg_map_break:Nn, for use in fast
short-term recursions which are not mappings, do not need to support nesting, and in
which nothing has to be done at the end of the loop.

2377 \cs_new_eq:NN \prg_break_point: \prg_do_nothing:
2378 \cs_new:Npn \prg_break: #1 \prg_break_point: { }
2379 \cs_new:Npn \prg_break:n #1#2 \prg_break_point: {#1}

(End of definition for \prg_break_point: , \prg_break: , and \prg_break:n. These functions are docu-
mented on page 75.)

42.22 Starting a paragraph
\mode_leave_vertical: The approach here is different to that used by LATEX 2ε or plain TEX, which unbox a

void box to force horizontal mode. That inserts the \everypar tokens before the re-
inserted unboxing tokens. The approach here uses a protected macro, equivalent to the
\quitvmode primitive. In vertical mode, the \indent primitive is inserted: this will
switch to horizontal mode and insert \everypar tokens and nothing else. Unlike the

409

LATEX 2ε version, the availability of ε-TEX means using a mode test can be done at for
example the start of an \halign.

2380 \cs_new_protected:Npn \mode_leave_vertical:
2381 {
2382 \if_mode_vertical:
2383 \exp_after:wN \tex_indent:D
2384 \fi:
2385 }

(End of definition for \mode_leave_vertical:. This function is documented on page 31.)

2386 ⟨/package⟩

410

Chapter 43

l3expan implementation

2387 ⟨∗package⟩

2388 ⟨@@=exp⟩

\l__exp_internal_tl The \exp_ module has its private variable to temporarily store the result of x-type argu-
ment expansion. This is done to avoid interference with other functions using temporary
variables.

(End of definition for \l__exp_internal_tl.)

\exp_after:wN
\exp_not:N
\exp_not:n

These are defined in l3basics, as they are needed “early”. This is just a reminder of that
fact!

(End of definition for \exp_after:wN , \exp_not:N , and \exp_not:n. These functions are documented
on page 40.)

43.1 General expansion
In this section a general mechanism for defining functions that handle arguments is
defined. These general expansion functions are expandable unless x is used. (Any version
of x is going to have to use one of the LATEX3 names for \cs_set:Npx at some point, and
so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 43.7.
In section 43.2 some common cases are coded by a more direct method for efficiency,
typically using calls to \exp_after:wN.

\l__exp_internal_tl This scratch token list variable is defined in l3basics.

(End of definition for \l__exp_internal_tl.)
This code uses internal functions with names that start with \:: to perform the

expansions. All macros are long since the tokens undergoing expansion may be arbitrary
user input.

An argument manipulator \::⟨Z⟩ always has signature #1\:::#2#3 where #1 holds
the remaining argument manipulations to be performed, \::: serves as an end marker
for the list of manipulations, #2 is the carried over result of the previous expansion steps
and #3 is the argument about to be processed. One exception to this rule is \::p, which
has to grab an argument delimited by a left brace.

411

__exp_arg_next:nnn
__exp_arg_next:Nnn

#1 is the result of an expansion step, #2 is the remaining argument manipulations and
#3 is the current result of the expansion chain. This auxiliary function moves #1 back
after #3 in the input stream and checks if any expansion is left to be done by calling
#2. In by far the most cases we need to add a set of braces to the result of an argument
manipulation so it is more effective to do it directly here. Actually, so far only the c of
the final argument manipulation variants does not require a set of braces.

2389 \cs_new:Npn __exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
2390 \cs_new:Npn __exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }

(End of definition for __exp_arg_next:nnn and __exp_arg_next:Nnn.)

\::: The end marker is just another name for the identity function.
2391 \cs_new:Npn \::: #1 {#1}

(End of definition for \:::. This function is documented on page 44.)

\::n This function is used to skip an argument that doesn’t need to be expanded.
2392 \cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }

(End of definition for \::n. This function is documented on page 44.)

\::N This function is used to skip an argument that consists of a single token and doesn’t need
to be expanded.

2393 \cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }

(End of definition for \::N. This function is documented on page 44.)

\::p This function is used to skip an argument that is delimited by a left brace and doesn’t
need to be expanded. It is not wrapped in braces in the result.

2394 \cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }

(End of definition for \::p. This function is documented on page 44.)

\::c This function is used to skip an argument that is turned into a control sequence without
expansion.

2395 \cs_new:Npn \::c #1 \::: #2#3
2396 { \exp_after:wN __exp_arg_next:Nnn \cs:w #3 \cs_end: {#1} {#2} }

(End of definition for \::c. This function is documented on page 44.)

\::o This function is used to expand an argument once.
2397 \cs_new:Npn \::o #1 \::: #2#3
2398 { \exp_after:wN __exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} }

(End of definition for \::o. This function is documented on page 44.)

\::e With the \expanded primitive available, just expand.
2399 \cs_new:Npn \::e #1 \::: #2#3
2400 { \tex_expanded:D { \exp_not:n { #1 \::: } { \exp_not:n {#2} {#3} } } }

(End of definition for \::e. This function is documented on page 44.)

412

\::f
\exp_stop_f:

This function is used to expand a token list until the first unexpandable token is
found. This is achieved through \exp:w \exp_end_continue_f:w that expands every-
thing in its way following it. This scanning procedure is terminated once the expan-
sion hits something non-expandable (if that is a space it is removed). We introduce
\exp_stop_f: to mark such an end-of-expansion marker. For example, f-expanding
\cs_set_eq:Nc \aaa { b \l_tmpa_tl b } where \l_tmpa_tl contains the characters
lur gives \tex_let:D \aaa = \blurb which then turns out to start with the non-
expandable token \tex_let:D. Since the expansion of \exp:w \exp_end_continue_f:w
is empty, we wind up with a fully expanded list, only TEX has not tried to execute any
of the non-expandable tokens. This is what differentiates this function from the e and x
argument type.

2401 \cs_new:Npn \::f #1 \::: #2#3
2402 {
2403 \exp_after:wN __exp_arg_next:nnn
2404 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2405 {#1} {#2}
2406 }
2407 \use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }

(End of definition for \::f and \exp_stop_f:. These functions are documented on page 44.)

\::x This function is used to expand an argument fully. We build in the expansion of __exp_-
arg_next:nnn.

2408 \cs_new_protected:Npn \::x #1 \::: #2#3
2409 {
2410 \cs_set_nopar:Npe \l__exp_internal_tl
2411 { \exp_not:n { #1 \::: } { \exp_not:n {#2} {#3} } }
2412 \l__exp_internal_tl
2413 }

(End of definition for \::x. This function is documented on page 44.)

\::v
\::V

These functions return the value of a register, i.e., one of tl, clist, int, skip, dim,
muskip, or built-in TEX register. The V version expects a single token whereas v like c
creates a csname from its argument given in braces and then evaluates it as if it was a
V. The \exp:w sets off an expansion similar to an f-type expansion, which we terminate
using \exp_end:. The argument is returned in braces.

2414 \cs_new:Npn \::V #1 \::: #2#3
2415 {
2416 \exp_after:wN __exp_arg_next:nnn
2417 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2418 {#1} {#2}
2419 }
2420 \cs_new:Npn \::v #1 \::: #2#3
2421 {
2422 \exp_after:wN __exp_arg_next:nnn
2423 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
2424 {#1} {#2}
2425 }

(End of definition for \::v and \::V. These functions are documented on page 44.)

413

__exp_eval_register:N
__exp_eval_register:c
__exp_eval_error_msg:w

This function evaluates a register. Now a register might exist as one of two things: A
parameter-less macro or a built-in TEX register such as \count. For the TEX registers
we have to utilize a \the whereas for the macros we merely have to expand them once.
The trick is to find out when to use \the and when not to. What we want here is to
find out whether the token expands to something else when hit with \exp_after:wN.
The technique is to compare the meaning of the token in question when it has been
prefixed with \exp_not:N and the token itself. If it is a macro, the prefixed \exp_not:N
temporarily turns it into the primitive \scan_stop:.

2426 \cs_new:Npn __exp_eval_register:N #1
2427 {
2428 \exp_after:wN \if_meaning:w \exp_not:N #1 #1

If the token was not a macro it may be a malformed variable from a c expansion in which
case it is equal to the primitive \scan_stop:. In that case we throw an error. We could
let TEX do it for us but that would result in the rather obscure

! You can’t use ‘\relax’ after \the.

which while quite true doesn’t give many hints as to what actually went wrong. We
provide something more sensible.

2429 \if_meaning:w \scan_stop: #1
2430 __exp_eval_error_msg:w
2431 \fi:

The next bit requires some explanation. The function must be initiated by \exp:w and
we want to terminate this expansion chain by inserting the \exp_end: token. However,
we have to expand the register #1 before we do that. If it is a TEX register, we need
to execute the sequence \exp_after:wN \exp_end: \tex_the:D #1 and if it is a macro
we need to execute \exp_after:wN \exp_end: #1. We therefore issue the longer of the
two sequences and if the register is a macro, we remove the \tex_the:D.

2432 \else:
2433 \exp_after:wN \use_i_ii:nnn
2434 \fi:
2435 \exp_after:wN \exp_end: \tex_the:D #1
2436 }
2437 \cs_new:Npn __exp_eval_register:c #1
2438 { \exp_after:wN __exp_eval_register:N \cs:w #1 \cs_end: }

Clean up nicely, then call the undefined control sequence. The result is an error message
looking like this:

! Undefined control sequence.
<argument> \LaTeX3 error:

Erroneous variable used!
l.55 \tl_set:Nv \l_tmpa_tl {undefined_tl}

2439 \cs_new:Npn __exp_eval_error_msg:w #1 \tex_the:D #2
2440 {
2441 \fi:
2442 \fi:
2443 \msg_expandable_error:nnn { kernel } { bad-variable } {#2}
2444 \exp_end:
2445 }

(End of definition for __exp_eval_register:N and __exp_eval_error_msg:w.)

414

43.2 Hand-tuned definitions
One of the most important features of these functions is that they are fully expandable.

\exp_args:Nc
\exp_args:cc

In l3basics.

(End of definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 37.)

\exp_args:NNc
\exp_args:Ncc
\exp_args:Nccc

Here are the functions that turn their argument into csnames but are expandable.
2446 \cs_new:Npn \exp_args:NNc #1#2#3
2447 { \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }
2448 \cs_new:Npn \exp_args:Ncc #1#2#3
2449 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
2450 \cs_new:Npn \exp_args:Nccc #1#2#3#4
2451 {
2452 \exp_after:wN #1
2453 \cs:w #2 \exp_after:wN \cs_end:
2454 \cs:w #3 \exp_after:wN \cs_end:
2455 \cs:w #4 \cs_end:
2456 }

(End of definition for \exp_args:NNc , \exp_args:Ncc , and \exp_args:Nccc. These functions are docu-
mented on page 38.)

\exp_args:No
\exp_args:NNo
\exp_args:NNNo

Those lovely runs of expansion!
2457 \cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }
2458 \cs_new:Npn \exp_args:NNo #1#2#3
2459 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN {#3} }
2460 \cs_new:Npn \exp_args:NNNo #1#2#3#4
2461 { \exp_after:wN #1 \exp_after:wN#2 \exp_after:wN #3 \exp_after:wN {#4} }

(End of definition for \exp_args:No , \exp_args:NNo , and \exp_args:NNNo. These functions are docu-
mented on page 37.)

\exp_args:Ne When the \expanded primitive is available, use it.
2462 \cs_new:Npn \exp_args:Ne #1#2
2463 { \exp_after:wN #1 \tex_expanded:D { {#2} } }

(End of definition for \exp_args:Ne. This function is documented on page 37.)

\exp_args:Nf
\exp_args:NV
\exp_args:Nv

2464 \cs_new:Npn \exp_args:Nf #1#2
2465 { \exp_after:wN #1 \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } }
2466 \cs_new:Npn \exp_args:Nv #1#2
2467 {
2468 \exp_after:wN #1 \exp_after:wN
2469 { \exp:w __exp_eval_register:c {#2} }
2470 }
2471 \cs_new:Npn \exp_args:NV #1#2
2472 {
2473 \exp_after:wN #1 \exp_after:wN
2474 { \exp:w __exp_eval_register:N #2 }
2475 }

(End of definition for \exp_args:Nf , \exp_args:NV , and \exp_args:Nv. These functions are documented
on page 37.)

415

\exp_args:NNV
\exp_args:NNv
\exp_args:NNe
\exp_args:NNf
\exp_args:Nco
\exp_args:NcV
\exp_args:Ncv
\exp_args:Ncf
\exp_args:NVV

Some more hand-tuned function with three arguments. If we forced that an o argument
always has braces, we could implement \exp_args:Nco with less tokens and only two
arguments.

2476 \cs_new:Npn \exp_args:NNV #1#2#3
2477 {
2478 \exp_after:wN #1
2479 \exp_after:wN #2
2480 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2481 }
2482 \cs_new:Npn \exp_args:NNv #1#2#3
2483 {
2484 \exp_after:wN #1
2485 \exp_after:wN #2
2486 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
2487 }
2488 \cs_new:Npn \exp_args:NNe #1#2#3
2489 {
2490 \exp_after:wN #1
2491 \exp_after:wN #2
2492 \tex_expanded:D { {#3} }
2493 }
2494 \cs_new:Npn \exp_args:NNf #1#2#3
2495 {
2496 \exp_after:wN #1
2497 \exp_after:wN #2
2498 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2499 }
2500 \cs_new:Npn \exp_args:Nco #1#2#3
2501 {
2502 \exp_after:wN #1
2503 \cs:w #2 \exp_after:wN \cs_end:
2504 \exp_after:wN {#3}
2505 }
2506 \cs_new:Npn \exp_args:NcV #1#2#3
2507 {
2508 \exp_after:wN #1
2509 \cs:w #2 \exp_after:wN \cs_end:
2510 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2511 }
2512 \cs_new:Npn \exp_args:Ncv #1#2#3
2513 {
2514 \exp_after:wN #1
2515 \cs:w #2 \exp_after:wN \cs_end:
2516 \exp_after:wN { \exp:w __exp_eval_register:c {#3} }
2517 }
2518 \cs_new:Npn \exp_args:Ncf #1#2#3
2519 {
2520 \exp_after:wN #1
2521 \cs:w #2 \exp_after:wN \cs_end:
2522 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 }
2523 }
2524 \cs_new:Npn \exp_args:NVV #1#2#3
2525 {
2526 \exp_after:wN #1

416

2527 \exp_after:wN { \exp:w \exp_after:wN
2528 __exp_eval_register:N \exp_after:wN #2 \exp_after:wN }
2529 \exp_after:wN { \exp:w __exp_eval_register:N #3 }
2530 }

(End of definition for \exp_args:NNV and others. These functions are documented on page 38.)

\exp_args:NNNV
\exp_args:NNNv
\exp_args:NNNe
\exp_args:NcNc
\exp_args:NcNo
\exp_args:Ncco

A few more that we can hand-tune.
2531 \cs_new:Npn \exp_args:NNNV #1#2#3#4
2532 {
2533 \exp_after:wN #1
2534 \exp_after:wN #2
2535 \exp_after:wN #3
2536 \exp_after:wN { \exp:w __exp_eval_register:N #4 }
2537 }
2538 \cs_new:Npn \exp_args:NNNv #1#2#3#4
2539 {
2540 \exp_after:wN #1
2541 \exp_after:wN #2
2542 \exp_after:wN #3
2543 \exp_after:wN { \exp:w __exp_eval_register:c {#4} }
2544 }
2545 \cs_new:Npn \exp_args:NNNe #1#2#3#4
2546 {
2547 \exp_after:wN #1
2548 \exp_after:wN #2
2549 \exp_after:wN #3
2550 \tex_expanded:D { {#4} }
2551 }
2552 \cs_new:Npn \exp_args:NcNc #1#2#3#4
2553 {
2554 \exp_after:wN #1
2555 \cs:w #2 \exp_after:wN \cs_end:
2556 \exp_after:wN #3
2557 \cs:w #4 \cs_end:
2558 }
2559 \cs_new:Npn \exp_args:NcNo #1#2#3#4
2560 {
2561 \exp_after:wN #1
2562 \cs:w #2 \exp_after:wN \cs_end:
2563 \exp_after:wN #3
2564 \exp_after:wN {#4}
2565 }
2566 \cs_new:Npn \exp_args:Ncco #1#2#3#4
2567 {
2568 \exp_after:wN #1
2569 \cs:w #2 \exp_after:wN \cs_end:
2570 \cs:w #3 \exp_after:wN \cs_end:
2571 \exp_after:wN {#4}
2572 }

(End of definition for \exp_args:NNNV and others. These functions are documented on page 38.)

\exp_args:Nx

417

2573 \cs_new_protected:Npn \exp_args:Nx #1#2
2574 { \use:x { \exp_not:N #1 {#2} } }

(End of definition for \exp_args:Nx. This function is documented on page 37.)

43.3 Last-unbraced versions
__exp_arg_last_unbraced:nn

\::o_unbraced
\::V_unbraced
\::v_unbraced
\::e_unbraced
\::f_unbraced
\::x_unbraced

There are a few places where the last argument needs to be available unbraced. First
some helper macros.

2575 \cs_new:Npn __exp_arg_last_unbraced:nn #1#2 { #2#1 }
2576 \cs_new:Npn \::o_unbraced \::: #1#2
2577 { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
2578 \cs_new:Npn \::V_unbraced \::: #1#2
2579 {
2580 \exp_after:wN __exp_arg_last_unbraced:nn
2581 \exp_after:wN { \exp:w __exp_eval_register:N #2 } {#1}
2582 }
2583 \cs_new:Npn \::v_unbraced \::: #1#2
2584 {
2585 \exp_after:wN __exp_arg_last_unbraced:nn
2586 \exp_after:wN { \exp:w __exp_eval_register:c {#2} } {#1}
2587 }
2588 \cs_new:Npn \::e_unbraced \::: #1#2
2589 { \tex_expanded:D { \exp_not:n {#1} #2 } }
2590 \cs_new:Npn \::f_unbraced \::: #1#2
2591 {
2592 \exp_after:wN __exp_arg_last_unbraced:nn
2593 \exp_after:wN { \exp:w \exp_end_continue_f:w #2 } {#1}
2594 }
2595 \cs_new_protected:Npn \::x_unbraced \::: #1#2
2596 {
2597 \cs_set_nopar:Npe \l__exp_internal_tl { \exp_not:n {#1} #2 }
2598 \l__exp_internal_tl
2599 }

(End of definition for __exp_arg_last_unbraced:nn and others. These functions are documented on
page 44.)

\exp_last_unbraced:No
\exp_last_unbraced:NV
\exp_last_unbraced:Nv
\exp_last_unbraced:Ne
\exp_last_unbraced:Nf

\exp_last_unbraced:NNo
\exp_last_unbraced:NNV
\exp_last_unbraced:NNf
\exp_last_unbraced:Nco
\exp_last_unbraced:NcV
\exp_last_unbraced:NNNo
\exp_last_unbraced:NNNV
\exp_last_unbraced:NNNf
\exp_last_unbraced:Nno
\exp_last_unbraced:Nnf
\exp_last_unbraced:Noo
\exp_last_unbraced:Nfo
\exp_last_unbraced:NnNo
\exp_last_unbraced:NNNNo
\exp_last_unbraced:NNNNf

\exp_last_unbraced:Nx

Now the business end: most of these are hand-tuned for speed, but the general system is
in place.

2600 \cs_new:Npn \exp_last_unbraced:No #1#2 { \exp_after:wN #1 #2 }
2601 \cs_new:Npn \exp_last_unbraced:NV #1#2
2602 { \exp_after:wN #1 \exp:w __exp_eval_register:N #2 }
2603 \cs_new:Npn \exp_last_unbraced:Nv #1#2
2604 { \exp_after:wN #1 \exp:w __exp_eval_register:c {#2} }
2605 \cs_new:Npn \exp_last_unbraced:Ne #1#2
2606 { \exp_after:wN #1 \tex_expanded:D {#2} }
2607 \cs_new:Npn \exp_last_unbraced:Nf #1#2
2608 { \exp_after:wN #1 \exp:w \exp_end_continue_f:w #2 }
2609 \cs_new:Npn \exp_last_unbraced:NNo #1#2#3
2610 { \exp_after:wN #1 \exp_after:wN #2 #3 }
2611 \cs_new:Npn \exp_last_unbraced:NNV #1#2#3
2612 {

418

2613 \exp_after:wN #1
2614 \exp_after:wN #2
2615 \exp:w __exp_eval_register:N #3
2616 }
2617 \cs_new:Npn \exp_last_unbraced:NNf #1#2#3
2618 {
2619 \exp_after:wN #1
2620 \exp_after:wN #2
2621 \exp:w \exp_end_continue_f:w #3
2622 }
2623 \cs_new:Npn \exp_last_unbraced:Nco #1#2#3
2624 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: #3 }
2625 \cs_new:Npn \exp_last_unbraced:NcV #1#2#3
2626 {
2627 \exp_after:wN #1
2628 \cs:w #2 \exp_after:wN \cs_end:
2629 \exp:w __exp_eval_register:N #3
2630 }
2631 \cs_new:Npn \exp_last_unbraced:NNNo #1#2#3#4
2632 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 #4 }
2633 \cs_new:Npn \exp_last_unbraced:NNNV #1#2#3#4
2634 {
2635 \exp_after:wN #1
2636 \exp_after:wN #2
2637 \exp_after:wN #3
2638 \exp:w __exp_eval_register:N #4
2639 }
2640 \cs_new:Npn \exp_last_unbraced:NNNf #1#2#3#4
2641 {
2642 \exp_after:wN #1
2643 \exp_after:wN #2
2644 \exp_after:wN #3
2645 \exp:w \exp_end_continue_f:w #4
2646 }
2647 \cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }
2648 \cs_new:Npn \exp_last_unbraced:Nnf { \::n \::f_unbraced \::: }
2649 \cs_new:Npn \exp_last_unbraced:Noo { \::o \::o_unbraced \::: }
2650 \cs_new:Npn \exp_last_unbraced:Nfo { \::f \::o_unbraced \::: }
2651 \cs_new:Npn \exp_last_unbraced:NnNo { \::n \::N \::o_unbraced \::: }
2652 \cs_new:Npn \exp_last_unbraced:NNNNo #1#2#3#4#5
2653 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 \exp_after:wN #4 #5 }
2654 \cs_new:Npn \exp_last_unbraced:NNNNf #1#2#3#4#5
2655 {
2656 \exp_after:wN #1
2657 \exp_after:wN #2
2658 \exp_after:wN #3
2659 \exp_after:wN #4
2660 \exp:w \exp_end_continue_f:w #5
2661 }
2662 \cs_new_protected:Npn \exp_last_unbraced:Nx { \::x_unbraced \::: }

(End of definition for \exp_last_unbraced:No and others. These functions are documented on page
40.)

\exp_last_two_unbraced:Noo
__exp_last_two_unbraced:noN

If #2 is a single token then this can be implemented as

419

\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
{ \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure
that #2 can be multiple tokens.

2663 \cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3
2664 { \exp_after:wN __exp_last_two_unbraced:noN \exp_after:wN {#3} {#2} #1 }
2665 \cs_new:Npn __exp_last_two_unbraced:noN #1#2#3
2666 { \exp_after:wN #3 #2 #1 }

(End of definition for \exp_last_two_unbraced:Noo and __exp_last_two_unbraced:noN. This function
is documented on page 40.)

43.4 Preventing expansion
__kernel_exp_not:w At the kernel level, we need the primitive behaviour to allow expansion before the brace

group.
2667 \cs_new_eq:NN __kernel_exp_not:w \tex_unexpanded:D

(End of definition for __kernel_exp_not:w.)

\exp_not:c
\exp_not:o
\exp_not:e
\exp_not:f
\exp_not:V
\exp_not:v

All these except \exp_not:c call the kernel-internal __kernel_exp_not:w namely
\tex_unexpanded:D.

2668 \cs_new:Npn \exp_not:c #1 { \exp_after:wN \exp_not:N \cs:w #1 \cs_end: }
2669 \cs_new:Npn \exp_not:o #1 { __kernel_exp_not:w \exp_after:wN {#1} }
2670 \cs_new:Npn \exp_not:e #1
2671 { __kernel_exp_not:w \tex_expanded:D { {#1} } }
2672 \cs_new:Npn \exp_not:f #1
2673 { __kernel_exp_not:w \exp_after:wN { \exp:w \exp_end_continue_f:w #1 } }
2674 \cs_new:Npn \exp_not:V #1
2675 {
2676 __kernel_exp_not:w \exp_after:wN
2677 { \exp:w __exp_eval_register:N #1 }
2678 }
2679 \cs_new:Npn \exp_not:v #1
2680 {
2681 __kernel_exp_not:w \exp_after:wN
2682 { \exp:w __exp_eval_register:c {#1} }
2683 }

(End of definition for \exp_not:c and others. These functions are documented on page 41.)

43.5 Controlled expansion
\exp:w

\exp_end:
\exp_end_continue_f:w
\exp_end_continue_f:nw

To trigger a sequence of “arbitrarily” many expansions we need a method to invoke TEX’s
expansion mechanism in such a way that (a) we are able to stop it in a controlled manner
and (b) the result of what triggered the expansion in the first place is null, i.e., that we
do not get any unwanted side effects. There aren’t that many possibilities in TEX; in fact
the one explained below might well be the only one (as normally the result of expansion
is not null).

The trick here is to make use of the fact that \tex_romannumeral:D expands the
tokens following it when looking for a number and that its expansion is null if that number

420

turns out to be zero or negative. So we use that to start the expansion sequence: \exp:w
is set equal to \tex_romannumeral:D in l3basics. To stop the expansion sequence in a
controlled way all we need to provide is a constant integer zero as part of expanded tokens.
As this is an integer constant it immediately stops \tex_romannumeral:D’s search for a
number. Again, the definition of \exp_end: as the integer constant zero is in l3basics.
(Note that according to our specification all tokens we expand initiated by \exp:w are
supposed to be expandable (as well as their replacement text in the expansion) so we will
not encounter a “number” that actually result in a roman numeral being generated. Or
if we do then the programmer made a mistake.)

If on the other hand we want to stop the initial expansion sequence but continue
with an f-type expansion we provide the alphabetic constant ‘^^@ that also represents
0 but this time TEX’s syntax for a ⟨number⟩ continues searching for an optional space
(and it continues expansion doing that) — see TEXbook page 269 for details.

2684 \group_begin:
2685 \tex_catcode:D ‘\^^@ = 13
2686 \cs_new_protected:Npn \exp_end_continue_f:w { ‘^^@ }

If the above definition ever appears outside its proper context the active character ^^@ will
be executed so we turn this into an error. The test for existence covers the (unlikely) case
that some other code has already defined ^^@: this is true for example for xmltex.tex.

2687 \if_cs_exist:N ^^@
2688 \else:
2689 \cs_new:Npn ^^@
2690 { \msg_expandable_error:nn { kernel } { bad-exp-end-f } }
2691 \fi:

The same but grabbing an argument to remove spaces and braces.
2692 \cs_new:Npn \exp_end_continue_f:nw #1 { ‘^^@ #1 }
2693 \group_end:

(End of definition for \exp:w and others. These functions are documented on page 43.)

43.6 Defining function variants
2694 ⟨@@=cs⟩

\s__cs_mark
\s__cs_stop

Internal scan marks. No l3quark yet, so do things by hand.
2695 \cs_new_eq:NN \s__cs_mark \scan_stop:
2696 \cs_new_eq:NN \s__cs_stop \scan_stop:

(End of definition for \s__cs_mark and \s__cs_stop.)

\q__cs_recursion_stop Internal recursion quarks. No l3quark yet, so do things by hand.
2697 \cs_new:Npn \q__cs_recursion_stop { \q__cs_recursion_stop }

(End of definition for \q__cs_recursion_stop.)

__cs_use_none_delimit_by_s_stop:w
__cs_use_i_delimit_by_s_stop:nw

__cs_use_none_delimit_by_q_recursion_stop:w

Internal scan marks.
2698 \cs_new:Npn __cs_use_none_delimit_by_s_stop:w #1 \s__cs_stop { }
2699 \cs_new:Npn __cs_use_i_delimit_by_s_stop:nw #1 #2 \s__cs_stop {#1}
2700 \cs_new:Npn __cs_use_none_delimit_by_q_recursion_stop:w
2701 #1 \q__cs_recursion_stop { }

421

(End of definition for __cs_use_none_delimit_by_s_stop:w , __cs_use_i_delimit_by_s_stop:nw , and
__cs_use_none_delimit_by_q_recursion_stop:w.)

\cs_generate_variant:Nn
\cs_generate_variant:cn

#1 : Base form of a function; e.g., \tl_set:Nn
#2 : One or more variant argument specifiers; e.g., {Nx,c,cx}

After making sure that the base form exists, test whether it is protected or not and
define __cs_tmp:w as either \cs_new:Npe or \cs_new_protected:Npe, which is then
used to define all the variants (except those involving x-expansion, always protected).
Split up the original base function only once, to grab its name and signature. Then
we wish to iterate through the comma list of variant argument specifiers, which we first
convert to a string: the reason is explained later.

2702 \cs_new_protected:Npn \cs_generate_variant:Nn #1#2
2703 {
2704 __cs_generate_variant:N #1
2705 \use:e
2706 {
2707 __cs_generate_variant:nnNN
2708 \cs_split_function:N #1
2709 \exp_not:N #1
2710 \tl_to_str:n {#2} ,
2711 \exp_not:N \scan_stop: ,
2712 \exp_not:N \q__cs_recursion_stop
2713 }
2714 }
2715 \cs_new_protected:Npn \cs_generate_variant:cn
2716 { \exp_args:Nc \cs_generate_variant:Nn }

(End of definition for \cs_generate_variant:Nn. This function is documented on page 34.)

__cs_generate_variant:N
__cs_generate_variant:ww

__cs_generate_variant:wwNw

The goal here is to pick up protected parent functions. There are four cases: the parent
function can be a primitive or a macro, and can be expandable or not. For non-expandable
primitives, all variants should be protected; skipping the \else: branch is safe because
non-expandable primitives cannot be TEX conditionals.

The other case where variants should be protected is when the parent function is a
protected macro: then protected appears in the meaning before the first occurrence of
macro. The ww auxiliary removes everything in the meaning string after the first ma. We
use ma rather than the full macro because the meaning of the \firstmark primitive (and
four others) can contain an arbitrary string after a leading firstmark:. Then, look for
pr in the part we extracted: no need to look for anything longer: the only strings we
can have are an empty string, \long␣, \protected␣, \protected\long␣, \first, \top,
\bot, \splittop, or \splitbot, with \ replaced by the appropriate escape character. If
pr appears in the part before ma, the first \s__cs_mark is taken as an argument of the
wwNw auxiliary, and #3 is \cs_new_protected:Npe, otherwise it is \cs_new:Npe.

2717 \cs_new_protected:Npe __cs_generate_variant:N #1
2718 {
2719 \exp_not:N \exp_after:wN \exp_not:N \if_meaning:w
2720 \exp_not:N \exp_not:N #1 #1
2721 \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npe
2722 \exp_not:N \else:
2723 \exp_not:N \exp_after:wN \exp_not:N __cs_generate_variant:ww
2724 \exp_not:N \token_to_meaning:N #1 \tl_to_str:n { ma }
2725 \s__cs_mark

422

2726 \s__cs_mark \cs_new_protected:Npe
2727 \tl_to_str:n { pr }
2728 \s__cs_mark \cs_new:Npe
2729 \s__cs_stop
2730 \exp_not:N \fi:
2731 }
2732 \exp_last_unbraced:NNNNo
2733 \cs_new_protected:Npn __cs_generate_variant:ww
2734 #1 { \tl_to_str:n { ma } } #2 \s__cs_mark
2735 { __cs_generate_variant:wwNw #1 }
2736 \exp_last_unbraced:NNNNo
2737 \cs_new_protected:Npn __cs_generate_variant:wwNw
2738 #1 { \tl_to_str:n { pr } } #2 \s__cs_mark #3 #4 \s__cs_stop
2739 { \cs_set_eq:NN __cs_tmp:w #3 }

(End of definition for __cs_generate_variant:N , __cs_generate_variant:ww , and __cs_generate_-
variant:wwNw.)

__cs_generate_variant:nnNN #1 : Base name.
#2 : Base signature.
#3 : Boolean.
#4 : Base function.

If the boolean is \c_false_bool, the base function has no colon and we abort with
an error; otherwise, set off a loop through the desired variant forms. The original function
is retained as #4 for efficiency.

2740 \cs_new_protected:Npn __cs_generate_variant:nnNN #1#2#3#4
2741 {
2742 \if_meaning:w \c_false_bool #3
2743 \msg_error:nne { kernel } { missing-colon }
2744 { \token_to_str:c {#1} }
2745 \exp_after:wN __cs_use_none_delimit_by_q_recursion_stop:w
2746 \fi:
2747 __cs_generate_variant:Nnnw #4 {#1}{#2}
2748 }

(End of definition for __cs_generate_variant:nnNN.)

__cs_generate_variant:Nnnw #1 : Base function.
#2 : Base name.
#3 : Base signature.
#4 : Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant
form, construct a new function name using the original base name, the variant signature
consisting of l letters and the last k − l letters of the base signature (of length k). For
example, for a base function \prop_put:Nnn which needs a cV variant form, we want the
new signature to be cVn.

There are further subtleties:

• In \cs_generate_variant:Nn \foo:nnTF {xxTF}, we must define \foo:xxTF using
\exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF. Thus, we wish to
trim a common trailing part from the base signature and the variant signature.

• In \cs_generate_variant:Nn \foo:on {ox}, the function \foo:ox must be defined
using \exp_args:Nnx, not \exp_args:Nox, to avoid double o expansion.

423

• Lastly, \cs_generate_variant:Nn \foo:on {xn} must trigger an error, because
we do not have a means to replace o-expansion by x-expansion. More generally, we
can only convert N to c, or convert n to V, v, o, e, f, or x.

All this boils down to a few rules. Only n and N-type arguments can be replaced by
\cs_generate_variant:Nn. Other argument types are allowed to be passed unchanged
from the base form to the variant: in the process they are changed to n except for N and
p-type arguments. A common trailing part is ignored.

We compare the base and variant signatures one character at a time within e-
expansion. The result is given to __cs_generate_variant:wwNN (defined later) in
the form ⟨processed variant signature⟩ \s__cs_mark ⟨errors⟩ \s__cs_stop ⟨base
function⟩ ⟨new function⟩. If all went well, ⟨errors⟩ is empty; otherwise, it is a kernel
error message and some clean-up code.

Note the space after #3 and after the following brace group. Those are ignored by
TEX when fetching the last argument for __cs_generate_variant_loop:nNwN, but can
be used as a delimiter for __cs_generate_variant_loop_end:nwwwNNnn.

2749 \cs_new_protected:Npn __cs_generate_variant:Nnnw #1#2#3#4 ,
2750 {
2751 \if_meaning:w \scan_stop: #4
2752 \exp_after:wN __cs_use_none_delimit_by_q_recursion_stop:w
2753 \fi:
2754 \use:e
2755 {
2756 \exp_not:N __cs_generate_variant:wwNN
2757 __cs_generate_variant_loop:nNwN { }
2758 #4
2759 __cs_generate_variant_loop_end:nwwwNNnn
2760 \s__cs_mark
2761 #3 ~
2762 { ~ { } \fi: __cs_generate_variant_loop_long:wNNnn } ~
2763 { }
2764 \s__cs_stop
2765 \exp_not:N #1 {#2} {#4}
2766 }
2767 __cs_generate_variant:Nnnw #1 {#2} {#3}
2768 }

(End of definition for __cs_generate_variant:Nnnw.)

__cs_generate_variant_loop:nNwN
__cs_generate_variant_loop_base:N
__cs_generate_variant_loop_same:w

__cs_generate_variant_loop_end:nwwwNNnn
__cs_generate_variant_loop_long:wNNnn

__cs_generate_variant_loop_invalid:NNwNNnn
__cs_generate_variant_loop_special:NNwNNnn

#1 : Last few consecutive letters common between the base and variant (more precisely,
__cs_generate_variant_same:N ⟨letter⟩ for each letter).

#2 : Next variant letter.
#3 : Remainder of variant form.
#4 : Next base letter.

The first argument is populated by __cs_generate_variant_loop_same:w when
a variant letter and a base letter match. It is flushed into the input stream whenever the
two letters are different: if the loop ends before, the argument is dropped, which means
that trailing common letters are ignored.

The case where the two letters are different is only allowed if the base is N and the
variant is c, or when the base is n and the variant is V, v, o, e, f, or x. Otherwise, call
__cs_generate_variant_loop_invalid:NNwNNnn to remove the end of the loop, get
arguments at the end of the loop, and place an appropriate error message as a second

424

argument of __cs_generate_variant:wwNN. If the letters are distinct and the base
letter is indeed n or N, leave in the input stream whatever argument #1 was collected, and
the next variant letter #2, then loop by calling __cs_generate_variant_loop:nNwN.

The loop can stop in three ways.

• If the end of the variant form is encountered first, #2 is __cs_generate_-
variant_loop_end:nwwwNNnn (expanded by the conditional \if:w), which inserts
some tokens to end the conditional; grabs the ⟨base name⟩ as #7, the ⟨variant
signature⟩ #8, the ⟨next base letter⟩ #1 and the part #3 of the base signature
that wasn’t read yet; and combines those into the ⟨new function⟩ to be defined.

• If the end of the base form is encountered first, #4 is ~{}\fi: which ends the condi-
tional (with an empty expansion), followed by __cs_generate_variant_loop_-
long:wNNnn, which places an error as the second argument of __cs_generate_-
variant:wwNN.

• The loop can be interrupted early if the requested expansion is unavailable, namely
when the variant and base letters differ and the base is not the right one (n or N to
support the variant). In that case too an error is placed as the second argument of
__cs_generate_variant:wwNN.

Note that if the variant form has the same length as the base form, #2 is as described in
the first point, and #4 as described in the second point above. The __cs_generate_-
variant_loop_end:nwwwNNnn breaking function takes the empty brace group in #4 as
its first argument: this empty brace group produces the correct signature for the full
variant.

2769 \cs_new:Npn __cs_generate_variant_loop:nNwN #1#2#3 \s__cs_mark #4
2770 {
2771 \if:w #2 #4
2772 \exp_after:wN __cs_generate_variant_loop_same:w
2773 \else:
2774 \if:w #4 __cs_generate_variant_loop_base:N #2 \else:
2775 \if:w 0
2776 \if:w N #4 \else: \if:w n #4 \else: 1 \fi: \fi:
2777 \if:w \scan_stop: __cs_generate_variant_loop_base:N #2 1 \fi:
2778 0
2779 __cs_generate_variant_loop_special:NNwNNnn #4#2
2780 \else:
2781 __cs_generate_variant_loop_invalid:NNwNNnn #4#2
2782 \fi:
2783 \fi:
2784 \fi:
2785 #1
2786 \prg_do_nothing:
2787 #2
2788 __cs_generate_variant_loop:nNwN { } #3 \s__cs_mark
2789 }
2790 \cs_new:Npn __cs_generate_variant_loop_base:N #1
2791 {
2792 \if:w c #1 N \else:
2793 \if:w o #1 n \else:
2794 \if:w V #1 n \else:
2795 \if:w v #1 n \else:

425

2796 \if:w f #1 n \else:
2797 \if:w e #1 n \else:
2798 \if:w x #1 n \else:
2799 \if:w n #1 n \else:
2800 \if:w N #1 N \else:
2801 \scan_stop:
2802 \fi:
2803 \fi:
2804 \fi:
2805 \fi:
2806 \fi:
2807 \fi:
2808 \fi:
2809 \fi:
2810 \fi:
2811 }
2812 \cs_new:Npn __cs_generate_variant_loop_same:w
2813 #1 \prg_do_nothing: #2#3#4
2814 { #3 { #1 __cs_generate_variant_same:N #2 } }
2815 \cs_new:Npn __cs_generate_variant_loop_end:nwwwNNnn
2816 #1#2 \s__cs_mark #3 ~ #4 \s__cs_stop #5#6#7#8
2817 {
2818 \scan_stop: \scan_stop: \fi:
2819 \s__cs_mark \s__cs_stop
2820 \exp_not:N #6
2821 \exp_not:c { #7 : #8 #1 #3 }
2822 }
2823 \cs_new:Npn __cs_generate_variant_loop_long:wNNnn #1 \s__cs_stop #2#3#4#5
2824 {
2825 \exp_not:n
2826 {
2827 \s__cs_mark
2828 \msg_error:nnee { kernel } { variant-too-long }
2829 {#5} { \token_to_str:N #3 }
2830 \use_none:nnn
2831 \s__cs_stop
2832 #3
2833 #3
2834 }
2835 }
2836 \cs_new:Npn __cs_generate_variant_loop_invalid:NNwNNnn
2837 #1#2 \fi: \fi: \fi: #3 \s__cs_stop #4#5#6#7
2838 {
2839 \fi: \fi: \fi:
2840 \exp_not:n
2841 {
2842 \s__cs_mark
2843 \msg_error:nneeee { kernel } { invalid-variant }
2844 {#7} { \token_to_str:N #5 } {#1} {#2}
2845 \use_none:nnn
2846 \s__cs_stop
2847 #5
2848 #5
2849 }

426

2850 }
2851 \cs_new:Npn __cs_generate_variant_loop_special:NNwNNnn
2852 #1#2#3 \s__cs_stop #4#5#6#7
2853 {
2854 #3 \s__cs_stop #4 #5 {#6} {#7}
2855 \exp_not:n
2856 {
2857 \msg_error:nneeee
2858 { kernel } { deprecated-variant }
2859 {#7} { \token_to_str:N #5 } {#1} {#2}
2860 }
2861 }

(End of definition for __cs_generate_variant_loop:nNwN and others.)

__cs_generate_variant_same:N When the base and variant letters are identical, don’t do any expansion. For most
argument types, we can use the n-type no-expansion, but the N and p types require a
slightly different behaviour with respect to braces. For V-type this function could output
N to avoid adding useless braces but that is not a problem.

2862 \cs_new:Npn __cs_generate_variant_same:N #1
2863 {
2864 \if:w N #1 #1 \else:
2865 \if:w p #1 #1 \else:
2866 \token_to_str:N n
2867 \if:w n #1 \else:
2868 __cs_generate_variant_loop_special:NNwNNnn #1#1
2869 \fi:
2870 \fi:
2871 \fi:
2872 }

(End of definition for __cs_generate_variant_same:N.)

__cs_generate_variant:wwNN If the variant form has already been defined, log its existence (provided log-functions
is active). Otherwise, make sure that the \exp_args:N #3 form is defined, and if it
contains x, change __cs_tmp:w locally to \cs_new_protected:Npe. Then define the
variant by combining the \exp_args:N #3 variant and the base function.

2873 \cs_new_protected:Npn __cs_generate_variant:wwNN
2874 #1 \s__cs_mark #2 \s__cs_stop #3#4
2875 {
2876 #2
2877 \cs_if_free:NT #4
2878 {
2879 \group_begin:
2880 __cs_generate_internal_variant:n {#1}
2881 __cs_tmp:w #4 { \exp_not:c { exp_args:N #1 } \exp_not:N #3 }
2882 \group_end:
2883 }
2884 }

(End of definition for __cs_generate_variant:wwNN.)

__cs_generate_internal_variant:n
__cs_generate_internal_variant_loop:n

First test for the presence of x (this is where working with strings makes our lives
easier), as the result should be protected, and the next variant to be defined us-
ing that internal variant should be protected (done by setting __cs_tmp:w). Then

427

call __cs_generate_internal_variant:NNn with arguments \cs_new_protected:cpn
\use:x (for protected) or \cs_new:cpn \tex_expanded:D (expandable) and the signa-
ture. If p appears in the signature, or if the function to be defined is expandable and the
primitive \expanded is not available, or if there are more than 8 arguments, call some
fall-back code that just puts the appropriate \:: commands. Otherwise, call __cs_-
generate_internal_one_go:NNn to construct the \exp_args:N... function as a macro
taking up to 9 arguments and expanding them using \use:x or \tex_expanded:D.

2885 \cs_new_protected:Npe __cs_generate_internal_variant:n #1
2886 {
2887 \exp_not:N __cs_generate_internal_variant:wwnNwn
2888 #1 \s__cs_mark
2889 { \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npe }
2890 \cs_new_protected:cpn
2891 \use:x
2892 \token_to_str:N x \s__cs_mark
2893 { }
2894 \cs_new:cpn
2895 \exp_not:N \tex_expanded:D
2896 \s__cs_stop
2897 {#1}
2898 }
2899 \exp_last_unbraced:NNNNo
2900 \cs_new_protected:Npn __cs_generate_internal_variant:wwnNwn #1
2901 { \token_to_str:N x } #2 \s__cs_mark #3#4#5#6 \s__cs_stop #7
2902 {
2903 #3
2904 \cs_if_free:cT { exp_args:N #7 }
2905 { __cs_generate_internal_variant:NNn #4 #5 {#7} }
2906 }
2907 \cs_set_protected:Npn __cs_tmp:w #1
2908 {
2909 \cs_new_protected:Npn __cs_generate_internal_variant:NNn ##1##2##3
2910 {
2911 \if_catcode:w X \use_none:nnnnnnnn ##3
2912 \prg_do_nothing: \prg_do_nothing: \prg_do_nothing:
2913 \prg_do_nothing: \prg_do_nothing: \prg_do_nothing:
2914 \prg_do_nothing: \prg_do_nothing: X
2915 \exp_after:wN __cs_generate_internal_test:Nw \exp_after:wN ##2
2916 \else:
2917 \exp_after:wN __cs_generate_internal_test_aux:w \exp_after:wN #1
2918 \fi:
2919 ##3
2920 \s__cs_mark
2921 {
2922 \use:e
2923 {
2924 ##1 { exp_args:N ##3 }
2925 { __cs_generate_internal_variant_loop:n ##3 { : \use_i:nn } }
2926 }
2927 }
2928 #1
2929 \s__cs_mark
2930 { \exp_not:n { __cs_generate_internal_one_go:NNn ##1 ##2 {##3} } }

428

2931 \s__cs_stop
2932 }
2933 \cs_new_protected:Npn __cs_generate_internal_test_aux:w
2934 ##1 #1 ##2 \s__cs_mark ##3 ##4 \s__cs_stop {##3}
2935 \cs_new_eq:NN __cs_generate_internal_test:Nw
2936 __cs_generate_internal_test_aux:w
2937 }
2938 \exp_args:No __cs_tmp:w { \token_to_str:N p }
2939 \cs_new_protected:Npn __cs_generate_internal_one_go:NNn #1#2#3
2940 {
2941 __cs_generate_internal_loop:nwnnw
2942 { \exp_not:N ##1 } 1 . { } { }
2943 #3 { ? __cs_generate_internal_end:w } X ;
2944 23456789 { ? __cs_generate_internal_long:w } ;
2945 #1 #2 {#3}
2946 }
2947 \cs_new_protected:Npn __cs_generate_internal_loop:nwnnw #1#2 . #3#4#5#6 ; #7
2948 {
2949 \use_none:n #5
2950 \use_none:n #7
2951 \cs_if_exist_use:cF { __cs_generate_internal_#5:NN }
2952 { __cs_generate_internal_other:NN }
2953 #5 #7
2954 #7 .
2955 { #3 #1 } { #4 ## #2 }
2956 #6 ;
2957 }
2958 \cs_new_protected:Npn __cs_generate_internal_N:NN #1#2
2959 { __cs_generate_internal_loop:nwnnw { \exp_not:N ###2 } }
2960 \cs_new_protected:Npn __cs_generate_internal_c:NN #1#2
2961 { \exp_args:No __cs_generate_internal_loop:nwnnw { \exp_not:c {###2} } }
2962 \cs_new_protected:Npn __cs_generate_internal_n:NN #1#2
2963 { __cs_generate_internal_loop:nwnnw { { \exp_not:n {###2} } } }
2964 \cs_new_protected:Npn __cs_generate_internal_x:NN #1#2
2965 { __cs_generate_internal_loop:nwnnw { {###2} } }
2966 \cs_new_protected:Npn __cs_generate_internal_other:NN #1#2
2967 {
2968 \exp_args:No __cs_generate_internal_loop:nwnnw
2969 {
2970 \exp_after:wN
2971 {
2972 \exp:w \exp_args:NNc \exp_after:wN \exp_end:
2973 { exp_not:#1 } {###2}
2974 }
2975 }
2976 }
2977 \cs_new_protected:Npn __cs_generate_internal_end:w #1 . #2#3#4 ; #5 ; #6#7#8
2978 { #6 { exp_args:N #8 } #3 { #7 {#2} } }
2979 \cs_new_protected:Npn __cs_generate_internal_long:w #1 N #2#3 . #4#5#6#
2980 {
2981 \exp_args:Nx __cs_generate_internal_long:nnnNNn
2982 { __cs_generate_internal_variant_loop:n #2 #6 { : \use_i:nn } }
2983 {#4} {#5}
2984 }

429

2985 \cs_new:Npn __cs_generate_internal_long:nnnNNn #1#2#3#4 ; ; #5#6#7
2986 { #5 { exp_args:N #7 } #3 { #6 { \exp_not:n {#1} {#2} } } }

This command grabs char by char outputting \::#1 (not expanded further). We avoid
tests by putting a trailing : \use_i:nn, which leaves \cs_end: and removes the looping
macro. The colon is in fact also turned into \::: so that the required structure for
\exp_args:N... commands is correctly terminated.

2987 \cs_new:Npn __cs_generate_internal_variant_loop:n #1
2988 {
2989 \exp_after:wN \exp_not:N \cs:w :: #1 \cs_end:
2990 __cs_generate_internal_variant_loop:n
2991 }

(End of definition for __cs_generate_internal_variant:n and __cs_generate_internal_variant_-
loop:n.)

\prg_generate_conditional_variant:Nnn
__cs_generate_variant:nnNnn

__cs_generate_variant:w
__cs_generate_variant:n

__cs_generate_variant_p_form:nnn
__cs_generate_variant_T_form:nnn
__cs_generate_variant_F_form:nnn
__cs_generate_variant_TF_form:nnn

2992 \cs_new_protected:Npn \prg_generate_conditional_variant:Nnn #1
2993 {
2994 \use:e
2995 {
2996 __cs_generate_variant:nnNnn
2997 \cs_split_function:N #1
2998 }
2999 }
3000 \cs_new_protected:Npn __cs_generate_variant:nnNnn #1#2#3#4#5
3001 {
3002 \if_meaning:w \c_false_bool #3
3003 \msg_error:nne { kernel } { missing-colon }
3004 { \token_to_str:c {#1} }
3005 __cs_use_i_delimit_by_s_stop:nw
3006 \fi:
3007 \exp_after:wN __cs_generate_variant:w
3008 \tl_to_str:n {#5} , \scan_stop: , \q__cs_recursion_stop
3009 __cs_use_none_delimit_by_s_stop:w \s__cs_mark {#1} {#2} {#4} \s__cs_stop
3010 }
3011 \cs_new_protected:Npn __cs_generate_variant:w
3012 #1 , #2 \s__cs_mark #3#4#5
3013 {
3014 \if_meaning:w \scan_stop: #1 \scan_stop:
3015 \if_meaning:w \q__cs_nil #1 \q__cs_nil
3016 \use_i:nnn
3017 \fi:
3018 \exp_after:wN __cs_use_none_delimit_by_q_recursion_stop:w
3019 \else:
3020 \cs_if_exist_use:cTF { __cs_generate_variant_#1_form:nnn }
3021 { {#3} {#4} {#5} }
3022 {
3023 \msg_error:nnee
3024 { kernel } { conditional-form-unknown }
3025 {#1} { \token_to_str:c { #3 : #4 } }
3026 }
3027 \fi:
3028 __cs_generate_variant:w #2 \s__cs_mark {#3} {#4} {#5}
3029 }

430

3030 \cs_new_protected:Npn __cs_generate_variant_p_form:nnn #1#2
3031 { \cs_generate_variant:cn { #1 _p : #2 } }
3032 \cs_new_protected:Npn __cs_generate_variant_T_form:nnn #1#2
3033 { \cs_generate_variant:cn { #1 : #2 T } }
3034 \cs_new_protected:Npn __cs_generate_variant_F_form:nnn #1#2
3035 { \cs_generate_variant:cn { #1 : #2 F } }
3036 \cs_new_protected:Npn __cs_generate_variant_TF_form:nnn #1#2
3037 { \cs_generate_variant:cn { #1 : #2 TF } }

(End of definition for \prg_generate_conditional_variant:Nnn and others. This function is docu-
mented on page 67.)

\exp_args_generate:n This function is not used in the kernel hence we can use functions that are defined in
later modules. It also does not need to be fast so use inline mappings. For each requested
variant we check that there are no characters besides NnpcofVvx, in particular that there
are no spaces. Then we just call the internal function.

3038 \cs_new_protected:Npn \exp_args_generate:n #1
3039 {
3040 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }
3041 {
3042 \str_map_inline:nn {##1}
3043 {
3044 \str_if_in:nnF { NnpcofeVvx } {####1}
3045 {
3046 \msg_error:nnnn { kernel } { invalid-exp-args }
3047 {####1} {##1}
3048 \str_map_break:n { \use_none:nn }
3049 }
3050 }
3051 __cs_generate_internal_variant:n {##1}
3052 }
3053 }

(End of definition for \exp_args_generate:n. This function is documented on page 35.)

43.7 Definitions with the automated technique
Some of these could be done more efficiently, but the complexity of coding then becomes
an issue. Notice that the auto-generated functions actually take no arguments themselves.

\exp_args:Nnc
\exp_args:Nno
\exp_args:NnV
\exp_args:Nnv
\exp_args:Nne
\exp_args:Nnf
\exp_args:Noc
\exp_args:Noo
\exp_args:Nof
\exp_args:NVo
\exp_args:Nfo
\exp_args:Nff
\exp_args:Nee
\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

Here are the actual function definitions, using the helper functions above. The group is
used because __cs_generate_internal_variant:n redefines __cs_tmp:w locally.

3054 \cs_set_protected:Npn __cs_tmp:w #1
3055 {
3056 \group_begin:
3057 \exp_args:No __cs_generate_internal_variant:n
3058 { \tl_to_str:n {#1} }
3059 \group_end:
3060 }
3061 __cs_tmp:w { nc }
3062 __cs_tmp:w { no }
3063 __cs_tmp:w { nV }
3064 __cs_tmp:w { nv }

431

3065 __cs_tmp:w { ne }
3066 __cs_tmp:w { nf }
3067 __cs_tmp:w { oc }
3068 __cs_tmp:w { oo }
3069 __cs_tmp:w { of }
3070 __cs_tmp:w { Vo }
3071 __cs_tmp:w { fo }
3072 __cs_tmp:w { ff }
3073 __cs_tmp:w { ee }
3074 __cs_tmp:w { Nx }
3075 __cs_tmp:w { cx }
3076 __cs_tmp:w { nx }
3077 __cs_tmp:w { ox }
3078 __cs_tmp:w { xo }
3079 __cs_tmp:w { xx }

(End of definition for \exp_args:Nnc and others. These functions are documented on page 38.)

\exp_args:NNcf
\exp_args:NNno
\exp_args:NNnV
\exp_args:NNoo
\exp_args:NNVV
\exp_args:Ncno
\exp_args:NcnV
\exp_args:Ncoo
\exp_args:NcVV
\exp_args:Nnnc
\exp_args:Nnno
\exp_args:Nnnf
\exp_args:Nnff
\exp_args:Nooo
\exp_args:Noof
\exp_args:Nffo
\exp_args:Neee
\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox

3080 __cs_tmp:w { Ncf }
3081 __cs_tmp:w { Nno }
3082 __cs_tmp:w { NnV }
3083 __cs_tmp:w { Noo }
3084 __cs_tmp:w { NVV }
3085 __cs_tmp:w { cno }
3086 __cs_tmp:w { cnV }
3087 __cs_tmp:w { coo }
3088 __cs_tmp:w { cVV }
3089 __cs_tmp:w { nnc }
3090 __cs_tmp:w { nno }
3091 __cs_tmp:w { nnf }
3092 __cs_tmp:w { nff }
3093 __cs_tmp:w { ooo }
3094 __cs_tmp:w { oof }
3095 __cs_tmp:w { ffo }
3096 __cs_tmp:w { eee }
3097 __cs_tmp:w { NNx }
3098 __cs_tmp:w { Nnx }
3099 __cs_tmp:w { Nox }
3100 __cs_tmp:w { nnx }
3101 __cs_tmp:w { nox }
3102 __cs_tmp:w { ccx }
3103 __cs_tmp:w { cnx }
3104 __cs_tmp:w { oox }

(End of definition for \exp_args:NNcf and others. These functions are documented on page 39.)

43.8 Held-over variant generation
\cs_generate_from_arg_count:NNno
\cs_replacement_spec:c

A couple of variants that are from early functions.
3105 \cs_generate_variant:Nn \cs_generate_from_arg_count:NNnn { NNno }
3106 \cs_generate_variant:Nn \cs_replacement_spec:N { c }

432

(End of definition for \cs_generate_from_arg_count:NNnn and \cs_replacement_spec:N. These func-
tions are documented on page 20.)

3107 ⟨/package⟩

433

Chapter 44

l3sort implementation

3108 ⟨∗package⟩

3109 ⟨@@=sort⟩

44.1 Variables
\g__sort_internal_seq
\g__sort_internal_tl

Sorting happens in a group; the result is stored in those global variables before being
copied outside the group to the proper places. For seq and tl this is more efficient than
using \use:e (or some \exp_args:NNNe) to smuggle the definition outside the group
since TEX does not need to re-read tokens. For clist we don’t gain anything since the
result is converted from seq to clist anyways.

3110 \seq_new:N \g__sort_internal_seq
3111 \tl_new:N \g__sort_internal_tl

(End of definition for \g__sort_internal_seq and \g__sort_internal_tl.)

\l__sort_length_int
\l__sort_min_int
\l__sort_top_int
\l__sort_max_int

\l__sort_true_max_int

The sequence has \l__sort_length_int items and is stored from \l__sort_min_int
to \l__sort_top_int − 1. While reading the sequence in memory, we check that
\l__sort_top_int remains at most \l__sort_max_int, precomputed by __sort_-
compute_range:. That bound is such that the merge sort only uses \toks registers
less than \l__sort_true_max_int, namely those that have not been allocated for use in
other code: the user’s comparison code could alter these.

3112 \int_new:N \l__sort_length_int
3113 \int_new:N \l__sort_min_int
3114 \int_new:N \l__sort_top_int
3115 \int_new:N \l__sort_max_int
3116 \int_new:N \l__sort_true_max_int

(End of definition for \l__sort_length_int and others.)

\l__sort_block_int Merge sort is done in several passes. In each pass, blocks of size \l__sort_block_int are
merged in pairs. The block size starts at 1, and, for a length in the range [2k + 1, 2k+1],
reaches 2k in the last pass.

3117 \int_new:N \l__sort_block_int

(End of definition for \l__sort_block_int.)

434

\l__sort_begin_int
\l__sort_end_int

When merging two blocks, \l__sort_begin_int marks the lowest index in the two
blocks, and \l__sort_end_int marks the highest index, plus 1.

3118 \int_new:N \l__sort_begin_int
3119 \int_new:N \l__sort_end_int

(End of definition for \l__sort_begin_int and \l__sort_end_int.)

\l__sort_A_int
\l__sort_B_int
\l__sort_C_int

When merging two blocks (whose end-points are beg and end), A starts from the high end
of the low block, and decreases until reaching beg. The index B starts from the top of the
range and marks the register in which a sorted item should be put. Finally, C points to
the copy of the high block in the interval of registers starting at \l__sort_length_int,
upwards. C starts from the upper limit of that range.

3120 \int_new:N \l__sort_A_int
3121 \int_new:N \l__sort_B_int
3122 \int_new:N \l__sort_C_int

(End of definition for \l__sort_A_int , \l__sort_B_int , and \l__sort_C_int.)

\s__sort_mark
\s__sort_stop

Internal scan marks.
3123 \scan_new:N \s__sort_mark
3124 \scan_new:N \s__sort_stop

(End of definition for \s__sort_mark and \s__sort_stop.)

44.2 Finding available \toks registers
__sort_shrink_range:

__sort_shrink_range_loop:
After __sort_compute_range: (defined below) determines that \toks registers be-
tween \l__sort_min_int (included) and \l__sort_true_max_int (excluded) have not
yet been assigned, __sort_shrink_range: computes \l__sort_max_int to reflect the
need for a buffer when merging blocks in the merge sort. Given 2n ≤ A ≤ 2n + 2n−1

registers we can sort ⌊A/2⌋+2n−2 items while if we have 2n +2n−1 ≤ A ≤ 2n+1 registers
we can sort A − 2n−1 items. We first find out a power 2n such that 2n ≤ A ≤ 2n+1

by repeatedly halving \l__sort_block_int, starting at 215 or 214 namely half the total
number of registers, then we use the formulas and set \l__sort_max_int.

3125 \cs_new_protected:Npn __sort_shrink_range:
3126 {
3127 \int_set:Nn \l__sort_A_int
3128 { \l__sort_true_max_int - \l__sort_min_int + 1 }
3129 \int_set:Nn \l__sort_block_int { \c_max_register_int / 2 }
3130 __sort_shrink_range_loop:
3131 \int_set:Nn \l__sort_max_int
3132 {
3133 \int_compare:nNnTF
3134 { \l__sort_block_int * 3 / 2 } > \l__sort_A_int
3135 {
3136 \l__sort_min_int
3137 + (\l__sort_A_int - 1) / 2
3138 + \l__sort_block_int / 4
3139 - 1
3140 }
3141 { \l__sort_true_max_int - \l__sort_block_int / 2 }
3142 }

435

3143 }
3144 \cs_new_protected:Npn __sort_shrink_range_loop:
3145 {
3146 \if_int_compare:w \l__sort_A_int < \l__sort_block_int
3147 \tex_divide:D \l__sort_block_int 2 \exp_stop_f:
3148 \exp_after:wN __sort_shrink_range_loop:
3149 \fi:
3150 }

(End of definition for __sort_shrink_range: and __sort_shrink_range_loop:.)

__sort_compute_range:
__sort_redefine_compute_range:

\c__sort_max_length_int

First find out what \toks have not yet been assigned. There are many cases. In LATEX 2ε
with no package, available \toks range from \count15 + 1 to \c_max_register_int in-
cluded (this was not altered despite the 2015 changes). When \loctoks is defined, namely
in plain (e)TEX, or when the package etex is loaded in LATEX 2ε, redefine __sort_-
compute_range: to use the range \count265 to \count275 − 1. The elocalloc pack-
age also defines \loctoks but uses yet another number for the upper bound, namely
\e@alloc@top (minus one). We must check for \loctoks every time a sorting function
is called, as etex or elocalloc could be loaded.

In ConTEXt MkIV the range is from \c_syst_last_allocated_toks+1 to \c_max_-
register_int, and in MkII it is from \lastallocatedtoks+1 to \c_max_register_int.
In all these cases, call __sort_shrink_range:.

3151 \cs_new_protected:Npn __sort_compute_range:
3152 {
3153 \int_set:Nn \l__sort_min_int { \tex_count:D 15 + 1 }
3154 \int_set:Nn \l__sort_true_max_int { \c_max_register_int + 1 }
3155 __sort_shrink_range:
3156 \if_meaning:w \loctoks \tex_undefined:D \else:
3157 \if_meaning:w \loctoks \scan_stop: \else:
3158 __sort_redefine_compute_range:
3159 __sort_compute_range:
3160 \fi:
3161 \fi:
3162 }
3163 \cs_new_protected:Npn __sort_redefine_compute_range:
3164 {
3165 \cs_if_exist:cTF { ver@elocalloc.sty }
3166 {
3167 \cs_gset_protected:Npn __sort_compute_range:
3168 {
3169 \int_set:Nn \l__sort_min_int { \tex_count:D 265 }
3170 \int_set_eq:NN \l__sort_true_max_int \e@alloc@top
3171 __sort_shrink_range:
3172 }
3173 }
3174 {
3175 \cs_gset_protected:Npn __sort_compute_range:
3176 {
3177 \int_set:Nn \l__sort_min_int { \tex_count:D 265 }
3178 \int_set:Nn \l__sort_true_max_int { \tex_count:D 275 }
3179 __sort_shrink_range:
3180 }
3181 }

436

3182 }
3183 \cs_if_exist:NT \loctoks { __sort_redefine_compute_range: }
3184 \tl_map_inline:nn { \lastallocatedtoks \c_syst_last_allocated_toks }
3185 {
3186 \cs_if_exist:NT #1
3187 {
3188 \cs_gset_protected:Npn __sort_compute_range:
3189 {
3190 \int_set:Nn \l__sort_min_int { #1 + 1 }
3191 \int_set:Nn \l__sort_true_max_int { \c_max_register_int + 1 }
3192 __sort_shrink_range:
3193 }
3194 }
3195 }

(End of definition for __sort_compute_range: , __sort_redefine_compute_range: , and \c__sort_-
max_length_int.)

44.3 Protected user commands
__sort_main:NNNn Sorting happens in three steps. First store items in \toks registers ranging from \l__-

sort_min_int to \l__sort_top_int − 1, while checking that the list is not too long. If
we reach the maximum length, that’s an error; exit the group. Secondly, sort the array of
\toks registers, using the user-defined sorting function: __sort_level: calls __sort_-
compare:nn as needed. Finally, unpack the \toks registers (now sorted) into the target
tl, or into \g__sort_internal_seq for seq and clist. This is done by __sort_seq:NNNNn
and __sort_tl:NNn.

3196 \cs_new_protected:Npn __sort_main:NNNn #1#2#3#4
3197 {
3198 __sort_disable_toksdef:
3199 __sort_compute_range:
3200 \int_set_eq:NN \l__sort_top_int \l__sort_min_int
3201 #1 #3
3202 {
3203 \if_int_compare:w \l__sort_top_int = \l__sort_max_int
3204 __sort_too_long_error:NNw #2 #3
3205 \fi:
3206 \tex_toks:D \l__sort_top_int {##1}
3207 \int_incr:N \l__sort_top_int
3208 }
3209 \int_set:Nn \l__sort_length_int
3210 { \l__sort_top_int - \l__sort_min_int }
3211 \cs_set:Npn __sort_compare:nn ##1 ##2 {#4}
3212 \int_set:Nn \l__sort_block_int { 1 }
3213 __sort_level:
3214 }

(End of definition for __sort_main:NNNn.)

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

__sort_tl:NNn
__sort_tl_toks:w

Call the main sorting function then unpack \toks registers outside the group into the
target token list. The unpacking is done by __sort_tl_toks:w; registers are numbered
from \l__sort_min_int to \l__sort_top_int − 1. For expansion behaviour we need

437

a couple of primitives. The \tl_gclear:N reduces memory usage. The \prg_break_-
point: is used by __sort_main:NNNn when the list is too long.

3215 \cs_new_protected:Npn \tl_sort:Nn { __sort_tl:NNn \tl_set_eq:NN }
3216 \cs_generate_variant:Nn \tl_sort:Nn { c }
3217 \cs_new_protected:Npn \tl_gsort:Nn { __sort_tl:NNn \tl_gset_eq:NN }
3218 \cs_generate_variant:Nn \tl_gsort:Nn { c }
3219 \cs_new_protected:Npn __sort_tl:NNn #1#2#3
3220 {
3221 \group_begin:
3222 __sort_main:NNNn \tl_map_inline:Nn \tl_map_break:n #2 {#3}
3223 __kernel_tl_gset:Nx \g__sort_internal_tl
3224 { __sort_tl_toks:w \l__sort_min_int ; }
3225 \group_end:
3226 #1 #2 \g__sort_internal_tl
3227 \tl_gclear:N \g__sort_internal_tl
3228 \prg_break_point:
3229 }
3230 \cs_new:Npn __sort_tl_toks:w #1 ;
3231 {
3232 \if_int_compare:w #1 < \l__sort_top_int
3233 { \tex_the:D \tex_toks:D #1 }
3234 \exp_after:wN __sort_tl_toks:w
3235 \int_value:w \int_eval:n { #1 + 1 } \exp_after:wN ;
3236 \fi:
3237 }

(End of definition for \tl_sort:Nn and others. These functions are documented on page 127.)

\seq_sort:Nn
\seq_sort:cn

\seq_gsort:Nn
\seq_gsort:cn
\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

__sort_seq:NNNNn

Use the same general framework for seq and clist. Apply the general sorting code, then
unpack \toks into \g__sort_internal_seq. Outside the group copy or convert (for
clist) the data to the target variable. The \seq_gclear:N reduces memory usage. The
\prg_break_point: is used by __sort_main:NNNn when the list is too long.

3238 \cs_new_protected:Npn \seq_sort:Nn
3239 { __sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_set_eq:NN }
3240 \cs_generate_variant:Nn \seq_sort:Nn { c }
3241 \cs_new_protected:Npn \seq_gsort:Nn
3242 { __sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_gset_eq:NN }
3243 \cs_generate_variant:Nn \seq_gsort:Nn { c }
3244 \cs_new_protected:Npn \clist_sort:Nn
3245 {
3246 __sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n
3247 \clist_set_from_seq:NN
3248 }
3249 \cs_generate_variant:Nn \clist_sort:Nn { c }
3250 \cs_new_protected:Npn \clist_gsort:Nn
3251 {
3252 __sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n
3253 \clist_gset_from_seq:NN
3254 }
3255 \cs_generate_variant:Nn \clist_gsort:Nn { c }
3256 \cs_new_protected:Npn __sort_seq:NNNNn #1#2#3#4#5
3257 {
3258 \group_begin:
3259 __sort_main:NNNn #1 #2 #4 {#5}

438

3260 \seq_gclear:N \g__sort_internal_seq
3261 \int_step_inline:nnn
3262 \l__sort_min_int { \l__sort_top_int - 1 }
3263 {
3264 \seq_gput_right:Ne \g__sort_internal_seq
3265 { \tex_the:D \tex_toks:D ##1 }
3266 }
3267 \group_end:
3268 #3 #4 \g__sort_internal_seq
3269 \seq_gclear:N \g__sort_internal_seq
3270 \prg_break_point:
3271 }

(End of definition for \seq_sort:Nn and others. These functions are documented on page 163.)

44.4 Merge sort
__sort_level: This function is called once blocks of size \l__sort_block_int (initially 1) are each

sorted. If the whole list fits in one block, then we are done (this also takes care of the
case of an empty list or a list with one item). Otherwise, go through pairs of blocks
starting from 0, then double the block size, and repeat.

3272 \cs_new_protected:Npn __sort_level:
3273 {
3274 \if_int_compare:w \l__sort_block_int < \l__sort_length_int
3275 \l__sort_end_int \l__sort_min_int
3276 __sort_merge_blocks:
3277 \tex_advance:D \l__sort_block_int \l__sort_block_int
3278 \exp_after:wN __sort_level:
3279 \fi:
3280 }

(End of definition for __sort_level:.)

__sort_merge_blocks: This function is called to merge a pair of blocks, starting at the last value of \l__-
sort_end_int (end-point of the previous pair of blocks). If shifting by one block to
the right we reach the end of the list, then this pass has ended: the end of the list is
sorted already. Otherwise, store the result of that shift in A, which indexes the first
block starting from the top end. Then locate the end-point (maximum) of the second
block: shift end upwards by one more block, but keeping it ≤ top. Copy this upper
block of \toks registers in registers above length, indexed by C: this is covered by
__sort_copy_block:. Once this is done we are ready to do the actual merger using
__sort_merge_blocks_aux:, after shifting A, B and C so that they point to the largest
index in their respective ranges rather than pointing just beyond those ranges. Of course,
once that pair of blocks is merged, move on to the next pair.

3281 \cs_new_protected:Npn __sort_merge_blocks:
3282 {
3283 \l__sort_begin_int \l__sort_end_int
3284 \tex_advance:D \l__sort_end_int \l__sort_block_int
3285 \if_int_compare:w \l__sort_end_int < \l__sort_top_int
3286 \l__sort_A_int \l__sort_end_int
3287 \tex_advance:D \l__sort_end_int \l__sort_block_int
3288 \if_int_compare:w \l__sort_end_int > \l__sort_top_int

439

3289 \l__sort_end_int \l__sort_top_int
3290 \fi:
3291 \l__sort_B_int \l__sort_A_int
3292 \l__sort_C_int \l__sort_top_int
3293 __sort_copy_block:
3294 \int_decr:N \l__sort_A_int
3295 \int_decr:N \l__sort_B_int
3296 \int_decr:N \l__sort_C_int
3297 \exp_after:wN __sort_merge_blocks_aux:
3298 \exp_after:wN __sort_merge_blocks:
3299 \fi:
3300 }

(End of definition for __sort_merge_blocks:.)

__sort_copy_block: We wish to store a copy of the “upper” block of \toks registers, ranging between the
initial value of \l__sort_B_int (included) and \l__sort_end_int (excluded) into a new
range starting at the initial value of \l__sort_C_int, namely \l__sort_top_int.

3301 \cs_new_protected:Npn __sort_copy_block:
3302 {
3303 \tex_toks:D \l__sort_C_int \tex_toks:D \l__sort_B_int
3304 \int_incr:N \l__sort_C_int
3305 \int_incr:N \l__sort_B_int
3306 \if_int_compare:w \l__sort_B_int = \l__sort_end_int
3307 \use_i:nn
3308 \fi:
3309 __sort_copy_block:
3310 }

(End of definition for __sort_copy_block:.)

__sort_merge_blocks_aux: At this stage, the first block starts at \l__sort_begin_int, and ends at \l__sort_-
A_int, and the second block starts at \l__sort_top_int and ends at \l__sort_C_int.
The result of the merger is stored at positions indexed by \l__sort_B_int, which starts
at \l__sort_end_int− 1 and decreases down to \l__sort_begin_int, covering the full
range of the two blocks. In other words, we are building the merger starting with the
largest values. The comparison function is defined to return either swapped or same. Of
course, this means the arguments need to be given in the order they appear originally in
the list.

3311 \cs_new_protected:Npn __sort_merge_blocks_aux:
3312 {
3313 \exp_after:wN __sort_compare:nn \exp_after:wN
3314 { \tex_the:D \tex_toks:D \exp_after:wN \l__sort_A_int \exp_after:wN }
3315 \exp_after:wN { \tex_the:D \tex_toks:D \l__sort_C_int }
3316 \prg_do_nothing:
3317 __sort_return_mark:w
3318 __sort_return_mark:w
3319 \s__sort_mark
3320 __sort_return_none_error:
3321 }

(End of definition for __sort_merge_blocks_aux:.)

440

\sort_return_same:
\sort_return_swapped:
__sort_return_mark:w

__sort_return_none_error:
__sort_return_two_error:

Each comparison should call \sort_return_same: or \sort_return_swapped: exactly
once. If neither is called, __sort_return_none_error: is called, since the return_-
mark removes tokens until \s__sort_mark. If one is called, the return_mark auxiliary
removes everything except __sort_return_same:w (or its swapped analogue) followed
by __sort_return_none_error:. Finally if two or more are called, __sort_return_-
two_error: ends up before any __sort_return_mark:w, so that it produces an error.

3322 \cs_new_protected:Npn \sort_return_same:
3323 #1 __sort_return_mark:w #2 \s__sort_mark
3324 {
3325 #1
3326 #2
3327 __sort_return_two_error:
3328 __sort_return_mark:w
3329 \s__sort_mark
3330 __sort_return_same:w
3331 }
3332 \cs_new_protected:Npn \sort_return_swapped:
3333 #1 __sort_return_mark:w #2 \s__sort_mark
3334 {
3335 #1
3336 #2
3337 __sort_return_two_error:
3338 __sort_return_mark:w
3339 \s__sort_mark
3340 __sort_return_swapped:w
3341 }
3342 \cs_new_protected:Npn __sort_return_mark:w #1 \s__sort_mark { }
3343 \cs_new_protected:Npn __sort_return_none_error:
3344 {
3345 \msg_error:nnee { sort } { return-none }
3346 { \tex_the:D \tex_toks:D \l__sort_A_int }
3347 { \tex_the:D \tex_toks:D \l__sort_C_int }
3348 __sort_return_same:w __sort_return_none_error:
3349 }
3350 \cs_new_protected:Npn __sort_return_two_error:
3351 {
3352 \msg_error:nnee { sort } { return-two }
3353 { \tex_the:D \tex_toks:D \l__sort_A_int }
3354 { \tex_the:D \tex_toks:D \l__sort_C_int }
3355 }

(End of definition for \sort_return_same: and others. These functions are documented on page 46.)

__sort_return_same:w If the comparison function returns same, then the second argument fed to __sort_-
compare:nn should remain to the right of the other one. Since we build the merger
starting from the right, we copy that \toks register into the allotted range, then shift
the pointers B and C, and go on to do one more step in the merger, unless the second
block has been exhausted: then the remainder of the first block is already in the correct
registers and we are done with merging those two blocks.

3356 \cs_new_protected:Npn __sort_return_same:w #1 __sort_return_none_error:
3357 {
3358 \tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_C_int
3359 \int_decr:N \l__sort_B_int

441

3360 \int_decr:N \l__sort_C_int
3361 \if_int_compare:w \l__sort_C_int < \l__sort_top_int
3362 \use_i:nn
3363 \fi:
3364 __sort_merge_blocks_aux:
3365 }

(End of definition for __sort_return_same:w.)

__sort_return_swapped:w If the comparison function returns swapped, then the next item to add to the merger is
the first argument, contents of the \toks register A. Then shift the pointers A and B
to the left, and go for one more step for the merger, unless the left block was exhausted
(A goes below the threshold). In that case, all remaining \toks registers in the second
block, indexed by C, are copied to the merger by __sort_merge_blocks_end:.

3366 \cs_new_protected:Npn __sort_return_swapped:w #1 __sort_return_none_error:
3367 {
3368 \tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_A_int
3369 \int_decr:N \l__sort_B_int
3370 \int_decr:N \l__sort_A_int
3371 \if_int_compare:w \l__sort_A_int < \l__sort_begin_int
3372 __sort_merge_blocks_end: \use_i:nn
3373 \fi:
3374 __sort_merge_blocks_aux:
3375 }

(End of definition for __sort_return_swapped:w.)

__sort_merge_blocks_end: This function’s task is to copy the \toks registers in the block indexed by C to the
merger indexed by B. The end can equally be detected by checking when B reaches the
threshold begin, or when C reaches top.

3376 \cs_new_protected:Npn __sort_merge_blocks_end:
3377 {
3378 \tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_C_int
3379 \int_decr:N \l__sort_B_int
3380 \int_decr:N \l__sort_C_int
3381 \if_int_compare:w \l__sort_B_int < \l__sort_begin_int
3382 \use_i:nn
3383 \fi:
3384 __sort_merge_blocks_end:
3385 }

(End of definition for __sort_merge_blocks_end:.)

44.5 Expandable sorting
Sorting expandably is very different from sorting and assigning to a variable. Since tokens
cannot be stored, they must remain in the input stream, and be read through at every
step. It is thus necessarily much slower (at best O(n2 ln n)) than non-expandable sorting
functions (O(n ln n)).

A prototypical version of expandable quicksort is as follows. If the argument has no
item, return nothing, otherwise partition, using the first item as a pivot (argument #4 of
__sort:nnNnn). The arguments of __sort:nnNnn are 1. items less than #4, 2. items
greater or equal to #4, 3. comparison, 4. pivot, 5. next item to test. If #5 is the tail of

442

the list, call \tl_sort:nN on #1 and on #2, placing #4 in between; \use:ff expands the
parts to make \tl_sort:nN f-expandable. Otherwise, compare #4 and #5 using #3. If
they are ordered, place #5 amongst the “greater” items, otherwise amongst the “lesser”
items, and continue partitioning.

\cs_new:Npn \tl_sort:nN #1#2
{
\tl_if_blank:nF {#1}
{
__sort:nnNnn { } { } #2
#1 \q__sort_recursion_tail \q__sort_recursion_stop

}
}

\cs_new:Npn __sort:nnNnn #1#2#3#4#5
{
\quark_if_recursion_tail_stop_do:nn {#5}
{ \use:ff { \tl_sort:nN {#1} #3 {#4} } { \tl_sort:nN {#2} #3 } }

#3 {#4} {#5}
{ __sort:nnNnn {#1} { #2 {#5} } #3 {#4} }
{ __sort:nnNnn { #1 {#5} } {#2} #3 {#4} }

}
\cs_generate_variant:Nn \use:nn { ff }

There are quite a few optimizations available here: the code below is less legible, but
more than twice as fast.

In the simple version of the code, __sort:nnNnn is called O(n ln n) times on average
(the number of comparisons required by the quicksort algorithm). Hence most of our focus
is on optimizing that function.

The first speed up is to avoid testing for the end of the list at every call to
__sort:nnNnn. For this, the list is prepared by changing each ⟨item⟩ of the origi-
nal token list into ⟨command⟩ {⟨item⟩}, just like sequences are stored. We arrange things
such that the ⟨command⟩ is the ⟨conditional⟩ provided by the user: the loop over the
⟨prepared tokens⟩ then looks like

\cs_new:Npn __sort_loop:wNn ... #6#7
{
#6 {⟨pivot⟩} {#7} ⟨loop big⟩ ⟨loop small⟩
⟨extra arguments⟩
}
__sort_loop:wNn ... ⟨prepared tokens⟩
⟨end-loop⟩ {} \s__sort_stop

In this example, which matches the structure of __sort_quick_split_i:NnnnnNn and
a few other functions below, the __sort_loop:wNn auxiliary normally receives the user’s
⟨conditional⟩ as #6 and an ⟨item⟩ as #7. This is compared to the ⟨pivot⟩ (the ar-
gument #5, not shown here), and the ⟨conditional⟩ leaves the ⟨loop big⟩ or ⟨loop
small⟩ auxiliary, which both have the same form as __sort_loop:wNn, receiving the
next pair ⟨conditional⟩ {⟨item⟩} as #6 and #7. At the end, #6 is the ⟨end-loop⟩
function, which terminates the loop.

The second speed up is to minimize the duplicated tokens between the true and
false branches of the conditional. For this, we introduce two versions of __sort:nnNnn,

443

which receive the new item as #1 and place it either into the list #2 of items less than
the pivot #4 or into the list #3 of items greater or equal to the pivot.

\cs_new:Npn __sort_i:nnnnNn #1#2#3#4#5#6
{
#5 {#4} {#6} __sort_ii:nnnnNn __sort_i:nnnnNn
{#6} { #2 {#1} } {#3} {#4}

}
\cs_new:Npn __sort_ii:nnnnNn #1#2#3#4#5#6
{
#5 {#4} {#6} __sort_ii:nnnnNn __sort_i:nnnnNn
{#6} {#2} { #3 {#1} } {#4}

}

Note that the two functions have the form of __sort_loop:wNn above, receiving as #5
the conditional or a function to end the loop. In fact, the lists #2 and #3 must be made
of pairs ⟨conditional⟩ {⟨item⟩}, so we have to replace {#6} above by { #5 {#6} }, and
{#1} by #1. The actual functions have one more argument, so all argument numbers are
shifted compared to this code.

The third speed up is to avoid \use:ff using a continuation-passing style:
__sort_quick_split:NnNn expects a list followed by \s__sort_mark {⟨code⟩}, and
expands to ⟨code⟩ ⟨sorted list⟩. Sorting the two parts of the list around the pivot is
done with

__sort_quick_split:NnNn #2 ... \s__sort_mark
{
__sort_quick_split:NnNn #1 ... \s__sort_mark {⟨code⟩}
{⟨pivot⟩}
}

Items which are larger than the ⟨pivot⟩ are sorted, then placed after code that sorts the
smaller items, and after the (braced) ⟨pivot⟩.

The fourth speed up is avoid the recursive call to \tl_sort:nN with an empty first
argument. For this, we introduce functions similar to the __sort_i:nnnnNn of the last
example, but aware of whether the list of ⟨conditional⟩ {⟨item⟩} read so far that are
less than the pivot, and the list of those greater or equal, are empty or not: see __sort_-
quick_split:NnNn and functions defined below. Knowing whether the lists are empty
or not is useless if we do not use distinct ending codes as appropriate. The splitting
auxiliaries communicate to the ⟨end-loop⟩ function (that is initially placed after the
“prepared” list) by placing a specific ending function, ignored when looping, but useful
at the end. In fact, the ⟨end-loop⟩ function does nothing but place the appropriate
ending function in front of all its arguments. The ending functions take care of sorting
non-empty sublists, placing the pivot in between, and the continuation before.

The final change in fact slows down the code a little, but is required to avoid memory
issues: schematically, when TEX encounters

\use:n { \use:n { \use:n { ... } ... } ... }

the argument of the first \use:n is not completely read by the second \use:n, hence
must remain in memory; then the argument of the second \use:n is not completely read
when grabbing the argument of the third \use:n, hence must remain in memory, and so
on. The memory consumption grows quadratically with the number of nested \use:n. In

444

practice, this means that we must read everything until a trailing \s__sort_stop once
in a while, otherwise sorting lists of more than a few thousand items would exhaust a
typical TEX’s memory.

\tl_sort:nN
__sort_quick_prepare:Nnnn

__sort_quick_prepare_end:NNNnw
__sort_quick_cleanup:w

The code within the \exp_not:f sorts the list, leaving in most cases a leading \exp_-
not:f, which stops the expansion, letting the result be return within \exp_not:n. We
filter out the case of a list with no item, which would otherwise cause problems. Then
prepare the token list #1 by inserting the conditional #2 before each item. The prepare
auxiliary receives the conditional as #1, the prepared token list so far as #2, the next
prepared item as #3, and the item after that as #4. The loop ends when #4 contains
\prg_break_point:, then the prepare_end auxiliary finds the prepared token list as #4.
The scene is then set up for __sort_quick_split:NnNn, which sorts the prepared list
and perform the post action placed after \s__sort_mark, namely removing the trailing
\s__sort_stop and \s__sort_stop and leaving \exp_stop_f: to stop f-expansion.

3386 \cs_new:Npn \tl_sort:nN #1#2
3387 {
3388 \exp_not:f
3389 {
3390 \tl_if_blank:nF {#1}
3391 {
3392 __sort_quick_prepare:Nnnn #2 { } { }
3393 #1
3394 { \prg_break_point: __sort_quick_prepare_end:NNNnw }
3395 \s__sort_stop
3396 }
3397 }
3398 }
3399 \cs_new:Npn __sort_quick_prepare:Nnnn #1#2#3#4
3400 {
3401 \prg_break: #4 \prg_break_point:
3402 __sort_quick_prepare:Nnnn #1 { #2 #3 } { #1 {#4} }
3403 }
3404 \cs_new:Npn __sort_quick_prepare_end:NNNnw #1#2#3#4#5 \s__sort_stop
3405 {
3406 __sort_quick_split:NnNn #4 __sort_quick_end:nnTFNn { }
3407 \s__sort_mark { __sort_quick_cleanup:w \exp_stop_f: }
3408 \s__sort_mark \s__sort_stop
3409 }
3410 \cs_new:Npn __sort_quick_cleanup:w #1 \s__sort_mark \s__sort_stop {#1}

(End of definition for \tl_sort:nN and others. This function is documented on page 127.)

__sort_quick_split:NnNn
__sort_quick_only_i:NnnnnNn

__sort_quick_only_ii:NnnnnNn
__sort_quick_split_i:NnnnnNn
__sort_quick_split_ii:NnnnnNn

The only_i, only_ii, split_i and split_ii auxiliaries receive a useless first argument,
the new item #2 (that they append to either one of the next two arguments), the list #3
of items less than the pivot, bigger items #4, the pivot #5, a ⟨function⟩ #6, and an
item #7. The ⟨function⟩ is the user’s ⟨conditional⟩ except at the end of the list where
it is __sort_quick_end:nnTFNn. The comparison is applied to the ⟨pivot⟩ and the
⟨item⟩, and calls the only_i or split_i auxiliaries if the ⟨item⟩ is smaller, and the
only_ii or split_ii auxiliaries otherwise. In both cases, the next auxiliary goes to
work right away, with no intermediate expansion that would slow down operations. Note
that the argument #2 left for the next call has the form ⟨conditional⟩ {⟨item⟩}, so that
the lists #3 and #4 keep the right form to be fed to the next sorting function. The split
auxiliary differs from these in that it is missing three of the arguments, which would be

445

empty, and its first argument is always the user’s ⟨conditional⟩ rather than an ending
function.

3411 \cs_new:Npn __sort_quick_split:NnNn #1#2#3#4
3412 {
3413 #3 {#2} {#4} __sort_quick_only_ii:NnnnnNn
3414 __sort_quick_only_i:NnnnnNn
3415 __sort_quick_single_end:nnnwnw
3416 { #3 {#4} } { } { } {#2}
3417 }
3418 \cs_new:Npn __sort_quick_only_i:NnnnnNn #1#2#3#4#5#6#7
3419 {
3420 #6 {#5} {#7} __sort_quick_split_ii:NnnnnNn
3421 __sort_quick_only_i:NnnnnNn
3422 __sort_quick_only_i_end:nnnwnw
3423 { #6 {#7} } { #3 #2 } { } {#5}
3424 }
3425 \cs_new:Npn __sort_quick_only_ii:NnnnnNn #1#2#3#4#5#6#7
3426 {
3427 #6 {#5} {#7} __sort_quick_only_ii:NnnnnNn
3428 __sort_quick_split_i:NnnnnNn
3429 __sort_quick_only_ii_end:nnnwnw
3430 { #6 {#7} } { } { #4 #2 } {#5}
3431 }
3432 \cs_new:Npn __sort_quick_split_i:NnnnnNn #1#2#3#4#5#6#7
3433 {
3434 #6 {#5} {#7} __sort_quick_split_ii:NnnnnNn
3435 __sort_quick_split_i:NnnnnNn
3436 __sort_quick_split_end:nnnwnw
3437 { #6 {#7} } { #3 #2 } {#4} {#5}
3438 }
3439 \cs_new:Npn __sort_quick_split_ii:NnnnnNn #1#2#3#4#5#6#7
3440 {
3441 #6 {#5} {#7} __sort_quick_split_ii:NnnnnNn
3442 __sort_quick_split_i:NnnnnNn
3443 __sort_quick_split_end:nnnwnw
3444 { #6 {#7} } {#3} { #4 #2 } {#5}
3445 }

(End of definition for __sort_quick_split:NnNn and others.)

__sort_quick_end:nnTFNn
__sort_quick_single_end:nnnwnw
__sort_quick_only_i_end:nnnwnw
__sort_quick_only_ii_end:nnnwnw

__sort_quick_split_end:nnnwnw

The __sort_quick_end:nnTFNn appears instead of the user’s conditional, and receives
as its arguments the pivot #1, a fake item #2, a true and a false branches #3 and #4,
followed by an ending function #5 (one of the four auxiliaries here) and another copy #6
of the fake item. All those are discarded except the function #5. This function receives
lists #1 and #2 of items less than or greater than the pivot #3, then a continuation
code #5 just after \s__sort_mark. To avoid a memory problem described earlier, all
of the ending functions read #6 until \s__sort_stop and place #6 back into the input
stream. When the lists #1 and #2 are empty, the single auxiliary simply places the
continuation #5 before the pivot {#3}. When #2 is empty, #1 is sorted and placed before
the pivot {#3}, taking care to feed the continuation #5 as a continuation for the function
sorting #1. When #1 is empty, #2 is sorted, and the continuation argument is used to
place the continuation #5 and the pivot {#3} before the sorted result. Finally, when both

446

lists are non-empty, items larger than the pivot are sorted, then items less than the pivot,
and the continuations are done in such a way to place the pivot in between.

3446 \cs_new:Npn __sort_quick_end:nnTFNn #1#2#3#4#5#6 {#5}
3447 \cs_new:Npn __sort_quick_single_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
3448 { #5 {#3} #6 \s__sort_stop }
3449 \cs_new:Npn __sort_quick_only_i_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
3450 {
3451 __sort_quick_split:NnNn #1
3452 __sort_quick_end:nnTFNn { } \s__sort_mark {#5}
3453 {#3}
3454 #6 \s__sort_stop
3455 }
3456 \cs_new:Npn __sort_quick_only_ii_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
3457 {
3458 __sort_quick_split:NnNn #2
3459 __sort_quick_end:nnTFNn { } \s__sort_mark { #5 {#3} }
3460 #6 \s__sort_stop
3461 }
3462 \cs_new:Npn __sort_quick_split_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
3463 {
3464 __sort_quick_split:NnNn #2 __sort_quick_end:nnTFNn { } \s__sort_mark
3465 {
3466 __sort_quick_split:NnNn #1
3467 __sort_quick_end:nnTFNn { } \s__sort_mark {#5}
3468 {#3}
3469 }
3470 #6 \s__sort_stop
3471 }

(End of definition for __sort_quick_end:nnTFNn and others.)

44.6 Messages
__sort_error: Bailing out of the sorting code is a bit tricky. It may not be safe to use a delimited

argument, so instead we redefine many l3sort commands to be trivial, with __sort_-
level: jumping to the break point. This error recovery won’t work in a group.

3472 \cs_new_protected:Npn __sort_error:
3473 {
3474 \cs_set_eq:NN __sort_merge_blocks_aux: \prg_do_nothing:
3475 \cs_set_eq:NN __sort_merge_blocks: \prg_do_nothing:
3476 \cs_set_protected:Npn __sort_level: { \group_end: \prg_break: }
3477 }

(End of definition for __sort_error:.)

__sort_disable_toksdef:
__sort_disabled_toksdef:n

While sorting, \toksdef is locally disabled to prevent users from using \newtoks or
similar commands in their comparison code: the \toks registers that would be assigned
are in use by l3sort. In format mode, none of this is needed since there is no \toks
allocator.

3478 \cs_new_protected:Npn __sort_disable_toksdef:
3479 { \cs_set_eq:NN \toksdef __sort_disabled_toksdef:n }
3480 \cs_new_protected:Npn __sort_disabled_toksdef:n #1
3481 {

447

3482 \msg_error:nne { sort } { toksdef }
3483 { \token_to_str:N #1 }
3484 __sort_error:
3485 \tex_toksdef:D #1
3486 }
3487 \msg_new:nnnn { sort } { toksdef }
3488 { Allocation~of~\iow_char:N\\toks~registers~impossible~while~sorting. }
3489 {
3490 The~comparison~code~used~for~sorting~a~list~has~attempted~to~
3491 define~#1~as~a~new~\iow_char:N\\toks~register~using~
3492 \iow_char:N\\newtoks~
3493 or~a~similar~command.~The~list~will~not~be~sorted.
3494 }

(End of definition for __sort_disable_toksdef: and __sort_disabled_toksdef:n.)

__sort_too_long_error:NNw When there are too many items in a sequence, this is an error, and we clean up properly
the mapping over items in the list: break using the type-specific breaking function #1.

3495 \cs_new_protected:Npn __sort_too_long_error:NNw #1#2 \fi:
3496 {
3497 \fi:
3498 \msg_error:nneee { sort } { too-large }
3499 { \token_to_str:N #2 }
3500 { \int_eval:n { \l__sort_true_max_int - \l__sort_min_int } }
3501 { \int_eval:n { \l__sort_top_int - \l__sort_min_int } }
3502 #1 __sort_error:
3503 }
3504 \msg_new:nnnn { sort } { too-large }
3505 { The~list~#1~is~too~long~to~be~sorted~by~TeX. }
3506 {
3507 TeX~has~#2~toks~registers~still~available:~
3508 this~only~allows~to~sort~with~up~to~#3~
3509 items.~The~list~will~not~be~sorted.
3510 }

(End of definition for __sort_too_long_error:NNw.)

3511 \msg_new:nnnn { sort } { return-none }
3512 { The~comparison~code~did~not~return. }
3513 {
3514 When~sorting~a~list,~the~code~to~compare~items~#1~and~#2~
3515 did~not~call~
3516 \iow_char:N\\sort_return_same: ~nor~
3517 \iow_char:N\\sort_return_swapped: .~
3518 Exactly~one~of~these~should~be~called.
3519 }
3520 \msg_new:nnnn { sort } { return-two }
3521 { The~comparison~code~returned~multiple~times. }
3522 {
3523 When~sorting~a~list,~the~code~to~compare~items~#1~and~#2~called~
3524 \iow_char:N\\sort_return_same: ~or~
3525 \iow_char:N\\sort_return_swapped: ~multiple~times.~
3526 Exactly~one~of~these~should~be~called.
3527 }
3528 \prop_gput:Nnn \g_msg_module_name_prop { sort } { LaTeX }
3529 \prop_gput:Nnn \g_msg_module_type_prop { sort } { }

448

3530 ⟨/package⟩

449

Chapter 45

l3tl-analysis implementation

3531 ⟨@@=tl⟩

45.1 Internal functions
\s__tl The format used to store token lists internally uses the scan mark \s__tl as a delimiter.

(End of definition for \s__tl.)

45.2 Internal format
The task of the l3tl-analysis module is to convert token lists to an internal format which
allows us to extract all the relevant information about individual tokens (category code,
character code), as well as reconstruct the token list quickly. This internal format is
used in l3regex where we need to support arbitrary tokens, and it is used in conversion
functions in l3str-convert, where we wish to support clusters of characters instead of single
tokens.

We thus need a way to encode any ⟨token⟩ (even begin-group and end-group charac-
ter tokens) in a way amenable to manipulating tokens individually. The best we can do is
to find ⟨tokens⟩ which both o-expand and e/x-expand to the given ⟨token⟩. Collecting
more information about the category code and character code is also useful for regular
expressions, since most regexes are catcode-agnostic. The internal format thus takes the
form of a succession of items of the form

⟨tokens⟩ \s__tl ⟨catcode⟩ ⟨char code⟩ \s__tl

The ⟨tokens⟩ o- and e/x-expand to the original token in the token list or to the cluster of
tokens corresponding to one Unicode character in the given encoding (for l3str-convert).
The ⟨catcode⟩ is given as a single hexadecimal digit, 0 for control sequences. The ⟨char
code⟩ is given as a decimal number, −1 for control sequences.

Using delimited arguments lets us build the ⟨tokens⟩ progressively when doing an
encoding conversion in l3str-convert. On the other hand, the delimiter \s__tl may not
appear unbraced in ⟨tokens⟩. This is not a problem because we are careful to wrap
control sequences in braces (as an argument to \exp_not:n) when converting from a
general token list to the internal format.

The current rule for converting a ⟨token⟩ to a balanced set of ⟨tokens⟩ which both
o-expands and e/x-expands to it is the following.

450

• A control sequence \cs becomes \exp_not:n { \cs } \s__tl 0 −1 \s__tl.

• A begin-group character { becomes \exp_after:wN { \if_false: } \fi: \s__tl
1 ⟨char code⟩ \s__tl.

• An end-group character } becomes \if_false: { \fi: } \s__tl 2 ⟨char code⟩
\s__tl.

• A character with any other category code becomes \exp_not:n {⟨character⟩} \s__-
tl ⟨hex catcode⟩ ⟨char code⟩ \s__tl.

In contrast, for \peek_analysis_map_inline:n we must allow for an input stream con-
taining \outer macros, so that wrapping all control sequences in \exp_not:n is unsafe.
Instead, we write the more elaborate __kernel_exp_not:w \exp_after:wN { \exp_-
not:N \cs }. (On the other hand we make a better effort by avoiding \exp_not:n for
characters other than active and macro parameters.)

3532 ⟨∗package⟩

45.3 Variables and helper functions
\s__tl The scan mark \s__tl is used as a delimiter in the internal format. This is more practical

than using a quark, because we would then need to control expansion much more carefully:
compare \int_value:w ‘#1 \s__tl with \int_value:w ‘#1 \exp_stop_f: \exp_not:N
\q_mark to extract a character code followed by the delimiter in an e-expansion.

3533 \scan_new:N \s__tl

(End of definition for \s__tl.)

\l__tl_analysis_token
\l__tl_analysis_char_token

The tokens in the token list are probed with the TEX primitive \futurelet. We use
\l__tl_analysis_token in that construction. In some cases, we convert the following
token to a string before probing it: then the token variable used is \l__tl_analysis_-
char_token.

3534 \cs_new_eq:NN \l__tl_analysis_token ?
3535 \cs_new_eq:NN \l__tl_analysis_char_token ?

(End of definition for \l__tl_analysis_token and \l__tl_analysis_char_token.)

\l__tl_peek_code_tl Holds some code to be run once the next token has been fully analysed in \peek_-
analysis_map_inline:n.

3536 \tl_new:N \l__tl_peek_code_tl

(End of definition for \l__tl_peek_code_tl.)

\c__tl_peek_catcodes_tl A token list containing the character number 32 (space) with all possible category codes
except 1 and 2 (begin-group and end-group). Why 32? Because some LuaTEX versions
only allow creation of catcode 10 (space) tokens with this character code, so that we
decided to make \char_generate:nn refuse to create such weird spaces as well. We do
not include the macro parameter case (catcode 6) because it cannot be used as a macro
delimiter.

3537 \group_begin:
3538 \char_set_active_eq:NN \ \scan_stop:
3539 \tl_const:Ne \c__tl_peek_catcodes_tl

451

3540 {
3541 \char_generate:nn { 32 } { 3 } 3
3542 \char_generate:nn { 32 } { 4 } 4
3543 \char_generate:nn { 32 } { 7 } 7
3544 \char_generate:nn { 32 } { 8 } 8
3545 \c_space_tl \token_to_str:N A
3546 \char_generate:nn { 32 } { 11 } \token_to_str:N B
3547 \char_generate:nn { 32 } { 12 } \token_to_str:N C
3548 \char_generate:nn { 32 } { 13 } \token_to_str:N D
3549 }
3550 \group_end:

(End of definition for \c__tl_peek_catcodes_tl.)

\l__tl_analysis_normal_int The number of normal (N-type argument) tokens since the last special token.
3551 \int_new:N \l__tl_analysis_normal_int

(End of definition for \l__tl_analysis_normal_int.)

\l__tl_analysis_index_int During the first pass, this is the index in the array being built. During the second pass,
it is equal to the maximum index in the array from the first pass.

3552 \int_new:N \l__tl_analysis_index_int

(End of definition for \l__tl_analysis_index_int.)

\l__tl_analysis_nesting_int Nesting depth of explicit begin-group and end-group characters during the first pass.
This lets us detect the end of the token list without a reserved end-marker.

3553 \int_new:N \l__tl_analysis_nesting_int

(End of definition for \l__tl_analysis_nesting_int.)

\l__tl_analysis_type_int When encountering special characters, we record their “type” in this integer.
3554 \int_new:N \l__tl_analysis_type_int

(End of definition for \l__tl_analysis_type_int.)

\g__tl_analysis_result_tl The result of the conversion is stored in this token list, with a succession of items of the
form

⟨tokens⟩ \s__tl ⟨catcode⟩ ⟨char code⟩ \s__tl

3555 \tl_new:N \g__tl_analysis_result_tl

(End of definition for \g__tl_analysis_result_tl.)

__tl_analysis_extract_charcode:
__tl_analysis_extract_charcode_aux:w

Extracting the character code from the meaning of \l__tl_analysis_token. This has
no error checking, and should only be assumed to work for begin-group and end-group
character tokens. It produces a number in the form ‘⟨char⟩.

3556 \cs_new:Npn __tl_analysis_extract_charcode:
3557 {
3558 \exp_after:wN __tl_analysis_extract_charcode_aux:w
3559 \token_to_meaning:N \l__tl_analysis_token
3560 }
3561 \cs_new:Npn __tl_analysis_extract_charcode_aux:w #1 ~ #2 ~ { ‘ }

452

(End of definition for __tl_analysis_extract_charcode: and __tl_analysis_extract_charcode_-
aux:w.)

__tl_analysis_cs_space_count:NN
__tl_analysis_cs_space_count:w

__tl_analysis_cs_space_count_end:w

Counts the number of spaces in the string representation of its second argument, as well
as the number of characters following the last space in that representation, and feeds the
two numbers as semicolon-delimited arguments to the first argument. When this function
is used, the escape character is printable and non-space.

3562 \cs_new:Npn __tl_analysis_cs_space_count:NN #1 #2
3563 {
3564 \exp_after:wN #1
3565 \int_value:w \int_eval:w 0
3566 \exp_after:wN __tl_analysis_cs_space_count:w
3567 \token_to_str:N #2
3568 \fi: __tl_analysis_cs_space_count_end:w ; ~ !
3569 }
3570 \cs_new:Npn __tl_analysis_cs_space_count:w #1 ~
3571 {
3572 \if_false: #1 #1 \fi:
3573 + 1
3574 __tl_analysis_cs_space_count:w
3575 }
3576 \cs_new:Npn __tl_analysis_cs_space_count_end:w ; #1 \fi: #2 !
3577 { \exp_after:wN ; \int_value:w \str_count_ignore_spaces:n {#1} ; }

(End of definition for __tl_analysis_cs_space_count:NN , __tl_analysis_cs_space_count:w , and
__tl_analysis_cs_space_count_end:w.)

45.4 Plan of attack
Our goal is to produce a token list of the form roughly

⟨token 1⟩ \s__tl ⟨catcode 1⟩ ⟨char code 1⟩ \s__tl
⟨token 2⟩ \s__tl ⟨catcode 2⟩ ⟨char code 2⟩ \s__tl
. . . ⟨token N⟩ \s__tl ⟨catcode N⟩ ⟨char code N⟩ \s__tl

Most but not all tokens can be grabbed as an undelimited (N-type) argument by TEX.
The plan is to have a two pass system. In the first pass, locate special tokens, and store
them in various \toks registers. In the second pass, which is done within an e-expanding
assignment, normal tokens are taken in as N-type arguments, and special tokens are
retrieved from the \toks registers, and removed from the input stream by some means.
The whole process takes linear time, because we avoid building the result one item at a
time.

We make the escape character printable (backslash, but this later oscillates between
slash and backslash): this allows us to distinguish characters from control sequences.

A token has two characteristics: its \meaning, and what it looks like for TEX when
it is in scanning mode (e.g., when capturing parameters for a macro). For our purposes,
we distinguish the following meanings:

• begin-group token (category code 1), either space (character code 32), or non-space;

• end-group token (category code 2), either space (character code 32), or non-space;

• space token (category code 10, character code 32);

453

• anything else (then the token is always an N-type argument).

The token itself can “look like” one of the following

• a non-active character, in which case its meaning is automatically that associated
to its character code and category code, we call it “true” character;

• an active character;

• a control sequence.

The only tokens which are not valid N-type arguments are true begin-group characters,
true end-group characters, and true spaces. We detect those characters by scanning
ahead with \futurelet, then distinguishing true characters from control sequences set
equal to them using the \string representation.

The second pass is a simple exercise in expandable loops.

__tl_analysis:n Everything is done within a group, and all definitions are local. We use \group_align_-
safe_begin/end: to avoid problems in case __tl_analysis:n is used within an align-
ment and its argument contains alignment tab tokens.

3578 \cs_new_protected:Npn __tl_analysis:n #1
3579 {
3580 \group_begin:
3581 \group_align_safe_begin:
3582 __tl_analysis_a:n {#1}
3583 __tl_analysis_b:n {#1}
3584 \group_align_safe_end:
3585 \group_end:
3586 }

(End of definition for __tl_analysis:n.)

45.5 Disabling active characters
__tl_analysis_disable:n Active characters can cause problems later on in the processing, so we provide a way to

disable them, by setting them to undefined. Since Unicode contains too many characters
to loop over all of them, we instead do this whenever we encounter a character. For pTEX
and upTEX we skip characters beyond [0, 255] because \lccode only allows those values.

3587 \group_begin:
3588 \char_set_catcode_active:N \^^@
3589 \cs_new_protected:Npn __tl_analysis_disable:n #1
3590 {
3591 \tex_lccode:D 0 = #1 \exp_stop_f:
3592 \tex_lowercase:D { \tex_let:D ^^@ } \tex_undefined:D
3593 }
3594 \bool_lazy_or:nnT
3595 { \sys_if_engine_ptex_p: }
3596 { \sys_if_engine_uptex_p: }
3597 {
3598 \cs_gset_protected:Npn __tl_analysis_disable:n #1
3599 {
3600 \if_int_compare:w 256 > #1 \exp_stop_f:
3601 \tex_lccode:D 0 = #1 \exp_stop_f:

454

3602 \tex_lowercase:D { \tex_let:D ^^@ } \tex_undefined:D
3603 \fi:
3604 }
3605 }
3606 \group_end:

(End of definition for __tl_analysis_disable:n.)

__tl_analysis_disable_char:N Similar to __tl_analysis_disable:n, but it receives a normal character token, tests
if that token is active (by turning it into a space: the active space has been undefined
at this point), and if so, disables it. Even if the character is active and set equal to a
primitive conditional, nothing blows up. Again, in pTEX and upTEX we skip characters
beyond [0, 255], which cannot be active anyways.

3607 \group_begin:
3608 \char_set_catcode_active:N \^^@
3609 \cs_new_protected:Npn __tl_analysis_disable_char:N #1
3610 {
3611 \tex_lccode:D ‘#1 = 32 \exp_stop_f:
3612 \tex_lowercase:D { \if_meaning:w #1 } \tex_undefined:D
3613 \tex_let:D #1 \tex_undefined:D
3614 \fi:
3615 }
3616 \bool_lazy_or:nnT
3617 { \sys_if_engine_ptex_p: }
3618 { \sys_if_engine_uptex_p: }
3619 {
3620 \cs_gset_protected:Npn __tl_analysis_disable_char:N #1
3621 {
3622 \if_int_compare:w 256 > ‘#1 \exp_stop_f:
3623 \tex_lccode:D ‘#1 = 32 \exp_stop_f:
3624 \tex_lowercase:D { \if_meaning:w #1 } \tex_undefined:D
3625 \tex_let:D #1 \tex_undefined:D
3626 \fi:
3627 \fi:
3628 }
3629 }
3630 \group_end:

(End of definition for __tl_analysis_disable_char:N.)

45.6 First pass
The goal of this pass is to detect special (non-N-type) tokens, and count how many N-
type tokens lie between special tokens. Also, we wish to store some representation of
each special token in a \toks register.

We have 11 types of tokens:

1. a true non-space begin-group character;

2. a true space begin-group character;

3. a true non-space end-group character;

4. a true space end-group character;

455

5. a true space blank space character;

6. an active character;

7. any other true character;

8. a control sequence equal to a begin-group token (category code 1);

9. a control sequence equal to an end-group token (category code 2);

10. a control sequence equal to a space token (character code 32, category code 10);

11. any other control sequence.

Our first tool is \futurelet. This cannot distinguish case 8 from 1 or 2, nor case 9
from 3 or 4, nor case 10 from case 5. Those cases are later distinguished by applying the
\string primitive to the following token, after possibly changing the escape character
to ensure that a control sequence’s string representation cannot be mistaken for the true
character.

In cases 6, 7, and 11, the following token is a valid N-type argument, so we grab
it and distinguish the case of a character from a control sequence: in the latter case,
\str_tail:n {⟨token⟩} is non-empty, because the escape character is printable.

__tl_analysis_a:n We read tokens one by one using \futurelet. While performing the loop, we keep
track of the number of true begin-group characters minus the number of true end-group
characters in \l__tl_analysis_nesting_int. This reaches −1 when we read the closing
brace.

3631 \cs_new_protected:Npn __tl_analysis_a:n #1
3632 {
3633 __tl_analysis_disable:n { 32 }
3634 \int_set:Nn \tex_escapechar:D { 92 }
3635 \int_zero:N \l__tl_analysis_normal_int
3636 \int_zero:N \l__tl_analysis_index_int
3637 \int_zero:N \l__tl_analysis_nesting_int
3638 \if_false: { \fi: __tl_analysis_a_loop:w #1 }
3639 \int_decr:N \l__tl_analysis_index_int
3640 }

(End of definition for __tl_analysis_a:n.)

__tl_analysis_a_loop:w Read one character and check its type.
3641 \cs_new_protected:Npn __tl_analysis_a_loop:w
3642 { \tex_futurelet:D \l__tl_analysis_token __tl_analysis_a_type:w }

(End of definition for __tl_analysis_a_loop:w.)

__tl_analysis_a_type:w At this point, \l__tl_analysis_token holds the meaning of the following token. We
store in \l__tl_analysis_type_int information about the meaning of the token ahead:

• 0 space token;

• 1 begin-group token;

• -1 end-group token;

• 2 other.

456

The values 0, 1, −1 correspond to how much a true such character changes the nesting
level (2 is used only here, and is irrelevant later). Then call the auxiliary for each case.
Note that nesting conditionals here is safe because we only skip over \l__tl_analysis_-
token if it matches with one of the character tokens (hence is not a primitive conditional).

3643 \cs_new_protected:Npn __tl_analysis_a_type:w
3644 {
3645 \l__tl_analysis_type_int =
3646 \if_meaning:w \l__tl_analysis_token \c_space_token
3647 0
3648 \else:
3649 \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_begin_token
3650 1
3651 \else:
3652 \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_end_token
3653 - 1
3654 \else:
3655 2
3656 \fi:
3657 \fi:
3658 \fi:
3659 \exp_stop_f:
3660 \if_case:w \l__tl_analysis_type_int
3661 \exp_after:wN __tl_analysis_a_space:w
3662 \or: \exp_after:wN __tl_analysis_a_bgroup:w
3663 \or: \exp_after:wN __tl_analysis_a_safe:N
3664 \else: \exp_after:wN __tl_analysis_a_egroup:w
3665 \fi:
3666 }

(End of definition for __tl_analysis_a_type:w.)

__tl_analysis_a_space:w
__tl_analysis_a_space_test:w

In this branch, the following token’s meaning is a blank space. Apply \string to that
token: a true blank space gives a space, a control sequence gives a result starting with
the escape character, an active character gives something else than a space since we
disabled the space. We grab as \l__tl_analysis_char_token the first character of
the string representation then test it in __tl_analysis_a_space_test:w. Also, since
__tl_analysis_a_store: expects the special token to be stored in the relevant \toks
register, we do that. The extra \exp_not:n is unnecessary of course, but it makes
the treatment of all tokens more homogeneous. If we discover that the next token was
actually a control sequence or an active character instead of a true space, then we step
the counter of normal tokens. We now have in front of us the whole string representation
of the control sequence, including potential spaces; those will appear to be true spaces
later in this pass. Hence, all other branches of the code in this first pass need to consider
the string representation, so that the second pass does not need to test the meaning of
tokens, only strings.

3667 \cs_new_protected:Npn __tl_analysis_a_space:w
3668 {
3669 \tex_afterassignment:D __tl_analysis_a_space_test:w
3670 \exp_after:wN \cs_set_eq:NN
3671 \exp_after:wN \l__tl_analysis_char_token
3672 \token_to_str:N
3673 }
3674 \cs_new_protected:Npn __tl_analysis_a_space_test:w

457

3675 {
3676 \if_meaning:w \l__tl_analysis_char_token \c_space_token
3677 \tex_toks:D \l__tl_analysis_index_int { \exp_not:n { ~ } }
3678 __tl_analysis_a_store:
3679 \else:
3680 \int_incr:N \l__tl_analysis_normal_int
3681 \fi:
3682 __tl_analysis_a_loop:w
3683 }

(End of definition for __tl_analysis_a_space:w and __tl_analysis_a_space_test:w.)

__tl_analysis_a_bgroup:w
__tl_analysis_a_egroup:w
__tl_analysis_a_group:nw

__tl_analysis_a_group_aux:w
__tl_analysis_a_group_auxii:w
__tl_analysis_a_group_test:w

The token is most likely a true character token with catcode 1 or 2, but it might be a
control sequence, or an active character. Optimizing for the first case, we store in a toks
register some code that expands to that token. Since we will turn what follows into a
string, we make sure the escape character is different from the current character code
(by switching between solidus and backslash). To detect the special case of an active
character let to the catcode 1 or 2 character with the same character code, we disable the
active character with that character code and re-test: if the following token has become
undefined we can in fact safely grab it. We are finally ready to turn what follows to a
string and test it. This is one place where we need \l__tl_analysis_char_token to be
a separate control sequence from \l__tl_analysis_token, to compare them.

3684 \group_begin:
3685 \char_set_catcode_group_begin:N \^^@ % {
3686 \cs_new_protected:Npn __tl_analysis_a_bgroup:w
3687 { __tl_analysis_a_group:nw { \exp_after:wN ^^@ \if_false: } \fi: } }
3688 \char_set_catcode_group_end:N \^^@
3689 \cs_new_protected:Npn __tl_analysis_a_egroup:w
3690 { __tl_analysis_a_group:nw { \if_false: { \fi: ^^@ } } % }
3691 \group_end:
3692 \cs_new_protected:Npn __tl_analysis_a_group:nw #1
3693 {
3694 \tex_lccode:D 0 = __tl_analysis_extract_charcode: \scan_stop:
3695 \tex_lowercase:D { \tex_toks:D \l__tl_analysis_index_int {#1} }
3696 \if_int_compare:w \tex_lccode:D 0 = \tex_escapechar:D
3697 \int_set:Nn \tex_escapechar:D { 139 - \tex_escapechar:D }
3698 \fi:
3699 __tl_analysis_disable:n { \tex_lccode:D 0 }
3700 \tex_futurelet:D \l__tl_analysis_token __tl_analysis_a_group_aux:w
3701 }
3702 \cs_new_protected:Npn __tl_analysis_a_group_aux:w
3703 {
3704 \if_meaning:w \l__tl_analysis_token \tex_undefined:D
3705 \exp_after:wN __tl_analysis_a_safe:N
3706 \else:
3707 \exp_after:wN __tl_analysis_a_group_auxii:w
3708 \fi:
3709 }
3710 \cs_new_protected:Npn __tl_analysis_a_group_auxii:w
3711 {
3712 \tex_afterassignment:D __tl_analysis_a_group_test:w
3713 \exp_after:wN \cs_set_eq:NN
3714 \exp_after:wN \l__tl_analysis_char_token
3715 \token_to_str:N

458

3716 }
3717 \cs_new_protected:Npn __tl_analysis_a_group_test:w
3718 {
3719 \if_charcode:w \l__tl_analysis_token \l__tl_analysis_char_token
3720 __tl_analysis_a_store:
3721 \else:
3722 \int_incr:N \l__tl_analysis_normal_int
3723 \fi:
3724 __tl_analysis_a_loop:w
3725 }

(End of definition for __tl_analysis_a_bgroup:w and others.)

__tl_analysis_a_store: This function is called each time we meet a special token; at this point, the \toks register
\l__tl_analysis_index_int holds a token list which expands to the given special token.
Also, the value of \l__tl_analysis_type_int indicates which case we are in:

• -1 end-group character;

• 0 space character;

• 1 begin-group character.

We need to distinguish further the case of a space character (code 32) from other character
codes, because those behave differently in the second pass. Namely, after testing the
\lccode of 0 (which holds the present character code) we change the cases above to

• -2 space end-group character;

• -1 non-space end-group character;

• 0 space blank space character;

• 1 non-space begin-group character;

• 2 space begin-group character.

This has the property that non-space characters correspond to odd values of \l__tl_-
analysis_type_int. The number of normal tokens until here and the type of special
token are packed into a \skip register. Finally, we check whether we reached the last
closing brace, in which case we stop by disabling the looping function (locally).

3726 \cs_new_protected:Npn __tl_analysis_a_store:
3727 {
3728 \tex_advance:D \l__tl_analysis_nesting_int \l__tl_analysis_type_int
3729 \if_int_compare:w \tex_lccode:D 0 = ‘\ \exp_stop_f:
3730 \tex_advance:D \l__tl_analysis_type_int \l__tl_analysis_type_int
3731 \fi:
3732 \tex_skip:D \l__tl_analysis_index_int
3733 = \l__tl_analysis_normal_int sp
3734 plus \l__tl_analysis_type_int sp \scan_stop:
3735 \int_incr:N \l__tl_analysis_index_int
3736 \int_zero:N \l__tl_analysis_normal_int
3737 \if_int_compare:w \l__tl_analysis_nesting_int = - \c_one_int
3738 \cs_set_eq:NN __tl_analysis_a_loop:w \scan_stop:
3739 \fi:
3740 }

459

(End of definition for __tl_analysis_a_store:.)

__tl_analysis_a_safe:N
__tl_analysis_a_cs:ww

This should be the simplest case: since the upcoming token is safe, we can simply grab it
in a second pass. If the token is a single character (including space), the \if_charcode:w
test yields true; we disable a potentially active character (that could otherwise masquer-
ade as the true character in the next pass) and we count one “normal” token. On the
other hand, if the token is a control sequence, we should replace it by its string repre-
sentation for compatibility with other code branches. Instead of slowly looping through
the characters with the main code, we use the knowledge of how the second pass works:
if the control sequence name contains no space, count that token as a number of normal
tokens equal to its string length. If the control sequence contains spaces, they should
be registered as special characters by increasing \l__tl_analysis_index_int (no need
to carefully count character between each space), and all characters after the last space
should be counted in the following sequence of “normal” tokens.

3741 \cs_new_protected:Npn __tl_analysis_a_safe:N #1
3742 {
3743 \if_charcode:w
3744 \scan_stop:
3745 \exp_after:wN \use_none:n \token_to_str:N #1 \prg_do_nothing:
3746 \scan_stop:
3747 \exp_after:wN \use_i:nn
3748 \else:
3749 \exp_after:wN \use_ii:nn
3750 \fi:
3751 {
3752 __tl_analysis_disable_char:N #1
3753 \int_incr:N \l__tl_analysis_normal_int
3754 }
3755 { __tl_analysis_cs_space_count:NN __tl_analysis_a_cs:ww #1 }
3756 __tl_analysis_a_loop:w
3757 }
3758 \cs_new_protected:Npn __tl_analysis_a_cs:ww #1; #2;
3759 {
3760 \if_int_compare:w #1 > \c_zero_int
3761 \tex_skip:D \l__tl_analysis_index_int
3762 = \int_eval:n { \l__tl_analysis_normal_int + 1 } sp \exp_stop_f:
3763 \tex_advance:D \l__tl_analysis_index_int #1 \exp_stop_f:
3764 \else:
3765 \tex_advance:D
3766 \fi:
3767 \l__tl_analysis_normal_int #2 \exp_stop_f:
3768 }

(End of definition for __tl_analysis_a_safe:N and __tl_analysis_a_cs:ww.)

45.7 Second pass
The second pass is an exercise in expandable loops. All the necessary information is
stored in \skip and \toks registers.

__tl_analysis_b:n
__tl_analysis_b_loop:w

Start the loop with the index 0. No need for an end-marker: the loop stops by itself when
the last index is read. We repeatedly oscillate between reading long stretches of normal
tokens, and reading special tokens.

460

3769 \cs_new_protected:Npn __tl_analysis_b:n #1
3770 {
3771 __kernel_tl_gset:Nx \g__tl_analysis_result_tl
3772 {
3773 __tl_analysis_b_loop:w 0; #1
3774 \prg_break_point:
3775 }
3776 }
3777 \cs_new:Npn __tl_analysis_b_loop:w #1;
3778 {
3779 \exp_after:wN __tl_analysis_b_normals:ww
3780 \int_value:w \tex_skip:D #1 ; #1 ;
3781 }

(End of definition for __tl_analysis_b:n and __tl_analysis_b_loop:w.)

__tl_analysis_b_normals:ww
__tl_analysis_b_normal:wwN

The first argument is the number of normal tokens which remain to be read, and the
second argument is the index in the array produced in the first step. A character’s string
representation is always one character long, while a control sequence is always longer (we
have set the escape character to a printable value). In both cases, we leave \exp_not:n
{⟨token⟩} \s__tl in the input stream (after e-expansion). Here, \exp_not:n is used
rather than \exp_not:N because #3 could be a macro parameter character or could be
\s__tl (which must be hidden behind braces in the result).

3782 \cs_new:Npn __tl_analysis_b_normals:ww #1;
3783 {
3784 \if_int_compare:w #1 = \c_zero_int
3785 __tl_analysis_b_special:w
3786 \fi:
3787 __tl_analysis_b_normal:wwN #1;
3788 }
3789 \cs_new:Npn __tl_analysis_b_normal:wwN #1; #2; #3
3790 {
3791 \exp_not:n { \exp_not:n { #3 } } \s__tl
3792 \if_charcode:w
3793 \scan_stop:
3794 \exp_after:wN \use_none:n \token_to_str:N #3 \prg_do_nothing:
3795 \scan_stop:
3796 \exp_after:wN __tl_analysis_b_char:Nn
3797 \exp_after:wN __tl_analysis_b_char_aux:nww
3798 \else:
3799 \exp_after:wN __tl_analysis_b_cs:Nww
3800 \fi:
3801 #3 #1; #2;
3802 }

(End of definition for __tl_analysis_b_normals:ww and __tl_analysis_b_normal:wwN.)

__tl_analysis_b_char:Nn
__tl_analysis_b_char_aux:nww

This function is called here with arguments __tl_analysis_b_char_aux:nww and a
normal character, while in the peek analysis code it is called with \use_none:n and
possibly a space character, which is why the function has signature Nn. If the normal
token we grab is a character, leave ⟨catcode⟩ ⟨charcode⟩ followed by \s__tl in the input
stream, and call __tl_analysis_b_normals:ww with its first argument decremented.

3803 \cs_new:Npe __tl_analysis_b_char:Nn #1#2
3804 {

461

3805 \exp_not:N \if_meaning:w #2 \exp_not:N \tex_undefined:D
3806 \token_to_str:N D \exp_not:N \else:
3807 \exp_not:N \if_catcode:w #2 \c_catcode_other_token
3808 \token_to_str:N C \exp_not:N \else:
3809 \exp_not:N \if_catcode:w #2 \c_catcode_letter_token
3810 \token_to_str:N B \exp_not:N \else:
3811 \exp_not:N \if_catcode:w #2 \c_math_toggle_token 3
3812 \exp_not:N \else:
3813 \exp_not:N \if_catcode:w #2 \c_alignment_token 4
3814 \exp_not:N \else:
3815 \exp_not:N \if_catcode:w #2 \c_math_superscript_token 7
3816 \exp_not:N \else:
3817 \exp_not:N \if_catcode:w #2 \c_math_subscript_token 8
3818 \exp_not:N \else:
3819 \exp_not:N \if_catcode:w #2 \c_space_token
3820 \token_to_str:N A \exp_not:N \else:
3821 6
3822 \exp_not:n { \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi: }
3823 #1 {#2}
3824 }
3825 \cs_new:Npn __tl_analysis_b_char_aux:nww #1
3826 {
3827 \int_value:w ‘#1 \s__tl
3828 \exp_after:wN __tl_analysis_b_normals:ww
3829 \int_value:w \int_eval:w - 1 +
3830 }

(End of definition for __tl_analysis_b_char:Nn and __tl_analysis_b_char_aux:nww.)

__tl_analysis_b_cs:Nww
__tl_analysis_b_cs_test:ww

If the token we grab is a control sequence, leave 0 -1 (as category code and character
code) in the input stream, followed by \s__tl, and call __tl_analysis_b_normals:ww
with updated arguments.

3831 \cs_new:Npn __tl_analysis_b_cs:Nww #1
3832 {
3833 0 -1 \s__tl
3834 __tl_analysis_cs_space_count:NN __tl_analysis_b_cs_test:ww #1
3835 }
3836 \cs_new:Npn __tl_analysis_b_cs_test:ww #1 ; #2 ; #3 ; #4 ;
3837 {
3838 \exp_after:wN __tl_analysis_b_normals:ww
3839 \int_value:w \int_eval:w
3840 \if_int_compare:w #1 = \c_zero_int
3841 #3
3842 \else:
3843 \tex_skip:D \int_eval:n { #4 + #1 } \exp_stop_f:
3844 \fi:
3845 - #2
3846 \exp_after:wN ;
3847 \int_value:w \int_eval:n { #4 + #1 } ;
3848 }

(End of definition for __tl_analysis_b_cs:Nww and __tl_analysis_b_cs_test:ww.)

__tl_analysis_b_special:w
__tl_analysis_b_special_char:wN
__tl_analysis_b_special_space:w

Here, #1 is the current index in the array built in the first pass. Check now whether
we reached the end (we shouldn’t keep the trailing end-group character that marked the

462

end of the token list in the first pass). Unpack the \toks register: when e/x-expanding
again, we will get the special token. Then leave the category code in the input stream,
followed by the character code, and call __tl_analysis_b_loop:w with the next index.

3849 \group_begin:
3850 \char_set_catcode_other:N A
3851 \cs_new:Npn __tl_analysis_b_special:w
3852 \fi: __tl_analysis_b_normal:wwN 0 ; #1 ;
3853 {
3854 \fi:
3855 \if_int_compare:w #1 = \l__tl_analysis_index_int
3856 \exp_after:wN \prg_break:
3857 \fi:
3858 \tex_the:D \tex_toks:D #1 \s__tl
3859 \if_case:w \tex_gluestretch:D \tex_skip:D #1 \exp_stop_f:
3860 \token_to_str:N A
3861 \or: 1
3862 \or: 1
3863 \else: 2
3864 \fi:
3865 \if_int_odd:w \tex_gluestretch:D \tex_skip:D #1 \exp_stop_f:
3866 \exp_after:wN __tl_analysis_b_special_char:wN \int_value:w
3867 \else:
3868 \exp_after:wN __tl_analysis_b_special_space:w \int_value:w
3869 \fi:
3870 \int_eval:n { 1 + #1 } \exp_after:wN ;
3871 \token_to_str:N
3872 }
3873 \group_end:
3874 \cs_new:Npn __tl_analysis_b_special_char:wN #1 ; #2
3875 {
3876 \int_value:w ‘#2 \s__tl
3877 __tl_analysis_b_loop:w #1 ;
3878 }
3879 \cs_new:Npn __tl_analysis_b_special_space:w #1 ; ~
3880 {
3881 32 \s__tl
3882 __tl_analysis_b_loop:w #1 ;
3883 }

(End of definition for __tl_analysis_b_special:w , __tl_analysis_b_special_char:wN , and __tl_-
analysis_b_special_space:w.)

45.8 Mapping through the analysis
\tl_analysis_map_inline:Nn
\tl_analysis_map_inline:nn

__tl_analysis_map:Nn
__tl_analysis_map:NwNw

First obtain the analysis of the token list into \g__tl_analysis_result_tl. To allow
nested mappings, increase the nesting depth \g__kernel_prg_map_int (shared between
all modules), then define the payload macro, which runs the user code and has a name
specific to that nesting depth. The looping macro grabs the ⟨tokens⟩, ⟨catcode⟩ and
⟨char code⟩; it checks for the end of the loop with \use_none:n ##2, normally empty,
but which becomes \tl_map_break: at the end; it then calls the payload macro with
the arguments in the correct order (this is the reason why we cannot directly use the

463

same macro for looping and payload), and loops by calling itself. When the loop ends,
remember to decrease the nesting depth.

3884 \cs_new_protected:Npn \tl_analysis_map_inline:Nn #1
3885 { \exp_args:No \tl_analysis_map_inline:nn #1 }
3886 \cs_new_protected:Npn \tl_analysis_map_inline:nn #1
3887 {
3888 __tl_analysis:n {#1}
3889 \int_gincr:N \g__kernel_prg_map_int
3890 \exp_args:Nc __tl_analysis_map:Nn
3891 { __tl_analysis_map_inline_ \int_use:N \g__kernel_prg_map_int :wNw }
3892 }
3893 \cs_new_protected:Npn __tl_analysis_map:Nn #1#2
3894 {
3895 \cs_gset_protected:Npn #1 ##1##2##3 {#2}
3896 \exp_after:wN __tl_analysis_map:NwNw \exp_after:wN #1
3897 \g__tl_analysis_result_tl
3898 \s__tl { ? \tl_map_break: } \s__tl
3899 \prg_break_point:Nn \tl_map_break:
3900 { \int_gdecr:N \g__kernel_prg_map_int }
3901 }
3902 \cs_new_protected:Npn __tl_analysis_map:NwNw #1 #2 \s__tl #3 #4 \s__tl
3903 {
3904 \use_none:n #3
3905 #1 {#2} {#4} {#3}
3906 __tl_analysis_map:NwNw #1
3907 }

(End of definition for \tl_analysis_map_inline:Nn and others. These functions are documented on
page 47.)

45.9 Showing the results
\tl_analysis_show:N
\tl_analysis_log:N

__tl_analysis_show:NNN

Add to __tl_analysis:n a third pass to display tokens to the terminal. If the token
list variable is not defined, throw the same error as \tl_show:N by simply calling that
function.

3908 \cs_new_protected:Npn \tl_analysis_show:N
3909 { __tl_analysis_show:NNN \msg_show:nneeee \tl_show:N }
3910 \cs_new_protected:Npn \tl_analysis_log:N
3911 { __tl_analysis_show:NNN \msg_log:nneeee \tl_log:N }
3912 \cs_new_protected:Npn __tl_analysis_show:NNN #1#2#3
3913 {
3914 \tl_if_exist:NTF #3
3915 {
3916 \exp_args:No __tl_analysis:n {#3}
3917 #1 { tl } { show-analysis }
3918 { \token_to_str:N #3 } { __tl_analysis_show: } { } { }
3919 }
3920 { #2 #3 }
3921 }

(End of definition for \tl_analysis_show:N , \tl_analysis_log:N , and __tl_analysis_show:NNN.
These functions are documented on page 47.)

464

\tl_analysis_show:n
\tl_analysis_log:n

__tl_analysis_show:Nn

No existence test needed here.
3922 \cs_new_protected:Npn \tl_analysis_show:n
3923 { __tl_analysis_show:Nn \msg_show:nneeee }
3924 \cs_new_protected:Npn \tl_analysis_log:n
3925 { __tl_analysis_show:Nn \msg_log:nneeee }
3926 \cs_new_protected:Npn __tl_analysis_show:Nn #1#2
3927 {
3928 __tl_analysis:n {#2}
3929 #1 { tl } { show-analysis } { } { __tl_analysis_show: } { } { }
3930 }

(End of definition for \tl_analysis_show:n , \tl_analysis_log:n , and __tl_analysis_show:Nn. These
functions are documented on page 47.)

__tl_analysis_show:
__tl_analysis_show_loop:wNw

Here, #1 o- and e/x-expands to the token; #2 is the category code (one uppercase hexadec-
imal digit), 0 for control sequences; #3 is the character code, which we ignore. In the
cases of control sequences and active characters, the meaning may overflow one line, and
we want to truncate it. Those cases are thus separated out.

3931 \cs_new:Npn __tl_analysis_show:
3932 {
3933 \exp_after:wN __tl_analysis_show_loop:wNw \g__tl_analysis_result_tl
3934 \s__tl { ? \prg_break: } \s__tl
3935 \prg_break_point:
3936 }
3937 \cs_new:Npn __tl_analysis_show_loop:wNw #1 \s__tl #2 #3 \s__tl
3938 {
3939 \use_none:n #2
3940 \iow_newline: > \use:nn { ~ } { ~ }
3941 \if_int_compare:w "#2 = \c_zero_int
3942 \exp_after:wN __tl_analysis_show_cs:n
3943 \else:
3944 \if_int_compare:w "#2 = 13 \exp_stop_f:
3945 \exp_after:wN \exp_after:wN
3946 \exp_after:wN __tl_analysis_show_active:n
3947 \else:
3948 \exp_after:wN \exp_after:wN
3949 \exp_after:wN __tl_analysis_show_normal:n
3950 \fi:
3951 \fi:
3952 {#1}
3953 __tl_analysis_show_loop:wNw
3954 }

(End of definition for __tl_analysis_show: and __tl_analysis_show_loop:wNw.)

__tl_analysis_show_normal:n Non-active characters are a simple matter of printing the character, and its meaning.
Our test suite checks that begin-group and end-group characters do not mess up TEX’s
alignment status.

3955 \cs_new:Npn __tl_analysis_show_normal:n #1
3956 {
3957 \exp_after:wN \token_to_str:N #1 ~
3958 (\exp_after:wN \token_to_meaning:N #1)
3959 }

465

(End of definition for __tl_analysis_show_normal:n.)

__tl_analysis_show_value:N This expands to the value of #1 if it has any.
3960 \cs_new:Npn __tl_analysis_show_value:N #1
3961 {
3962 \token_if_expandable:NF #1
3963 {
3964 \token_if_chardef:NTF #1 \prg_break: { }
3965 \token_if_mathchardef:NTF #1 \prg_break: { }
3966 \token_if_dim_register:NTF #1 \prg_break: { }
3967 \token_if_int_register:NTF #1 \prg_break: { }
3968 \token_if_skip_register:NTF #1 \prg_break: { }
3969 \token_if_toks_register:NTF #1 \prg_break: { }
3970 \use_none:nnn
3971 \prg_break_point:
3972 \use:n { \exp_after:wN = \tex_the:D #1 }
3973 }
3974 }

(End of definition for __tl_analysis_show_value:N.)

__tl_analysis_show_cs:n
__tl_analysis_show_active:n
__tl_analysis_show_long:nn

__tl_analysis_show_long_aux:nnnn

Control sequences and active characters are printed in the same way, making sure not
to go beyond the \l_iow_line_count_int. In case of an overflow, we replace the last
characters by \c__tl_analysis_show_etc_str.

3975 \cs_new:Npn __tl_analysis_show_cs:n #1
3976 { \exp_args:No __tl_analysis_show_long:nn {#1} { control~sequence= } }
3977 \cs_new:Npn __tl_analysis_show_active:n #1
3978 { \exp_args:No __tl_analysis_show_long:nn {#1} { active~character= } }
3979 \cs_new:Npn __tl_analysis_show_long:nn #1
3980 {
3981 __tl_analysis_show_long_aux:oofn
3982 { \token_to_str:N #1 }
3983 { \token_to_meaning:N #1 }
3984 { __tl_analysis_show_value:N #1 }
3985 }
3986 \cs_new:Npn __tl_analysis_show_long_aux:nnnn #1#2#3#4
3987 {
3988 \int_compare:nNnTF
3989 { \str_count:n { #1 ~ (#4 #2 #3) } }
3990 > { \l_iow_line_count_int - 3 }
3991 {
3992 \str_range:nnn { #1 ~ (#4 #2 #3) } { 1 }
3993 {
3994 \l_iow_line_count_int - 3
3995 - \str_count:N \c__tl_analysis_show_etc_str
3996 }
3997 \c__tl_analysis_show_etc_str
3998 }
3999 { #1 ~ (#4 #2 #3) }
4000 }
4001 \cs_generate_variant:Nn __tl_analysis_show_long_aux:nnnn { oof }

(End of definition for __tl_analysis_show_cs:n and others.)

466

45.10 Peeking ahead
\peek_analysis_map_break:
\peek_analysis_map_break:n

The break statements use the general \prg_map_break:Nn.
4002 \cs_new:Npn \peek_analysis_map_break:
4003 { \prg_map_break:Nn \peek_analysis_map_break: { } }
4004 \cs_new:Npn \peek_analysis_map_break:n
4005 { \prg_map_break:Nn \peek_analysis_map_break: }

(End of definition for \peek_analysis_map_break: and \peek_analysis_map_break:n. These functions
are documented on page 213.)

\l__tl_peek_charcode_int

4006 \int_new:N \l__tl_peek_charcode_int

(End of definition for \l__tl_peek_charcode_int.)

__tl_analysis_char_arg:Nw
__tl_analysis_char_arg_aux:Nw

After a call to \futurelet \l__tl_analysis_token followed by a stringified character
token (either explicit space or catcode other character), grab the argument and pass it
to #1. We only need to do anything in the case of a space.

4007 \cs_new:Npn __tl_analysis_char_arg:Nw
4008 {
4009 \if_meaning:w \l__tl_analysis_token \c_space_token
4010 \exp_after:wN __tl_analysis_char_arg_aux:Nw
4011 \fi:
4012 }
4013 \cs_new:Npn __tl_analysis_char_arg_aux:Nw #1 ~ { #1 { ~ } }

(End of definition for __tl_analysis_char_arg:Nw and __tl_analysis_char_arg_aux:Nw.)

\peek_analysis_map_inline:n
__tl_peek_analysis_loop:NNn

__tl_peek_analysis_test:
__tl_peek_analysis_exp:N

__tl_peek_analysis_exp_aux:N
__tl_peek_analysis_nonexp:N

__tl_peek_analysis_cs:N
__tl_peek_analysis_char:N
__tl_peek_analysis_char:w

__tl_peek_analysis_special:
__tl_peek_analysis_retest:

__tl_peek_analysis_str:
__tl_peek_analysis_str:w
__tl_peek_analysis_str:n

__tl_peek_analysis_active_str:n
__tl_peek_analysis_explicit:n

__tl_peek_analysis_escape:
__tl_peek_analysis_collect:w
__tl_peek_analysis_collect:n

__tl_peek_analysis_collect_loop:
__tl_peek_analysis_collect_test:

__tl_peek_analysis_collect_end:NNNN

Save the user’s code in a control sequence that is suitable for nested maps. We may wish
to pass to this function an \outer control sequence or active character; for this we will
undefine any expandable token (testing if it is \outer is much slower) within a group,
closed immediately after the function reads its arguments to avoid affecting the user’s
code or even our peek code (there is no risk of undefining \group_end: itself since that
is not expandable). This user’s code function also calls the loop auxiliary, and includes
the trailing \prg_break_point:Nn for when the user wants to stop the loop. The loop
auxiliary must remove that break point because it must look at the input stream.

4014 \cs_new_protected:Npn \peek_analysis_map_inline:n #1
4015 {
4016 \group_align_safe_begin:
4017 \int_gincr:N \g__kernel_prg_map_int
4018 \cs_set_protected:cpn
4019 { __tl_analysis_map_ \int_use:N \g__kernel_prg_map_int :nnN }
4020 ##1##2##3
4021 {
4022 \group_end:
4023 #1
4024 __tl_peek_analysis_loop:NNn
4025 \prg_break_point:Nn \peek_analysis_map_break:
4026 {
4027 \int_gdecr:N \g__kernel_prg_map_int
4028 \group_align_safe_end:
4029 }
4030 }

467

4031 __tl_peek_analysis_loop:NNn ? ? ?
4032 }

The loop starts a group (closed by the user-code function defined above) with a normal-
ized escape character, and checks if the next token is special or N-type (distinguishing
expandable from non-expandable tokens). The test for nonexpandable tokens in __tl_-
peek_analysis_test: must be done after the tests for begin-group, end-group, and space
tokens, in case \l_peek_token is either \outer or is a primitive TEX conditional, as such
tokens cannot be skipped over correctly by conditional code.

4033 \cs_new_protected:Npn __tl_peek_analysis_loop:NNn #1#2#3
4034 {
4035 \group_begin:
4036 \tl_set:Ne \l__tl_peek_code_tl
4037 {
4038 \exp_not:c
4039 { __tl_analysis_map_ \int_use:N \g__kernel_prg_map_int :nnN }
4040 }
4041 \int_set:Nn \tex_escapechar:D { ‘\\ }
4042 \peek_after:Nw __tl_peek_analysis_test:
4043 }
4044 \cs_new_protected:Npn __tl_peek_analysis_test:
4045 {
4046 \if_case:w
4047 \if_catcode:w \exp_not:N \l_peek_token { \c_max_int \fi:
4048 \if_catcode:w \exp_not:N \l_peek_token } \c_max_int \fi:
4049 \if_meaning:w \l_peek_token \c_space_token \c_max_int \fi:
4050 \exp_after:wN \if_meaning:w \exp_not:N \l_peek_token \l_peek_token
4051 \c_one_int
4052 \fi:
4053 \c_zero_int
4054 \exp_after:wN \exp_after:wN
4055 \exp_after:wN __tl_peek_analysis_exp:N
4056 \exp_after:wN \exp_not:N
4057 \or:
4058 \exp_after:wN __tl_peek_analysis_nonexp:N
4059 \else:
4060 \exp_after:wN __tl_peek_analysis_special:
4061 \fi:
4062 }

Expandable tokens (which are automatically N-type) can be \outer macros, hence the
need for \exp_after:wN and \exp_not:N in the code above, which allows the next func-
tion to safely grab the token as an argument. To allow the possibly-\outer token #1
as an argument of the ⟨user’s function⟩ (which is protected and stored in \l__tl_-
peek_code_tl), we set it equal to a harmless macro. This must be done at the very
last minute because #1 may be some pretty important function such as \exp_after:wN.
Using a primitive \cs_set_nopar:Npe expansion (to avoid \outer problems) we set up
to run the code \let #1 ⟨user’s function⟩ ⟨user’s function⟩ followed by arguments
involving #1. Regardless of #1 (including the user’s function itself), the user’s function is
run. It always starts with \group_end:, which has not been redefined since #1 started
out as expandable, and which restores the definition of #1.

Then we put the elaborate first argument __kernel_exp_not:w \exp_after:wN {
\exp_not:N #1 }: indeed we cannot use \exp_not:n {#1} as this breaks for an \outer

468

macro and we cannot use \exp_not:N #1, as o-expanding this yields a “notexpanded”
token equal to (a weird) \relax, which would have the wrong value for primitive TEX
conditionals such as \if_meaning:w.

Then we must add {-1}0 if the token is a control sequence and {⟨charcode⟩}D oth-
erwise. Distinguishing the two cases is easy: since we have made the escape character
printable, \token_to_str:N gives at least two characters for a control sequence versus
a single one for an active character (possibly being a space, in which case the trailing
brace group is taken as the first argument of __tl_peek_analysis_exp_aux:Nw). Im-
portantly, #1 could be an \outer token (as it is only set to \scan_stop: at the last
minute) but once we apply \token_to_str:N we no longer need to worry about it.

4063 \cs_new_protected:Npn __tl_peek_analysis_exp:N #1
4064 {
4065 \cs_set_nopar:Npe \l__tl_peek_code_tl
4066 {
4067 \tex_let:D \exp_not:N #1 \l__tl_peek_code_tl
4068 \l__tl_peek_code_tl
4069 {
4070 \exp_not:n { __kernel_exp_not:w \exp_after:wN }
4071 { \exp_not:N \exp_not:N \exp_not:N #1 }
4072 }
4073 \exp_after:wN __tl_peek_analysis_exp_aux:Nw
4074 \token_to_str:N #1 { } \s__tl
4075 }
4076 \l__tl_peek_code_tl
4077 }
4078 \cs_new:Npe __tl_peek_analysis_exp_aux:Nw #1#2 \s__tl
4079 {
4080 \exp_not:N \if_meaning:w \scan_stop: #2 \scan_stop:
4081 { \exp_not:N \int_value:w ‘#1 ~ } \token_to_str:N D
4082 \exp_not:N \else:
4083 { -1 } 0
4084 \exp_not:N \fi:
4085 }

For normal non-expandable tokens we must distinguish characters (including active ones
and macro parameter characters) from control sequences (whose string representation is
more than one character because we made the escape character printable). For a control
sequence call the user code with suitable arguments, wrapping #1 within \exp_not:n
just in case it happens to be equal to a macro parameter character. We do not skip
\exp_not:n when unnecessary, because this auxiliary is also called in __tl_peek_-
analysis_retest: where we have changed some control sequences or active characters
to \scan_stop: temporarily.

4086 \cs_new_protected:Npn __tl_peek_analysis_nonexp:N #1
4087 {
4088 \if_charcode:w
4089 \scan_stop:
4090 \exp_after:wN \use_none:n \token_to_str:N #1 \prg_do_nothing:
4091 \scan_stop:
4092 \exp_after:wN __tl_peek_analysis_char:N
4093 \else:
4094 \exp_after:wN __tl_peek_analysis_cs:N
4095 \fi:
4096 #1

469

4097 }
4098 \cs_new_protected:Npn __tl_peek_analysis_cs:N #1
4099 { \l__tl_peek_code_tl { \exp_not:n {#1} } { -1 } 0 }

For normal characters we must determine their catcode. The main difficulty is that the
character may be an active character masquerading as (i.e., set equal to) itself with a dif-
ferent catcode. Two approaches based on \lowercase can detect this. One could make an
active character with the same catcode as #1 and change its definition before testing the
catcode of #1, but in some Unicode engine this fills up the hash table uselessly. Instead,
we lowercase #1 itself, changing its character code to 32, namely space (because LuaTEX
cannot turn catcode 10 characters to anything else than character code 32), then we ap-
ply __tl_analysis_b_char:Nn, which detects active characters by comparing them to
\tex_undefined:D, and we must have undefined the active space (locally) for this test
to work. To define __tl_peek_analysis_char:N itself we use an e-expanding assign-
ment to get the active space in the right place after making it (just for this definition)
unexpandable. Finally __tl_peek_analysis_char:w receives the ⟨charcode⟩, ⟨user
function⟩, ⟨catcode⟩, and ⟨token⟩, and places the arguments in the correct order. It
keeps \exp_not:n for macro parameter characters and active characters (the latter could
be macro parameter characters, and it seems more uniform to always put \exp_not:n),
and otherwise eliminates it by expanding once with \exp_args:NNNo.

4100 \group_begin:
4101 \char_set_active_eq:NN \ \scan_stop:
4102 \cs_new_protected:Npe __tl_peek_analysis_char:N #1
4103 {
4104 \cs_set_eq:NN
4105 \char_generate:nn { 32 } { 13 }
4106 \exp_not:N \tex_undefined:D
4107 \tex_lccode:D ‘#1 = 32 \exp_stop_f:
4108 \tex_lowercase:D
4109 {
4110 \tl_put_right:Ne \exp_not:N \l__tl_peek_code_tl
4111 { \exp_not:n { __tl_analysis_b_char:Nn \use_none:n } {#1} }
4112 }
4113 \exp_not:n
4114 {
4115 \exp_after:wN __tl_peek_analysis_char:w
4116 \int_value:w
4117 }
4118 ‘#1
4119 \exp_not:n { \exp_after:wN \s__tl \l__tl_peek_code_tl }
4120 #1
4121 }
4122 \group_end:
4123 \cs_new_protected:Npn __tl_peek_analysis_char:w #1 \s__tl #2#3#4
4124 {
4125 \if_charcode:w 6 #3
4126 \else:
4127 \if_charcode:w D #3
4128 \else:
4129 \exp_args:NNNo
4130 \fi:
4131 \fi:
4132 #2 { \exp_not:n {#4} } {#1} #3

470

4133 }

For special characters the idea is to eventually act with \token_to_str:N, then pick
up one by one the characters of this string representation until hitting the token that
follows. First determine the character code of (the meaning of) the ⟨token⟩ (which we
know is a special token), make sure the escape character is different from it, normalize
the meanings of two active characters and the empty control sequence, and filter out
these cases in __tl_peek_analysis_retest:.

4134 \cs_new_protected:Npn __tl_peek_analysis_special:
4135 {
4136 \tex_let:D \l__tl_analysis_token = ~ \l_peek_token
4137 \int_set:Nn \l__tl_peek_charcode_int
4138 { __tl_analysis_extract_charcode: }
4139 \if_int_compare:w \l__tl_peek_charcode_int = \tex_escapechar:D
4140 \int_set:Nn \tex_escapechar:D { ‘\/ }
4141 \fi:
4142 \char_set_active_eq:nN { \l__tl_peek_charcode_int } \scan_stop:
4143 \char_set_active_eq:nN { \tex_escapechar:D } \scan_stop:
4144 \cs_set_eq:cN { } \scan_stop:
4145 \tex_futurelet:D \l__tl_analysis_token
4146 __tl_peek_analysis_retest:
4147 }
4148 \cs_new_protected:Npn __tl_peek_analysis_retest:
4149 {
4150 \if_meaning:w \l__tl_analysis_token \scan_stop:
4151 \exp_after:wN __tl_peek_analysis_nonexp:N
4152 \else:
4153 \exp_after:wN __tl_peek_analysis_str:
4154 \fi:
4155 }

At this point we know the meaning of the ⟨token⟩ in the input stream is \l_peek_-
token, either a space (32, 10) or a begin-group or end-group token (catcode 1 or 2),
and we excluded a few cases that would be difficult later (empty control sequence, active
character with the same character code as its meaning or as the escape character). The
idea is to apply \token_to_str:N to the ⟨token⟩ then grab characters (of category
code 12 except for spaces that have category code 10) to reconstruct it. In earlier versions
of the code we would peek at the ⟨next token⟩ that lies after ⟨token⟩ in the input stream,
which would help us be more accurate in reconstructing the ⟨token⟩ case in edge cases
(mentioned below), but this had the side-effect of tokenizing the input stream (turning
characters into tokens) farther ahead than needed.

We hit the ⟨token⟩ with \token_to_str:N and start grabbing characters. More
precisely, by looking at the first character in the string representation of the ⟨token⟩ we
distinguish three cases: a stringified control sequence starts with the escape character; for
an explicit character we find that same character; for an active character we find anything
else (we made sure to exclude the case of an active character whose string representation
coincides with the other two cases).

4156 \cs_new_protected:Npn __tl_peek_analysis_str:
4157 {
4158 \exp_after:wN \tex_futurelet:D
4159 \exp_after:wN \l__tl_analysis_token
4160 \exp_after:wN __tl_peek_analysis_str:w
4161 \token_to_str:N

471

4162 }
4163 \cs_new_protected:Npn __tl_peek_analysis_str:w
4164 { __tl_analysis_char_arg:Nw __tl_peek_analysis_str:n }
4165 \cs_new_protected:Npn __tl_peek_analysis_str:n #1
4166 {
4167 \int_case:nnF { ‘#1 }
4168 {
4169 { \l__tl_peek_charcode_int }
4170 { __tl_peek_analysis_explicit:n {#1} }
4171 { \tex_escapechar:D } { __tl_peek_analysis_escape: }
4172 }
4173 { __tl_peek_analysis_active_str:n {#1} }
4174 }

When #1 is a stringified active character we pass appropriate arguments to the user’s
code; thankfully \char_generate:nn can make active characters.

4175 \cs_new_protected:Npn __tl_peek_analysis_active_str:n #1
4176 {
4177 \tl_put_right:Ne \l__tl_peek_code_tl
4178 {
4179 { \char_generate:nn { ‘#1 } { 13 } }
4180 { \int_value:w ‘#1 }
4181 \token_to_str:N D
4182 }
4183 \l__tl_peek_code_tl
4184 }

When #1 matches the character we had extracted from the meaning of \l_peek_token,
the token was an explicit character, which can be a standard space, or a begin-group or
end-group character with some character code. In the latter two cases we call \char_-
generate:nn with suitable arguments and put suitable \if_false: \fi: constructions
to make the result balanced and such that o-expanding or e/x-expanding gives back a
single (unbalanced) begin-group or end-group character.

4185 \cs_new_protected:Npn __tl_peek_analysis_explicit:n #1
4186 {
4187 \tl_put_right:Ne \l__tl_peek_code_tl
4188 {
4189 \if_meaning:w \l_peek_token \c_space_token
4190 { ~ } { 32 } \token_to_str:N A
4191 \else:
4192 \if_catcode:w \l_peek_token \c_group_begin_token
4193 {
4194 \exp_not:N \exp_after:wN
4195 \char_generate:nn { ‘#1 } { 1 }
4196 \exp_not:N \if_false:
4197 \if_false: { \fi: }
4198 \exp_not:N \fi:
4199 }
4200 { \int_value:w ‘#1 }
4201 1
4202 \else:
4203 {
4204 \exp_not:N \if_false:
4205 { \if_false: } \fi:

472

4206 \exp_not:N \fi:
4207 \char_generate:nn { ‘#1 } { 2 }
4208 }
4209 { \int_value:w ‘#1 }
4210 2
4211 \fi:
4212 \fi:
4213 }
4214 \l__tl_peek_code_tl
4215 }

Finally there is the case of a special token whose string representation starts with an
escape character, namely the token was a control sequence. In that case we could have
grabbed the token directly as an N-type argument, but of course we couldn’t know that
until we had run all the various tests including stringifying the token. We are thus left
with the hard work of picking up one by one the characters in the csname (being careful
about spaces), until the constructed csname has the expected meaning. This fails if
someone defines a token like \bgroup@my whose string representation starts the same as
another token with the same meaning being an implicit character token of category code
1, 2, or 10.

4216 \cs_new_protected:Npn __tl_peek_analysis_escape:
4217 {
4218 \tl_clear:N \l__tl_internal_a_tl
4219 \tex_futurelet:D \l__tl_analysis_token
4220 __tl_peek_analysis_collect:w
4221 }
4222 \cs_new_protected:Npn __tl_peek_analysis_collect:w
4223 { __tl_analysis_char_arg:Nw __tl_peek_analysis_collect:n }
4224 \cs_new_protected:Npn __tl_peek_analysis_collect:n #1
4225 {
4226 \tl_put_right:Nn \l__tl_internal_a_tl {#1}
4227 __tl_peek_analysis_collect_loop:
4228 }
4229 \cs_new_protected:Npn __tl_peek_analysis_collect_loop:
4230 {
4231 \exp_after:wN \if_meaning:w
4232 \cs:w
4233 \if_cs_exist:w \l__tl_internal_a_tl \cs_end:
4234 \l__tl_internal_a_tl
4235 \else:
4236 c_one % anything short
4237 \fi:
4238 \cs_end:
4239 \l_peek_token
4240 __tl_peek_analysis_collect_end:NNNN
4241 \fi:
4242 \tex_futurelet:D \l__tl_analysis_token
4243 __tl_peek_analysis_collect:w
4244 }

As in all other cases, end by calling the user code with suitable arguments (here #1 is
\fi:).

4245 \cs_new_protected:Npn __tl_peek_analysis_collect_end:NNNN #1#2#3#4
4246 {

473

4247 #1
4248 \tl_put_right:Ne \l__tl_peek_code_tl
4249 {
4250 { \exp_not:N \exp_not:n { \exp_not:c { \l__tl_internal_a_tl } } }
4251 { -1 }
4252 0
4253 }
4254 \l__tl_peek_code_tl
4255 }

(End of definition for \peek_analysis_map_inline:n and others. This function is documented on page
213.)

45.11 Messages
\c__tl_analysis_show_etc_str When a control sequence (or active character) and its meaning are too long to fit in one

line of the terminal, the end is replaced by this token list.
4256 \tl_const:Ne \c__tl_analysis_show_etc_str % (
4257 { \token_to_str:N \ETC.) }

(End of definition for \c__tl_analysis_show_etc_str.)

4258 \msg_new:nnn { tl } { show-analysis }
4259 {
4260 The~token~list~ \tl_if_empty:nF {#1} { #1 ~ }
4261 \tl_if_empty:nTF {#2}
4262 { is~empty }
4263 { contains~the~tokens: #2 }
4264 }

4265 ⟨/package⟩

474

Chapter 46

l3regex implementation

4266 ⟨∗package⟩
4267 ⟨@@=regex⟩

46.1 Plan of attack
Most regex engines use backtracking. This allows to provide very powerful features (back-
references come to mind first), but it is costly, and raises the problem of catastrophic
backtracking. Since TEX is not first and foremost a programming language, compli-
cated code tends to run slowly, and we must use faster, albeit slightly more restrictive,
techniques, coming from automata theory.

Given a regular expression of n characters, we do the following:

• (Compiling.) Analyse the regex, finding invalid input, and convert it to an internal
representation.

• (Building.) Convert the compiled regex to a non-deterministic finite automaton
(nfa) with O(n) states which accepts precisely token lists matching that regex.

• (Matching.) Loop through the query token list one token (one “position”) at a
time, exploring in parallel every possible path (“active thread”) through the nfa,
considering active threads in an order determined by the quantifiers’ greediness.

We use the following vocabulary in the code comments (and in variable names).

• Group: index of the capturing group, −1 for non-capturing groups.

• Position: each token in the query is labelled by an integer ⟨position⟩, with
min_pos − 1 ≤ ⟨position⟩ ≤ max_pos. The lowest and highest positions
min_pos − 1 and max_pos correspond to imaginary begin and end markers (with
non-existent category code and character code). max_pos is only set quite late in
the processing.

• Query: the token list to which we apply the regular expression.

• State: each state of the nfa is labelled by an integer ⟨state⟩ with min_state ≤
⟨state⟩ < max_state.

• Active thread: state of the nfa that is reached when reading the query token list for
the matching. Those threads are ordered according to the greediness of quantifiers.

475

• Step: used when matching, starts at 0, incremented every time a character is read,
and is not reset when searching for repeated matches. The integer \l__regex_-
step_int is a unique id for all the steps of the matching algorithm.

We use l3intarray to manipulate arrays of integers. We also abuse TEX’s \toks reg-
isters, by accessing them directly by number rather than tying them to control sequence
using the \newtoks allocation functions. Specifically, these arrays and \toks are used
as follows. When building, \toks⟨state⟩ holds the tests and actions to perform in the
⟨state⟩ of the nfa. When matching,

• \g__regex_state_active_intarray holds the last ⟨step⟩ in which each ⟨state⟩
was active.

• \g__regex_thread_info_intarray consists of blocks for each ⟨thread⟩ (with
min_thread ≤ ⟨thread⟩ < max_thread). Each block has 1+2\l__regex_capturing_group_int
entries: the ⟨state⟩ in which the ⟨thread⟩ currently is, followed by the beginnings
of all submatches, and then the ends of all submatches. The ⟨threads⟩ are ordered
starting from the best to the least preferred.

• \g__regex_submatch_prev_intarray, \g__regex_submatch_begin_intarray and
\g__regex_submatch_end_intarray hold, for each submatch (as would be ex-
tracted by \regex_extract_all:nnN), the place where the submatch started to
be looked for and its two end-points. For historical reasons, the minimum index is
twice max_state, and the used registers go up to \l__regex_submatch_int. They
are organized in blocks of \l__regex_capturing_group_int entries, each block
corresponding to one match with all its submatches stored in consecutive entries.

When actually building the result,

• \toks⟨position⟩ holds ⟨tokens⟩ which o- and e-expand to the ⟨position⟩-th
token in the query.

• \g__regex_balance_intarray holds the balance of begin-group and end-group
character tokens which appear before that point in the token list.

The code is structured as follows. Variables are introduced in the relevant section.
First we present some generic helper functions. Then comes the code for compiling a
regular expression, and for showing the result of the compilation. The building phase
converts a compiled regex to nfa states, and the automaton is run by the code in the fol-
lowing section. The only remaining brick is parsing the replacement text and performing
the replacement. We are then ready for all the user functions. Finally, messages, and a
little bit of tracing code.

46.2 Helpers
__regex_int_eval:w Access the primitive: performance is key here, so we do not use the slower route via

\int_eval:n.
4268 \cs_new_eq:NN __regex_int_eval:w \tex_numexpr:D

(End of definition for __regex_int_eval:w.)

__regex_standard_escapechar: Make the \escapechar into the standard backslash.
4269 \cs_new_protected:Npn __regex_standard_escapechar:
4270 { \int_set:Nn \tex_escapechar:D { ‘\\ } }

476

(End of definition for __regex_standard_escapechar:.)

__regex_toks_use:w Unpack a \toks given its number.
4271 \cs_new:Npn __regex_toks_use:w { \tex_the:D \tex_toks:D }

(End of definition for __regex_toks_use:w.)

__regex_toks_clear:N
__regex_toks_set:Nn
__regex_toks_set:No

Empty a \toks or set it to a value, given its number.
4272 \cs_new_protected:Npn __regex_toks_clear:N #1
4273 { \tex_toks:D #1 = { } }
4274 \cs_new_eq:NN __regex_toks_set:Nn \tex_toks:D
4275 \cs_new_protected:Npn __regex_toks_set:No #1
4276 { \tex_toks:D #1 = \exp_after:wN }

(End of definition for __regex_toks_clear:N and __regex_toks_set:Nn.)

__regex_toks_memcpy:NNn Copy #3 \toks registers from #2 onwards to #1 onwards, like C’s memcpy.
4277 \cs_new_protected:Npn __regex_toks_memcpy:NNn #1#2#3
4278 {
4279 \prg_replicate:nn {#3}
4280 {
4281 \tex_toks:D #1 = \tex_toks:D #2
4282 \int_incr:N #1
4283 \int_incr:N #2
4284 }
4285 }

(End of definition for __regex_toks_memcpy:NNn.)

__regex_toks_put_left:Ne
__regex_toks_put_right:Ne
__regex_toks_put_right:Nn

During the building phase we wish to add e-expanded material to \toks, either to the left
or to the right. The expansion is done “by hand” for optimization (these operations are
used quite a lot). The Nn version of __regex_toks_put_right:Ne is provided because
it is more efficient than e-expanding with \exp_not:n.

4286 \cs_if_exist:NTF \tex_etokspre:D
4287 { \cs_new_eq:NN __regex_toks_put_left:Ne \tex_etokspre:D }
4288 {
4289 \cs_new_protected:Npn __regex_toks_put_left:Ne #1#2
4290 { \tex_toks:D #1 = \tex_expanded:D {{ #2 \tex_the:D \tex_toks:D #1 }} }
4291 }
4292 \cs_if_exist:NTF \tex_etoksapp:D
4293 { \cs_new_eq:NN __regex_toks_put_right:Ne \tex_etoksapp:D }
4294 {
4295 \cs_new_protected:Npn __regex_toks_put_right:Ne #1#2
4296 { \tex_toks:D #1 = \tex_expanded:D {{ \tex_the:D \tex_toks:D #1 #2 }} }
4297 }
4298 \cs_if_exist:NTF \tex_toksapp:D
4299 { \cs_new_eq:NN __regex_toks_put_right:Nn \tex_toksapp:D }
4300 {
4301 \cs_new_protected:Npn __regex_toks_put_right:Nn #1#2
4302 { \tex_toks:D #1 = \exp_after:wN { \tex_the:D \tex_toks:D #1 #2 } }
4303 }

(End of definition for __regex_toks_put_left:Ne and __regex_toks_put_right:Ne.)

477

__regex_curr_cs_to_str: Expands to the string representation of the token (known to be a control sequence) at
the current position \l__regex_curr_pos_int. It should only be used in e/x-expansion
to avoid losing a leading space.

4304 \cs_new:Npn __regex_curr_cs_to_str:
4305 {
4306 \exp_after:wN \exp_after:wN \exp_after:wN \cs_to_str:N
4307 \l__regex_curr_token_tl
4308 }

(End of definition for __regex_curr_cs_to_str:.)

__regex_intarray_item:NnF
__regex_intarray_item_aux:nNF

Item of intarray, with a default value.
4309 \cs_new:Npn __regex_intarray_item:NnF #1#2
4310 { \exp_args:No __regex_intarray_item_aux:nNF { \tex_the:D __regex_int_eval:w #2 } #1 }
4311 \cs_new:Npn __regex_intarray_item_aux:nNF #1#2
4312 {
4313 \if_int_compare:w #1 > \c_zero_int
4314 \exp_after:wN \use_ii:nnn
4315 \fi:
4316 \use_ii:nn { __kernel_intarray_item:Nn #2 {#1} }
4317 }

(End of definition for __regex_intarray_item:NnF and __regex_intarray_item_aux:nNF.)

__regex_maplike_break: Analogous to \tl_map_break:, this correctly exits \tl_map_inline:nn and similar con-
structions and jumps to the matching \prg_break_point:Nn __regex_maplike_break:
{ }.

4318 \cs_new:Npn __regex_maplike_break:
4319 { \prg_map_break:Nn __regex_maplike_break: { } }

(End of definition for __regex_maplike_break:.)

__regex_tl_odd_items:n
__regex_tl_even_items:n

__regex_tl_even_items_loop:nn

Map through a token list one pair at a time, leaving the odd-numbered or even-numbered
items (the first item is numbered 1).

4320 \cs_new:Npn __regex_tl_odd_items:n #1 { __regex_tl_even_items:n { ? #1 } }
4321 \cs_new:Npn __regex_tl_even_items:n #1
4322 {
4323 __regex_tl_even_items_loop:nn #1 \q__regex_nil \q__regex_nil
4324 \prg_break_point:
4325 }
4326 \cs_new:Npn __regex_tl_even_items_loop:nn #1#2
4327 {
4328 __regex_use_none_delimit_by_q_nil:w #2 \prg_break: \q__regex_nil
4329 { \exp_not:n {#2} }
4330 __regex_tl_even_items_loop:nn
4331 }

(End of definition for __regex_tl_odd_items:n , __regex_tl_even_items:n , and __regex_tl_even_-
items_loop:nn.)

478

46.2.1 Constants and variables
__regex_tmp:w Temporary function used for various short-term purposes.

4332 \cs_new:Npn __regex_tmp:w { }

(End of definition for __regex_tmp:w.)

\l__regex_internal_a_tl
\l__regex_internal_b_tl

\l__regex_internal_a_int
\l__regex_internal_b_int
\l__regex_internal_c_int
\l__regex_internal_bool
\l__regex_internal_seq
\g__regex_internal_tl

Temporary variables used for various purposes.
4333 \tl_new:N \l__regex_internal_a_tl
4334 \tl_new:N \l__regex_internal_b_tl
4335 \int_new:N \l__regex_internal_a_int
4336 \int_new:N \l__regex_internal_b_int
4337 \int_new:N \l__regex_internal_c_int
4338 \bool_new:N \l__regex_internal_bool
4339 \seq_new:N \l__regex_internal_seq
4340 \tl_new:N \g__regex_internal_tl

(End of definition for \l__regex_internal_a_tl and others.)

\l__regex_build_tl This temporary variable is specifically for use with the tl_build machinery.
4341 \tl_new:N \l__regex_build_tl

(End of definition for \l__regex_build_tl.)

\c__regex_no_match_regex This regular expression matches nothing, but is still a valid regular expression. We could
use a failing assertion, but I went for an empty class. It is used as the initial value for
regular expressions declared using \regex_new:N.

4342 \tl_const:Nn \c__regex_no_match_regex
4343 {
4344 __regex_branch:n
4345 { __regex_class:NnnnN \c_true_bool { } { 1 } { 0 } \c_true_bool }
4346 }

(End of definition for \c__regex_no_match_regex.)

\l__regex_balance_int During this phase, \l__regex_balance_int counts the balance of begin-group and end-
group character tokens which appear before a given point in the token list. This variable
is also used to keep track of the balance in the replacement text.

4347 \int_new:N \l__regex_balance_int

(End of definition for \l__regex_balance_int.)

46.2.2 Testing characters
\c__regex_ascii_min_int

\c__regex_ascii_max_control_int
\c__regex_ascii_max_int

4348 \int_const:Nn \c__regex_ascii_min_int { 0 }
4349 \int_const:Nn \c__regex_ascii_max_control_int { 31 }
4350 \int_const:Nn \c__regex_ascii_max_int { 127 }

(End of definition for \c__regex_ascii_min_int , \c__regex_ascii_max_control_int , and \c__regex_-
ascii_max_int.)

\c__regex_ascii_lower_int

4351 \int_const:Nn \c__regex_ascii_lower_int { ‘a - ‘A }

(End of definition for \c__regex_ascii_lower_int.)

479

46.2.3 Internal auxiliaries
\q__regex_recursion_stop Internal recursion quarks.

4352 \quark_new:N \q__regex_recursion_stop

(End of definition for \q__regex_recursion_stop.)

\q__regex_nil Internal quarks.
4353 \quark_new:N \q__regex_nil

(End of definition for \q__regex_nil.)

__regex_use_none_delimit_by_q_recursion_stop:w
__regex_use_i_delimit_by_q_recursion_stop:nw

__regex_use_none_delimit_by_q_nil:w

Functions to gobble up to a quark.
4354 \cs_new:Npn __regex_use_none_delimit_by_q_recursion_stop:w
4355 #1 \q__regex_recursion_stop { }
4356 \cs_new:Npn __regex_use_i_delimit_by_q_recursion_stop:nw
4357 #1 #2 \q__regex_recursion_stop {#1}
4358 \cs_new:Npn __regex_use_none_delimit_by_q_nil:w #1 \q__regex_nil { }

(End of definition for __regex_use_none_delimit_by_q_recursion_stop:w , __regex_use_i_delimit_-
by_q_recursion_stop:nw , and __regex_use_none_delimit_by_q_nil:w.)

__regex_quark_if_nil_p:n
__regex_quark_if_nil:nTF

Branching quark conditional.
4359 __kernel_quark_new_conditional:Nn __regex_quark_if_nil:N { F }

(End of definition for __regex_quark_if_nil:nTF.)

__regex_break_point:TF
__regex_break_true:w

When testing whether a character of the query token list matches a given character class
in the regular expression, we often have to test it against several ranges of characters,
checking if any one of those matches. This is done with a structure like

⟨test1⟩ . . . ⟨testn⟩
__regex_break_point:TF {⟨true code⟩} {⟨false code⟩}

If any of the tests succeeds, it calls __regex_break_true:w, which cleans up and leaves
⟨true code⟩ in the input stream. Otherwise, __regex_break_point:TF leaves the
⟨false code⟩ in the input stream.

4360 \cs_new_protected:Npn __regex_break_true:w
4361 #1 __regex_break_point:TF #2 #3 {#2}
4362 \cs_new_protected:Npn __regex_break_point:TF #1 #2 { #2 }

(End of definition for __regex_break_point:TF and __regex_break_true:w.)

__regex_item_reverse:n This function makes showing regular expressions easier, and lets us define \D in terms
of \d for instance. There is a subtlety: the end of the query is marked by −2, and thus
matches \D and other negated properties; this case is caught by another part of the code.

4363 \cs_new_protected:Npn __regex_item_reverse:n #1
4364 {
4365 #1
4366 __regex_break_point:TF { } __regex_break_true:w
4367 }

(End of definition for __regex_item_reverse:n.)

480

__regex_item_caseful_equal:n
__regex_item_caseful_range:nn

Simple comparisons triggering __regex_break_true:w when true.
4368 \cs_new_protected:Npn __regex_item_caseful_equal:n #1
4369 {
4370 \if_int_compare:w #1 = \l__regex_curr_char_int
4371 \exp_after:wN __regex_break_true:w
4372 \fi:
4373 }
4374 \cs_new_protected:Npn __regex_item_caseful_range:nn #1 #2
4375 {
4376 \reverse_if:N \if_int_compare:w #1 > \l__regex_curr_char_int
4377 \reverse_if:N \if_int_compare:w #2 < \l__regex_curr_char_int
4378 \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
4379 \fi:
4380 \fi:
4381 }

(End of definition for __regex_item_caseful_equal:n and __regex_item_caseful_range:nn.)

__regex_item_caseless_equal:n
__regex_item_caseless_range:nn

For caseless matching, we perform the test both on the curr_char and on the case_-
changed_char. Before doing the second set of tests, we make sure that case_changed_-
char has been computed.

4382 \cs_new_protected:Npn __regex_item_caseless_equal:n #1
4383 {
4384 \if_int_compare:w #1 = \l__regex_curr_char_int
4385 \exp_after:wN __regex_break_true:w
4386 \fi:
4387 __regex_maybe_compute_ccc:
4388 \if_int_compare:w #1 = \l__regex_case_changed_char_int
4389 \exp_after:wN __regex_break_true:w
4390 \fi:
4391 }
4392 \cs_new_protected:Npn __regex_item_caseless_range:nn #1 #2
4393 {
4394 \reverse_if:N \if_int_compare:w #1 > \l__regex_curr_char_int
4395 \reverse_if:N \if_int_compare:w #2 < \l__regex_curr_char_int
4396 \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
4397 \fi:
4398 \fi:
4399 __regex_maybe_compute_ccc:
4400 \reverse_if:N \if_int_compare:w #1 > \l__regex_case_changed_char_int
4401 \reverse_if:N \if_int_compare:w #2 < \l__regex_case_changed_char_int
4402 \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
4403 \fi:
4404 \fi:
4405 }

(End of definition for __regex_item_caseless_equal:n and __regex_item_caseless_range:nn.)

__regex_compute_case_changed_char: This function is called when \l__regex_case_changed_char_int has not yet been com-
puted. If the current character code is in the range [65, 90] (upper-case), then add 32,
making it lowercase. If it is in the lower-case letter range [97, 122], subtract 32.

4406 \cs_new_protected:Npn __regex_compute_case_changed_char:
4407 {
4408 \int_set_eq:NN \l__regex_case_changed_char_int \l__regex_curr_char_int

481

4409 \if_int_compare:w \l__regex_curr_char_int > ‘Z \exp_stop_f:
4410 \if_int_compare:w \l__regex_curr_char_int > ‘z \exp_stop_f: \else:
4411 \if_int_compare:w \l__regex_curr_char_int < ‘a \exp_stop_f: \else:
4412 \int_sub:Nn \l__regex_case_changed_char_int \c__regex_ascii_lower_int
4413 \fi:
4414 \fi:
4415 \else:
4416 \if_int_compare:w \l__regex_curr_char_int < ‘A \exp_stop_f: \else:
4417 \int_add:Nn \l__regex_case_changed_char_int \c__regex_ascii_lower_int
4418 \fi:
4419 \fi:
4420 \cs_set_eq:NN __regex_maybe_compute_ccc: \prg_do_nothing:
4421 }
4422 \cs_new_eq:NN __regex_maybe_compute_ccc: __regex_compute_case_changed_char:

(End of definition for __regex_compute_case_changed_char:.)

__regex_item_equal:n
__regex_item_range:nn

Those must always be defined to expand to a caseful (default) or caseless version,
and not be protected: they must expand when compiling, to hard-code which tests are
caseless or caseful.

4423 \cs_new_eq:NN __regex_item_equal:n ?
4424 \cs_new_eq:NN __regex_item_range:nn ?

(End of definition for __regex_item_equal:n and __regex_item_range:nn.)

__regex_item_catcode:nT
__regex_item_catcode_reverse:nT
__regex_item_catcode:

The argument is a sum of powers of 4 with exponents given by the allowed category codes
(between 0 and 13). Dividing by a given power of 4 gives an odd result if and only if that
category code is allowed. If the catcode does not match, then skip the character code
tests which follow.

4425 \cs_new_protected:Npn __regex_item_catcode:
4426 {
4427 "
4428 \if_case:w \l__regex_curr_catcode_int
4429 1 \or: 4 \or: 10 \or: 40
4430 \or: 100 \or: \or: 1000 \or: 4000
4431 \or: 10000 \or: \or: 100000 \or: 400000
4432 \or: 1000000 \or: 4000000 \else: 1*0
4433 \fi:
4434 }
4435 \prg_new_protected_conditional:Npnn __regex_item_catcode:n #1 { T }
4436 {
4437 \if_int_odd:w __regex_int_eval:w #1 / __regex_item_catcode: \scan_stop:
4438 \prg_return_true:
4439 \else:
4440 \prg_return_false:
4441 \fi:
4442 }
4443 \cs_new_protected:Npn __regex_item_catcode_reverse:nT #1#2
4444 { __regex_item_catcode:nT {#1} { __regex_item_reverse:n {#2} } }

(End of definition for __regex_item_catcode:nT , __regex_item_catcode_reverse:nT , and __-
regex_item_catcode:.)

482

__regex_item_exact:nn
__regex_item_exact_cs:n

This matches an exact ⟨category⟩-⟨character code⟩ pair, or an exact control sequence,
more precisely one of several possible control sequences, separated by \scan_stop:.

4445 \cs_new_protected:Npn __regex_item_exact:nn #1#2
4446 {
4447 \if_int_compare:w #1 = \l__regex_curr_catcode_int
4448 \if_int_compare:w #2 = \l__regex_curr_char_int
4449 \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
4450 \fi:
4451 \fi:
4452 }
4453 \cs_new_protected:Npn __regex_item_exact_cs:n #1
4454 {
4455 \int_compare:nNnTF \l__regex_curr_catcode_int = \c_zero_int
4456 {
4457 __kernel_tl_set:Nx \l__regex_internal_a_tl
4458 { \scan_stop: __regex_curr_cs_to_str: \scan_stop: }
4459 \tl_if_in:noTF { \scan_stop: #1 \scan_stop: }
4460 \l__regex_internal_a_tl
4461 { __regex_break_true:w } { }
4462 }
4463 { }
4464 }

(End of definition for __regex_item_exact:nn and __regex_item_exact_cs:n.)

__regex_item_cs:n Match a control sequence (the argument is a compiled regex). First test the catcode of
the current token to be zero. Then perform the matching test, and break if the csname
indeed matches.

4465 \cs_new_protected:Npn __regex_item_cs:n #1
4466 {
4467 \int_compare:nNnT \l__regex_curr_catcode_int = \c_zero_int
4468 {
4469 \group_begin:
4470 __regex_single_match:
4471 __regex_disable_submatches:
4472 __regex_build_for_cs:n {#1}
4473 \bool_set_eq:NN \l__regex_saved_success_bool
4474 \g__regex_success_bool
4475 \exp_args:Ne __regex_match_cs:n { __regex_curr_cs_to_str: }
4476 \if_meaning:w \c_true_bool \g__regex_success_bool
4477 \group_insert_after:N __regex_break_true:w
4478 \fi:
4479 \bool_gset_eq:NN \g__regex_success_bool
4480 \l__regex_saved_success_bool
4481 \group_end:
4482 }
4483 }

(End of definition for __regex_item_cs:n.)

46.2.4 Character property tests
__regex_prop_d:
__regex_prop_h:
__regex_prop_s:
__regex_prop_v:
__regex_prop_w:
__regex_prop_N:

Character property tests for \d, \W, etc. These character properties are not affected
by the (?i) option. The characters recognized by each one are as follows: \d=[0-9],

483

\w=[0-9A-Z_a-z], \s=[\␣\^^I\^^J\^^L\^^M], \h=[\␣\^^I], \v=[\^^J-\^^M], and the
upper case counterparts match anything that the lower case does not match. The order
in which the various tests appear is optimized for usual mostly lower case letter text.

4484 \cs_new_protected:Npn __regex_prop_d:
4485 { __regex_item_caseful_range:nn { ‘0 } { ‘9 } }
4486 \cs_new_protected:Npn __regex_prop_h:
4487 {
4488 __regex_item_caseful_equal:n { ‘\ }
4489 __regex_item_caseful_equal:n { ‘\^^I }
4490 }
4491 \cs_new_protected:Npn __regex_prop_s:
4492 {
4493 __regex_item_caseful_equal:n { ‘\ }
4494 __regex_item_caseful_equal:n { ‘\^^I }
4495 __regex_item_caseful_equal:n { ‘\^^J }
4496 __regex_item_caseful_equal:n { ‘\^^L }
4497 __regex_item_caseful_equal:n { ‘\^^M }
4498 }
4499 \cs_new_protected:Npn __regex_prop_v:
4500 { __regex_item_caseful_range:nn { ‘\^^J } { ‘\^^M } } % lf, vtab, ff, cr
4501 \cs_new_protected:Npn __regex_prop_w:
4502 {
4503 __regex_item_caseful_range:nn { ‘a } { ‘z }
4504 __regex_item_caseful_range:nn { ‘A } { ‘Z }
4505 __regex_item_caseful_range:nn { ‘0 } { ‘9 }
4506 __regex_item_caseful_equal:n { ‘_ }
4507 }
4508 \cs_new_protected:Npn __regex_prop_N:
4509 {
4510 __regex_item_reverse:n
4511 { __regex_item_caseful_equal:n { ‘\^^J } }
4512 }

(End of definition for __regex_prop_d: and others.)

__regex_posix_alnum:
__regex_posix_alpha:
__regex_posix_ascii:
__regex_posix_blank:
__regex_posix_cntrl:
__regex_posix_digit:
__regex_posix_graph:
__regex_posix_lower:
__regex_posix_print:
__regex_posix_punct:
__regex_posix_space:
__regex_posix_upper:
__regex_posix_word:

__regex_posix_xdigit:

posix properties. No surprise.
4513 \cs_new_protected:Npn __regex_posix_alnum:
4514 { __regex_posix_alpha: __regex_posix_digit: }
4515 \cs_new_protected:Npn __regex_posix_alpha:
4516 { __regex_posix_lower: __regex_posix_upper: }
4517 \cs_new_protected:Npn __regex_posix_ascii:
4518 {
4519 __regex_item_caseful_range:nn
4520 \c__regex_ascii_min_int
4521 \c__regex_ascii_max_int
4522 }
4523 \cs_new_eq:NN __regex_posix_blank: __regex_prop_h:
4524 \cs_new_protected:Npn __regex_posix_cntrl:
4525 {
4526 __regex_item_caseful_range:nn
4527 \c__regex_ascii_min_int
4528 \c__regex_ascii_max_control_int
4529 __regex_item_caseful_equal:n \c__regex_ascii_max_int
4530 }

484

4531 \cs_new_eq:NN __regex_posix_digit: __regex_prop_d:
4532 \cs_new_protected:Npn __regex_posix_graph:
4533 { __regex_item_caseful_range:nn { ‘! } { ‘\~ } }
4534 \cs_new_protected:Npn __regex_posix_lower:
4535 { __regex_item_caseful_range:nn { ‘a } { ‘z } }
4536 \cs_new_protected:Npn __regex_posix_print:
4537 { __regex_item_caseful_range:nn { ‘\ } { ‘\~ } }
4538 \cs_new_protected:Npn __regex_posix_punct:
4539 {
4540 __regex_item_caseful_range:nn { ‘! } { ‘/ }
4541 __regex_item_caseful_range:nn { ‘: } { ‘@ }
4542 __regex_item_caseful_range:nn { ‘[} { ‘‘ }
4543 __regex_item_caseful_range:nn { ‘\{ } { ‘\~ }
4544 }
4545 \cs_new_protected:Npn __regex_posix_space:
4546 {
4547 __regex_item_caseful_equal:n { ‘\ }
4548 __regex_item_caseful_range:nn { ‘\^^I } { ‘\^^M }
4549 }
4550 \cs_new_protected:Npn __regex_posix_upper:
4551 { __regex_item_caseful_range:nn { ‘A } { ‘Z } }
4552 \cs_new_eq:NN __regex_posix_word: __regex_prop_w:
4553 \cs_new_protected:Npn __regex_posix_xdigit:
4554 {
4555 __regex_posix_digit:
4556 __regex_item_caseful_range:nn { ‘A } { ‘F }
4557 __regex_item_caseful_range:nn { ‘a } { ‘f }
4558 }

(End of definition for __regex_posix_alnum: and others.)

46.2.5 Simple character escape
Before actually parsing the regular expression or the replacement text, we go through
them once, converting \n to the character 10, etc. In this pass, we also convert any special
character (*, ?, {, etc.) or escaped alphanumeric character into a marker indicating that
this was a special sequence, and replace escaped special characters and non-escaped
alphanumeric characters by markers indicating that those were “raw” characters. The
rest of the code can then avoid caring about escaping issues (those can become quite
complex to handle in combination with ranges in character classes).

Usage: __regex_escape_use:nnnn ⟨inline 1⟩ ⟨inline 2⟩ ⟨inline 3⟩ {⟨token
list⟩} The ⟨token list⟩ is converted to a string, then read from left to right, inter-
preting backslashes as escaping the next character. Unescaped characters are fed to
the function ⟨inline 1⟩, and escaped characters are fed to the function ⟨inline 2⟩
within an e-expansion context (typically those functions perform some tests on their ar-
gument to decide how to output them). The escape sequences \a, \e, \f, \n, \r, \t
and \x are recognized, and those are replaced by the corresponding character, then fed
to ⟨inline 3⟩. The result is then left in the input stream. Spaces are ignored unless
escaped.

The conversion is done within an e-expanding assignment.

__regex_escape_use:nnnn The result is built in \l__regex_internal_a_tl, which is then left in the input stream.
Tracing code is added as appropriate inside this token list. Go through #4 once, applying

485

#1, #2, or #3 as relevant to each character (after de-escaping it).
4559 \cs_new_protected:Npn __regex_escape_use:nnnn #1#2#3#4
4560 {
4561 \group_begin:
4562 \tl_clear:N \l__regex_internal_a_tl
4563 \cs_set:Npn __regex_escape_unescaped:N ##1 { #1 }
4564 \cs_set:Npn __regex_escape_escaped:N ##1 { #2 }
4565 \cs_set:Npn __regex_escape_raw:N ##1 { #3 }
4566 __regex_standard_escapechar:
4567 __kernel_tl_gset:Nx \g__regex_internal_tl
4568 { __kernel_str_to_other_fast:n {#4} }
4569 \tl_put_right:Ne \l__regex_internal_a_tl
4570 {
4571 \exp_after:wN __regex_escape_loop:N \g__regex_internal_tl
4572 \scan_stop: \prg_break_point:
4573 }
4574 \exp_after:wN
4575 \group_end:
4576 \l__regex_internal_a_tl
4577 }

(End of definition for __regex_escape_use:nnnn.)

__regex_escape_loop:N
__regex_escape_\:w

__regex_escape_loop:N reads one character: if it is special (space, backslash, or end-
marker), perform the associated action, otherwise it is simply an unescaped character.
After a backslash, the same is done, but unknown characters are “escaped”.

4578 \cs_new:Npn __regex_escape_loop:N #1
4579 {
4580 \cs_if_exist_use:cF { __regex_escape_\token_to_str:N #1:w }
4581 { __regex_escape_unescaped:N #1 }
4582 __regex_escape_loop:N
4583 }
4584 \cs_new:cpn { __regex_escape_ \c_backslash_str :w }
4585 __regex_escape_loop:N #1
4586 {
4587 \cs_if_exist_use:cF { __regex_escape_/\token_to_str:N #1:w }
4588 { __regex_escape_escaped:N #1 }
4589 __regex_escape_loop:N
4590 }

(End of definition for __regex_escape_loop:N and __regex_escape_\:w.)

__regex_escape_unescaped:N
__regex_escape_escaped:N

__regex_escape_raw:N

Those functions are never called before being given a new meaning, so their definitions
here don’t matter.

4591 \cs_new_eq:NN __regex_escape_unescaped:N ?
4592 \cs_new_eq:NN __regex_escape_escaped:N ?
4593 \cs_new_eq:NN __regex_escape_raw:N ?

(End of definition for __regex_escape_unescaped:N , __regex_escape_escaped:N , and __regex_-
escape_raw:N.)

__regex_escape_\scan_stop::w
__regex_escape_/\scan_stop::w
__regex_escape_/a:w
__regex_escape_/e:w
__regex_escape_/f:w
__regex_escape_/n:w
__regex_escape_/r:w
__regex_escape_/t:w
__regex_escape_␣:w

The loop is ended upon seeing the end-marker “break”, with an error if the string ended
in a backslash. Spaces are ignored, and \a, \e, \f, \n, \r, \t take their meaning here.

4594 \cs_new_eq:cN { __regex_escape_ \iow_char:N\\scan_stop: :w } \prg_break:

486

4595 \cs_new:cpn { __regex_escape_/ \iow_char:N\\scan_stop: :w }
4596 {
4597 \msg_expandable_error:nn { regex } { trailing-backslash }
4598 \prg_break:
4599 }
4600 \cs_new:cpn { __regex_escape_~:w } { }
4601 \cs_new:cpe { __regex_escape_/a:w }
4602 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^G }
4603 \cs_new:cpe { __regex_escape_/t:w }
4604 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^I }
4605 \cs_new:cpe { __regex_escape_/n:w }
4606 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^J }
4607 \cs_new:cpe { __regex_escape_/f:w }
4608 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^L }
4609 \cs_new:cpe { __regex_escape_/r:w }
4610 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^M }
4611 \cs_new:cpe { __regex_escape_/e:w }
4612 { \exp_not:N __regex_escape_raw:N \iow_char:N \^^[}

(End of definition for __regex_escape_\scan_stop::w and others.)

__regex_escape_/x:w
__regex_escape_x_end:w

__regex_escape_x_large:n

When \x is encountered, __regex_escape_x_test:N is responsible for grabbing some
hexadecimal digits, and feeding the result to __regex_escape_x_end:w. If the number
is too big interrupt the assignment and produce an error, otherwise call __regex_-
escape_raw:N on the corresponding character token.

4613 \cs_new:cpn { __regex_escape_/x:w } __regex_escape_loop:N
4614 {
4615 \exp_after:wN __regex_escape_x_end:w
4616 \int_value:w "0 __regex_escape_x_test:N
4617 }
4618 \cs_new:Npn __regex_escape_x_end:w #1 ;
4619 {
4620 \int_compare:nNnTF {#1} > \c_max_char_int
4621 {
4622 \msg_expandable_error:nnff { regex } { x-overflow }
4623 {#1} { \int_to_Hex:n {#1} }
4624 }
4625 {
4626 \exp_last_unbraced:Nf __regex_escape_raw:N
4627 { \char_generate:nn {#1} { 12 } }
4628 }
4629 }

(End of definition for __regex_escape_/x:w , __regex_escape_x_end:w , and __regex_escape_x_-
large:n.)

__regex_escape_x_test:N
__regex_escape_x_testii:N

Find out whether the first character is a left brace (allowing any number of hexadecimal
digits), or not (allowing up to two hexadecimal digits). We need to check for the end-
of-string marker. Eventually, call either __regex_escape_x_loop:N or __regex_-
escape_x:N.

4630 \cs_new:Npn __regex_escape_x_test:N #1
4631 {
4632 \if_meaning:w \scan_stop: #1
4633 \exp_after:wN \use_i:nnn \exp_after:wN ;

487

4634 \fi:
4635 \use:n
4636 {
4637 \if_charcode:w \c_space_token #1
4638 \exp_after:wN __regex_escape_x_test:N
4639 \else:
4640 \exp_after:wN __regex_escape_x_testii:N
4641 \exp_after:wN #1
4642 \fi:
4643 }
4644 }
4645 \cs_new:Npn __regex_escape_x_testii:N #1
4646 {
4647 \if_charcode:w \c_left_brace_str #1
4648 \exp_after:wN __regex_escape_x_loop:N
4649 \else:
4650 __regex_hexadecimal_use:NTF #1
4651 { \exp_after:wN __regex_escape_x:N }
4652 { ; \exp_after:wN __regex_escape_loop:N \exp_after:wN #1 }
4653 \fi:
4654 }

(End of definition for __regex_escape_x_test:N and __regex_escape_x_testii:N.)

__regex_escape_x:N This looks for the second digit in the unbraced case.
4655 \cs_new:Npn __regex_escape_x:N #1
4656 {
4657 \if_meaning:w \scan_stop: #1
4658 \exp_after:wN \use_i:nnn \exp_after:wN ;
4659 \fi:
4660 \use:n
4661 {
4662 __regex_hexadecimal_use:NTF #1
4663 { ; __regex_escape_loop:N }
4664 { ; __regex_escape_loop:N #1 }
4665 }
4666 }

(End of definition for __regex_escape_x:N.)

__regex_escape_x_loop:N
__regex_escape_x_loop_error:

Grab hexadecimal digits, skip spaces, and at the end, check that there is a right brace,
otherwise raise an error outside the assignment.

4667 \cs_new:Npn __regex_escape_x_loop:N #1
4668 {
4669 \if_meaning:w \scan_stop: #1
4670 \exp_after:wN \use_ii:nnn
4671 \fi:
4672 \use_ii:nn
4673 { ; __regex_escape_x_loop_error:n { } {#1} }
4674 {
4675 __regex_hexadecimal_use:NTF #1
4676 { __regex_escape_x_loop:N }
4677 {
4678 \token_if_eq_charcode:NNTF \c_space_token #1

488

4679 { __regex_escape_x_loop:N }
4680 {
4681 ;
4682 \exp_after:wN
4683 \token_if_eq_charcode:NNTF \c_right_brace_str #1
4684 { __regex_escape_loop:N }
4685 { __regex_escape_x_loop_error:n {#1} }
4686 }
4687 }
4688 }
4689 }
4690 \cs_new:Npn __regex_escape_x_loop_error:n #1
4691 {
4692 \msg_expandable_error:nnn { regex } { x-missing-rbrace } {#1}
4693 __regex_escape_loop:N #1
4694 }

(End of definition for __regex_escape_x_loop:N and __regex_escape_x_loop_error:.)

__regex_hexadecimal_use:NTF TEX detects uppercase hexadecimal digits for us but not the lowercase letters, which we
need to detect and replace by their uppercase counterpart.

4695 \cs_new:Npn __regex_hexadecimal_use:NTF #1
4696 {
4697 \if_int_compare:w \c_one_int < "1 \token_to_str:N #1 \exp_stop_f:
4698 #1
4699 \else:
4700 \if_case:w
4701 __regex_int_eval:w \exp_after:wN ‘ \token_to_str:N #1 - ‘a \scan_stop:
4702 A
4703 \or: B
4704 \or: C
4705 \or: D
4706 \or: E
4707 \or: F
4708 \else:
4709 \exp_after:wN \exp_after:wN \exp_after:wN \use_iii:nnn
4710 \fi:
4711 \fi:
4712 \use_i:nn
4713 }

(End of definition for __regex_hexadecimal_use:NTF.)

__regex_char_if_alphanumeric:NTF
__regex_char_if_special:NTF

These two tests are used in the first pass when parsing a regular expression. That pass is
responsible for finding escaped and non-escaped characters, and recognizing which ones
have special meanings and which should be interpreted as “raw” characters. Namely,

• alphanumerics are “raw” if they are not escaped, and may have a special meaning
when escaped;

• non-alphanumeric printable ascii characters are “raw” if they are escaped, and may
have a special meaning when not escaped;

• characters other than printable ascii are always “raw”.

489

The code is ugly, and highly based on magic numbers and the ascii codes of characters.
This is mostly unavoidable for performance reasons. Maybe the tests can be optimized
a little bit more. Here, “alphanumeric” means 0–9, A–Z, a–z; “special” character means
non-alphanumeric but printable ascii, from space (hex 20) to del (hex 7E).

4714 \prg_new_conditional:Npnn __regex_char_if_special:N #1 { TF }
4715 {
4716 \if:w
4717 T
4718 \if_int_compare:w ‘#1 > ‘Z \exp_stop_f:
4719 \if_int_compare:w ‘#1 > ‘z \exp_stop_f:
4720 \if_int_compare:w ‘#1 < \c__regex_ascii_max_int
4721 \else: F \fi:
4722 \else:
4723 \if_int_compare:w ‘#1 < ‘a \exp_stop_f:
4724 \else: F \fi:
4725 \fi:
4726 \else:
4727 \if_int_compare:w ‘#1 > ‘9 \exp_stop_f:
4728 \if_int_compare:w ‘#1 < ‘A \exp_stop_f:
4729 \else: F \fi:
4730 \else:
4731 \if_int_compare:w ‘#1 < ‘0 \exp_stop_f:
4732 \if_int_compare:w ‘#1 < ‘\ \exp_stop_f:
4733 F \fi:
4734 \else: F \fi:
4735 \fi:
4736 \fi:
4737 T
4738 \prg_return_true:
4739 \else:
4740 \prg_return_false:
4741 \fi:
4742 }
4743 \prg_new_conditional:Npnn __regex_char_if_alphanumeric:N #1 { TF }
4744 {
4745 \if:w
4746 T
4747 \if_int_compare:w ‘#1 > ‘Z \exp_stop_f:
4748 \if_int_compare:w ‘#1 > ‘z \exp_stop_f:
4749 F
4750 \else:
4751 \if_int_compare:w ‘#1 < ‘a \exp_stop_f:
4752 F \fi:
4753 \fi:
4754 \else:
4755 \if_int_compare:w ‘#1 > ‘9 \exp_stop_f:
4756 \if_int_compare:w ‘#1 < ‘A \exp_stop_f:
4757 F \fi:
4758 \else:
4759 \if_int_compare:w ‘#1 < ‘0 \exp_stop_f:
4760 F \fi:
4761 \fi:
4762 \fi:
4763 T

490

4764 \prg_return_true:
4765 \else:
4766 \prg_return_false:
4767 \fi:
4768 }

(End of definition for __regex_char_if_alphanumeric:NTF and __regex_char_if_special:NTF.)

46.3 Compiling
A regular expression starts its life as a string of characters. In this section, we convert
it to internal instructions, resulting in a “compiled” regular expression. This compiled
expression is then turned into states of an automaton in the building phase. Compiled
regular expressions consist of the following:

• __regex_class:NnnnN ⟨boolean⟩ {⟨tests⟩} {⟨min⟩} {⟨more⟩} ⟨laziness⟩

• __regex_group:nnnN {⟨branches⟩} {⟨min⟩} {⟨more⟩} ⟨laziness⟩, also __regex_-
group_no_capture:nnnN and __regex_group_resetting:nnnN with the same
syntax.

• __regex_branch:n {⟨contents⟩}

• __regex_command_K:

• __regex_assertion:Nn ⟨boolean⟩ {⟨assertion test⟩}, where the ⟨assertion
test⟩ is __regex_b_test: or __regex_Z_test: or __regex_A_test: or
__regex_G_test:

Tests can be the following:

• __regex_item_caseful_equal:n {⟨char code⟩}

• __regex_item_caseless_equal:n {⟨char code⟩}

• __regex_item_caseful_range:nn {⟨min⟩} {⟨max⟩}

• __regex_item_caseless_range:nn {⟨min⟩} {⟨max⟩}

• __regex_item_catcode:nT {⟨catcode bitmap⟩} {⟨tests⟩}

• __regex_item_catcode_reverse:nT {⟨catcode bitmap⟩} {⟨tests⟩}

• __regex_item_reverse:n {⟨tests⟩}

• __regex_item_exact:nn {⟨catcode⟩} {⟨char code⟩}

• __regex_item_exact_cs:n {⟨csnames⟩}, more precisely given as ⟨csname⟩ \scan_-
stop: ⟨csname⟩ \scan_stop: ⟨csname⟩ and so on in a brace group.

• __regex_item_cs:n {⟨compiled regex⟩}

491

46.3.1 Variables used when compiling
\l__regex_group_level_int We make sure to open the same number of groups as we close.

4769 \int_new:N \l__regex_group_level_int

(End of definition for \l__regex_group_level_int.)

\l__regex_mode_int
\c__regex_cs_in_class_mode_int

\c__regex_cs_mode_int
\c__regex_outer_mode_int

\c__regex_catcode_mode_int
\c__regex_class_mode_int
\c__regex_catcode_in_class_mode_int

While compiling, ten modes are recognized, labelled −63, −23, −6, −2, 0, 2, 3, 6, 23, 63.
See section 46.3.3. We only define some of these as constants.

4770 \int_new:N \l__regex_mode_int
4771 \int_const:Nn \c__regex_cs_in_class_mode_int { -6 }
4772 \int_const:Nn \c__regex_cs_mode_int { -2 }
4773 \int_const:Nn \c__regex_outer_mode_int { 0 }
4774 \int_const:Nn \c__regex_catcode_mode_int { 2 }
4775 \int_const:Nn \c__regex_class_mode_int { 3 }
4776 \int_const:Nn \c__regex_catcode_in_class_mode_int { 6 }

(End of definition for \l__regex_mode_int and others.)

\l__regex_catcodes_int
\l__regex_default_catcodes_int

\l__regex_catcodes_bool

We wish to allow constructions such as \c[^BE](..\cL[a-z]..), where the outer catcode
test applies to the whole group, but is superseded by the inner catcode test. For this to
work, we need to keep track of lists of allowed category codes: \l__regex_catcodes_int
and \l__regex_default_catcodes_int are bitmaps, sums of 4c, for all allowed catcodes
c. The latter is local to each capturing group, and we reset \l__regex_catcodes_int to
that value after each character or class, changing it only when encountering a \c escape.
The boolean records whether the list of categories of a catcode test has to be inverted:
compare \c[^BE] and \c[BE].

4777 \int_new:N \l__regex_catcodes_int
4778 \int_new:N \l__regex_default_catcodes_int
4779 \bool_new:N \l__regex_catcodes_bool

(End of definition for \l__regex_catcodes_int , \l__regex_default_catcodes_int , and \l__regex_-
catcodes_bool.)

\c__regex_catcode_C_int
\c__regex_catcode_B_int
\c__regex_catcode_E_int
\c__regex_catcode_M_int
\c__regex_catcode_T_int
\c__regex_catcode_P_int
\c__regex_catcode_U_int
\c__regex_catcode_D_int
\c__regex_catcode_S_int
\c__regex_catcode_L_int
\c__regex_catcode_O_int
\c__regex_catcode_A_int

\c__regex_all_catcodes_int

Constants: 4c for each category, and the sum of all powers of 4.
4780 \int_const:Nn \c__regex_catcode_C_int { "1 }
4781 \int_const:Nn \c__regex_catcode_B_int { "4 }
4782 \int_const:Nn \c__regex_catcode_E_int { "10 }
4783 \int_const:Nn \c__regex_catcode_M_int { "40 }
4784 \int_const:Nn \c__regex_catcode_T_int { "100 }
4785 \int_const:Nn \c__regex_catcode_P_int { "1000 }
4786 \int_const:Nn \c__regex_catcode_U_int { "4000 }
4787 \int_const:Nn \c__regex_catcode_D_int { "10000 }
4788 \int_const:Nn \c__regex_catcode_S_int { "100000 }
4789 \int_const:Nn \c__regex_catcode_L_int { "400000 }
4790 \int_const:Nn \c__regex_catcode_O_int { "1000000 }
4791 \int_const:Nn \c__regex_catcode_A_int { "4000000 }
4792 \int_const:Nn \c__regex_all_catcodes_int { "5515155 }

(End of definition for \c__regex_catcode_C_int and others.)

\l__regex_internal_regex The compilation step stores its result in this variable.
4793 \cs_new_eq:NN \l__regex_internal_regex \c__regex_no_match_regex

(End of definition for \l__regex_internal_regex.)

492

\l__regex_show_prefix_seq This sequence holds the prefix that makes up the line displayed to the user. The various
items must be removed from the right, which is tricky with a token list, hence we use a
sequence.

4794 \seq_new:N \l__regex_show_prefix_seq

(End of definition for \l__regex_show_prefix_seq.)

\l__regex_show_lines_int A hack. To know whether a given class has a single item in it or not, we count the
number of lines when showing the class.

4795 \int_new:N \l__regex_show_lines_int

(End of definition for \l__regex_show_lines_int.)

46.3.2 Generic helpers used when compiling
__regex_two_if_eq:NNNNTF Used to compare pairs of things like __regex_compile_special:N ? together. It’s

often inconvenient to get the catcodes of the character to match so we just compare the
character code. Besides, the expanding behaviour of \if:w is very useful as that means
we can use \c_left_brace_str and the like.

4796 \cs_new:Npn __regex_two_if_eq:NNNNTF #1#2#3#4
4797 {
4798 \if_meaning:w #1 #3
4799 \if:w #2 #4
4800 \exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nnn
4801 \fi:
4802 \fi:
4803 \use_ii:nn
4804 }

(End of definition for __regex_two_if_eq:NNNNTF.)

__regex_get_digits:NTFw
__regex_get_digits_loop:w

If followed by some raw digits, collect them one by one in the integer variable #1, and
take the true branch. Otherwise, take the false branch.

4805 \cs_new_protected:Npn __regex_get_digits:NTFw #1#2#3#4#5
4806 {
4807 __regex_if_raw_digit:NNTF #4 #5
4808 { #1 = #5 __regex_get_digits_loop:nw {#2} }
4809 { #3 #4 #5 }
4810 }
4811 \cs_new:Npn __regex_get_digits_loop:nw #1#2#3
4812 {
4813 __regex_if_raw_digit:NNTF #2 #3
4814 { #3 __regex_get_digits_loop:nw {#1} }
4815 { \scan_stop: #1 #2 #3 }
4816 }

(End of definition for __regex_get_digits:NTFw and __regex_get_digits_loop:w.)

__regex_if_raw_digit:NNTF Test used when grabbing digits for the {m,n} quantifier. It only accepts non-escaped
digits.

4817 \cs_new:Npn __regex_if_raw_digit:NNTF #1#2
4818 {
4819 \if_meaning:w __regex_compile_raw:N #1
4820 \if_int_compare:w \c_one_int < 1 #2 \exp_stop_f:

493

4821 \exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nnn
4822 \fi:
4823 \fi:
4824 \use_ii:nn
4825 }

(End of definition for __regex_if_raw_digit:NNTF.)

46.3.3 Mode
When compiling the nfa corresponding to a given regex string, we can be in ten distinct
modes, which we label by some magic numbers:

-6 [\c{...}] control sequence in a class,

-2 \c{...} control sequence,

0 ... outer,

2 \c... catcode test,

6 [\c...] catcode test in a class,

-63 [\c{[...]}] class inside mode −6,

-23 \c{[...]} class inside mode −2,

3 [...] class inside mode 0,

23 \c[...] class inside mode 2,

63 [\c[...]] class inside mode 6.

This list is exhaustive, because \c escape sequences cannot be nested, and character
classes cannot be nested directly. The choice of numbers is such as to optimize the most
useful tests, and make transitions from one mode to another as simple as possible.

• Even modes mean that we are not directly in a character class. In this case, a left
bracket appends 3 to the mode. In a character class, a right bracket changes the
mode as m → (m − 15)/13, truncated.

• Grouping, assertion, and anchors are allowed in non-positive even modes (0, −2,
−6), and do not change the mode. Otherwise, they trigger an error.

• A left bracket is special in even modes, appending 3 to the mode; in those modes,
quantifiers and the dot are recognized, and the right bracket is normal. In odd
modes (within classes), the left bracket is normal, but the right bracket ends the
class, changing the mode from m to (m − 15)/13, truncated; also, ranges are recog-
nized.

• In non-negative modes, left and right braces are normal. In negative modes, how-
ever, left braces trigger a warning; right braces end the control sequence, going
from −2 to 0 or −6 to 3, with error recovery for odd modes.

• Properties (such as the \d character class) can appear in any mode.

494

__regex_if_in_class:TF Test whether we are directly in a character class (at the innermost level of nesting).
There, many escape sequences are not recognized, and special characters are normal.
Also, for every raw character, we must look ahead for a possible raw dash.

4826 \prg_new_conditional:Npnn __regex_if_in_class: { TF }
4827 {
4828 \if_int_odd:w \l__regex_mode_int
4829 \prg_return_true:
4830 \else:
4831 \prg_return_false:
4832 \fi:
4833 }

(End of definition for __regex_if_in_class:TF.)

__regex_if_in_cs:TF Right braces are special only directly inside control sequences (at the inner-most level of
nesting, not counting groups).

4834 \cs_new:Npn __regex_if_in_cs:TF
4835 {
4836 \if_int_odd:w \l__regex_mode_int
4837 \else:
4838 \if_int_compare:w \l__regex_mode_int < \c__regex_outer_mode_int
4839 \exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nnn
4840 \fi:
4841 \fi:
4842 \use_ii:nn
4843 }

(End of definition for __regex_if_in_cs:TF.)

__regex_if_in_class_or_catcode:TF Assertions are only allowed in modes 0, −2, and −6, i.e., even, non-positive modes.
4844 \cs_new:Npn __regex_if_in_class_or_catcode:TF
4845 {
4846 \if_int_odd:w \l__regex_mode_int
4847 \else:
4848 \if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int
4849 \else:
4850 \exp_after:wN \exp_after:wN \exp_after:wN \use_iii:nnn
4851 \fi:
4852 \fi:
4853 \use_i:nn
4854 }

(End of definition for __regex_if_in_class_or_catcode:TF.)

__regex_if_within_catcode:TF This test takes the true branch if we are in a catcode test, either immediately following
it (modes 2 and 6) or in a class on which it applies (modes 23 and 63). This is used to
tweak how left brackets behave in modes 2 and 6.

4855 \prg_new_conditional:Npnn __regex_if_within_catcode: { TF }
4856 {
4857 \if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int
4858 \prg_return_true:
4859 \else:
4860 \prg_return_false:
4861 \fi:
4862 }

495

(End of definition for __regex_if_within_catcode:TF.)

__regex_chk_c_allowed:T The \c escape sequence is only allowed in modes 0 and 3, i.e., not within any other \c
escape sequence.

4863 \cs_new_protected:Npn __regex_chk_c_allowed:T
4864 {
4865 \if_int_compare:w \l__regex_mode_int = \c__regex_outer_mode_int
4866 \else:
4867 \if_int_compare:w \l__regex_mode_int = \c__regex_class_mode_int
4868 \else:
4869 \msg_error:nn { regex } { c-bad-mode }
4870 \exp_after:wN \use_i:nnn
4871 \fi:
4872 \fi:
4873 \use:n
4874 }

(End of definition for __regex_chk_c_allowed:T.)

__regex_mode_quit_c: This function changes the mode as it is needed just after a catcode test.
4875 \cs_new_protected:Npn __regex_mode_quit_c:
4876 {
4877 \if_int_compare:w \l__regex_mode_int = \c__regex_catcode_mode_int
4878 \int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int
4879 \else:
4880 \if_int_compare:w \l__regex_mode_int =
4881 \c__regex_catcode_in_class_mode_int
4882 \int_set_eq:NN \l__regex_mode_int \c__regex_class_mode_int
4883 \fi:
4884 \fi:
4885 }

(End of definition for __regex_mode_quit_c:.)

46.3.4 Framework
__regex_compile:w

__regex_compile_end:
Used when compiling a user regex or a regex for the \c{...} escape sequence within
another regex. Start building a token list within a group (with e-expansion at the outset),
and set a few variables (group level, catcodes), then start the first branch. At the end,
make sure there are no dangling classes nor groups, close the last branch: we are done
building \l__regex_internal_regex.

4886 \cs_new_protected:Npn __regex_compile:w
4887 {
4888 \group_begin:
4889 \tl_build_begin:N \l__regex_build_tl
4890 \int_zero:N \l__regex_group_level_int
4891 \int_set_eq:NN \l__regex_default_catcodes_int
4892 \c__regex_all_catcodes_int
4893 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
4894 \cs_set:Npn __regex_item_equal:n { __regex_item_caseful_equal:n }
4895 \cs_set:Npn __regex_item_range:nn { __regex_item_caseful_range:nn }
4896 \tl_build_put_right:Nn \l__regex_build_tl
4897 { __regex_branch:n { \if_false: } \fi: }
4898 }

496

4899 \cs_new_protected:Npn __regex_compile_end:
4900 {
4901 __regex_if_in_class:TF
4902 {
4903 \msg_error:nn { regex } { missing-rbrack }
4904 \use:c { __regex_compile_]: }
4905 \prg_do_nothing: \prg_do_nothing:
4906 }
4907 { }
4908 \if_int_compare:w \l__regex_group_level_int > \c_zero_int
4909 \msg_error:nne { regex } { missing-rparen }
4910 { \int_use:N \l__regex_group_level_int }
4911 \prg_replicate:nn
4912 \l__regex_group_level_int
4913 {
4914 \tl_build_put_right:Nn \l__regex_build_tl
4915 {
4916 \if_false: { \fi: }
4917 \if_false: { \fi: } { 1 } { 0 } \c_true_bool
4918 }
4919 \tl_build_end:N \l__regex_build_tl
4920 \exp_args:NNNo
4921 \group_end:
4922 \tl_build_put_right:Nn \l__regex_build_tl
4923 { \l__regex_build_tl }
4924 }
4925 \fi:
4926 \tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }
4927 \tl_build_end:N \l__regex_build_tl
4928 \exp_args:NNNe
4929 \group_end:
4930 \tl_set:Nn \l__regex_internal_regex { \l__regex_build_tl }
4931 }

(End of definition for __regex_compile:w and __regex_compile_end:.)

__regex_compile:n The compilation is done between __regex_compile:w and __regex_compile_end:,
starting in mode 0. Then __regex_escape_use:nnnn distinguishes special characters,
escaped alphanumerics, and raw characters, interpreting \a, \x and other sequences. The
4 trailing \prg_do_nothing: are needed because some functions defined later look up
to 4 tokens ahead. Before ending, make sure that any \c{...} is properly closed. No
need to check that brackets are closed properly since __regex_compile_end: does that.
However, catch the case of a trailing \cL construction.

4932 \cs_new_protected:Npn __regex_compile:n #1
4933 {
4934 __regex_compile:w
4935 __regex_standard_escapechar:
4936 \int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int
4937 __regex_escape_use:nnnn
4938 {
4939 __regex_char_if_special:NTF ##1
4940 __regex_compile_special:N __regex_compile_raw:N ##1
4941 }
4942 {

497

4943 __regex_char_if_alphanumeric:NTF ##1
4944 __regex_compile_escaped:N __regex_compile_raw:N ##1
4945 }
4946 { __regex_compile_raw:N ##1 }
4947 { #1 }
4948 \prg_do_nothing: \prg_do_nothing:
4949 \prg_do_nothing: \prg_do_nothing:
4950 \int_compare:nNnT \l__regex_mode_int = \c__regex_catcode_mode_int
4951 { \msg_error:nn { regex } { c-trailing } }
4952 \int_compare:nNnT \l__regex_mode_int < \c__regex_outer_mode_int
4953 {
4954 \msg_error:nn { regex } { c-missing-rbrace }
4955 __regex_compile_end_cs:
4956 \prg_do_nothing: \prg_do_nothing:
4957 \prg_do_nothing: \prg_do_nothing:
4958 }
4959 __regex_compile_end:
4960 }

(End of definition for __regex_compile:n.)

__regex_compile_use:n Use a regex, regardless of whether it is given as a string (in which case we need to compile)
or as a regex variable. This is used for \regex_match_case:nn and related functions to
allow a mixture of explicit regex and regex variables.

4961 \cs_new_protected:Npn __regex_compile_use:n #1
4962 {
4963 \tl_if_single_token:nT {#1}
4964 {
4965 \exp_after:wN __regex_compile_use_aux:w
4966 \token_to_meaning:N #1 ~ \q__regex_nil
4967 }
4968 __regex_compile:n {#1} \l__regex_internal_regex
4969 }
4970 \cs_new_protected:Npn __regex_compile_use_aux:w #1 ~ #2 \q__regex_nil
4971 {
4972 \str_if_eq:nnT { #1 ~ } { macro:->__regex_branch:n }
4973 { \use_ii:nnn }
4974 }

(End of definition for __regex_compile_use:n.)

__regex_compile_escaped:N
__regex_compile_special:N

If the special character or escaped alphanumeric has a particular meaning in regexes,
the corresponding function is used. Otherwise, it is interpreted as a raw character. We
distinguish special characters from escaped alphanumeric characters because they behave
differently when appearing as an end-point of a range.

4975 \cs_new_protected:Npn __regex_compile_special:N #1
4976 {
4977 \cs_if_exist_use:cF { __regex_compile_#1: }
4978 { __regex_compile_raw:N #1 }
4979 }
4980 \cs_new_protected:Npn __regex_compile_escaped:N #1
4981 {
4982 \cs_if_exist_use:cF { __regex_compile_/#1: }
4983 { __regex_compile_raw:N #1 }
4984 }

498

(End of definition for __regex_compile_escaped:N and __regex_compile_special:N.)

__regex_compile_one:n This is used after finding one “test”, such as \d, or a raw character. If that followed a
catcode test (e.g., \cL), then restore the mode. If we are not in a class, then the test is
“standalone”, and we need to add __regex_class:NnnnN and search for quantifiers. In
any case, insert the test, possibly together with a catcode test if appropriate.

4985 \cs_new_protected:Npn __regex_compile_one:n #1
4986 {
4987 __regex_mode_quit_c:
4988 __regex_if_in_class:TF { }
4989 {
4990 \tl_build_put_right:Nn \l__regex_build_tl
4991 { __regex_class:NnnnN \c_true_bool { \if_false: } \fi: }
4992 }
4993 \tl_build_put_right:Ne \l__regex_build_tl
4994 {
4995 \if_int_compare:w \l__regex_catcodes_int <
4996 \c__regex_all_catcodes_int
4997 __regex_item_catcode:nT { \int_use:N \l__regex_catcodes_int }
4998 { \exp_not:N \exp_not:n {#1} }
4999 \else:
5000 \exp_not:N \exp_not:n {#1}
5001 \fi:
5002 }
5003 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
5004 __regex_if_in_class:TF { } { __regex_compile_quantifier:w }
5005 }

(End of definition for __regex_compile_one:n.)

__regex_compile_abort_tokens:n
__regex_compile_abort_tokens:e

This function places the collected tokens back in the input stream, each as a raw character.
Spaces are not preserved.

5006 \cs_new_protected:Npn __regex_compile_abort_tokens:n #1
5007 {
5008 \use:e
5009 {
5010 \exp_args:No \tl_map_function:nN { \tl_to_str:n {#1} }
5011 __regex_compile_raw:N
5012 }
5013 }
5014 \cs_generate_variant:Nn __regex_compile_abort_tokens:n { e }

(End of definition for __regex_compile_abort_tokens:n.)

46.3.5 Quantifiers
__regex_compile_if_quantifier:TFw This looks ahead and checks whether there are any quantifier (special character equal to

either of ?+*{). This is useful for the \u and \ur escape sequences.
5015 \cs_new_protected:Npn __regex_compile_if_quantifier:TFw #1#2#3#4
5016 {
5017 \token_if_eq_meaning:NNTF #3 __regex_compile_special:N
5018 { \cs_if_exist:cTF { __regex_compile_quantifier_#4:w } }
5019 { \use_ii:nn }
5020 {#1} {#2} #3 #4

499

5021 }

(End of definition for __regex_compile_if_quantifier:TFw.)

__regex_compile_quantifier:w This looks ahead and finds any quantifier (special character equal to either of ?+*{).
5022 \cs_new_protected:Npn __regex_compile_quantifier:w #1#2
5023 {
5024 \token_if_eq_meaning:NNTF #1 __regex_compile_special:N
5025 {
5026 \cs_if_exist_use:cF { __regex_compile_quantifier_#2:w }
5027 { __regex_compile_quantifier_none: #1 #2 }
5028 }
5029 { __regex_compile_quantifier_none: #1 #2 }
5030 }

(End of definition for __regex_compile_quantifier:w.)

__regex_compile_quantifier_none:
__regex_compile_quantifier_abort:eNN

Those functions are called whenever there is no quantifier, or a braced construction is
invalid (equivalent to no quantifier, and whatever characters were grabbed are left raw).

5031 \cs_new_protected:Npn __regex_compile_quantifier_none:
5032 {
5033 \tl_build_put_right:Nn \l__regex_build_tl
5034 { \if_false: { \fi: } { 1 } { 0 } \c_false_bool }
5035 }
5036 \cs_new_protected:Npn __regex_compile_quantifier_abort:eNN #1#2#3
5037 {
5038 __regex_compile_quantifier_none:
5039 \msg_warning:nnee { regex } { invalid-quantifier } {#1} {#3}
5040 __regex_compile_abort_tokens:e {#1}
5041 #2 #3
5042 }

(End of definition for __regex_compile_quantifier_none: and __regex_compile_quantifier_-
abort:eNN.)

__regex_compile_quantifier_laziness:nnNN Once the “main” quantifier (?, *, + or a braced construction) is found, we check whether it
is lazy (followed by a question mark). We then add to the compiled regex a closing brace
(ending __regex_class:NnnnN and friends), the start-point of the range, its end-point,
and a boolean, true for lazy and false for greedy operators.

5043 \cs_new_protected:Npn __regex_compile_quantifier_laziness:nnNN #1#2#3#4
5044 {
5045 __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N ?
5046 {
5047 \tl_build_put_right:Nn \l__regex_build_tl
5048 { \if_false: { \fi: } { #1 } { #2 } \c_true_bool }
5049 }
5050 {
5051 \tl_build_put_right:Nn \l__regex_build_tl
5052 { \if_false: { \fi: } { #1 } { #2 } \c_false_bool }
5053 #3 #4
5054 }
5055 }

(End of definition for __regex_compile_quantifier_laziness:nnNN.)

500

__regex_compile_quantifier_?:w
__regex_compile_quantifier_*:w
__regex_compile_quantifier_+:w

For each “basic” quantifier, ?, *, +, feed the correct arguments to __regex_compile_-
quantifier_laziness:nnNN, −1 means that there is no upper bound on the number of
repetitions.

5056 \cs_new_protected:cpn { __regex_compile_quantifier_?:w }
5057 { __regex_compile_quantifier_laziness:nnNN { 0 } { 1 } }
5058 \cs_new_protected:cpn { __regex_compile_quantifier_*:w }
5059 { __regex_compile_quantifier_laziness:nnNN { 0 } { -1 } }
5060 \cs_new_protected:cpn { __regex_compile_quantifier_+:w }
5061 { __regex_compile_quantifier_laziness:nnNN { 1 } { -1 } }

(End of definition for __regex_compile_quantifier_?:w , __regex_compile_quantifier_*:w , and _-
_regex_compile_quantifier_+:w.)

__regex_compile_quantifier_{:w
__regex_compile_quantifier_braced_auxi:w
__regex_compile_quantifier_braced_auxii:w
__regex_compile_quantifier_braced_auxiii:w

Three possible syntaxes: {⟨int⟩}, {⟨int⟩,}, or {⟨int⟩,⟨int⟩}. Any other syntax causes
us to abort and put whatever we collected back in the input stream, as raw characters,
including the opening brace. Grab a number into \l__regex_internal_a_int. If the
number is followed by a right brace, the range is [a, a]. If followed by a comma, grab one
more number, and call the _ii or _iii auxiliary. Those auxiliaries check for a closing
brace, leading to the range [a, ∞] or [a, b], encoded as {a}{−1} and {a}{b − a}.

5062 \cs_new_protected:cpn { __regex_compile_quantifier_ \c_left_brace_str :w }
5063 {
5064 __regex_get_digits:NTFw \l__regex_internal_a_int
5065 { __regex_compile_quantifier_braced_auxi:w }
5066 { __regex_compile_quantifier_abort:eNN { \c_left_brace_str } }
5067 }
5068 \cs_new_protected:Npn __regex_compile_quantifier_braced_auxi:w #1#2
5069 {
5070 \str_case_e:nnF { #1 #2 }
5071 {
5072 { __regex_compile_special:N \c_right_brace_str }
5073 {
5074 \exp_args:No __regex_compile_quantifier_laziness:nnNN
5075 { \int_use:N \l__regex_internal_a_int } 0
5076 }
5077 { __regex_compile_special:N , }
5078 {
5079 __regex_get_digits:NTFw \l__regex_internal_b_int
5080 { __regex_compile_quantifier_braced_auxiii:w }
5081 { __regex_compile_quantifier_braced_auxii:w }
5082 }
5083 }
5084 {
5085 __regex_compile_quantifier_abort:eNN
5086 { \c_left_brace_str \int_use:N \l__regex_internal_a_int }
5087 #1 #2
5088 }
5089 }
5090 \cs_new_protected:Npn __regex_compile_quantifier_braced_auxii:w #1#2
5091 {
5092 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N \c_right_brace_str
5093 {
5094 \exp_args:No __regex_compile_quantifier_laziness:nnNN
5095 { \int_use:N \l__regex_internal_a_int } { -1 }
5096 }

501

5097 {
5098 __regex_compile_quantifier_abort:eNN
5099 { \c_left_brace_str \int_use:N \l__regex_internal_a_int , }
5100 #1 #2
5101 }
5102 }
5103 \cs_new_protected:Npn __regex_compile_quantifier_braced_auxiii:w #1#2
5104 {
5105 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N \c_right_brace_str
5106 {
5107 \if_int_compare:w \l__regex_internal_a_int >
5108 \l__regex_internal_b_int
5109 \msg_error:nnee { regex } { backwards-quantifier }
5110 { \int_use:N \l__regex_internal_a_int }
5111 { \int_use:N \l__regex_internal_b_int }
5112 \int_zero:N \l__regex_internal_b_int
5113 \else:
5114 \int_sub:Nn \l__regex_internal_b_int \l__regex_internal_a_int
5115 \fi:
5116 \exp_args:Noo __regex_compile_quantifier_laziness:nnNN
5117 { \int_use:N \l__regex_internal_a_int }
5118 { \int_use:N \l__regex_internal_b_int }
5119 }
5120 {
5121 __regex_compile_quantifier_abort:eNN
5122 {
5123 \c_left_brace_str
5124 \int_use:N \l__regex_internal_a_int ,
5125 \int_use:N \l__regex_internal_b_int
5126 }
5127 #1 #2
5128 }
5129 }

(End of definition for __regex_compile_quantifier_{:w and others.)

46.3.6 Raw characters
__regex_compile_raw_error:N Within character classes, and following catcode tests, some escaped alphanumeric se-

quences such as \b do not have any meaning. They are replaced by a raw character, after
spitting out an error.

5130 \cs_new_protected:Npn __regex_compile_raw_error:N #1
5131 {
5132 \msg_error:nne { regex } { bad-escape } {#1}
5133 __regex_compile_raw:N #1
5134 }

(End of definition for __regex_compile_raw_error:N.)

__regex_compile_raw:N If we are in a character class and the next character is an unescaped dash, this denotes
a range. Otherwise, the current character #1 matches itself.

5135 \cs_new_protected:Npn __regex_compile_raw:N #1#2#3
5136 {
5137 __regex_if_in_class:TF

502

5138 {
5139 __regex_two_if_eq:NNNNTF #2 #3 __regex_compile_special:N -
5140 { __regex_compile_range:Nw #1 }
5141 {
5142 __regex_compile_one:n
5143 { __regex_item_equal:n { \int_value:w ‘#1 } }
5144 #2 #3
5145 }
5146 }
5147 {
5148 __regex_compile_one:n
5149 { __regex_item_equal:n { \int_value:w ‘#1 } }
5150 #2 #3
5151 }
5152 }

(End of definition for __regex_compile_raw:N.)

__regex_compile_range:Nw
__regex_if_end_range:NNTF

We have just read a raw character followed by a dash; this should be followed by an
end-point for the range. Valid end-points are: any raw character; any special character,
except a right bracket. In particular, escaped characters are forbidden.

5153 \cs_new_protected:Npn __regex_if_end_range:NNTF #1#2
5154 {
5155 \if_meaning:w __regex_compile_raw:N #1
5156 \else:
5157 \if_meaning:w __regex_compile_special:N #1
5158 \if_charcode:w] #2
5159 \use_i:nn
5160 \fi:
5161 \else:
5162 \exp_after:wN \exp_after:wN \exp_after:wN \use_iii:nnn
5163 \fi:
5164 \fi:
5165 \use_i:nn
5166 }
5167 \cs_new_protected:Npn __regex_compile_range:Nw #1#2#3
5168 {
5169 __regex_if_end_range:NNTF #2 #3
5170 {
5171 \if_int_compare:w ‘#1 > ‘#3 \exp_stop_f:
5172 \msg_error:nnee { regex } { range-backwards } {#1} {#3}
5173 \else:
5174 \tl_build_put_right:Ne \l__regex_build_tl
5175 {
5176 \if_int_compare:w ‘#1 = ‘#3 \exp_stop_f:
5177 __regex_item_equal:n
5178 \else:
5179 __regex_item_range:nn { \int_value:w ‘#1 }
5180 \fi:
5181 { \int_value:w ‘#3 }
5182 }
5183 \fi:
5184 }
5185 {

503

5186 \msg_warning:nnee { regex } { range-missing-end }
5187 {#1} { \c_backslash_str #3 }
5188 \tl_build_put_right:Ne \l__regex_build_tl
5189 {
5190 __regex_item_equal:n { \int_value:w ‘#1 \exp_stop_f: }
5191 __regex_item_equal:n { \int_value:w ‘- \exp_stop_f: }
5192 }
5193 #2#3
5194 }
5195 }

(End of definition for __regex_compile_range:Nw and __regex_if_end_range:NNTF.)

46.3.7 Character properties
__regex_compile_.:

__regex_prop_.:
In a class, the dot has no special meaning. Outside, insert __regex_prop_.:, which
matches any character or control sequence, and refuses −2 (end-marker).

5196 \cs_new_protected:cpe { __regex_compile_.: }
5197 {
5198 \exp_not:N __regex_if_in_class:TF
5199 { __regex_compile_raw:N . }
5200 { __regex_compile_one:n \exp_not:c { __regex_prop_.: } }
5201 }
5202 \cs_new_protected:cpn { __regex_prop_.: }
5203 {
5204 \if_int_compare:w \l__regex_curr_char_int > - 2 \exp_stop_f:
5205 \exp_after:wN __regex_break_true:w
5206 \fi:
5207 }

(End of definition for __regex_compile_.: and __regex_prop_.:.)

__regex_compile_/d:
__regex_compile_/D:
__regex_compile_/h:
__regex_compile_/H:
__regex_compile_/s:
__regex_compile_/S:
__regex_compile_/v:
__regex_compile_/V:
__regex_compile_/w:
__regex_compile_/W:
__regex_compile_/N:

The constants __regex_prop_d:, etc. hold a list of tests which match the corresponding
character class, and jump to the __regex_break_point:TF marker. As for a normal
character, we check for quantifiers.

5208 \cs_set_protected:Npn __regex_tmp:w #1#2
5209 {
5210 \cs_new_protected:cpe { __regex_compile_/#1: }
5211 { __regex_compile_one:n \exp_not:c { __regex_prop_#1: } }
5212 \cs_new_protected:cpe { __regex_compile_/#2: }
5213 {
5214 __regex_compile_one:n
5215 { __regex_item_reverse:n { \exp_not:c { __regex_prop_#1: } } }
5216 }
5217 }
5218 __regex_tmp:w d D
5219 __regex_tmp:w h H
5220 __regex_tmp:w s S
5221 __regex_tmp:w v V
5222 __regex_tmp:w w W
5223 \cs_new_protected:cpn { __regex_compile_/N: }
5224 { __regex_compile_one:n __regex_prop_N: }

(End of definition for __regex_compile_/d: and others.)

504

46.3.8 Anchoring and simple assertions
__regex_compile_anchor_letter:NNN

__regex_compile_/A:
__regex_compile_/G:
__regex_compile_/Z:
__regex_compile_/z:
__regex_compile_/b:
__regex_compile_/B:
__regex_compile_^:
__regex_compile_$:

In modes where assertions are forbidden, anchors such as \A produce an error (\A is invalid
in classes); otherwise they add an __regex_assertion:Nn test as appropriate (the only
negative assertion is \B). The test functions are defined later. The implementation for $
and ^ is only different from \A etc because these are valid in a class.

5225 \cs_new_protected:Npn __regex_compile_anchor_letter:NNN #1#2#3
5226 {
5227 __regex_if_in_class_or_catcode:TF { __regex_compile_raw_error:N #1 }
5228 {
5229 \tl_build_put_right:Nn \l__regex_build_tl
5230 { __regex_assertion:Nn #2 {#3} }
5231 }
5232 }
5233 \cs_new_protected:cpn { __regex_compile_/A: }
5234 { __regex_compile_anchor_letter:NNN A \c_true_bool __regex_A_test: }
5235 \cs_new_protected:cpn { __regex_compile_/G: }
5236 { __regex_compile_anchor_letter:NNN G \c_true_bool __regex_G_test: }
5237 \cs_new_protected:cpn { __regex_compile_/Z: }
5238 { __regex_compile_anchor_letter:NNN Z \c_true_bool __regex_Z_test: }
5239 \cs_new_protected:cpn { __regex_compile_/z: }
5240 { __regex_compile_anchor_letter:NNN z \c_true_bool __regex_Z_test: }
5241 \cs_new_protected:cpn { __regex_compile_/b: }
5242 { __regex_compile_anchor_letter:NNN b \c_true_bool __regex_b_test: }
5243 \cs_new_protected:cpn { __regex_compile_/B: }
5244 { __regex_compile_anchor_letter:NNN B \c_false_bool __regex_b_test: }
5245 \cs_set_protected:Npn __regex_tmp:w #1#2
5246 {
5247 \cs_new_protected:cpn { __regex_compile_#1: }
5248 {
5249 __regex_if_in_class_or_catcode:TF { __regex_compile_raw:N #1 }
5250 {
5251 \tl_build_put_right:Nn \l__regex_build_tl
5252 { __regex_assertion:Nn \c_true_bool {#2} }
5253 }
5254 }
5255 }
5256 \exp_args:Ne __regex_tmp:w { \iow_char:N \^ } { __regex_A_test: }
5257 \exp_args:Ne __regex_tmp:w { \iow_char:N \$ } { __regex_Z_test: }

(End of definition for __regex_compile_anchor_letter:NNN and others.)

46.3.9 Character classes
__regex_compile_]: Outside a class, right brackets have no meaning. In a class, change the mode (m → (m−

15)/13, truncated) to reflect the fact that we are leaving the class. Look for quantifiers,
unless we are still in a class after leaving one (the case of [...\cL[...]...]). quantifiers.

5258 \cs_new_protected:cpn { __regex_compile_]: }
5259 {
5260 __regex_if_in_class:TF
5261 {
5262 \if_int_compare:w \l__regex_mode_int >
5263 \c__regex_catcode_in_class_mode_int
5264 \tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }

505

5265 \fi:
5266 \tex_advance:D \l__regex_mode_int - 15 \exp_stop_f:
5267 \tex_divide:D \l__regex_mode_int 13 \exp_stop_f:
5268 \if_int_odd:w \l__regex_mode_int \else:
5269 \exp_after:wN __regex_compile_quantifier:w
5270 \fi:
5271 }
5272 { __regex_compile_raw:N] }
5273 }

(End of definition for __regex_compile_]:.)

__regex_compile_[: In a class, left brackets might introduce a posix character class, or mean nothing. Imme-
diately following \c⟨category⟩, we must insert the appropriate catcode test, then parse
the class; we pre-expand the catcode as an optimization. Otherwise (modes 0, −2 and
−6) just parse the class. The mode is updated later.

5274 \cs_new_protected:cpn { __regex_compile_[: }
5275 {
5276 __regex_if_in_class:TF
5277 { __regex_compile_class_posix_test:w }
5278 {
5279 __regex_if_within_catcode:TF
5280 {
5281 \exp_after:wN __regex_compile_class_catcode:w
5282 \int_use:N \l__regex_catcodes_int ;
5283 }
5284 { __regex_compile_class_normal:w }
5285 }
5286 }

(End of definition for __regex_compile_[:.)

__regex_compile_class_normal:w In the “normal” case, we insert __regex_class:NnnnN ⟨boolean⟩ in the compiled code.
The ⟨boolean⟩ is true for positive classes, and false for negative classes, characterized
by a leading ^. The auxiliary __regex_compile_class:TFNN also checks for a leading
] which has a special meaning.

5287 \cs_new_protected:Npn __regex_compile_class_normal:w
5288 {
5289 __regex_compile_class:TFNN
5290 { __regex_class:NnnnN \c_true_bool }
5291 { __regex_class:NnnnN \c_false_bool }
5292 }

(End of definition for __regex_compile_class_normal:w.)

__regex_compile_class_catcode:w This function is called for a left bracket in modes 2 or 6 (catcode test, and catcode test
within a class). In mode 2 the whole construction needs to be put in a class (like single
character). Then determine if the class is positive or negative, inserting __regex_-
item_catcode:nT or the reverse variant as appropriate, each with the current catcodes
bitmap #1 as an argument, and reset the catcodes.

5293 \cs_new_protected:Npn __regex_compile_class_catcode:w #1;
5294 {
5295 \if_int_compare:w \l__regex_mode_int = \c__regex_catcode_mode_int
5296 \tl_build_put_right:Nn \l__regex_build_tl

506

5297 { __regex_class:NnnnN \c_true_bool { \if_false: } \fi: }
5298 \fi:
5299 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
5300 __regex_compile_class:TFNN
5301 { __regex_item_catcode:nT {#1} }
5302 { __regex_item_catcode_reverse:nT {#1} }
5303 }

(End of definition for __regex_compile_class_catcode:w.)

__regex_compile_class:TFNN
__regex_compile_class:NN

If the first character is ^, then the class is negative (use #2), otherwise it is positive (use
#1). If the next character is a right bracket, then it should be changed to a raw one.

5304 \cs_new_protected:Npn __regex_compile_class:TFNN #1#2#3#4
5305 {
5306 \l__regex_mode_int = \int_value:w \l__regex_mode_int 3 \exp_stop_f:
5307 __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N ^
5308 {
5309 \tl_build_put_right:Nn \l__regex_build_tl { #2 { \if_false: } \fi: }
5310 __regex_compile_class:NN
5311 }
5312 {
5313 \tl_build_put_right:Nn \l__regex_build_tl { #1 { \if_false: } \fi: }
5314 __regex_compile_class:NN #3 #4
5315 }
5316 }
5317 \cs_new_protected:Npn __regex_compile_class:NN #1#2
5318 {
5319 \token_if_eq_charcode:NNTF #2]
5320 { __regex_compile_raw:N #2 }
5321 { #1 #2 }
5322 }

(End of definition for __regex_compile_class:TFNN and __regex_compile_class:NN.)

__regex_compile_class_posix_test:w
__regex_compile_class_posix:NNNNw
__regex_compile_class_posix_loop:w
__regex_compile_class_posix_end:w

Here we check for a syntax such as [:alpha:]. We also detect [= and [. which have a
meaning in posix regular expressions, but are not implemented in l3regex. In case we
see [:, grab raw characters until hopefully reaching :]. If that’s missing, or the posix
class is unknown, abort. If all is right, add the test to the current class, with an extra
__regex_item_reverse:n for negative classes (we make sure to wrap its argument in
braces otherwise \regex_show:N would not recognize the regex as valid).

5323 \cs_new_protected:Npn __regex_compile_class_posix_test:w #1#2
5324 {
5325 \token_if_eq_meaning:NNT __regex_compile_special:N #1
5326 {
5327 \str_case:nn { #2 }
5328 {
5329 : { __regex_compile_class_posix:NNNNw }
5330 = {
5331 \msg_warning:nne { regex }
5332 { posix-unsupported } { = }
5333 }
5334 . {
5335 \msg_warning:nne { regex }
5336 { posix-unsupported } { . }

507

5337 }
5338 }
5339 }
5340 __regex_compile_raw:N [#1 #2
5341 }
5342 \cs_new_protected:Npn __regex_compile_class_posix:NNNNw #1#2#3#4#5#6
5343 {
5344 __regex_two_if_eq:NNNNTF #5 #6 __regex_compile_special:N ^
5345 {
5346 \bool_set_false:N \l__regex_internal_bool
5347 __kernel_tl_set:Nx \l__regex_internal_a_tl { \if_false: } \fi:
5348 __regex_compile_class_posix_loop:w
5349 }
5350 {
5351 \bool_set_true:N \l__regex_internal_bool
5352 __kernel_tl_set:Nx \l__regex_internal_a_tl { \if_false: } \fi:
5353 __regex_compile_class_posix_loop:w #5 #6
5354 }
5355 }
5356 \cs_new:Npn __regex_compile_class_posix_loop:w #1#2
5357 {
5358 \token_if_eq_meaning:NNTF __regex_compile_raw:N #1
5359 { #2 __regex_compile_class_posix_loop:w }
5360 { \if_false: { \fi: } __regex_compile_class_posix_end:w #1 #2 }
5361 }
5362 \cs_new_protected:Npn __regex_compile_class_posix_end:w #1#2#3#4
5363 {
5364 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N :
5365 { __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N] }
5366 { \use_ii:nn }
5367 {
5368 \cs_if_exist:cTF { __regex_posix_ \l__regex_internal_a_tl : }
5369 {
5370 __regex_compile_one:n
5371 {
5372 \bool_if:NTF \l__regex_internal_bool \use:n __regex_item_reverse:n
5373 { \exp_not:c { __regex_posix_ \l__regex_internal_a_tl : } }
5374 }
5375 }
5376 {
5377 \msg_warning:nne { regex } { posix-unknown }
5378 { \l__regex_internal_a_tl }
5379 __regex_compile_abort_tokens:e
5380 {
5381 [: \bool_if:NF \l__regex_internal_bool { ^ }
5382 \l__regex_internal_a_tl :]
5383 }
5384 }
5385 }
5386 {
5387 \msg_error:nnee { regex } { posix-missing-close }
5388 { [: \l__regex_internal_a_tl } { #2 #4 }
5389 __regex_compile_abort_tokens:e { [: \l__regex_internal_a_tl }
5390 #1 #2 #3 #4

508

5391 }
5392 }

(End of definition for __regex_compile_class_posix_test:w and others.)

46.3.10 Groups and alternations
__regex_compile_group_begin:N

__regex_compile_group_end:
The contents of a regex group are turned into compiled code in \l__regex_build_-
tl, which ends up with items of the form __regex_branch:n {⟨concatenation⟩}. This
construction is done using \tl_build_... functions within a TEX group, which auto-
matically makes sure that options (case-sensitivity and default catcode) are reset at the
end of the group. The argument #1 is __regex_group:nnnN or a variant thereof. A
small subtlety to support \cL(abc) as a shorthand for (\cLa\cLb\cLc): exit any pend-
ing catcode test, save the category code at the start of the group as the default catcode
for that group, and make sure that the catcode is restored to the default outside the
group.

5393 \cs_new_protected:Npn __regex_compile_group_begin:N #1
5394 {
5395 \tl_build_put_right:Nn \l__regex_build_tl { #1 { \if_false: } \fi: }
5396 __regex_mode_quit_c:
5397 \group_begin:
5398 \tl_build_begin:N \l__regex_build_tl
5399 \int_set_eq:NN \l__regex_default_catcodes_int \l__regex_catcodes_int
5400 \int_incr:N \l__regex_group_level_int
5401 \tl_build_put_right:Nn \l__regex_build_tl
5402 { __regex_branch:n { \if_false: } \fi: }
5403 }
5404 \cs_new_protected:Npn __regex_compile_group_end:
5405 {
5406 \if_int_compare:w \l__regex_group_level_int > \c_zero_int
5407 \tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }
5408 \tl_build_end:N \l__regex_build_tl
5409 \exp_args:NNNe
5410 \group_end:
5411 \tl_build_put_right:Nn \l__regex_build_tl { \l__regex_build_tl }
5412 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
5413 \exp_after:wN __regex_compile_quantifier:w
5414 \else:
5415 \msg_warning:nn { regex } { extra-rparen }
5416 \exp_after:wN __regex_compile_raw:N \exp_after:wN)
5417 \fi:
5418 }

(End of definition for __regex_compile_group_begin:N and __regex_compile_group_end:.)

__regex_compile_(: In a class, parentheses are not special. In a catcode test inside a class, a left parenthesis
gives an error, to catch [a\cL(bcd)e]. Otherwise check for a ?, denoting special groups,
and run the code for the corresponding special group.

5419 \cs_new_protected:cpn { __regex_compile_(: }
5420 {
5421 __regex_if_in_class:TF { __regex_compile_raw:N (}
5422 {
5423 \if_int_compare:w \l__regex_mode_int =

509

5424 \c__regex_catcode_in_class_mode_int
5425 \msg_error:nn { regex } { c-lparen-in-class }
5426 \exp_after:wN __regex_compile_raw:N \exp_after:wN (
5427 \else:
5428 \exp_after:wN __regex_compile_lparen:w
5429 \fi:
5430 }
5431 }
5432 \cs_new_protected:Npn __regex_compile_lparen:w #1#2#3#4
5433 {
5434 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N ?
5435 {
5436 \cs_if_exist_use:cF
5437 { __regex_compile_special_group_\token_to_str:N #4 :w }
5438 {
5439 \msg_warning:nne { regex } { special-group-unknown }
5440 { (? #4 }
5441 __regex_compile_group_begin:N __regex_group:nnnN
5442 __regex_compile_raw:N ? #3 #4
5443 }
5444 }
5445 {
5446 __regex_compile_group_begin:N __regex_group:nnnN
5447 #1 #2 #3 #4
5448 }
5449 }

(End of definition for __regex_compile_(:.)

__regex_compile_|: In a class, the pipe is not special. Otherwise, end the current branch and open another
one.

5450 \cs_new_protected:cpn { __regex_compile_|: }
5451 {
5452 __regex_if_in_class:TF { __regex_compile_raw:N | }
5453 {
5454 \tl_build_put_right:Nn \l__regex_build_tl
5455 { \if_false: { \fi: } __regex_branch:n { \if_false: } \fi: }
5456 }
5457 }

(End of definition for __regex_compile_|:.)

__regex_compile_): Within a class, parentheses are not special. Outside, close a group.
5458 \cs_new_protected:cpn { __regex_compile_): }
5459 {
5460 __regex_if_in_class:TF { __regex_compile_raw:N) }
5461 { __regex_compile_group_end: }
5462 }

(End of definition for __regex_compile_):.)

__regex_compile_special_group_::w
__regex_compile_special_group_|:w

Non-capturing, and resetting groups are easy to take care of during compilation; for those
groups, the harder parts come when building.

5463 \cs_new_protected:cpn { __regex_compile_special_group_::w }
5464 { __regex_compile_group_begin:N __regex_group_no_capture:nnnN }

510

5465 \cs_new_protected:cpn { __regex_compile_special_group_|:w }
5466 { __regex_compile_group_begin:N __regex_group_resetting:nnnN }

(End of definition for __regex_compile_special_group_::w and __regex_compile_special_group_-
|:w.)

__regex_compile_special_group_i:w
__regex_compile_special_group_-:w

The match can be made case-insensitive by setting the option with (?i); the original
behaviour is restored by (?-i). This is the only supported option.

5467 \cs_new_protected:Npn __regex_compile_special_group_i:w #1#2
5468 {
5469 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N)
5470 {
5471 \cs_set:Npn __regex_item_equal:n
5472 { __regex_item_caseless_equal:n }
5473 \cs_set:Npn __regex_item_range:nn
5474 { __regex_item_caseless_range:nn }
5475 }
5476 {
5477 \msg_warning:nne { regex } { unknown-option } { (?i #2 }
5478 __regex_compile_raw:N (
5479 __regex_compile_raw:N ?
5480 __regex_compile_raw:N i
5481 #1 #2
5482 }
5483 }
5484 \cs_new_protected:cpn { __regex_compile_special_group_-:w } #1#2#3#4
5485 {
5486 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_raw:N i
5487 { __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N) }
5488 { \use_ii:nn }
5489 {
5490 \cs_set:Npn __regex_item_equal:n
5491 { __regex_item_caseful_equal:n }
5492 \cs_set:Npn __regex_item_range:nn
5493 { __regex_item_caseful_range:nn }
5494 }
5495 {
5496 \msg_warning:nne { regex } { unknown-option } { (?-#2#4 }
5497 __regex_compile_raw:N (
5498 __regex_compile_raw:N ?
5499 __regex_compile_raw:N -
5500 #1 #2 #3 #4
5501 }
5502 }

(End of definition for __regex_compile_special_group_i:w and __regex_compile_special_group_-
-:w.)

46.3.11 Catcodes and csnames
__regex_compile_/c:

__regex_compile_c_test:NN
The \c escape sequence can be followed by a capital letter representing a character
category, by a left bracket which starts a list of categories, or by a brace group holding
a regular expression for a control sequence name. Otherwise, raise an error.

5503 \cs_new_protected:cpn { __regex_compile_/c: }

511

5504 { __regex_chk_c_allowed:T { __regex_compile_c_test:NN } }
5505 \cs_new_protected:Npn __regex_compile_c_test:NN #1#2
5506 {
5507 \token_if_eq_meaning:NNTF #1 __regex_compile_raw:N
5508 {
5509 \int_if_exist:cTF { c__regex_catcode_#2_int }
5510 {
5511 \int_set_eq:Nc \l__regex_catcodes_int
5512 { c__regex_catcode_#2_int }
5513 \l__regex_mode_int
5514 = \if_case:w \l__regex_mode_int
5515 \c__regex_catcode_mode_int
5516 \else:
5517 \c__regex_catcode_in_class_mode_int
5518 \fi:
5519 \token_if_eq_charcode:NNT C #2 { __regex_compile_c_C:NN }
5520 }
5521 }
5522 { \cs_if_exist_use:cF { __regex_compile_c_#2:w } }
5523 {
5524 \msg_error:nne { regex } { c-missing-category } {#2}
5525 #1 #2
5526 }
5527 }

(End of definition for __regex_compile_/c: and __regex_compile_c_test:NN.)

__regex_compile_c_C:NN If \cC is not followed by . or (...) then complain because that construction cannot
match anything, except in cases like \cC[\c{...}], where it has no effect.

5528 \cs_new_protected:Npn __regex_compile_c_C:NN #1#2
5529 {
5530 \token_if_eq_meaning:NNTF #1 __regex_compile_special:N
5531 {
5532 \token_if_eq_charcode:NNTF #2 .
5533 { \use_none:n }
5534 { \token_if_eq_charcode:NNF #2 (} %)
5535 }
5536 { \use:n }
5537 { \msg_error:nnn { regex } { c-C-invalid } {#2} }
5538 #1 #2
5539 }

(End of definition for __regex_compile_c_C:NN.)

__regex_compile_c_[:w
__regex_compile_c_lbrack_loop:NN

__regex_compile_c_lbrack_add:N
__regex_compile_c_lbrack_end:

When encountering \c[, the task is to collect uppercase letters representing character
categories. First check for ^ which negates the list of category codes.

5540 \cs_new_protected:cpn { __regex_compile_c_[:w } #1#2
5541 {
5542 \l__regex_mode_int
5543 = \if_case:w \l__regex_mode_int
5544 \c__regex_catcode_mode_int
5545 \else:
5546 \c__regex_catcode_in_class_mode_int
5547 \fi:

512

5548 \int_zero:N \l__regex_catcodes_int
5549 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N ^
5550 {
5551 \bool_set_false:N \l__regex_catcodes_bool
5552 __regex_compile_c_lbrack_loop:NN
5553 }
5554 {
5555 \bool_set_true:N \l__regex_catcodes_bool
5556 __regex_compile_c_lbrack_loop:NN
5557 #1 #2
5558 }
5559 }
5560 \cs_new_protected:Npn __regex_compile_c_lbrack_loop:NN #1#2
5561 {
5562 \token_if_eq_meaning:NNTF #1 __regex_compile_raw:N
5563 {
5564 \int_if_exist:cTF { c__regex_catcode_#2_int }
5565 {
5566 \exp_args:Nc __regex_compile_c_lbrack_add:N
5567 { c__regex_catcode_#2_int }
5568 __regex_compile_c_lbrack_loop:NN
5569 }
5570 }
5571 {
5572 \token_if_eq_charcode:NNTF #2]
5573 { __regex_compile_c_lbrack_end: }
5574 }
5575 {
5576 \msg_error:nne { regex } { c-missing-rbrack } {#2}
5577 __regex_compile_c_lbrack_end:
5578 #1 #2
5579 }
5580 }
5581 \cs_new_protected:Npn __regex_compile_c_lbrack_add:N #1
5582 {
5583 \if_int_odd:w __regex_int_eval:w \l__regex_catcodes_int / #1 \scan_stop:
5584 \else:
5585 \int_add:Nn \l__regex_catcodes_int {#1}
5586 \fi:
5587 }
5588 \cs_new_protected:Npn __regex_compile_c_lbrack_end:
5589 {
5590 \if_meaning:w \c_false_bool \l__regex_catcodes_bool
5591 \int_set:Nn \l__regex_catcodes_int
5592 { \c__regex_all_catcodes_int - \l__regex_catcodes_int }
5593 \fi:
5594 }

(End of definition for __regex_compile_c_[:w and others.)

__regex_compile_c_{: The case of a left brace is easy, based on what we have done so far: in a group, compile the
regular expression, after changing the mode to forbid nesting \c. Additionally, disable
submatch tracking since groups don’t escape the scope of \c{...}.

5595 \cs_new_protected:cpn { __regex_compile_c_ \c_left_brace_str :w }

513

5596 {
5597 __regex_compile:w
5598 __regex_disable_submatches:
5599 \l__regex_mode_int
5600 = \if_case:w \l__regex_mode_int
5601 \c__regex_cs_mode_int
5602 \else:
5603 \c__regex_cs_in_class_mode_int
5604 \fi:
5605 }

(End of definition for __regex_compile_c_{:.)

__regex_compile_{: We forbid unescaped left braces inside a \c{...} escape because they otherwise lead
to the confusing question of whether the first right brace in \c{{}x} should end \c or
whether one should match braces.

5606 \cs_new_protected:cpn { __regex_compile_ \c_left_brace_str : }
5607 {
5608 __regex_if_in_cs:TF
5609 { \msg_error:nnn { regex } { cu-lbrace } { c } }
5610 { \exp_after:wN __regex_compile_raw:N \c_left_brace_str }
5611 }

(End of definition for __regex_compile_{:.)

\l__regex_cs_flag
__regex_compile_}:

__regex_compile_end_cs:
__regex_compile_cs_aux:Nn

__regex_compile_cs_aux:NNnnnN

Non-escaped right braces are only special if they appear when compiling the regular ex-
pression for a csname, but not within a class: \c{[{}]} matches the control sequences
\{ and \}. So, end compiling the inner regex (this closes any dangling class or group).
Then insert the corresponding test in the outer regex. As an optimization, if the con-
trol sequence test simply consists of several explicit possibilities (branches) then use
__regex_item_exact_cs:n with an argument consisting of all possibilities separated
by \scan_stop:.

5612 \flag_new:N \l__regex_cs_flag
5613 \cs_new_protected:cpn { __regex_compile_ \c_right_brace_str : }
5614 {
5615 __regex_if_in_cs:TF
5616 { __regex_compile_end_cs: }
5617 { \exp_after:wN __regex_compile_raw:N \c_right_brace_str }
5618 }
5619 \cs_new_protected:Npn __regex_compile_end_cs:
5620 {
5621 __regex_compile_end:
5622 \flag_clear:N \l__regex_cs_flag
5623 __kernel_tl_set:Nx \l__regex_internal_a_tl
5624 {
5625 \exp_after:wN __regex_compile_cs_aux:Nn \l__regex_internal_regex
5626 \q__regex_nil \q__regex_nil \q__regex_recursion_stop
5627 }
5628 \exp_args:Ne __regex_compile_one:n
5629 {
5630 \flag_if_raised:NTF \l__regex_cs_flag
5631 { __regex_item_cs:n { \exp_not:o \l__regex_internal_regex } }
5632 {
5633 __regex_item_exact_cs:n

514

5634 { \tl_tail:N \l__regex_internal_a_tl }
5635 }
5636 }
5637 }
5638 \cs_new:Npn __regex_compile_cs_aux:Nn #1#2
5639 {
5640 \cs_if_eq:NNTF #1 __regex_branch:n
5641 {
5642 \scan_stop:
5643 __regex_compile_cs_aux:NNnnnN #2
5644 \q__regex_nil \q__regex_nil \q__regex_nil
5645 \q__regex_nil \q__regex_nil \q__regex_nil \q__regex_recursion_stop
5646 __regex_compile_cs_aux:Nn
5647 }
5648 {
5649 __regex_quark_if_nil:NF #1 { \flag_ensure_raised:N \l__regex_cs_flag }
5650 __regex_use_none_delimit_by_q_recursion_stop:w
5651 }
5652 }
5653 \cs_new:Npn __regex_compile_cs_aux:NNnnnN #1#2#3#4#5#6
5654 {
5655 \bool_lazy_all:nTF
5656 {
5657 { \cs_if_eq_p:NN #1 __regex_class:NnnnN }
5658 {#2}
5659 { \tl_if_head_eq_meaning_p:nN {#3} __regex_item_caseful_equal:n }
5660 { \int_compare_p:nNn { \tl_count:n {#3} } = { 2 } }
5661 { \int_compare_p:nNn {#5} = \c_zero_int }
5662 }
5663 {
5664 \prg_replicate:nn {#4}
5665 { \char_generate:nn { \use_ii:nn #3 } {12} }
5666 __regex_compile_cs_aux:NNnnnN
5667 }
5668 {
5669 __regex_quark_if_nil:NF #1
5670 {
5671 \flag_ensure_raised:N \l__regex_cs_flag
5672 __regex_use_i_delimit_by_q_recursion_stop:nw
5673 }
5674 __regex_use_none_delimit_by_q_recursion_stop:w
5675 }
5676 }

(End of definition for \l__regex_cs_flag and others.)

46.3.12 Raw token lists with \u
__regex_compile_/u: The \u escape is invalid in classes and directly following a catcode test. Otherwise test

for a following r (for \ur), and call an auxiliary responsible for finding the variable name.
5677 \cs_new_protected:cpn { __regex_compile_/u: } #1#2
5678 {
5679 __regex_if_in_class_or_catcode:TF
5680 { __regex_compile_raw_error:N u #1 #2 }

515

5681 {
5682 __regex_two_if_eq:NNNNTF #1 #2 __regex_compile_raw:N r
5683 { __regex_compile_u_brace:NNN __regex_compile_ur_end: }
5684 { __regex_compile_u_brace:NNN __regex_compile_u_end: #1 #2 }
5685 }
5686 }

(End of definition for __regex_compile_/u:.)

__regex_compile_u_brace:NNN This enforces the presence of a left brace, then starts a loop to find the variable name.
5687 \cs_new:Npn __regex_compile_u_brace:NNN #1#2#3
5688 {
5689 __regex_two_if_eq:NNNNTF #2 #3 __regex_compile_special:N \c_left_brace_str
5690 {
5691 \tl_set:Nn \l__regex_internal_b_tl {#1}
5692 __kernel_tl_set:Nx \l__regex_internal_a_tl { \if_false: } \fi:
5693 __regex_compile_u_loop:NN
5694 }
5695 {
5696 \msg_error:nn { regex } { u-missing-lbrace }
5697 \token_if_eq_meaning:NNTF #1 __regex_compile_ur_end:
5698 { __regex_compile_raw:N u __regex_compile_raw:N r }
5699 { __regex_compile_raw:N u }
5700 #2 #3
5701 }
5702 }

(End of definition for __regex_compile_u_brace:NNN.)

__regex_compile_u_loop:NN We collect the characters for the argument of \u within an e-expanding assignment. In
principle we could just wait to encounter a right brace, but this is unsafe: if the right
brace was missing, then we would reach the end-markers of the regex, and continue,
leading to obscure fatal errors. Instead, we only allow raw and special characters, and
stop when encountering a special right brace, any escaped character, or the end-marker.

5703 \cs_new:Npn __regex_compile_u_loop:NN #1#2
5704 {
5705 \token_if_eq_meaning:NNTF #1 __regex_compile_raw:N
5706 { #2 __regex_compile_u_loop:NN }
5707 {
5708 \token_if_eq_meaning:NNTF #1 __regex_compile_special:N
5709 {
5710 \exp_after:wN \token_if_eq_charcode:NNTF \c_right_brace_str #2
5711 { \if_false: { \fi: } \l__regex_internal_b_tl }
5712 {
5713 \if_charcode:w \c_left_brace_str #2
5714 \msg_expandable_error:nnn { regex } { cu-lbrace } { u }
5715 \else:
5716 #2
5717 \fi:
5718 __regex_compile_u_loop:NN
5719 }
5720 }
5721 {
5722 \if_false: { \fi: }

516

5723 \msg_error:nne { regex } { u-missing-rbrace } {#2}
5724 \l__regex_internal_b_tl
5725 #1 #2
5726 }
5727 }
5728 }

(End of definition for __regex_compile_u_loop:NN.)

__regex_compile_ur_end:
__regex_compile_ur:n

__regex_compile_ur_aux:w

For the \ur{...} construction, once we have extracted the variable’s name, we replace
all groups by non-capturing groups in the compiled regex (passed as the argument of
__regex_compile_ur:n). If that has a single branch (namely \tl_if_empty:oTF is
false) and there is no quantifier, then simply insert the contents of this branch (obtained
by \use_ii:nn, which is expanded later). In all other cases, insert a non-capturing group
and look for quantifiers to determine the number of repetition etc.

5729 \cs_new_protected:Npn __regex_compile_ur_end:
5730 {
5731 \group_begin:
5732 \cs_set:Npn __regex_group:nnnN { __regex_group_no_capture:nnnN }
5733 \cs_set:Npn __regex_group_resetting:nnnN { __regex_group_no_capture:nnnN }
5734 \exp_args:NNe
5735 \group_end:
5736 __regex_compile_ur:n { \use:c { \l__regex_internal_a_tl } }
5737 }
5738 \cs_new_protected:Npn __regex_compile_ur:n #1
5739 {
5740 \tl_if_empty:oTF { __regex_compile_ur_aux:w #1 {} ? ? \q__regex_nil }
5741 { __regex_compile_if_quantifier:TFw }
5742 { \use_i:nn }
5743 {
5744 \tl_build_put_right:Nn \l__regex_build_tl
5745 { __regex_group_no_capture:nnnN { \if_false: } \fi: #1 }
5746 __regex_compile_quantifier:w
5747 }
5748 { \tl_build_put_right:Nn \l__regex_build_tl { \use_ii:nn #1 } }
5749 }
5750 \cs_new:Npn __regex_compile_ur_aux:w __regex_branch:n #1#2#3 \q__regex_nil {#2}

(End of definition for __regex_compile_ur_end: , __regex_compile_ur:n , and __regex_compile_-
ur_aux:w.)

__regex_compile_u_end:
__regex_compile_u_payload:

Once we have extracted the variable’s name, we check for quantifiers, in which case we
set up a non-capturing group with a single branch. Inside this branch (we omit it and
the group if there is no quantifier), __regex_compile_u_payload: puts the right tests
corresponding to the contents of the variable, which we store in \l__regex_internal_-
a_tl. The behaviour of \u then depends on whether we are within a \c{...} escape (in
this case, the variable is turned to a string), or not.

5751 \cs_new_protected:Npn __regex_compile_u_end:
5752 {
5753 __regex_compile_if_quantifier:TFw
5754 {
5755 \tl_build_put_right:Nn \l__regex_build_tl
5756 {
5757 __regex_group_no_capture:nnnN { \if_false: } \fi:

517

5758 __regex_branch:n { \if_false: } \fi:
5759 }
5760 __regex_compile_u_payload:
5761 \tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }
5762 __regex_compile_quantifier:w
5763 }
5764 { __regex_compile_u_payload: }
5765 }
5766 \cs_new_protected:Npn __regex_compile_u_payload:
5767 {
5768 \tl_set:Nv \l__regex_internal_a_tl { \l__regex_internal_a_tl }
5769 \if_int_compare:w \l__regex_mode_int = \c__regex_outer_mode_int
5770 __regex_compile_u_not_cs:
5771 \else:
5772 __regex_compile_u_in_cs:
5773 \fi:
5774 }

(End of definition for __regex_compile_u_end: and __regex_compile_u_payload:.)

__regex_compile_u_in_cs: When \u appears within a control sequence, we convert the variable to a string with
escaped spaces. Then for each character insert a class matching exactly that character,
once.

5775 \cs_new_protected:Npn __regex_compile_u_in_cs:
5776 {
5777 __kernel_tl_gset:Nx \g__regex_internal_tl
5778 {
5779 \exp_args:No __kernel_str_to_other_fast:n
5780 { \l__regex_internal_a_tl }
5781 }
5782 \tl_build_put_right:Ne \l__regex_build_tl
5783 {
5784 \tl_map_function:NN \g__regex_internal_tl
5785 __regex_compile_u_in_cs_aux:n
5786 }
5787 }
5788 \cs_new:Npn __regex_compile_u_in_cs_aux:n #1
5789 {
5790 __regex_class:NnnnN \c_true_bool
5791 { __regex_item_caseful_equal:n { \int_value:w ‘#1 } }
5792 { 1 } { 0 } \c_false_bool
5793 }

(End of definition for __regex_compile_u_in_cs:.)

__regex_compile_u_not_cs: In mode 0, the \u escape adds one state to the NFA for each token in \l__regex_-
internal_a_tl. If a given ⟨token⟩ is a control sequence, then insert a string comparison
test, otherwise, __regex_item_exact:nn which compares catcode and character code.

5794 \cs_new_protected:Npn __regex_compile_u_not_cs:
5795 {
5796 \tl_analysis_map_inline:Nn \l__regex_internal_a_tl
5797 {
5798 \tl_build_put_right:Ne \l__regex_build_tl
5799 {

518

5800 __regex_class:NnnnN \c_true_bool
5801 {
5802 \if_int_compare:w "##3 = \c_zero_int
5803 __regex_item_exact_cs:n
5804 { \exp_after:wN \cs_to_str:N ##1 }
5805 \else:
5806 __regex_item_exact:nn { \int_value:w "##3 } { ##2 }
5807 \fi:
5808 }
5809 { 1 } { 0 } \c_false_bool
5810 }
5811 }
5812 }

(End of definition for __regex_compile_u_not_cs:.)

46.3.13 Other
__regex_compile_/K: The \K control sequence is currently the only “command”, which performs some action,

rather than matching something. It is allowed in the same contexts as \b. At the
compilation stage, we leave it as a single control sequence, defined later.

5813 \cs_new_protected:cpn { __regex_compile_/K: }
5814 {
5815 \int_compare:nNnTF \l__regex_mode_int = \c__regex_outer_mode_int
5816 { \tl_build_put_right:Nn \l__regex_build_tl { __regex_command_K: } }
5817 { __regex_compile_raw_error:N K }
5818 }

(End of definition for __regex_compile_/K:.)

46.3.14 Showing regexes
__regex_clean_bool:n
__regex_clean_int:n

__regex_clean_int_aux:N
__regex_clean_regex:n

__regex_clean_regex_loop:w
__regex_clean_branch:n

__regex_clean_branch_loop:n
__regex_clean_assertion:Nn
__regex_clean_class:NnnnN
__regex_clean_group:nnnN

__regex_clean_class:n
__regex_clean_class_loop:nnn

__regex_clean_exact_cs:n
__regex_clean_exact_cs:w

Before showing a regex we check that it is “clean” in the sense that it has the correct
internal structure. We do this (in the implementation of \regex_show:N and \regex_-
log:N) by comparing it with a cleaned-up version of the same regex. Along the way
we also need similar functions for other types: all __regex_clean_⟨type⟩:n functions
produce valid ⟨type⟩ tokens (bool, explicit integer, etc.) from arbitrary input, and the
output coincides with the input if that was valid.

5819 \cs_new:Npn __regex_clean_bool:n #1
5820 {
5821 \tl_if_single:nTF {#1}
5822 { \bool_if:NTF #1 \c_true_bool \c_false_bool }
5823 { \c_true_bool }
5824 }
5825 \cs_new:Npn __regex_clean_int:n #1
5826 {
5827 \tl_if_head_eq_meaning:nNTF {#1} -
5828 { - \exp_args:No __regex_clean_int:n { \use_none:n #1 } }
5829 { \int_eval:n { 0 \str_map_function:nN {#1} __regex_clean_int_aux:N } }
5830 }
5831 \cs_new:Npn __regex_clean_int_aux:N #1
5832 {
5833 \if_int_compare:w \c_one_int < 1 #1 ~

519

5834 #1
5835 \else:
5836 \str_map_break:n
5837 \fi:
5838 }
5839 \cs_new:Npn __regex_clean_regex:n #1
5840 {
5841 __regex_clean_regex_loop:w #1
5842 __regex_branch:n { \q_recursion_tail } \q_recursion_stop
5843 }
5844 \cs_new:Npn __regex_clean_regex_loop:w #1 __regex_branch:n #2
5845 {
5846 \quark_if_recursion_tail_stop:n {#2}
5847 __regex_branch:n { __regex_clean_branch:n {#2} }
5848 __regex_clean_regex_loop:w
5849 }
5850 \cs_new:Npn __regex_clean_branch:n #1
5851 {
5852 __regex_clean_branch_loop:n #1
5853 ? ? ? ? ? ? \prg_break_point:
5854 }
5855 \cs_new:Npn __regex_clean_branch_loop:n #1
5856 {
5857 \tl_if_single:nF {#1} \prg_break:
5858 \token_case_meaning:NnF #1
5859 {
5860 __regex_command_K: { #1 __regex_clean_branch_loop:n }
5861 __regex_assertion:Nn { #1 __regex_clean_assertion:Nn }
5862 __regex_class:NnnnN { #1 __regex_clean_class:NnnnN }
5863 __regex_group:nnnN { #1 __regex_clean_group:nnnN }
5864 __regex_group_no_capture:nnnN { #1 __regex_clean_group:nnnN }
5865 __regex_group_resetting:nnnN { #1 __regex_clean_group:nnnN }
5866 }
5867 \prg_break:
5868 }
5869 \cs_new:Npn __regex_clean_assertion:Nn #1#2
5870 {
5871 __regex_clean_bool:n {#1}
5872 \tl_if_single:nF {#2} { { __regex_A_test: } \prg_break: }
5873 \token_case_meaning:NnTF #2
5874 {
5875 __regex_A_test: { }
5876 __regex_G_test: { }
5877 __regex_Z_test: { }
5878 __regex_b_test: { }
5879 }
5880 { {#2} }
5881 { { __regex_A_test: } \prg_break: }
5882 __regex_clean_branch_loop:n
5883 }
5884 \cs_new:Npn __regex_clean_class:NnnnN #1#2#3#4#5
5885 {
5886 __regex_clean_bool:n {#1}
5887 { __regex_clean_class:n {#2} }

520

5888 { \int_max:nn \c_zero_int { __regex_clean_int:n {#3} } }
5889 { \int_max:nn { -\c_one_int } { __regex_clean_int:n {#4} } }
5890 __regex_clean_bool:n {#5}
5891 __regex_clean_branch_loop:n
5892 }
5893 \cs_new:Npn __regex_clean_group:nnnN #1#2#3#4
5894 {
5895 { __regex_clean_regex:n {#1} }
5896 { \int_max:nn \c_zero_int { __regex_clean_int:n {#2} } }
5897 { \int_max:nn { -\c_one_int } { __regex_clean_int:n {#3} } }
5898 __regex_clean_bool:n {#4}
5899 __regex_clean_branch_loop:n
5900 }
5901 \cs_new:Npn __regex_clean_class:n #1
5902 { __regex_clean_class_loop:nnn #1 ????? \prg_break_point: }

When cleaning a class there are many cases, including a dozen or so like __regex_prop_-
d: or __regex_posix_alpha:. To avoid listing all of them we allow any command that
starts with the 13 characters __regex_prop_ or __regex_posix (handily these have the
same length, except for the trailing underscore).

5903 \cs_new:Npn __regex_clean_class_loop:nnn #1#2#3
5904 {
5905 \tl_if_single:nF {#1} \prg_break:
5906 \token_case_meaning:NnTF #1
5907 {
5908 __regex_item_cs:n { #1 { __regex_clean_regex:n {#2} } }
5909 __regex_item_exact_cs:n { #1 { __regex_clean_exact_cs:n {#2} } }
5910 __regex_item_caseful_equal:n { #1 { __regex_clean_int:n {#2} } }
5911 __regex_item_caseless_equal:n { #1 { __regex_clean_int:n {#2} } }
5912 __regex_item_reverse:n { #1 { __regex_clean_class:n {#2} } }
5913 }
5914 { __regex_clean_class_loop:nnn {#3} }
5915 {
5916 \token_case_meaning:NnTF #1
5917 {
5918 __regex_item_caseful_range:nn { }
5919 __regex_item_caseless_range:nn { }
5920 __regex_item_exact:nn { }
5921 }
5922 {
5923 #1 { __regex_clean_int:n {#2} } { __regex_clean_int:n {#3} }
5924 __regex_clean_class_loop:nnn
5925 }
5926 {
5927 \token_case_meaning:NnTF #1
5928 {
5929 __regex_item_catcode:nT { }
5930 __regex_item_catcode_reverse:nT { }
5931 }
5932 {
5933 #1 { __regex_clean_int:n {#2} } { __regex_clean_class:n {#3} }
5934 __regex_clean_class_loop:nnn
5935 }
5936 {

521

5937 \exp_args:Ne \str_case:nnTF
5938 {
5939 \exp_args:Ne \str_range:nnn
5940 { \cs_to_str:N #1 } \c_one_int { 13 }
5941 }
5942 {
5943 { __regex_prop_ } { }
5944 { __regex_posix } { }
5945 }
5946 {
5947 #1
5948 __regex_clean_class_loop:nnn {#2} {#3}
5949 }
5950 \prg_break:
5951 }
5952 }
5953 }
5954 }
5955 \cs_new:Npn __regex_clean_exact_cs:n #1
5956 {
5957 \exp_last_unbraced:Nf \use_none:n
5958 {
5959 __regex_clean_exact_cs:w #1
5960 \scan_stop: \q_recursion_tail \scan_stop:
5961 \q_recursion_stop
5962 }
5963 }
5964 \cs_new:Npn __regex_clean_exact_cs:w #1 \scan_stop:
5965 {
5966 \quark_if_recursion_tail_stop:n {#1}
5967 \scan_stop: \tl_to_str:n {#1}
5968 __regex_clean_exact_cs:w
5969 }

(End of definition for __regex_clean_bool:n and others.)

__regex_show:N Within a group and within \tl_build_begin:N . . . \tl_build_end:N we redefine all
the function that can appear in a compiled regex, then run the regex. The result stored
in \l__regex_internal_a_tl is then meant to be shown.

5970 \cs_new_protected:Npn __regex_show:N #1
5971 {
5972 \group_begin:
5973 \tl_build_begin:N \l__regex_build_tl
5974 \cs_set_protected:Npn __regex_branch:n
5975 {
5976 \seq_pop_right:NN \l__regex_show_prefix_seq
5977 \l__regex_internal_a_tl
5978 __regex_show_one:n { +-branch }
5979 \seq_put_right:No \l__regex_show_prefix_seq
5980 \l__regex_internal_a_tl
5981 \use:n
5982 }
5983 \cs_set_protected:Npn __regex_group:nnnN
5984 { __regex_show_group_aux:nnnnN { } }

522

5985 \cs_set_protected:Npn __regex_group_no_capture:nnnN
5986 { __regex_show_group_aux:nnnnN { ~(no~capture) } }
5987 \cs_set_protected:Npn __regex_group_resetting:nnnN
5988 { __regex_show_group_aux:nnnnN { ~(resetting) } }
5989 \cs_set_eq:NN __regex_class:NnnnN __regex_show_class:NnnnN
5990 \cs_set_protected:Npn __regex_command_K:
5991 { __regex_show_one:n { reset~match~start~(\iow_char:N\\K) } }
5992 \cs_set_protected:Npn __regex_assertion:Nn ##1##2
5993 {
5994 __regex_show_one:n
5995 { \bool_if:NF ##1 { negative~ } assertion:~##2 }
5996 }
5997 \cs_set:Npn __regex_b_test: { word~boundary }
5998 \cs_set:Npn __regex_Z_test: { anchor~at~end~(\iow_char:N\\Z) }
5999 \cs_set:Npn __regex_A_test: { anchor~at~start~(\iow_char:N\\A) }
6000 \cs_set:Npn __regex_G_test: { anchor~at~start~of~match~(\iow_char:N\\G) }
6001 \cs_set_protected:Npn __regex_item_caseful_equal:n ##1
6002 { __regex_show_one:n { char~code~__regex_show_char:n{##1} } }
6003 \cs_set_protected:Npn __regex_item_caseful_range:nn ##1##2
6004 {
6005 __regex_show_one:n
6006 { range~[__regex_show_char:n{##1}, __regex_show_char:n{##2}] }
6007 }
6008 \cs_set_protected:Npn __regex_item_caseless_equal:n ##1
6009 { __regex_show_one:n { char~code~__regex_show_char:n{##1}~(caseless) } }
6010 \cs_set_protected:Npn __regex_item_caseless_range:nn ##1##2
6011 {
6012 __regex_show_one:n
6013 { Range~[__regex_show_char:n{##1}, __regex_show_char:n{##2}]~(caseless) }
6014 }
6015 \cs_set_protected:Npn __regex_item_catcode:nT
6016 { __regex_show_item_catcode:NnT \c_true_bool }
6017 \cs_set_protected:Npn __regex_item_catcode_reverse:nT
6018 { __regex_show_item_catcode:NnT \c_false_bool }
6019 \cs_set_protected:Npn __regex_item_reverse:n
6020 { __regex_show_scope:nn { Reversed~match } }
6021 \cs_set_protected:Npn __regex_item_exact:nn ##1##2
6022 { __regex_show_one:n { char~__regex_show_char:n{##2},~catcode~##1 } }
6023 \cs_set_eq:NN __regex_item_exact_cs:n __regex_show_item_exact_cs:n
6024 \cs_set_protected:Npn __regex_item_cs:n
6025 { __regex_show_scope:nn { control~sequence } }
6026 \cs_set:cpn { __regex_prop_.: } { __regex_show_one:n { any~token } }
6027 \seq_clear:N \l__regex_show_prefix_seq
6028 __regex_show_push:n { ~ }
6029 \cs_if_exist_use:N #1
6030 \tl_build_end:N \l__regex_build_tl
6031 \exp_args:NNNo
6032 \group_end:
6033 \tl_set:Nn \l__regex_internal_a_tl { \l__regex_build_tl }
6034 }

(End of definition for __regex_show:N.)

__regex_show_char:n Show a single character, together with its ascii representation if available. This could be

523

extended to beyond ascii. It is not ideal for parentheses themselves.
6035 \cs_new:Npn __regex_show_char:n #1
6036 {
6037 \int_eval:n {#1}
6038 \int_compare:nT { 32 <= #1 <= 126 }
6039 { ~ (\char_generate:nn {#1} {12}) }
6040 }

(End of definition for __regex_show_char:n.)

__regex_show_one:n Every part of the final message go through this function, which adds one line to the
output, with the appropriate prefix.

6041 \cs_new_protected:Npn __regex_show_one:n #1
6042 {
6043 \int_incr:N \l__regex_show_lines_int
6044 \tl_build_put_right:Ne \l__regex_build_tl
6045 {
6046 \exp_not:N \iow_newline:
6047 \seq_map_function:NN \l__regex_show_prefix_seq \use:n
6048 #1
6049 }
6050 }

(End of definition for __regex_show_one:n.)

__regex_show_push:n
__regex_show_pop:

__regex_show_scope:nn

Enter and exit levels of nesting. The scope function prints its first argument as an
“introduction”, then performs its second argument in a deeper level of nesting.

6051 \cs_new_protected:Npn __regex_show_push:n #1
6052 { \seq_put_right:Ne \l__regex_show_prefix_seq { #1 ~ } }
6053 \cs_new_protected:Npn __regex_show_pop:
6054 { \seq_pop_right:NN \l__regex_show_prefix_seq \l__regex_internal_a_tl }
6055 \cs_new_protected:Npn __regex_show_scope:nn #1#2
6056 {
6057 __regex_show_one:n {#1}
6058 __regex_show_push:n { ~ }
6059 #2
6060 __regex_show_pop:
6061 }

(End of definition for __regex_show_push:n , __regex_show_pop: , and __regex_show_scope:nn.)

__regex_show_group_aux:nnnnN We display all groups in the same way, simply adding a message, (no capture) or
(resetting), to special groups. The odd \use_ii:nn avoids printing a spurious
+-branch for the first branch.

6062 \cs_new_protected:Npn __regex_show_group_aux:nnnnN #1#2#3#4#5
6063 {
6064 __regex_show_one:n { ,-group~begin #1 }
6065 __regex_show_push:n { | }
6066 \use_ii:nn #2
6067 __regex_show_pop:
6068 __regex_show_one:n
6069 { ‘-group~end __regex_msg_repeated:nnN {#3} {#4} #5 }
6070 }

(End of definition for __regex_show_group_aux:nnnnN.)

524

__regex_show_class:NnnnN I’m entirely unhappy about this function: I couldn’t find a way to test if a class is a single
test. Instead, collect the representation of the tests in the class. If that had more than
one line, write Match or Don’t match on its own line, with the repeating information if
any. Then the various tests on lines of their own, and finally a line. Otherwise, we need
to evaluate the representation of the tests again (since the prefix is incorrect). That’s
clunky, but not too expensive, since it’s only one test.

6071 \cs_new:Npn __regex_show_class:NnnnN #1#2#3#4#5
6072 {
6073 \group_begin:
6074 \tl_build_begin:N \l__regex_build_tl
6075 \int_zero:N \l__regex_show_lines_int
6076 __regex_show_push:n {~}
6077 #2
6078 \int_compare:nTF { \l__regex_show_lines_int = \c_zero_int }
6079 {
6080 \group_end:
6081 __regex_show_one:n { \bool_if:NTF #1 { Fail } { Pass } }
6082 }
6083 {
6084 \bool_if:nTF
6085 { #1 && \int_compare_p:n { \l__regex_show_lines_int = \c_one_int } }
6086 {
6087 \group_end:
6088 #2
6089 \tl_build_put_right:Nn \l__regex_build_tl
6090 { __regex_msg_repeated:nnN {#3} {#4} #5 }
6091 }
6092 {
6093 \tl_build_end:N \l__regex_build_tl
6094 \exp_args:NNNo
6095 \group_end:
6096 \tl_set:Nn \l__regex_internal_a_tl \l__regex_build_tl
6097 __regex_show_one:n
6098 {
6099 \bool_if:NTF #1 { Match } { Don’t~match }
6100 __regex_msg_repeated:nnN {#3} {#4} #5
6101 }
6102 \tl_build_put_right:Ne \l__regex_build_tl
6103 { \exp_not:o \l__regex_internal_a_tl }
6104 }
6105 }
6106 }

(End of definition for __regex_show_class:NnnnN.)

__regex_show_item_catcode:NnT Produce a sequence of categories which the catcode bitmap #2 contains, and show it,
indenting the tests on which this catcode constraint applies.

6107 \cs_new_protected:Npn __regex_show_item_catcode:NnT #1#2
6108 {
6109 \seq_set_split:Nnn \l__regex_internal_seq { } { CBEMTPUDSLOA }
6110 \seq_set_filter:NNn \l__regex_internal_seq \l__regex_internal_seq
6111 { \int_if_odd_p:n { #2 / \int_use:c { c__regex_catcode_##1_int } } }
6112 __regex_show_scope:nn
6113 {

525

6114 categories~
6115 \seq_map_function:NN \l__regex_internal_seq \use:n
6116 , ~
6117 \bool_if:NF #1 { negative~ } class
6118 }
6119 }

(End of definition for __regex_show_item_catcode:NnT.)

__regex_show_item_exact_cs:n

6120 \cs_new_protected:Npn __regex_show_item_exact_cs:n #1
6121 {
6122 \seq_set_split:Nnn \l__regex_internal_seq { \scan_stop: } {#1}
6123 \seq_set_map_e:NNn \l__regex_internal_seq
6124 \l__regex_internal_seq { \iow_char:N\\##1 }
6125 __regex_show_one:n
6126 { control~sequence~ \seq_use:Nn \l__regex_internal_seq { ~or~ } }
6127 }

(End of definition for __regex_show_item_exact_cs:n.)

46.4 Building
46.4.1 Variables used while building

\l__regex_min_state_int
\l__regex_max_state_int

The last state that was allocated is \l__regex_max_state_int−1, so that \l__regex_-
max_state_int always points to a free state. The min_state variable is 1 to begin with,
but gets shifted in nested calls to the matching code, namely in \c{...} constructions.

6128 \int_new:N \l__regex_min_state_int
6129 \int_set:Nn \l__regex_min_state_int { 1 }
6130 \int_new:N \l__regex_max_state_int

(End of definition for \l__regex_min_state_int and \l__regex_max_state_int.)

\l__regex_left_state_int
\l__regex_right_state_int
\l__regex_left_state_seq

\l__regex_right_state_seq

Alternatives are implemented by branching from a left state into the various choices,
then merging those into a right state. We store information about those states in two
sequences. Those states are also used to implement group quantifiers. Most often, the
left and right pointers only differ by 1.

6131 \int_new:N \l__regex_left_state_int
6132 \int_new:N \l__regex_right_state_int
6133 \seq_new:N \l__regex_left_state_seq
6134 \seq_new:N \l__regex_right_state_seq

(End of definition for \l__regex_left_state_int and others.)

\l__regex_capturing_group_int \l__regex_capturing_group_int is the next id number to be assigned to a capturing
group. This starts at 0 for the group enclosing the full regular expression, and groups
are counted in the order of their left parenthesis, except when encountering resetting
groups.

6135 \int_new:N \l__regex_capturing_group_int

(End of definition for \l__regex_capturing_group_int.)

526

46.4.2 Framework
This phase is about going from a compiled regex to an nfa. Each state of the nfa is
stored in a \toks. The operations which can appear in the \toks are

• __regex_action_start_wildcard:N ⟨boolean⟩ inserted at the start of the reg-
ular expression, where a true ⟨boolean⟩ makes it unanchored.

• __regex_action_success: marks the exit state of the nfa.

• __regex_action_cost:n {⟨shift⟩} is a transition from the current ⟨state⟩ to
⟨state⟩+ ⟨shift⟩, which consumes the current character: the target state is saved
and will be considered again when matching at the next position.

• __regex_action_free:n {⟨shift⟩}, and __regex_action_free_group:n {⟨shift⟩}
are free transitions, which immediately perform the actions for the state ⟨state⟩ +
⟨shift⟩ of the nfa. They differ in how they detect and avoid infinite loops. For
now, we just need to know that the group variant must be used for transitions back
to the start of a group.

• __regex_action_submatch:nN {⟨group⟩} ⟨key⟩ where the ⟨key⟩ is < or > for the
beginning or end of group numbered ⟨group⟩. This causes the current position in
the query to be stored as the ⟨key⟩ submatch boundary.

• One of these actions, within a conditional.

We strive to preserve the following properties while building.

• The current capturing group is capturing_group − 1, and if a group opened now
it would be labelled capturing_group.

• The last allocated state is max_state − 1, so max_state is a free state.

• The left_state points to a state to the left of the current group or of the last
class.

• The right_state points to a newly created, empty state, with some transitions
leading to it.

• The left/right sequences hold a list of the corresponding end-points of nested
groups.

__regex_build:n
__regex_build_aux:Nn

__regex_build:N
__regex_build_aux:NN

The n-type function first compiles its argument. Reset some variables. Allocate two
states, and put a wildcard in state 0 (transitions to state 1 and 0 state). Then build
the regex within a (capturing) group numbered 0 (current value of capturing_group).
Finally, if the match reaches the last state, it is successful. A false boolean for argument
#1 for the auxiliaries will suppress the wildcard and make the match anchored: used for
\peek_regex:nTF and similar.

6136 \cs_new_protected:Npn __regex_build:n
6137 { __regex_build_aux:Nn \c_true_bool }
6138 \cs_new_protected:Npn __regex_build:N
6139 { __regex_build_aux:NN \c_true_bool }
6140 \cs_new_protected:Npn __regex_build_aux:Nn #1#2
6141 {
6142 __regex_compile:n {#2}

527

6143 __regex_build_aux:NN #1 \l__regex_internal_regex
6144 }
6145 \cs_new_protected:Npn __regex_build_aux:NN #1#2
6146 {
6147 __regex_standard_escapechar:
6148 \int_zero:N \l__regex_capturing_group_int
6149 \int_set_eq:NN \l__regex_max_state_int \l__regex_min_state_int
6150 __regex_build_new_state:
6151 __regex_build_new_state:
6152 __regex_toks_put_right:Nn \l__regex_left_state_int
6153 { __regex_action_start_wildcard:N #1 }
6154 __regex_group:nnnN {#2} { 1 } { 0 } \c_false_bool
6155 __regex_toks_put_right:Nn \l__regex_right_state_int
6156 { __regex_action_success: }
6157 }

(End of definition for __regex_build:n and others.)

\g__regex_case_int Case number that was successfully matched in \regex_match_case:nn and related func-
tions.

6158 \int_new:N \g__regex_case_int

(End of definition for \g__regex_case_int.)

\l__regex_case_max_group_int The largest group number appearing in any of the ⟨regex⟩ in the argument of \regex_-
match_case:nn and related functions.

6159 \int_new:N \l__regex_case_max_group_int

(End of definition for \l__regex_case_max_group_int.)

__regex_case_build:n
__regex_case_build:e

__regex_case_build_aux:Nn
__regex_case_build_loop:n

See __regex_build:n, but with a loop.
6160 \cs_new_protected:Npn __regex_case_build:n #1
6161 {
6162 __regex_case_build_aux:Nn \c_true_bool {#1}
6163 \int_gzero:N \g__regex_case_int
6164 }
6165 \cs_generate_variant:Nn __regex_case_build:n { e }
6166 \cs_new_protected:Npn __regex_case_build_aux:Nn #1#2
6167 {
6168 __regex_standard_escapechar:
6169 \int_set_eq:NN \l__regex_max_state_int \l__regex_min_state_int
6170 __regex_build_new_state:
6171 __regex_build_new_state:
6172 __regex_toks_put_right:Nn \l__regex_left_state_int
6173 { __regex_action_start_wildcard:N #1 }
6174 %
6175 __regex_build_new_state:
6176 __regex_toks_put_left:Ne \l__regex_left_state_int
6177 { __regex_action_submatch:nN \c_zero_int < }
6178 __regex_push_lr_states:
6179 \int_zero:N \l__regex_case_max_group_int
6180 \int_gzero:N \g__regex_case_int
6181 \tl_map_inline:nn {#2}
6182 {
6183 \int_gincr:N \g__regex_case_int

528

6184 __regex_case_build_loop:n {##1}
6185 }
6186 \int_set_eq:NN \l__regex_capturing_group_int \l__regex_case_max_group_int
6187 __regex_pop_lr_states:
6188 }
6189 \cs_new_protected:Npn __regex_case_build_loop:n #1
6190 {
6191 \int_set_eq:NN \l__regex_capturing_group_int \c_one_int
6192 __regex_compile_use:n {#1}
6193 \int_set:Nn \l__regex_case_max_group_int
6194 { \int_max:nn \l__regex_case_max_group_int \l__regex_capturing_group_int }
6195 \seq_pop:NN \l__regex_right_state_seq \l__regex_internal_a_tl
6196 \int_set:Nn \l__regex_right_state_int \l__regex_internal_a_tl
6197 __regex_toks_put_left:Ne \l__regex_right_state_int
6198 {
6199 __regex_action_submatch:nN \c_zero_int >
6200 \int_gset:Nn \g__regex_case_int
6201 { \int_use:N \g__regex_case_int }
6202 __regex_action_success:
6203 }
6204 __regex_toks_clear:N \l__regex_max_state_int
6205 \seq_push:No \l__regex_right_state_seq
6206 { \int_use:N \l__regex_max_state_int }
6207 \int_incr:N \l__regex_max_state_int
6208 }

(End of definition for __regex_case_build:n , __regex_case_build_aux:Nn , and __regex_case_-
build_loop:n.)

__regex_build_for_cs:n The matching code relies on some global intarray variables, but only uses a range of their
entries. Specifically,

• \g__regex_state_active_intarray from \l__regex_min_state_int to \l__regex_max_state_int−
1;

Here, in this nested call to the matching code, we need the new versions of this range
to involve completely new entries of the intarray variables, so we begin by setting (the
new) \l__regex_min_state_int to (the old) \l__regex_max_state_int to use higher
entries.

When using a regex to match a cs, we don’t insert a wildcard, we anchor at the
end, and since we ignore submatches, there is no need to surround the expression with
a group. However, for branches to work properly at the outer level, we need to put the
appropriate left and right states in their sequence.

6209 \cs_new_protected:Npn __regex_build_for_cs:n #1
6210 {
6211 \int_set_eq:NN \l__regex_min_state_int \l__regex_max_state_int
6212 __regex_build_new_state:
6213 __regex_build_new_state:
6214 __regex_push_lr_states:
6215 #1
6216 __regex_pop_lr_states:
6217 __regex_toks_put_right:Nn \l__regex_right_state_int
6218 {
6219 \if_int_compare:w -2 = \l__regex_curr_char_int

529

6220 \exp_after:wN __regex_action_success:
6221 \fi:
6222 }
6223 }

(End of definition for __regex_build_for_cs:n.)

46.4.3 Helpers for building an nfa
__regex_push_lr_states:
__regex_pop_lr_states:

When building the regular expression, we keep track of pointers to the left-end and
right-end of each group without help from TEX’s grouping.

6224 \cs_new_protected:Npn __regex_push_lr_states:
6225 {
6226 \seq_push:No \l__regex_left_state_seq
6227 { \int_use:N \l__regex_left_state_int }
6228 \seq_push:No \l__regex_right_state_seq
6229 { \int_use:N \l__regex_right_state_int }
6230 }
6231 \cs_new_protected:Npn __regex_pop_lr_states:
6232 {
6233 \seq_pop:NN \l__regex_left_state_seq \l__regex_internal_a_tl
6234 \int_set:Nn \l__regex_left_state_int \l__regex_internal_a_tl
6235 \seq_pop:NN \l__regex_right_state_seq \l__regex_internal_a_tl
6236 \int_set:Nn \l__regex_right_state_int \l__regex_internal_a_tl
6237 }

(End of definition for __regex_push_lr_states: and __regex_pop_lr_states:.)

__regex_build_transition_left:NNN
__regex_build_transition_right:nNn

Add a transition from #2 to #3 using the function #1. The left function is used for
higher priority transitions, and the right function for lower priority transitions (which
should be performed later). The signatures differ to reflect the differing usage later on.
Both functions could be optimized.

6238 \cs_new_protected:Npn __regex_build_transition_left:NNN #1#2#3
6239 { __regex_toks_put_left:Ne #2 { #1 { \tex_the:D __regex_int_eval:w #3 - #2 } } }
6240 \cs_new_protected:Npn __regex_build_transition_right:nNn #1#2#3
6241 { __regex_toks_put_right:Ne #2 { #1 { \tex_the:D __regex_int_eval:w #3 - #2 } } }

(End of definition for __regex_build_transition_left:NNN and __regex_build_transition_right:nNn.)

__regex_build_new_state: Add a new empty state to the nfa. Then update the left, right, and max states, so
that the right state is the new empty state, and the left state points to the previously
“current” state.

6242 \cs_new_protected:Npn __regex_build_new_state:
6243 {
6244 __regex_toks_clear:N \l__regex_max_state_int
6245 \int_set_eq:NN \l__regex_left_state_int \l__regex_right_state_int
6246 \int_set_eq:NN \l__regex_right_state_int \l__regex_max_state_int
6247 \int_incr:N \l__regex_max_state_int
6248 }

(End of definition for __regex_build_new_state:.)

530

__regex_build_transitions_laziness:NNNNN This function creates a new state, and puts two transitions starting from the old current
state. The order of the transitions is controlled by #1, true for lazy quantifiers, and false
for greedy quantifiers.

6249 \cs_new_protected:Npn __regex_build_transitions_laziness:NNNNN #1#2#3#4#5
6250 {
6251 __regex_build_new_state:
6252 __regex_toks_put_right:Ne \l__regex_left_state_int
6253 {
6254 \if_meaning:w \c_true_bool #1
6255 #2 { \tex_the:D __regex_int_eval:w #3 - \l__regex_left_state_int }
6256 #4 { \tex_the:D __regex_int_eval:w #5 - \l__regex_left_state_int }
6257 \else:
6258 #4 { \tex_the:D __regex_int_eval:w #5 - \l__regex_left_state_int }
6259 #2 { \tex_the:D __regex_int_eval:w #3 - \l__regex_left_state_int }
6260 \fi:
6261 }
6262 }

(End of definition for __regex_build_transitions_laziness:NNNNN.)

46.4.4 Building classes
__regex_class:NnnnN

__regex_tests_action_cost:n
The arguments are: ⟨boolean⟩ {⟨tests⟩} {⟨min⟩} {⟨more⟩} ⟨laziness⟩. First store the
tests with a trailing __regex_action_cost:n, in the true branch of __regex_break_-
point:TF for positive classes, or the false branch for negative classes. The integer ⟨more⟩
is 0 for fixed repetitions, −1 for unbounded repetitions, and ⟨max⟩ − ⟨min⟩ for a range of
repetitions.

6263 \cs_new_protected:Npn __regex_class:NnnnN #1#2#3#4#5
6264 {
6265 \cs_set:Npe __regex_tests_action_cost:n ##1
6266 {
6267 \exp_not:n { \exp_not:n {#2} }
6268 \bool_if:NTF #1
6269 { __regex_break_point:TF { __regex_action_cost:n {##1} } { } }
6270 { __regex_break_point:TF { } { __regex_action_cost:n {##1} } }
6271 }
6272 \if_case:w - #4 \exp_stop_f:
6273 __regex_class_repeat:n {#3}
6274 \or: __regex_class_repeat:nN {#3} #5
6275 \else: __regex_class_repeat:nnN {#3} {#4} #5
6276 \fi:
6277 }
6278 \cs_new:Npn __regex_tests_action_cost:n { __regex_action_cost:n }

(End of definition for __regex_class:NnnnN and __regex_tests_action_cost:n.)

__regex_class_repeat:n This is used for a fixed number of repetitions. Build one state for each repetition, with a
transition controlled by the tests that we have collected. That works just fine for #1 = 0
repetitions: nothing is built.

6279 \cs_new_protected:Npn __regex_class_repeat:n #1
6280 {
6281 \prg_replicate:nn {#1}
6282 {

531

6283 __regex_build_new_state:
6284 __regex_build_transition_right:nNn __regex_tests_action_cost:n
6285 \l__regex_left_state_int \l__regex_right_state_int
6286 }
6287 }

(End of definition for __regex_class_repeat:n.)

__regex_class_repeat:nN This implements unbounded repetitions of a single class (e.g. the * and + quantifiers). If
the minimum number #1 of repetitions is 0, then build a transition from the current state
to itself governed by the tests, and a free transition to a new state (hence skipping the
tests). Otherwise, call __regex_class_repeat:n for the code to match #1 repetitions,
and add free transitions from the last state to the previous one, and to a new one. In
both cases, the order of transitions is controlled by the laziness boolean #2.

6288 \cs_new_protected:Npn __regex_class_repeat:nN #1#2
6289 {
6290 \if_int_compare:w #1 = \c_zero_int
6291 __regex_build_transitions_laziness:NNNNN #2
6292 __regex_action_free:n \l__regex_right_state_int
6293 __regex_tests_action_cost:n \l__regex_left_state_int
6294 \else:
6295 __regex_class_repeat:n {#1}
6296 \int_set_eq:NN \l__regex_internal_a_int \l__regex_left_state_int
6297 __regex_build_transitions_laziness:NNNNN #2
6298 __regex_action_free:n \l__regex_right_state_int
6299 __regex_action_free:n \l__regex_internal_a_int
6300 \fi:
6301 }

(End of definition for __regex_class_repeat:nN.)

__regex_class_repeat:nnN We want to build the code to match from #1 to #1+#2 repetitions. Match #1 repetitions
(can be 0). Compute the final state of the next construction as a. Build #2 > 0 states,
each with a transition to the next state governed by the tests, and a transition to the
final state a. The computation of a is safe because states are allocated in order, starting
from max_state.

6302 \cs_new_protected:Npn __regex_class_repeat:nnN #1#2#3
6303 {
6304 __regex_class_repeat:n {#1}
6305 \int_set:Nn \l__regex_internal_a_int
6306 { \l__regex_max_state_int + #2 - \c_one_int }
6307 \prg_replicate:nn { #2 }
6308 {
6309 __regex_build_transitions_laziness:NNNNN #3
6310 __regex_action_free:n \l__regex_internal_a_int
6311 __regex_tests_action_cost:n \l__regex_right_state_int
6312 }
6313 }

(End of definition for __regex_class_repeat:nnN.)

532

46.4.5 Building groups
__regex_group_aux:nnnnN Arguments: {⟨label⟩} {⟨contents⟩} {⟨min⟩} {⟨more⟩} ⟨laziness⟩. If ⟨min⟩ is 0, we need

to add a state before building the group, so that the thread which skips the group does
not also set the start-point of the submatch. After adding one more state, the left_-
state is the left end of the group, from which all branches stem, and the right_state
is the right end of the group, and all branches end their course in that state. We store
those two integers to be queried for each branch, we build the nfa states for the contents
#2 of the group, and we forget about the two integers. Once this is done, perform the
repetition: either exactly #3 times, or #3 or more times, or between #3 and #3 + #4
times, with laziness #5. The ⟨label⟩ #1 is used for submatch tracking. Each of the three
auxiliaries expects left_state and right_state to be set properly.

6314 \cs_new_protected:Npn __regex_group_aux:nnnnN #1#2#3#4#5
6315 {
6316 \if_int_compare:w #3 = \c_zero_int
6317 __regex_build_new_state:
6318 __regex_build_transition_right:nNn __regex_action_free_group:n
6319 \l__regex_left_state_int \l__regex_right_state_int
6320 \fi:
6321 __regex_build_new_state:
6322 __regex_push_lr_states:
6323 #2
6324 __regex_pop_lr_states:
6325 \if_case:w - #4 \exp_stop_f:
6326 __regex_group_repeat:nn {#1} {#3}
6327 \or: __regex_group_repeat:nnN {#1} {#3} #5
6328 \else: __regex_group_repeat:nnnN {#1} {#3} {#4} #5
6329 \fi:
6330 }

(End of definition for __regex_group_aux:nnnnN.)

__regex_group:nnnN
__regex_group_no_capture:nnnN

Hand to __regex_group_aux:nnnnnN the label of that group (expanded), and the group
itself, with some extra commands to perform.

6331 \cs_new_protected:Npn __regex_group:nnnN #1
6332 {
6333 \exp_args:No __regex_group_aux:nnnnN
6334 { \int_use:N \l__regex_capturing_group_int }
6335 {
6336 \int_incr:N \l__regex_capturing_group_int
6337 #1
6338 }
6339 }
6340 \cs_new_protected:Npn __regex_group_no_capture:nnnN
6341 { __regex_group_aux:nnnnN { -1 } }

(End of definition for __regex_group:nnnN and __regex_group_no_capture:nnnN.)

__regex_group_resetting:nnnN
__regex_group_resetting_loop:nnNn

Again, hand the label −1 to __regex_group_aux:nnnnN, but this time we work a little
bit harder to keep track of the maximum group label at the end of any branch, and to
reset the group number at each branch. This relies on the fact that a compiled regex
always is a sequence of items of the form __regex_branch:n {⟨branch⟩}.

6342 \cs_new_protected:Npn __regex_group_resetting:nnnN #1

533

6343 {
6344 __regex_group_aux:nnnnN { -1 }
6345 {
6346 \exp_args:Noo __regex_group_resetting_loop:nnNn
6347 { \int_use:N \l__regex_capturing_group_int }
6348 { \int_use:N \l__regex_capturing_group_int }
6349 #1
6350 { ?? \prg_break:n } { }
6351 \prg_break_point:
6352 }
6353 }
6354 \cs_new_protected:Npn __regex_group_resetting_loop:nnNn #1#2#3#4
6355 {
6356 \use_none:nn #3 { \int_set:Nn \l__regex_capturing_group_int {#1} }
6357 \int_set:Nn \l__regex_capturing_group_int {#2}
6358 #3 {#4}
6359 \exp_args:Ne __regex_group_resetting_loop:nnNn
6360 { \int_max:nn {#1} \l__regex_capturing_group_int }
6361 {#2}
6362 }

(End of definition for __regex_group_resetting:nnnN and __regex_group_resetting_loop:nnNn.)

__regex_branch:n Add a free transition from the left state of the current group to a brand new state,
starting point of this branch. Once the branch is built, add a transition from its last
state to the right state of the group. The left and right states of the group are extracted
from the relevant sequences.

6363 \cs_new_protected:Npn __regex_branch:n #1
6364 {
6365 __regex_build_new_state:
6366 \seq_get:NN \l__regex_left_state_seq \l__regex_internal_a_tl
6367 \int_set:Nn \l__regex_left_state_int \l__regex_internal_a_tl
6368 __regex_build_transition_right:nNn __regex_action_free:n
6369 \l__regex_left_state_int \l__regex_right_state_int
6370 #1
6371 \seq_get:NN \l__regex_right_state_seq \l__regex_internal_a_tl
6372 __regex_build_transition_right:nNn __regex_action_free:n
6373 \l__regex_right_state_int \l__regex_internal_a_tl
6374 }

(End of definition for __regex_branch:n.)

__regex_group_repeat:nn This function is called to repeat a group a fixed number of times #2; if this is 0 we
remove the group altogether (but don’t reset the capturing_group label). Otherwise,
the auxiliary __regex_group_repeat_aux:n copies #2 times the \toks for the group,
and leaves internal_a pointing to the left end of the last repetition. We only record
the submatch information at the last repetition. Finally, add a state at the end (the
transition to it has been taken care of by the replicating auxiliary).

6375 \cs_new_protected:Npn __regex_group_repeat:nn #1#2
6376 {
6377 \if_int_compare:w #2 = \c_zero_int
6378 \int_set:Nn \l__regex_max_state_int
6379 { \l__regex_left_state_int - \c_one_int }
6380 __regex_build_new_state:

534

6381 \else:
6382 __regex_group_repeat_aux:n {#2}
6383 __regex_group_submatches:nNN {#1}
6384 \l__regex_internal_a_int \l__regex_right_state_int
6385 __regex_build_new_state:
6386 \fi:
6387 }

(End of definition for __regex_group_repeat:nn.)

__regex_group_submatches:nNN This inserts in states #2 and #3 the code for tracking submatches of the group #1, unless
inhibited by a label of −1.

6388 \cs_new_protected:Npn __regex_group_submatches:nNN #1#2#3
6389 {
6390 \if_int_compare:w #1 > - \c_one_int
6391 __regex_toks_put_left:Ne #2 { __regex_action_submatch:nN {#1} < }
6392 __regex_toks_put_left:Ne #3 { __regex_action_submatch:nN {#1} > }
6393 \fi:
6394 }

(End of definition for __regex_group_submatches:nNN.)

__regex_group_repeat_aux:n Here we repeat \toks ranging from left_state to max_state, #1 > 0 times. First
add a transition so that the copies “chain” properly. Compute the shift c between the
original copy and the last copy we want. Shift the right_state and max_state to their
final values. We then want to perform c copy operations. At the end, b is equal to the
max_state, and a points to the left of the last copy of the group.

6395 \cs_new_protected:Npn __regex_group_repeat_aux:n #1
6396 {
6397 __regex_build_transition_right:nNn __regex_action_free:n
6398 \l__regex_right_state_int \l__regex_max_state_int
6399 \int_set_eq:NN \l__regex_internal_a_int \l__regex_left_state_int
6400 \int_set_eq:NN \l__regex_internal_b_int \l__regex_max_state_int
6401 \if_int_compare:w __regex_int_eval:w #1 > \c_one_int
6402 \int_set:Nn \l__regex_internal_c_int
6403 {
6404 (#1 - \c_one_int)
6405 * (\l__regex_internal_b_int - \l__regex_internal_a_int)
6406 }
6407 \int_add:Nn \l__regex_right_state_int \l__regex_internal_c_int
6408 \int_add:Nn \l__regex_max_state_int \l__regex_internal_c_int
6409 __regex_toks_memcpy:NNn
6410 \l__regex_internal_b_int
6411 \l__regex_internal_a_int
6412 \l__regex_internal_c_int
6413 \fi:
6414 }

(End of definition for __regex_group_repeat_aux:n.)

__regex_group_repeat:nnN This function is called to repeat a group at least n times; the case n = 0 is very different
from n > 0. Assume first that n = 0. Insert submatch tracking information at the start
and end of the group, add a free transition from the right end to the “true” left state a

535

(remember: in this case we had added an extra state before the left state). This forms
the loop, which we break away from by adding a free transition from a to a new state.

Now consider the case n > 0. Repeat the group n times, chaining various copies
with a free transition. Add submatch tracking only to the last copy, then add a free
transition from the right end back to the left end of the last copy, either before or after
the transition to move on towards the rest of the nfa. This transition can end up before
submatch tracking, but that is irrelevant since it only does so when going again through
the group, recording new matches. Finally, add a state; we already have a transition
pointing to it from __regex_group_repeat_aux:n.

6415 \cs_new_protected:Npn __regex_group_repeat:nnN #1#2#3
6416 {
6417 \if_int_compare:w #2 = \c_zero_int
6418 __regex_group_submatches:nNN {#1}
6419 \l__regex_left_state_int \l__regex_right_state_int
6420 \int_set:Nn \l__regex_internal_a_int
6421 { \l__regex_left_state_int - \c_one_int }
6422 __regex_build_transition_right:nNn __regex_action_free:n
6423 \l__regex_right_state_int \l__regex_internal_a_int
6424 __regex_build_new_state:
6425 \if_meaning:w \c_true_bool #3
6426 __regex_build_transition_left:NNN __regex_action_free:n
6427 \l__regex_internal_a_int \l__regex_right_state_int
6428 \else:
6429 __regex_build_transition_right:nNn __regex_action_free:n
6430 \l__regex_internal_a_int \l__regex_right_state_int
6431 \fi:
6432 \else:
6433 __regex_group_repeat_aux:n {#2}
6434 __regex_group_submatches:nNN {#1}
6435 \l__regex_internal_a_int \l__regex_right_state_int
6436 \if_meaning:w \c_true_bool #3
6437 __regex_build_transition_right:nNn __regex_action_free_group:n
6438 \l__regex_right_state_int \l__regex_internal_a_int
6439 \else:
6440 __regex_build_transition_left:NNN __regex_action_free_group:n
6441 \l__regex_right_state_int \l__regex_internal_a_int
6442 \fi:
6443 __regex_build_new_state:
6444 \fi:
6445 }

(End of definition for __regex_group_repeat:nnN.)

__regex_group_repeat:nnnN We wish to repeat the group between #2 and #2 + #3 times, with a laziness controlled
by #4. We insert submatch tracking up front: in principle, we could avoid recording
submatches for the first #2 copies of the group, but that forces us to treat specially the
case #2 = 0. Repeat that group with submatch tracking #2 + #3 times (the maximum
number of repetitions). Then our goal is to add #3 transitions from the end of the #2-
th group, and each subsequent groups, to the end. For a lazy quantifier, we add those
transitions to the left states, before submatch tracking. For the greedy case, we add the
transitions to the right states, after submatch tracking and the transitions which go on
with more repetitions. In the greedy case with #2 = 0, the transition which skips over all

536

copies of the group must be added separately, because its starting state does not follow
the normal pattern: we had to add it “by hand” earlier.

6446 \cs_new_protected:Npn __regex_group_repeat:nnnN #1#2#3#4
6447 {
6448 __regex_group_submatches:nNN {#1}
6449 \l__regex_left_state_int \l__regex_right_state_int
6450 __regex_group_repeat_aux:n { #2 + #3 }
6451 \if_meaning:w \c_true_bool #4
6452 \int_set_eq:NN \l__regex_left_state_int \l__regex_max_state_int
6453 \prg_replicate:nn { #3 }
6454 {
6455 \int_sub:Nn \l__regex_left_state_int
6456 { \l__regex_internal_b_int - \l__regex_internal_a_int }
6457 __regex_build_transition_left:NNN __regex_action_free:n
6458 \l__regex_left_state_int \l__regex_max_state_int
6459 }
6460 \else:
6461 \prg_replicate:nn { #3 - \c_one_int }
6462 {
6463 \int_sub:Nn \l__regex_right_state_int
6464 { \l__regex_internal_b_int - \l__regex_internal_a_int }
6465 __regex_build_transition_right:nNn __regex_action_free:n
6466 \l__regex_right_state_int \l__regex_max_state_int
6467 }
6468 \if_int_compare:w #2 = \c_zero_int
6469 \int_set:Nn \l__regex_right_state_int
6470 { \l__regex_left_state_int - \c_one_int }
6471 \else:
6472 \int_sub:Nn \l__regex_right_state_int
6473 { \l__regex_internal_b_int - \l__regex_internal_a_int }
6474 \fi:
6475 __regex_build_transition_right:nNn __regex_action_free:n
6476 \l__regex_right_state_int \l__regex_max_state_int
6477 \fi:
6478 __regex_build_new_state:
6479 }

(End of definition for __regex_group_repeat:nnnN.)

46.4.6 Others
__regex_assertion:Nn

__regex_b_test:
__regex_A_test:
__regex_G_test:
__regex_Z_test:

Usage: __regex_assertion:Nn ⟨boolean⟩ {⟨test⟩}, where the ⟨test⟩ is either of the
two other functions. Add a free transition to a new state, conditionally to the assertion
test. The __regex_b_test: test is used by the \b and \B escape: check if the last
character was a word character or not, and do the same to the current character. The
boundary-markers of the string are non-word characters for this purpose.

6480 \cs_new_protected:Npn __regex_assertion:Nn #1#2
6481 {
6482 __regex_build_new_state:
6483 __regex_toks_put_right:Ne \l__regex_left_state_int
6484 {
6485 \exp_not:n {#2}
6486 __regex_break_point:TF

537

6487 \bool_if:NF #1 { { } }
6488 {
6489 __regex_action_free:n
6490 {
6491 \tex_the:D __regex_int_eval:w
6492 \l__regex_right_state_int - \l__regex_left_state_int
6493 }
6494 }
6495 \bool_if:NT #1 { { } }
6496 }
6497 }
6498 \cs_new_protected:Npn __regex_b_test:
6499 {
6500 \group_begin:
6501 \int_set_eq:NN \l__regex_curr_char_int \l__regex_last_char_int
6502 __regex_prop_w:
6503 __regex_break_point:TF
6504 { \group_end: __regex_item_reverse:n { __regex_prop_w: } }
6505 { \group_end: __regex_prop_w: }
6506 }
6507 \cs_new_protected:Npn __regex_Z_test:
6508 {
6509 \if_int_compare:w -2 = \l__regex_curr_char_int
6510 \exp_after:wN __regex_break_true:w
6511 \fi:
6512 }
6513 \cs_new_protected:Npn __regex_A_test:
6514 {
6515 \if_int_compare:w -2 = \l__regex_last_char_int
6516 \exp_after:wN __regex_break_true:w
6517 \fi:
6518 }
6519 \cs_new_protected:Npn __regex_G_test:
6520 {
6521 \if_int_compare:w \l__regex_curr_pos_int = \l__regex_start_pos_int
6522 \exp_after:wN __regex_break_true:w
6523 \fi:
6524 }

(End of definition for __regex_assertion:Nn and others.)

__regex_command_K: Change the starting point of the 0-th submatch (full match), and transition to a new
state, pretending that this is a fresh thread.

6525 \cs_new_protected:Npn __regex_command_K:
6526 {
6527 __regex_build_new_state:
6528 __regex_toks_put_right:Ne \l__regex_left_state_int
6529 {
6530 __regex_action_submatch:nN \c_zero_int <
6531 \bool_set_true:N \l__regex_fresh_thread_bool
6532 __regex_action_free:n
6533 {
6534 \tex_the:D __regex_int_eval:w
6535 \l__regex_right_state_int - \l__regex_left_state_int

538

6536 }
6537 \bool_set_false:N \l__regex_fresh_thread_bool
6538 }
6539 }

(End of definition for __regex_command_K:.)

46.5 Matching
We search for matches by running all the execution threads through the nfa in parallel,
reading one token of the query at each step. The nfa contains “free” transitions to
other states, and transitions which “consume” the current token. For free transitions,
the instruction at the new state of the nfa is performed immediately. When a transition
consumes a character, the new state is appended to a list of “active states”, stored in
\g__regex_thread_info_intarray (together with submatch information): this thread
is made active again when the next token is read from the query. At every step (for each
token in the query), we unpack that list of active states and the corresponding submatch
props, and empty those.

If two paths through the nfa “collide” in the sense that they reach the same state
after reading a given token, then they only differ in how they previously matched, and
any future execution would be identical for both. (Note that this would be wrong in
the presence of back-references.) Hence, we only need to keep one of the two threads:
the thread with the highest priority. Our nfa is built in such a way that higher priority
actions always come before lower priority actions, which makes things work.

The explanation in the previous paragraph may make us think that we simply need
to keep track of which states were visited at a given step: after all, the loop generated
when matching (a?)* against a is broken, isn’t it? No. The group first matches a, as
it should, then repeats; it attempts to match a again but fails; it skips a, and finds out
that this state has already been seen at this position in the query: the match stops. The
capturing group is (wrongly) a. What went wrong is that a thread collided with itself,
and the later version, which has gone through the group one more times with an empty
match, should have a higher priority than not going through the group.

We solve this by distinguishing “normal” free transitions __regex_action_free:n
from transitions __regex_action_free_group:n which go back to the start of the
group. The former keeps threads unless they have been visited by a “completed” thread,
while the latter kind of transition also prevents going back to a state visited by the
current thread.

46.5.1 Variables used when matching
\l__regex_min_pos_int
\l__regex_max_pos_int
\l__regex_curr_pos_int
\l__regex_start_pos_int

\l__regex_success_pos_int

The tokens in the query are indexed from min_pos for the first to max_pos−1 for the last,
and their information is stored in several arrays and \toks registers with those numbers.
We match without backtracking, keeping all threads in lockstep at the curr_pos in the
query. The starting point of the current match attempt is start_pos, and success_pos,
updated whenever a thread succeeds, is used as the next starting position.

6540 \int_new:N \l__regex_min_pos_int
6541 \int_new:N \l__regex_max_pos_int
6542 \int_new:N \l__regex_curr_pos_int
6543 \int_new:N \l__regex_start_pos_int
6544 \int_new:N \l__regex_success_pos_int

539

(End of definition for \l__regex_min_pos_int and others.)

\l__regex_curr_char_int
\l__regex_curr_catcode_int

\l__regex_curr_token_tl
\l__regex_last_char_int

\l__regex_last_char_success_int
\l__regex_case_changed_char_int

The character and category codes of the token at the current position and a token list
expanding to that token; the character code of the token at the previous position; the
character code of the token just before a successful match; and the character code of the
result of changing the case of the current token (A-Z↔a-z). This last integer is only
computed when necessary, and is otherwise \c_max_int. The curr_char variable is also
used in various other phases to hold a character code.

6545 \int_new:N \l__regex_curr_char_int
6546 \int_new:N \l__regex_curr_catcode_int
6547 \tl_new:N \l__regex_curr_token_tl
6548 \int_new:N \l__regex_last_char_int
6549 \int_new:N \l__regex_last_char_success_int
6550 \int_new:N \l__regex_case_changed_char_int

(End of definition for \l__regex_curr_char_int and others.)

\l__regex_curr_state_int For every character in the token list, each of the active states is considered in turn.
The variable \l__regex_curr_state_int holds the state of the nfa which is currently
considered: transitions are then given as shifts relative to the current state.

6551 \int_new:N \l__regex_curr_state_int

(End of definition for \l__regex_curr_state_int.)

\l__regex_curr_submatches_tl
\l__regex_success_submatches_tl

The submatches for the thread which is currently active are stored in the curr_-
submatches list, which is almost a comma list, but ends with a comma. This list is stored
by __regex_store_state:n into an intarray variable, to be retrieved when matching at
the next position. When a thread succeeds, this list is copied to \l__regex_success_-
submatches_tl: only the last successful thread remains there.

6552 \tl_new:N \l__regex_curr_submatches_tl
6553 \tl_new:N \l__regex_success_submatches_tl

(End of definition for \l__regex_curr_submatches_tl and \l__regex_success_submatches_tl.)

\l__regex_step_int This integer, always even, is increased every time a character in the query is read, and not
reset when doing multiple matches. We store in \g__regex_state_active_intarray the
last step in which each ⟨state⟩ in the nfa was encountered. This lets us break infinite
loops by not visiting the same state twice in the same step. In fact, the step we store
is equal to step when we have started performing the operations of \toks⟨state⟩, but
not finished yet. However, once we finish, we store step + 1 in \g__regex_state_-
active_intarray. This is needed to track submatches properly (see building phase).
The step is also used to attach each set of submatch information to a given iteration
(and automatically discard it when it corresponds to a past step).

6554 \int_new:N \l__regex_step_int

(End of definition for \l__regex_step_int.)

\l__regex_min_thread_int
\l__regex_max_thread_int

All the currently active threads are kept in order of precedence in \g__regex_thread_-
info_intarray together with the corresponding submatch information. Data in this
intarray is organized as blocks from min_thread (included) to max_thread (excluded).
At the start of every step, the whole array is unpacked, so that the space can immediately
be reused, and max_thread is reset to min_thread, effectively clearing the array.

6555 \int_new:N \l__regex_min_thread_int
6556 \int_new:N \l__regex_max_thread_int

540

(End of definition for \l__regex_min_thread_int and \l__regex_max_thread_int.)

\g__regex_state_active_intarray
\g__regex_thread_info_intarray

\g__regex_state_active_intarray stores the last ⟨step⟩ in which each ⟨state⟩ was
active. \g__regex_thread_info_intarray stores threads to be considered in the next
step, more precisely the states in which these threads are.

6557 \intarray_new:Nn \g__regex_state_active_intarray { 65536 }
6558 \intarray_new:Nn \g__regex_thread_info_intarray { 65536 }

(End of definition for \g__regex_state_active_intarray and \g__regex_thread_info_intarray.)

\l__regex_matched_analysis_tl
\l__regex_curr_analysis_tl

The list \l__regex_curr_analysis_tl consists of a brace group containing three brace
groups corresponding to the current token, with the same syntax as \tl_analysis_map_-
inline:nn. The list \l__regex_matched_analysis_tl (constructed under the tl_-
build machinery) has one item for each token that has already been treated so far in a
given match attempt: each item consists of three brace groups with the same syntax as
\tl_analysis_map_inline:nn.

6559 \tl_new:N \l__regex_matched_analysis_tl
6560 \tl_new:N \l__regex_curr_analysis_tl

(End of definition for \l__regex_matched_analysis_tl and \l__regex_curr_analysis_tl.)

\l__regex_every_match_tl Every time a match is found, this token list is used. For single matching, the token
list is empty. For multiple matching, the token list is set to repeat the matching, after
performing some operation which depends on the user function. See __regex_single_-
match: and __regex_multi_match:n.

6561 \tl_new:N \l__regex_every_match_tl

(End of definition for \l__regex_every_match_tl.)

\l__regex_fresh_thread_bool
\l__regex_empty_success_bool

__regex_if_two_empty_matches:F

When doing multiple matches, we need to avoid infinite loops where each iteration
matches the same empty token list. When an empty token list is matched, the next
successful match of the same empty token list is suppressed. We detect empty matches
by setting \l__regex_fresh_thread_bool to true for threads which directly come from
the start of the regex or from the \K command, and testing that boolean whenever a
thread succeeds. The function __regex_if_two_empty_matches:F is redefined at every
match attempt, depending on whether the previous match was empty or not: if it was,
then the function must cancel a purported success if it is empty and at the same spot as
the previous match; otherwise, we definitely don’t have two identical empty matches, so
the function is \use:n.

6562 \bool_new:N \l__regex_fresh_thread_bool
6563 \bool_new:N \l__regex_empty_success_bool
6564 \cs_new_eq:NN __regex_if_two_empty_matches:F \use:n

(End of definition for \l__regex_fresh_thread_bool , \l__regex_empty_success_bool , and __regex_-
if_two_empty_matches:F.)

\g__regex_success_bool
\l__regex_saved_success_bool
\l__regex_match_success_bool

The boolean \l__regex_match_success_bool is true if the current match attempt was
successful, and \g__regex_success_bool is true if there was at least one successful
match. This is the only global variable in this whole module, but we would need it to be
local when matching a control sequence with \c{...}. This is done by saving the global
variable into \l__regex_saved_success_bool, which is local, hence not affected by the
changes due to inner regex functions.

6565 \bool_new:N \g__regex_success_bool
6566 \bool_new:N \l__regex_saved_success_bool
6567 \bool_new:N \l__regex_match_success_bool

541

(End of definition for \g__regex_success_bool , \l__regex_saved_success_bool , and \l__regex_-
match_success_bool.)

46.5.2 Matching: framework
__regex_match:n

__regex_match_cs:n
__regex_match_init:

Initialize the variables that should be set once for each user function (even for multiple
matches). Namely, the overall matching is not yet successful; none of the states should
be marked as visited (\g__regex_state_active_intarray), and we start at step 0; we
pretend that there was a previous match ending at the start of the query, which was not
empty (to avoid smothering an empty match at the start). Once all this is set up, we are
ready for the ride. Find the first match.

6568 \cs_new_protected:Npn __regex_match:n #1
6569 {
6570 __regex_match_init:
6571 __regex_match_once_init:
6572 \tl_analysis_map_inline:nn {#1}
6573 { __regex_match_one_token:nnN {##1} {##2} ##3 }
6574 __regex_match_one_token:nnN { } { -2 } F
6575 \prg_break_point:Nn __regex_maplike_break: { }
6576 }
6577 \cs_new_protected:Npn __regex_match_cs:n #1
6578 {
6579 \int_set_eq:NN \l__regex_min_thread_int \l__regex_max_thread_int
6580 __regex_match_init:
6581 __regex_match_once_init:
6582 \str_map_inline:nn {#1}
6583 {
6584 \tl_if_blank:nTF {##1}
6585 { __regex_match_one_token:nnN {##1} {‘##1} A }
6586 { __regex_match_one_token:nnN {##1} {‘##1} C }
6587 }
6588 __regex_match_one_token:nnN { } { -2 } F
6589 \prg_break_point:Nn __regex_maplike_break: { }
6590 }
6591 \cs_new_protected:Npn __regex_match_init:
6592 {
6593 \bool_gset_false:N \g__regex_success_bool
6594 \int_step_inline:nnn
6595 \l__regex_min_state_int { \l__regex_max_state_int - \c_one_int }
6596 {
6597 __kernel_intarray_gset:Nnn
6598 \g__regex_state_active_intarray {##1} \c_one_int
6599 }
6600 \int_zero:N \l__regex_step_int
6601 \int_set:Nn \l__regex_min_pos_int { 2 }
6602 \int_set_eq:NN \l__regex_success_pos_int \l__regex_min_pos_int
6603 \int_set:Nn \l__regex_last_char_success_int { -2 }
6604 \tl_build_begin:N \l__regex_matched_analysis_tl
6605 \tl_clear:N \l__regex_curr_analysis_tl
6606 \int_set_eq:NN \l__regex_min_submatch_int \c_one_int
6607 \int_set_eq:NN \l__regex_submatch_int \l__regex_min_submatch_int
6608 \bool_set_false:N \l__regex_empty_success_bool
6609 }

542

(End of definition for __regex_match:n , __regex_match_cs:n , and __regex_match_init:.)

__regex_match_once_init: This function resets various variables used when finding one match. It is called before the
loop through characters, and every time we find a match, before searching for another
match (this is controlled by the every_match token list).

First initialize some variables: set the conditional which detects identical empty
matches; this match attempt starts at the previous success_pos, is not yet successful,
and has no submatches yet; clear the array of active threads, and put the starting state 0
in it. We are then almost ready to read our first token in the query, but we actually start
one position earlier than the start because __regex_match_one_token:nnN increments
\l__regex_curr_pos_int and saves \l__regex_curr_char_int as the last_char so
that word boundaries can be correctly identified.

6610 \cs_new_protected:Npn __regex_match_once_init:
6611 {
6612 \if_meaning:w \c_true_bool \l__regex_empty_success_bool
6613 \cs_set:Npn __regex_if_two_empty_matches:F
6614 {
6615 \int_compare:nNnF
6616 \l__regex_start_pos_int = \l__regex_curr_pos_int
6617 }
6618 \else:
6619 \cs_set_eq:NN __regex_if_two_empty_matches:F \use:n
6620 \fi:
6621 \int_set_eq:NN \l__regex_start_pos_int \l__regex_success_pos_int
6622 \bool_set_false:N \l__regex_match_success_bool
6623 \tl_set:Ne \l__regex_curr_submatches_tl
6624 { \prg_replicate:nn { 2 * \l__regex_capturing_group_int } { 0 , } }
6625 \int_set_eq:NN \l__regex_max_thread_int \l__regex_min_thread_int
6626 __regex_store_state:n { \l__regex_min_state_int }
6627 \int_set:Nn \l__regex_curr_pos_int { \l__regex_start_pos_int - \c_one_int }
6628 \int_set_eq:NN \l__regex_curr_char_int \l__regex_last_char_success_int
6629 \tl_build_get_intermediate:NN \l__regex_matched_analysis_tl \l__regex_internal_a_tl
6630 \exp_args:NNf __regex_match_once_init_aux:
6631 \tl_map_inline:nn
6632 { \exp_after:wN \l__regex_internal_a_tl \l__regex_curr_analysis_tl }
6633 { __regex_match_one_token:nnN ##1 }
6634 \prg_break_point:Nn __regex_maplike_break: { }
6635 }
6636 \cs_new_protected:Npn __regex_match_once_init_aux:
6637 {
6638 \tl_build_begin:N \l__regex_matched_analysis_tl
6639 \tl_clear:N \l__regex_curr_analysis_tl
6640 }

(End of definition for __regex_match_once_init:.)

__regex_single_match:
__regex_multi_match:n

For a single match, the overall success is determined by whether the only match attempt
is a success. When doing multiple matches, the overall matching is successful as soon as
any match succeeds. Perform the action #1, then find the next match.

6641 \cs_new_protected:Npn __regex_single_match:
6642 {
6643 \tl_set:Nn \l__regex_every_match_tl
6644 {

543

6645 \bool_gset_eq:NN
6646 \g__regex_success_bool
6647 \l__regex_match_success_bool
6648 __regex_maplike_break:
6649 }
6650 }
6651 \cs_new_protected:Npn __regex_multi_match:n #1
6652 {
6653 \tl_set:Nn \l__regex_every_match_tl
6654 {
6655 \if_meaning:w \c_false_bool \l__regex_match_success_bool
6656 \exp_after:wN __regex_maplike_break:
6657 \fi:
6658 \bool_gset_true:N \g__regex_success_bool
6659 #1
6660 __regex_match_once_init:
6661 }
6662 }

(End of definition for __regex_single_match: and __regex_multi_match:n.)

__regex_match_one_token:nnN
__regex_match_one_active:n

At each new position, set some variables and get the new character and category from
the query. Then unpack the array of active threads, and clear it by resetting its length
(max_thread). This results in a sequence of __regex_use_state_and_submatches:w
⟨state⟩,⟨submatch-clist⟩; and we consider those states one by one in order. As soon
as a thread succeeds, exit the step, and, if there are threads to consider at the next
position, and we have not reached the end of the string, repeat the loop. Otherwise, the
last thread that succeeded is the match. We explain the fresh_thread business when
describing __regex_action_wildcard:.

6663 \cs_new_protected:Npn __regex_match_one_token:nnN #1#2#3
6664 {
6665 \int_add:Nn \l__regex_step_int { 2 }
6666 \int_incr:N \l__regex_curr_pos_int
6667 \int_set_eq:NN \l__regex_last_char_int \l__regex_curr_char_int
6668 \cs_set_eq:NN __regex_maybe_compute_ccc: __regex_compute_case_changed_char:
6669 \tl_set:Nn \l__regex_curr_token_tl {#1}
6670 \int_set:Nn \l__regex_curr_char_int {#2}
6671 \int_set:Nn \l__regex_curr_catcode_int { "#3 }
6672 \tl_build_put_right:Ne \l__regex_matched_analysis_tl
6673 { \exp_not:o \l__regex_curr_analysis_tl }
6674 \tl_set:Nn \l__regex_curr_analysis_tl { { {#1} {#2} #3 } }
6675 \use:e
6676 {
6677 \int_set_eq:NN \l__regex_max_thread_int \l__regex_min_thread_int
6678 \int_step_function:nnN
6679 \l__regex_min_thread_int
6680 { \l__regex_max_thread_int - \c_one_int }
6681 __regex_match_one_active:n
6682 }
6683 \prg_break_point:
6684 \bool_set_false:N \l__regex_fresh_thread_bool
6685 \if_int_compare:w \l__regex_max_thread_int > \l__regex_min_thread_int
6686 \if_int_compare:w -2 < \l__regex_curr_char_int
6687 \exp_after:wN \use_i:nn

544

6688 \fi:
6689 \fi:
6690 \l__regex_every_match_tl
6691 }
6692 \cs_new:Npn __regex_match_one_active:n #1
6693 {
6694 __regex_use_state_and_submatches:w
6695 __kernel_intarray_range_to_clist:Nnn
6696 \g__regex_thread_info_intarray
6697 { \c_one_int + #1 * (\l__regex_capturing_group_int * 2 + \c_one_int) }
6698 { (\c_one_int + #1) * (\l__regex_capturing_group_int * 2 + \c_one_int) }
6699 ;
6700 }

(End of definition for __regex_match_one_token:nnN and __regex_match_one_active:n.)

46.5.3 Using states of the nfa
__regex_use_state: Use the current nfa instruction. The state is initially marked as belonging to the current

step: this allows normal free transition to repeat, but group-repeating transitions won’t.
Once we are done exploring all the branches it spawned, the state is marked as step+ 1:
any thread hitting it at that point will be terminated.

6701 \cs_new_protected:Npn __regex_use_state:
6702 {
6703 __kernel_intarray_gset:Nnn \g__regex_state_active_intarray
6704 \l__regex_curr_state_int \l__regex_step_int
6705 __regex_toks_use:w \l__regex_curr_state_int
6706 __kernel_intarray_gset:Nnn \g__regex_state_active_intarray
6707 \l__regex_curr_state_int
6708 { __regex_int_eval:w \l__regex_step_int + \c_one_int \scan_stop: }
6709 }

(End of definition for __regex_use_state:.)

__regex_use_state_and_submatches:w This function is called as one item in the array of active threads after that array has
been unpacked for a new step. Update the curr_state and curr_submatches and use
the state if it has not yet been encountered at this step.

6710 \cs_new_protected:Npn __regex_use_state_and_submatches:w #1 , #2 ;
6711 {
6712 \int_set:Nn \l__regex_curr_state_int {#1}
6713 \if_int_compare:w
6714 __kernel_intarray_item:Nn \g__regex_state_active_intarray
6715 \l__regex_curr_state_int
6716 < \l__regex_step_int
6717 \tl_set:Nn \l__regex_curr_submatches_tl { #2 , }
6718 \exp_after:wN __regex_use_state:
6719 \fi:
6720 \scan_stop:
6721 }

(End of definition for __regex_use_state_and_submatches:w.)

545

46.5.4 Actions when matching
__regex_action_start_wildcard:N For an unanchored match, state 0 has a free transition to the next and a costly one to

itself, to repeat at the next position. To catch repeated identical empty matches, we need
to know if a successful thread corresponds to an empty match. The instruction resetting
\l__regex_fresh_thread_bool may be skipped by a successful thread, hence we had to
add it to __regex_match_one_token:nnN too.

6722 \cs_new_protected:Npn __regex_action_start_wildcard:N #1
6723 {
6724 \bool_set_true:N \l__regex_fresh_thread_bool
6725 __regex_action_free:n {1}
6726 \bool_set_false:N \l__regex_fresh_thread_bool
6727 \bool_if:NT #1 { __regex_action_cost:n {0} }
6728 }

(End of definition for __regex_action_start_wildcard:N.)

__regex_action_free:n
__regex_action_free_group:n
__regex_action_free_aux:nn

These functions copy a thread after checking that the nfa state has not already been used
at this position. If not, store submatches in the new state, and insert the instructions for
that state in the input stream. Then restore the old value of \l__regex_curr_state_-
int and of the current submatches. The two types of free transitions differ by how they
test that the state has not been encountered yet: the group version is stricter, and will
not use a state if it was used earlier in the current thread, hence forcefully breaking the
loop, while the “normal” version will revisit a state even within the thread itself.

6729 \cs_new_protected:Npn __regex_action_free:n
6730 { __regex_action_free_aux:nn { > \l__regex_step_int \else: } }
6731 \cs_new_protected:Npn __regex_action_free_group:n
6732 { __regex_action_free_aux:nn { < \l__regex_step_int } }
6733 \cs_new_protected:Npn __regex_action_free_aux:nn #1#2
6734 {
6735 \use:e
6736 {
6737 \int_add:Nn \l__regex_curr_state_int {#2}
6738 \exp_not:n
6739 {
6740 \if_int_compare:w
6741 __kernel_intarray_item:Nn \g__regex_state_active_intarray
6742 \l__regex_curr_state_int
6743 #1
6744 \exp_after:wN __regex_use_state:
6745 \fi:
6746 }
6747 \int_set:Nn \l__regex_curr_state_int
6748 { \int_use:N \l__regex_curr_state_int }
6749 \tl_set:Nn \exp_not:N \l__regex_curr_submatches_tl
6750 { \exp_not:o \l__regex_curr_submatches_tl }
6751 }
6752 }

(End of definition for __regex_action_free:n , __regex_action_free_group:n , and __regex_-
action_free_aux:nn.)

__regex_action_cost:n A transition which consumes the current character and shifts the state by #1. The
resulting state is stored in the appropriate array for use at the next position, and we also
store the current submatches.

546

6753 \cs_new_protected:Npn __regex_action_cost:n #1
6754 {
6755 \exp_args:No __regex_store_state:n
6756 { \tex_the:D __regex_int_eval:w \l__regex_curr_state_int + #1 }
6757 }

(End of definition for __regex_action_cost:n.)

__regex_store_state:n
__regex_store_submatches:

Put the given state and current submatch information in \g__regex_thread_info_-
intarray, and increment the length of the array.

6758 \cs_new_protected:Npn __regex_store_state:n #1
6759 {
6760 \exp_args:No __regex_store_submatches:nn
6761 \l__regex_curr_submatches_tl {#1}
6762 \int_incr:N \l__regex_max_thread_int
6763 }
6764 \cs_new_protected:Npn __regex_store_submatches:nn #1#2
6765 {
6766 __kernel_intarray_gset_range_from_clist:Nnn
6767 \g__regex_thread_info_intarray
6768 {
6769 __regex_int_eval:w
6770 \c_one_int + \l__regex_max_thread_int *
6771 (\l__regex_capturing_group_int * 2 + \c_one_int)
6772 }
6773 { #2 , #1 }
6774 }

(End of definition for __regex_store_state:n and __regex_store_submatches:.)

__regex_disable_submatches: Some user functions don’t require tracking submatches. We get a performance improve-
ment by simply defining the relevant functions to remove their argument and do nothing
with it.

6775 \cs_new_protected:Npn __regex_disable_submatches:
6776 {
6777 \cs_set_protected:Npn __regex_store_submatches:n ##1 { }
6778 \cs_set_protected:Npn __regex_action_submatch:nN ##1##2 { }
6779 }

(End of definition for __regex_disable_submatches:.)

__regex_action_submatch:nN
__regex_action_submatch_aux:w

__regex_action_submatch_auxii:w
__regex_action_submatch_auxiii:w
__regex_action_submatch_auxiv:w

Update the current submatches with the information from the current position. Maybe
a bottleneck.

6780 \cs_new_protected:Npn __regex_action_submatch:nN #1#2
6781 {
6782 \exp_after:wN __regex_action_submatch_aux:w
6783 \l__regex_curr_submatches_tl ; {#1} #2
6784 }
6785 \cs_new_protected:Npn __regex_action_submatch_aux:w #1 ; #2#3
6786 {
6787 \tl_set:Ne \l__regex_curr_submatches_tl
6788 {
6789 \prg_replicate:nn
6790 { #2 \if_meaning:w > #3 + \l__regex_capturing_group_int \fi: }

547

6791 { __regex_action_submatch_auxii:w }
6792 __regex_action_submatch_auxiii:w
6793 #1
6794 }
6795 }
6796 \cs_new:Npn __regex_action_submatch_auxii:w
6797 #1 __regex_action_submatch_auxiii:w #2 ,
6798 { #2 , #1 __regex_action_submatch_auxiii:w }
6799 \cs_new:Npn __regex_action_submatch_auxiii:w #1 ,
6800 { \int_use:N \l__regex_curr_pos_int , }

(End of definition for __regex_action_submatch:nN and others.)

__regex_action_success: There is a successful match when an execution path reaches the last state in the nfa,
unless this marks a second identical empty match. Then mark that there was a successful
match; it is empty if it is “fresh”; and we store the current position and submatches. The
current step is then interrupted with \prg_break:, and only paths with higher precedence
are pursued further. The values stored here may be overwritten by a later success of a
path with higher precedence.

6801 \cs_new_protected:Npn __regex_action_success:
6802 {
6803 __regex_if_two_empty_matches:F
6804 {
6805 \bool_set_true:N \l__regex_match_success_bool
6806 \bool_set_eq:NN \l__regex_empty_success_bool
6807 \l__regex_fresh_thread_bool
6808 \int_set_eq:NN \l__regex_success_pos_int \l__regex_curr_pos_int
6809 \int_set_eq:NN \l__regex_last_char_success_int \l__regex_last_char_int
6810 \tl_build_begin:N \l__regex_matched_analysis_tl
6811 \tl_set_eq:NN \l__regex_success_submatches_tl
6812 \l__regex_curr_submatches_tl
6813 \prg_break:
6814 }
6815 }

(End of definition for __regex_action_success:.)

46.6 Replacement
46.6.1 Variables and helpers used in replacement

\l__regex_replacement_csnames_int The behaviour of closing braces inside a replacement text depends on whether a sequences
\c{ or \u{ has been encountered. The number of “open” such sequences that should be
closed by } is stored in \l__regex_replacement_csnames_int, and decreased by 1 by
each }.

6816 \int_new:N \l__regex_replacement_csnames_int

(End of definition for \l__regex_replacement_csnames_int.)

\l__regex_replacement_category_tl
\l__regex_replacement_category_seq

This sequence of letters is used to correctly restore categories in nested constructions
such as \cL(abc\cD(_)d).

6817 \tl_new:N \l__regex_replacement_category_tl
6818 \seq_new:N \l__regex_replacement_category_seq

548

(End of definition for \l__regex_replacement_category_tl and \l__regex_replacement_category_-
seq.)

\g__regex_balance_tl This token list holds the replacement text for __regex_replacement_balance_one_-
match:n while it is being built incrementally.

6819 \tl_new:N \g__regex_balance_tl

(End of definition for \g__regex_balance_tl.)

__regex_replacement_balance_one_match:n This expects as an argument the first index of a set of entries in \g__regex_submatch_-
begin_intarray (and related arrays) which hold the submatch information for a given
match. It can be used within an integer expression to obtain the brace balance incurred
by performing the replacement on that match. This combines the braces lost by removing
the match, braces added by all the submatches appearing in the replacement, and braces
appearing explicitly in the replacement. Even though it is always redefined before use,
we initialize it as for an empty replacement. An important property is that concatenating
several calls to that function must result in a valid integer expression (hence a leading +
in the actual definition).

6820 \cs_new:Npn __regex_replacement_balance_one_match:n #1
6821 { - __regex_submatch_balance:n {#1} }

(End of definition for __regex_replacement_balance_one_match:n.)

__regex_replacement_do_one_match:n The input is the same as __regex_replacement_balance_one_match:n. This function
is redefined to expand to the part of the token list from the end of the previous match
to a given match, followed by the replacement text. Hence concatenating the result of
this function with all possible arguments (one call for each match), as well as the range
from the end of the last match to the end of the string, produces the fully replaced token
list. The initialization does not matter, but (as an example) we set it as for an empty
replacement.

6822 \cs_new:Npn __regex_replacement_do_one_match:n #1
6823 {
6824 __regex_query_range:nn
6825 { __kernel_intarray_item:Nn \g__regex_submatch_prev_intarray {#1} }
6826 { __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} }
6827 }

(End of definition for __regex_replacement_do_one_match:n.)

__regex_replacement_exp_not:N This function lets us navigate around the fact that the primitive \exp_not:n requires
a braced argument. As far as I can tell, it is only needed if the user tries to include in
the replacement text a control sequence set equal to a macro parameter character, such
as \c_parameter_token. Indeed, within an e/x-expanding assignment, \exp_not:N #
behaves as a single #, whereas \exp_not:n {#} behaves as a doubled ##.

6828 \cs_new:Npn __regex_replacement_exp_not:N #1 { \exp_not:n {#1} }

(End of definition for __regex_replacement_exp_not:N.)

__regex_replacement_exp_not:V This is used for the implementation of \u, and it gets redefined for \peek_regex_-
replace_once:nnTF.

6829 \cs_new_eq:NN __regex_replacement_exp_not:V \exp_not:V

(End of definition for __regex_replacement_exp_not:V.)

549

46.6.2 Query and brace balance
__regex_query_range:nn

__regex_query_range_loop:ww
When it is time to extract submatches from the token list, the various tokens are stored in
\toks registers numbered from \l__regex_min_pos_int inclusive to \l__regex_max_-
pos_int exclusive. The function __regex_query_range:nn {⟨min⟩} {⟨max⟩} unpacks
registers from the position ⟨min⟩ to the position ⟨max⟩−1 included. Once this is expanded,
a second e-expansion results in the actual tokens from the query. That second expansion
is only done by user functions at the very end of their operation, after checking (and
correcting) the brace balance first.

6830 \cs_new:Npn __regex_query_range:nn #1#2
6831 {
6832 \exp_after:wN __regex_query_range_loop:ww
6833 \int_value:w __regex_int_eval:w #1 \exp_after:wN ;
6834 \int_value:w __regex_int_eval:w #2 ;
6835 \prg_break_point:
6836 }
6837 \cs_new:Npn __regex_query_range_loop:ww #1 ; #2 ;
6838 {
6839 \if_int_compare:w #1 < #2 \exp_stop_f:
6840 \else:
6841 \prg_break:n
6842 \fi:
6843 __regex_toks_use:w #1 \exp_stop_f:
6844 \exp_after:wN __regex_query_range_loop:ww
6845 \int_value:w __regex_int_eval:w #1 + \c_one_int ; #2 ;
6846 }

(End of definition for __regex_query_range:nn and __regex_query_range_loop:ww.)

__regex_query_submatch:n Find the start and end positions for a given submatch (of a given match).
6847 \cs_new:Npn __regex_query_submatch:n #1
6848 {
6849 __regex_query_range:nn
6850 { __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} }
6851 { __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} }
6852 }

(End of definition for __regex_query_submatch:n.)

__regex_submatch_balance:n Every user function must result in a balanced token list (unbalanced token lists cannot
be stored by TeX). When we unpacked the query, we kept track of the brace balance,
hence the contribution from a given range is the difference between the brace balances
at the ⟨max pos⟩ and ⟨min pos⟩. These two positions are found in the corresponding
“submatch” arrays.

6853 \cs_new_protected:Npn __regex_submatch_balance:n #1
6854 {
6855 \tex_the:D __regex_int_eval:w
6856 __regex_intarray_item:NnF \g__regex_balance_intarray
6857 {
6858 __kernel_intarray_item:Nn
6859 \g__regex_submatch_end_intarray {#1}
6860 }
6861 \c_zero_int
6862 -

550

6863 __regex_intarray_item:NnF \g__regex_balance_intarray
6864 {
6865 __kernel_intarray_item:Nn
6866 \g__regex_submatch_begin_intarray {#1}
6867 }
6868 \c_zero_int
6869 \scan_stop:
6870 }

(End of definition for __regex_submatch_balance:n.)

46.6.3 Framework
__regex_replacement:n
__regex_replacement:e

__regex_replacement_apply:Nn
__regex_replacement_set:n

The replacement text is built incrementally. We keep track in \l__regex_balance_int of
the balance of explicit begin- and end-group tokens and we store in \g__regex_balance_-
tl some code to compute the brace balance from submatches (see its description). Detect
unescaped right braces, and escaped characters, with trailing \prg_do_nothing: because
some of the later function look-ahead. Once the whole replacement text has been parsed,
make sure that there is no open csname. Finally, define the balance_one_match and
do_one_match functions.

6871 \cs_new_protected:Npn __regex_replacement:n
6872 { __regex_replacement_apply:Nn __regex_replacement_set:n }
6873 \cs_new_protected:Npn __regex_replacement_apply:Nn #1#2
6874 {
6875 \group_begin:
6876 \tl_build_begin:N \l__regex_build_tl
6877 \int_zero:N \l__regex_balance_int
6878 \tl_gclear:N \g__regex_balance_tl
6879 __regex_escape_use:nnnn
6880 {
6881 \if_charcode:w \c_right_brace_str ##1
6882 __regex_replacement_rbrace:N
6883 \else:
6884 \if_charcode:w \c_left_brace_str ##1
6885 __regex_replacement_lbrace:N
6886 \else:
6887 __regex_replacement_normal:n
6888 \fi:
6889 \fi:
6890 ##1
6891 }
6892 { __regex_replacement_escaped:N ##1 }
6893 { __regex_replacement_normal:n ##1 }
6894 {#2}
6895 \prg_do_nothing: \prg_do_nothing:
6896 \if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int
6897 \msg_error:nne { regex } { replacement-missing-rbrace }
6898 { \int_use:N \l__regex_replacement_csnames_int }
6899 \tl_build_put_right:Ne \l__regex_build_tl
6900 { \prg_replicate:nn \l__regex_replacement_csnames_int \cs_end: }
6901 \fi:
6902 \seq_if_empty:NF \l__regex_replacement_category_seq
6903 {

551

6904 \msg_error:nne { regex } { replacement-missing-rparen }
6905 { \seq_count:N \l__regex_replacement_category_seq }
6906 \seq_clear:N \l__regex_replacement_category_seq
6907 }
6908 \tl_gput_right:Ne \g__regex_balance_tl
6909 { + \int_use:N \l__regex_balance_int }
6910 \tl_build_end:N \l__regex_build_tl
6911 \exp_args:NNo
6912 \group_end:
6913 #1 \l__regex_build_tl
6914 }
6915 \cs_generate_variant:Nn __regex_replacement:n { e }
6916 \cs_new_protected:Npn __regex_replacement_set:n #1
6917 {
6918 \cs_set:Npn __regex_replacement_do_one_match:n ##1
6919 {
6920 __regex_query_range:nn
6921 {
6922 __kernel_intarray_item:Nn
6923 \g__regex_submatch_prev_intarray {##1}
6924 }
6925 {
6926 __kernel_intarray_item:Nn
6927 \g__regex_submatch_begin_intarray {##1}
6928 }
6929 #1
6930 }
6931 \exp_args:Nno \use:n
6932 { \cs_gset:Npn __regex_replacement_balance_one_match:n ##1 }
6933 {
6934 \g__regex_balance_tl
6935 - __regex_submatch_balance:n {##1}
6936 }
6937 }

(End of definition for __regex_replacement:n , __regex_replacement_apply:Nn , and __regex_-
replacement_set:n.)

__regex_case_replacement:n
__regex_case_replacement:e 6938 \tl_new:N \g__regex_case_replacement_tl

6939 \tl_new:N \g__regex_case_balance_tl
6940 \cs_new_protected:Npn __regex_case_replacement:n #1
6941 {
6942 \tl_gset:Nn \g__regex_case_balance_tl
6943 {
6944 \if_case:w
6945 __kernel_intarray_item:Nn
6946 \g__regex_submatch_case_intarray {##1}
6947 }
6948 \tl_gset_eq:NN \g__regex_case_replacement_tl \g__regex_case_balance_tl
6949 \tl_map_tokens:nn {#1}
6950 { __regex_replacement_apply:Nn __regex_case_replacement_aux:n }
6951 \tl_gset:No \g__regex_balance_tl
6952 { \g__regex_case_balance_tl \fi: }

552

6953 \exp_args:No __regex_replacement_set:n
6954 { \g__regex_case_replacement_tl \fi: }
6955 }
6956 \cs_generate_variant:Nn __regex_case_replacement:n { e }
6957 \cs_new_protected:Npn __regex_case_replacement_aux:n #1
6958 {
6959 \tl_gput_right:Nn \g__regex_case_replacement_tl { \or: #1 }
6960 \tl_gput_right:No \g__regex_case_balance_tl
6961 { \exp_after:wN \or: \g__regex_balance_tl }
6962 }

(End of definition for __regex_case_replacement:n.)

__regex_replacement_put:n This gets redefined for \peek_regex_replace_once:nnTF.
6963 \cs_new_protected:Npn __regex_replacement_put:n
6964 { \tl_build_put_right:Nn \l__regex_build_tl }

(End of definition for __regex_replacement_put:n.)

__regex_replacement_normal:n
__regex_replacement_normal_aux:N

Most characters are simply sent to the output by \tl_build_put_right:Nn, unless a
particular category code has been requested: then __regex_replacement_c_A:w or a
similar auxiliary is called. One exception is right parentheses, which restore the category
code in place before the group started. Note that the sequence is non-empty there: it
contains an empty entry corresponding to the initial value of \l__regex_replacement_-
category_tl. The argument #1 is a single character (including the case of a catcode-
other space). In case no specific catcode is requested, we take into account the current
catcode regime (at the time the replacement is performed) as much as reasonable, with
all impossible catcodes (escape, newline, etc.) being mapped to “other”.

6965 \cs_new_protected:Npn __regex_replacement_normal:n #1
6966 {
6967 \int_compare:nNnTF \l__regex_replacement_csnames_int > \c_zero_int
6968 { \exp_args:No __regex_replacement_put:n { \token_to_str:N #1 } }
6969 {
6970 \tl_if_empty:NTF \l__regex_replacement_category_tl
6971 { __regex_replacement_normal_aux:N #1 }
6972 { % (
6973 \token_if_eq_charcode:NNTF #1)
6974 {
6975 \seq_pop:NN \l__regex_replacement_category_seq
6976 \l__regex_replacement_category_tl
6977 }
6978 {
6979 \use:c { __regex_replacement_c_ \l__regex_replacement_category_tl :w }
6980 ? #1
6981 }
6982 }
6983 }
6984 }
6985 \cs_new_protected:Npn __regex_replacement_normal_aux:N #1
6986 {
6987 \token_if_eq_charcode:NNTF #1 \c_space_token
6988 { __regex_replacement_c_S:w }
6989 {
6990 \exp_after:wN \exp_after:wN

553

6991 \if_case:w \tex_catcode:D ‘#1 \exp_stop_f:
6992 __regex_replacement_c_O:w
6993 \or: __regex_replacement_c_B:w
6994 \or: __regex_replacement_c_E:w
6995 \or: __regex_replacement_c_M:w
6996 \or: __regex_replacement_c_T:w
6997 \or: __regex_replacement_c_O:w
6998 \or: __regex_replacement_c_P:w
6999 \or: __regex_replacement_c_U:w
7000 \or: __regex_replacement_c_D:w
7001 \or: __regex_replacement_c_O:w
7002 \or: __regex_replacement_c_S:w
7003 \or: __regex_replacement_c_L:w
7004 \or: __regex_replacement_c_O:w
7005 \or: __regex_replacement_c_A:w
7006 \else: __regex_replacement_c_O:w
7007 \fi:
7008 }
7009 ? #1
7010 }

(End of definition for __regex_replacement_normal:n and __regex_replacement_normal_aux:N.)

__regex_replacement_escaped:N As in parsing a regular expression, we use an auxiliary built from #1 if defined. Otherwise,
check for escaped digits (standing from submatches from 0 to 9): anything else is a raw
character.

7011 \cs_new_protected:Npn __regex_replacement_escaped:N #1
7012 {
7013 \cs_if_exist_use:cF { __regex_replacement_#1:w }
7014 {
7015 \if_int_compare:w \c_one_int < 1#1 \exp_stop_f:
7016 __regex_replacement_put_submatch:n {#1}
7017 \else:
7018 __regex_replacement_normal:n {#1}
7019 \fi:
7020 }
7021 }

(End of definition for __regex_replacement_escaped:N.)

46.6.4 Submatches
__regex_replacement_put_submatch:n

__regex_replacement_put_submatch_aux:n
Insert a submatch in the replacement text. This is dropped if the submatch number
is larger than the number of capturing groups. Unless the submatch appears inside a
\c{...} or \u{...} construction, it must be taken into account in the brace balance.
Later on, ##1 will be replaced by a pointer to the 0-th submatch for a given match.

7022 \cs_new_protected:Npn __regex_replacement_put_submatch:n #1
7023 {
7024 \if_int_compare:w #1 < \l__regex_capturing_group_int
7025 __regex_replacement_put_submatch_aux:n {#1}
7026 \else:
7027 \msg_expandable_error:nnff { regex } { submatch-too-big }
7028 {#1} { \int_eval:n { \l__regex_capturing_group_int - \c_one_int } }
7029 \fi:

554

7030 }
7031 \cs_new_protected:Npn __regex_replacement_put_submatch_aux:n #1
7032 {
7033 \tl_build_put_right:Nn \l__regex_build_tl
7034 { __regex_query_submatch:n { __regex_int_eval:w #1 + ##1 \scan_stop: } }
7035 \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int
7036 \tl_gput_right:Nn \g__regex_balance_tl
7037 { + __regex_submatch_balance:n { __regex_int_eval:w #1 + ##1 \scan_stop: } }
7038 \fi:
7039 }

(End of definition for __regex_replacement_put_submatch:n and __regex_replacement_put_submatch_-
aux:n.)

__regex_replacement_g:w
__regex_replacement_g_digits:NN

Grab digits for the \g escape sequence in a primitive assignment to the integer \l__-
regex_internal_a_int. At the end of the run of digits, check that it ends with a right
brace.

7040 \cs_new_protected:Npn __regex_replacement_g:w #1#2
7041 {
7042 \token_if_eq_meaning:NNTF #1 __regex_replacement_lbrace:N
7043 { \l__regex_internal_a_int = __regex_replacement_g_digits:NN }
7044 { __regex_replacement_error:NNN g #1 #2 }
7045 }
7046 \cs_new:Npn __regex_replacement_g_digits:NN #1#2
7047 {
7048 \token_if_eq_meaning:NNTF #1 __regex_replacement_normal:n
7049 {
7050 \if_int_compare:w \c_one_int < 1#2 \exp_stop_f:
7051 #2
7052 \exp_after:wN \use_i:nnn
7053 \exp_after:wN __regex_replacement_g_digits:NN
7054 \else:
7055 \exp_stop_f:
7056 \exp_after:wN __regex_replacement_error:NNN
7057 \exp_after:wN g
7058 \fi:
7059 }
7060 {
7061 \exp_stop_f:
7062 \if_meaning:w __regex_replacement_rbrace:N #1
7063 \exp_args:No __regex_replacement_put_submatch:n
7064 { \int_use:N \l__regex_internal_a_int }
7065 \exp_after:wN \use_none:nn
7066 \else:
7067 \exp_after:wN __regex_replacement_error:NNN
7068 \exp_after:wN g
7069 \fi:
7070 }
7071 #1 #2
7072 }

(End of definition for __regex_replacement_g:w and __regex_replacement_g_digits:NN.)

555

46.6.5 Csnames in replacement
__regex_replacement_c:w \c may only be followed by an unescaped character. If followed by a left brace, start a

control sequence by calling an auxiliary common with \u. Otherwise test whether the
category is known; if it is not, complain.

7073 \cs_new_protected:Npn __regex_replacement_c:w #1#2
7074 {
7075 \token_if_eq_meaning:NNTF #1 __regex_replacement_normal:n
7076 {
7077 \cs_if_exist:cTF { __regex_replacement_c_#2:w }
7078 { __regex_replacement_cat:NNN #2 }
7079 { __regex_replacement_error:NNN c #1#2 }
7080 }
7081 {
7082 \token_if_eq_meaning:NNTF #1 __regex_replacement_lbrace:N
7083 { __regex_replacement_cu_aux:Nw __regex_replacement_exp_not:N }
7084 { __regex_replacement_error:NNN c #1#2 }
7085 }
7086 }

(End of definition for __regex_replacement_c:w.)

__regex_replacement_cu_aux:Nw Start a control sequence with \cs:w, protected from expansion by #1 (either __regex_-
replacement_exp_not:N or \exp_not:V), or turned to a string by \tl_to_str:V if inside
another csname construction \c or \u. We use \tl_to_str:V rather than \tl_to_str:N
to deal with integers and other registers.

7087 \cs_new_protected:Npn __regex_replacement_cu_aux:Nw #1
7088 {
7089 \if_case:w \l__regex_replacement_csnames_int
7090 \tl_build_put_right:Nn \l__regex_build_tl
7091 { \exp_not:n { \exp_after:wN #1 \cs:w } }
7092 \else:
7093 \tl_build_put_right:Nn \l__regex_build_tl
7094 { \exp_not:n { \exp_after:wN \tl_to_str:V \cs:w } }
7095 \fi:
7096 \int_incr:N \l__regex_replacement_csnames_int
7097 }

(End of definition for __regex_replacement_cu_aux:Nw.)

__regex_replacement_u:w Check that \u is followed by a left brace. If so, start a control sequence with \cs:w,
which is then unpacked either with \exp_not:V or \tl_to_str:V depending on the
current context.

7098 \cs_new_protected:Npn __regex_replacement_u:w #1#2
7099 {
7100 \token_if_eq_meaning:NNTF #1 __regex_replacement_lbrace:N
7101 { __regex_replacement_cu_aux:Nw __regex_replacement_exp_not:V }
7102 { __regex_replacement_error:NNN u #1#2 }
7103 }

(End of definition for __regex_replacement_u:w.)

556

__regex_replacement_rbrace:N Within a \c{...} or \u{...} construction, end the control sequence, and decrease the
brace count. Otherwise, this is a raw right brace.

7104 \cs_new_protected:Npn __regex_replacement_rbrace:N #1
7105 {
7106 \if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int
7107 \tl_build_put_right:Nn \l__regex_build_tl { \cs_end: }
7108 \int_decr:N \l__regex_replacement_csnames_int
7109 \else:
7110 __regex_replacement_normal:n {#1}
7111 \fi:
7112 }

(End of definition for __regex_replacement_rbrace:N.)

__regex_replacement_lbrace:N Within a \c{...} or \u{...} construction, this is forbidden. Otherwise, this is a raw
left brace.

7113 \cs_new_protected:Npn __regex_replacement_lbrace:N #1
7114 {
7115 \if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int
7116 \msg_error:nnn { regex } { cu-lbrace } { u }
7117 \else:
7118 __regex_replacement_normal:n {#1}
7119 \fi:
7120 }

(End of definition for __regex_replacement_lbrace:N.)

46.6.6 Characters in replacement
__regex_replacement_cat:NNN Here, #1 is a letter among BEMTPUDSLOA and #2#3 denote the next character. Complain

if we reach the end of the replacement or if the construction appears inside \c{. . . } or
\u{. . . }, and detect the case of a parenthesis. In that case, store the current category in
a sequence and switch to a new one.

7121 \cs_new_protected:Npn __regex_replacement_cat:NNN #1#2#3
7122 {
7123 \token_if_eq_meaning:NNTF \prg_do_nothing: #3
7124 { \msg_error:nn { regex } { replacement-catcode-end } }
7125 {
7126 \int_compare:nNnTF \l__regex_replacement_csnames_int > \c_zero_int
7127 {
7128 \msg_error:nnnn
7129 { regex } { replacement-catcode-in-cs } {#1} {#3}
7130 #2 #3
7131 }
7132 {
7133 __regex_two_if_eq:NNNNTF #2 #3 __regex_replacement_normal:n (
7134 {
7135 \seq_push:NV \l__regex_replacement_category_seq
7136 \l__regex_replacement_category_tl
7137 \tl_set:Nn \l__regex_replacement_category_tl {#1}
7138 }
7139 {
7140 \token_if_eq_meaning:NNT #2 __regex_replacement_escaped:N

557

7141 {
7142 __regex_char_if_alphanumeric:NTF #3
7143 {
7144 \msg_error:nnnn
7145 { regex } { replacement-catcode-escaped }
7146 {#1} {#3}
7147 }
7148 { }
7149 }
7150 \use:c { __regex_replacement_c_#1:w } #2 #3
7151 }
7152 }
7153 }
7154 }

(End of definition for __regex_replacement_cat:NNN.)
We now need to change the category code of the null character many times, hence

work in a group. The catcode-specific macros below are defined in alphabetical order;
if you are trying to understand the code, start from the end of the alphabet as those
categories are simpler than active or begin-group.

7155 \group_begin:

__regex_replacement_char:nNN The only way to produce an arbitrary character–catcode pair is to use the \lowercase
or \uppercase primitives. This is a wrapper for our purposes. The first argument is the
null character with various catcodes. The second and third arguments are grabbed from
the input stream: #3 is the character whose character code to reproduce. We could use
\char_generate:nn but only for some catcodes (active characters and spaces are not
supported).

7156 \cs_new_protected:Npn __regex_replacement_char:nNN #1#2#3
7157 {
7158 \tex_lccode:D \c_zero_int = ‘#3 \scan_stop:
7159 \tex_lowercase:D { __regex_replacement_put:n {#1} }
7160 }

(End of definition for __regex_replacement_char:nNN.)

__regex_replacement_c_A:w For an active character, expansion must be avoided, twice because we later do two e-
expansions, to unpack \toks for the query, and to expand their contents to tokens of the
query.

7161 \char_set_catcode_active:N \^^@
7162 \cs_new_protected:Npn __regex_replacement_c_A:w
7163 { __regex_replacement_char:nNN { \exp_not:n { \exp_not:N ^^@ } } }

(End of definition for __regex_replacement_c_A:w.)

__regex_replacement_c_B:w An explicit begin-group token increases the balance, unless within a \c{...} or \u{...}
construction. Add the desired begin-group character, using the standard \if_false:
trick. We eventually e-expand twice. The first time must yield a balanced token list,
and the second one gives the bare begin-group token. The \exp_after:wN is not strictly
needed, but is more consistent with l3tl-analysis.

7164 \char_set_catcode_group_begin:N \^^@
7165 \cs_new_protected:Npn __regex_replacement_c_B:w
7166 {

558

7167 \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int
7168 \int_incr:N \l__regex_balance_int
7169 \fi:
7170 __regex_replacement_char:nNN
7171 { \exp_not:n { \exp_after:wN ^^@ \if_false: } \fi: } }
7172 }

(End of definition for __regex_replacement_c_B:w.)

__regex_replacement_c_C:w This is not quite catcode-related: when the user requests a character with category “con-
trol sequence”, the one-character control symbol is returned. As for the active character,
we prepare for two e-expansions.

7173 \cs_new_protected:Npn __regex_replacement_c_C:w #1#2
7174 {
7175 \tl_build_put_right:Nn \l__regex_build_tl
7176 { \exp_not:N __regex_replacement_exp_not:N \exp_not:c {#2} }
7177 }

(End of definition for __regex_replacement_c_C:w.)

__regex_replacement_c_D:w Subscripts fit the mould: \lowercase the null byte with the correct category.
7178 \char_set_catcode_math_subscript:N \^^@
7179 \cs_new_protected:Npn __regex_replacement_c_D:w
7180 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_D:w.)

__regex_replacement_c_E:w Similar to the begin-group case, the second e-expansion produces the bare end-group
token.

7181 \char_set_catcode_group_end:N \^^@
7182 \cs_new_protected:Npn __regex_replacement_c_E:w
7183 {
7184 \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int
7185 \int_decr:N \l__regex_balance_int
7186 \fi:
7187 __regex_replacement_char:nNN
7188 { \exp_not:n { \if_false: { \fi: ^^@ } }
7189 }

(End of definition for __regex_replacement_c_E:w.)

__regex_replacement_c_L:w Simply \lowercase a letter null byte to produce an arbitrary letter.
7190 \char_set_catcode_letter:N \^^@
7191 \cs_new_protected:Npn __regex_replacement_c_L:w
7192 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_L:w.)

__regex_replacement_c_M:w No surprise here, we lowercase the null math toggle.
7193 \char_set_catcode_math_toggle:N \^^@
7194 \cs_new_protected:Npn __regex_replacement_c_M:w
7195 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_M:w.)

559

__regex_replacement_c_O:w Lowercase an other null byte.
7196 \char_set_catcode_other:N \^^@
7197 \cs_new_protected:Npn __regex_replacement_c_O:w
7198 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_O:w.)

__regex_replacement_c_P:w For macro parameters, expansion is a tricky issue. We need to prepare for two e-
expansions and passing through various macro definitions. Note that we cannot replace
one \exp_not:n by doubling the macro parameter characters because this would mis-
behave if a mischievous user asks for \c{\cP\#}, since that macro parameter character
would be doubled.

7199 \char_set_catcode_parameter:N \^^@
7200 \cs_new_protected:Npn __regex_replacement_c_P:w
7201 {
7202 __regex_replacement_char:nNN
7203 { \exp_not:n { \exp_not:n { ^^@^^@^^@^^@ } } }
7204 }

(End of definition for __regex_replacement_c_P:w.)

__regex_replacement_c_S:w Spaces are normalized on input by TEX to have character code 32. It is in fact impossible
to get a token with character code 0 and category code 10. Hence we use 32 instead of 0
as our base character.

7205 \cs_new_protected:Npn __regex_replacement_c_S:w #1#2
7206 {
7207 \if_int_compare:w ‘#2 = \c_zero_int
7208 \msg_error:nn { regex } { replacement-null-space }
7209 \fi:
7210 \tex_lccode:D ‘\ = ‘#2 \scan_stop:
7211 \tex_lowercase:D { __regex_replacement_put:n {~} }
7212 }

(End of definition for __regex_replacement_c_S:w.)

__regex_replacement_c_T:w No surprise for alignment tabs here. Those are surrounded by the appropriate braces
whenever necessary, hence they don’t cause trouble in alignment settings.

7213 \char_set_catcode_alignment:N \^^@
7214 \cs_new_protected:Npn __regex_replacement_c_T:w
7215 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_T:w.)

__regex_replacement_c_U:w Simple call to __regex_replacement_char:nNN which lowercases the math superscript
^^@.

7216 \char_set_catcode_math_superscript:N \^^@
7217 \cs_new_protected:Npn __regex_replacement_c_U:w
7218 { __regex_replacement_char:nNN { ^^@ } }

(End of definition for __regex_replacement_c_U:w.)
Restore the catcode of the null byte.

7219 \group_end:

560

46.6.7 An error
__regex_replacement_error:NNN Simple error reporting by calling one of the messages replacement-c, replacement-g,

or replacement-u.
7220 \cs_new_protected:Npn __regex_replacement_error:NNN #1#2#3
7221 {
7222 \msg_error:nne { regex } { replacement-#1 } {#3}
7223 #2 #3
7224 }

(End of definition for __regex_replacement_error:NNN.)

46.7 User functions
\regex_new:N Before being assigned a sensible value, a regex variable matches nothing.

7225 \cs_new_protected:Npn \regex_new:N #1
7226 { \cs_new_eq:NN #1 \c__regex_no_match_regex }

(End of definition for \regex_new:N. This function is documented on page 56.)

\l_tmpa_regex
\l_tmpb_regex
\g_tmpa_regex
\g_tmpb_regex

The usual scratch space.
7227 \regex_new:N \l_tmpa_regex
7228 \regex_new:N \l_tmpb_regex
7229 \regex_new:N \g_tmpa_regex
7230 \regex_new:N \g_tmpb_regex

(End of definition for \l_tmpa_regex and others. These variables are documented on page 61.)

\regex_set:Nn
\regex_gset:Nn
\regex_const:Nn

Compile, then store the result in the user variable with the appropriate assignment func-
tion.

7231 \cs_new_protected:Npn \regex_set:Nn #1#2
7232 {
7233 __regex_compile:n {#2}
7234 \tl_set_eq:NN #1 \l__regex_internal_regex
7235 }
7236 \cs_new_protected:Npn \regex_gset:Nn #1#2
7237 {
7238 __regex_compile:n {#2}
7239 \tl_gset_eq:NN #1 \l__regex_internal_regex
7240 }
7241 \cs_new_protected:Npn \regex_const:Nn #1#2
7242 {
7243 __regex_compile:n {#2}
7244 \tl_const:Ne #1 { \exp_not:o \l__regex_internal_regex }
7245 }

(End of definition for \regex_set:Nn , \regex_gset:Nn , and \regex_const:Nn. These functions are
documented on page 56.)

\regex_show:n
\regex_log:n

__regex_show:Nn
\regex_show:N
\regex_log:N

__regex_show:NN

User functions: the n variant requires compilation first. Then show the variable with
some appropriate text. The auxiliary __regex_show:N is defined in a different section.

7246 \cs_new_protected:Npn \regex_show:n { __regex_show:Nn \msg_show:nneeee }
7247 \cs_new_protected:Npn \regex_log:n { __regex_show:Nn \msg_log:nneeee }
7248 \cs_new_protected:Npn __regex_show:Nn #1#2

561

7249 {
7250 __regex_compile:n {#2}
7251 __regex_show:N \l__regex_internal_regex
7252 #1 { regex } { show }
7253 { \tl_to_str:n {#2} } { }
7254 { \l__regex_internal_a_tl } { }
7255 }
7256 \cs_new_protected:Npn \regex_show:N { __regex_show:NN \msg_show:nneeee }
7257 \cs_new_protected:Npn \regex_log:N { __regex_show:NN \msg_log:nneeee }
7258 \cs_new_protected:Npn __regex_show:NN #1#2
7259 {
7260 __kernel_chk_tl_type:NnnT #2 { regex }
7261 { \exp_args:No __regex_clean_regex:n {#2} }
7262 {
7263 __regex_show:N #2
7264 #1 { regex } { show }
7265 { } { \token_to_str:N #2 }
7266 { \l__regex_internal_a_tl } { }
7267 }
7268 }

(End of definition for \regex_show:n and others. These functions are documented on page 56.)

\regex_match:nnTF
\regex_match:nVTF
\regex_match:NnTF
\regex_match:NVTF

Those conditionals are based on a common auxiliary defined later. Its first argument
builds the nfa corresponding to the regex, and the second argument is the query token
list. Once we have performed the match, convert the resulting boolean to \prg_return_-
true: or false.

7269 \prg_new_protected_conditional:Npnn \regex_match:nn #1#2 { T , F , TF }
7270 {
7271 __regex_if_match:nn { __regex_build:n {#1} } {#2}
7272 __regex_return:
7273 }
7274 \prg_generate_conditional_variant:Nnn \regex_match:nn { nV } { T , F , TF }
7275 \prg_new_protected_conditional:Npnn \regex_match:Nn #1#2 { T , F , TF }
7276 {
7277 __regex_if_match:nn { __regex_build:N #1 } {#2}
7278 __regex_return:
7279 }
7280 \prg_generate_conditional_variant:Nnn \regex_match:Nn { NV } { T , F , TF }

(End of definition for \regex_match:nnTF and \regex_match:NnTF. These functions are documented on
page 57.)

\regex_count:nnN
\regex_count:nVN
\regex_count:NnN
\regex_count:NVN

Again, use an auxiliary whose first argument builds the nfa.
7281 \cs_new_protected:Npn \regex_count:nnN #1
7282 { __regex_count:nnN { __regex_build:n {#1} } }
7283 \cs_new_protected:Npn \regex_count:NnN #1
7284 { __regex_count:nnN { __regex_build:N #1 } }
7285 \cs_generate_variant:Nn \regex_count:nnN { nV }
7286 \cs_generate_variant:Nn \regex_count:NnN { NV }

(End of definition for \regex_count:nnN and \regex_count:NnN. These functions are documented on
page 57.)

562

\regex_match_case:nn
\regex_match_case:nnTF

The auxiliary errors if #1 has an odd number of items, and otherwise it sets \g__regex_-
case_int according to which case was found (zero if not found). The true branch leaves
the corresponding code in the input stream.

7287 \cs_new_protected:Npn \regex_match_case:nnTF #1#2#3
7288 {
7289 __regex_match_case:nnTF {#1} {#2}
7290 {
7291 \tl_item:nn {#1} { 2 * \g__regex_case_int }
7292 #3
7293 }
7294 }
7295 \cs_new_protected:Npn \regex_match_case:nn #1#2
7296 { \regex_match_case:nnTF {#1} {#2} { } { } }
7297 \cs_new_protected:Npn \regex_match_case:nnT #1#2#3
7298 { \regex_match_case:nnTF {#1} {#2} {#3} { } }
7299 \cs_new_protected:Npn \regex_match_case:nnF #1#2
7300 { \regex_match_case:nnTF {#1} {#2} { } }

(End of definition for \regex_match_case:nnTF. This function is documented on page 57.)

\regex_extract_once:nnN
\regex_extract_once:nVN

\regex_extract_once:nnNTF
\regex_extract_once:nVNTF

\regex_extract_once:NnN
\regex_extract_once:NVN

\regex_extract_once:NnNTF
\regex_extract_once:NVNTF

\regex_extract_all:nnN
\regex_extract_all:nVN

\regex_extract_all:nnNTF
\regex_extract_all:nVNTF
\regex_extract_all:NnN
\regex_extract_all:NVN

\regex_extract_all:NnNTF
\regex_extract_all:NVNTF
\regex_replace_once:nnN
\regex_replace_once:nVN

\regex_replace_once:nnNTF
\regex_replace_once:nVNTF

\regex_replace_once:NnN
\regex_replace_once:NVN

\regex_replace_once:NnNTF
\regex_replace_once:NVNTF

\regex_replace_all:nnN
\regex_replace_all:nVN

\regex_replace_all:nnNTF
\regex_replace_all:nVNTF
\regex_replace_all:NnN
\regex_replace_all:NVN

\regex_replace_all:NnNTF
\regex_replace_all:NVNTF

\regex_split:NnN
\regex_split:NVN

\regex_split:NnNTF
\regex_split:NVNTF
\regex_split:nnN
\regex_split:nVN

\regex_split:nnNTF
\regex_split:nVNTF

We define here 40 user functions, following a common pattern in terms of :nnN auxil-
iaries, defined in the coming subsections. The auxiliary is handed __regex_build:n
or __regex_build:N with the appropriate regex argument, then all other necessary ar-
guments (replacement text, token list, etc. The conditionals call __regex_return: to
return either true or false once matching has been performed.

7301 \cs_set_protected:Npn __regex_tmp:w #1#2#3
7302 {
7303 \cs_new_protected:Npn #2 ##1 { #1 { __regex_build:n {##1} } }
7304 \cs_new_protected:Npn #3 ##1 { #1 { __regex_build:N ##1 } }
7305 \prg_new_protected_conditional:Npnn #2 ##1##2##3 { T , F , TF }
7306 { #1 { __regex_build:n {##1} } {##2} ##3 __regex_return: }
7307 \prg_new_protected_conditional:Npnn #3 ##1##2##3 { T , F , TF }
7308 { #1 { __regex_build:N ##1 } {##2} ##3 __regex_return: }
7309 \cs_generate_variant:Nn #2 { nV }
7310 \prg_generate_conditional_variant:Nnn #2 { nV } { T , F , TF }
7311 \cs_generate_variant:Nn #3 { NV }
7312 \prg_generate_conditional_variant:Nnn #3 { NV } { T , F , TF }
7313 }
7314 __regex_tmp:w __regex_extract_once:nnN
7315 \regex_extract_once:nnN \regex_extract_once:NnN
7316 __regex_tmp:w __regex_extract_all:nnN
7317 \regex_extract_all:nnN \regex_extract_all:NnN
7318 __regex_tmp:w __regex_replace_once:nnN
7319 \regex_replace_once:nnN \regex_replace_once:NnN
7320 __regex_tmp:w __regex_replace_all:nnN
7321 \regex_replace_all:nnN \regex_replace_all:NnN
7322 __regex_tmp:w __regex_split:nnN \regex_split:nnN \regex_split:NnN

(End of definition for \regex_extract_once:nnNTF and others. These functions are documented on page
58.)

\regex_replace_case_once:nN
\regex_replace_case_once:nNTF

If the input is bad (odd number of items) then take the false branch. Otherwise, use
the same auxiliary as \regex_replace_once:nnN, but with more complicated code to

563

build the automaton, and to find what replacement text to use. The \tl_item:nn is only
expanded once we know the value of \g__regex_case_int, namely which case matched.

7323 \cs_new_protected:Npn \regex_replace_case_once:nNTF #1#2
7324 {
7325 \int_if_odd:nTF { \tl_count:n {#1} }
7326 {
7327 \msg_error:nneeee { regex } { case-odd }
7328 { \token_to_str:N \regex_replace_case_once:nN(TF) } { code }
7329 { \tl_count:n {#1} } { \tl_to_str:n {#1} }
7330 \use_ii:nn
7331 }
7332 {
7333 __regex_replace_once_aux:nnN
7334 { __regex_case_build:e { __regex_tl_odd_items:n {#1} } }
7335 { __regex_replacement:e { \tl_item:nn {#1} { 2 * \g__regex_case_int } } }
7336 #2
7337 \bool_if:NTF \g__regex_success_bool
7338 }
7339 }
7340 \cs_new_protected:Npn \regex_replace_case_once:nN #1#2
7341 { \regex_replace_case_once:nNTF {#1} {#2} { } { } }
7342 \cs_new_protected:Npn \regex_replace_case_once:nNT #1#2#3
7343 { \regex_replace_case_once:nNTF {#1} {#2} {#3} { } }
7344 \cs_new_protected:Npn \regex_replace_case_once:nNF #1#2
7345 { \regex_replace_case_once:nNTF {#1} {#2} { } }

(End of definition for \regex_replace_case_once:nNTF. This function is documented on page 60.)

\regex_replace_case_all:nN
\regex_replace_case_all:nNTF

If the input is bad (odd number of items) then take the false branch. Otherwise, use the
same auxiliary as \regex_replace_all:nnN, but with more complicated code to build
the automaton, and to find what replacement text to use.

7346 \cs_new_protected:Npn \regex_replace_case_all:nNTF #1#2
7347 {
7348 \int_if_odd:nTF { \tl_count:n {#1} }
7349 {
7350 \msg_error:nneeee { regex } { case-odd }
7351 { \token_to_str:N \regex_replace_case_all:nN(TF) } { code }
7352 { \tl_count:n {#1} } { \tl_to_str:n {#1} }
7353 \use_ii:nn
7354 }
7355 {
7356 __regex_replace_all_aux:nnN
7357 { __regex_case_build:e { __regex_tl_odd_items:n {#1} } }
7358 { __regex_case_replacement:e { __regex_tl_even_items:n {#1} } }
7359 #2
7360 \bool_if:NTF \g__regex_success_bool
7361 }
7362 }
7363 \cs_new_protected:Npn \regex_replace_case_all:nN #1#2
7364 { \regex_replace_case_all:nNTF {#1} {#2} { } { } }
7365 \cs_new_protected:Npn \regex_replace_case_all:nNT #1#2#3
7366 { \regex_replace_case_all:nNTF {#1} {#2} {#3} { } }
7367 \cs_new_protected:Npn \regex_replace_case_all:nNF #1#2
7368 { \regex_replace_case_all:nNTF {#1} {#2} { } }

564

(End of definition for \regex_replace_case_all:nNTF. This function is documented on page 60.)

46.7.1 Variables and helpers for user functions
\l__regex_match_count_int The number of matches found so far is stored in \l__regex_match_count_int. This is

only used in the \regex_count:nnN functions.
7369 \int_new:N \l__regex_match_count_int

(End of definition for \l__regex_match_count_int.)

\l__regex_begin_flag
\l__regex_end_flag

Those flags are raised to indicate begin-group or end-group tokens that had to be added
when extracting submatches.

7370 \flag_new:N \l__regex_begin_flag
7371 \flag_new:N \l__regex_end_flag

(End of definition for \l__regex_begin_flag and \l__regex_end_flag.)

\l__regex_min_submatch_int
\l__regex_submatch_int

\l__regex_zeroth_submatch_int

The end-points of each submatch are stored in two arrays whose index ⟨submatch⟩
ranges from \l__regex_min_submatch_int (inclusive) to \l__regex_submatch_int (ex-
clusive). Each successful match comes with a 0-th submatch (the full match), and one
match for each capturing group: submatches corresponding to the last successful match
are labelled starting at zeroth_submatch. The entry \l__regex_zeroth_submatch_int
in \g__regex_submatch_prev_intarray holds the position at which that match attempt
started: this is used for splitting and replacements.

7372 \int_new:N \l__regex_min_submatch_int
7373 \int_new:N \l__regex_submatch_int
7374 \int_new:N \l__regex_zeroth_submatch_int

(End of definition for \l__regex_min_submatch_int , \l__regex_submatch_int , and \l__regex_zeroth_-
submatch_int.)

\g__regex_submatch_prev_intarray
\g__regex_submatch_begin_intarray

\g__regex_submatch_end_intarray
\g__regex_submatch_case_intarray

Hold the place where the match attempt begun, the end-points of each submatch, and
which regex case the match corresponds to, respectively.

7375 \intarray_new:Nn \g__regex_submatch_prev_intarray { 65536 }
7376 \intarray_new:Nn \g__regex_submatch_begin_intarray { 65536 }
7377 \intarray_new:Nn \g__regex_submatch_end_intarray { 65536 }
7378 \intarray_new:Nn \g__regex_submatch_case_intarray { 65536 }

(End of definition for \g__regex_submatch_prev_intarray and others.)

\g__regex_balance_intarray The first thing we do when matching is to store the balance of begin-group/end-group
characters into \g__regex_balance_intarray.

7379 \intarray_new:Nn \g__regex_balance_intarray { 65536 }

(End of definition for \g__regex_balance_intarray.)

\l__regex_added_begin_int
\l__regex_added_end_int

Keep track of the number of left/right braces to add when performing a regex operation
such as a replacement.

7380 \int_new:N \l__regex_added_begin_int
7381 \int_new:N \l__regex_added_end_int

(End of definition for \l__regex_added_begin_int and \l__regex_added_end_int.)

565

__regex_return: This function triggers either \prg_return_false: or \prg_return_true: as appropriate
to whether a match was found or not. It is used by all user conditionals.

7382 \cs_new_protected:Npn __regex_return:
7383 {
7384 \if_meaning:w \c_true_bool \g__regex_success_bool
7385 \prg_return_true:
7386 \else:
7387 \prg_return_false:
7388 \fi:
7389 }

(End of definition for __regex_return:.)

__regex_query_set:n
__regex_query_set_aux:nN

To easily extract subsets of the input once we found the positions at which to cut, store
the input tokens one by one into successive \toks registers. Also store the brace balance
(used to check for overall brace balance) in an array.

7390 \cs_new_protected:Npn __regex_query_set:n #1
7391 {
7392 \int_zero:N \l__regex_balance_int
7393 \int_zero:N \l__regex_curr_pos_int
7394 __regex_query_set_aux:nN { } F
7395 \tl_analysis_map_inline:nn {#1}
7396 { __regex_query_set_aux:nN {##1} ##3 }
7397 __regex_query_set_aux:nN { } F
7398 \int_set_eq:NN \l__regex_max_pos_int \l__regex_curr_pos_int
7399 }
7400 \cs_new_protected:Npn __regex_query_set_aux:nN #1#2
7401 {
7402 \int_incr:N \l__regex_curr_pos_int
7403 __regex_toks_set:Nn \l__regex_curr_pos_int {#1}
7404 __kernel_intarray_gset:Nnn \g__regex_balance_intarray
7405 \l__regex_curr_pos_int \l__regex_balance_int
7406 \if_case:w "#2 \exp_stop_f:
7407 \or: \int_incr:N \l__regex_balance_int
7408 \or: \int_decr:N \l__regex_balance_int
7409 \fi:
7410 }

(End of definition for __regex_query_set:n and __regex_query_set_aux:nN.)

46.7.2 Matching
__regex_if_match:nn We don’t track submatches, and stop after a single match. Build the nfa with #1, and

perform the match on the query #2.
7411 \cs_new_protected:Npn __regex_if_match:nn #1#2
7412 {
7413 \group_begin:
7414 __regex_disable_submatches:
7415 __regex_single_match:
7416 #1
7417 __regex_match:n {#2}
7418 \group_end:
7419 }

566

(End of definition for __regex_if_match:nn.)

__regex_match_case:nnTF
__regex_match_case_aux:nn

The code would get badly messed up if the number of items in #1 were not even, so we
catch this case, then follow the same code as \regex_match:nnTF but using __regex_-
case_build:n and without returning a result.

7420 \cs_new_protected:Npn __regex_match_case:nnTF #1#2
7421 {
7422 \int_if_odd:nTF { \tl_count:n {#1} }
7423 {
7424 \msg_error:nneeee { regex } { case-odd }
7425 { \token_to_str:N \regex_match_case:nn(TF) } { code }
7426 { \tl_count:n {#1} } { \tl_to_str:n {#1} }
7427 \use_ii:nn
7428 }
7429 {
7430 __regex_if_match:nn
7431 { __regex_case_build:e { __regex_tl_odd_items:n {#1} } }
7432 {#2}
7433 \bool_if:NTF \g__regex_success_bool
7434 }
7435 }
7436 \cs_new:Npn __regex_match_case_aux:nn #1#2 { \exp_not:n { {#1} } }

(End of definition for __regex_match_case:nnTF and __regex_match_case_aux:nn.)

__regex_count:nnN Again, we don’t care about submatches. Instead of aborting after the first “longest
match” is found, we search for multiple matches, incrementing \l__regex_match_-
count_int every time to record the number of matches. Build the nfa and match.
At the end, store the result in the user’s variable.

7437 \cs_new_protected:Npn __regex_count:nnN #1#2#3
7438 {
7439 \group_begin:
7440 __regex_disable_submatches:
7441 \int_zero:N \l__regex_match_count_int
7442 __regex_multi_match:n { \int_incr:N \l__regex_match_count_int }
7443 #1
7444 __regex_match:n {#2}
7445 \exp_args:NNNo
7446 \group_end:
7447 \int_set:Nn #3 { \int_use:N \l__regex_match_count_int }
7448 }

(End of definition for __regex_count:nnN.)

46.7.3 Extracting submatches
__regex_extract_once:nnN
__regex_extract_all:nnN

Match once or multiple times. After each match (or after the only match), extract the
submatches using __regex_extract:. At the end, store the sequence containing all the
submatches into the user variable #3 after closing the group.

7449 \cs_new_protected:Npn __regex_extract_once:nnN #1#2#3
7450 {
7451 \group_begin:
7452 __regex_single_match:

567

7453 #1
7454 __regex_match:n {#2}
7455 __regex_extract:
7456 __regex_query_set:n {#2}
7457 __regex_group_end_extract_seq:N #3
7458 }
7459 \cs_new_protected:Npn __regex_extract_all:nnN #1#2#3
7460 {
7461 \group_begin:
7462 __regex_multi_match:n { __regex_extract: }
7463 #1
7464 __regex_match:n {#2}
7465 __regex_query_set:n {#2}
7466 __regex_group_end_extract_seq:N #3
7467 }

(End of definition for __regex_extract_once:nnN and __regex_extract_all:nnN.)

__regex_split:nnN Splitting at submatches is a bit more tricky. For each match, extract all submatches,
and replace the zeroth submatch by the part of the query between the start of the match
attempt and the start of the zeroth submatch. This is inhibited if the delimiter matched
an empty token list at the start of this match attempt. After the last match, store the
last part of the token list, which ranges from the start of the match attempt to the end
of the query. This step is inhibited if the last match was empty and at the very end:
decrement \l__regex_submatch_int, which controls which matches will be used.

7468 \cs_new_protected:Npn __regex_split:nnN #1#2#3
7469 {
7470 \group_begin:
7471 __regex_multi_match:n
7472 {
7473 \if_int_compare:w
7474 \l__regex_start_pos_int < \l__regex_success_pos_int
7475 __regex_extract:
7476 __kernel_intarray_gset:Nnn \g__regex_submatch_prev_intarray
7477 \l__regex_zeroth_submatch_int \c_zero_int
7478 __kernel_intarray_gset:Nnn \g__regex_submatch_end_intarray
7479 \l__regex_zeroth_submatch_int
7480 {
7481 __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray
7482 \l__regex_zeroth_submatch_int
7483 }
7484 __kernel_intarray_gset:Nnn \g__regex_submatch_begin_intarray
7485 \l__regex_zeroth_submatch_int
7486 \l__regex_start_pos_int
7487 \fi:
7488 }
7489 #1
7490 __regex_match:n {#2}
7491 __regex_query_set:n {#2}
7492 __kernel_intarray_gset:Nnn \g__regex_submatch_prev_intarray
7493 \l__regex_submatch_int \c_zero_int
7494 __kernel_intarray_gset:Nnn \g__regex_submatch_end_intarray
7495 \l__regex_submatch_int
7496 \l__regex_max_pos_int

568

7497 __kernel_intarray_gset:Nnn \g__regex_submatch_begin_intarray
7498 \l__regex_submatch_int
7499 \l__regex_start_pos_int
7500 \int_incr:N \l__regex_submatch_int
7501 \if_meaning:w \c_true_bool \l__regex_empty_success_bool
7502 \if_int_compare:w \l__regex_start_pos_int = \l__regex_max_pos_int
7503 \int_decr:N \l__regex_submatch_int
7504 \fi:
7505 \fi:
7506 __regex_group_end_extract_seq:N #3
7507 }

(End of definition for __regex_split:nnN.)

__regex_group_end_extract_seq:N
__regex_extract_seq:N

__regex_extract_seq:NNn
__regex_extract_seq_loop:Nw

The end-points of submatches are stored as entries of two arrays from \l__regex_min_-
submatch_int to \l__regex_submatch_int (exclusive). Extract the relevant ranges into
\g__regex_internal_tl, separated by __regex_tmp:w {}. We keep track in the two
flags __regex_begin and __regex_end of the number of begin-group or end-group tokens
added to make each of these items overall balanced. At this step, }{ is counted as being
balanced (same number of begin-group and end-group tokens). This problem is caught by
__regex_extract_check:w, explained later. After complaining about any begin-group
or end-group tokens we had to add, we are ready to construct the user’s sequence outside
the group.

7508 \cs_new_protected:Npn __regex_group_end_extract_seq:N #1
7509 {
7510 \flag_clear:N \l__regex_begin_flag
7511 \flag_clear:N \l__regex_end_flag
7512 \cs_set_eq:NN __regex_tmp:w \scan_stop:
7513 __kernel_tl_gset:Nx \g__regex_internal_tl
7514 {
7515 \int_step_function:nnN \l__regex_min_submatch_int
7516 { \l__regex_submatch_int - \c_one_int } __regex_extract_seq_aux:n
7517 __regex_tmp:w
7518 }
7519 \int_set:Nn \l__regex_added_begin_int
7520 { \flag_height:N \l__regex_begin_flag }
7521 \int_set:Nn \l__regex_added_end_int
7522 { \flag_height:N \l__regex_end_flag }
7523 \tex_afterassignment:D __regex_extract_check:w
7524 __kernel_tl_gset:Nx \g__regex_internal_tl
7525 { \g__regex_internal_tl \if_false: { \fi: } }
7526 \int_compare:nNnT
7527 { \l__regex_added_begin_int + \l__regex_added_end_int } > \c_zero_int
7528 {
7529 \msg_error:nneee { regex } { result-unbalanced }
7530 { splitting~or~extracting~submatches }
7531 { \int_use:N \l__regex_added_begin_int }
7532 { \int_use:N \l__regex_added_end_int }
7533 }
7534 \group_end:
7535 __regex_extract_seq:N #1
7536 }
7537 \cs_gset_protected:Npn __regex_extract_seq:N #1
7538 {

569

7539 \seq_clear:N #1
7540 \cs_set_eq:NN __regex_tmp:w __regex_extract_seq_loop:Nw
7541 \exp_after:wN __regex_extract_seq:NNn
7542 \exp_after:wN #1
7543 \g__regex_internal_tl \use_none:nnn
7544 }
7545 \cs_new_protected:Npn __regex_extract_seq:NNn #1#2#3
7546 { #3 #2 #1 \prg_do_nothing: }
7547 \cs_new_protected:Npn __regex_extract_seq_loop:Nw #1#2 __regex_tmp:w #3
7548 {
7549 \seq_put_right:No #1 {#2}
7550 #3 __regex_extract_seq_loop:Nw #1 \prg_do_nothing:
7551 }

(End of definition for __regex_group_end_extract_seq:N and others.)

__regex_extract_seq_aux:n
__regex_extract_seq_aux:ww

The :n auxiliary builds one item of the sequence of submatches. First compute the
brace balance of the submatch, then extract the submatch from the query, adding the
appropriate braces and raising a flag if the submatch is not balanced.

7552 \cs_new:Npn __regex_extract_seq_aux:n #1
7553 {
7554 __regex_tmp:w { }
7555 \exp_after:wN __regex_extract_seq_aux:ww
7556 \int_value:w __regex_submatch_balance:n {#1} ; #1;
7557 }
7558 \cs_new:Npn __regex_extract_seq_aux:ww #1; #2;
7559 {
7560 \if_int_compare:w #1 < \c_zero_int
7561 \prg_replicate:nn {-#1}
7562 {
7563 \flag_raise:N \l__regex_begin_flag
7564 \exp_not:n { { \if_false: } \fi: }
7565 }
7566 \fi:
7567 __regex_query_submatch:n {#2}
7568 \if_int_compare:w #1 > \c_zero_int
7569 \prg_replicate:nn {#1}
7570 {
7571 \flag_raise:N \l__regex_end_flag
7572 \exp_not:n { \if_false: { \fi: } }
7573 }
7574 \fi:
7575 }

(End of definition for __regex_extract_seq_aux:n and __regex_extract_seq_aux:ww.)

__regex_extract_check:w
__regex_extract_check:n

__regex_extract_check_loop:w
__regex_extract_check_end:w

In __regex_group_end_extract_seq:N we had to expand \g__regex_internal_tl to
turn \if_false: constructions into actual begin-group and end-group tokens. This is
done with a __kernel_tl_gset:Nx assignment, and __regex_extract_check:w is run
immediately after this assignment ends, thanks to the \afterassignment primitive. If all
of the items were properly balanced (enough begin-group tokens before end-group tokens,
so }{ is not) then __regex_extract_check:w is called just before the closing brace of
the __kernel_tl_gset:Nx (thanks to our sneaky \if_false: { \fi: } construction),
and finds that there is nothing left to expand. If any of the items is unbalanced, the

570

assignment gets ended early by an extra end-group token, and our check finds more
tokens needing to be expanded in a new __kernel_tl_gset:Nx assignment. We need
to add a begin-group and an end-group tokens to the unbalanced item, namely to the
last item found so far, which we reach through a loop.

7576 \cs_new_protected:Npn __regex_extract_check:w
7577 {
7578 \exp_after:wN __regex_extract_check:n
7579 \exp_after:wN { \if_false: } \fi:
7580 }
7581 \cs_new_protected:Npn __regex_extract_check:n #1
7582 {
7583 \tl_if_empty:nF {#1}
7584 {
7585 \int_incr:N \l__regex_added_begin_int
7586 \int_incr:N \l__regex_added_end_int
7587 \tex_afterassignment:D __regex_extract_check:w
7588 __kernel_tl_gset:Nx \g__regex_internal_tl
7589 {
7590 \exp_after:wN __regex_extract_check_loop:w
7591 \g__regex_internal_tl
7592 __regex_tmp:w __regex_extract_check_end:w
7593 #1
7594 }
7595 }
7596 }
7597 \cs_new:Npn __regex_extract_check_loop:w #1 __regex_tmp:w #2
7598 {
7599 #2
7600 \exp_not:o {#1}
7601 __regex_tmp:w { }
7602 __regex_extract_check_loop:w \prg_do_nothing:
7603 }

Arguments of __regex_extract_check_end:w are: #1 is the part of the item before
the extra end-group token; #2 is junk; #3 is \prg_do_nothing: followed by the not-yet-
expanded part of the item after the extra end-group token. In the replacement text,
the first brace and the \if_false: { \fi: } construction are the added begin-group and
end-group tokens (the latter being not-yet expanded, just like #3), while the closing brace
after \exp_not:o {#1} replaces the extra end-group token that had ended the assignment
early. In particular this means that the character code of that end-group token is lost.

7604 \cs_new:Npn __regex_extract_check_end:w
7605 \exp_not:o #1#2 __regex_extract_check_loop:w #3 __regex_tmp:w
7606 {
7607 { \exp_not:o {#1} }
7608 #3
7609 \if_false: { \fi: }
7610 __regex_tmp:w
7611 }

(End of definition for __regex_extract_check:w and others.)

__regex_extract:
__regex_extract_aux:w

Our task here is to store the list of end-points of submatches, and store them in appro-
priate array entries, from \l__regex_zeroth_submatch_int upwards. First, we store in
\g__regex_submatch_prev_intarray the position at which the match attempt started.

571

We extract the rest from the comma list \l__regex_success_submatches_tl, which
starts with entries to be stored in \g__regex_submatch_begin_intarray and continues
with entries for \g__regex_submatch_end_intarray.

7612 \cs_new_protected:Npn __regex_extract:
7613 {
7614 \if_meaning:w \c_true_bool \g__regex_success_bool
7615 \int_set_eq:NN \l__regex_zeroth_submatch_int \l__regex_submatch_int
7616 \prg_replicate:nn \l__regex_capturing_group_int
7617 {
7618 __kernel_intarray_gset:Nnn \g__regex_submatch_prev_intarray
7619 \l__regex_submatch_int \c_zero_int
7620 __kernel_intarray_gset:Nnn \g__regex_submatch_case_intarray
7621 \l__regex_submatch_int \c_zero_int
7622 \int_incr:N \l__regex_submatch_int
7623 }
7624 __kernel_intarray_gset:Nnn \g__regex_submatch_prev_intarray
7625 \l__regex_zeroth_submatch_int \l__regex_start_pos_int
7626 __kernel_intarray_gset:Nnn \g__regex_submatch_case_intarray
7627 \l__regex_zeroth_submatch_int \g__regex_case_int
7628 \int_zero:N \l__regex_internal_a_int
7629 \exp_after:wN __regex_extract_aux:w \l__regex_success_submatches_tl
7630 \prg_break_point: __regex_use_none_delimit_by_q_recursion_stop:w ,
7631 \q__regex_recursion_stop
7632 \fi:
7633 }
7634 \cs_new_protected:Npn __regex_extract_aux:w #1 ,
7635 {
7636 \prg_break: #1 \prg_break_point:
7637 \if_int_compare:w \l__regex_internal_a_int < \l__regex_capturing_group_int
7638 __kernel_intarray_gset:Nnn \g__regex_submatch_begin_intarray
7639 { __regex_int_eval:w \l__regex_zeroth_submatch_int + \l__regex_internal_a_int } {#1}
7640 \else:
7641 __kernel_intarray_gset:Nnn \g__regex_submatch_end_intarray
7642 {
7643 __regex_int_eval:w
7644 \l__regex_zeroth_submatch_int + \l__regex_internal_a_int
7645 - \l__regex_capturing_group_int
7646 }
7647 {#1}
7648 \fi:
7649 \int_incr:N \l__regex_internal_a_int
7650 __regex_extract_aux:w
7651 }

(End of definition for __regex_extract: and __regex_extract_aux:w.)

46.7.4 Replacement
__regex_replace_once:nnN

__regex_replace_once_aux:nnN
Build the nfa and the replacement functions, then find a single match. If the match failed,
simply exit the group. Otherwise, we do the replacement. Extract submatches. Compute
the brace balance corresponding to replacing this match by the replacement (this depends
on submatches). Prepare the replaced token list: the replacement function produces the
tokens from the start of the query to the start of the match and the replacement text for

572

this match; we need to add the tokens from the end of the match to the end of the query.
Finally, store the result in the user’s variable after closing the group: this step involves
an additional e-expansion, and checks that braces are balanced in the final result.

7652 \cs_new_protected:Npn __regex_replace_once:nnN #1#2
7653 { __regex_replace_once_aux:nnN {#1} { __regex_replacement:n {#2} } }
7654 \cs_new_protected:Npn __regex_replace_once_aux:nnN #1#2#3
7655 {
7656 \group_begin:
7657 __regex_single_match:
7658 #1
7659 \exp_args:No __regex_match:n {#3}
7660 \bool_if:NTF \g__regex_success_bool
7661 {
7662 __regex_extract:
7663 \exp_args:No __regex_query_set:n {#3}
7664 #2
7665 \int_set:Nn \l__regex_balance_int
7666 { __regex_replacement_balance_one_match:n \l__regex_zeroth_submatch_int }
7667 __kernel_tl_set:Nx \l__regex_internal_a_tl
7668 {
7669 __regex_replacement_do_one_match:n \l__regex_zeroth_submatch_int
7670 __regex_query_range:nn
7671 {
7672 __kernel_intarray_item:Nn \g__regex_submatch_end_intarray
7673 \l__regex_zeroth_submatch_int
7674 }
7675 \l__regex_max_pos_int
7676 }
7677 __regex_group_end_replace:N #3
7678 }
7679 { \group_end: }
7680 }

(End of definition for __regex_replace_once:nnN and __regex_replace_once_aux:nnN.)

__regex_replace_all:nnN Match multiple times, and for every match, extract submatches and additionally store
the position at which the match attempt started. The entries from \l__regex_min_-
submatch_int to \l__regex_submatch_int hold information about submatches of every
match in order; each match corresponds to \l__regex_capturing_group_int consecu-
tive entries. Compute the brace balance corresponding to doing all the replacements:
this is the sum of brace balances for replacing each match. Join together the replacement
texts for each match (including the part of the query before the match), and the end of
the query.

7681 \cs_new_protected:Npn __regex_replace_all:nnN #1#2
7682 { __regex_replace_all_aux:nnN {#1} { __regex_replacement:n {#2} } }
7683 \cs_new_protected:Npn __regex_replace_all_aux:nnN #1#2#3
7684 {
7685 \group_begin:
7686 __regex_multi_match:n { __regex_extract: }
7687 #1
7688 \exp_args:No __regex_match:n {#3}
7689 \exp_args:No __regex_query_set:n {#3}
7690 #2

573

7691 \int_set:Nn \l__regex_balance_int
7692 {
7693 \c_zero_int
7694 \int_step_function:nnnN
7695 \l__regex_min_submatch_int
7696 \l__regex_capturing_group_int
7697 { \l__regex_submatch_int - \c_one_int }
7698 __regex_replacement_balance_one_match:n
7699 }
7700 __kernel_tl_set:Nx \l__regex_internal_a_tl
7701 {
7702 \int_step_function:nnnN
7703 \l__regex_min_submatch_int
7704 \l__regex_capturing_group_int
7705 { \l__regex_submatch_int - \c_one_int }
7706 __regex_replacement_do_one_match:n
7707 __regex_query_range:nn
7708 \l__regex_start_pos_int \l__regex_max_pos_int
7709 }
7710 __regex_group_end_replace:N #3
7711 }

(End of definition for __regex_replace_all:nnN.)

__regex_group_end_replace:N
__regex_group_end_replace_try:

__regex_group_end_replace_check:w
__regex_group_end_replace_check:n

At this stage \l__regex_internal_a_tl (e-expands to the desired result). Guess from
\l__regex_balance_int the number of braces to add before or after the result then
try expanding. The simplest case is when \l__regex_internal_a_tl together with the
braces we insert via \prg_replicate:nn give a balanced result, and the assignment ends
at the \if_false: { \fi: } construction: then __regex_group_end_replace_check:w
sees that there is no material left and we successfully found the result. The harder case is
that expanding \l__regex_internal_a_tl may produce extra closing braces and end the
assignment early. Then we grab the remaining code using; importantly, what follows has
not yet been expanded so that __regex_group_end_replace_check:n grabs everything
until the last brace in __regex_group_end_replace_try:, letting us try again with an
extra surrounding pair of braces.

7712 \cs_new_protected:Npn __regex_group_end_replace:N #1
7713 {
7714 \int_set:Nn \l__regex_added_begin_int
7715 { \int_max:nn { - \l__regex_balance_int } \c_zero_int }
7716 \int_set:Nn \l__regex_added_end_int
7717 { \int_max:nn \l__regex_balance_int \c_zero_int }
7718 __regex_group_end_replace_try:
7719 \int_compare:nNnT { \l__regex_added_begin_int + \l__regex_added_end_int }
7720 > \c_zero_int
7721 {
7722 \msg_error:nneee { regex } { result-unbalanced }
7723 { replacing } { \int_use:N \l__regex_added_begin_int }
7724 { \int_use:N \l__regex_added_end_int }
7725 }
7726 \group_end:
7727 \tl_set_eq:NN #1 \g__regex_internal_tl
7728 }
7729 \cs_new_protected:Npn __regex_group_end_replace_try:

574

7730 {
7731 \tex_afterassignment:D __regex_group_end_replace_check:w
7732 __kernel_tl_gset:Nx \g__regex_internal_tl
7733 {
7734 \prg_replicate:nn \l__regex_added_begin_int { { \if_false: } \fi: }
7735 \l__regex_internal_a_tl
7736 \prg_replicate:nn \l__regex_added_end_int { \if_false: { \fi: } }
7737 \if_false: { \fi: }
7738 }
7739 }
7740 \cs_new_protected:Npn __regex_group_end_replace_check:w
7741 {
7742 \exp_after:wN __regex_group_end_replace_check:n
7743 \exp_after:wN { \if_false: } \fi:
7744 }
7745 \cs_new_protected:Npn __regex_group_end_replace_check:n #1
7746 {
7747 \tl_if_empty:nF {#1}
7748 {
7749 \int_incr:N \l__regex_added_begin_int
7750 \int_incr:N \l__regex_added_end_int
7751 __regex_group_end_replace_try:
7752 }
7753 }

(End of definition for __regex_group_end_replace:N and others.)

46.7.5 Peeking ahead
\l__regex_peek_true_tl
\l__regex_peek_false_tl

True/false code arguments of \peek_regex:nTF or similar.
7754 \tl_new:N \l__regex_peek_true_tl
7755 \tl_new:N \l__regex_peek_false_tl

(End of definition for \l__regex_peek_true_tl and \l__regex_peek_false_tl.)

\l__regex_replacement_tl When peeking in \peek_regex_replace_once:nnTF we need to store the replacement
text.

7756 \tl_new:N \l__regex_replacement_tl

(End of definition for \l__regex_replacement_tl.)

\l__regex_input_tl
__regex_input_item:n

Stores each token found as __regex_input_item:n {⟨tokens⟩}, where the ⟨tokens⟩
o-expand to the token found, as for \tl_analysis_map_inline:nn.

7757 \tl_new:N \l__regex_input_tl
7758 \cs_new_eq:NN __regex_input_item:n ?

(End of definition for \l__regex_input_tl and __regex_input_item:n.)

\peek_regex:nTF
\peek_regex:NTF

\peek_regex_remove_once:nTF
\peek_regex_remove_once:NTF

The T and F functions just call the corresponding TF function. The four TF functions differ
along two axes: whether to remove the token or not, distinguished by using __regex_-
peek_end: or __regex_peek_remove_end:n (the latter case needs an argument, as we
will see), and whether the regex has to be compiled or is already in an N-type variable,
distinguished by calling __regex_build_aux:Nn or __regex_build_aux:NN. The first
argument of these functions is \c_false_bool to indicate that there should be no implicit

575

insertion of a wildcard at the start of the pattern: otherwise the code would keep looking
further into the input stream until matching the regex.

7759 \cs_new_protected:Npn \peek_regex:nTF #1
7760 {
7761 __regex_peek:nnTF
7762 { __regex_build_aux:Nn \c_false_bool {#1} }
7763 { __regex_peek_end: }
7764 }
7765 \cs_new_protected:Npn \peek_regex:nT #1#2
7766 { \peek_regex:nTF {#1} {#2} { } }
7767 \cs_new_protected:Npn \peek_regex:nF #1 { \peek_regex:nTF {#1} { } }
7768 \cs_new_protected:Npn \peek_regex:NTF #1
7769 {
7770 __regex_peek:nnTF
7771 { __regex_build_aux:NN \c_false_bool #1 }
7772 { __regex_peek_end: }
7773 }
7774 \cs_new_protected:Npn \peek_regex:NT #1#2
7775 { \peek_regex:NTF #1 {#2} { } }
7776 \cs_new_protected:Npn \peek_regex:NF #1 { \peek_regex:NTF {#1} { } }
7777 \cs_new_protected:Npn \peek_regex_remove_once:nTF #1
7778 {
7779 __regex_peek:nnTF
7780 { __regex_build_aux:Nn \c_false_bool {#1} }
7781 { __regex_peek_remove_end:n {##1} }
7782 }
7783 \cs_new_protected:Npn \peek_regex_remove_once:nT #1#2
7784 { \peek_regex_remove_once:nTF {#1} {#2} { } }
7785 \cs_new_protected:Npn \peek_regex_remove_once:nF #1
7786 { \peek_regex_remove_once:nTF {#1} { } }
7787 \cs_new_protected:Npn \peek_regex_remove_once:NTF #1
7788 {
7789 __regex_peek:nnTF
7790 { __regex_build_aux:NN \c_false_bool #1 }
7791 { __regex_peek_remove_end:n {##1} }
7792 }
7793 \cs_new_protected:Npn \peek_regex_remove_once:NT #1#2
7794 { \peek_regex_remove_once:NTF #1 {#2} { } }
7795 \cs_new_protected:Npn \peek_regex_remove_once:NF #1
7796 { \peek_regex_remove_once:NTF #1 { } }

(End of definition for \peek_regex:nTF and others. These functions are documented on page 214.)

__regex_peek:nnTF
__regex_peek_aux:nnTF

Store the user’s true/false codes (plus \group_end:) into two token lists. Then build the
automaton with #1, without submatch tracking, and aiming for a single match. Then
start matching by setting up a few variables like for any regex matching like \regex_-
match:nnTF, with the addition of \l__regex_input_tl that keeps track of the tokens
seen, to reinsert them at the end. Instead of \tl_analysis_map_inline:nn on the input,
we call \peek_analysis_map_inline:n to go through tokens in the input stream. Since
__regex_match_one_token:nnN calls __regex_maplike_break: we need to catch that
and break the \peek_analysis_map_inline:n loop instead.

7797 \cs_new_protected:Npn __regex_peek:nnTF #1
7798 {

576

7799 __regex_peek_aux:nnTF
7800 {
7801 __regex_disable_submatches:
7802 #1
7803 }
7804 }
7805 \cs_new_protected:Npn __regex_peek_aux:nnTF #1#2#3#4
7806 {
7807 \group_begin:
7808 \tl_set:Nn \l__regex_peek_true_tl { \group_end: #3 }
7809 \tl_set:Nn \l__regex_peek_false_tl { \group_end: #4 }
7810 __regex_single_match:
7811 #1
7812 __regex_match_init:
7813 \tl_build_begin:N \l__regex_input_tl
7814 __regex_match_once_init:
7815 \peek_analysis_map_inline:n
7816 {
7817 \tl_build_put_right:Nn \l__regex_input_tl
7818 { __regex_input_item:n {##1} }
7819 __regex_match_one_token:nnN {##1} {##2} ##3
7820 \use_none:nnn
7821 \prg_break_point:Nn __regex_maplike_break:
7822 { \peek_analysis_map_break:n {#2} }
7823 }
7824 }

(End of definition for __regex_peek:nnTF and __regex_peek_aux:nnTF.)

__regex_peek_end:
__regex_peek_remove_end:n

Once the regex matches (or permanently fails to match) we call __regex_peek_end:, or
__regex_peek_remove_end:n with argument the last token seen. For \peek_regex:nTF
we reinsert tokens seen by calling __regex_peek_reinsert:N regardless of the result
of the match. For \peek_regex_remove_once:nTF we reinsert the tokens seen only if
the match failed; otherwise we just reinsert the tokens #1, with one expansion. To be
more precise, #1 consists of tokens that o-expand and e-expand to the last token seen,
for example it is \exp_not:N ⟨cs⟩ for a control sequence. This means that just doing
\exp_after:wN \l__regex_peek_true_tl #1 would be unsafe because the expansion of
⟨cs⟩ would be suppressed.

7825 \cs_new_protected:Npn __regex_peek_end:
7826 {
7827 \bool_if:NTF \g__regex_success_bool
7828 { __regex_peek_reinsert:N \l__regex_peek_true_tl }
7829 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
7830 }
7831 \cs_new_protected:Npn __regex_peek_remove_end:n #1
7832 {
7833 \bool_if:NTF \g__regex_success_bool
7834 { \exp_args:NNo \use:nn \l__regex_peek_true_tl {#1} }
7835 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
7836 }

(End of definition for __regex_peek_end: and __regex_peek_remove_end:n.)

577

__regex_peek_reinsert:N
__regex_reinsert_item:n

Insert the true/false code #1, followed by the tokens found, which were stored in \l__-
regex_input_tl. For this, loop through that token list using __regex_reinsert_-
item:n, which expands #1 once to get a single token, and jumps over it to expand
what follows, with suitable \exp:w and \exp_end:. We cannot just use \use:e on the
whole token list because the result may be unbalanced, which would stop the primitive
prematurely, or let it continue beyond where we would like.

7837 \cs_new_protected:Npn __regex_peek_reinsert:N #1
7838 {
7839 \tl_build_end:N \l__regex_input_tl
7840 \cs_set_eq:NN __regex_input_item:n __regex_reinsert_item:n
7841 \exp_after:wN #1 \exp:w \l__regex_input_tl \exp_end:
7842 }
7843 \cs_new_protected:Npn __regex_reinsert_item:n #1
7844 {
7845 \exp_after:wN \exp_after:wN
7846 \exp_after:wN \exp_end:
7847 \exp_after:wN \exp_after:wN
7848 #1
7849 \exp:w
7850 }

(End of definition for __regex_peek_reinsert:N and __regex_reinsert_item:n.)

\peek_regex_replace_once:nn
\peek_regex_replace_once:nnTF
\peek_regex_replace_once:Nn

\peek_regex_replace_once:NnTF

Similar to \peek_regex:nTF above.
7851 \cs_new_protected:Npn \peek_regex_replace_once:nnTF #1
7852 { __regex_peek_replace:nnTF { __regex_build_aux:Nn \c_false_bool {#1} } }
7853 \cs_new_protected:Npn \peek_regex_replace_once:nnT #1#2#3
7854 { \peek_regex_replace_once:nnTF {#1} {#2} {#3} { } }
7855 \cs_new_protected:Npn \peek_regex_replace_once:nnF #1#2
7856 { \peek_regex_replace_once:nnTF {#1} {#2} { } }
7857 \cs_new_protected:Npn \peek_regex_replace_once:nn #1#2
7858 { \peek_regex_replace_once:nnTF {#1} {#2} { } { } }
7859 \cs_new_protected:Npn \peek_regex_replace_once:NnTF #1
7860 { __regex_peek_replace:nnTF { __regex_build_aux:NN \c_false_bool #1 } }
7861 \cs_new_protected:Npn \peek_regex_replace_once:NnT #1#2#3
7862 { \peek_regex_replace_once:NnTF #1 {#2} {#3} { } }
7863 \cs_new_protected:Npn \peek_regex_replace_once:NnF #1#2
7864 { \peek_regex_replace_once:NnTF #1 {#2} { } }
7865 \cs_new_protected:Npn \peek_regex_replace_once:Nn #1#2
7866 { \peek_regex_replace_once:NnTF #1 {#2} { } { } }

(End of definition for \peek_regex_replace_once:nnTF and \peek_regex_replace_once:NnTF. These
functions are documented on page 215.)

__regex_peek_replace:nnTF Same as __regex_peek:nnTF (used for \peek_regex:nTF above), but without disabling
submatches, and with a different end. The replacement text #2 is stored, to be analyzed
later.

7867 \cs_new_protected:Npn __regex_peek_replace:nnTF #1#2
7868 {
7869 \tl_set:Nn \l__regex_replacement_tl {#2}
7870 __regex_peek_aux:nnTF {#1} { __regex_peek_replace_end: }
7871 }

(End of definition for __regex_peek_replace:nnTF.)

578

__regex_peek_replace_end: If the match failed __regex_peek_reinsert:N reinserts the tokens found. Otherwise,
finish storing the submatch information using __regex_extract:, and store the input
into \toks. Redefine a few auxiliaries to change slightly their expansion behaviour as
explained below. Analyse the replacement text with __regex_replacement:n, which
as usual defines __regex_replacement_do_one_match:n to insert the tokens from the
start of the match attempt to the beginning of the match, followed by the replacement
text. The \use:e expands for instance the trailing __regex_query_range:nn down
to a sequence of __regex_reinsert_item:n {⟨tokens⟩} where ⟨tokens⟩ o-expand to
a single token that we want to insert. After e-expansion, \use:e does \use:n, so we
have \exp_after:wN \l__regex_peek_true_tl \exp:w . . . \exp_end:. This is set up
such as to obtain \l__regex_peek_true_tl followed by the replaced tokens (possibly
unbalanced) in the input stream.

7872 \cs_new_protected:Npn __regex_peek_replace_end:
7873 {
7874 \bool_if:NTF \g__regex_success_bool
7875 {
7876 __regex_extract:
7877 __regex_query_set_from_input_tl:
7878 \cs_set_eq:NN __regex_replacement_put:n __regex_peek_replacement_put:n
7879 \cs_set_eq:NN __regex_replacement_put_submatch_aux:n
7880 __regex_peek_replacement_put_submatch_aux:n
7881 \cs_set_eq:NN __regex_input_item:n __regex_reinsert_item:n
7882 \cs_set_eq:NN __regex_replacement_exp_not:N __regex_peek_replacement_token:n
7883 \cs_set_eq:NN __regex_replacement_exp_not:V __regex_peek_replacement_var:N
7884 \exp_args:No __regex_replacement:n { \l__regex_replacement_tl }
7885 \use:e
7886 {
7887 \exp_not:n { \exp_after:wN \l__regex_peek_true_tl \exp:w }
7888 __regex_replacement_do_one_match:n \l__regex_zeroth_submatch_int
7889 __regex_query_range:nn
7890 {
7891 __kernel_intarray_item:Nn \g__regex_submatch_end_intarray
7892 \l__regex_zeroth_submatch_int
7893 }
7894 \l__regex_max_pos_int
7895 \exp_end:
7896 }
7897 }
7898 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
7899 }

(End of definition for __regex_peek_replace_end:.)

__regex_query_set_from_input_tl:
__regex_query_set_item:n

The input was stored into \l__regex_input_tl as successive items __regex_input_-
item:n {⟨tokens⟩}. Store that in successive \toks. It’s not clear whether the empty
entries before and after are both useful.

7900 \cs_new_protected:Npn __regex_query_set_from_input_tl:
7901 {
7902 \tl_build_end:N \l__regex_input_tl
7903 \int_zero:N \l__regex_curr_pos_int
7904 \cs_set_eq:NN __regex_input_item:n __regex_query_set_item:n
7905 __regex_query_set_item:n { }
7906 \l__regex_input_tl

579

7907 __regex_query_set_item:n { }
7908 \int_set_eq:NN \l__regex_max_pos_int \l__regex_curr_pos_int
7909 }
7910 \cs_new_protected:Npn __regex_query_set_item:n #1
7911 {
7912 \int_incr:N \l__regex_curr_pos_int
7913 __regex_toks_set:Nn \l__regex_curr_pos_int { __regex_input_item:n {#1} }
7914 }

(End of definition for __regex_query_set_from_input_tl: and __regex_query_set_item:n.)

__regex_peek_replacement_put:n While building the replacement function __regex_replacement_do_one_match:n, we
often want to put simple material, given as #1, whose e-expansion o-expands to a single
token. Normally we can just add the token to \l__regex_build_tl, but for \peek_-
regex_replace_once:nnTF we eventually want to do some strange expansion that is
basically using \exp_after:wN to jump through numerous tokens (we cannot use e-
expansion like for \regex_replace_once:nnNTF because it is ok for the result to be
unbalanced since we insert it in the input stream rather than storing it. When within
a csname we don’t do any such shenanigan because \cs:w . . . \cs_end: does all the
expansion we need.

7915 \cs_new_protected:Npn __regex_peek_replacement_put:n #1
7916 {
7917 \if_case:w \l__regex_replacement_csnames_int
7918 \tl_build_put_right:Nn \l__regex_build_tl
7919 { \exp_not:N __regex_reinsert_item:n {#1} }
7920 \else:
7921 \tl_build_put_right:Nn \l__regex_build_tl {#1}
7922 \fi:
7923 }

(End of definition for __regex_peek_replacement_put:n.)

__regex_peek_replacement_token:n When hit with \exp:w, __regex_peek_replacement_token:n {⟨token⟩} stops \exp_-
end: and does \exp_after:wN ⟨token⟩ \exp:w to continue expansion after it.

7924 \cs_new_protected:Npn __regex_peek_replacement_token:n #1
7925 { \exp_after:wN \exp_end: \exp_after:wN #1 \exp:w }

(End of definition for __regex_peek_replacement_token:n.)

__regex_peek_replacement_put_submatch_aux:n While analyzing the replacement we also have to insert submatches found in the query.
Since query items __regex_input_item:n {⟨tokens⟩} expand correctly only when sur-
rounded by \exp:w . . . \exp_end:, and since these expansion controls are not there
within csnames (because \cs:w . . . \cs_end: make them unnecessary in most cases), we
have to put \exp:w and \exp_end: by hand here.

7926 \cs_new_protected:Npn __regex_peek_replacement_put_submatch_aux:n #1
7927 {
7928 \if_case:w \l__regex_replacement_csnames_int
7929 \tl_build_put_right:Nn \l__regex_build_tl
7930 { __regex_query_submatch:n { __regex_int_eval:w #1 + ##1 \scan_stop: } }
7931 \else:
7932 \tl_build_put_right:Nn \l__regex_build_tl
7933 {
7934 \exp:w
7935 __regex_query_submatch:n { __regex_int_eval:w #1 + ##1 \scan_stop: }

580

7936 \exp_end:
7937 }
7938 \fi:
7939 }

(End of definition for __regex_peek_replacement_put_submatch_aux:n.)

__regex_peek_replacement_var:N This is used for \u outside csnames. It makes sure to continue expansion with \exp:w
before expanding the variable #1 and stopping the \exp:w that precedes.

7940 \cs_new_protected:Npn __regex_peek_replacement_var:N #1
7941 {
7942 \exp_after:wN \exp_last_unbraced:NV
7943 \exp_after:wN \exp_end:
7944 \exp_after:wN #1
7945 \exp:w
7946 }

(End of definition for __regex_peek_replacement_var:N.)

46.8 Messages
Messages for the preparsing phase.

7947 \use:e
7948 {
7949 \msg_new:nnn { regex } { trailing-backslash }
7950 { Trailing~’\iow_char:N\\’~in~regex~or~replacement. }
7951 \msg_new:nnn { regex } { x-missing-rbrace }
7952 {
7953 Missing~brace~’\iow_char:N\}’~in~regex~
7954 ’...\iow_char:N\\x\iow_char:N\{...##1’.
7955 }
7956 \msg_new:nnn { regex } { x-overflow }
7957 {
7958 Character~code~##1~too~large~in~
7959 \iow_char:N\\x\iow_char:N\{##2\iow_char:N\}~regex.
7960 }
7961 }

Invalid quantifier.
7962 \msg_new:nnnn { regex } { invalid-quantifier }
7963 { Braced~quantifier~’#1’~may~not~be~followed~by~’#2’. }
7964 {
7965 The~character~’#2’~is~invalid~in~the~braced~quantifier~’#1’.~
7966 The~only~valid~quantifiers~are~’*’,~’?’,~’+’,~’{<int>}’,~
7967 ’{<min>,}’~and~’{<min>,<max>}’,~optionally~followed~by~’?’.
7968 }

Messages for missing or extra closing brackets and parentheses, with some fancy
singular/plural handling for the case of parentheses.

7969 \msg_new:nnnn { regex } { missing-rbrack }
7970 { Missing~right~bracket~inserted~in~regular~expression. }
7971 {
7972 LaTeX~was~given~a~regular~expression~where~a~character~class~
7973 was~started~with~’[’,~but~the~matching~’]’~is~missing.

581

7974 }
7975 \msg_new:nnnn { regex } { missing-rparen }
7976 {
7977 Missing~right~
7978 \int_compare:nTF { #1 = 1 } { parenthesis } { parentheses } ~
7979 inserted~in~regular~expression.
7980 }
7981 {
7982 LaTeX~was~given~a~regular~expression~with~\int_eval:n {#1} ~
7983 more~left~parentheses~than~right~parentheses.
7984 }
7985 \msg_new:nnnn { regex } { extra-rparen }
7986 { Extra~right~parenthesis~ignored~in~regular~expression. }
7987 {
7988 LaTeX~came~across~a~closing~parenthesis~when~no~submatch~group~
7989 was~open.~The~parenthesis~will~be~ignored.
7990 }

Some escaped alphanumerics are not allowed everywhere.
7991 \msg_new:nnnn { regex } { bad-escape }
7992 {
7993 Invalid~escape~’\iow_char:N\\#1’~
7994 __regex_if_in_cs:TF { within~a~control~sequence. }
7995 {
7996 __regex_if_in_class:TF
7997 { in~a~character~class. }
7998 { following~a~category~test. }
7999 }
8000 }
8001 {
8002 The~escape~sequence~’\iow_char:N\\#1’~may~not~appear~
8003 __regex_if_in_cs:TF
8004 {
8005 within~a~control~sequence~test~introduced~by~
8006 ’\iow_char:N\\c\iow_char:N\{’.
8007 }
8008 {
8009 __regex_if_in_class:TF
8010 { within~a~character~class~ }
8011 { following~a~category~test~such~as~’\iow_char:N\\cL’~ }
8012 because~it~does~not~match~exactly~one~character.
8013 }
8014 }

Range errors.
8015 \msg_new:nnnn { regex } { range-missing-end }
8016 { Invalid~end-point~for~range~’#1-#2’~in~character~class. }
8017 {
8018 The~end-point~’#2’~of~the~range~’#1-#2’~may~not~serve~as~an~
8019 end-point~for~a~range:~alphanumeric~characters~should~not~be~
8020 escaped,~and~non-alphanumeric~characters~should~be~escaped.
8021 }
8022 \msg_new:nnnn { regex } { range-backwards }
8023 { Range~’[#1-#2]’~out~of~order~in~character~class. }
8024 {

582

8025 In~ranges~of~characters~’[x-y]’~appearing~in~character~classes,~
8026 the~first~character~code~must~not~be~larger~than~the~second.~
8027 Here,~’#1’~has~character~code~\int_eval:n {‘#1},~while~
8028 ’#2’~has~character~code~\int_eval:n {‘#2}.
8029 }

Errors related to \c and \u.
8030 \msg_new:nnnn { regex } { c-bad-mode }
8031 { Invalid~nested~’\iow_char:N\\c’~escape~in~regular~expression. }
8032 {
8033 The~’\iow_char:N\\c’~escape~cannot~be~used~within~
8034 a~control~sequence~test~’\iow_char:N\\c{...}’~
8035 nor~another~category~test.~
8036 To~combine~several~category~tests,~use~’\iow_char:N\\c[...]’.
8037 }
8038 \msg_new:nnnn { regex } { c-C-invalid }
8039 { ’\iow_char:N\\cC’~should~be~followed~by~’.’~or~’(’,~not~’#1’. }
8040 {
8041 The~’\iow_char:N\\cC’~construction~restricts~the~next~item~to~be~a~
8042 control~sequence~or~the~next~group~to~be~made~of~control~sequences.~
8043 It~only~makes~sense~to~follow~it~by~’.’~or~by~a~group.
8044 }
8045 \msg_new:nnnn { regex } { cu-lbrace }
8046 { Left~braces~must~be~escaped~in~’\iow_char:N\\#1{...}’. }
8047 {
8048 Constructions~such~as~’\iow_char:N\\#1{...\iow_char:N\{...}’~are~
8049 not~allowed~and~should~be~replaced~by~
8050 ’\iow_char:N\\#1{...\token_to_str:N\{...}’.
8051 }
8052 \msg_new:nnnn { regex } { c-lparen-in-class }
8053 { Catcode~test~cannot~apply~to~group~in~character~class }
8054 {
8055 Construction~such~as~’\iow_char:N\\cL(abc)’~are~not~allowed~inside~a~
8056 class~’[...]’~because~classes~do~not~match~multiple~characters~at~once.
8057 }
8058 \msg_new:nnnn { regex } { c-missing-rbrace }
8059 { Missing~right~brace~inserted~for~’\iow_char:N\\c’~escape. }
8060 {
8061 LaTeX~was~given~a~regular~expression~where~a~
8062 ’\iow_char:N\\c\iow_char:N\{...’~construction~was~not~ended~
8063 with~a~closing~brace~’\iow_char:N\}’.
8064 }
8065 \msg_new:nnnn { regex } { c-missing-rbrack }
8066 { Missing~right~bracket~inserted~for~’\iow_char:N\\c’~escape. }
8067 {
8068 A~construction~’\iow_char:N\\c[...’~appears~in~a~
8069 regular~expression,~but~the~closing~’]’~is~not~present.
8070 }
8071 \msg_new:nnnn { regex } { c-missing-category }
8072 { Invalid~character~’#1’~following~’\iow_char:N\\c’~escape. }
8073 {
8074 In~regular~expressions,~the~’\iow_char:N\\c’~escape~sequence~
8075 may~only~be~followed~by~a~left~brace,~a~left~bracket,~or~a~
8076 capital~letter~representing~a~character~category,~namely~
8077 one~of~’ABCDELMOPSTU’.

583

8078 }
8079 \msg_new:nnnn { regex } { c-trailing }
8080 { Trailing~category~code~escape~’\iow_char:N\\c’... }
8081 {
8082 A~regular~expression~ends~with~’\iow_char:N\\c’~followed~
8083 by~a~letter.~It~will~be~ignored.
8084 }
8085 \msg_new:nnnn { regex } { u-missing-lbrace }
8086 { Missing~left~brace~following~’\iow_char:N\\u’~escape. }
8087 {
8088 The~’\iow_char:N\\u’~escape~sequence~must~be~followed~by~
8089 a~brace~group~with~the~name~of~the~variable~to~use.
8090 }
8091 \msg_new:nnnn { regex } { u-missing-rbrace }
8092 { Missing~right~brace~inserted~for~’\iow_char:N\\u’~escape. }
8093 {
8094 LaTeX~
8095 \str_if_eq:eeTF { } {#2}
8096 { reached~the~end~of~the~string~ }
8097 { encountered~an~escaped~alphanumeric~character ’\iow_char:N\\#2’~ }
8098 when~parsing~the~argument~of~an~
8099 ’\iow_char:N\\u\iow_char:N\{...\}’~escape.
8100 }

Errors when encountering the posix syntax [:...:].
8101 \msg_new:nnnn { regex } { posix-unsupported }
8102 { POSIX~collating~element~’[#1 ~ #1]’~not~supported. }
8103 {
8104 The~’[.foo.]’~and~’[=bar=]’~syntaxes~have~a~special~meaning~
8105 in~POSIX~regular~expressions.~This~is~not~supported~by~LaTeX.~
8106 Maybe~you~forgot~to~escape~a~left~bracket~in~a~character~class?
8107 }
8108 \msg_new:nnnn { regex } { posix-unknown }
8109 { POSIX~class~’[:#1:]’~unknown. }
8110 {
8111 ’[:#1:]’~is~not~among~the~known~POSIX~classes~
8112 ’[:alnum:]’,~’[:alpha:]’,~’[:ascii:]’,~’[:blank:]’,~
8113 ’[:cntrl:]’,~’[:digit:]’,~’[:graph:]’,~’[:lower:]’,~
8114 ’[:print:]’,~’[:punct:]’,~’[:space:]’,~’[:upper:]’,~
8115 ’[:word:]’,~and~’[:xdigit:]’.
8116 }
8117 \msg_new:nnnn { regex } { posix-missing-close }
8118 { Missing~closing~’:]’~for~POSIX~class. }
8119 { The~POSIX~syntax~’#1’~must~be~followed~by~’:]’,~not~’#2’. }

In various cases, the result of a l3regex operation can leave us with an unbalanced
token list, which we must re-balance by adding begin-group or end-group character to-
kens.

8120 \msg_new:nnnn { regex } { result-unbalanced }
8121 { Missing~brace~inserted~when~#1. }
8122 {
8123 LaTeX~was~asked~to~do~some~regular~expression~operation,~
8124 and~the~resulting~token~list~would~not~have~the~same~number~
8125 of~begin-group~and~end-group~tokens.~Braces~were~inserted:~
8126 #2~left,~#3~right.

584

8127 }

Error message for unknown options.
8128 \msg_new:nnnn { regex } { unknown-option }
8129 { Unknown~option~’#1’~for~regular~expressions. }
8130 {
8131 The~only~available~option~is~’case-insensitive’,~toggled~by~
8132 ’(?i)’~and~’(?-i)’.
8133 }
8134 \msg_new:nnnn { regex } { special-group-unknown }
8135 { Unknown~special~group~’#1~...’~in~a~regular~expression. }
8136 {
8137 The~only~valid~constructions~starting~with~’(?’~are~
8138 ’(?:~...~)’,~’(?|~...~)’,~’(?i)’,~and~’(?-i)’.
8139 }

Errors in the replacement text.
8140 \msg_new:nnnn { regex } { replacement-c }
8141 { Misused~’\iow_char:N\\c’~command~in~a~replacement~text. }
8142 {
8143 In~a~replacement~text,~the~’\iow_char:N\\c’~escape~sequence~
8144 can~be~followed~by~one~of~the~letters~’ABCDELMOPSTU’~
8145 or~a~brace~group,~not~by~’#1’.
8146 }
8147 \msg_new:nnnn { regex } { replacement-u }
8148 { Misused~’\iow_char:N\\u’~command~in~a~replacement~text. }
8149 {
8150 In~a~replacement~text,~the~’\iow_char:N\\u’~escape~sequence~
8151 must~be~~followed~by~a~brace~group~holding~the~name~of~the~
8152 variable~to~use.
8153 }
8154 \msg_new:nnnn { regex } { replacement-g }
8155 {
8156 Missing~brace~for~the~’\iow_char:N\\g’~construction~
8157 in~a~replacement~text.
8158 }
8159 {
8160 In~the~replacement~text~for~a~regular~expression~search,~
8161 submatches~are~represented~either~as~’\iow_char:N \\g{dd..d}’,~
8162 or~’\\d’,~where~’d’~are~single~digits.~Here,~a~brace~is~missing.
8163 }
8164 \msg_new:nnnn { regex } { replacement-catcode-end }
8165 {
8166 Missing~character~for~the~’\iow_char:N\\c<category><character>’~
8167 construction~in~a~replacement~text.
8168 }
8169 {
8170 In~a~replacement~text,~the~’\iow_char:N\\c’~escape~sequence~
8171 can~be~followed~by~one~of~the~letters~’ABCDELMOPSTU’~representing~
8172 the~character~category.~Then,~a~character~must~follow.~LaTeX~
8173 reached~the~end~of~the~replacement~when~looking~for~that.
8174 }
8175 \msg_new:nnnn { regex } { replacement-catcode-escaped }
8176 {
8177 Escaped~letter~or~digit~after~category~code~in~replacement~text.

585

8178 }
8179 {
8180 In~a~replacement~text,~the~’\iow_char:N\\c’~escape~sequence~
8181 can~be~followed~by~one~of~the~letters~’ABCDELMOPSTU’~representing~
8182 the~character~category.~Then,~a~character~must~follow,~not~
8183 ’\iow_char:N\\#2’.
8184 }
8185 \msg_new:nnnn { regex } { replacement-catcode-in-cs }
8186 {
8187 Category~code~’\iow_char:N\\c#1#3’~ignored~inside~
8188 ’\iow_char:N\\c\{...\}’~in~a~replacement~text.
8189 }
8190 {
8191 In~a~replacement~text,~the~category~codes~of~the~argument~of~
8192 ’\iow_char:N\\c\{...\}’~are~ignored~when~building~the~control~
8193 sequence~name.
8194 }
8195 \msg_new:nnnn { regex } { replacement-null-space }
8196 { TeX~cannot~build~a~space~token~with~character~code~0. }
8197 {
8198 You~asked~for~a~character~token~with~category~space,~
8199 and~character~code~0,~for~instance~through~
8200 ’\iow_char:N\\cS\iow_char:N\\x00’.~
8201 This~specific~case~is~impossible~and~will~be~replaced~
8202 by~a~normal~space.
8203 }
8204 \msg_new:nnnn { regex } { replacement-missing-rbrace }
8205 { Missing~right~brace~inserted~in~replacement~text. }
8206 {
8207 There~ \int_compare:nTF { #1 = 1 } { was } { were } ~ #1~
8208 missing~right~\int_compare:nTF { #1 = 1 } { brace } { braces } .
8209 }
8210 \msg_new:nnnn { regex } { replacement-missing-rparen }
8211 { Missing~right~parenthesis~inserted~in~replacement~text. }
8212 {
8213 There~ \int_compare:nTF { #1 = 1 } { was } { were } ~ #1~
8214 missing~right~
8215 \int_compare:nTF { #1 = 1 } { parenthesis } { parentheses } .
8216 }
8217 \msg_new:nnn { regex } { submatch-too-big }
8218 { Submatch~#1~used~but~regex~only~has~#2~group(s) }

Some escaped alphanumerics are not allowed everywhere.
8219 \msg_new:nnnn { regex } { backwards-quantifier }
8220 { Quantifer~"{#1,#2}"~is~backwards. }
8221 { The~values~given~in~a~quantifier~must~be~in~order. }

Used in user commands, and when showing a regex.
8222 \msg_new:nnnn { regex } { case-odd }
8223 { #1~with~odd~number~of~items }
8224 {
8225 There~must~be~a~#2~part~for~each~regex:~
8226 found~odd~number~of~items~(#3)~in\\
8227 \iow_indent:n {#4}
8228 }

586

8229 \msg_new:nnn { regex } { show }
8230 {
8231 >~Compiled~regex~
8232 \tl_if_empty:nTF {#1} { variable~ #2 } { {#1} } :
8233 #3
8234 }
8235 \prop_gput:Nnn \g_msg_module_name_prop { regex } { LaTeX }
8236 \prop_gput:Nnn \g_msg_module_type_prop { regex } { }

__regex_msg_repeated:nnN This is not technically a message, but seems related enough to go there. The argu-
ments are: #1 is the minimum number of repetitions; #2 is the number of allowed extra
repetitions (−1 for infinite number), and #3 tells us about laziness.

8237 \cs_new:Npn __regex_msg_repeated:nnN #1#2#3
8238 {
8239 \str_if_eq:eeF { #1 #2 } { 1 0 }
8240 {
8241 , ~ repeated ~
8242 \int_case:nnF {#2}
8243 {
8244 { -1 } { #1~or~more~times,~\bool_if:NTF #3 { lazy } { greedy } }
8245 { 0 } { #1~times }
8246 }
8247 {
8248 between~#1~and~\int_eval:n {#1+#2}~times,~
8249 \bool_if:NTF #3 { lazy } { greedy }
8250 }
8251 }
8252 }

(End of definition for __regex_msg_repeated:nnN.)

46.9 Code for tracing
There is a more extensive implementation of tracing in the l3trial package l3trace. Func-
tion names are a bit different but could be merged.

__regex_trace_push:nnN
__regex_trace_pop:nnN

__regex_trace:nne

Here #1 is the module name (regex) and #2 is typically 1. If the module’s current tracing
level is less than #2 show nothing, otherwise write #3 to the terminal.

8253 \cs_new_protected:Npn __regex_trace_push:nnN #1#2#3
8254 { __regex_trace:nne {#1} {#2} { entering~ \token_to_str:N #3 } }
8255 \cs_new_protected:Npn __regex_trace_pop:nnN #1#2#3
8256 { __regex_trace:nne {#1} {#2} { leaving~ \token_to_str:N #3 } }
8257 \cs_new_protected:Npn __regex_trace:nne #1#2#3
8258 {
8259 \int_compare:nNnF
8260 { \int_use:c { g__regex_trace_#1_int } } < {#2}
8261 { \iow_term:e { Trace:~#3 } }
8262 }

(End of definition for __regex_trace_push:nnN , __regex_trace_pop:nnN , and __regex_trace:nne.)

\g__regex_trace_regex_int No tracing when that is zero.
8263 \int_new:N \g__regex_trace_regex_int

587

(End of definition for \g__regex_trace_regex_int.)

__regex_trace_states:n This function lists the contents of all states of the nfa, stored in \toks from 0 to \l__-
regex_max_state_int (excluded).

8264 \cs_new_protected:Npn __regex_trace_states:n #1
8265 {
8266 \int_step_inline:nnn
8267 \l__regex_min_state_int
8268 { \l__regex_max_state_int - \c_one_int }
8269 {
8270 __regex_trace:nne { regex } {#1}
8271 { \iow_char:N \\toks ##1 = { __regex_toks_use:w ##1 } }
8272 }
8273 }

(End of definition for __regex_trace_states:n.)

8274 ⟨/package⟩

588

Chapter 47

l3prg implementation

The following test files are used for this code: m3prg001.lvt,m3prg002.lvt,m3prg003.lvt.
8275 ⟨∗package⟩

47.1 Primitive conditionals
\if_bool:N

\if_predicate:w
Those two primitive TEX conditionals are synonyms. \if_bool:N is defined in l3basics,
as it’s needed earlier to define quark test functions.

8276 \cs_new_eq:NN \if_predicate:w \tex_ifodd:D

(End of definition for \if_bool:N and \if_predicate:w. These functions are documented on page 74.)

47.2 Defining a set of conditional functions
\prg_set_conditional:Npnn
\prg_new_conditional:Npnn

\prg_set_protected_conditional:Npnn
\prg_new_protected_conditional:Npnn
\prg_set_conditional:Nnn
\prg_new_conditional:Nnn

\prg_set_protected_conditional:Nnn
\prg_new_protected_conditional:Nnn

\prg_set_eq_conditional:NNn
\prg_new_eq_conditional:NNn

\prg_return_true:
\prg_return_false:

These are all defined in l3basics, as they are needed “early”. This is just a reminder!

(End of definition for \prg_set_conditional:Npnn and others. These functions are documented on page
65.)

47.3 The boolean data type
8277 ⟨@@=bool⟩

\bool_new:N
\bool_new:c

Boolean variables have to be initiated when they are created. Other than that there is
not much to say here.

8278 \cs_new_protected:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
8279 \cs_generate_variant:Nn \bool_new:N { c }

(End of definition for \bool_new:N. This function is documented on page 67.)

\bool_const:Nn
\bool_const:cn

A merger between \tl_const:Nn and \bool_set:Nn.
8280 \cs_new_protected:Npn \bool_const:Nn #1#2
8281 {
8282 __kernel_chk_if_free_cs:N #1
8283 \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
8284 }
8285 \cs_generate_variant:Nn \bool_const:Nn { c }

589

(End of definition for \bool_const:Nn. This function is documented on page 67.)

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c
\bool_set_false:N
\bool_set_false:c

\bool_gset_false:N
\bool_gset_false:c

Setting is already pretty easy. When check-declarations is active, the definitions are
patched to make sure the boolean exists. This is needed because booleans are not based
on token lists nor on TEX registers.

8286 \cs_new_protected:Npn \bool_set_true:N #1
8287 { \cs_set_eq:NN #1 \c_true_bool }
8288 \cs_new_protected:Npn \bool_set_false:N #1
8289 { \cs_set_eq:NN #1 \c_false_bool }
8290 \cs_new_protected:Npn \bool_gset_true:N #1
8291 { \cs_gset_eq:NN #1 \c_true_bool }
8292 \cs_new_protected:Npn \bool_gset_false:N #1
8293 { \cs_gset_eq:NN #1 \c_false_bool }
8294 \cs_generate_variant:Nn \bool_set_true:N { c }
8295 \cs_generate_variant:Nn \bool_set_false:N { c }
8296 \cs_generate_variant:Nn \bool_gset_true:N { c }
8297 \cs_generate_variant:Nn \bool_gset_false:N { c }

(End of definition for \bool_set_true:N and others. These functions are documented on page 67.)

\bool_set_eq:NN
\bool_set_eq:cN
\bool_set_eq:Nc
\bool_set_eq:cc
\bool_gset_eq:NN
\bool_gset_eq:cN
\bool_gset_eq:Nc
\bool_gset_eq:cc

The usual copy code. While it would be cleaner semantically to copy the \cs_set_eq:NN
family of functions, we copy \tl_set_eq:NN because that has the correct checking code.

8298 \cs_new_eq:NN \bool_set_eq:NN \tl_set_eq:NN
8299 \cs_new_eq:NN \bool_gset_eq:NN \tl_gset_eq:NN
8300 \cs_generate_variant:Nn \bool_set_eq:NN { Nc, cN, cc }
8301 \cs_generate_variant:Nn \bool_gset_eq:NN { Nc, cN, cc }

(End of definition for \bool_set_eq:NN and \bool_gset_eq:NN. These functions are documented on
page 68.)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

This function evaluates a boolean expression and assigns the first argument the meaning
\c_true_bool or \c_false_bool. Again, we include some checking code. It is important
to evaluate the expression before applying the \chardef primitive, because that primitive
sets the left-hand side to \scan_stop: before looking for the right-hand side.

8302 \cs_new_protected:Npn \bool_set:Nn #1#2
8303 {
8304 \exp_last_unbraced:NNNf
8305 \tex_chardef:D #1 = { \bool_if_p:n {#2} }
8306 }
8307 \cs_new_protected:Npn \bool_gset:Nn #1#2
8308 {
8309 \exp_last_unbraced:NNNNf
8310 \tex_global:D \tex_chardef:D #1 = { \bool_if_p:n {#2} }
8311 }
8312 \cs_generate_variant:Nn \bool_set:Nn { c }
8313 \cs_generate_variant:Nn \bool_gset:Nn { c }

(End of definition for \bool_set:Nn and \bool_gset:Nn. These functions are documented on page 68.)

\bool_set_inverse:N
\bool_set_inverse:c

\bool_gset_inverse:N
\bool_gset_inverse:c

Set to false or true locally or globally.
8314 \cs_new_protected:Npn \bool_set_inverse:N #1
8315 { \bool_if:NTF #1 { \bool_set_false:N } { \bool_set_true:N } #1 }
8316 \cs_generate_variant:Nn \bool_set_inverse:N { c }
8317 \cs_new_protected:Npn \bool_gset_inverse:N #1
8318 { \bool_if:NTF #1 { \bool_gset_false:N } { \bool_gset_true:N } #1 }
8319 \cs_generate_variant:Nn \bool_gset_inverse:N { c }

590

(End of definition for \bool_set_inverse:N and \bool_gset_inverse:N. These functions are docu-
mented on page 68.)

47.4 Internal auxiliaries
\q__bool_recursion_tail
\q__bool_recursion_stop

Internal recursion quarks.
8320 \quark_new:N \q__bool_recursion_tail
8321 \quark_new:N \q__bool_recursion_stop

(End of definition for \q__bool_recursion_tail and \q__bool_recursion_stop.)

__bool_use_i_delimit_by_q_recursion_stop:nw Functions to gobble up to a quark.
8322 \cs_new:Npn __bool_use_i_delimit_by_q_recursion_stop:nw
8323 #1 #2 \q__bool_recursion_stop {#1}

(End of definition for __bool_use_i_delimit_by_q_recursion_stop:nw.)

__bool_if_recursion_tail_stop_do:nn Functions to query recursion quarks.
8324 __kernel_quark_new_test:N __bool_if_recursion_tail_stop_do:nn

(End of definition for __bool_if_recursion_tail_stop_do:nn.)

\bool_if_p:N
\bool_if_p:c
\bool_if:NTF
\bool_if:cTF

Straight forward here. We could optimize here if we wanted to as the boolean can just
be input directly.

8325 \prg_new_conditional:Npnn \bool_if:N #1 { p , T , F , TF }
8326 {
8327 \if_bool:N #1
8328 \prg_return_true:
8329 \else:
8330 \prg_return_false:
8331 \fi:
8332 }
8333 \prg_generate_conditional_variant:Nnn \bool_if:N { c } { p , T , F , TF }

(End of definition for \bool_if:NTF. This function is documented on page 68.)

\bool_to_str:N
\bool_to_str:c
\bool_to_str:n

Expands to string literal true or false.
8334 \cs_new:Npe \bool_to_str:N #1
8335 {
8336 \exp_not:N \bool_if:NTF #1
8337 { \tl_to_str:n { true } } { \tl_to_str:n { false } }
8338 }
8339 \cs_generate_variant:Nn \bool_to_str:N { c }
8340 \cs_new:Npe \bool_to_str:n #1
8341 {
8342 \exp_not:N \bool_if:nTF {#1}
8343 { \tl_to_str:n { true } } { \tl_to_str:n { false } }
8344 }

(End of definition for \bool_to_str:N and \bool_to_str:n. These functions are documented on page
68.)

591

\bool_show:n
\bool_log:n

Show the truth value of the boolean.
8345 \cs_new_protected:Npn \bool_show:n
8346 { __kernel_msg_show_eval:Nn \bool_to_str:n }
8347 \cs_new_protected:Npn \bool_log:n
8348 { __kernel_msg_log_eval:Nn \bool_to_str:n }

(End of definition for \bool_show:n and \bool_log:n. These functions are documented on page 68.)

\bool_show:N
\bool_show:c
\bool_log:N
\bool_log:c

__bool_show:NN

Show the truth value of the boolean, as true or false.
8349 \cs_new_protected:Npn \bool_show:N { __bool_show:NN \tl_show:n }
8350 \cs_generate_variant:Nn \bool_show:N { c }
8351 \cs_new_protected:Npn \bool_log:N { __bool_show:NN \tl_log:n }
8352 \cs_generate_variant:Nn \bool_log:N { c }
8353 \cs_new_protected:Npn __bool_show:NN #1#2
8354 {
8355 __kernel_chk_defined:NT #2
8356 {
8357 \token_case_meaning:NnF #2
8358 {
8359 \c_true_bool { \exp_args:Ne #1 { \token_to_str:N #2 = true } }
8360 \c_false_bool { \exp_args:Ne #1 { \token_to_str:N #2 = false } }
8361 }
8362 {
8363 \msg_error:nneee { kernel } { bad-type }
8364 { \token_to_str:N #2 } { \token_to_meaning:N #2 } { bool }
8365 }
8366 }
8367 }

(End of definition for \bool_show:N , \bool_log:N , and __bool_show:NN. These functions are docu-
mented on page 68.)

\l_tmpa_bool
\l_tmpb_bool
\g_tmpa_bool
\g_tmpb_bool

A few booleans just if you need them.
8368 \bool_new:N \l_tmpa_bool
8369 \bool_new:N \l_tmpb_bool
8370 \bool_new:N \g_tmpa_bool
8371 \bool_new:N \g_tmpb_bool

(End of definition for \l_tmpa_bool and others. These variables are documented on page 69.)

\bool_if_exist_p:N
\bool_if_exist_p:c
\bool_if_exist:NTF
\bool_if_exist:cTF

Copies of the cs functions defined in l3basics.
8372 \prg_new_eq_conditional:NNn \bool_if_exist:N \cs_if_exist:N
8373 { TF , T , F , p }
8374 \prg_new_eq_conditional:NNn \bool_if_exist:c \cs_if_exist:c
8375 { TF , T , F , p }

(End of definition for \bool_if_exist:NTF. This function is documented on page 69.)

592

47.5 Boolean expressions
\bool_if_p:n
\bool_if:nTF

Evaluating the truth value of a list of predicates is done using an input syntax somewhat
similar to the one found in other programming languages with (and) for grouping, ! for
logical “Not”, && for logical “And” and || for logical “Or”. However, they perform eager
evaluation. We shall use the terms Not, And, Or, Open and Close for these operations.

Any expression is terminated by a Close operation. Evaluation happens from left to
right in the following manner using a GetNext function:

• If an Open is seen, start evaluating a new expression using the Eval function and
call GetNext again.

• If a Not is seen, remove the ! and call a GetNext function with the logic reversed.

• If none of the above, reinsert the token found (this is supposed to be a predicate
function) in front of an Eval function, which evaluates it to the boolean value ⟨true⟩
or ⟨false⟩.

The Eval function then contains a post-processing operation which grabs the instruction
following the predicate. This is either And, Or or Close. In each case the truth value is
used to determine where to go next. The following situations can arise:

⟨true⟩And Current truth value is true, logical And seen, continue with GetNext to
examine truth value of next boolean (sub-)expression.

⟨false⟩And Current truth value is false, logical And seen, stop using the values of
predicates within this sub-expression until the next Close. Then return ⟨false⟩.

⟨true⟩Or Current truth value is true, logical Or seen, stop using the values of predicates
within this sub-expression until the nearest Close. Then return ⟨true⟩.

⟨false⟩Or Current truth value is false, logical Or seen, continue with GetNext to ex-
amine truth value of next boolean (sub-)expression.

⟨true⟩Close Current truth value is true, Close seen, return ⟨true⟩.

⟨false⟩Close Current truth value is false, Close seen, return ⟨false⟩.

8376 \prg_new_conditional:Npnn \bool_if:n #1 { T , F , TF }
8377 {
8378 \if_predicate:w \bool_if_p:n {#1}
8379 \prg_return_true:
8380 \else:
8381 \prg_return_false:
8382 \fi:
8383 }

(End of definition for \bool_if:nTF. This function is documented on page 70.)

\bool_if_p:n
__bool_if_p:n

__bool_if_p_aux:w

To speed up the case of a single predicate, f-expand and check whether the result is
one token (possibly surrounded by spaces), which must be \c_true_bool or \c_false_-
bool. We use a version of \tl_if_single:nTF optimized for speed since we know that an
empty #1 is an error. The auxiliary __bool_if_p_aux:w removes the trailing parenthesis
and gets rid of any space, then returns \c_true_bool or \c_false_bool as appropriate.
This extra work around is because in a \bool_set:Nn, the underlying \chardef turns

593

the bool being set temporarily equal to \relax, thus assigning a boolean to itself would
fail (gh/1055). For the general case, first issue a \group_align_safe_begin: as we are
using && as syntax shorthand for the And operation and we need to hide it for TEX. This
group is closed after __bool_get_next:NN returns \c_true_bool or \c_false_bool.
That function requires the trailing parenthesis to know where the expression ends.

8384 \cs_new:Npn \bool_if_p:n { \exp_args:Nf __bool_if_p:n }
8385 \cs_new:Npn __bool_if_p:n #1
8386 {
8387 \tl_if_empty:oT { \use_none:nn #1 . } { __bool_if_p_aux:w }
8388 \group_align_safe_begin:
8389 \exp_after:wN
8390 \group_align_safe_end:
8391 \exp:w \exp_end_continue_f:w % (
8392 __bool_get_next:NN \use_i:nnnn #1)
8393 }
8394 \cs_new:Npn __bool_if_p_aux:w #1 \use_i:nnnn #2#3
8395 { \bool_if:NTF #2 \c_true_bool \c_false_bool }

(End of definition for \bool_if_p:n , __bool_if_p:n , and __bool_if_p_aux:w. This function is doc-
umented on page 70.)

__bool_get_next:NN The GetNext operation. Its first argument is \use_i:nnnn, \use_ii:nnnn, \use_-
iii:nnnn, or \use_iv:nnnn (we call these “states”). In the first state, this function
eventually expand to the truth value \c_true_bool or \c_false_bool of the expression
which follows until the next unmatched closing parenthesis. For instance “__bool_-
get_next:NN \use_i:nnnn \c_true_bool && \c_true_bool)” (including the closing
parenthesis) expands to \c_true_bool. In the second state (after a !) the logic is re-
versed. We call these two states “normal” and the next two “skipping”. In the third
state (after \c_true_bool||) it always returns \c_true_bool. In the fourth state (after
\c_false_bool&&) it always returns \c_false_bool and also stops when encountering
||, not only parentheses. This code itself is a switch: if what follows is neither ! nor (,
we assume it is a predicate.

8396 \cs_new:Npn __bool_get_next:NN #1#2
8397 {
8398 \use:c
8399 {
8400 __bool_
8401 \if_meaning:w !#2 ! \else: \if_meaning:w (#2 (\else: p \fi: \fi:
8402 :Nw
8403 }
8404 #1 #2
8405 }

(End of definition for __bool_get_next:NN.)

__bool_!:Nw The Not operation reverses the logic: it discards the ! token and calls the GetNext
operation with the appropriate first argument. Namely the first and second states are
interchanged, but after \c_true_bool|| or \c_false_bool&& the ! is ignored.

8406 \cs_new:cpn { __bool_!:Nw } #1#2
8407 {
8408 \exp_after:wN __bool_get_next:NN
8409 #1 \use_ii:nnnn \use_i:nnnn \use_iii:nnnn \use_iv:nnnn
8410 }

594

(End of definition for __bool_!:Nw.)

__bool_(:Nw The Open operation starts a sub-expression after discarding the open parenthesis. This
is done by calling GetNext (which eventually discards the corresponding closing paren-
thesis), with a post-processing step which looks for And, Or or Close after the group.

8411 \cs_new:cpn { __bool_(:Nw } #1#2
8412 {
8413 \exp_after:wN __bool_choose:NNN \exp_after:wN #1
8414 \int_value:w __bool_get_next:NN \use_i:nnnn
8415 }

(End of definition for __bool_(:Nw.)

__bool_p:Nw If what follows GetNext is neither ! nor (, evaluate the predicate using the primitive
\int_value:w. The canonical true and false values have numerical values 1 and 0
respectively. Look for And, Or or Close afterwards.

8416 \cs_new:cpn { __bool_p:Nw } #1
8417 { \exp_after:wN __bool_choose:NNN \exp_after:wN #1 \int_value:w }

(End of definition for __bool_p:Nw.)

__bool_choose:NNN
__bool_)_0:
__bool_)_1:
__bool_)_2:
__bool_&_0:
__bool_&_1:
__bool_&_2:
__bool_|_0:
__bool_|_1:
__bool_|_2:

The arguments are #1: a function such as \use_i:nnnn, #2: 0 or 1 encoding the current
truth value, #3: the next operation, And, Or or Close. We distinguish three cases
according to a combination of #1 and #2. Case 2 is when #1 is \use_iii:nnnn (state 3),
namely after \c_true_bool ||. Case 1 is when #1 is \use_i:nnnn and #2 is true or
when #1 is \use_ii:nnnn and #2 is false, for instance for !\c_false_bool. Case 0
includes the same with true/false interchanged and the case where #1 is \use_iv:nnnn
namely after \c_false_bool &&.

When seeing) the current subexpression is done, leave the appropriate boolean.
When seeing & in case 0 go into state 4, equivalent to having seen \c_false_bool &&.
In case 1, namely when the argument is true and we are in a normal state continue in
the normal state 1. In case 2, namely when skipping alternatives in an Or, continue in
the same state. When seeing | in case 0, continue in a normal state; in particular stop
skipping for \c_false_bool && because that binds more tightly than ||. In the other
two cases start skipping for \c_true_bool ||.

8418 \cs_new:Npn __bool_choose:NNN #1#2#3
8419 {
8420 \use:c
8421 {
8422 __bool_ \token_to_str:N #3 _
8423 #1 #2 { \if_meaning:w 0 #2 1 \else: 0 \fi: } 2 0 :
8424 }
8425 }
8426 \cs_new:cpn { __bool_)_0: } { \c_false_bool }
8427 \cs_new:cpn { __bool_)_1: } { \c_true_bool }
8428 \cs_new:cpn { __bool_)_2: } { \c_true_bool }
8429 \cs_new:cpn { __bool_&_0: } & { __bool_get_next:NN \use_iv:nnnn }
8430 \cs_new:cpn { __bool_&_1: } & { __bool_get_next:NN \use_i:nnnn }
8431 \cs_new:cpn { __bool_&_2: } & { __bool_get_next:NN \use_iii:nnnn }
8432 \cs_new:cpn { __bool_|_0: } | { __bool_get_next:NN \use_i:nnnn }
8433 \cs_new:cpn { __bool_|_1: } | { __bool_get_next:NN \use_iii:nnnn }
8434 \cs_new:cpn { __bool_|_2: } | { __bool_get_next:NN \use_iii:nnnn }

595

(End of definition for __bool_choose:NNN and others.)

\bool_lazy_all_p:n
\bool_lazy_all:nTF
__bool_lazy_all:n

Go through the list of expressions, stopping whenever an expression is false. If the end
is reached without finding any false expression, then the result is true.

8435 \cs_new:Npn \bool_lazy_all_p:n #1
8436 { __bool_lazy_all:n #1 \q__bool_recursion_tail \q__bool_recursion_stop }
8437 \prg_new_conditional:Npnn \bool_lazy_all:n #1 { T , F , TF }
8438 {
8439 \if_predicate:w \bool_lazy_all_p:n {#1}
8440 \prg_return_true:
8441 \else:
8442 \prg_return_false:
8443 \fi:
8444 }
8445 \cs_new:Npn __bool_lazy_all:n #1
8446 {
8447 __bool_if_recursion_tail_stop_do:nn {#1} { \c_true_bool }
8448 \bool_if:nF {#1}
8449 { __bool_use_i_delimit_by_q_recursion_stop:nw { \c_false_bool } }
8450 __bool_lazy_all:n
8451 }

(End of definition for \bool_lazy_all:nTF and __bool_lazy_all:n. This function is documented on
page 70.)

\bool_lazy_and_p:nn
\bool_lazy_and:nnTF

Only evaluate the second expression if the first is true. Note that #2 must be removed
as an argument, not just by skipping to the \else: branch of the conditional since #2
may contain unbalanced TEX conditionals.

8452 \prg_new_conditional:Npnn \bool_lazy_and:nn #1#2 { p , T , F , TF }
8453 {
8454 \if_predicate:w
8455 \bool_if:nTF {#1} { \bool_if_p:n {#2} } { \c_false_bool }
8456 \prg_return_true:
8457 \else:
8458 \prg_return_false:
8459 \fi:
8460 }

(End of definition for \bool_lazy_and:nnTF. This function is documented on page 70.)

\bool_lazy_any_p:n
\bool_lazy_any:nTF
__bool_lazy_any:n

Go through the list of expressions, stopping whenever an expression is true. If the end
is reached without finding any true expression, then the result is false.

8461 \cs_new:Npn \bool_lazy_any_p:n #1
8462 { __bool_lazy_any:n #1 \q__bool_recursion_tail \q__bool_recursion_stop }
8463 \prg_new_conditional:Npnn \bool_lazy_any:n #1 { T , F , TF }
8464 {
8465 \if_predicate:w \bool_lazy_any_p:n {#1}
8466 \prg_return_true:
8467 \else:
8468 \prg_return_false:
8469 \fi:
8470 }
8471 \cs_new:Npn __bool_lazy_any:n #1
8472 {

596

8473 __bool_if_recursion_tail_stop_do:nn {#1} { \c_false_bool }
8474 \bool_if:nT {#1}
8475 { __bool_use_i_delimit_by_q_recursion_stop:nw { \c_true_bool } }
8476 __bool_lazy_any:n
8477 }

(End of definition for \bool_lazy_any:nTF and __bool_lazy_any:n. This function is documented on
page 71.)

\bool_lazy_or_p:nn
\bool_lazy_or:nnTF

Only evaluate the second expression if the first is false.
8478 \prg_new_conditional:Npnn \bool_lazy_or:nn #1#2 { p , T , F , TF }
8479 {
8480 \if_predicate:w
8481 \bool_if:nTF {#1} { \c_true_bool } { \bool_if_p:n {#2} }
8482 \prg_return_true:
8483 \else:
8484 \prg_return_false:
8485 \fi:
8486 }

(End of definition for \bool_lazy_or:nnTF. This function is documented on page 71.)

\bool_not_p:n The Not variant just reverses the outcome of \bool_if_p:n. Can be optimized but this
is nice and simple and according to the implementation plan. Not even particularly useful
to have it when the infix notation is easier to use.

8487 \cs_new:Npn \bool_not_p:n #1 { \bool_if_p:n { ! (#1) } }

(End of definition for \bool_not_p:n. This function is documented on page 71.)

\bool_xor_p:nn
\bool_xor:nnTF

Exclusive or. If the boolean expressions have same truth value, return false, otherwise
return true.

8488 \prg_new_conditional:Npnn \bool_xor:nn #1#2 { p , T , F , TF }
8489 {
8490 \bool_if:nT {#1} \reverse_if:N
8491 \if_predicate:w \bool_if_p:n {#2}
8492 \prg_return_true:
8493 \else:
8494 \prg_return_false:
8495 \fi:
8496 }

(End of definition for \bool_xor:nnTF. This function is documented on page 71.)

47.6 Logical loops
\bool_while_do:Nn
\bool_while_do:cn
\bool_until_do:Nn
\bool_until_do:cn

A while loop where the boolean is tested before executing the statement. The “while”
version executes the code as long as the boolean is true; the “until” version executes the
code as long as the boolean is false.

8497 \cs_new:Npn \bool_while_do:Nn #1#2
8498 { \bool_if:NT #1 { #2 \bool_while_do:Nn #1 {#2} } }
8499 \cs_new:Npn \bool_until_do:Nn #1#2
8500 { \bool_if:NF #1 { #2 \bool_until_do:Nn #1 {#2} } }
8501 \cs_generate_variant:Nn \bool_while_do:Nn { c }
8502 \cs_generate_variant:Nn \bool_until_do:Nn { c }

597

(End of definition for \bool_while_do:Nn and \bool_until_do:Nn. These functions are documented on
page 71.)

\bool_do_while:Nn
\bool_do_while:cn
\bool_do_until:Nn
\bool_do_until:cn

A do-while loop where the body is performed at least once and the boolean is tested
after executing the body. Otherwise identical to the above functions.

8503 \cs_new:Npn \bool_do_while:Nn #1#2
8504 { #2 \bool_if:NT #1 { \bool_do_while:Nn #1 {#2} } }
8505 \cs_new:Npn \bool_do_until:Nn #1#2
8506 { #2 \bool_if:NF #1 { \bool_do_until:Nn #1 {#2} } }
8507 \cs_generate_variant:Nn \bool_do_while:Nn { c }
8508 \cs_generate_variant:Nn \bool_do_until:Nn { c }

(End of definition for \bool_do_while:Nn and \bool_do_until:Nn. These functions are documented on
page 71.)

\bool_while_do:nn
\bool_do_while:nn
\bool_until_do:nn
\bool_do_until:nn

Loop functions with the test either before or after the first body expansion.
8509 \cs_new:Npn \bool_while_do:nn #1#2
8510 {
8511 \bool_if:nT {#1}
8512 {
8513 #2
8514 \bool_while_do:nn {#1} {#2}
8515 }
8516 }
8517 \cs_new:Npn \bool_do_while:nn #1#2
8518 {
8519 #2
8520 \bool_if:nT {#1} { \bool_do_while:nn {#1} {#2} }
8521 }
8522 \cs_new:Npn \bool_until_do:nn #1#2
8523 {
8524 \bool_if:nF {#1}
8525 {
8526 #2
8527 \bool_until_do:nn {#1} {#2}
8528 }
8529 }
8530 \cs_new:Npn \bool_do_until:nn #1#2
8531 {
8532 #2
8533 \bool_if:nF {#1} { \bool_do_until:nn {#1} {#2} }
8534 }

(End of definition for \bool_while_do:nn and others. These functions are documented on page 72.)

\s__bool_mark
\s__bool_stop

Internal scan marks.
8535 \scan_new:N \s__bool_mark
8536 \scan_new:N \s__bool_stop

(End of definition for \s__bool_mark and \s__bool_stop.)

\bool_case:n
\bool_case:nTF

__bool_case:NnTF
__bool_case:w

a__bool_case_end:nw

For boolean cases the overall idea is the same as for \str_case:nnTF as described in
l3str.

8537 \cs_new:Npn \bool_case:nTF
8538 { \exp:w __bool_case:nTF }

598

8539 \cs_new:Npn \bool_case:nT #1#2
8540 { \exp:w __bool_case:nTF {#1} {#2} { } }
8541 \cs_new:Npn \bool_case:nF #1
8542 { \exp:w __bool_case:nTF {#1} { } }
8543 \cs_new:Npn \bool_case:n #1
8544 { \exp:w __bool_case:nTF {#1} { } { } }
8545 \cs_new:Npn __bool_case:nTF #1#2#3
8546 {
8547 __bool_case:w
8548 #1 \c_true_bool { } \s__bool_mark {#2} \s__bool_mark {#3} \s__bool_stop
8549 }
8550 \cs_new:Npn __bool_case:w #1#2
8551 {
8552 \bool_if:nTF {#1}
8553 { __bool_case_end:nw {#2} }
8554 { __bool_case:w }
8555 }
8556 \cs_new:Npn __bool_case_end:nw #1#2#3 \s__bool_mark #4#5 \s__bool_stop
8557 { \exp_end: #1 #4 }

(End of definition for \bool_case:nTF and others. This function is documented on page 73.)

47.7 Producing multiple copies
8558 ⟨@@=prg⟩

\prg_replicate:nn
__prg_replicate:N

__prg_replicate_first:N
__prg_replicate_

__prg_replicate_0:n
__prg_replicate_1:n
__prg_replicate_2:n
__prg_replicate_3:n
__prg_replicate_4:n
__prg_replicate_5:n
__prg_replicate_6:n
__prg_replicate_7:n
__prg_replicate_8:n
__prg_replicate_9:n

__prg_replicate_first_-:n
__prg_replicate_first_0:n
__prg_replicate_first_1:n
__prg_replicate_first_2:n
__prg_replicate_first_3:n
__prg_replicate_first_4:n
__prg_replicate_first_5:n
__prg_replicate_first_6:n
__prg_replicate_first_7:n
__prg_replicate_first_8:n
__prg_replicate_first_9:n

This function uses a cascading csname technique by David Kastrup (who else :-)
The idea is to make the input 25 result in first adding five, and then 20 copies

of the code to be replicated. The technique uses cascading csnames which means that
we start building several csnames so we end up with a list of functions to be called in
reverse order. This is important here (and other places) because it means that we can for
instance make the function that inserts five copies of something to also hand down ten
to the next function in line. This is exactly what happens here: in the example with 25
then the next function is the one that inserts two copies but it sees the ten copies handed
down by the previous function. In order to avoid the last function to insert say, 100
copies of the original argument just to gobble them again we define separate functions to
be inserted first. These functions also close the expansion of \exp:w, which ensures that
\prg_replicate:nn only requires two steps of expansion.

This function has one flaw though: Since it constantly passes down ten copies of
its previous argument it severely affects the main memory once you start demanding
hundreds of thousands of copies. Now I don’t think this is a real limitation for any
ordinary use, and if necessary, it is possible to write \prg_replicate:nn {1000} { \prg_-
replicate:nn {1000} {⟨code⟩} }. An alternative approach is to create a string of m’s
with \exp:w which can be done with just four macros but that method has its own
problems since it can exhaust the string pool. Also, it is considerably slower than what
we use here so the few extra csnames are well spent I would say.

8559 \cs_new:Npn \prg_replicate:nn #1
8560 {
8561 \exp:w
8562 \exp_after:wN __prg_replicate_first:N
8563 \int_value:w \int_eval:n {#1}
8564 \cs_end:

599

8565 }
8566 \cs_new:Npn __prg_replicate:N #1
8567 { \cs:w __prg_replicate_#1 :n __prg_replicate:N }
8568 \cs_new:Npn __prg_replicate_first:N #1
8569 { \cs:w __prg_replicate_first_ #1 :n __prg_replicate:N }

Then comes all the functions that do the hard work of inserting all the copies. The first
function takes :n as a parameter.

8570 \cs_new:Npn __prg_replicate_ :n #1 { \cs_end: }
8571 \cs_new:cpn { __prg_replicate_0:n } #1
8572 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} }
8573 \cs_new:cpn { __prg_replicate_1:n } #1
8574 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1 }
8575 \cs_new:cpn { __prg_replicate_2:n } #1
8576 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1 }
8577 \cs_new:cpn { __prg_replicate_3:n } #1
8578 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1 }
8579 \cs_new:cpn { __prg_replicate_4:n } #1
8580 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1 }
8581 \cs_new:cpn { __prg_replicate_5:n } #1
8582 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1 }
8583 \cs_new:cpn { __prg_replicate_6:n } #1
8584 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1 }
8585 \cs_new:cpn { __prg_replicate_7:n } #1
8586 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1 }
8587 \cs_new:cpn { __prg_replicate_8:n } #1
8588 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1 }
8589 \cs_new:cpn { __prg_replicate_9:n } #1
8590 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#1#1#1#1#1#1#1 }

Users shouldn’t ask for something to be replicated once or even not at all but. . .
8591 \cs_new:cpn { __prg_replicate_first_-:n } #1
8592 {
8593 \exp_end:
8594 \msg_expandable_error:nn { prg } { negative-replication }
8595 }
8596 \cs_new:cpn { __prg_replicate_first_0:n } #1 { \exp_end: }
8597 \cs_new:cpn { __prg_replicate_first_1:n } #1 { \exp_end: #1 }
8598 \cs_new:cpn { __prg_replicate_first_2:n } #1 { \exp_end: #1#1 }
8599 \cs_new:cpn { __prg_replicate_first_3:n } #1 { \exp_end: #1#1#1 }
8600 \cs_new:cpn { __prg_replicate_first_4:n } #1 { \exp_end: #1#1#1#1 }
8601 \cs_new:cpn { __prg_replicate_first_5:n } #1 { \exp_end: #1#1#1#1#1 }
8602 \cs_new:cpn { __prg_replicate_first_6:n } #1 { \exp_end: #1#1#1#1#1#1 }
8603 \cs_new:cpn { __prg_replicate_first_7:n } #1 { \exp_end: #1#1#1#1#1#1#1 }
8604 \cs_new:cpn { __prg_replicate_first_8:n } #1 { \exp_end: #1#1#1#1#1#1#1#1 }
8605 \cs_new:cpn { __prg_replicate_first_9:n } #1
8606 { \exp_end: #1#1#1#1#1#1#1#1#1 }

(End of definition for \prg_replicate:nn and others. This function is documented on page 73.)

47.8 Detecting TEX’s mode
\mode_if_vertical_p:
\mode_if_vertical:TF

For testing vertical mode. Strikes me here on the bus with David, that as long as we
are just talking about returning true and false states, we can just use the primitive

600

conditionals for this and gobbling the \exp_end: in the input stream. However this
requires knowledge of the implementation so we keep things nice and clean and use the
return statements.

8607 \prg_new_conditional:Npnn \mode_if_vertical: { p , T , F , TF }
8608 { \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: }

(End of definition for \mode_if_vertical:TF. This function is documented on page 74.)

\mode_if_horizontal_p:
\mode_if_horizontal:TF

For testing horizontal mode.
8609 \prg_new_conditional:Npnn \mode_if_horizontal: { p , T , F , TF }
8610 { \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: }

(End of definition for \mode_if_horizontal:TF. This function is documented on page 73.)

\mode_if_inner_p:
\mode_if_inner:TF

For testing inner mode.
8611 \prg_new_conditional:Npnn \mode_if_inner: { p , T , F , TF }
8612 { \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: }

(End of definition for \mode_if_inner:TF. This function is documented on page 73.)

\mode_if_math_p:
\mode_if_math:TF

For testing math mode. At the beginning of an alignment cell, this should be used only
inside a non-expandable function.

8613 \prg_new_conditional:Npnn \mode_if_math: { p , T , F , TF }
8614 { \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: }

(End of definition for \mode_if_math:TF. This function is documented on page 74.)

47.9 Internal programming functions
\group_align_safe_begin:

\group_align_safe_end:
TEX’s alignment structures present many problems. As Knuth says himself in TEX: The
Program: “It’s sort of a miracle whenever \halign or \valign work, [. . .]” One problem
relates to commands that internally issue a \cr but also peek ahead for the next character
for use in, say, an optional argument. If the next token happens to be a & with category
code 4 we get some sort of weird error message because the underlying \futurelet stores
the token at the end of the alignment template. This could be a &4 giving a message
like ! Misplaced \cr. or even worse: it could be the \endtemplate token causing even
more trouble! To solve this we have to open a special group so that TEX still thinks
it’s on safe ground but at the same time we don’t want to introduce any brace group
that may find its way to the output. The following functions help with this by using
behaviour documented only in Appendix D of The TEXbook. . . In short evaluating ‘{
and ‘} as numbers will not change the counter TEX uses to keep track of its state in an
alignment, whereas gobbling a brace using \if_false: will affect TEX’s state without
producing any real group. We place the \if_false: { \fi: part at that place so that the
successive expansions of \group_align_safe_begin/end: are always brace balanced.

8615 \group_begin:
8616 \tex_catcode:D ‘\^^@ = 2 \exp_stop_f:
8617 \cs_new:Npn \group_align_safe_begin:
8618 { \exp:w \if_false: { \fi: ‘^^@ \exp_stop_f: }
8619 \tex_catcode:D ‘\^^@ = 1 \exp_stop_f:
8620 \cs_new:Npn \group_align_safe_end:
8621 { \exp:w ‘^^@ \if_false: } \fi: \exp_stop_f: }
8622 \group_end:

601

(End of definition for \group_align_safe_begin: and \group_align_safe_end:. These functions are
documented on page 75.)

\g__kernel_prg_map_int A nesting counter for mapping.
8623 \int_new:N \g__kernel_prg_map_int

(End of definition for \g__kernel_prg_map_int.)

\prg_break_point:Nn
\prg_map_break:Nn

These are defined in l3basics, as they are needed “early”. This is just a reminder that is
the case!

(End of definition for \prg_break_point:Nn and \prg_map_break:Nn. These functions are documented
on page 74.)

\prg_break_point:
\prg_break:

\prg_break:n

Also done in l3basics.

(End of definition for \prg_break_point: , \prg_break: , and \prg_break:n. These functions are docu-
mented on page 75.)

8624 ⟨/package⟩

602

Chapter 48

l3sys implementation

8625 ⟨@@=sys⟩

48.1 Kernel code
8626 ⟨∗package⟩
8627 ⟨∗tex⟩

\l__sys_tmp_tl

8628 \tl_new:N \l__sys_tmp_tl

(End of definition for \l__sys_tmp_tl.)

48.1.1 Detecting the engine
__sys_const:nn Set the T, F, TF, p forms of #1 to be constants equal to the result of evaluating the boolean

expression #2.
8629 \cs_new_protected:Npn __sys_const:nn #1#2
8630 {
8631 \bool_if:nTF {#2}
8632 {
8633 \cs_new_eq:cN { #1 :T } \use:n
8634 \cs_new_eq:cN { #1 :F } \use_none:n
8635 \cs_new_eq:cN { #1 :TF } \use_i:nn
8636 \cs_new_eq:cN { #1 _p: } \c_true_bool
8637 }
8638 {
8639 \cs_new_eq:cN { #1 :T } \use_none:n
8640 \cs_new_eq:cN { #1 :F } \use:n
8641 \cs_new_eq:cN { #1 :TF } \use_ii:nn
8642 \cs_new_eq:cN { #1 _p: } \c_false_bool
8643 }
8644 }

(End of definition for __sys_const:nn.)

\sys_if_engine_luatex_p:
\sys_if_engine_luatex:TF
\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF
\sys_if_engine_ptex_p:
\sys_if_engine_ptex:TF
\sys_if_engine_uptex_p:
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p:
\sys_if_engine_xetex:TF

\c_sys_engine_str

Set up the engine tests on the basis exactly one test should be true. Mainly a case of
looking for the appropriate marker primitive.

8645 \str_const:Ne \c_sys_engine_str

603

8646 {
8647 \cs_if_exist:NT \tex_luatexversion:D { luatex }
8648 \cs_if_exist:NT \tex_pdftexversion:D { pdftex }
8649 \cs_if_exist:NT \tex_kanjiskip:D
8650 {
8651 \cs_if_exist:NTF \tex_enablecjktoken:D
8652 { uptex }
8653 { ptex }
8654 }
8655 \cs_if_exist:NT \tex_XeTeXversion:D { xetex }
8656 }
8657 \tl_map_inline:nn { { luatex } { pdftex } { ptex } { uptex } { xetex } }
8658 {
8659 __sys_const:nn { sys_if_engine_ #1 }
8660 { \str_if_eq_p:Vn \c_sys_engine_str {#1} }
8661 }

(End of definition for \sys_if_engine_luatex:TF and others. These functions are documented on page
77.)

\sys_if_engine_opentype_p: ⋆
\sys_if_engine_opentype:TF ⋆

8662 __sys_const:nn
8663 { sys_if_engine_opentype }
8664 { \cs_if_exist_p:N \tex_Umathcode:D }

\c_sys_engine_exec_str
\c_sys_engine_format_str

Take the functions defined above, and set up the engine and format names. \c_sys_-
engine_exec_str differs from \c_sys_engine_str as it is the actual engine name, not a
“filtered” version. It differs for ptex and uptex, which have a leading e, and for luatex,
because LATEX uses the LuaHBTEX engine.

\c_sys_engine_format_str is quite similar to \c_sys_engine_str, except that it
differentiates pdflatex from latex (which is pdfTEX in DVI mode). This differentiation,
however, is reliable only if the user doesn’t change \tex_pdfoutput:D before loading this
code.

8665 \group_begin:
8666 \cs_set_eq:NN \lua_now:e \tex_directlua:D
8667 \str_const:Ne \c_sys_engine_exec_str
8668 {
8669 \sys_if_engine_pdftex:T { pdf }
8670 \sys_if_engine_xetex:T { xe }
8671 \sys_if_engine_ptex:T { ep }
8672 \sys_if_engine_uptex:T { eup }
8673 \sys_if_engine_luatex:T
8674 {
8675 lua \lua_now:e
8676 {
8677 if (pcall(require, ’luaharfbuzz’)) then ~
8678 tex.print("hb") ~
8679 end
8680 }
8681 }
8682 tex

604

8683 }
8684 \group_end:
8685 \str_const:Ne \c_sys_engine_format_str
8686 {
8687 \cs_if_exist:NTF \fmtname
8688 {
8689 \bool_lazy_or:nnTF
8690 { \str_if_eq_p:Vn \fmtname { plain } }
8691 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
8692 {
8693 \sys_if_engine_pdftex:T
8694 { \int_compare:nNnT { \tex_pdfoutput:D } = { 1 } { pdf } }
8695 \sys_if_engine_xetex:T { xe }
8696 \sys_if_engine_ptex:T { p }
8697 \sys_if_engine_uptex:T { up }
8698 \sys_if_engine_luatex:T
8699 {
8700 \int_compare:nNnT { \tex_pdfoutput:D } = { 0 } { dvi }
8701 lua
8702 }
8703 \str_if_eq:VnTF \fmtname { LaTeX2e }
8704 { latex }
8705 {
8706 \bool_lazy_and:nnT
8707 { \sys_if_engine_pdftex_p: }
8708 { \int_compare_p:nNn { \tex_pdfoutput:D } = { 0 } }
8709 { e }
8710 tex
8711 }
8712 }
8713 { \fmtname }
8714 }
8715 { unknown }
8716 }

(End of definition for \c_sys_engine_exec_str and \c_sys_engine_format_str. These variables are
documented on page 77.)

\c_sys_engine_version_str Various different engines, various different ways to extract the data!
8717 \str_const:Ne \c_sys_engine_version_str
8718 {
8719 \str_case:on \c_sys_engine_str
8720 {
8721 { pdftex }
8722 {
8723 \int_div_truncate:nn { \tex_pdftexversion:D } { 100 }
8724 .
8725 \int_mod:nn { \tex_pdftexversion:D } { 100 }
8726 .
8727 \tex_pdftexrevision:D
8728 }
8729 { ptex }
8730 {
8731 \cs_if_exist:NT \tex_ptexversion:D

605

8732 {
8733 p
8734 \int_use:N \tex_ptexversion:D
8735 .
8736 \int_use:N \tex_ptexminorversion:D
8737 \tex_ptexrevision:D
8738 -
8739 \int_use:N \tex_epTeXversion:D
8740 }
8741 }
8742 { luatex }
8743 {
8744 \int_div_truncate:nn { \tex_luatexversion:D } { 100 }
8745 .
8746 \int_mod:nn { \tex_luatexversion:D } { 100 }
8747 .
8748 \tex_luatexrevision:D
8749 }
8750 { uptex }
8751 {
8752 \cs_if_exist:NT \tex_ptexversion:D
8753 {
8754 p
8755 \int_use:N \tex_ptexversion:D
8756 .
8757 \int_use:N \tex_ptexminorversion:D
8758 \tex_ptexrevision:D
8759 -
8760 u
8761 \int_use:N \tex_uptexversion:D
8762 \tex_uptexrevision:D
8763 -
8764 \int_use:N \tex_epTeXversion:D
8765 }
8766 }
8767 { xetex }
8768 {
8769 \int_use:N \tex_XeTeXversion:D
8770 \tex_XeTeXrevision:D
8771 }
8772 }
8773 }

(End of definition for \c_sys_engine_version_str. This variable is documented on page 78.)

48.1.2 Platform
\sys_if_platform_unix_p:
\sys_if_platform_unix:TF

\sys_if_platform_windows_p:
\sys_if_platform_windows:TF

\c_sys_platform_str

Setting these up requires the file module (file lookup), so is actually implemented there.

(End of definition for \sys_if_platform_unix:TF , \sys_if_platform_windows:TF , and \c_sys_platform_-
str. These functions are documented on page 79.)

606

48.1.3 Configurations
\sys_load_backend:n

__sys_load_backend_check:N
\c_sys_backend_str

Loading the backend code is pretty simply: check that the backend is valid, then load it
up.

8774 \cs_new_protected:Npn \sys_load_backend:n #1
8775 {
8776 \sys_finalise:
8777 \str_if_exist:NTF \c_sys_backend_str
8778 {
8779 \str_if_eq:VnF \c_sys_backend_str {#1}
8780 { \msg_error:nn { sys } { backend-set } }
8781 }
8782 {
8783 \tl_if_blank:nF {#1}
8784 { \tl_gset:Nn \g__sys_backend_tl {#1} }
8785 __sys_load_backend_check:N \g__sys_backend_tl
8786 \str_const:Ne \c_sys_backend_str { \g__sys_backend_tl }
8787 __kernel_sys_configuration_load:n
8788 { l3backend- \c_sys_backend_str }
8789 }
8790 }
8791 \cs_new_protected:Npn __sys_load_backend_check:N #1
8792 {
8793 \sys_if_engine_xetex:TF
8794 {
8795 \str_case:VnF #1
8796 {
8797 { dvisvgm } { }
8798 { xdvipdfmx } { \tl_gset:Nn #1 { xetex } }
8799 { xetex } { }
8800 }
8801 {
8802 \msg_error:nnee { sys } { wrong-backend }
8803 #1 { xetex }
8804 \tl_gset:Nn #1 { xetex }
8805 }
8806 }
8807 {
8808 \sys_if_output_pdf:TF
8809 {
8810 \str_if_eq:VnTF #1 { pdfmode }
8811 {
8812 \sys_if_engine_luatex:TF
8813 { \tl_gset:Nn #1 { luatex } }
8814 { \tl_gset:Nn #1 { pdftex } }
8815 }
8816 {
8817 \bool_lazy_or:nnF
8818 { \str_if_eq_p:Vn #1 { luatex } }
8819 { \str_if_eq_p:Vn #1 { pdftex } }
8820 {
8821 \msg_error:nnee { sys } { wrong-backend }
8822 #1 { \sys_if_engine_luatex:TF { luatex } { pdftex } }
8823 \sys_if_engine_luatex:TF

607

8824 { \tl_gset:Nn #1 { luatex } }
8825 { \tl_gset:Nn #1 { pdftex } }
8826 }
8827 }
8828 }
8829 {
8830 \str_case:VnF #1
8831 {
8832 { dvipdfmx } { }
8833 { dvips } { }
8834 { dvisvgm } { }
8835 }
8836 {
8837 \msg_error:nnee { sys } { wrong-backend }
8838 #1 { dvips }
8839 \tl_gset:Nn #1 { dvips }
8840 }
8841 }
8842 }
8843 }

(End of definition for \sys_load_backend:n , __sys_load_backend_check:N , and \c_sys_backend_str.
These functions are documented on page 82.)

\sys_ensure_backend: A simple wrapper.
8844 \cs_new_protected:Npn \sys_ensure_backend:
8845 {
8846 \str_if_exist:NF \c_sys_backend_str
8847 { \sys_load_backend:n { } }
8848 }

(End of definition for \sys_ensure_backend:. This function is documented on page 82.)

\g__sys_debug_bool

8849 \bool_new:N \g__sys_debug_bool

(End of definition for \g__sys_debug_bool.)

\sys_load_debug: The most complicated thing here is that we can only use __kernel_sys_configuration_-
load:n in the preamble in LATEX.

8850 \cs_new_protected:Npn \sys_load_debug:
8851 {
8852 \bool_if:NF \g__sys_debug_bool
8853 { __kernel_sys_configuration_load:n { l3debug } }
8854 \bool_gset_true:N \g__sys_debug_bool
8855 }
8856 \cs_if_exist:NT \@expl@finalise@setup@@
8857 {
8858 \tl_gput_right:Nn \@expl@finalise@setup@@
8859 {
8860 \tl_gput_right:Nn \@kernel@after@begindocument
8861 {
8862 \cs_gset_protected:Npn \sys_load_debug:
8863 { \msg_error:nn { sys } { load-debug-in-preamble } }
8864 }

608

8865 }
8866 }

(End of definition for \sys_load_debug:. This function is documented on page 82.)

48.1.4 Access to the shell
\l__sys_internal_tl

8867 \tl_new:N \l__sys_internal_tl

(End of definition for \l__sys_internal_tl.)

\c__sys_marker_tl The same idea as the marker for rescanning token lists.
8868 \tl_const:Ne \c__sys_marker_tl { : \token_to_str:N : }

(End of definition for \c__sys_marker_tl.)

\sys_get_shell:nnNTF
\sys_get_shell:nnN

__sys_get:nnN
__sys_get_do:Nw

Setting using a shell is at this level just a slightly specialised file operation, with an
additional check for quotes, as these are not supported.

8869 \cs_new_protected:Npn \sys_get_shell:nnN #1#2#3
8870 {
8871 \sys_get_shell:nnNF {#1} {#2} #3
8872 { \tl_set:Nn #3 { \q_no_value } }
8873 }
8874 \prg_new_protected_conditional:Npnn \sys_get_shell:nnN #1#2#3 { T , F , TF }
8875 {
8876 \sys_if_shell:TF
8877 { \exp_args:No __sys_get:nnN { \tl_to_str:n {#1} } {#2} #3 }
8878 { \prg_return_false: }
8879 }
8880 \cs_new_protected:Npn __sys_get:nnN #1#2#3
8881 {
8882 \tl_if_in:nnTF {#1} { " }
8883 {
8884 \msg_error:nne
8885 { kernel } { quote-in-shell } {#1}
8886 \prg_return_false:
8887 }
8888 {
8889 \group_begin:
8890 \if_false: { \fi:
8891 \int_set_eq:NN \tex_tracingnesting:D \c_zero_int
8892 \exp_args:No \tex_everyeof:D { \c__sys_marker_tl }
8893 #2 \scan_stop:
8894 \exp_after:wN __sys_get_do:Nw
8895 \exp_after:wN #3
8896 \exp_after:wN \prg_do_nothing:
8897 \tex_input:D | "#1" \scan_stop:
8898 \if_false: } \fi:
8899 \prg_return_true:
8900 }
8901 }
8902 \exp_args:Nno \use:nn
8903 { \cs_new_protected:Npn __sys_get_do:Nw #1#2 }

609

8904 { \c__sys_marker_tl }
8905 {
8906 \group_end:
8907 \tl_set:No #1 {#2}
8908 }

(End of definition for \sys_get_shell:nnNTF and others. These functions are documented on page 80.)

\c__sys_shell_stream_int This is not needed for LuaTEX: shell escape there isn’t done using a TEX interface.
8909 \sys_if_engine_luatex:F
8910 { \int_const:Nn \c__sys_shell_stream_int { 18 } }

(End of definition for \c__sys_shell_stream_int.)

\sys_shell_now:n
\sys_shell_now:e
\sys_shell_now:x

__sys_shell_now:e

Execute commands through shell escape immediately.
For LuaTEX, we use a pseudo-primitive to do the actual work.

8911 ⟨/tex⟩
8912 ⟨∗lua⟩
8913 do
8914 local os_exec = os.execute
8915

8916 local function shellescape(cmd)
8917 local status,msg = os_exec(cmd)
8918 if status == nil then
8919 write_nl("log","runsystem(" .. cmd .. ")...(" .. msg .. ")\n")
8920 elseif status == 0 then
8921 write_nl("log","runsystem(" .. cmd .. ")...executed\n")
8922 else
8923 write_nl("log","runsystem(" .. cmd .. ")...failed " .. (msg or "") .. "\n")
8924 end
8925 end
8926 luacmd("__sys_shell_now:e", function()
8927 shellescape(scan_string())
8928 end, "global", "protected")
8929 ⟨/lua⟩

8930 ⟨∗tex⟩
8931 \sys_if_engine_luatex:TF
8932 {
8933 \cs_new_protected:Npn \sys_shell_now:n #1
8934 { __sys_shell_now:e { \exp_not:n {#1} } }
8935 }
8936 {
8937 \cs_new_protected:Npn \sys_shell_now:n #1
8938 { \iow_now:Nn \c__sys_shell_stream_int {#1} }
8939 }
8940 \cs_generate_variant:Nn \sys_shell_now:n { e, x }
8941 ⟨/tex⟩

(End of definition for \sys_shell_now:n and __sys_shell_now:e. This function is documented on page
80.)

\sys_shell_shipout:n
\sys_shell_shipout:e
\sys_shell_shipout:x

__sys_shell_shipout:e

Execute commands through shell escape at shipout.
For LuaTEX, we use the same helper as above but delayed using a late_lua whatsit.

Creating a late_lua whatsit works a bit different if we are running under ConTEXt.

610

8942 ⟨∗lua⟩
8943 local new_latelua = nodes and nodes.nuts and nodes.nuts.pool and nodes.nuts.pool.latelua or (function()
8944 local whatsit_id = node.id’whatsit’
8945 local latelua_sub = node.subtype’late_lua’
8946 local node_new = node.direct.new
8947 local setfield = node.direct.setwhatsitfield or node.direct.setfield
8948 return function(f)
8949 local n = node_new(whatsit_id, latelua_sub)
8950 setfield(n, ’data’, f)
8951 return n
8952 end
8953 end)()
8954 local node_write = node.direct.write
8955

8956 luacmd("__sys_shell_shipout:e", function()
8957 local cmd = scan_string()
8958 node_write(new_latelua(function() shellescape(cmd) end))
8959 end, "global", "protected")
8960 end
8961 ⟨/lua⟩

8962 ⟨∗tex⟩
8963 \sys_if_engine_luatex:TF
8964 {
8965 \cs_new_protected:Npn \sys_shell_shipout:n #1
8966 { __sys_shell_shipout:e { \exp_not:n {#1} } }
8967 }
8968 {
8969 \cs_new_protected:Npn \sys_shell_shipout:n #1
8970 { \iow_shipout:Nn \c__sys_shell_stream_int {#1} }
8971 }
8972 \cs_generate_variant:Nn \sys_shell_shipout:n { e , x }

(End of definition for \sys_shell_shipout:n and __sys_shell_shipout:e. This function is docu-
mented on page 81.)

48.2 Dynamic (every job) code
__kernel_sys_everyjob:

__sys_everyjob:n
\g__sys_everyjob_tl

8973 \cs_new_protected:Npn __kernel_sys_everyjob:
8974 {
8975 \tl_use:N \g__sys_everyjob_tl
8976 \tl_gclear:N \g__sys_everyjob_tl
8977 }
8978 \cs_new_protected:Npn __sys_everyjob:n #1
8979 { \tl_gput_right:Nn \g__sys_everyjob_tl {#1} }
8980 \tl_new:N \g__sys_everyjob_tl

(End of definition for __kernel_sys_everyjob: , __sys_everyjob:n , and \g__sys_everyjob_tl.)

48.2.1 The name of the job
\c_sys_jobname_str Inherited from the LATEX3 name for the primitive. This has to be the primitive as it’s

set in \everyjob. If the user does

611

pdflatex \input some-file-name

then \everyjob is inserted before \jobname is changed form texput, and thus we would
have the wrong result.

8981 __sys_everyjob:n
8982 { \cs_new_eq:NN \c_sys_jobname_str \tex_jobname:D }

(End of definition for \c_sys_jobname_str. This variable is documented on page 76.)

48.2.2 Time and date
\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int

\c_sys_month_int
\c_sys_year_int

Copies of the information provided by TEX. There is a lot of defensive code in package
mode: someone may have moved the primitives, and they can only be recovered if we
have \primitive and it is working correctly. For IniTEX of course that is all redundant
but does no harm.

8983 __sys_everyjob:n
8984 {
8985 \group_begin:
8986 \cs_set:Npn __sys_tmp:w #1
8987 {
8988 \str_if_eq:eeTF { \cs_meaning:N #1 } { \token_to_str:N #1 }
8989 { #1 }
8990 {
8991 \cs_if_exist:NTF \tex_primitive:D
8992 {
8993 \bool_lazy_and:nnTF
8994 { \sys_if_engine_xetex_p: }
8995 {
8996 \int_compare_p:nNn
8997 { \exp_after:wN \use_none:n \tex_XeTeXrevision:D }
8998 < { 99999 }
8999 }
9000 { 0 }
9001 { \tex_primitive:D #1 }
9002 }
9003 { 0 }
9004 }
9005 }
9006 \int_const:Nn \c_sys_minute_int
9007 { \int_mod:nn { __sys_tmp:w \time } { 60 } }
9008 \int_const:Nn \c_sys_hour_int
9009 { \int_div_truncate:nn { __sys_tmp:w \time } { 60 } }
9010 \int_const:Nn \c_sys_day_int { __sys_tmp:w \day }
9011 \int_const:Nn \c_sys_month_int { __sys_tmp:w \month }
9012 \int_const:Nn \c_sys_year_int { __sys_tmp:w \year }
9013 \group_end:
9014 }

(End of definition for \c_sys_minute_int and others. These variables are documented on page 76.)

\c_sys_timestamp_str A simple expansion: LuaTEX chokes if we use \pdffeedback here, hence the direct use of
Lua. Notice that the function there is in the pdf library but isn’t actually tied to PDF.

9015 __sys_everyjob:n
9016 {

612

9017 \str_const:Ne \c_sys_timestamp_str
9018 {
9019 \cs_if_exist:NTF \tex_directlua:D
9020 { \tex_directlua:D { tex.print(pdf.getcreationdate()) } }
9021 { \tex_creationdate:D }
9022 }
9023 }

(End of definition for \c_sys_timestamp_str. This variable is documented on page 76.)

48.2.3 Random numbers
\sys_rand_seed: Unpack the primitive.

9024 __sys_everyjob:n
9025 {
9026 \cs_new:Npn \sys_rand_seed: { \tex_the:D \tex_randomseed:D }
9027 }

(End of definition for \sys_rand_seed:. This function is documented on page 79.)

\sys_gset_rand_seed:n The primitive always assigns the seed globally.
9028 __sys_everyjob:n
9029 {
9030 \cs_new_protected:Npn \sys_gset_rand_seed:n #1
9031 { \tex_setrandomseed:D \int_eval:n {#1} \exp_stop_f: }
9032 }

(End of definition for \sys_gset_rand_seed:n. This function is documented on page 79.)

\sys_timer:
__sys_elapsedtime:

\sys_if_timer_exist_p:
\sys_if_timer_exist:TF

In LuaTEX, create a pseudo-primitve, otherwise try to locate the real primitive. The
elapsed time will be available if this succeeds.

9033 ⟨/tex⟩
9034 ⟨∗lua⟩
9035 local gettimeofday = os.gettimeofday
9036 local epoch = gettimeofday() - os.clock()
9037 local write = tex.write
9038 local tointeger = math.tointeger
9039 luacmd(’__sys_elapsedtime:’, function()
9040 write(tointeger((gettimeofday() - epoch)*65536 // 1))
9041 end, ’global’)
9042 ⟨/lua⟩
9043 ⟨∗tex⟩
9044 \sys_if_engine_luatex:TF
9045 {
9046 \cs_new:Npn \sys_timer:
9047 { __sys_elapsedtime: }
9048 }
9049 {
9050 \cs_if_exist:NTF \tex_elapsedtime:D
9051 {
9052 \cs_new:Npn \sys_timer:
9053 { \int_value:w \tex_elapsedtime:D }
9054 }
9055 {

613

9056 \cs_new:Npn \sys_timer:
9057 {
9058 \int_value:w
9059 \msg_expandable_error:nnn { kernel } { no-elapsed-time }
9060 { \sys_timer: }
9061 \c_zero_int
9062 }
9063 }
9064 }
9065 __sys_const:nn { sys_if_timer_exist }
9066 { \cs_if_exist_p:N \tex_elapsedtime:D || \cs_if_exist_p:N __sys_elapsedtime: }

(End of definition for \sys_timer: , __sys_elapsedtime: , and \sys_if_timer_exist:TF. These func-
tions are documented on page 78.)

48.2.4 Access to the shell
\c_sys_shell_escape_int Expose the engine’s shell escape status to the user.

9067 __sys_everyjob:n
9068 {
9069 \int_const:Nn \c_sys_shell_escape_int
9070 {
9071 \sys_if_engine_luatex:TF
9072 {
9073 \tex_directlua:D
9074 { tex.sprint(status.shell_escape~or~os.execute()) }
9075 }
9076 { \tex_shellescape:D }
9077 }
9078 }

(End of definition for \c_sys_shell_escape_int. This variable is documented on page 80.)

\sys_if_shell_p:
\sys_if_shell:TF

\sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF
\sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF

Performs a check for whether shell escape is enabled. The first set of functions returns
true if either of restricted or unrestricted shell escape is enabled, while the other two sets
of functions return true in only one of these two cases.

9079 __sys_everyjob:n
9080 {
9081 __sys_const:nn { sys_if_shell }
9082 { \int_compare_p:nNn \c_sys_shell_escape_int > 0 }
9083 __sys_const:nn { sys_if_shell_unrestricted }
9084 { \int_compare_p:nNn \c_sys_shell_escape_int = 1 }
9085 __sys_const:nn { sys_if_shell_restricted }
9086 { \int_compare_p:nNn \c_sys_shell_escape_int = 2 }
9087 }

(End of definition for \sys_if_shell:TF , \sys_if_shell_unrestricted:TF , and \sys_if_shell_-
restricted:TF. These functions are documented on page 80.)

48.3 System queries
\sys_get_query:nN
\sys_get_query:nnN

\sys_get_query:nnnN
__sys_get_query_auxi:nnnN
__sys_get_query_auxi:neeN
__sys_get_query_auxii:nnnN
__sys_get_query_auxii:neeN

Calling the query system is quite straight-forward: most of the effort is in making the
read-back catcode-safe. We also want to trim off the trailing ^^M from the last line.

614

9088 \cs_new_protected:Npn \sys_get_query:nN #1#2
9089 { \sys_get_query:nnnN {#1} { } { } #2 }
9090 \cs_new_protected:Npn \sys_get_query:nnN #1#2#3
9091 { \sys_get_query:nnnN {#1} { } {#2} #3 }
9092 \cs_new_protected:Npn \sys_get_query:nnnN #1#2#3#4
9093 {
9094 \tl_clear:N #4
9095 __sys_get_query_auxi:neeN {#1} {#2} {#3} #4
9096 }
9097 \cs_new:Npn __sys_get_query_auxi:nnnN #1#2#3#4
9098 {
9099 __sys_get_query_auxii:neeN {#1}
9100 { \tl_if_blank:nF {#2} { \tl_to_str:n { ~ #2 } } }
9101 {
9102 \tl_if_blank:nF {#3}
9103 {
9104 \c_space_tl
9105 \sys_if_shell_restricted:F ’
9106 \tl_to_str:n {#3}
9107 \sys_if_shell_restricted:F ’
9108 }
9109 }
9110 #4
9111 }
9112 \cs_generate_variant:Nn __sys_get_query_auxi:nnnN { nee }
9113 \cs_new_protected:Npn __sys_get_query_auxii:nnnN #1#2#3#4
9114 {
9115 \sys_if_shell:T
9116 {
9117 \sys_get_shell:nnN
9118 { l3sys-query~#1 #2 #3 }
9119 {
9120 \int_step_inline:nnn { 0 } { ‘A - 1 }
9121 { \char_set_catcode_other:n {##1} }
9122 \int_step_inline:nnn { ‘Z + 1 } { ‘a - 1 }
9123 { \char_set_catcode_other:n {##1} }
9124 \int_step_inline:nnn { ‘z + 1 } { 127 }
9125 { \char_set_catcode_other:n {##1} }
9126 \char_set_catcode_active:n { ‘\ }
9127 \tex_endlinechar:D 13 \scan_stop:
9128 }
9129 \l__sys_tmp_tl
9130 \tl_if_empty:NF \l__sys_tmp_tl
9131 {
9132 \exp_after:wN __sys_get_query:Nw \exp_after:wN #4
9133 \l__sys_tmp_tl \q_stop
9134 }
9135 }
9136 }
9137 \cs_generate_variant:Nn __sys_get_query_auxii:nnnN { nee }
9138 \group_begin:
9139 \tex_lccode:D ‘* = 13 \scan_stop:
9140 \tex_lowercase:D
9141 {

615

9142 \group_end:
9143 \cs_new_protected:Npn __sys_get_query:Nw #1#2 * \q_stop
9144 }
9145 { \tl_set:Nn #1 {#2} }

(End of definition for \sys_get_query:nN and others. These functions are documented on page 81.)

\sys_split_query:nN
\sys_split_query:nnN
\sys_split_query:nnnN

A wrapper for convenience.
9146 \cs_new_protected:Npn \sys_split_query:nN #1#2
9147 { \sys_split_query:nnnN {#1} { } { } #2 }
9148 \cs_new_protected:Npn \sys_split_query:nnN #1#2#3
9149 { \sys_split_query:nnnN {#1} { } {#2} #3 }
9150 \group_begin:
9151 \tex_lccode:D ‘* = 13 \scan_stop:
9152 \tex_lowercase:D
9153 {
9154 \group_end:
9155 \cs_new_protected:Npn \sys_split_query:nnnN #1#2#3#4
9156 {
9157 \seq_clear:N #4
9158 \sys_get_query:nnnN {#1} {#2} {#3} \l__sys_tmp_tl
9159 \tl_if_empty:NF \l__sys_tmp_tl
9160 { \seq_set_split:NnV #4 * \l__sys_tmp_tl }
9161 }
9162 }

(End of definition for \sys_split_query:nN , \sys_split_query:nnN , and \sys_split_query:nnnN.
These functions are documented on page 81.)

48.3.1 Held over from l3file
\g_file_curr_name_str See comments about \c_sys_jobname_str: here, as soon as there is file input/output,

things get “tided up”.
9163 __sys_everyjob:n
9164 { \cs_gset_eq:NN \g_file_curr_name_str \tex_jobname:D }

(End of definition for \g_file_curr_name_str. This variable is documented on page 102.)

48.4 Last-minute code
\sys_finalise:

__sys_finalise:n
\g__sys_finalise_tl

A simple hook to finalise the system-dependent layer. This is forced by the backend
loader, which is forced by the main loader, so we do not need to include that here.

9165 \cs_new_protected:Npn \sys_finalise:
9166 {
9167 __kernel_sys_everyjob:
9168 \tl_use:N \g__sys_finalise_tl
9169 \tl_gclear:N \g__sys_finalise_tl
9170 }
9171 \cs_new_protected:Npn __sys_finalise:n #1
9172 { \tl_gput_right:Nn \g__sys_finalise_tl {#1} }
9173 \tl_new:N \g__sys_finalise_tl

(End of definition for \sys_finalise: , __sys_finalise:n , and \g__sys_finalise_tl. This function
is documented on page 82.)

616

48.4.1 Detecting the output
\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:
\sys_if_output_pdf:TF

\c_sys_output_str

This is a simple enough concept: the two views here are complementary.
9174 __sys_finalise:n
9175 {
9176 \str_const:Ne \c_sys_output_str
9177 {
9178 \int_compare:nNnTF
9179 { \cs_if_exist_use:NF \tex_pdfoutput:D { 0 } } > { 0 }
9180 { pdf }
9181 { dvi }
9182 }
9183 __sys_const:nn { sys_if_output_dvi }
9184 { \str_if_eq_p:Vn \c_sys_output_str { dvi } }
9185 __sys_const:nn { sys_if_output_pdf }
9186 { \str_if_eq_p:Vn \c_sys_output_str { pdf } }
9187 }

(End of definition for \sys_if_output_dvi:TF , \sys_if_output_pdf:TF , and \c_sys_output_str. These
functions are documented on page 78.)

48.4.2 Configurations
\g__sys_backend_tl As the backend has to be checked and possibly adjusted, the approach here is to create

a variable and use that in a one-shot to set a constant.
9188 \tl_new:N \g__sys_backend_tl
9189 __sys_finalise:n
9190 {
9191 __kernel_tl_gset:Nx \g__sys_backend_tl
9192 {
9193 \sys_if_engine_xetex:TF
9194 { xetex }
9195 {
9196 \sys_if_output_pdf:TF
9197 {
9198 \sys_if_engine_pdftex:TF
9199 { pdftex }
9200 { luatex }
9201 }
9202 { dvips }
9203 }
9204 }
9205 }

If there is a class option set, and recognised, we pick it up: these will over-ride anything
set automatically but will themselves be over-written if there is a package option.

9206 __sys_finalise:n
9207 {
9208 \cs_if_exist:NT \@classoptionslist
9209 {
9210 \cs_if_eq:NNF \@classoptionslist \scan_stop:
9211 {
9212 \clist_map_inline:Nn \@classoptionslist
9213 {

617

9214 \str_case:nnT {#1}
9215 {
9216 { dvipdfmx }
9217 { \tl_gset:Nn \g__sys_backend_tl { dvipdfmx } }
9218 { dvips }
9219 { \tl_gset:Nn \g__sys_backend_tl { dvips } }
9220 { dvisvgm }
9221 { \tl_gset:Nn \g__sys_backend_tl { dvisvgm } }
9222 { pdftex }
9223 { \tl_gset:Nn \g__sys_backend_tl { pdfmode } }
9224 { xetex }
9225 { \tl_gset:Nn \g__sys_backend_tl { xdvipdfmx } }
9226 }
9227 { \clist_remove_all:Nn \@unusedoptionlist {#1} }
9228 }
9229 }
9230 }
9231 }

(End of definition for \g__sys_backend_tl.)

9232 ⟨/tex⟩
9233 ⟨/package⟩

618

Chapter 49

l3msg implementation

9234 ⟨∗package⟩

9235 ⟨@@=msg⟩

\l__msg_internal_tl A general scratch for the module.
9236 \tl_new:N \l__msg_internal_tl

(End of definition for \l__msg_internal_tl.)

\l__msg_name_str
\l__msg_text_str

Used to save module info when creating messages.
9237 \str_new:N \l__msg_name_str
9238 \str_new:N \l__msg_text_str

(End of definition for \l__msg_name_str and \l__msg_text_str.)

49.1 Internal auxiliaries
\s__msg_mark
\s__msg_stop

Internal scan marks.
9239 \scan_new:N \s__msg_mark
9240 \scan_new:N \s__msg_stop

(End of definition for \s__msg_mark and \s__msg_stop.)

__msg_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
9241 \cs_new:Npn __msg_use_none_delimit_by_s_stop:w #1 \s__msg_stop { }

(End of definition for __msg_use_none_delimit_by_s_stop:w.)

49.2 Creating messages
Messages are created and used separately, so there two parts to the code here. First, a
mechanism for creating message text. This is pretty simple, as there is not actually a lot
to do.

\c__msg_text_prefix_tl
\c__msg_more_text_prefix_tl

Locations for the text of messages.
9242 \tl_const:Nn \c__msg_text_prefix_tl { msg~text~>~ }
9243 \tl_const:Nn \c__msg_more_text_prefix_tl { msg~extra~text~>~ }

619

(End of definition for \c__msg_text_prefix_tl and \c__msg_more_text_prefix_tl.)

\msg_if_exist_p:nn
\msg_if_exist:nnTF

Test whether the control sequence containing the message text exists or not.
9244 \prg_new_conditional:Npnn \msg_if_exist:nn #1#2 { p , T , F , TF }
9245 {
9246 \cs_if_exist:cTF { \c__msg_text_prefix_tl #1 / #2 }
9247 { \prg_return_true: } { \prg_return_false: }
9248 }

(End of definition for \msg_if_exist:nnTF. This function is documented on page 84.)

__msg_chk_if_free:nn This auxiliary is similar to __kernel_chk_if_free_cs:N, and is used when defining
messages with \msg_new:nnnn.

9249 \cs_new_protected:Npn __msg_chk_free:nn #1#2
9250 {
9251 \msg_if_exist:nnT {#1} {#2}
9252 {
9253 \msg_error:nnnn { msg } { already-defined }
9254 {#1} {#2}
9255 }
9256 }

(End of definition for __msg_chk_if_free:nn.)

\msg_new:nnnn
\msg_new:nnee
\msg_new:nnxx
\msg_new:nnn
\msg_new:nne
\msg_new:nnx

\msg_set:nnnn
\msg_set:nnn

Setting a message simply means saving the appropriate text into two functions. A sanity
check first.

9257 \cs_new_protected:Npn \msg_new:nnnn #1#2#3#4
9258 {
9259 __msg_chk_free:nn {#1} {#2}
9260 \cs_gset:cpn { \c__msg_text_prefix_tl #1 / #2 }
9261 ##1##2##3##4 {#3}
9262 \cs_gset:cpn { \c__msg_more_text_prefix_tl #1 / #2 }
9263 ##1##2##3##4 {#4}
9264 }
9265 \cs_generate_variant:Nn \msg_new:nnnn { nnee , nnxx }
9266 \cs_new_protected:Npn \msg_new:nnn #1#2#3
9267 { \msg_new:nnnn {#1} {#2} {#3} { } }
9268 \cs_generate_variant:Nn \msg_new:nnn { nne , nnx }
9269 \cs_new_protected:Npn \msg_set:nnnn #1#2#3#4
9270 {
9271 \cs_set:cpn { \c__msg_text_prefix_tl #1 / #2 }
9272 ##1##2##3##4 {#3}
9273 \cs_set:cpn { \c__msg_more_text_prefix_tl #1 / #2 }
9274 ##1##2##3##4 {#4}
9275 }
9276 \cs_new_protected:Npn \msg_set:nnn #1#2#3
9277 { \msg_set:nnnn {#1} {#2} {#3} { } }

(End of definition for \msg_new:nnnn and others. These functions are documented on page 84.)

620

49.3 Messages: support functions and text
\c__msg_coding_error_text_tl

\c__msg_continue_text_tl
\c__msg_critical_text_tl

\c__msg_fatal_text_tl
\c__msg_help_text_tl

\c__msg_no_info_text_tl
\c__msg_on_line_text_tl
\c__msg_return_text_tl
\c__msg_trouble_text_tl

Simple pieces of text for messages.
9278 \tl_const:Nn \c__msg_coding_error_text_tl
9279 {
9280 This~is~a~coding~error.
9281 \\ \\
9282 }
9283 \tl_const:Nn \c__msg_continue_text_tl
9284 { Type~<return>~to~continue }
9285 \tl_const:Nn \c__msg_critical_text_tl
9286 { Reading~the~current~file~’\g_file_curr_name_str’~will~stop. }
9287 \tl_const:Nn \c__msg_fatal_text_tl
9288 { This~is~a~fatal~error:~LaTeX~will~abort. }
9289 \tl_const:Nn \c__msg_help_text_tl
9290 { For~immediate~help~type~H~<return> }
9291 \tl_const:Nn \c__msg_no_info_text_tl
9292 {
9293 LaTeX~does~not~know~anything~more~about~this~error,~sorry.
9294 \c__msg_return_text_tl
9295 }
9296 \tl_const:Nn \c__msg_on_line_text_tl { on~line }
9297 \tl_const:Nn \c__msg_return_text_tl
9298 {
9299 \\ \\
9300 Try~typing~<return>~to~proceed.
9301 \\
9302 If~that~doesn’t~work,~type~X~<return>~to~quit.
9303 }
9304 \tl_const:Nn \c__msg_trouble_text_tl
9305 {
9306 \\ \\
9307 More~errors~will~almost~certainly~follow: \\
9308 the~LaTeX~run~should~be~aborted.
9309 }

(End of definition for \c__msg_coding_error_text_tl and others.)

\msg_line_number:
\msg_line_context:

For writing the line number nicely. \msg_line_context: was set up earlier, so this is
not new.

9310 \cs_new:Npn \msg_line_number: { \int_use:N \tex_inputlineno:D }
9311 \cs_gset:Npn \msg_line_context:
9312 {
9313 \c__msg_on_line_text_tl
9314 \c_space_tl
9315 \msg_line_number:
9316 }

(End of definition for \msg_line_number: and \msg_line_context:. These functions are documented
on page 85.)

621

49.4 Showing messages: low level mechanism
__msg_interrupt:Nnnn

__msg_no_more_text:nnnn
The low-level interruption macro is rather opaque, unfortunately. Depending on the
availability of more information there is a choice of how to set up the further help. We
feed the extra help text and the message itself to a wrapping auxiliary, in this order
because we must first setup TEX’s \errhelp register before issuing an \errmessage. To
deal with the various cases of critical or fatal errors with and without help text, there is
a bit of argument-passing to do.

9317 \cs_new_protected:Npn __msg_interrupt:NnnnN #1#2#3#4#5
9318 {
9319 \str_set:Ne \l__msg_text_str { #1 {#2} }
9320 \str_set:Ne \l__msg_name_str { \msg_module_name:n {#2} }
9321 \cs_if_eq:cNTF
9322 { \c__msg_more_text_prefix_tl #2 / #3 }
9323 __msg_no_more_text:nnnn
9324 {
9325 __msg_interrupt_wrap:nnn
9326 { \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 }
9327 { \c__msg_continue_text_tl }
9328 {
9329 \c__msg_no_info_text_tl
9330 \tl_if_empty:NF #5
9331 { \\ \\ #5 }
9332 }
9333 }
9334 {
9335 __msg_interrupt_wrap:nnn
9336 { \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 }
9337 { \c__msg_help_text_tl }
9338 {
9339 \use:c { \c__msg_more_text_prefix_tl #2 / #3 } #4
9340 \tl_if_empty:NF #5
9341 { \\ \\ #5 }
9342 }
9343 }
9344 }
9345 \cs_new:Npn __msg_no_more_text:nnnn #1#2#3#4 { }

(End of definition for __msg_interrupt:Nnnn and __msg_no_more_text:nnnn.)

__msg_interrupt_wrap:nnn
__msg_interrupt_text:n

__msg_interrupt_more_text:n

First setup TEX’s \errhelp register with the extra help #1, then build a nice-looking error
message with #2. Everything is done using e-type expansion as the new line markers
are different for the two type of text and need to be correctly set up. The auxiliary
__msg_interrupt_more_text:n receives its argument as a line-wrapped string, which
is thus unaffected by expansion. We ave to split the main text into two parts as only the
“message” itself is wrapped with a leader: the generic help is wrapped at full width. We
also have to allow for the two characters used by \errmessage itself.

9346 \cs_new_protected:Npn __msg_interrupt_wrap:nnn #1#2#3
9347 {
9348 \iow_wrap:nnnN { \\ #3 } { } { } __msg_interrupt_more_text:n
9349 \group_begin:
9350 \int_sub:Nn \l_iow_line_count_int { 2 }
9351 \iow_wrap:nenN { \l__msg_text_str : ~ #1 }

622

9352 {
9353 (\l__msg_name_str)
9354 \prg_replicate:nn
9355 {
9356 \str_count:N \l__msg_text_str
9357 - \str_count:N \l__msg_name_str
9358 + 2
9359 }
9360 { ~ }
9361 }
9362 { } __msg_interrupt_text:n
9363 \iow_wrap:nnnN { \l__msg_internal_tl \\ \\ #2 } { } { }
9364 __msg_interrupt:n
9365 }
9366 \cs_new_protected:Npn __msg_interrupt_text:n #1
9367 {
9368 \group_end:
9369 \tl_set:Nn \l__msg_internal_tl {#1}
9370 }
9371 \cs_new_protected:Npn __msg_interrupt_more_text:n #1
9372 { \exp_args:Ne \tex_errhelp:D { #1 \iow_newline: } }

(End of definition for __msg_interrupt_wrap:nnn , __msg_interrupt_text:n , and __msg_interrupt_-
more_text:n.)

__msg_interrupt:n The business end of the process starts by producing some visual separation of the message
from the main part of the log. The error message needs to be printed with everything
made “invisible”: TEX’s own information involves the macro in which \errmessage is
called, and the end of the argument of the \errmessage, including the closing brace. We
use an active ! to call the \errmessage primitive, and end its argument with \use_-
none:n {⟨spaces⟩} which fills the output with spaces. Two trailing closing braces are
turned into spaces to hide them as well. The group in which we alter the definition of
the active ! is closed before producing the message: this ensures that tokens inserted by
typing I in the command-line are inserted after the message is entirely cleaned up.

The __kernel_iow_with:Nnn auxiliary, defined in l3file, expects an ⟨integer
variable⟩, an integer ⟨value⟩, and some ⟨code⟩. It runs the ⟨code⟩ after ensuring
that the ⟨integer variable⟩ takes the given ⟨value⟩, then restores the former value of
the ⟨integer variable⟩ if needed. We use it to ensure that the \newlinechar is 10,
as needed for \iow_newline: to work, and that \errorcontextlines is −1, to avoid
showing irrelevant context. Note that restoring the former value of these integers requires
inserting tokens after the \errmessage, which go in the way of tokens which could be
inserted by the user. This is unavoidable.

9373 \group_begin:
9374 \char_set_lccode:nn { 38 } { 32 } % &
9375 \char_set_lccode:nn { 46 } { 32 } % .
9376 \char_set_lccode:nn { 123 } { 32 } % {
9377 \char_set_lccode:nn { 125 } { 32 } % }
9378 \char_set_catcode_active:N \&
9379 \tex_lowercase:D
9380 {
9381 \group_end:
9382 \cs_new_protected:Npn __msg_interrupt:n #1
9383 {

623

9384 \iow_term:n { }
9385 __kernel_iow_with:Nnn \tex_newlinechar:D { ‘\^^J }
9386 {
9387 __kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
9388 {
9389 \group_begin:
9390 \cs_set_protected:Npn &
9391 {
9392 \tex_errmessage:D
9393 {
9394 #1
9395 \use_none:n
9396 { .. }
9397 }
9398 }
9399 \exp_after:wN
9400 \group_end:
9401 &
9402 }
9403 }
9404 }
9405 }

(End of definition for __msg_interrupt:n.)

49.5 Displaying messages
LATEX is handling error messages and so the TEX ones are disabled.

9406 \int_gset:Nn \tex_errorcontextlines:D { -1 }

\msg_fatal_text:n
\msg_critical_text:n

\msg_error_text:n
\msg_warning_text:n

\msg_info_text:n
__msg_text:nn
__msg_text:n

A function for issuing messages: both the text and order could in principle vary. The
module name may be empty for kernel messages, hence the slightly contorted code path
for a space.

9407 \cs_new:Npn \msg_fatal_text:n #1
9408 {
9409 Fatal ~
9410 \msg_error_text:n {#1}
9411 }
9412 \cs_new:Npn \msg_critical_text:n #1
9413 {
9414 Critical ~
9415 \msg_error_text:n {#1}
9416 }
9417 \cs_new:Npn \msg_error_text:n #1
9418 { __msg_text:nn {#1} { Error } }
9419 \cs_new:Npn \msg_warning_text:n #1
9420 { __msg_text:nn {#1} { Warning } }
9421 \cs_new:Npn \msg_info_text:n #1
9422 { __msg_text:nn {#1} { Info } }
9423 \cs_new:Npn __msg_text:nn #1#2
9424 {
9425 \exp_args:Nf __msg_text:n { \msg_module_type:n {#1} }
9426 \exp_args:Nf __msg_text:n { \msg_module_name:n {#1} }

624

9427 #2
9428 }
9429 \cs_new:Npn __msg_text:n #1
9430 {
9431 \tl_if_blank:nF {#1}
9432 { #1 ~ }
9433 }

(End of definition for \msg_fatal_text:n and others. These functions are documented on page 85.)

\g_msg_module_name_prop
\g_msg_module_type_prop

For storing public module information: the kernel data is set up in advance.
9434 \prop_new:N \g_msg_module_name_prop
9435 \prop_new:N \g_msg_module_type_prop
9436 \prop_gput:Nnn \g_msg_module_type_prop { LaTeX } { }

(End of definition for \g_msg_module_name_prop and \g_msg_module_type_prop. These variables are
documented on page 84.)

\msg_module_type:n Contextual footer information, with the potential to give modules an alternative name.
9437 \cs_new:Npn \msg_module_type:n #1
9438 {
9439 \prop_if_in:NnTF \g_msg_module_type_prop {#1}
9440 { \prop_item:Nn \g_msg_module_type_prop {#1} }
9441 { Package }
9442 }

(End of definition for \msg_module_type:n. This function is documented on page 84.)

\msg_module_name:n
\msg_see_documentation_text:n

Contextual footer information, with the potential to give modules an alternative name.
9443 \cs_new:Npn \msg_module_name:n #1
9444 {
9445 \prop_if_in:NnTF \g_msg_module_name_prop {#1}
9446 { \prop_item:Nn \g_msg_module_name_prop {#1} }
9447 {#1}
9448 }
9449 \cs_new:Npn \msg_see_documentation_text:n #1
9450 {
9451 See~the~ \msg_module_name:n {#1} ~
9452 documentation~for~further~information.
9453 }

(End of definition for \msg_module_name:n and \msg_see_documentation_text:n. These functions are
documented on page 84.)

__msg_class_new:nn

9454 \group_begin:
9455 \cs_set_protected:Npn __msg_class_new:nn #1#2
9456 {
9457 \prop_new:c { l__msg_redirect_ #1 _prop }
9458 \cs_new_protected:cpn { __msg_ #1 _code:nnnnnn }
9459 ##1##2##3##4##5##6 {#2}
9460 \cs_new_protected:cpn { msg_ #1 :nnnnnn } ##1##2##3##4##5##6
9461 {
9462 \use:e
9463 {

625

9464 \exp_not:n { __msg_use:nnnnnnn {#1} {##1} {##2} }
9465 { \tl_to_str:n {##3} } { \tl_to_str:n {##4} }
9466 { \tl_to_str:n {##5} } { \tl_to_str:n {##6} }
9467 }
9468 }
9469 \cs_new_protected:cpe { msg_ #1 :nnnnn } ##1##2##3##4##5
9470 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} { } }
9471 \cs_new_protected:cpe { msg_ #1 :nnnn } ##1##2##3##4
9472 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} { } { } }
9473 \cs_new_protected:cpe { msg_ #1 :nnn } ##1##2##3
9474 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} { } { } { } }
9475 \cs_new_protected:cpe { msg_ #1 :nn } ##1##2
9476 { \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} { } { } { } { } }
9477 \cs_generate_variant:cn { msg_ #1 :nnn }
9478 { nnV , nne , nnx }
9479 \cs_generate_variant:cn { msg_ #1 :nnnn }
9480 { nnVV , nnVn , nnnV , nnne , nnnx , nnee , nnxx }
9481 \cs_generate_variant:cn { msg_ #1 :nnnnn }
9482 { nnnee , nnnxx , nneee , nnxxx }
9483 \cs_generate_variant:cn { msg_ #1 :nnnnnn } { nneeee , nnxxxx }
9484 }

(End of definition for __msg_class_new:nn.)

\msg_fatal:nnnnnn
\msg_fatal:nneeee
\msg_fatal:nnxxxx
\msg_fatal:nnnnn
\msg_fatal:nneee
\msg_fatal:nnxxx
\msg_fatal:nnnee
\msg_fatal:nnnxx
\msg_fatal:nnnn
\msg_fatal:nnVV
\msg_fatal:nnVn
\msg_fatal:nnnV
\msg_fatal:nnee
\msg_fatal:nnxx
\msg_fatal:nnnx
\msg_fatal:nnne
\msg_fatal:nnn
\msg_fatal:nnV
\msg_fatal:nne
\msg_fatal:nnx
\msg_fatal:nn

__msg_fatal_exit:

For fatal errors, after the error message TEX bails out. We force a bail out rather than
using \end as this means it does not matter if we are in a context where normally the
run cannot end.

9485 __msg_class_new:nn { fatal }
9486 {
9487 __msg_interrupt:NnnnN
9488 \msg_fatal_text:n {#1} {#2}
9489 { {#3} {#4} {#5} {#6} }
9490 \c__msg_fatal_text_tl
9491 __msg_fatal_exit:
9492 }
9493 \cs_new_protected:Npn __msg_fatal_exit:
9494 {
9495 \tex_batchmode:D
9496 \tex_read:D -1 to \l__msg_internal_tl
9497 }

(End of definition for \msg_fatal:nnnnnn and others. These functions are documented on page 87.)

\msg_critical:nnnnnn
\msg_critical:nneeee
\msg_critical:nnxxxx
\msg_critical:nnnnn
\msg_critical:nneee
\msg_critical:nnxxx
\msg_critical:nnnee
\msg_critical:nnnxx
\msg_critical:nnnn
\msg_critical:nnVV
\msg_critical:nnVn
\msg_critical:nnnV
\msg_critical:nnee
\msg_critical:nnxx
\msg_critical:nnnx
\msg_critical:nnne
\msg_critical:nnn
\msg_critical:nnV
\msg_critical:nne
\msg_critical:nnx
\msg_critical:nn

Not quite so bad: just end the current file.
9498 __msg_class_new:nn { critical }
9499 {
9500 __msg_interrupt:NnnnN
9501 \msg_critical_text:n {#1} {#2}
9502 { {#3} {#4} {#5} {#6} }
9503 \c__msg_critical_text_tl
9504 \tex_endinput:D
9505 }

(End of definition for \msg_critical:nnnnnn and others. These functions are documented on page 87.)

626

\msg_error:nnnnnn
\msg_error:nneeee
\msg_error:nnxxxx
\msg_error:nnnnn
\msg_error:nneee
\msg_error:nnxxx
\msg_error:nnnee
\msg_error:nnnxx
\msg_error:nnnn
\msg_error:nnVV
\msg_error:nnVn
\msg_error:nnnV
\msg_error:nnee
\msg_error:nnxx
\msg_error:nnnx
\msg_error:nnne
\msg_error:nnn
\msg_error:nnV
\msg_error:nne
\msg_error:nnx
\msg_error:nn

For an error, the interrupt routine is called. We check if there is a “more text” by
comparing that control sequence with a permanently empty text. We have to undefine
the bootstrap versions here.

9506 \cs_undefine:N \msg_error:nnee
9507 \cs_undefine:N \msg_error:nne
9508 \cs_undefine:N \msg_error:nn
9509 __msg_class_new:nn { error }
9510 {
9511 __msg_interrupt:NnnnN
9512 \msg_error_text:n {#1} {#2}
9513 { {#3} {#4} {#5} {#6} }
9514 \c_empty_tl
9515 }

(End of definition for \msg_error:nnnnnn and others. These functions are documented on page 87.)

__msg_info_aux:NNnnnnnn
\msg_warning:nnnnnn
\msg_warning:nneeee
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nneee
\msg_warning:nnxxx
\msg_warning:nnnee
\msg_warning:nnnxx
\msg_warning:nnnn
\msg_warning:nnVV
\msg_warning:nnVn
\msg_warning:nnnV
\msg_warning:nnee
\msg_warning:nnxx
\msg_warning:nnnx
\msg_warning:nnne
\msg_warning:nnn
\msg_warning:nnV
\msg_warning:nne
\msg_warning:nnx
\msg_warning:nn

\msg_note:nnnnnn
\msg_note:nneeee
\msg_note:nnxxxx
\msg_note:nnnnn
\msg_note:nneee
\msg_note:nnxxx
\msg_note:nnnee
\msg_note:nnnxx
\msg_note:nnnn
\msg_note:nnVV
\msg_note:nnVn
\msg_note:nnnV
\msg_note:nnee
\msg_note:nnxx
\msg_note:nnnx
\msg_note:nnne
\msg_note:nnn
\msg_note:nnV
\msg_note:nne
\msg_note:nnx
\msg_note:nn

\msg_info:nnnnnn
\msg_info:nneeee
\msg_info:nnxxxx
\msg_info:nnnnn
\msg_info:nneee
\msg_info:nnxxx
\msg_info:nnnee
\msg_info:nnnxx
\msg_info:nnnn
\msg_info:nnVV
\msg_info:nnVn
\msg_info:nnnV
\msg_info:nnee
\msg_info:nnxx
\msg_info:nnnx
\msg_info:nnne
\msg_info:nnn
\msg_info:nnV
\msg_info:nne
\msg_info:nnx
\msg_info:nn

Warnings and information messages have no decoration. Warnings are printed to the
terminal while information can either go to the log or both log and terminal.

9516 \cs_new_protected:Npn __msg_info_aux:NNnnnnnn #1#2#3#4#5#6#7#8
9517 {
9518 \str_set:Ne \l__msg_text_str { #2 {#3} }
9519 \str_set:Ne \l__msg_name_str { \msg_module_name:n {#3} }
9520 #1 { }
9521 \iow_wrap:nenN
9522 {
9523 \l__msg_text_str : ~
9524 \use:c { \c__msg_text_prefix_tl #3 / #4 } {#5} {#6} {#7} {#8}
9525 }
9526 {
9527 (\l__msg_name_str)
9528 \prg_replicate:nn
9529 {
9530 \str_count:N \l__msg_text_str
9531 - \str_count:N \l__msg_name_str
9532 }
9533 { ~ }
9534 }
9535 { } #1
9536 #1 { }
9537 }
9538 __msg_class_new:nn { warning }
9539 {
9540 __msg_info_aux:NNnnnnnn \iow_term:n \msg_warning_text:n
9541 {#1} {#2} {#3} {#4} {#5} {#6}
9542 }
9543 __msg_class_new:nn { note }
9544 {
9545 __msg_info_aux:NNnnnnnn \iow_term:n \msg_info_text:n
9546 {#1} {#2} {#3} {#4} {#5} {#6}
9547 }
9548 __msg_class_new:nn { info }
9549 {
9550 __msg_info_aux:NNnnnnnn \iow_log:n \msg_info_text:n
9551 {#1} {#2} {#3} {#4} {#5} {#6}

627

9552 }

(End of definition for __msg_info_aux:NNnnnnnn and others. These functions are documented on page
88.)

\msg_term:nnnnnn
\msg_term:nneeee
\msg_term:nnxxxx
\msg_term:nnnnn
\msg_term:nneee
\msg_term:nnxxx
\msg_term:nnnee
\msg_term:nnnxx
\msg_term:nnnn
\msg_term:nnVV
\msg_term:nnVn
\msg_term:nnnV
\msg_term:nnee
\msg_term:nnxx
\msg_term:nnnx
\msg_term:nnne
\msg_term:nnn
\msg_term:nnV
\msg_term:nne
\msg_term:nnx
\msg_term:nn

\msg_log:nnnnnn
\msg_log:nneeee
\msg_log:nnxxxx
\msg_log:nnnnn
\msg_log:nneee
\msg_log:nnxxx
\msg_log:nnnee
\msg_log:nnnxx
\msg_log:nnnn
\msg_log:nnVV
\msg_log:nnVn
\msg_log:nnnV
\msg_log:nnee
\msg_log:nnxx
\msg_log:nnnx
\msg_log:nnne
\msg_log:nnn
\msg_log:nnV
\msg_log:nne
\msg_log:nnx
\msg_log:nn

“Log” data is very similar to information, but with no extras added. “Term” is used
for communicating with the user through the terminal, like diagnostic messages, and
debugging. This is similar to “log” messages, but uses the terminal output.

9553 __msg_class_new:nn { log }
9554 {
9555 \iow_wrap:nnnN
9556 { \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
9557 { } { } \iow_log:n
9558 }
9559 __msg_class_new:nn { term }
9560 {
9561 \iow_wrap:nnnN
9562 { \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
9563 { } { } \iow_term:n
9564 }

(End of definition for \msg_term:nnnnnn and others. These functions are documented on page 89.)

\msg_none:nnnnnn
\msg_none:nneeee
\msg_none:nnxxxx
\msg_none:nnnnn
\msg_none:nneee
\msg_none:nnxxx
\msg_none:nnnee
\msg_none:nnnxx
\msg_none:nnnn
\msg_none:nnVV
\msg_none:nnVn
\msg_none:nnnV
\msg_none:nnee
\msg_none:nnxx
\msg_none:nnnx
\msg_none:nnne
\msg_none:nnn
\msg_none:nnV
\msg_none:nne
\msg_none:nnx
\msg_none:nn

The none message type is needed so that input can be gobbled.
9565 __msg_class_new:nn { none } { }

(End of definition for \msg_none:nnnnnn and others. These functions are documented on page 89.)

\msg_show:nnnnnn
\msg_show:nneeee
\msg_show:nnxxxx
\msg_show:nnnnn
\msg_show:nneee
\msg_show:nnxxx
\msg_show:nnnee
\msg_show:nnnxx
\msg_show:nnnn
\msg_show:nnVV
\msg_show:nnVn
\msg_show:nnnV
\msg_show:nnee
\msg_show:nnxx
\msg_show:nnnx
\msg_show:nnne
\msg_show:nnn
\msg_show:nnV
\msg_show:nne
\msg_show:nnx
\msg_show:nn

__msg_show:n
__msg_show:w

__msg_show_dot:w
__msg_show:nn

The show message type is used for \seq_show:N and similar complicated data structures.
Wrap the given text with a trailing dot (important later) then pass it to __msg_show:n.
If there is \\>~ (or if the whole thing starts with >~) we split there, print the first part
and show the second part using \showtokens (the \exp_after:wN ensure a nice display).
Note that this primitive adds a leading >~ and trailing dot. That is why we included a
trailing dot before wrapping and removed it afterwards. If there is no \\>~ do the same
but with an empty second part which adds a spurious but inevitable >~.

9566 __msg_class_new:nn { show }
9567 {
9568 \iow_wrap:nnnN
9569 { \use:c { \c__msg_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
9570 { } { } __msg_show:n
9571 }
9572 \cs_new_protected:Npn __msg_show:n #1
9573 {
9574 \tl_if_in:nnTF { ^^J #1 } { ^^J > ~ }
9575 {
9576 \tl_if_in:nnTF { #1 \s__msg_mark } { . \s__msg_mark }
9577 { __msg_show_dot:w } { __msg_show:w }
9578 ^^J #1 \s__msg_stop
9579 }
9580 { __msg_show:nn { ? #1 } { } }
9581 }
9582 \cs_new:Npn __msg_show_dot:w #1 ^^J > ~ #2 . \s__msg_stop
9583 { __msg_show:nn {#1} {#2} }
9584 \cs_new:Npn __msg_show:w #1 ^^J > ~ #2 \s__msg_stop

628

9585 { __msg_show:nn {#1} {#2} }
9586 \cs_new_protected:Npn __msg_show:nn #1#2
9587 {
9588 \tl_if_empty:nF {#1}
9589 { \exp_args:No \iow_term:n { \use_none:n #1 } }
9590 \tl_set:Nn \l__msg_internal_tl {#2}
9591 __kernel_iow_with:Nnn \tex_newlinechar:D { 10 }
9592 {
9593 __kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
9594 {
9595 \tex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN
9596 { \exp_after:wN \l__msg_internal_tl }
9597 }
9598 }
9599 }

(End of definition for \msg_show:nnnnnn and others. These functions are documented on page 90.)
End the group to eliminate __msg_class_new:nn.

9600 \group_end:

\msg_show_item:n
\msg_show_item_unbraced:n

\msg_show_item:nn
\msg_show_item_unbraced:nn

Each item in the variable is formatted using one of the following functions. We cannot use
\\ and so on because these short-hands cannot be used inside the arguments of messages,
only when defining the messages. We need to use ^^J here directly as l3file is not yet
loaded.

9601 \cs_new:Npe \msg_show_item:n #1
9602 { ^^J > ~ \c_space_tl \exp_not:N \tl_to_str:n { {#1} } }
9603 \cs_new:Npe \msg_show_item_unbraced:n #1
9604 { ^^J > ~ \c_space_tl \exp_not:N \tl_to_str:n {#1} }
9605 \cs_new:Npe \msg_show_item:nn #1#2
9606 {
9607 ^^J > \use:nn { ~ } { ~ }
9608 \exp_not:N \tl_to_str:n { {#1} }
9609 \use:nn { ~ } { ~ } => \use:nn { ~ } { ~ }
9610 \exp_not:N \tl_to_str:n { {#2} }
9611 }
9612 \cs_new:Npe \msg_show_item_unbraced:nn #1#2
9613 {
9614 ^^J > \use:nn { ~ } { ~ }
9615 \exp_not:N \tl_to_str:n {#1}
9616 \use:nn { ~ } { ~ } => \use:nn { ~ } { ~ }
9617 \exp_not:N \tl_to_str:n {#2}
9618 }

(End of definition for \msg_show_item:n and others. These functions are documented on page 90.)

__msg_class_chk_exist:nT Checking that a message class exists. We build this from \cs_if_free:cTF rather than
\cs_if_exist:cTF because that avoids reading the second argument earlier than neces-
sary.

9619 \cs_new:Npn __msg_class_chk_exist:nT #1
9620 {
9621 \cs_if_free:cTF { __msg_ #1 _code:nnnnnn }
9622 { \msg_error:nnn { msg } { class-unknown } {#1} }
9623 }

629

(End of definition for __msg_class_chk_exist:nT.)

\l__msg_class_tl
\l__msg_current_class_tl

Support variables needed for the redirection system.
9624 \tl_new:N \l__msg_class_tl
9625 \tl_new:N \l__msg_current_class_tl

(End of definition for \l__msg_class_tl and \l__msg_current_class_tl.)

\l__msg_redirect_prop For redirection of individually-named messages
9626 \prop_new:N \l__msg_redirect_prop

(End of definition for \l__msg_redirect_prop.)

\l__msg_hierarchy_seq During redirection, split the message name into a sequence: {/module/submodule},
{/module}, and {}.

9627 \seq_new:N \l__msg_hierarchy_seq

(End of definition for \l__msg_hierarchy_seq.)

\l__msg_class_loop_seq Classes encountered when following redirections to check for loops.
9628 \seq_new:N \l__msg_class_loop_seq

(End of definition for \l__msg_class_loop_seq.)

__msg_use:nnnnnnn
__msg_use_redirect_name:n
__msg_use_hierarchy:nwwN

__msg_use_redirect_module:n
__msg_use_code:

Actually using a message is a multi-step process. First, some safety checks on the message
and class requested. The code and arguments are then stored to avoid passing them
around. The assignment to __msg_use_code: is similar to \tl_set:Nn. The message
is eventually produced with whatever \l__msg_class_tl is when __msg_use_code: is
called. Here is also a good place to suppress tracing output if the trace package is loaded
since all (non-expandable) messages go through this auxiliary.

9629 \cs_new_protected:Npn __msg_use:nnnnnnn #1#2#3#4#5#6#7
9630 {
9631 \cs_if_exist_use:N \conditionally@traceoff
9632 \msg_if_exist:nnTF {#2} {#3}
9633 {
9634 __msg_class_chk_exist:nT {#1}
9635 {
9636 \tl_set:Nn \l__msg_current_class_tl {#1}
9637 \cs_set_protected:Npe __msg_use_code:
9638 {
9639 \exp_not:n
9640 {
9641 \use:c { __msg_ \l__msg_class_tl _code:nnnnnn }
9642 {#2} {#3} {#4} {#5} {#6} {#7}
9643 }
9644 }
9645 __msg_use_redirect_name:n { #2 / #3 }
9646 }
9647 }
9648 { \msg_error:nnnn { msg } { unknown } {#2} {#3} }
9649 \cs_if_exist_use:N \conditionally@traceon
9650 }
9651 \cs_new_protected:Npn __msg_use_code: { }

630

The first check is for a individual message redirection. If this applies then no further
redirection is attempted. Otherwise, split the message name into ⟨module⟩, ⟨submodule⟩
and ⟨message⟩ (with an arbitrary number of slashes), and store {/module/submodule},
{/module} and {} into \l__msg_hierarchy_seq. We then map through this sequence,
applying the most specific redirection.

9652 \cs_new_protected:Npn __msg_use_redirect_name:n #1
9653 {
9654 \prop_get:NnNTF \l__msg_redirect_prop { / #1 } \l__msg_class_tl
9655 { __msg_use_code: }
9656 {
9657 \seq_clear:N \l__msg_hierarchy_seq
9658 __msg_use_hierarchy:nwwN { }
9659 #1 \s__msg_mark __msg_use_hierarchy:nwwN
9660 / \s__msg_mark __msg_use_none_delimit_by_s_stop:w
9661 \s__msg_stop
9662 __msg_use_redirect_module:n { }
9663 }
9664 }
9665 \cs_new_protected:Npn __msg_use_hierarchy:nwwN #1#2 / #3 \s__msg_mark #4
9666 {
9667 \seq_put_left:Nn \l__msg_hierarchy_seq {#1}
9668 #4 { #1 / #2 } #3 \s__msg_mark #4
9669 }

At this point, the items of \l__msg_hierarchy_seq are the various levels at which we
should look for a redirection. Redirections which are less specific than the argument of
__msg_use_redirect_module:n are not attempted. This argument is empty for a class
redirection, /module for a module redirection, etc. Loop through the sequence to find
the most specific redirection, with module ##1. The loop is interrupted after testing for
a redirection for ##1 equal to the argument #1 (least specific redirection allowed). When
a redirection is found, break the mapping, then if the redirection targets the same class,
output the code with that class, and otherwise set the target as the new current class,
and search for further redirections. Those redirections should be at least as specific as
##1.

9670 \cs_new_protected:Npn __msg_use_redirect_module:n #1
9671 {
9672 \seq_map_inline:Nn \l__msg_hierarchy_seq
9673 {
9674 \prop_get:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop }
9675 {##1} \l__msg_class_tl
9676 {
9677 \seq_map_break:n
9678 {
9679 \tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl
9680 { __msg_use_code: }
9681 {
9682 \tl_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
9683 __msg_use_redirect_module:n {##1}
9684 }
9685 }
9686 }
9687 {
9688 \str_if_eq:nnT {##1} {#1}

631

9689 {
9690 \tl_set_eq:NN \l__msg_class_tl \l__msg_current_class_tl
9691 \seq_map_break:n { __msg_use_code: }
9692 }
9693 }
9694 }
9695 }

(End of definition for __msg_use:nnnnnnn and others.)

\msg_redirect_name:nnn Named message always use the given class even if that class is redirected further. An
empty target class cancels any existing redirection for that message.

9696 \cs_new_protected:Npn \msg_redirect_name:nnn #1#2#3
9697 {
9698 \tl_if_empty:nTF {#3}
9699 { \prop_remove:Nn \l__msg_redirect_prop { / #1 / #2 } }
9700 {
9701 __msg_class_chk_exist:nT {#3}
9702 { \prop_put:Nnn \l__msg_redirect_prop { / #1 / #2 } {#3} }
9703 }
9704 }

(End of definition for \msg_redirect_name:nnn. This function is documented on page 92.)

\msg_redirect_class:nn
\msg_redirect_module:nnn

__msg_redirect:nnn
__msg_redirect_loop_chk:nnn
__msg_redirect_loop_list:n

If the target class is empty, eliminate the corresponding redirection. Otherwise, add the
redirection. We must then check for a loop: as an initialization, we start by storing the
initial class in \l__msg_current_class_tl.

9705 \cs_new_protected:Npn \msg_redirect_class:nn
9706 { __msg_redirect:nnn { } }
9707 \cs_new_protected:Npn \msg_redirect_module:nnn #1
9708 { __msg_redirect:nnn { / #1 } }
9709 \cs_new_protected:Npn __msg_redirect:nnn #1#2#3
9710 {
9711 __msg_class_chk_exist:nT {#2}
9712 {
9713 \tl_if_empty:nTF {#3}
9714 { \prop_remove:cn { l__msg_redirect_ #2 _prop } {#1} }
9715 {
9716 __msg_class_chk_exist:nT {#3}
9717 {
9718 \prop_put:cnn { l__msg_redirect_ #2 _prop } {#1} {#3}
9719 \tl_set:Nn \l__msg_current_class_tl {#2}
9720 \seq_clear:N \l__msg_class_loop_seq
9721 __msg_redirect_loop_chk:nnn {#2} {#3} {#1}
9722 }
9723 }
9724 }
9725 }

Since multiple redirections can only happen with increasing specificity, a loop requires
that all steps are of the same specificity. The new redirection can thus only create a loop
with other redirections for the exact same module, #1, and not submodules. After some
initialization above, follow redirections with \l__msg_class_tl, and keep track in \l__-
msg_class_loop_seq of the various classes encountered. A redirection from a class to

632

itself, or the absence of redirection both mean that there is no loop. A redirection to the
initial class marks a loop. To break it, we must decide which redirection to cancel. The
user most likely wants the newly added redirection to hold with no further redirection.
We thus remove the redirection starting from #2, target of the new redirection. Note
that no message is emitted by any of the underlying functions: otherwise we may get an
infinite loop because of a message from the message system itself.

9726 \cs_new_protected:Npn __msg_redirect_loop_chk:nnn #1#2#3
9727 {
9728 \seq_put_right:Nn \l__msg_class_loop_seq {#1}
9729 \prop_get:cnNT { l__msg_redirect_ #1 _prop } {#3} \l__msg_class_tl
9730 {
9731 \str_if_eq:VnF \l__msg_class_tl {#1}
9732 {
9733 \tl_if_eq:NNTF \l__msg_class_tl \l__msg_current_class_tl
9734 {
9735 \prop_put:cnn { l__msg_redirect_ #2 _prop } {#3} {#2}
9736 \msg_warning:nneeee
9737 { msg } { redirect-loop }
9738 { \seq_item:Nn \l__msg_class_loop_seq { 1 } }
9739 { \seq_item:Nn \l__msg_class_loop_seq { 2 } }
9740 {#3}
9741 {
9742 \seq_map_function:NN \l__msg_class_loop_seq
9743 __msg_redirect_loop_list:n
9744 { \seq_item:Nn \l__msg_class_loop_seq { 1 } }
9745 }
9746 }
9747 { __msg_redirect_loop_chk:onn \l__msg_class_tl {#2} {#3} }
9748 }
9749 }
9750 }
9751 \cs_generate_variant:Nn __msg_redirect_loop_chk:nnn { o }
9752 \cs_new:Npn __msg_redirect_loop_list:n #1 { {#1} ~ => ~ }

(End of definition for \msg_redirect_class:nn and others. These functions are documented on page
92.)

49.6 Kernel-specific functions
__kernel_msg_show_eval:Nn
__kernel_msg_log_eval:Nn

__msg_show_eval:nnN

A short-hand used for \int_show:n and similar functions that passes to \tl_show:n the
result of applying #1 (a function such as \int_eval:n) to the expression #2. The use
of f-expansion ensures that #1 is expanded in the scope in which the show command is
called, rather than in the group created by \iow_wrap:nnnN. This is only important for
expressions involving the \currentgrouplevel or \currentgrouptype. On the other
hand we want the expression to be converted to a string with the usual escape character,
hence within the wrapping code.

9753 \cs_new_protected:Npn __kernel_msg_show_eval:Nn #1#2
9754 { \exp_args:Nf __msg_show_eval:nnN { #1 {#2} } {#2} \tl_show:n }
9755 \cs_new_protected:Npn __kernel_msg_log_eval:Nn #1#2
9756 { \exp_args:Nf __msg_show_eval:nnN { #1 {#2} } {#2} \tl_log:n }
9757 \cs_new_protected:Npn __msg_show_eval:nnN #1#2#3 { #3 { #2 = #1 } }

633

(End of definition for __kernel_msg_show_eval:Nn , __kernel_msg_log_eval:Nn , and __msg_show_-
eval:nnN.)

These are all retained purely for older xparse support.

__kernel_msg_new:nnnn
__kernel_msg_new:nnn 9758 \cs_new_protected:Npn __kernel_msg_new:nnnn #1

9759 { \msg_new:nnnn { LaTeX / #1 } }
9760 \cs_new_protected:Npn __kernel_msg_new:nnn #1
9761 { \msg_new:nnn { LaTeX / #1 } }

(End of definition for __kernel_msg_new:nnnn and __kernel_msg_new:nnn.)

__kernel_msg_info:nnxx
__kernel_msg_warning:nnx
__kernel_msg_warning:nnxx

__kernel_msg_error:nnx
__kernel_msg_error:nnxx

__kernel_msg_error:nnxxx

9762 \cs_new_protected:Npn __kernel_msg_info:nnxx #1
9763 { \msg_info:nnee { LaTeX / #1 } }
9764 \cs_new_protected:Npn __kernel_msg_warning:nnx #1
9765 { \msg_warning:nne { LaTeX / #1 } }
9766 \cs_new_protected:Npn __kernel_msg_warning:nnxx #1
9767 { \msg_warning:nnee { LaTeX / #1 } }
9768 \cs_new_protected:Npn __kernel_msg_error:nnx #1
9769 { \msg_error:nne { LaTeX / #1 } }
9770 \cs_new_protected:Npn __kernel_msg_error:nnxx #1
9771 { \msg_error:nnee { LaTeX / #1 } }
9772 \cs_new_protected:Npn __kernel_msg_error:nnxxx #1
9773 { \msg_error:nneee { LaTeX / #1 } }

(End of definition for __kernel_msg_info:nnxx and others.)

__kernel_msg_expandable_error:nnn
__kernel_msg_expandable_error:nnf
__kernel_msg_expandable_error:nnff

9774 \cs_new:Npn __kernel_msg_expandable_error:nnn #1
9775 { \msg_expandable_error:nnn { LaTeX / #1 } }
9776 \cs_new:Npn __kernel_msg_expandable_error:nnf #1
9777 { \msg_expandable_error:nnf { LaTeX / #1 } }
9778 \cs_new:Npn __kernel_msg_expandable_error:nnff #1
9779 { \msg_expandable_error:nnff { LaTeX / #1 } }

(End of definition for __kernel_msg_expandable_error:nnn and __kernel_msg_expandable_error:nnff.)

49.7 Internal messages
Error messages needed to actually implement the message system itself.

9780 \msg_new:nnnn { msg } { already-defined }
9781 { Message~’#2’~for~module~’#1’~already~defined. }
9782 {
9783 \c__msg_coding_error_text_tl
9784 LaTeX~was~asked~to~define~a~new~message~called~’#2’\\
9785 by~the~module~’#1’:~this~message~already~exists.
9786 \c__msg_return_text_tl
9787 }
9788 \msg_new:nnnn { msg } { unknown }
9789 { Unknown~message~’#2’~for~module~’#1’. }
9790 {
9791 \c__msg_coding_error_text_tl

634

9792 LaTeX~was~asked~to~display~a~message~called~’#2’\\
9793 by~the~module~’#1’:~this~message~does~not~exist.
9794 \c__msg_return_text_tl
9795 }
9796 \msg_new:nnnn { msg } { class-unknown }
9797 { Unknown~message~class~’#1’. }
9798 {
9799 LaTeX~has~been~asked~to~redirect~messages~to~a~class~’#1’:\\
9800 this~was~never~defined.
9801 \c__msg_return_text_tl
9802 }
9803 \msg_new:nnnn { msg } { redirect-loop }
9804 {
9805 Message~redirection~loop~caused~by~ {#1} ~=>~ {#2}
9806 \tl_if_empty:nF {#3} { ~for~module~’ \use_none:n #3 ’ } .
9807 }
9808 {
9809 Adding~the~message~redirection~ {#1} ~=>~ {#2}
9810 \tl_if_empty:nF {#3} { ~for~the~module~’ \use_none:n #3 ’ } ~
9811 created~an~infinite~loop\\\\
9812 \iow_indent:n { #4 \\\\ }
9813 }

Messages for earlier kernel modules plus a few for l3keys which cover coding errors.
9814 \msg_new:nnnn { kernel } { bad-number-of-arguments }
9815 { Function~’#1’~cannot~be~defined~with~#2~arguments. }
9816 {
9817 \c__msg_coding_error_text_tl
9818 LaTeX~has~been~asked~to~define~a~function~’#1’~with~
9819 #2~arguments.~
9820 TeX~allows~between~0~and~9~arguments~for~a~single~function.
9821 }
9822 \msg_new:nnnn { kernel } { command-already-defined }
9823 { Control~sequence~#1~already~defined. }
9824 {
9825 \c__msg_coding_error_text_tl
9826 LaTeX~has~been~asked~to~create~a~new~control~sequence~’#1’~
9827 but~this~name~has~already~been~used~elsewhere. \\ \\
9828 The~current~meaning~is:\\
9829 \ \ #2
9830 }
9831 \msg_new:nnnn { kernel } { command-not-defined }
9832 { Control~sequence~#1~undefined. }
9833 {
9834 \c__msg_coding_error_text_tl
9835 LaTeX~has~been~asked~to~use~a~control~sequence~’#1’:\\
9836 this~has~not~been~defined~yet.
9837 }
9838 \msg_new:nnnn { kernel } { empty-search-pattern }
9839 { Empty~search~pattern. }
9840 {
9841 \c__msg_coding_error_text_tl
9842 LaTeX~has~been~asked~to~replace~an~empty~pattern~by~’#1’:~that~
9843 would~lead~to~an~infinite~loop!
9844 }

635

9845 \cs_if_exist:NF \tex_elapsedtime:D
9846 {
9847 \msg_new:nnnn { kernel } { no-elapsed-time }
9848 { No~clock~detected~for~#1. }
9849 { The~current~engine~provides~no~way~to~access~the~system~time. }
9850 }
9851 \msg_new:nnnn { kernel } { non-base-function }
9852 { Function~’#1’~is~not~a~base~function }
9853 {
9854 \c__msg_coding_error_text_tl
9855 Functions~defined~through~\iow_char:N\\cs_new:Nn~must~have~
9856 a~signature~consisting~of~only~normal~arguments~’N’~and~’n’.~
9857 The~signature~’#2’~of~’#1’~contains~other~arguments~’#3’.~
9858 To~define~variants~use~\iow_char:N\\cs_generate_variant:Nn~
9859 and~to~define~other~functions~use~\iow_char:N\\cs_new:Npn.
9860 }
9861 \msg_new:nnnn { kernel } { missing-colon }
9862 { Function~’#1’~contains~no~’:’. }
9863 {
9864 \c__msg_coding_error_text_tl
9865 Code-level~functions~must~contain~’:’~to~separate~the~
9866 argument~specification~from~the~function~name.~This~is~
9867 needed~when~defining~conditionals~or~variants,~or~when~building~a~
9868 parameter~text~from~the~number~of~arguments~of~the~function.
9869 }
9870 \msg_new:nnnn { kernel } { overflow }
9871 { Integers~larger~than~2^{30}-1~cannot~be~stored~in~arrays. }
9872 {
9873 An~attempt~was~made~to~store~#3~
9874 \tl_if_empty:nF {#2} { at~position~#2~ } in~the~array~’#1’.~
9875 The~largest~allowed~value~#4~will~be~used~instead.
9876 }
9877 \msg_new:nnnn { kernel } { out-of-bounds }
9878 { Access~to~an~entry~beyond~an~array’s~bounds. }
9879 {
9880 An~attempt~was~made~to~access~or~store~data~at~position~#2~of~the~
9881 array~’#1’,~but~this~array~has~entries~at~positions~from~1~to~#3.
9882 }
9883 \msg_new:nnnn { kernel } { protected-predicate }
9884 { Predicate~’#1’~must~be~expandable. }
9885 {
9886 \c__msg_coding_error_text_tl
9887 LaTeX~has~been~asked~to~define~’#1’~as~a~protected~predicate.~
9888 Only~expandable~tests~can~have~a~predicate~version.
9889 }
9890 \msg_new:nnn { kernel } { randint-backward-range }
9891 { Wrong~order~of~bounds~in~\iow_char:N\\int_rand:nn{#1}{#2}. }
9892 \msg_new:nnnn { kernel } { conditional-form-unknown }
9893 { Conditional~form~’#1’~for~function~’#2’~unknown. }
9894 {
9895 \c__msg_coding_error_text_tl
9896 LaTeX~has~been~asked~to~define~the~conditional~form~’#1’~of~
9897 the~function~’#2’,~but~only~’TF’,~’T’,~’F’,~and~’p’~forms~exist.
9898 }

636

9899 \msg_new:nnnn { kernel } { variant-too-long }
9900 { Variant~form~’#1’~longer~than~base~signature~of~’#2’. }
9901 {
9902 \c__msg_coding_error_text_tl
9903 LaTeX~has~been~asked~to~create~a~variant~of~the~function~’#2’~
9904 with~a~signature~starting~with~’#1’,~but~that~is~longer~than~
9905 the~signature~(part~after~the~colon)~of~’#2’.
9906 }
9907 \msg_new:nnnn { kernel } { invalid-variant }
9908 { Variant~form~’#1’~invalid~for~base~form~’#2’. }
9909 {
9910 \c__msg_coding_error_text_tl
9911 LaTeX~has~been~asked~to~create~a~variant~of~the~function~’#2’~
9912 with~a~signature~starting~with~’#1’,~but~cannot~change~an~argument~
9913 from~type~’#3’~to~type~’#4’.
9914 }
9915 \msg_new:nnnn { kernel } { invalid-exp-args }
9916 { Invalid~variant~specifier~’#1’~in~’#2’. }
9917 {
9918 \c__msg_coding_error_text_tl
9919 LaTeX~has~been~asked~to~create~an~\iow_char:N\\exp_args:N...~
9920 function~with~signature~’N#2’~but~’#1’~is~not~a~valid~argument~
9921 specifier.
9922 }
9923 \msg_new:nnn { kernel } { deprecated-variant }
9924 {
9925 Variant~form~’#1’~deprecated~for~base~form~’#2’.~
9926 One~should~not~change~an~argument~from~type~’#3’~to~type~’#4’
9927 \str_case:nnF {#3}
9928 {
9929 { n } { :~use~a~’\token_if_eq_charcode:NNTF #4 c v V’~variant? }
9930 { N } { :~base~form~only~accepts~a~single~token~argument. }
9931 {#4} { :~base~form~is~already~a~variant. }
9932 } { . }
9933 }
9934 \msg_new:nnn { char } { active }
9935 { Cannot~generate~active~chars. }
9936 \msg_new:nnn { char } { invalid-catcode }
9937 { Invalid~catcode~for~char~generation. }
9938 \msg_new:nnn { char } { null-space }
9939 { Cannot~generate~null~char~as~a~space. }
9940 \msg_new:nnn { char } { out-of-range }
9941 { Charcode~requested~out~of~engine~range. }
9942 \msg_new:nnn { dim } { zero-unit }
9943 { Zero~unit~in~conversion. }
9944 \msg_new:nnnn { kernel } { quote-in-shell }
9945 { Quotes~in~shell~command~’#1’. }
9946 { Shell~commands~cannot~contain~quotes~("). }
9947 \msg_new:nnnn { keys } { no-property }
9948 { No~property~given~in~definition~of~key~’#1’. }
9949 {
9950 \c__msg_coding_error_text_tl
9951 Inside~\keys_define:nn each~key~name~
9952 needs~a~property: \\ \\

637

9953 \iow_indent:n { #1 .<property> } \\ \\
9954 LaTeX~did~not~find~a~’.’~to~indicate~the~start~of~a~property.
9955 }
9956 \msg_new:nnnn { keys } { property-boolean-values-only }
9957 { The~property~’#1’~accepts~boolean~values~only. }
9958 {
9959 \c__msg_coding_error_text_tl
9960 The~property~’#1’~only~accepts~the~values~’true’~and~’false’.
9961 }
9962 \msg_new:nnnn { keys } { property-requires-value }
9963 { The~property~’#1’~requires~a~value. }
9964 {
9965 \c__msg_coding_error_text_tl
9966 LaTeX~was~asked~to~set~property~’#1’~for~key~’#2’.\\
9967 No~value~was~given~for~the~property,~and~one~is~required.
9968 }
9969 \msg_new:nnnn { keys } { property-unknown }
9970 { The~key~property~’#1’~is~unknown. }
9971 {
9972 \c__msg_coding_error_text_tl
9973 LaTeX~has~been~asked~to~set~the~property~’#1’~for~key~’#2’:~
9974 this~property~is~not~defined.
9975 }
9976 \msg_new:nnnn { quark } { invalid-function }
9977 { Quark~test~function~’#1’~is~invalid. }
9978 {
9979 \c__msg_coding_error_text_tl
9980 LaTeX~has~been~asked~to~create~quark~test~function~’#1’~
9981 \tl_if_empty:nTF {#2}
9982 { but~that~name~ }
9983 { with~signature~’#2’,~but~that~signature~ }
9984 is~not~valid.
9985 }
9986 __kernel_msg_new:nnn { quark } { invalid }
9987 { Invalid~quark~variable~’#1’. }
9988 \msg_new:nnnn { scanmark } { already-defined }
9989 { Scan~mark~#1~already~defined. }
9990 {
9991 \c__msg_coding_error_text_tl
9992 LaTeX~has~been~asked~to~create~a~new~scan~mark~’#1’~
9993 but~this~name~has~already~been~used~for~a~scan~mark.
9994 }
9995 \msg_new:nnnn { seq } { item-too-large }
9996 { Sequence~’#1’~does~not~have~an~item~#3 }
9997 {
9998 An~attempt~was~made~to~push~or~pop~the~item~at~position~#3~
9999 of~’#1’,~but~this~

10000 \int_compare:nTF { #3 = 0 }
10001 { position~does~not~exist. }
10002 { sequence~only~has~#2~item \int_compare:nF { #2 = 1 } {s}. }
10003 }
10004 \msg_new:nnnn { seq } { shuffle-too-large }
10005 { The~sequence~#1~is~too~long~to~be~shuffled~by~TeX. }
10006 {

638

10007 TeX~has~ \int_eval:n { \c_max_register_int + 1 } ~
10008 toks~registers:~this~only~allows~to~shuffle~up~to~
10009 \int_use:N \c_max_register_int \ items.~
10010 The~list~will~not~be~shuffled.
10011 }
10012 \msg_new:nnnn { kernel } { variable-not-defined }
10013 { Variable~#1~undefined. }
10014 {
10015 \c__msg_coding_error_text_tl
10016 LaTeX~has~been~asked~to~show~a~variable~#1,~but~this~has~not~
10017 been~defined~yet.
10018 }
10019 \msg_new:nnnn { kernel } { bad-type }
10020 { Variable~’#1’~is~not~a~valid~#3. }
10021 {
10022 \c__msg_coding_error_text_tl
10023 The~variable~’#1’~with~\tl_if_empty:nTF {#4} {meaning} {value}\\\\
10024 \iow_indent:n {#2}\\\\
10025 should~be~a~#3~variable,~but~
10026 \tl_if_empty:nTF {#4}
10027 { it~is~not \str_if_eq:nnF {#3} { bool } { ~a~short~macro } . }
10028 {
10029 it~does~not~have~the~correct~
10030 \str_if_eq:nnTF {#2} {#4}
10031 { category~codes. }
10032 { internal~structure:\\\\\iow_indent:n {#4} }
10033 }
10034 }
10035 \msg_new:nnnn { prop } { bad-link }
10036 { Variable~’#1’~is~not~a~valid~(linked)~prop. }
10037 {
10038 \c__msg_coding_error_text_tl
10039 The~variable~’#1’~has~an~incorrect~internal~structure.~
10040 Its~internal~entry~’#2’~points~to~’#3’,~whose~name~is~not~of~the~
10041 form~’#4~<key>’.
10042 }
10043 \msg_new:nnnn { clist } { non-clist }
10044 { Variable~’#1’~is~not~a~valid~clist. }
10045 {
10046 \c__msg_coding_error_text_tl
10047 The~variable~’#1’~with~value\\\\
10048 \iow_indent:n {#2}\\\\
10049 should~be~a~clist~variable,~but~it~includes~empty~or~blank~items~
10050 without~braces.
10051 }
10052 \msg_new:nnnn { prop } { misused }
10053 { A~property~list~was~misused. }
10054 {
10055 \c__msg_coding_error_text_tl
10056 A~property~list~variable~was~used~without~an~accessor~function.~
10057 It~
10058 \tl_if_empty:nTF {#1}
10059 { is~empty. }
10060 { contains~the~key-value~pairs \use_none:n #1 . }

639

10061 }
10062 \msg_new:nnnn { prop } { inner-make }
10063 { ’#1’~ cannot~ be~ used~ in~ a~ group. }
10064 {
10065 \c__msg_coding_error_text_tl
10066 The~ command~ ’#1’~ was~ applied~ to~ the~ property~ list~
10067 variable~ ’#2’, but~ the~ storage~ type~ can~ only~ be~ changed~
10068 at~ the~ outermost~ group~ level.
10069 }

Some errors only appear in expandable settings, hence don’t need a “more-text”
argument.

10070 \msg_new:nnn { kernel } { bad-exp-end-f }
10071 { Misused~\exp_end_continue_f:w or~:nw }
10072 \msg_new:nnn { kernel } { bad-variable }
10073 { Erroneous~variable~#1 used! }
10074 \msg_new:nnn { seq } { misused }
10075 { A~sequence~was~misused. }
10076 \msg_new:nnn { prg } { negative-replication }
10077 { Negative~argument~for~\iow_char:N\\prg_replicate:nn. }
10078 \msg_new:nnn { prop } { prop-keyval }
10079 { Missing~’=’~in~’#1’~(in~’..._keyval:Nn’) }
10080 \msg_new:nnn { kernel } { unknown-comparison }
10081 { Relation~’#1’~not~among~=,<,>,==,!=,<=,>=. }
10082 \msg_new:nnn { kernel } { zero-step }
10083 { Zero~step~size~for~function~#1. }

Messages used by the “show” functions.
10084 \msg_new:nnn { clist } { show }
10085 {
10086 The~comma~list~ \tl_if_empty:nF {#1} { #1 ~ }
10087 \tl_if_empty:nTF {#2}
10088 { is~empty \\>~ . }
10089 { contains~the~items~(without~outer~braces): #2 . }
10090 }
10091 \msg_new:nnn { intarray } { show }
10092 { The~integer~array~#1~contains~#2~items: \\ #3 . }
10093 \msg_new:nnn { prop } { show }
10094 {
10095 The~ \str_if_eq:nnF {#3} { flat } { #3~ }
10096 property~list~#1~
10097 \tl_if_empty:nTF {#2}
10098 { is~empty \\>~ . }
10099 { contains~the~pairs~(without~outer~braces): #2 . }
10100 }
10101 \msg_new:nnn { seq } { show }
10102 {
10103 The~sequence~#1~
10104 \tl_if_empty:nTF {#2}
10105 { is~empty \\>~ . }
10106 { contains~the~items~(without~outer~braces): #2 . }
10107 }
10108 \msg_new:nnn { kernel } { show-streams }
10109 {
10110 \tl_if_empty:nTF {#2} { No~ } { The~following~ }

640

10111 \str_case:nn {#1}
10112 {
10113 { ior } { input ~ }
10114 { iow } { output ~ }
10115 }
10116 streams~are~
10117 \tl_if_empty:nTF {#2} { open } { in~use: #2 . }
10118 }

System layer messages
10119 \msg_new:nnnn { sys } { backend-set }
10120 { Backend~configuration~already~set. }
10121 {
10122 Run-time~backend~selection~may~only~be~carried~out~once~during~a~run.~
10123 This~second~attempt~to~set~them~will~be~ignored.
10124 }
10125 \msg_new:nnnn { sys } { load-debug-in-preamble }
10126 { Load~debug~support~in~the~preamble. }
10127 {
10128 Debugging~requires~support~loaded~in~the~preamble: \\
10129 Use~\sys_load_debug:~before~\begin{document}.
10130 }
10131 \msg_new:nnnn { sys } { wrong-backend }
10132 { Backend~request~inconsistent~with~engine:~using~’#2’~backend. }
10133 {
10134 You~have~requested~backend~’#1’,~but~this~is~not~suitable~for~use~with~the~
10135 active~engine.~LaTeX~will~use~the~’#2’~backend~instead.
10136 }

49.8 Expandable errors
__msg_expandable_error:nn In expansion only context, we cannot use the normal means of reporting errors. Instead,

we rely on a low-level TEX error caused by expanding a macro \??? with parameter text
“?” (this could be any token) which we used followed by something else (here, a space).
This shows the context, which thanks to the odd-looking \use:n is

<argument> \???
! mypkg Error: The error message.

In other words, TEX is processing the argument of \use:n, which is \??? ⟨space⟩ !
⟨error type⟩ : ⟨error message⟩.

10137 \cs_set_protected:Npn __msg_tmp:w #1
10138 {
10139 \cs_new:Npn #1 ? { }
10140 \cs_new:Npn __msg_expandable_error:nn ##1##2
10141 {
10142 \exp_after:wN \exp_after:wN
10143 \exp_after:wN __msg_use_none_delimit_by_s_stop:w
10144 \use:n { #1 ~ ! ~ ##2 : ~ ##1 } \s__msg_stop
10145 }
10146 }
10147 \exp_args:Nc __msg_tmp:w { ??? }

(End of definition for __msg_expandable_error:nn.)

641

\msg_expandable_error:nnnnnn
\msg_expandable_error:nnffff
\msg_expandable_error:nnnnn
\msg_expandable_error:nnfff
\msg_expandable_error:nnnn
\msg_expandable_error:nnff
\msg_expandable_error:nnn
\msg_expandable_error:nnf
\msg_expandable_error:nn

The command built from the csname \c__msg_text_prefix_tl #1 / #2 takes four ar-
guments and builds the error text, which is fed to __msg_expandable_error:n with ap-
propriate expansion: just as for usual messages the arguments are first turned to strings,
then the message is fully expanded. The module name also has to be determined.

10148 \exp_args_generate:n { oooo }
10149 \cs_new:Npn \msg_expandable_error:nnnnnn #1#2#3#4#5#6
10150 {
10151 \exp_args:Nee __msg_expandable_error:nn
10152 {
10153 \exp_args:Nc \exp_args:Noooo
10154 { \c__msg_text_prefix_tl #1 / #2 }
10155 { \tl_to_str:n {#3} }
10156 { \tl_to_str:n {#4} }
10157 { \tl_to_str:n {#5} }
10158 { \tl_to_str:n {#6} }
10159 }
10160 { \msg_error_text:n {#1} }
10161 }
10162 \cs_new:Npn \msg_expandable_error:nnnnn #1#2#3#4#5
10163 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} {#5} { } }
10164 \cs_new:Npn \msg_expandable_error:nnnn #1#2#3#4
10165 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} { } { } }
10166 \cs_new:Npn \msg_expandable_error:nnn #1#2#3
10167 { \msg_expandable_error:nnnnnn {#1} {#2} {#3} { } { } { } }
10168 \cs_new:Npn \msg_expandable_error:nn #1#2
10169 { \msg_expandable_error:nnnnnn {#1} {#2} { } { } { } { } }
10170 \cs_generate_variant:Nn \msg_expandable_error:nnnnnn { nnffff }
10171 \cs_generate_variant:Nn \msg_expandable_error:nnnnn { nnfff }
10172 \cs_generate_variant:Nn \msg_expandable_error:nnnn { nnff }
10173 \cs_generate_variant:Nn \msg_expandable_error:nnn { nnf }

(End of definition for \msg_expandable_error:nnnnnn and others. These functions are documented on
page 91.)

49.9 Message formatting
10174 \prop_gput:Nnn \g_msg_module_name_prop { kernel } { LaTeX }
10175 \prop_gput:Nnn \g_msg_module_type_prop { kernel } { }
10176 \clist_map_inline:nn
10177 {
10178 char , clist , coffin , debug , deprecation , dim, msg ,
10179 quark , prg , prop , scanmark , seq , sys
10180 }
10181 {
10182 \prop_gput:Nnn \g_msg_module_name_prop {#1} { LaTeX }
10183 \prop_gput:Nnn \g_msg_module_type_prop {#1} { }
10184 }
10185 \prop_gput:Nnn \g_msg_module_name_prop { LaTeX / cmd } { LaTeX }
10186 \prop_gput:Nnn \g_msg_module_type_prop { LaTeX / cmd } { }
10187 \prop_gput:Nnn \g_msg_module_name_prop { LaTeX / ltcmd } { LaTeX }
10188 \prop_gput:Nnn \g_msg_module_type_prop { LaTeX / ltcmd } { }

10189 ⟨/package⟩

642

Chapter 50

l3file implementation

The following test files are used for this code: m3file001.
10190 ⟨∗package⟩

50.1 Input operations
10191 ⟨@@=ior⟩

50.1.1 Variables and constants
\l__ior_internal_tl Used as a short-term scratch variable.

10192 \tl_new:N \l__ior_internal_tl

(End of definition for \l__ior_internal_tl.)

\c__ior_term_ior Reading from the terminal (with a prompt) is done using a positive but non-existent
stream number. Unlike writing, there is no concept of reading from the log.

10193 \int_const:Nn \c__ior_term_ior { 16 }

(End of definition for \c__ior_term_ior.)

\g__ior_streams_seq A list of the currently-available input streams to be used as a stack.
10194 \seq_new:N \g__ior_streams_seq

(End of definition for \g__ior_streams_seq.)

\l__ior_stream_tl Used to recover the raw stream number from the stack.
10195 \tl_new:N \l__ior_stream_tl

(End of definition for \l__ior_stream_tl.)

\g__ior_streams_prop The name of the file attached to each stream is tracked in a property list. To get the
correct number of reserved streams in package mode the underlying mechanism needs to
be queried. For LATEX 2ε and plain TEX this data is stored in \count16: with the etex
package loaded we need to subtract 1 as the register holds the number of the next stream
to use. In ConTEXt, we need to look at \count38 but there is no subtraction: like the
original plain TEX/LATEX 2ε mechanism it holds the value of the last stream allocated.

10196 \prop_new:N \g__ior_streams_prop

643

10197 \int_step_inline:nnn
10198 { 0 }
10199 {
10200 \cs_if_exist:NTF \contextversion
10201 { \tex_count:D 38 ~ }
10202 {
10203 \tex_count:D 16 ~ %
10204 \cs_if_exist:NT \loccount { - 1 }
10205 }
10206 }
10207 {
10208 \prop_gput:Nnn \g__ior_streams_prop {#1} { Reserved~by~format }
10209 }

(End of definition for \g__ior_streams_prop.)

50.1.2 Stream management
\ior_new:N
\ior_new:c

Reserving a new stream is done by defining the name as equal to using the terminal.
10210 \cs_new_protected:Npn \ior_new:N #1 { \cs_new_eq:NN #1 \c__ior_term_ior }
10211 \cs_generate_variant:Nn \ior_new:N { c }

(End of definition for \ior_new:N. This function is documented on page 94.)

\g_tmpa_ior
\g_tmpb_ior

The usual scratch space.
10212 \ior_new:N \g_tmpa_ior
10213 \ior_new:N \g_tmpb_ior

(End of definition for \g_tmpa_ior and \g_tmpb_ior. These variables are documented on page 102.)

\ior_open:Nn
\ior_open:cn

Use the conditional version, with an error if the file is not found.
10214 \cs_new_protected:Npn \ior_open:Nn #1#2
10215 { \ior_open:NnF #1 {#2} { __kernel_file_missing:n {#2} } }
10216 \cs_generate_variant:Nn \ior_open:Nn { c }

(End of definition for \ior_open:Nn. This function is documented on page 94.)

\l__ior_file_name_tl Data storage.
10217 \tl_new:N \l__ior_file_name_tl

(End of definition for \l__ior_file_name_tl.)

\ior_open:NnTF
\ior_open:cnTF

An auxiliary searches for the file in the TEX, LATEX 2ε and LATEX3 paths. Then pass the
file found to the lower-level function which deals with streams. The full_name is empty
when the file is not found.

10218 \prg_new_protected_conditional:Npnn \ior_open:Nn #1#2 { T , F , TF }
10219 {
10220 \file_get_full_name:nNTF {#2} \l__ior_file_name_tl
10221 {
10222 __kernel_ior_open:No #1 \l__ior_file_name_tl
10223 \prg_return_true:
10224 }
10225 { \prg_return_false: }
10226 }
10227 \prg_generate_conditional_variant:Nnn \ior_open:Nn { c } { T , F , TF }

644

(End of definition for \ior_open:NnTF. This function is documented on page 94.)

__ior_new:N Streams are reserved using \newread before they can be managed by ior. To prevent
ior from being affected by redefinitions of \newread (such as done by the third-party
package morewrites), this macro is saved here under a private name. The complicated code
ensures that __ior_new:N is not \outer despite plain TEX’s \newread being \outer.
For ConTEXt, we have to deal with the fact that \newread works like our own: it actually
checks before altering definition.

10228 \exp_args:NNf \cs_new_protected:Npn __ior_new:N
10229 { \exp_args:NNc \exp_after:wN \exp_stop_f: { newread } }
10230 \cs_if_exist:NT \contextversion
10231 {
10232 \cs_new_eq:NN __ior_new_aux:N __ior_new:N
10233 \cs_gset_protected:Npn __ior_new:N #1
10234 {
10235 \cs_undefine:N #1
10236 __ior_new_aux:N #1
10237 }
10238 }

(End of definition for __ior_new:N.)

__kernel_ior_open:Nn
__kernel_ior_open:No
__ior_open_stream:Nn

The stream allocation itself uses the fact that there is a list of all of those available.
Life gets more complex as it’s important to keep things in sync. That is done using a
two-part approach: any streams that have already been taken up by ior but are now free
are tracked, so we first try those. If that fails, ask plain TEX or LATEX 2ε for a new stream
and use that number (after a bit of conversion).

10239 \cs_new_protected:Npn __kernel_ior_open:Nn #1#2
10240 {
10241 \ior_close:N #1
10242 \seq_gpop:NNTF \g__ior_streams_seq \l__ior_stream_tl
10243 { __ior_open_stream:Nn #1 {#2} }
10244 {
10245 __ior_new:N #1
10246 __kernel_tl_set:Nx \l__ior_stream_tl { \int_eval:n {#1} }
10247 __ior_open_stream:Nn #1 {#2}
10248 }
10249 }
10250 \cs_generate_variant:Nn __kernel_ior_open:Nn { No }

Here, we act defensively in case LuaTEX is in use with an extensionless file name.
10251 \cs_new_protected:Npe __ior_open_stream:Nn #1#2
10252 {
10253 \tex_global:D \tex_chardef:D #1 = \exp_not:N \l__ior_stream_tl \scan_stop:
10254 \prop_gput:NVn \exp_not:N \g__ior_streams_prop #1 {#2}
10255 \tex_openin:D #1
10256 \sys_if_engine_luatex:TF
10257 { {#2} }
10258 { \exp_not:N __kernel_file_name_quote:n {#2} \scan_stop: }
10259 }

(End of definition for __kernel_ior_open:Nn and __ior_open_stream:Nn.)

645

\ior_shell_open:Nn
__ior_shell_open:nN
__ior_shell_open:oN

Actually much easier than either the standard open or input versions! When calling
__kernel_ior_open:Nn the file the pipe is added to signal a shell command, but the
quotes are not added yet—they are added later by __kernel_file_name_quote:n.

10260 \cs_new_protected:Npn \ior_shell_open:Nn #1#2
10261 {
10262 \sys_if_shell:TF
10263 { __ior_shell_open:oN { \tl_to_str:n {#2} } #1 }
10264 { \msg_error:nn { kernel } { pipe-failed } }
10265 }
10266 \cs_new_protected:Npn __ior_shell_open:nN #1#2
10267 {
10268 \tl_if_in:nnTF {#1} { " }
10269 {
10270 \msg_error:nne
10271 { kernel } { quote-in-shell } {#1}
10272 }
10273 { __kernel_ior_open:Nn #2 { |#1 } }
10274 }
10275 \cs_generate_variant:Nn __ior_shell_open:nN { o }
10276 \msg_new:nnnn { kernel } { pipe-failed }
10277 { Cannot~run~piped~system~commands. }
10278 {
10279 LaTeX~tried~to~call~a~system~process~but~this~was~not~possible.\\
10280 Try~the~"--shell-escape"~(or~"--enable-pipes")~option.
10281 }

(End of definition for \ior_shell_open:Nn and __ior_shell_open:nN. This function is documented on
page 94.)

\ior_close:N
\ior_close:c

Closing a stream means getting rid of it at the TEX level and removing from the various
data structures. Unless the name passed is an invalid stream number (outside the range
[0, 15]), it can be closed. On the other hand, it only gets added to the stack if it was not
already there, to avoid duplicates building up.

10282 \cs_new_protected:Npn \ior_close:N #1
10283 {
10284 \int_compare:nT { -1 < #1 < \c__ior_term_ior }
10285 {
10286 \tex_closein:D #1
10287 \prop_gremove:NV \g__ior_streams_prop #1
10288 \seq_if_in:NVF \g__ior_streams_seq #1
10289 { \seq_gpush:NV \g__ior_streams_seq #1 }
10290 \cs_gset_eq:NN #1 \c__ior_term_ior
10291 }
10292 }
10293 \cs_generate_variant:Nn \ior_close:N { c }

(End of definition for \ior_close:N. This function is documented on page 95.)

\ior_show:N
\ior_log:N

__ior_show:NN

Seek the stream in the \g__ior_streams_prop list, then show the stream as open or
closed accordingly.

10294 \cs_new_protected:Npn \ior_show:N { __ior_show:NN \tl_show:n }
10295 \cs_generate_variant:Nn \ior_show:N { c }
10296 \cs_new_protected:Npn \ior_log:N { __ior_show:NN \tl_log:n }
10297 \cs_generate_variant:Nn \ior_log:N { c }

646

10298 \cs_new_protected:Npn __ior_show:NN #1#2
10299 {
10300 __kernel_chk_defined:NT #2
10301 {
10302 \prop_get:NVNTF \g__ior_streams_prop #2 \l__ior_internal_tl
10303 {
10304 \exp_args:Ne #1
10305 { \token_to_str:N #2 ~ open: ~ \l__ior_internal_tl }
10306 }
10307 { \exp_args:Ne #1 { \token_to_str:N #2 ~ closed } }
10308 }
10309 }

(End of definition for \ior_show:N , \ior_log:N , and __ior_show:NN. These functions are documented
on page 95.)

\ior_show_list:
\ior_log_list:
__ior_list:N

Show the property lists, but with some “pretty printing”. See the l3msg module. The
first argument of the message is ior (as opposed to iow) and the second is empty if no
read stream is open and non-empty (the list of streams formatted using \msg_show_-
item_unbraced:nn) otherwise. The code of the message show-streams takes care of
translating ior/iow to English.

10310 \cs_new_protected:Npn \ior_show_list: { __ior_list:N \msg_show:nneeee }
10311 \cs_new_protected:Npn \ior_log_list: { __ior_list:N \msg_log:nneeee }
10312 \cs_new_protected:Npn __ior_list:N #1
10313 {
10314 #1 { kernel } { show-streams }
10315 { ior }
10316 {
10317 \prop_map_function:NN \g__ior_streams_prop
10318 \msg_show_item_unbraced:nn
10319 }
10320 { } { }
10321 }

(End of definition for \ior_show_list: , \ior_log_list: , and __ior_list:N. These functions are
documented on page 95.)

50.1.3 Reading input
\if_eof:w The primitive conditional

10322 \cs_new_eq:NN \if_eof:w \tex_ifeof:D

(End of definition for \if_eof:w. This function is documented on page 102.)

\ior_if_eof_p:N
\ior_if_eof:NTF

To test if some particular input stream is exhausted the following conditional is provided.
The primitive test can only deal with numbers in the range [0, 15] so we catch outliers
(they are exhausted).

10323 \prg_new_conditional:Npnn \ior_if_eof:N #1 { p , T , F , TF }
10324 {
10325 \if_int_compare:w -1 < #1
10326 \if_int_compare:w #1 < \c__ior_term_ior
10327 \if_eof:w #1
10328 \prg_return_true:
10329 \else:

647

10330 \prg_return_false:
10331 \fi:
10332 \else:
10333 \prg_return_true:
10334 \fi:
10335 \else:
10336 \prg_return_true:
10337 \fi:
10338 }

(End of definition for \ior_if_eof:NTF. This function is documented on page 98.)

\ior_get:NN
__ior_get:NN
\ior_get:NNTF

And here we read from files.
10339 \cs_new_protected:Npn \ior_get:NN #1#2
10340 { \ior_get:NNF #1 #2 { \tl_set:Nn #2 { \q_no_value } } }
10341 \cs_new_protected:Npn __ior_get:NN #1#2
10342 { \tex_read:D #1 to #2 }
10343 \prg_new_protected_conditional:Npnn \ior_get:NN #1#2 { T , F , TF }
10344 {
10345 \ior_if_eof:NTF #1
10346 { \prg_return_false: }
10347 {
10348 __ior_get:NN #1 #2
10349 \prg_return_true:
10350 }
10351 }

(End of definition for \ior_get:NN , __ior_get:NN , and \ior_get:NNTF. These functions are docu-
mented on page 96.)

\ior_str_get:NN
__ior_str_get:NN
\ior_str_get:NNTF

Reading as strings is a more complicated wrapper, as we wish to remove the endline
character and restore it afterwards.

10352 \cs_new_protected:Npn \ior_str_get:NN #1#2
10353 { \ior_str_get:NNF #1 #2 { \tl_set:Nn #2 { \q_no_value } } }
10354 \cs_new_protected:Npn __ior_str_get:NN #1#2
10355 {
10356 \exp_args:Nno \use:n
10357 {
10358 \int_set:Nn \tex_endlinechar:D { -1 }
10359 \tex_readline:D #1 to #2
10360 \int_set:Nn \tex_endlinechar:D
10361 } { \int_use:N \tex_endlinechar:D }
10362 }
10363 \prg_new_protected_conditional:Npnn \ior_str_get:NN #1#2 { T , F , TF }
10364 {
10365 \ior_if_eof:NTF #1
10366 { \prg_return_false: }
10367 {
10368 __ior_str_get:NN #1 #2
10369 \prg_return_true:
10370 }
10371 }

(End of definition for \ior_str_get:NN , __ior_str_get:NN , and \ior_str_get:NNTF. These functions
are documented on page 96.)

648

\c__ior_term_noprompt_ior For reading without a prompt.
10372 \int_const:Nn \c__ior_term_noprompt_ior { -1 }

(End of definition for \c__ior_term_noprompt_ior.)

\ior_get_term:nN
\ior_str_get_term:nN
__ior_get_term:NnN

Getting from the terminal is better with pretty-printing.
10373 \cs_new_protected:Npn \ior_get_term:nN #1#2
10374 { __ior_get_term:NnN __ior_get:NN {#1} #2 }
10375 \cs_new_protected:Npn \ior_str_get_term:nN #1#2
10376 { __ior_get_term:NnN __ior_str_get:NN {#1} #2 }
10377 \cs_new_protected:Npn __ior_get_term:NnN #1#2#3
10378 {
10379 \group_begin:
10380 \tex_escapechar:D = -1 \scan_stop:
10381 \tl_if_blank:nTF {#2}
10382 { \exp_args:NNc #1 \c__ior_term_noprompt_ior }
10383 { \exp_args:NNc #1 \c__ior_term_ior }
10384 {#2}
10385 \exp_args:NNNv \group_end:
10386 \tl_set:Nn #3 {#2}
10387 }

(End of definition for \ior_get_term:nN , \ior_str_get_term:nN , and __ior_get_term:NnN. These
functions are documented on page 99.)

\ior_map_break:
\ior_map_break:n

Usual map breaking functions.
10388 \cs_new:Npn \ior_map_break:
10389 { \prg_map_break:Nn \ior_map_break: { } }
10390 \cs_new:Npn \ior_map_break:n
10391 { \prg_map_break:Nn \ior_map_break: }

(End of definition for \ior_map_break: and \ior_map_break:n. These functions are documented on
page 98.)

\ior_map_inline:Nn
\ior_str_map_inline:Nn
__ior_map_inline:NNn
__ior_map_inline:NNNn

__ior_map_inline_loop:NNN

Mapping over an input stream can be done on either a token or a string basis, hence the
set up. Within that, there is a check to avoid reading past the end of a file, hence the two
applications of \ior_if_eof:N and its lower-level analogue \if_eof:w. This mapping
cannot be nested with twice the same stream, as the stream has only one “current line”.

10392 \cs_new_protected:Npn \ior_map_inline:Nn
10393 { __ior_map_inline:NNn __ior_get:NN }
10394 \cs_new_protected:Npn \ior_str_map_inline:Nn
10395 { __ior_map_inline:NNn __ior_str_get:NN }
10396 \cs_new_protected:Npn __ior_map_inline:NNn
10397 {
10398 \int_gincr:N \g__kernel_prg_map_int
10399 \exp_args:Nc __ior_map_inline:NNNn
10400 { __ior_map_ \int_use:N \g__kernel_prg_map_int :n }
10401 }
10402 \cs_new_protected:Npn __ior_map_inline:NNNn #1#2#3#4
10403 {
10404 \cs_gset_protected:Npn #1 ##1 {#4}
10405 \ior_if_eof:NF #3 { __ior_map_inline_loop:NNN #1#2#3 }
10406 \prg_break_point:Nn \ior_map_break:
10407 { \int_gdecr:N \g__kernel_prg_map_int }

649

10408 }
10409 \cs_new_protected:Npn __ior_map_inline_loop:NNN #1#2#3
10410 {
10411 #2 #3 \l__ior_internal_tl
10412 \if_eof:w #3
10413 \exp_after:wN \ior_map_break:
10414 \fi:
10415 \exp_args:No #1 \l__ior_internal_tl
10416 __ior_map_inline_loop:NNN #1#2#3
10417 }

(End of definition for \ior_map_inline:Nn and others. These functions are documented on page 97.)

\ior_map_variable:NNn
\ior_str_map_variable:NNn
__ior_map_variable:NNNn

__ior_map_variable_loop:NNNn

Since the TEX primitive (\read or \readline) assigns the tokens read in the same way
as a token list assignment, we simply call the appropriate primitive. The end-of-loop is
checked using the primitive conditional for speed.

10418 \cs_new_protected:Npn \ior_map_variable:NNn
10419 { __ior_map_variable:NNNn \ior_get:NN }
10420 \cs_new_protected:Npn \ior_str_map_variable:NNn
10421 { __ior_map_variable:NNNn \ior_str_get:NN }
10422 \cs_new_protected:Npn __ior_map_variable:NNNn #1#2#3#4
10423 {
10424 \ior_if_eof:NF #2 { __ior_map_variable_loop:NNNn #1#2#3 {#4} }
10425 \prg_break_point:Nn \ior_map_break: { }
10426 }
10427 \cs_new_protected:Npn __ior_map_variable_loop:NNNn #1#2#3#4
10428 {
10429 #1 #2 #3
10430 \if_eof:w #2
10431 \exp_after:wN \ior_map_break:
10432 \fi:
10433 #4
10434 __ior_map_variable_loop:NNNn #1#2#3 {#4}
10435 }

(End of definition for \ior_map_variable:NNn and others. These functions are documented on page
97.)

50.2 Output operations
10436 ⟨@@=iow⟩

There is a lot of similarity here to the input operations, at least for many of the
basics. Thus quite a bit is copied from the earlier material with minor alterations.
50.2.1 Variables and constants

\l__iow_internal_tl Used as a short-term scratch variable.
10437 \tl_new:N \l__iow_internal_tl

(End of definition for \l__iow_internal_tl.)

\c_log_iow
\c_term_iow

Here we allocate two output streams for writing to the transcript file only (\c_log_iow)
and to both the terminal and transcript file (\c_term_iow). Recent LuaTEX provide 128

650

write streams; we also use \c_term_iow as the first non-allowed write stream so its value
depends on the engine.

10438 \int_const:Nn \c_log_iow { -1 }
10439 \int_const:Nn \c_term_iow
10440 {
10441 \bool_lazy_and:nnTF
10442 { \sys_if_engine_luatex_p: }
10443 { \int_compare_p:nNn \tex_luatexversion:D > { 80 } }
10444 { 128 }
10445 { 16 }
10446 }

(End of definition for \c_log_iow and \c_term_iow. These variables are documented on page 102.)

\g__iow_streams_seq A list of the currently-available output streams to be used as a stack.
10447 \seq_new:N \g__iow_streams_seq

(End of definition for \g__iow_streams_seq.)

\l__iow_stream_tl Used to recover the raw stream number from the stack.
10448 \tl_new:N \l__iow_stream_tl

(End of definition for \l__iow_stream_tl.)

\g__iow_streams_prop As for reads with the appropriate adjustment of the register numbers to check on.
10449 \prop_new:N \g__iow_streams_prop
10450 \int_step_inline:nnn
10451 { 0 }
10452 {
10453 \cs_if_exist:NTF \contextversion
10454 { \tex_count:D 39 ~ }
10455 {
10456 \tex_count:D 17 ~
10457 \cs_if_exist:NT \loccount { - 1 }
10458 }
10459 }
10460 {
10461 \prop_gput:Nnn \g__iow_streams_prop {#1} { Reserved~by~format }
10462 }

(End of definition for \g__iow_streams_prop.)

50.2.2 Internal auxiliaries
\s__iow_mark
\s__iow_stop

Internal scan marks.
10463 \scan_new:N \s__iow_mark
10464 \scan_new:N \s__iow_stop

(End of definition for \s__iow_mark and \s__iow_stop.)

__iow_use_i_delimit_by_s_stop:nw Functions to gobble up to a scan mark.
10465 \cs_new:Npn __iow_use_i_delimit_by_s_stop:nw #1 #2 \s__iow_stop {#1}

(End of definition for __iow_use_i_delimit_by_s_stop:nw.)

651

\q__iow_nil Internal quarks.
10466 \quark_new:N \q__iow_nil

(End of definition for \q__iow_nil.)

50.3 Stream management
\iow_new:N
\iow_new:c

Reserving a new stream is done by defining the name as equal to writing to the terminal:
odd but at least consistent.

10467 \cs_new_protected:Npn \iow_new:N #1 { \cs_new_eq:NN #1 \c_term_iow }
10468 \cs_generate_variant:Nn \iow_new:N { c }

(End of definition for \iow_new:N. This function is documented on page 94.)

\g_tmpa_iow
\g_tmpb_iow

The usual scratch space.
10469 \iow_new:N \g_tmpa_iow
10470 \iow_new:N \g_tmpb_iow

(End of definition for \g_tmpa_iow and \g_tmpb_iow. These variables are documented on page 102.)

__iow_new:N As for read streams, copy \newwrite, making sure that it is not \outer. For ConTEXt,
we have to deal with the fact that \newwrite works like our own: it actually checks
before altering definition.

10471 \exp_args:NNf \cs_new_protected:Npn __iow_new:N
10472 { \exp_args:NNc \exp_after:wN \exp_stop_f: { newwrite } }
10473 \cs_if_exist:NT \contextversion
10474 {
10475 \cs_new_eq:NN __iow_new_aux:N __iow_new:N
10476 \cs_gset_protected:Npn __iow_new:N #1
10477 {
10478 \cs_undefine:N #1
10479 __iow_new_aux:N #1
10480 }
10481 }

(End of definition for __iow_new:N.)

\l__iow_file_name_tl Data storage.
10482 \tl_new:N \l__iow_file_name_tl

(End of definition for \l__iow_file_name_tl.)

\iow_open:Nn
\iow_open:NV
\iow_open:cn
\iow_open:cV

__kernel_iow_open:Nn
__kernel_iow_open:No
__iow_open_stream:Nn
__iow_open_stream:NV

The same idea as for reading, but without the path and without the need to allow for a
conditional version.

10483 \cs_new_protected:Npn \iow_open:Nn #1#2
10484 {
10485 __kernel_tl_set:Nx \l__iow_file_name_tl
10486 { __kernel_file_name_sanitize:n {#2} }
10487 __kernel_iow_open:No #1 \l__iow_file_name_tl
10488 }
10489 \cs_generate_variant:Nn \iow_open:Nn { NV , c , cV }
10490 \cs_new_protected:Npn __kernel_iow_open:Nn #1#2
10491 {

652

10492 \iow_close:N #1
10493 \seq_gpop:NNTF \g__iow_streams_seq \l__iow_stream_tl
10494 { __iow_open_stream:Nn #1 {#2} }
10495 {
10496 __iow_new:N #1
10497 __kernel_tl_set:Nx \l__iow_stream_tl { \int_eval:n {#1} }
10498 __iow_open_stream:Nn #1 {#2}
10499 }
10500 }
10501 \cs_generate_variant:Nn __kernel_iow_open:Nn { No }
10502 \cs_new_protected:Npn __iow_open_stream:Nn #1#2
10503 {
10504 \tex_global:D \tex_chardef:D #1 = \l__iow_stream_tl \scan_stop:
10505 \prop_gput:NVn \g__iow_streams_prop #1 {#2}
10506 \tex_immediate:D \tex_openout:D
10507 #1 __kernel_file_name_quote:n {#2} \scan_stop:
10508 }
10509 \cs_generate_variant:Nn __iow_open_stream:Nn { NV }

(End of definition for \iow_open:Nn , __kernel_iow_open:Nn , and __iow_open_stream:Nn. This func-
tion is documented on page 94.)

\iow_shell_open:Nn
__iow_shell_open:nN
__iow_shell_open:oN

Very similar to the ior version
10510 \cs_new_protected:Npn \iow_shell_open:Nn #1#2
10511 {
10512 \sys_if_shell:TF
10513 { __iow_shell_open:oN { \tl_to_str:n {#2} } #1 }
10514 { \msg_error:nn { kernel } { pipe-failed } }
10515 }
10516 \cs_new_protected:Npn __iow_shell_open:nN #1#2
10517 {
10518 \tl_if_in:nnTF {#1} { " }
10519 {
10520 \msg_error:nne
10521 { kernel } { quote-in-shell } {#1}
10522 }
10523 { __kernel_iow_open:Nn #2 { |#1 } }
10524 }
10525 \cs_generate_variant:Nn __iow_shell_open:nN { o }

(End of definition for \iow_shell_open:Nn and __iow_shell_open:nN. This function is documented on
page 94.)

\iow_close:N
\iow_close:c

Closing a stream is not quite the reverse of opening one. First, the close operation is
easier than the open one, and second as the stream is actually a number we can use it
directly to show that the slot has been freed up.

10526 \cs_new_protected:Npn \iow_close:N #1
10527 {
10528 \int_compare:nT { \c_log_iow < #1 < \c_term_iow }
10529 {
10530 \tex_immediate:D \tex_closeout:D #1
10531 \prop_gremove:NV \g__iow_streams_prop #1
10532 \seq_if_in:NVF \g__iow_streams_seq #1
10533 { \seq_gpush:NV \g__iow_streams_seq #1 }
10534 \cs_gset_eq:NN #1 \c_term_iow

653

10535 }
10536 }
10537 \cs_generate_variant:Nn \iow_close:N { c }

(End of definition for \iow_close:N. This function is documented on page 95.)

\iow_show:N
\iow_log:N

__iow_show:NN

Seek the stream in the \g__iow_streams_prop list, then show the stream as open or
closed accordingly.

10538 \cs_new_protected:Npn \iow_show:N { __iow_show:NN \tl_show:n }
10539 \cs_generate_variant:Nn \iow_show:N { c }
10540 \cs_new_protected:Npn \iow_log:N { __iow_show:NN \tl_log:n }
10541 \cs_generate_variant:Nn \iow_log:N { c }
10542 \cs_new_protected:Npn __iow_show:NN #1#2
10543 {
10544 __kernel_chk_defined:NT #2
10545 {
10546 \prop_get:NVNTF \g__iow_streams_prop #2 \l__iow_internal_tl
10547 {
10548 \exp_args:Ne #1
10549 { \token_to_str:N #2 ~ open: ~ \l__iow_internal_tl }
10550 }
10551 { \exp_args:Ne #1 { \token_to_str:N #2 ~ closed } }
10552 }
10553 }

(End of definition for \iow_show:N , \iow_log:N , and __iow_show:NN. These functions are documented
on page 95.)

\iow_show_list:
\iow_log_list:
__iow_list:N

Done as for input, but with a copy of the auxiliary so the name is correct.
10554 \cs_new_protected:Npn \iow_show_list: { __iow_list:N \msg_show:nneeee }
10555 \cs_new_protected:Npn \iow_log_list: { __iow_list:N \msg_log:nneeee }
10556 \cs_new_protected:Npn __iow_list:N #1
10557 {
10558 #1 { kernel } { show-streams }
10559 { iow }
10560 {
10561 \prop_map_function:NN \g__iow_streams_prop
10562 \msg_show_item_unbraced:nn
10563 }
10564 { } { }
10565 }

(End of definition for \iow_show_list: , \iow_log_list: , and __iow_list:N. These functions are
documented on page 95.)

50.3.1 Deferred writing
\iow_shipout_e:Nn
\iow_shipout_e:Ne
\iow_shipout_e:cn
\iow_shipout_e:ce

First the easy part, this is the primitive, which expects its argument to be braced.
10566 \cs_new_protected:Npn \iow_shipout_e:Nn #1#2
10567 { \tex_write:D #1 {#2} }
10568 \cs_generate_variant:Nn \iow_shipout_e:Nn { Ne , c, ce }

(End of definition for \iow_shipout_e:Nn. This function is documented on page 100.)

654

\iow_shipout:Nn
\iow_shipout:Ne
\iow_shipout:Nx
\iow_shipout:cn
\iow_shipout:ce
\iow_shipout:cx

With ε-TEX available deferred writing without expansion is easy.
10569 \cs_new_protected:Npn \iow_shipout:Nn #1#2
10570 { \tex_write:D #1 { \exp_not:n {#2} } }
10571 \cs_generate_variant:Nn \iow_shipout:Nn { Ne , c, ce }
10572 \cs_generate_variant:Nn \iow_shipout:Nn { Nx , cx }

(End of definition for \iow_shipout:Nn. This function is documented on page 99.)

50.3.2 Immediate writing
__kernel_iow_with:Nnn

__iow_with:nNnn
__iow_with:oNnn

If the integer #1 is equal to #2, just leave #3 in the input stream. Otherwise, pass the old
value to an auxiliary, which sets the integer to the new value, runs the code, and restores
the integer.

10573 \cs_new_protected:Npn __kernel_iow_with:Nnn #1#2
10574 {
10575 \int_compare:nNnTF {#1} = {#2}
10576 { \use:n }
10577 { __iow_with:oNnn { \int_use:N #1 } #1 {#2} }
10578 }
10579 \cs_new_protected:Npn __iow_with:nNnn #1#2#3#4
10580 {
10581 \int_set:Nn #2 {#3}
10582 #4
10583 \int_set:Nn #2 {#1}
10584 }
10585 \cs_generate_variant:Nn __iow_with:nNnn { o }

(End of definition for __kernel_iow_with:Nnn and __iow_with:nNnn.)

\iow_now:Nn
\iow_now:NV
\iow_now:Ne
\iow_now:Nx
\iow_now:cn
\iow_now:cV
\iow_now:ce
\iow_now:cx

This routine writes the second argument onto the output stream without expansion. If
this stream isn’t open, the output goes to the terminal instead. If the first argument is
no output stream at all, we get an internal error. We don’t use the expansion done by
\write to get the Nx variant, because it differs in subtle ways from x-expansion, namely,
macro parameter characters would not need to be doubled. We set the \newlinechar
to 10 using __kernel_iow_with:Nnn to support formats such as plain TEX: otherwise,
\iow_newline: would not work. We do not do this for \iow_shipout:Nn or \iow_-
shipout_x:Nn, as TEX looks at the value of the \newlinechar at shipout time in those
cases.

10586 \cs_new_protected:Npn \iow_now:Nn #1#2
10587 {
10588 __kernel_iow_with:Nnn \tex_newlinechar:D { ‘\^^J }
10589 { \tex_immediate:D \tex_write:D #1 { \exp_not:n {#2} } }
10590 }
10591 \cs_generate_variant:Nn \iow_now:Nn { NV , Ne , c , cV , ce }
10592 \cs_generate_variant:Nn \iow_now:Nn { Nx , cx }

(End of definition for \iow_now:Nn. This function is documented on page 99.)

\iow_log:n
\iow_log:e
\iow_log:x
\iow_term:n
\iow_term:e
\iow_term:x

Writing to the log and the terminal directly are relatively easy; as we need the two e-type
variants for bootstrapping, they are redefinitions here.

10593 \cs_new_protected:Npn \iow_log:n { \iow_now:Nn \c_log_iow }
10594 \cs_set_protected:Npn \iow_log:e { \iow_now:Ne \c_log_iow }
10595 \cs_generate_variant:Nn \iow_log:n { x }

655

10596 \cs_new_protected:Npn \iow_term:n { \iow_now:Nn \c_term_iow }
10597 \cs_set_protected:Npn \iow_term:e { \iow_now:Ne \c_term_iow }
10598 \cs_generate_variant:Nn \iow_term:n { x }

(End of definition for \iow_log:n and \iow_term:n. These functions are documented on page 99.)

50.3.3 Special characters for writing
\iow_newline: Global variable holding the character that forces a new line when something is written

to an output stream.
10599 \cs_new:Npn \iow_newline: { ^^J }

(End of definition for \iow_newline:. This function is documented on page 100.)

\iow_char:N Function to write any escaped char to an output stream.
10600 \cs_new_eq:NN \iow_char:N \cs_to_str:N

(End of definition for \iow_char:N. This function is documented on page 100.)

50.3.4 Hard-wrapping lines to a character count
The code here implements a generic hard-wrapping function. This is used by the mes-
saging system, but is designed such that it is available for other uses.

\l_iow_line_count_int This is the “raw” number of characters in a line which can be written to the terminal.
The standard value is the line length typically used by TEX Live and MiKTEX.

10601 \int_new:N \l_iow_line_count_int
10602 \int_set:Nn \l_iow_line_count_int { 78 }

(End of definition for \l_iow_line_count_int. This variable is documented on page 102.)

\l__iow_newline_tl The token list inserted to produce a new line, with the ⟨run-on text⟩.
10603 \tl_new:N \l__iow_newline_tl

(End of definition for \l__iow_newline_tl.)

\l__iow_line_target_int This stores the target line count: the full number of characters in a line, minus any part
for a leader at the start of each line.

10604 \int_new:N \l__iow_line_target_int

(End of definition for \l__iow_line_target_int.)

__iow_set_indent:n
__iow_unindent:w

\l__iow_one_indent_tl
\l__iow_one_indent_int

The one_indent variables hold one indentation marker and its length. The __iow_-
unindent:w auxiliary removes one indentation. The function __iow_set_indent:n
(that could possibly be public) sets the indentation in a consistent way. We set it to four
spaces by default.

10605 \tl_new:N \l__iow_one_indent_tl
10606 \int_new:N \l__iow_one_indent_int
10607 \cs_new:Npn __iow_unindent:w { }
10608 \cs_new_protected:Npn __iow_set_indent:n #1
10609 {
10610 __kernel_tl_set:Nx \l__iow_one_indent_tl
10611 { \exp_args:No __kernel_str_to_other_fast:n { \tl_to_str:n {#1} } }
10612 \int_set:Nn \l__iow_one_indent_int

656

10613 { \str_count:N \l__iow_one_indent_tl }
10614 \exp_last_unbraced:NNo
10615 \cs_set:Npn __iow_unindent:w \l__iow_one_indent_tl { }
10616 }
10617 \exp_args:Ne __iow_set_indent:n { \prg_replicate:nn { 4 } { ~ } }

(End of definition for __iow_set_indent:n and others.)

\l__iow_indent_tl
\l__iow_indent_int

The current indentation (some copies of \l__iow_one_indent_tl) and its number of
characters.

10618 \tl_new:N \l__iow_indent_tl
10619 \int_new:N \l__iow_indent_int

(End of definition for \l__iow_indent_tl and \l__iow_indent_int.)

\l__iow_line_tl
\l__iow_line_part_tl

These hold the current line of text and a partial line to be added to it, respectively.
10620 \tl_new:N \l__iow_line_tl
10621 \tl_new:N \l__iow_line_part_tl

(End of definition for \l__iow_line_tl and \l__iow_line_part_tl.)

\l__iow_line_break_bool Indicates whether the line was broken precisely at a chunk boundary.
10622 \bool_new:N \l__iow_line_break_bool

(End of definition for \l__iow_line_break_bool.)

\l__iow_wrap_tl Used for the expansion step before detokenizing, and for the output from wrapping text:
fully expanded and with lines which are not overly long.

10623 \tl_new:N \l__iow_wrap_tl

(End of definition for \l__iow_wrap_tl.)

\c__iow_wrap_marker_tl
\c__iow_wrap_end_marker_tl

\c__iow_wrap_newline_marker_tl
\c__iow_wrap_allow_break_marker_tl

\c__iow_wrap_indent_marker_tl
\c__iow_wrap_unindent_marker_tl

Every special action of the wrapping code is starts with the same recognizable string,
\c__iow_wrap_marker_tl. Upon seeing that “word”, the wrapping code reads one space-
delimited argument to know what operation to perform. The setting of \escapechar here
is not very important, but makes \c__iow_wrap_marker_tl look marginally nicer.

10624 \group_begin:
10625 \int_set:Nn \tex_escapechar:D { -1 }
10626 \tl_const:Ne \c__iow_wrap_marker_tl
10627 { \tl_to_str:n { \^^I \^^O \^^W \^^_ \^^W \^^R \^^A \^^P } }
10628 \group_end:
10629 \tl_map_inline:nn
10630 { { end } { newline } { allow_break } { indent } { unindent } }
10631 {
10632 \tl_const:ce { c__iow_wrap_ #1 _marker_tl }
10633 {
10634 \c__iow_wrap_marker_tl
10635 #1
10636 \c_catcode_other_space_tl
10637 }
10638 }

(End of definition for \c__iow_wrap_marker_tl and others.)

657

\iow_wrap_allow_break:
__iow_wrap_allow_break:

__iow_wrap_allow_break_error:

We set \iow_wrap_allow_break:n to produce an error when outside messages. Within
wrapped message, it is set to __iow_wrap_allow_break: when valid and otherwise to
__iow_wrap_allow_break_error:. The second produces an error expandably.

10639 \cs_new_protected:Npn \iow_wrap_allow_break:
10640 {
10641 \msg_error:nnnn { kernel } { iow-indent }
10642 { \iow_wrap:nnnN } { \iow_wrap_allow_break: }
10643 }
10644 \cs_new:Npe __iow_wrap_allow_break: { \c__iow_wrap_allow_break_marker_tl }
10645 \cs_new:Npn __iow_wrap_allow_break_error:
10646 {
10647 \msg_expandable_error:nnnn { kernel } { iow-indent }
10648 { \iow_wrap:nnnN } { \iow_wrap_allow_break: }
10649 }

(End of definition for \iow_wrap_allow_break: , __iow_wrap_allow_break: , and __iow_wrap_allow_-
break_error:. This function is documented on page 101.)

\iow_indent:n
__iow_indent:n

__iow_indent_error:n

We set \iow_indent:n to produce an error when outside messages. Within wrapped mes-
sage, it is set to __iow_indent:n when valid and otherwise to __iow_indent_error:n.
The first places the instruction for increasing the indentation before its argument, and
the instruction for unindenting afterwards. The second produces an error expandably.
Note that there are no forced line-break, so the indentation only changes when the next
line is started.

10650 \cs_new_protected:Npn \iow_indent:n #1
10651 {
10652 \msg_error:nnnnn { kernel } { iow-indent }
10653 { \iow_wrap:nnnN } { \iow_indent:n } {#1}
10654 #1
10655 }
10656 \cs_new:Npe __iow_indent:n #1
10657 {
10658 \c__iow_wrap_indent_marker_tl
10659 #1
10660 \c__iow_wrap_unindent_marker_tl
10661 }
10662 \cs_new:Npn __iow_indent_error:n #1
10663 {
10664 \msg_expandable_error:nnnnn { kernel } { iow-indent }
10665 { \iow_wrap:nnnN } { \iow_indent:n } {#1}
10666 #1
10667 }

(End of definition for \iow_indent:n , __iow_indent:n , and __iow_indent_error:n. This function is
documented on page 101.)

\iow_wrap:nnnN
\iow_wrap:nenN

The main wrapping function works as follows. First give \\, \␣ and other format-
ting commands the correct definition for messages and perform the given setup #3.
The definition of \␣ uses an “other” space rather than a normal space, because the
latter might be absorbed by TEX to end a number or other f-type expansions. Use
\conditionally@traceoff if defined; it is introduced by the trace package and sup-
presses uninteresting tracing of the wrapping code.

10668 \cs_new_protected:Npn \iow_wrap:nnnN #1#2#3#4

658

10669 {
10670 \group_begin:
10671 \cs_if_exist_use:N \conditionally@traceoff
10672 \int_set:Nn \tex_escapechar:D { -1 }
10673 \cs_set:Npe \{ { \token_to_str:N \{ }
10674 \cs_set:Npe \# { \token_to_str:N \# }
10675 \cs_set:Npe \} { \token_to_str:N \} }
10676 \cs_set:Npe \% { \token_to_str:N \% }
10677 \cs_set:Npe \~ { \token_to_str:N \~ }
10678 \int_set:Nn \tex_escapechar:D { 92 }
10679 \cs_set_eq:NN \\ \iow_newline:
10680 \cs_set_eq:NN \ \c_catcode_other_space_tl
10681 \cs_set_eq:NN \iow_wrap_allow_break: __iow_wrap_allow_break:
10682 \cs_set_eq:NN \iow_indent:n __iow_indent:n
10683 #3

Then fully-expand the input: in package mode, the expansion uses LATEX 2ε’s \protect
mechanism in the same way as \typeout. In generic mode this setting is useless but
harmless. As soon as the expansion is done, reset \iow_indent:n to its error definition:
it only works in the first argument of \iow_wrap:nnnN.

10684 \cs_set_eq:NN \protect \token_to_str:N
10685 __kernel_tl_set:Nx \l__iow_wrap_tl {#1}
10686 \cs_set_eq:NN \iow_wrap_allow_break: __iow_wrap_allow_break_error:
10687 \cs_set_eq:NN \iow_indent:n __iow_indent_error:n

Afterwards, set the newline marker (two assignments to fully expand, then convert to a
string) and initialize the target count for lines (the first line has target count \l_iow_-
line_count_int instead).

10688 __kernel_tl_set:Nx \l__iow_newline_tl { \iow_newline: #2 }
10689 __kernel_tl_set:Nx \l__iow_newline_tl { \tl_to_str:N \l__iow_newline_tl }
10690 \int_set:Nn \l__iow_line_target_int
10691 { \l_iow_line_count_int - \str_count:N \l__iow_newline_tl + 1 }

Sanity check.
10692 \int_compare:nNnT { \l__iow_line_target_int } < 0
10693 {
10694 \tl_set:Nn \l__iow_newline_tl { \iow_newline: }
10695 \int_set:Nn \l__iow_line_target_int
10696 { \l_iow_line_count_int + 1 }
10697 }

There is then a loop over the input, which stores the wrapped result in \l__iow_wrap_-
tl. After the loop, the resulting text is passed on to the function which has been given
as a post-processor. The \tl_to_str:N step converts the “other” spaces back to normal
spaces. The f-expansion removes a leading space from \l__iow_wrap_tl.

10698 __iow_wrap_do:
10699 \exp_args:NNf \group_end:
10700 #4 { \tl_to_str:N \l__iow_wrap_tl }
10701 }
10702 \cs_generate_variant:Nn \iow_wrap:nnnN { ne }

(End of definition for \iow_wrap:nnnN. This function is documented on page 101.)

__iow_wrap_do:
__iow_wrap_fix_newline:w

__iow_wrap_start:w

Escape spaces and change newlines to \c__iow_wrap_newline_marker_tl. Set up a
few variables, in particular the initial value of \l__iow_wrap_tl: the space stops the

659

f-expansion of the main wrapping function and \use_none:n removes a newline marker
inserted by later code. The main loop consists of repeatedly calling the chunk auxiliary
to wrap chunks delimited by (newline or indentation) markers.

10703 \cs_new_protected:Npn __iow_wrap_do:
10704 {
10705 __kernel_tl_set:Nx \l__iow_wrap_tl
10706 {
10707 \exp_args:No __kernel_str_to_other_fast:n \l__iow_wrap_tl
10708 \c__iow_wrap_end_marker_tl
10709 }
10710 __kernel_tl_set:Nx \l__iow_wrap_tl
10711 {
10712 \exp_after:wN __iow_wrap_fix_newline:w \l__iow_wrap_tl
10713 ^^J \q__iow_nil ^^J \s__iow_stop
10714 }
10715 \exp_after:wN __iow_wrap_start:w \l__iow_wrap_tl
10716 }
10717 \cs_new:Npn __iow_wrap_fix_newline:w #1 ^^J #2 ^^J
10718 {
10719 #1
10720 \if_meaning:w \q__iow_nil #2
10721 __iow_use_i_delimit_by_s_stop:nw
10722 \fi:
10723 \c__iow_wrap_newline_marker_tl
10724 __iow_wrap_fix_newline:w #2 ^^J
10725 }
10726 \cs_new_protected:Npn __iow_wrap_start:w
10727 {
10728 \bool_set_false:N \l__iow_line_break_bool
10729 \tl_clear:N \l__iow_line_tl
10730 \tl_clear:N \l__iow_line_part_tl
10731 \tl_set:Nn \l__iow_wrap_tl { ~ \use_none:n }
10732 \int_zero:N \l__iow_indent_int
10733 \tl_clear:N \l__iow_indent_tl
10734 __iow_wrap_chunk:nw { \l_iow_line_count_int }
10735 }

(End of definition for __iow_wrap_do: , __iow_wrap_fix_newline:w , and __iow_wrap_start:w.)

__iow_wrap_chunk:nw
__iow_wrap_next:nw

The chunk and next auxiliaries are defined indirectly to obtain the expansions of \c_-
catcode_other_space_tl and \c__iow_wrap_marker_tl in their definition. The next
auxiliary calls a function corresponding to the type of marker (its ##2), which can be
newline or indent or unindent or end. The first argument of the chunk auxiliary is
a target number of characters and the second is some string to wrap. If the chunk is
empty simply call next. Otherwise, set up a call to __iow_wrap_line:nw, including
the indentation if the current line is empty, and including a trailing space (#1) before the
__iow_wrap_end_chunk:w auxiliary.

10736 \cs_set_protected:Npn __iow_tmp:w #1#2
10737 {
10738 \cs_new_protected:Npn __iow_wrap_chunk:nw ##1##2 #2
10739 {
10740 \tl_if_empty:nTF {##2}
10741 {

660

10742 \tl_clear:N \l__iow_line_part_tl
10743 __iow_wrap_next:nw {##1}
10744 }
10745 {
10746 \tl_if_empty:NTF \l__iow_line_tl
10747 {
10748 __iow_wrap_line:nw
10749 { \l__iow_indent_tl }
10750 ##1 - \l__iow_indent_int ;
10751 }
10752 { __iow_wrap_line:nw { } ##1 ; }
10753 ##2 #1
10754 __iow_wrap_end_chunk:w 7 6 5 4 3 2 1 0 \s__iow_stop
10755 }
10756 }
10757 \cs_new_protected:Npn __iow_wrap_next:nw ##1##2 #1
10758 { \use:c { __iow_wrap_##2:n } {##1} }
10759 }
10760 \exp_args:NVV __iow_tmp:w \c_catcode_other_space_tl \c__iow_wrap_marker_tl

(End of definition for __iow_wrap_chunk:nw and __iow_wrap_next:nw.)

__iow_wrap_line:nw
__iow_wrap_line_loop:w
__iow_wrap_line_aux:Nw

__iow_wrap_line_seven:nnnnnnn
__iow_wrap_line_end:NnnnnnnnN

__iow_wrap_line_end:nw
__iow_wrap_end_chunk:w

This is followed by {⟨string⟩} ⟨int expr⟩ ;. It stores the ⟨string⟩ and up to ⟨int expr⟩
characters from the current chunk into \l__iow_line_part_tl. Characters are grabbed
8 at a time and left in \l__iow_line_part_tl by the line_loop auxiliary. When k < 8
remain to be found, the line_aux auxiliary calls the line_end auxiliary followed by (the
single digit) k, then 7 − k empty brace groups, then the chunk’s remaining characters.
The line_end auxiliary leaves k characters from the chunk in the line part, then ends
the assignment. Ignore the \use_none:nnnnn line for now. If the next character is a
space the line can be broken there: store what we found into the result and get the next
line. Otherwise some work is needed to find a break-point. So far we have ignored what
happens if the chunk is shorter than the requested number of characters: this is dealt
with by the end_chunk auxiliary, which gets treated like a character by the rest of the
code. It ends up being called either as one of the arguments #2–#9 of the line_loop
auxiliary or as one of the arguments #2–#8 of the line_end auxiliary. In both cases stop
the assignment and work out how many characters are still needed. Notice that when
we have exactly seven arguments to clean up, a \exp_stop_f: has to be inserted to stop
the \exp:w. The weird \use_none:nnnnn ensures that the required data is in the right
place.

10761 \cs_new_protected:Npn __iow_wrap_line:nw #1
10762 {
10763 \tex_edef:D \l__iow_line_part_tl { \if_false: } \fi:
10764 #1
10765 \exp_after:wN __iow_wrap_line_loop:w
10766 \int_value:w \int_eval:w
10767 }
10768 \cs_new:Npn __iow_wrap_line_loop:w #1 ; #2#3#4#5#6#7#8#9
10769 {
10770 \if_int_compare:w #1 < 8 \exp_stop_f:
10771 __iow_wrap_line_aux:Nw #1
10772 \fi:
10773 #2 #3 #4 #5 #6 #7 #8 #9
10774 \exp_after:wN __iow_wrap_line_loop:w

661

10775 \int_value:w \int_eval:w #1 - 8 ;
10776 }
10777 \cs_new:Npn __iow_wrap_line_aux:Nw #1#2#3 \exp_after:wN #4 ;
10778 {
10779 #2
10780 \exp_after:wN __iow_wrap_line_end:NnnnnnnnN
10781 \exp_after:wN #1
10782 \exp:w \exp_end_continue_f:w
10783 \exp_after:wN \exp_after:wN
10784 \if_case:w #1 \exp_stop_f:
10785 \prg_do_nothing:
10786 \or: \use_none:n
10787 \or: \use_none:nn
10788 \or: \use_none:nnn
10789 \or: \use_none:nnnn
10790 \or: \use_none:nnnnn
10791 \or: \use_none:nnnnnn
10792 \or: __iow_wrap_line_seven:nnnnnnn
10793 \fi:
10794 { } { } { } { } { } { } { } #3
10795 }
10796 \cs_new:Npn __iow_wrap_line_seven:nnnnnnn #1#2#3#4#5#6#7 { \exp_stop_f: }
10797 \cs_new:Npn __iow_wrap_line_end:NnnnnnnnN #1#2#3#4#5#6#7#8#9
10798 {
10799 #2 #3 #4 #5 #6 #7 #8
10800 \use_none:nnnnn \int_eval:w 8 - ; #9
10801 \token_if_eq_charcode:NNTF \c_space_token #9
10802 { __iow_wrap_line_end:nw { } }
10803 { \if_false: { \fi: } __iow_wrap_break:w #9 }
10804 }
10805 \cs_new:Npn __iow_wrap_line_end:nw #1
10806 {
10807 \if_false: { \fi: }
10808 __iow_wrap_store_do:n {#1}
10809 __iow_wrap_next_line:w
10810 }
10811 \cs_new:Npn __iow_wrap_end_chunk:w
10812 #1 \int_eval:w #2 - #3 ; #4#5 \s__iow_stop
10813 {
10814 \if_false: { \fi: }
10815 \exp_args:Nf __iow_wrap_next:nw { \int_eval:n { #2 - #4 } }
10816 }

(End of definition for __iow_wrap_line:nw and others.)

__iow_wrap_break:w
__iow_wrap_break_first:w
__iow_wrap_break_none:w
__iow_wrap_break_loop:w
__iow_wrap_break_end:w

Functions here are defined indirectly: __iow_tmp:w is eventually called with an “other”
space as its argument. The goal is to remove from \l__iow_line_part_tl the part
after the last space. In most cases this is done by repeatedly calling the break_loop
auxiliary, which leaves “words” (delimited by spaces) until it hits the trailing space: then
its argument ##3 is ? __iow_wrap_break_end:w instead of a single token, and that
break_end auxiliary leaves in the assignment the line until the last space, then calls
__iow_wrap_line_end:nw to finish up the line and move on to the next. If there is
no space in \l__iow_line_part_tl then the break_first auxiliary calls the break_-
none auxiliary. In that case, if the current line is empty, the complete word (including

662

##4, characters beyond what we had grabbed) is added to the line, making it over-long.
Otherwise, the word is used for the following line (and the last space of the line so far is
removed because it was inserted due to the presence of a marker).

10817 \cs_set_protected:Npn __iow_tmp:w #1
10818 {
10819 \cs_new:Npn __iow_wrap_break:w
10820 {
10821 \tex_edef:D \l__iow_line_part_tl
10822 { \if_false: } \fi:
10823 \exp_after:wN __iow_wrap_break_first:w
10824 \l__iow_line_part_tl
10825 #1
10826 { ? __iow_wrap_break_end:w }
10827 \s__iow_mark
10828 }
10829 \cs_new:Npn __iow_wrap_break_first:w ##1 #1 ##2
10830 {
10831 \use_none:nn ##2 __iow_wrap_break_none:w
10832 __iow_wrap_break_loop:w ##1 #1 ##2
10833 }
10834 \cs_new:Npn __iow_wrap_break_none:w ##1##2 #1 ##3 \s__iow_mark ##4 #1
10835 {
10836 \tl_if_empty:NTF \l__iow_line_tl
10837 { ##2 ##4 __iow_wrap_line_end:nw { } }
10838 { __iow_wrap_line_end:nw { __iow_wrap_trim:N } ##2 ##4 #1 }
10839 }
10840 \cs_new:Npn __iow_wrap_break_loop:w ##1 #1 ##2 #1 ##3
10841 {
10842 \use_none:n ##3
10843 ##1 #1
10844 __iow_wrap_break_loop:w ##2 #1 ##3
10845 }
10846 \cs_new:Npn __iow_wrap_break_end:w ##1 #1 ##2 ##3 #1 ##4 \s__iow_mark
10847 { ##1 __iow_wrap_line_end:nw { } ##3 }
10848 }
10849 \exp_args:NV __iow_tmp:w \c_catcode_other_space_tl

(End of definition for __iow_wrap_break:w and others.)

__iow_wrap_next_line:w The special case where the end of a line coincides with the end of a chunk is detected here,
to avoid a spurious empty line. Otherwise, call __iow_wrap_line:nw to find characters
for the next line (remembering to account for the indentation).

10850 \cs_new_protected:Npn __iow_wrap_next_line:w #1#2 \s__iow_stop
10851 {
10852 \tl_clear:N \l__iow_line_tl
10853 \token_if_eq_meaning:NNTF #1 __iow_wrap_end_chunk:w
10854 {
10855 \tl_clear:N \l__iow_line_part_tl
10856 \bool_set_true:N \l__iow_line_break_bool
10857 __iow_wrap_next:nw { \l__iow_line_target_int }
10858 }
10859 {
10860 __iow_wrap_line:nw
10861 { \l__iow_indent_tl }

663

10862 \l__iow_line_target_int - \l__iow_indent_int ;
10863 #1 #2 \s__iow_stop
10864 }
10865 }

(End of definition for __iow_wrap_next_line:w.)

__iow_wrap_allow_break:n This is called after a chunk has been wrapped. The \l__iow_line_part_tl typically
ends with a space (except at the beginning of a line?), which we remove since the allow_-
break marker should not insert a space. Then move on with the next chunk, making
sure to adjust the target number of characters for the line in case we did remove a space.

10866 \cs_new_protected:Npn __iow_wrap_allow_break:n #1
10867 {
10868 __kernel_tl_set:Nx \l__iow_line_tl
10869 { \l__iow_line_tl __iow_wrap_trim:N \l__iow_line_part_tl }
10870 \bool_set_false:N \l__iow_line_break_bool
10871 \tl_if_empty:NTF \l__iow_line_part_tl
10872 { __iow_wrap_chunk:nw {#1} }
10873 { \exp_args:Nf __iow_wrap_chunk:nw { \int_eval:n { #1 + 1 } } }
10874 }

(End of definition for __iow_wrap_allow_break:n.)

__iow_wrap_indent:n
__iow_wrap_unindent:n

These functions are called after a chunk has been wrapped, when encountering
indent/unindent markers. Add the line part (last line part of the previous chunk)
to the line so far and reset a boolean denoting the presence of a line-break. Most impor-
tantly, add or remove one indent from the current indent (both the integer and the token
list). Finally, continue wrapping.

10875 \cs_new_protected:Npn __iow_wrap_indent:n #1
10876 {
10877 \tl_put_right:Ne \l__iow_line_tl { \l__iow_line_part_tl }
10878 \bool_set_false:N \l__iow_line_break_bool
10879 \int_add:Nn \l__iow_indent_int { \l__iow_one_indent_int }
10880 \tl_put_right:No \l__iow_indent_tl { \l__iow_one_indent_tl }
10881 __iow_wrap_chunk:nw {#1}
10882 }
10883 \cs_new_protected:Npn __iow_wrap_unindent:n #1
10884 {
10885 \tl_put_right:Ne \l__iow_line_tl { \l__iow_line_part_tl }
10886 \bool_set_false:N \l__iow_line_break_bool
10887 \int_sub:Nn \l__iow_indent_int { \l__iow_one_indent_int }
10888 __kernel_tl_set:Nx \l__iow_indent_tl
10889 { \exp_after:wN __iow_unindent:w \l__iow_indent_tl }
10890 __iow_wrap_chunk:nw {#1}
10891 }

(End of definition for __iow_wrap_indent:n and __iow_wrap_unindent:n.)

__iow_wrap_newline:n
__iow_wrap_end:n

These functions are called after a chunk has been line-wrapped, when encountering a
newline/end marker. Unless we just took a line-break, store the line part and the line
so far into the whole \l__iow_wrap_tl, trimming a trailing space. In the newline case
look for a new line (of length \l__iow_line_target_int) in a new chunk.

10892 \cs_new_protected:Npn __iow_wrap_newline:n #1
10893 {

664

10894 \bool_if:NF \l__iow_line_break_bool
10895 { __iow_wrap_store_do:n { __iow_wrap_trim:N } }
10896 \bool_set_false:N \l__iow_line_break_bool
10897 __iow_wrap_chunk:nw { \l__iow_line_target_int }
10898 }
10899 \cs_new_protected:Npn __iow_wrap_end:n #1
10900 {
10901 \bool_if:NF \l__iow_line_break_bool
10902 { __iow_wrap_store_do:n { __iow_wrap_trim:N } }
10903 \bool_set_false:N \l__iow_line_break_bool
10904 }

(End of definition for __iow_wrap_newline:n and __iow_wrap_end:n.)

__iow_wrap_store_do:n First add the last line part to the line, then append it to \l__iow_wrap_tl with the
appropriate new line (with “run-on” text), possibly with its last space removed (#1 is
empty or __iow_wrap_trim:N).

10905 \cs_new_protected:Npn __iow_wrap_store_do:n #1
10906 {
10907 __kernel_tl_set:Nx \l__iow_line_tl
10908 { \l__iow_line_tl \l__iow_line_part_tl }
10909 __kernel_tl_set:Nx \l__iow_wrap_tl
10910 {
10911 \l__iow_wrap_tl
10912 \l__iow_newline_tl
10913 #1 \l__iow_line_tl
10914 }
10915 \tl_clear:N \l__iow_line_tl
10916 }

(End of definition for __iow_wrap_store_do:n.)

__iow_wrap_trim:N
__iow_wrap_trim:w

__iow_wrap_trim_aux:w

Remove one trailing “other” space from the argument if present.
10917 \cs_set_protected:Npn __iow_tmp:w #1
10918 {
10919 \cs_new:Npn __iow_wrap_trim:N ##1
10920 { \exp_after:wN __iow_wrap_trim:w ##1 \s__iow_mark #1 \s__iow_mark \s__iow_stop }
10921 \cs_new:Npn __iow_wrap_trim:w ##1 #1 \s__iow_mark
10922 { __iow_wrap_trim_aux:w ##1 \s__iow_mark }
10923 \cs_new:Npn __iow_wrap_trim_aux:w ##1 \s__iow_mark ##2 \s__iow_stop {##1}
10924 }
10925 \exp_args:NV __iow_tmp:w \c_catcode_other_space_tl

(End of definition for __iow_wrap_trim:N , __iow_wrap_trim:w , and __iow_wrap_trim_aux:w.)

10926 ⟨@@=file⟩

50.4 File operations
\l__file_internal_tl Used as a short-term scratch variable.

10927 \tl_new:N \l__file_internal_tl

(End of definition for \l__file_internal_tl.)

665

\g_file_curr_dir_str
\g_file_curr_ext_str
\g_file_curr_name_str

The name of the current file should be available at all times: the name itself is set
dynamically.

10928 \str_new:N \g_file_curr_dir_str
10929 \str_new:N \g_file_curr_ext_str
10930 \str_new:N \g_file_curr_name_str

(End of definition for \g_file_curr_dir_str , \g_file_curr_ext_str , and \g_file_curr_name_str.
These variables are documented on page 102.)

\g__file_stack_seq The input list of files is stored as a sequence stack. In package mode we can recover the
information from the details held by LATEX 2ε (we must be in the preamble and loaded
using \usepackage or \RequirePackage). As LATEX 2ε doesn’t store directory and name
separately, we stick to the same convention here. In pre-loading, \@currnamestack is
empty so is skipped.

10931 \seq_new:N \g__file_stack_seq
10932 \group_begin:
10933 \cs_set_protected:Npn __file_tmp:w #1#2#3
10934 {
10935 \tl_if_blank:nTF {#1}
10936 {
10937 \cs_set:Npn __file_tmp:w ##1 " ##2 " ##3 \s__file_stop
10938 { { } {##2} { } }
10939 \seq_gput_right:Ne \g__file_stack_seq
10940 {
10941 \exp_after:wN __file_tmp:w \tex_jobname:D
10942 " \tex_jobname:D " \s__file_stop
10943 }
10944 }
10945 {
10946 \seq_gput_right:Nn \g__file_stack_seq { { } {#1} {#2} }
10947 __file_tmp:w
10948 }
10949 }
10950 \cs_if_exist:NT \@currnamestack
10951 {
10952 \tl_if_empty:NF \@currnamestack
10953 { \exp_after:wN __file_tmp:w \@currnamestack }
10954 }
10955 \group_end:

(End of definition for \g__file_stack_seq.)

\g__file_record_seq The total list of files used is recorded separately from the current file stack, as nothing is
ever popped from this list. The current file name should be included in the file list! We
will eventually copy the contents of \@filelist.

10956 \seq_new:N \g__file_record_seq

(End of definition for \g__file_record_seq.)

\l__file_base_name_tl
\l__file_full_name_tl

For storing the basename and full path whilst passing data internally.
10957 \tl_new:N \l__file_base_name_tl
10958 \tl_new:N \l__file_full_name_tl

(End of definition for \l__file_base_name_tl and \l__file_full_name_tl.)

666

\l__file_dir_str
\l__file_ext_str
\l__file_name_str

Used in parsing a path into parts: in contrast to the above, these are never used outside
of the current module.

10959 \str_new:N \l__file_dir_str
10960 \str_new:N \l__file_ext_str
10961 \str_new:N \l__file_name_str

(End of definition for \l__file_dir_str , \l__file_ext_str , and \l__file_name_str.)

\l_file_search_path_seq The current search path.
10962 \seq_new:N \l_file_search_path_seq

(End of definition for \l_file_search_path_seq. This variable is documented on page 103.)

\l__file_tmp_seq Scratch space for comma list conversion.
10963 \seq_new:N \l__file_tmp_seq

(End of definition for \l__file_tmp_seq.)

50.4.1 Internal auxiliaries
\s__file_stop Internal scan marks.

10964 \scan_new:N \s__file_stop

(End of definition for \s__file_stop.)

\q__file_nil Internal quarks.
10965 \quark_new:N \q__file_nil

(End of definition for \q__file_nil.)

__file_quark_if_nil_p:n
__file_quark_if_nil:nTF

Branching quark conditional.
10966 __kernel_quark_new_conditional:Nn __file_quark_if_nil:n { TF }

(End of definition for __file_quark_if_nil:nTF.)

\q__file_recursion_tail
\q__file_recursion_stop

Internal recursion quarks.
10967 \quark_new:N \q__file_recursion_tail
10968 \quark_new:N \q__file_recursion_stop

(End of definition for \q__file_recursion_tail and \q__file_recursion_stop.)

__file_if_recursion_tail_break:NN
__file_if_recursion_tail_stop_do:Nn

Functions to query recursion quarks.
10969 __kernel_quark_new_test:N __file_if_recursion_tail_stop:N
10970 __kernel_quark_new_test:N __file_if_recursion_tail_stop_do:nn

(End of definition for __file_if_recursion_tail_break:NN and __file_if_recursion_tail_stop_-
do:Nn.)

667

__kernel_file_name_sanitize:n
__file_name_expand:n
__file_name_expand_cleanup:Nw
__file_name_expand_cleanup:w

__file_name_expand_end:
__file_name_expand_error:Nw

__file_name_expand_error_aux:Nw
__file_name_strip_quotes:n

__file_name_strip_quotes:nnnw
__file_name_strip_quotes:nnn

__file_name_trim_spaces:n
__file_name_trim_spaces:nw

__file_name_trim_spaces_aux:n
__file_name_trim_spaces_aux:w

Expanding the file name uses a \csname-based approach, and relies on active characters
(for example from UTF-8 characters) being properly set up to expand to a expansion-
safe version using \ifcsname. This is less conservative than the token-by-token approach
used before, but it is much faster.

10971 \cs_new:Npn __kernel_file_name_sanitize:n #1
10972 {
10973 \exp_args:Ne __file_name_trim_spaces:n
10974 {
10975 \exp_args:Ne __file_name_strip_quotes:n
10976 { __file_name_expand:n {#1} }
10977 }
10978 }

We’ll use \cs:w to start expanding the file name, and to avoid creating csnames
equal to \relax with “common” names, there’s a prefix __file_name= to the csname.
There’s also a guard token at the end so we can check if there was an error during the
process and (try to) clean up gracefully.

10979 \cs_new:Npn __file_name_expand:n #1
10980 {
10981 \exp_after:wN __file_name_expand_cleanup:Nw
10982 \cs:w __file_name = #1 \cs_end:
10983 __file_name_expand_end:
10984 }

With the csname built, we grab it, and grab the remaining tokens delimited by __file_-
name_expand_end:. If there are any remaining tokens, something bad happened, so
we’ll call the error procedure __file_name_expand_error:Nw. If everything went ac-
cording to plan, then use \token_to_str:N on the csname built, and call __file_-
name_expand_cleanup:w to remove the prefix we added a while back. __file_name_-
expand_cleanup:w takes a leading argument so we don’t have to bother about the value
of \tex_escapechar:D.

10985 \cs_new:Npn __file_name_expand_cleanup:Nw #1 #2 __file_name_expand_end:
10986 {
10987 \tl_if_empty:nF {#2}
10988 { __file_name_expand_error:Nw #2 __file_name_expand_end: }
10989 \exp_after:wN __file_name_expand_cleanup:w \token_to_str:N #1
10990 }
10991 \exp_last_unbraced:NNNNo
10992 \cs_new:Npn __file_name_expand_cleanup:w #1 \tl_to_str:n { __file_name = } { }

In non-error cases __file_name_expand_end: should not expand. It will only do so
in case there is a \csname too much in the file name, so it will throw an error (while
expanding), then insert the missing \cs_end: and yet another __file_name_expand_-
end: that will be used as a delimiter by __file_name_expand_cleanup:Nw (or that will
expand again if yet another \endcsname is missing).

10993 \cs_new:Npn __file_name_expand_end:
10994 {
10995 \msg_expandable_error:nn
10996 { kernel } { filename-missing-endcsname }
10997 \cs_end: __file_name_expand_end:
10998 }

668

Now to the error case. __file_name_expand_error:Nw adds an extra \cs_end: so
that in case there was an extra \csname in the file name, then __file_name_expand_-
error_aux:Nw throws the error.

10999 \cs_new:Npn __file_name_expand_error:Nw #1 #2 __file_name_expand_end:
11000 { __file_name_expand_error_aux:Nw #1 #2 \cs_end: __file_name_expand_end: }
11001 \cs_new:Npn __file_name_expand_error_aux:Nw #1 #2 \cs_end: #3
11002 __file_name_expand_end:
11003 {
11004 \msg_expandable_error:nnff
11005 { kernel } { filename-chars-lost }
11006 { \token_to_str:N #1 } { \exp_stop_f: #2 }
11007 }

Quoting file name uses basically the same approach as for luaquotejobname: count the
" tokens and remove them.

11008 \cs_new:Npn __file_name_strip_quotes:n #1
11009 {
11010 __file_name_strip_quotes:nw { 0 }
11011 #1 " \q__file_recursion_tail " \q__file_recursion_stop {#1}
11012 }
11013 \cs_new:Npn __file_name_strip_quotes:nw #1#2 "
11014 {
11015 \if_meaning:w \q__file_recursion_tail #2
11016 __file_name_strip_quotes_end:wnwn
11017 \fi:
11018 #2
11019 __file_name_strip_quotes:nw { #1 + 1 }
11020 }
11021 \cs_new:Npn __file_name_strip_quotes_end:wnwn \fi: #1
11022 __file_name_strip_quotes:nw #2 \q__file_recursion_stop #3
11023 {
11024 \fi:
11025 \int_if_odd:nT {#2}
11026 {
11027 \msg_expandable_error:nnn
11028 { kernel } { unbalanced-quote-in-filename } {#3}
11029 }
11030 }

Spaces need to be trimmed from the start of the name and from the end of any extension.
However, the name we are passed might not have an extension: that means we have to
look for one. If there is no extension, we still use the standard trimming function but
deliberately prevent any spaces being removed at the end.

11031 \cs_new:Npn __file_name_trim_spaces:n #1
11032 { __file_name_trim_spaces:nw {#1} #1 . \q__file_nil . \s__file_stop }
11033 \cs_new:Npn __file_name_trim_spaces:nw #1#2 . #3 . #4 \s__file_stop
11034 {
11035 __file_quark_if_nil:nTF {#3}
11036 {
11037 \tl_trim_spaces_apply:nN { #1 \s__file_stop }
11038 __file_name_trim_spaces_aux:n
11039 }
11040 { \tl_trim_spaces:n {#1} }
11041 }

669

11042 \cs_new:Npn __file_name_trim_spaces_aux:n #1
11043 { __file_name_trim_spaces_aux:w #1 }
11044 \cs_new:Npn __file_name_trim_spaces_aux:w #1 \s__file_stop {#1}

(End of definition for __kernel_file_name_sanitize:n and others.)

__kernel_file_name_quote:n
__file_name_quote:nw 11045 \cs_new:Npn __kernel_file_name_quote:n #1

11046 { __file_name_quote:nw {#1} #1 ~ \q__file_nil \s__file_stop }
11047 \cs_new:Npn __file_name_quote:nw #1 #2 ~ #3 \s__file_stop
11048 {
11049 __file_quark_if_nil:nTF {#3}
11050 { #1 }
11051 { "#1" }
11052 }

(End of definition for __kernel_file_name_quote:n and __file_name_quote:nw.)

\c__file_marker_tl The same idea as the marker for rescanning token lists: this pair of tokens cannot appear
in a file that is being input.

11053 \tl_const:Ne \c__file_marker_tl { : \token_to_str:N : }

(End of definition for \c__file_marker_tl.)

\file_get:nnNTF
\file_get:VnNTF
\file_get:nnN

__file_get_aux:nnN
__file_get_do:Nw

The approach here is similar to that for \tl_set_rescan:Nnn. The file contents are
grabbed as an argument delimited by \c__file_marker_tl. A few subtleties: braces in
\if_false: . . . \fi: to deal with possible alignment tabs, \tracingnesting to avoid
a warning about a group being closed inside the \scantokens, and \prg_return_true:
is placed after the end-of-file marker.

11054 \cs_new_protected:Npn \file_get:nnN #1#2#3
11055 {
11056 \file_get:nnNF {#1} {#2} #3
11057 { \tl_set:Nn #3 { \q_no_value } }
11058 }
11059 \cs_generate_variant:Nn \file_get:nnN { V }
11060 \prg_new_protected_conditional:Npnn \file_get:nnN #1#2#3 { T , F , TF }
11061 {
11062 \file_get_full_name:nNTF {#1} \l__file_full_name_tl
11063 {
11064 \exp_args:NV __file_get_aux:nnN
11065 \l__file_full_name_tl
11066 {#2} #3
11067 \prg_return_true:
11068 }
11069 { \prg_return_false: }
11070 }
11071 \prg_generate_conditional_variant:Nnn \file_get:nnN { V } { T , F , TF }
11072 \cs_new_protected:Npe __file_get_aux:nnN #1#2#3
11073 {
11074 \exp_not:N \if_false: { \exp_not:N \fi:
11075 \group_begin:
11076 \int_set_eq:NN \tex_tracingnesting:D \c_zero_int
11077 \exp_not:N \exp_args:No \tex_everyeof:D
11078 { \exp_not:N \c__file_marker_tl }

670

11079 #2 \scan_stop:
11080 \exp_not:N \exp_after:wN \exp_not:N __file_get_do:Nw
11081 \exp_not:N \exp_after:wN #3
11082 \exp_not:N \exp_after:wN \exp_not:N \prg_do_nothing:
11083 \exp_not:N \tex_input:D
11084 \sys_if_engine_luatex:TF
11085 { {#1} }
11086 { \exp_not:N __kernel_file_name_quote:n {#1} \scan_stop: }
11087 \exp_not:N \if_false: } \exp_not:N \fi:
11088 }
11089 \exp_args:Nno \use:nn
11090 { \cs_new_protected:Npn __file_get_do:Nw #1#2 }
11091 { \c__file_marker_tl }
11092 {
11093 \group_end:
11094 \tl_set:No #1 {#2}
11095 }

(End of definition for \file_get:nnNTF and others. These functions are documented on page 106.)

__file_size:n A copy of the primitive where it’s available.
11096 \cs_new_eq:NN __file_size:n \tex_filesize:D

(End of definition for __file_size:n.)

\file_full_name:n
__file_full_name:n

__file_full_name_aux:n
__file_full_name_auxi:nn
__file_full_name_auxii:nn
__file_full_name_aux:Nnn
__file_full_name_slash:n
__file_full_name_slash:w
__file_full_name_aux:nN
__file_full_name_aux:nnN

__file_name_cleanup:w
__file_name_end:

__file_name_ext_check:nn
__file_name_ext_check:nnw

__file_name_ext_check:nnnw
__file_name_ext_check:nnn

__file_name_ext_check:nnnn

File searching can be carried out if the \pdffilesize primitive or an equivalent is avail-
able. That of course means we need to arrange for everything else to here to be done by
expansion too. We start off by sanitizing the name and quoting if required: we may need
to remove those quotes, so the raw name is passed too.

11097 \cs_new:Npn \file_full_name:n #1
11098 {
11099 \exp_args:Ne __file_full_name:n
11100 { __kernel_file_name_sanitize:n {#1} }
11101 }
11102 \cs_generate_variant:Nn \file_full_name:n { V }

First, we check of the file is just here: no mapping so we do not need the break part of the
broader auxiliary. We are using the fact that the primitive here returns nothing if the file
is entirely absent. To avoid unnecessary filesystem lookups, the result of \pdffilesize
is kept available as an argument. For package mode, \input@path is a token list not a
sequence.

11103 \cs_new:Npn __file_full_name:n #1
11104 {
11105 \tl_if_blank:nF {#1}
11106 { \exp_args:Nne __file_full_name_auxii:nn {#1} { __file_full_name_aux:n {#1} } }
11107 }

To avoid repeated reading of files we need to cache the loading: this is important as the
code here is used by all file checks. The same marker is used in the LATEX 2ε kernel,
meaning that we get a double-saving with for example \IfFileExists. As this is all
about performance, we use the low-level approach for the conditionals. For a file already
seen, the size is reported as −1 so it’s distinct from any non-cached ones.

11108 \cs_new:Npn __file_full_name_aux:n #1
11109 {

671

11110 \if_cs_exist:w __file_seen_ \tl_to_str:n {#1} : \cs_end:
11111 -1
11112 \else:
11113 \exp_args:Ne __file_full_name_auxi:nn { __file_size:n {#1} } {#1}
11114 \fi:
11115 }

We will need the size of files later, and we have to avoid the \scan_stop: causing issues
if we are raising the flag. Thus there is a slightly odd gobble here.

11116 \cs_new:Npn __file_full_name_auxi:nn #1#2
11117 {
11118 \if:w \scan_stop: #1 \scan_stop:
11119 \else:
11120 \exp_after:wN \use_none:n
11121 \cs:w __file_seen_ \tl_to_str:n {#2} : \cs_end:
11122 #1
11123 \fi:
11124 }
11125 \cs_new:Npn __file_full_name_auxii:nn #1 #2
11126 {
11127 \tl_if_blank:nTF {#2}
11128 {
11129 \seq_map_tokens:Nn \l_file_search_path_seq
11130 { __file_full_name_aux:Nnn \seq_map_break:n {#1} }
11131 \cs_if_exist:NT \input@path
11132 {
11133 \tl_map_tokens:Nn \input@path
11134 { __file_full_name_aux:Nnn \tl_map_break:n {#1} }
11135 }
11136 __file_name_end:
11137 }
11138 { __file_ext_check:nn {#1} {#2} }
11139 }

Two pars to the auxiliary here so we can avoid doing quoting twice in the event we find
the right file.

11140 \cs_new:Npn __file_full_name_aux:Nnn #1#2#3
11141 {
11142 \exp_args:Ne __file_full_name_aux:nN
11143 { __file_full_name_slash:n {#3} #2 }
11144 #1
11145 }
11146 \cs_new:Npn __file_full_name_slash:n #1
11147 {
11148 __file_full_name_slash:nw {#1} #1 \q_nil / \q_nil / \q_nil \q_stop
11149 }
11150 \cs_new:Npn __file_full_name_slash:nw #1#2 / \q_nil / #3 \q_stop
11151 {
11152 \quark_if_nil:nTF {#3}
11153 { #1 / }
11154 { #2 / }
11155 }
11156 \cs_new:Npn __file_full_name_aux:nN #1
11157 { \exp_args:Nne __file_full_name_aux:nnN {#1} { __file_full_name_aux:n {#1} } }
11158 \cs_new:Npn __file_full_name_aux:nnN #1 #2 #3

672

11159 {
11160 \tl_if_blank:nF {#2}
11161 {
11162 #3
11163 {
11164 __file_ext_check:nn {#1} {#2}
11165 __file_name_cleanup:w
11166 }
11167 }
11168 }
11169 \cs_new:Npn __file_name_cleanup:w #1 __file_name_end: { }
11170 \cs_new:Npn __file_name_end: { }

As TEX automatically adds .tex if there is no extension, there is a little clean up to do
here. First, make sure we are not in the directory part, saving that. Then check for an
extension.

11171 \cs_new:Npn __file_ext_check:nn #1 #2
11172 { __file_ext_check:nnw {#2} { / } #1 / \q__file_nil / \s__file_stop }
11173 \cs_new:Npn __file_ext_check:nnw #1 #2 #3 / #4 / #5 \s__file_stop
11174 {
11175 __file_quark_if_nil:nTF {#4}
11176 {
11177 \exp_args:No __file_ext_check:nnnw
11178 { \use_none:n #2 } {#1} {#3} #3 . \q__file_nil . \s__file_stop
11179 }
11180 { __file_ext_check:nnw {#1} { #2 #3 / } #4 / #5 \s__file_stop }
11181 }
11182 \cs_new:Npe __file_ext_check:nnnw #1#2#3#4 . #5 . #6 \s__file_stop
11183 {
11184 \exp_not:N __file_quark_if_nil:nTF {#5}
11185 {
11186 \exp_not:N __file_ext_check:nnn
11187 { #1 #3 \tl_to_str:n { .tex } } { #1 #3 } {#2}
11188 }
11189 { #1 #3 }
11190 }
11191 \cs_new:Npn __file_ext_check:nnn #1
11192 { \exp_args:Nne __file_ext_check:nnnn {#1} { __file_full_name_aux:n {#1} } }
11193 \cs_new:Npn __file_ext_check:nnnn #1#2#3#4
11194 {
11195 \tl_if_blank:nTF {#2}
11196 {#3}
11197 {
11198 \bool_lazy_or:nnTF
11199 { \int_compare_p:nNn {#4} = {#2} }
11200 { \int_compare_p:nNn {#2} = { -1 } }
11201 {#1}
11202 {#3}
11203 }
11204 }

(End of definition for \file_full_name:n and others. This function is documented on page 105.)

\file_get_full_name:nN
\file_get_full_name:VN

\file_get_full_name:nNTF
\file_get_full_name:VNTF

__file_get_full_name_search:nN

These functions pre-date using \tex_filesize:D for file searching, so are get functions
with protection. To avoid having different search set ups, they are simply wrappers

673

around the code above.
11205 \cs_new_protected:Npn \file_get_full_name:nN #1#2
11206 {
11207 \file_get_full_name:nNF {#1} #2
11208 { \tl_set:Nn #2 { \q_no_value } }
11209 }
11210 \cs_generate_variant:Nn \file_get_full_name:nN { V }
11211 \prg_new_protected_conditional:Npnn \file_get_full_name:nN #1#2 { T , F , TF }
11212 {
11213 __kernel_tl_set:Nx #2
11214 { \file_full_name:n {#1} }
11215 \tl_if_empty:NTF #2
11216 { \prg_return_false: }
11217 { \prg_return_true: }
11218 }
11219 \prg_generate_conditional_variant:Nnn \file_get_full_name:nN
11220 { V } { T , F , TF }

(End of definition for \file_get_full_name:nN , \file_get_full_name:nNTF , and __file_get_full_-
name_search:nN. These functions are documented on page 105.)

\g__file_internal_ior A reserved stream to test for opening a shell.
11221 \ior_new:N \g__file_internal_ior

(End of definition for \g__file_internal_ior.)

\file_mdfive_hash:n
\file_mdfive_hash:V

\file_size:n
\file_size:V

\file_timestamp:n
\file_timestamp:V

__file_details:nn
__file_details_aux:nn
__file_mdfive_hash:n

Getting file details by expansion is relatively easy if a bit repetitive. As the MD5 function
has a slightly different syntax from the other commands, there is a little cleaning up to
do.

11222 \cs_new:Npn \file_size:n #1
11223 { __file_details:nn {#1} { size } }
11224 \cs_generate_variant:Nn \file_size:n { V }
11225 \cs_new:Npn \file_timestamp:n #1
11226 { __file_details:nn {#1} { moddate } }
11227 \cs_generate_variant:Nn \file_timestamp:n { V }
11228 \cs_new:Npn __file_details:nn #1#2
11229 {
11230 \exp_args:Ne __file_details_aux:nn
11231 { \file_full_name:n {#1} } {#2}
11232 }
11233 \cs_new:Npn __file_details_aux:nn #1#2
11234 {
11235 \tl_if_blank:nF {#1}
11236 { \use:c { tex_file #2 :D } {#1} }
11237 }
11238 \cs_new:Npn \file_mdfive_hash:n #1
11239 { \exp_args:Ne __file_mdfive_hash:n { \file_full_name:n {#1} } }
11240 \cs_generate_variant:Nn \file_mdfive_hash:n { V }
11241 \cs_new:Npn __file_mdfive_hash:n #1
11242 { \tex_mdfivesum:D file {#1} }

(End of definition for \file_mdfive_hash:n and others. These functions are documented on page 104.)

674

\file_hex_dump:nnn
\file_hex_dump:Vnn

__file_hex_dump_auxi:nnn
__file_hex_dump_auxii:nnnn
__file_hex_dump_auxiii:nnnn
__file_hex_dump_auxiiv:nnn

\file_hex_dump:n
\file_hex_dump:V

__file_hex_dump:n

These are separate as they need multiple arguments or the file size. For LuaTEX, the
emulation does not need the file size so we save a little on expansion.

11243 \cs_new:Npn \file_hex_dump:nnn #1#2#3
11244 {
11245 \exp_args:Neee __file_hex_dump_auxi:nnn
11246 { \file_full_name:n {#1} }
11247 { \int_eval:n {#2} }
11248 { \int_eval:n {#3} }
11249 }
11250 \cs_generate_variant:Nn \file_hex_dump:nnn { V }
11251 \cs_new:Npn __file_hex_dump_auxi:nnn #1#2#3
11252 {
11253 \bool_lazy_any:nF
11254 {
11255 { \tl_if_blank_p:n {#1} }
11256 { \int_compare_p:nNn {#2} = 0 }
11257 { \int_compare_p:nNn {#3} = 0 }
11258 }
11259 {
11260 \exp_args:Ne __file_hex_dump_auxii:nnnn
11261 { __file_details_aux:nn {#1} { size } }
11262 {#1} {#2} {#3}
11263 }
11264 }
11265 \cs_new:Npn __file_hex_dump_auxii:nnnn #1#2#3#4
11266 {
11267 \int_compare:nNnTF {#3} > 0
11268 { __file_hex_dump_auxiii:nnnn {#3} }
11269 {
11270 \exp_args:Ne __file_hex_dump_auxiii:nnnn
11271 { \int_eval:n { #1 + #3 } }
11272 }
11273 {#1} {#2} {#4}
11274 }
11275 \cs_new:Npn __file_hex_dump_auxiii:nnnn #1#2#3#4
11276 {
11277 \int_compare:nNnTF {#4} > 0
11278 { __file_hex_dump_auxiv:nnn {#4} }
11279 {
11280 \exp_args:Ne __file_hex_dump_auxiv:nnn
11281 { \int_eval:n { #2 + #4 } }
11282 }
11283 {#1} {#3}
11284 }
11285 \cs_new:Npn __file_hex_dump_auxiv:nnn #1#2#3
11286 {
11287 \tex_filedump:D
11288 offset ~ \int_eval:n { #2 - 1 } ~
11289 length ~ \int_eval:n { #1 - #2 + 1 }
11290 {#3}
11291 }
11292 \cs_new:Npn \file_hex_dump:n #1
11293 { \exp_args:Ne __file_hex_dump:n { \file_full_name:n {#1} } }
11294 \cs_generate_variant:Nn \file_hex_dump:n { V }

675

11295 \sys_if_engine_luatex:TF
11296 {
11297 \cs_new:Npn __file_hex_dump:n #1
11298 {
11299 \tl_if_blank:nF {#1}
11300 { \tex_filedump:D whole {#1} {#1} }
11301 }
11302 }
11303 {
11304 \cs_new:Npn __file_hex_dump:n #1
11305 {
11306 \tl_if_blank:nF {#1}
11307 { \tex_filedump:D length \tex_filesize:D {#1} {#1} }
11308 }
11309 }

(End of definition for \file_hex_dump:nnn and others. These functions are documented on page 103.)

\file_get_hex_dump:nN
\file_get_hex_dump:VN

\file_get_hex_dump:nNTF
\file_get_hex_dump:VNTF

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:VN

\file_get_mdfive_hash:nNTF
\file_get_mdfive_hash:VNTF

\file_get_size:nN
\file_get_size:VN

\file_get_size:nNTF
\file_get_size:VNTF

\file_get_timestamp:nN
\file_get_timestamp:VN

\file_get_timestamp:nNTF
\file_get_timestamp:VNTF
__file_get_details:nnN

Non-expandable wrappers around the above in the case where appropriate primitive
support exists.

11310 \cs_new_protected:Npn \file_get_hex_dump:nN #1#2
11311 { \file_get_hex_dump:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } }
11312 \cs_generate_variant:Nn \file_get_hex_dump:nN { V }
11313 \cs_new_protected:Npn \file_get_mdfive_hash:nN #1#2
11314 { \file_get_mdfive_hash:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } }
11315 \cs_generate_variant:Nn \file_get_mdfive_hash:nN { V }
11316 \cs_new_protected:Npn \file_get_size:nN #1#2
11317 { \file_get_size:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } }
11318 \cs_generate_variant:Nn \file_get_size:nN { V }
11319 \cs_new_protected:Npn \file_get_timestamp:nN #1#2
11320 { \file_get_timestamp:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } }
11321 \cs_generate_variant:Nn \file_get_timestamp:nN { V }
11322 \prg_new_protected_conditional:Npnn \file_get_hex_dump:nN #1#2 { T , F , TF }
11323 { __file_get_details:nnN {#1} { hex_dump } #2 }
11324 \prg_generate_conditional_variant:Nnn \file_get_hex_dump:nN
11325 { V } { T , F , TF }
11326 \prg_new_protected_conditional:Npnn \file_get_mdfive_hash:nN #1#2 { T , F , TF }
11327 { __file_get_details:nnN {#1} { mdfive_hash } #2 }
11328 \prg_generate_conditional_variant:Nnn \file_get_mdfive_hash:nN
11329 { V } { T , F , TF }
11330 \prg_new_protected_conditional:Npnn \file_get_size:nN #1#2 { T , F , TF }
11331 { __file_get_details:nnN {#1} { size } #2 }
11332 \prg_generate_conditional_variant:Nnn \file_get_size:nN
11333 { V } { T , F , TF }
11334 \prg_new_protected_conditional:Npnn \file_get_timestamp:nN #1#2 { T , F , TF }
11335 { __file_get_details:nnN {#1} { timestamp } #2 }
11336 \prg_generate_conditional_variant:Nnn \file_get_timestamp:nN
11337 { V } { T , F , TF }
11338 \cs_new_protected:Npn __file_get_details:nnN #1#2#3
11339 {
11340 __kernel_tl_set:Nx #3
11341 { \use:c { file_ #2 :n } {#1} }
11342 \tl_if_empty:NTF #3
11343 { \prg_return_false: }

676

11344 { \prg_return_true: }
11345 }

(End of definition for \file_get_hex_dump:nNTF and others. These functions are documented on page
103.)

\file_get_hex_dump:nnnN
\file_get_hex_dump:VnnN

\file_get_hex_dump:nnnNTF
\file_get_hex_dump:VnnNTF

Custom code due to the additional arguments.
11346 \cs_new_protected:Npn \file_get_hex_dump:nnnN #1#2#3#4
11347 {
11348 \file_get_hex_dump:nnnNF {#1} {#2} {#3} #4
11349 { \tl_set:Nn #4 { \q_no_value } }
11350 }
11351 \cs_generate_variant:Nn \file_get_hex_dump:nnnN { V }
11352 \prg_new_protected_conditional:Npnn \file_get_hex_dump:nnnN #1#2#3#4
11353 { T , F , TF }
11354 {
11355 __kernel_tl_set:Nx #4
11356 { \file_hex_dump:nnn {#1} {#2} {#3} }
11357 \tl_if_empty:NTF #4
11358 { \prg_return_false: }
11359 { \prg_return_true: }
11360 }
11361 \prg_generate_conditional_variant:Nnn \file_get_hex_dump:nnnN
11362 { V } { T , F , TF }

(End of definition for \file_get_hex_dump:nnnNTF. This function is documented on page 103.)

__file_str_cmp:nn As we are doing a fixed-length “big” integer comparison, it is easiest to use the low-level
behavior of string comparisons.

11363 \cs_new_eq:NN __file_str_cmp:nn \tex_strcmp:D

(End of definition for __file_str_cmp:nn.)

\file_compare_timestamp_p:nNn
\file_compare_timestamp_p:nNV
\file_compare_timestamp_p:VNn
\file_compare_timestamp_p:VNV

\file_compare_timestamp:nNnTF
\file_compare_timestamp:nNVTF
\file_compare_timestamp:VNnTF
\file_compare_timestamp:VNVTF

__file_compare_timestamp:nnN
__file_timestamp:n

Comparison of file date can be done by using the low-level nature of the string comparison
functions.

11364 \prg_new_conditional:Npnn \file_compare_timestamp:nNn #1#2#3
11365 { p , T , F , TF }
11366 {
11367 \exp_args:Nee __file_compare_timestamp:nnN
11368 { \file_full_name:n {#1} }
11369 { \file_full_name:n {#3} }
11370 #2
11371 }
11372 \prg_generate_conditional_variant:Nnn \file_compare_timestamp:nNn
11373 { nNV , V , VNV } { p , T , F , TF }
11374 \cs_new:Npn __file_compare_timestamp:nnN #1#2#3
11375 {
11376 \tl_if_blank:nTF {#1}
11377 {
11378 \if_charcode:w #3 <
11379 \prg_return_true:
11380 \else:
11381 \prg_return_false:
11382 \fi:
11383 }

677

11384 {
11385 \tl_if_blank:nTF {#2}
11386 {
11387 \if_charcode:w #3 >
11388 \prg_return_true:
11389 \else:
11390 \prg_return_false:
11391 \fi:
11392 }
11393 {
11394 \if_int_compare:w
11395 __file_str_cmp:nn
11396 { __file_timestamp:n {#1} }
11397 { __file_timestamp:n {#2} }
11398 #3 \c_zero_int
11399 \prg_return_true:
11400 \else:
11401 \prg_return_false:
11402 \fi:
11403 }
11404 }
11405 }
11406 \cs_new_eq:NN __file_timestamp:n \tex_filemoddate:D

(End of definition for \file_compare_timestamp:nNnTF , __file_compare_timestamp:nnN , and __-
file_timestamp:n. This function is documented on page 105.)

\file_if_exist_p:n
\file_if_exist_p:V
\file_if_exist:nTF
\file_if_exist:VTF

The test for the existence of a file is a wrapper around the function to add a path to a
file. If the file was found, the path contains something, whereas if the file was not located
then the return value is empty.

11407 \prg_new_conditional:Npnn \file_if_exist:n #1 { p , T , F , TF }
11408 {
11409 \tl_if_blank:eTF { \file_full_name:n {#1} }
11410 { \prg_return_false: }
11411 { \prg_return_true: }
11412 }
11413 \prg_generate_conditional_variant:Nnn \file_if_exist:n { V } { p , T , F , TF }

(End of definition for \file_if_exist:nTF. This function is documented on page 103.)

\file_if_exist_input:n
\file_if_exist_input:V
\file_if_exist_input:nF
\file_if_exist_input:VF

Input of a file with a test for existence. We do not define the T or TF variants because the
most useful place to place the ⟨true code⟩ would be inconsistent with other conditionals.

11414 \cs_new_protected:Npn \file_if_exist_input:n #1
11415 {
11416 \file_get_full_name:nNT {#1} \l__file_full_name_tl
11417 { __file_input:V \l__file_full_name_tl }
11418 }
11419 \cs_generate_variant:Nn \file_if_exist_input:n { V }
11420 \cs_new_protected:Npn \file_if_exist_input:nF #1#2
11421 {
11422 \file_get_full_name:nNTF {#1} \l__file_full_name_tl
11423 { __file_input:V \l__file_full_name_tl }
11424 {#2}
11425 }
11426 \cs_generate_variant:Nn \file_if_exist_input:nF { V }

678

(End of definition for \file_if_exist_input:n and \file_if_exist_input:nF. These functions are
documented on page 106.)

\file_input_stop: A simple rename.
11427 \cs_new_protected:Npn \file_input_stop: { \tex_endinput:D }

(End of definition for \file_input_stop:. This function is documented on page 107.)

__kernel_file_missing:n An error message for a missing file, also used in \ior_open:Nn.
11428 \cs_new_protected:Npn __kernel_file_missing:n #1
11429 {
11430 \msg_error:nne { kernel } { file-not-found }
11431 { __kernel_file_name_sanitize:n {#1} }
11432 }

(End of definition for __kernel_file_missing:n.)

\file_input:n
\file_input:V

__file_input:n
__file_input:V

__file_input_push:n
__kernel_file_input_push:n

__file_input_pop:
__kernel_file_input_pop:

__file_input_pop:nnn

Loading a file is done in a safe way, checking first that the file exists and loading only
if it does. Push the file name on the \g__file_stack_seq, and add it to the file list,
either \g__file_record_seq, or \@filelist in package mode.

11433 \cs_new_protected:Npn \file_input:n #1
11434 {
11435 \file_get_full_name:nNTF {#1} \l__file_full_name_tl
11436 { __file_input:V \l__file_full_name_tl }
11437 { __kernel_file_missing:n {#1} }
11438 }
11439 \cs_generate_variant:Nn \file_input:n { V }
11440 \cs_new_protected:Npe __file_input:n #1
11441 {
11442 \exp_not:N \clist_if_exist:NTF \exp_not:N \@filelist
11443 { \exp_not:N \@addtofilelist {#1} }
11444 { \seq_gput_right:Nn \exp_not:N \g__file_record_seq {#1} }
11445 \exp_not:N __file_input_push:n {#1}
11446 \exp_not:N \tex_input:D
11447 \sys_if_engine_luatex:TF
11448 { {#1} }
11449 { \exp_not:N __kernel_file_name_quote:n {#1} \scan_stop: }
11450 \exp_not:N __file_input_pop:
11451 }
11452 \cs_generate_variant:Nn __file_input:n { V }

Keeping a track of the file data is easy enough: we store the separated parts so we do
not need to parse them twice.

11453 \cs_new_protected:Npn __file_input_push:n #1
11454 {
11455 \seq_gpush:Ne \g__file_stack_seq
11456 {
11457 { \g_file_curr_dir_str }
11458 { \g_file_curr_name_str }
11459 { \g_file_curr_ext_str }
11460 }
11461 \file_parse_full_name:nNNN {#1}
11462 \l__file_dir_str \l__file_name_str \l__file_ext_str
11463 \str_gset_eq:NN \g_file_curr_dir_str \l__file_dir_str
11464 \str_gset_eq:NN \g_file_curr_name_str \l__file_name_str

679

11465 \str_gset_eq:NN \g_file_curr_ext_str \l__file_ext_str
11466 }
11467 \cs_new_eq:NN __kernel_file_input_push:n __file_input_push:n
11468 \cs_new_protected:Npn __file_input_pop:
11469 {
11470 \seq_gpop:NN \g__file_stack_seq \l__file_internal_tl
11471 \exp_after:wN __file_input_pop:nnn \l__file_internal_tl
11472 }
11473 \cs_new_eq:NN __kernel_file_input_pop: __file_input_pop:
11474 \cs_new_protected:Npn __file_input_pop:nnn #1#2#3
11475 {
11476 \str_gset:Nn \g_file_curr_dir_str {#1}
11477 \str_gset:Nn \g_file_curr_name_str {#2}
11478 \str_gset:Nn \g_file_curr_ext_str {#3}
11479 }

(End of definition for \file_input:n and others. This function is documented on page 106.)

\file_input_raw:n
\file_input_raw:V

__file_input_raw:nn

No error checking, no tracking.
11480 \cs_new:Npn \file_input_raw:n #1
11481 { \exp_args:Ne __file_input_raw:nn { \file_full_name:n {#1} } {#1} }
11482 \cs_generate_variant:Nn \file_input_raw:n { V }
11483 \cs_new:Npe __file_input_raw:nn #1#2
11484 {
11485 \exp_not:N \tl_if_blank:nTF {#1}
11486 {
11487 \exp_not:N \exp_args:Nnne \exp_not:N \msg_expandable_error:nnn
11488 { kernel } { file-not-found }
11489 { \exp_not:N __kernel_file_name_sanitize:n {#2} }
11490 }
11491 {
11492 \exp_not:N \tex_input:D
11493 \sys_if_engine_luatex:TF
11494 { {#1} }
11495 { \exp_not:N __kernel_file_name_quote:n {#1} \scan_stop: }
11496 }
11497 }
11498 \exp_args_generate:n { nne }

(End of definition for \file_input_raw:n and __file_input_raw:nn. This function is documented on
page 106.)

\file_parse_full_name:n
\file_parse_full_name:V

\file_parse_full_name_apply:nN
\file_parse_full_name_apply:VN

The main parsing macro \file_parse_full_name_apply:nN passes the file name #1
through __kernel_file_name_sanitize:n so that we have a single normalised way
to treat files internally. \file_parse_full_name:n uses the former, with \prg_do_-
nothing: to leave each part of the name within a pair of braces.

11499 \cs_new:Npn \file_parse_full_name:n #1
11500 {
11501 \file_parse_full_name_apply:nN {#1}
11502 \prg_do_nothing:
11503 }
11504 \cs_generate_variant:Nn \file_parse_full_name:n { V }
11505 \cs_new:Npn \file_parse_full_name_apply:nN #1
11506 {

680

11507 \exp_args:Ne __file_parse_full_name_auxi:nN
11508 { __kernel_file_name_sanitize:n {#1} }
11509 }
11510 \cs_generate_variant:Nn \file_parse_full_name_apply:nN { V }

__file_parse_full_name_auxi:nN
__file_parse_full_name_area:nw

__file_parse_full_name_area:nw splits the file name into chunks separated by /,
until the last one is reached. The last chunk is the file name plus the extension, and
everything before that is the path. When __file_parse_full_name_area:nw is done,
it leaves the path within braces after the scan mark \s__file_stop and proceeds parsing
the actual file name.

11511 \cs_new:Npn __file_parse_full_name_auxi:nN #1
11512 {
11513 __file_parse_full_name_area:nw { } #1
11514 / \s__file_stop
11515 }
11516 \cs_new:Npn __file_parse_full_name_area:nw #1 #2 / #3 \s__file_stop
11517 {
11518 \tl_if_empty:nTF {#3}
11519 { __file_parse_full_name_base:nw { } #2 . \s__file_stop {#1} }
11520 { __file_parse_full_name_area:nw { #1 / #2 } #3 \s__file_stop }
11521 }

__file_parse_full_name_base:nw

__file_parse_full_name_base:nw does roughly the same as above, but it separates
the chunks at each period. However here there’s some extra complications: In case #1
is empty, it is assumed that the extension is actually empty, and the file name is #2.
Besides, an extra . has to be added to #2 because it is later removed in __file_-
parse_full_name_tidy:nnnN. In any case, if there’s an extension, it is returned with a
leading ..

11522 \cs_new:Npn __file_parse_full_name_base:nw #1 #2 . #3 \s__file_stop
11523 {
11524 \tl_if_empty:nTF {#3}
11525 {
11526 \tl_if_empty:nTF {#1}
11527 {
11528 \tl_if_empty:nTF {#2}
11529 { __file_parse_full_name_tidy:nnnN { } { } }
11530 { __file_parse_full_name_tidy:nnnN { .#2 } { } }
11531 }
11532 { __file_parse_full_name_tidy:nnnN {#1} { .#2 } }
11533 }
11534 { __file_parse_full_name_base:nw { #1 . #2 } #3 \s__file_stop }
11535 }

__file_parse_full_name_tidy:nnnN

Now we just need to tidy some bits left loose before. The loop used in the two macros
above start with a leading / and . in the file path an name, so here we need to remove
them, except in the path, if it is a single /, in which case it’s left as is. After all’s done,
pass to #4.

11536 \cs_new:Npn __file_parse_full_name_tidy:nnnN #1 #2 #3 #4
11537 {
11538 \exp_args:Nee #4
11539 {
11540 \str_if_eq:nnF {#3} { / } { \use_none:n }
11541 #3 \prg_do_nothing:

681

11542 }
11543 { \use_none:n #1 \prg_do_nothing: }
11544 {#2}
11545 }

(End of definition for \file_parse_full_name:n and others. These functions are documented on page
106.)

\file_parse_full_name:nNNN
\file_parse_full_name:VNNN 11546 \cs_new_protected:Npn \file_parse_full_name:nNNN #1 #2 #3 #4

11547 {
11548 \file_parse_full_name_apply:nN {#1}
11549 __file_full_name_assign:nnnNNN #2 #3 #4
11550 }
11551 \cs_new_protected:Npn __file_full_name_assign:nnnNNN #1 #2 #3 #4 #5 #6
11552 {
11553 \str_set:Nn #4 {#1}
11554 \str_set:Nn #5 {#2}
11555 \str_set:Nn #6 {#3}
11556 }
11557 \cs_generate_variant:Nn \file_parse_full_name:nNNN { V }

(End of definition for \file_parse_full_name:nNNN. This function is documented on page 105.)

\file_show_list:
\file_log_list:
__file_list:N

__file_list_aux:n

A function to list all files used to the log, without duplicates. In package mode, if
\@filelist is still defined, we need to take this list of file names into account (we
capture it \AtBeginDocument into \g__file_record_seq), turning it to a string (this
does not affect the commas of this comma list).

11558 \cs_new_protected:Npn \file_show_list: { __file_list:N \msg_show:nneeee }
11559 \cs_new_protected:Npn \file_log_list: { __file_list:N \msg_log:nneeee }
11560 \cs_new_protected:Npn __file_list:N #1
11561 {
11562 \seq_clear:N \l__file_tmp_seq
11563 \clist_if_exist:NT \@filelist
11564 {
11565 \exp_args:NNe \seq_set_from_clist:Nn \l__file_tmp_seq
11566 { \tl_to_str:N \@filelist }
11567 }
11568 \seq_concat:NNN \l__file_tmp_seq \l__file_tmp_seq \g__file_record_seq
11569 \seq_remove_duplicates:N \l__file_tmp_seq
11570 #1 { kernel } { file-list }
11571 { \seq_map_function:NN \l__file_tmp_seq __file_list_aux:n }
11572 { } { } { }
11573 }
11574 \cs_new:Npn __file_list_aux:n #1 { \iow_newline: #1 }

(End of definition for \file_show_list: and others. These functions are documented on page 107.)
When used as a package, there is a need to hold onto the standard file list as well as

the new one here. File names recorded in \@filelist must be turned to strings before
being added to \g__file_record_seq.

11575 \cs_if_exist:NT \@filelist
11576 {
11577 \AtBeginDocument
11578 {

682

11579 \exp_args:NNe \seq_set_from_clist:Nn \l__file_tmp_seq
11580 { \tl_to_str:N \@filelist }
11581 \seq_gconcat:NNN
11582 \g__file_record_seq
11583 \g__file_record_seq
11584 \l__file_tmp_seq
11585 }
11586 }

50.5 GetIdInfo
\GetIdInfo

__file_id_info_auxi:w
__file_id_info_auxii:w

__file_id_info_auxiii:w

As documented in expl3.dtx this function extracts file name etc from an svn Id line. This
used to be how we got version number and so on in all modules, so it had to be defined
in l3bootstrap. Now it’s more convenient to define it after we have set up quite a lot of
tools, and l3file seems the least unreasonable place for it.

The idea here is to extract out the information needed from a standard svn Id line,
but to avoid a line that would get changed when the file is checked in. Hence the fact
that none of the lines here include both a dollar sign and the Id keyword!

11587 \cs_new_protected:Npn \GetIdInfo
11588 {
11589 \tl_clear_new:N \ExplFileDescription
11590 \tl_clear_new:N \ExplFileDate
11591 \tl_clear_new:N \ExplFileName
11592 \tl_clear_new:N \ExplFileExtension
11593 \tl_clear_new:N \ExplFileVersion
11594 \group_begin:
11595 \char_set_catcode_space:n { 32 }
11596 \exp_after:wN
11597 \group_end:
11598 __file_id_info_auxi:w
11599 }

A first check for a completely empty svn field. If that is not the case, there is a second
case when a file created using svn cp but has not been checked in. That leaves a special
marker -1 version, which has no further data. Dealing correctly with that is the reason
for the space in the line to use __file_id_info_auxii:w.

11600 \cs_new_protected:Npn __file_id_info_auxi:w $ #1 $ #2
11601 {
11602 \tl_set:Nn \ExplFileDescription {#2}
11603 \str_if_eq:nnTF {#1} { Id }
11604 {
11605 \tl_set:Nn \ExplFileDate { 0000/00/00 }
11606 \tl_set:Nn \ExplFileName { [unknown] }
11607 \tl_set:Nn \ExplFileExtension { [unknown~extension] }
11608 \tl_set:Nn \ExplFileVersion {-1}
11609 }
11610 { __file_id_info_auxii:w #1 ~ \s__file_stop }
11611 }

Here, #1 is Id, #2 is the file name, #3 is the extension, #4 is the version, #5 is the check in
date and #6 is the check in time and user, plus some trailing spaces. If #4 is the marker
-1 value then #5 and #6 are empty.

11612 \cs_new_protected:Npn __file_id_info_auxii:w

683

11613 #1 ~ #2.#3 ~ #4 ~ #5 ~ #6 \s__file_stop
11614 {
11615 \tl_set:Nn \ExplFileName {#2}
11616 \tl_set:Nn \ExplFileExtension {#3}
11617 \tl_set:Nn \ExplFileVersion {#4}
11618 \str_if_eq:nnTF {#4} {-1}
11619 { \tl_set:Nn \ExplFileDate { 0000/00/00 } }
11620 { __file_id_info_auxiii:w #5 - 0 - 0 - \s__file_stop }
11621 }

Convert an svn-style date into a LATEX-style one.
11622 \cs_new_protected:Npn __file_id_info_auxiii:w #1 - #2 - #3 - #4 \s__file_stop
11623 { \tl_set:Nn \ExplFileDate { #1/#2/#3 } }

(End of definition for \GetIdInfo and others. This function is documented on page 11.)

50.6 Checking the version of kernel dependencies
__kernel_dependency_version_check:Nn
__kernel_dependency_version_check:nn
__file_kernel_dependency_compare:nnn
__file_parse_version:w

This function is responsible for checking if dependencies of the LATEX3 kernel match the
version preloaded in the LATEX 2ε kernel. If versions don’t match, the function attempts
to tell why by searching for a possible stray format file.

The function starts by checking that the kernel date is defined, and if not zero is used
to force the error route. The kernel date is then compared with the argument requested
date (usually the packaging date of the dependency). If the kernel date is less than the
required date, it’s an error and the loading should abort.

11624 \cs_new_protected:Npn __kernel_dependency_version_check:Nn #1
11625 { \exp_args:NV __kernel_dependency_version_check:nn #1 }
11626 \cs_new_protected:Npn __kernel_dependency_version_check:nn #1
11627 {
11628 \cs_if_exist:NTF \c__kernel_expl_date_tl
11629 {
11630 \exp_args:NV __file_kernel_dependency_compare:nnn
11631 \c__kernel_expl_date_tl {#1}
11632 }
11633 { __file_kernel_dependency_compare:nnn { 0000-00-00 } {#1} }
11634 }
11635 \cs_new_protected:Npn __file_kernel_dependency_compare:nnn #1 #2 #3
11636 {
11637 \int_compare:nNnT
11638 { __file_parse_version:w #1 \s__file_stop } <
11639 { __file_parse_version:w #2 \s__file_stop }
11640 { __file_mismatched_dependency_error:nn {#2} {#3} }
11641 }
11642 \cs_new:Npn __file_parse_version:w #1 - #2 - #3 \s__file_stop {#1#2#3}

__file_mismatched_dependency_error:nn

If the versions differ, then we try to give the user some guidance. This function starts by
taking the engine name \c_sys_engine_str and replacing tex by latex, then building
a command of the form: kpsewhich –all –engine=⟨engine⟩ ⟨format⟩[-dev].fmt to query
the format files available. A shell is opened and each line is read into a sequence.

11643 \cs_new_protected:Npn __file_mismatched_dependency_error:nn #1 #2
11644 {
11645 \exp_args:NNe \ior_shell_open:Nn \g__file_internal_ior
11646 {

684

11647 kpsewhich ~ --all ~
11648 --engine = \c_sys_engine_exec_str
11649 \c_space_tl \c_sys_engine_format_str
11650 \bool_lazy_and:nnT
11651 { \tl_if_exist_p:N \development@branch@name }
11652 { ! \tl_if_empty_p:N \development@branch@name }
11653 { -dev } .fmt
11654 }
11655 \seq_clear:N \l__file_tmp_seq
11656 \ior_map_inline:Nn \g__file_internal_ior
11657 { \seq_put_right:Nn \l__file_tmp_seq {##1} }
11658 \ior_close:N \g__file_internal_ior
11659 \msg_error:nnnn { kernel } { mismatched-support-file }
11660 {#1} {#2}

And finish by ending the current file.
11661 \tex_endinput:D
11662 }

Now define the actual error message:
11663 \msg_new:nnnn { kernel } { mismatched-support-file }
11664 {
11665 Mismatched~LaTeX~support~files~detected. \\
11666 Loading~’#2’~aborted!

\c__kernel_expl_date_tl may not exist, due to an older format, so only print the dates
when the sentinel token list exists:

11667 \tl_if_exist:NT \c__kernel_expl_date_tl
11668 {
11669 \\ \\
11670 The~L3~programming~layer~in~the~LaTeX~format \\
11671 is~dated~\c__kernel_expl_date_tl,~but~in~your~TeX~
11672 tree~the~files~require \\ at~least~#1.
11673 }
11674 }
11675 {

The sequence containing the format files should have exactly one item: the format file
currently being run. If that’s the case, the cause of the error is not that, so print a generic
help with some possible causes. If more than one format file was found, then print the
list to the user, with appropriate indications of what’s in the system and what’s in the
user tree.

11676 \int_compare:nNnTF { \seq_count:N \l__file_tmp_seq } > 1
11677 {
11678 The~cause~seems~to~be~an~old~format~file~in~the~user~tree. \\
11679 LaTeX~found~these~files:
11680 \seq_map_tokens:Nn \l__file_tmp_seq { \\~-~\use:n } \\
11681 Try~deleting~the~file~in~the~user~tree~then~run~LaTeX~again.
11682 }
11683 {
11684 The~most~likely~causes~are:
11685 \\~-~A~recent~format~generation~failed;
11686 \\~-~A~stray~format~file~in~the~user~tree~which~needs~
11687 to~be~removed~or~rebuilt;
11688 \\~-~You~are~running~a~manually~installed~version~of~#2 \\

685

11689 \ \ \ which~is~incompatible~with~the~version~in~LaTeX. \\
11690 }
11691 \\
11692 LaTeX~will~abort~loading~the~incompatible~support~files~
11693 but~this~may~lead~to \\ later~errors.~Please~ensure~that~
11694 your~LaTeX~format~is~correctly~regenerated.
11695 }

(End of definition for __kernel_dependency_version_check:Nn and others.)

50.7 Messages
11696 \msg_new:nnnn { kernel } { file-not-found }
11697 { File~’#1’~not~found. }
11698 {
11699 The~requested~file~could~not~be~found~in~the~current~directory,~
11700 in~the~TeX~search~path~or~in~the~LaTeX~search~path.
11701 }
11702 \msg_new:nnn { kernel } { file-list }
11703 {
11704 >~File~List~<
11705 #1 \\
11706
11707 }
11708 \msg_new:nnnn { kernel } { filename-chars-lost }
11709 { #1~invalid~in~file~name.~Lost:~#2. }
11710 {
11711 There~was~an~invalid~token~in~the~file~name~that~caused~
11712 the~characters~following~it~to~be~lost.
11713 }
11714 \msg_new:nnnn { kernel } { filename-missing-endcsname }
11715 { Missing~\iow_char:N\\endcsname~inserted~in~filename. }
11716 {
11717 The~file~name~had~more~\iow_char:N\\csname~commands~than~
11718 \iow_char:N\\endcsname~ones.~LaTeX~will~add~the~missing~
11719 \iow_char:N\\endcsname~and~try~to~continue~as~best~as~it~can.
11720 }
11721 \msg_new:nnnn { kernel } { unbalanced-quote-in-filename }
11722 { Unbalanced~quotes~in~file~name~’#1’. }
11723 {
11724 File~names~must~contain~balanced~numbers~of~quotes~(").
11725 }
11726 \msg_new:nnnn { kernel } { iow-indent }
11727 { Only~#1 allows~#2 }
11728 {
11729 The~command~#2 can~only~be~used~in~messages~
11730 which~will~be~wrapped~using~#1.
11731 \tl_if_empty:nF {#3} { ~ It~was~called~with~argument~’#3’. }
11732 }

50.8 Functions delayed from earlier modules
<@@=sys>

686

\c_sys_platform_str Detecting the platform on LuaTEX is easy: for other engines, we use the fact that the
two common cases have special null files. It is possible to probe further (see package
platform), but that requires shell escape and seems unlikely to be useful. This is set up
here as it requires file searching.

11733 \sys_if_engine_luatex:TF
11734 {
11735 \str_const:Ne \c_sys_platform_str
11736 { \tex_directlua:D { tex.print(os.type) } }
11737 }
11738 {
11739 \file_if_exist:nTF { nul: }
11740 {
11741 \file_if_exist:nF { /dev/null }
11742 { \str_const:Nn \c_sys_platform_str { windows } }
11743 }
11744 {
11745 \file_if_exist:nT { /dev/null }
11746 { \str_const:Nn \c_sys_platform_str { unix } }
11747 }
11748 }
11749 \cs_if_exist:NF \c_sys_platform_str
11750 { \str_const:Nn \c_sys_platform_str { unknown } }

(End of definition for \c_sys_platform_str. This variable is documented on page 79.)

\sys_if_platform_unix_p:
\sys_if_platform_unix:TF

\sys_if_platform_windows_p:
\sys_if_platform_windows:TF

We can now set up the tests.
11751 \clist_map_inline:nn { unix , windows }
11752 {
11753 __file_const:nn { sys_if_platform_ #1 }
11754 { \str_if_eq_p:Vn \c_sys_platform_str { #1 } }
11755 }

(End of definition for \sys_if_platform_unix:TF and \sys_if_platform_windows:TF. These functions
are documented on page 79.)

11756 ⟨/package⟩

687

Chapter 51

l3luatex implementation

11757 ⟨∗package⟩

51.1 Breaking out to Lua
11758 ⟨∗tex⟩
11759 ⟨@@=lua⟩

__lua_escape:n
__lua_now:n

__lua_shipout:n

Copies of primitives.
11760 \cs_new_eq:NN __lua_escape:n \tex_luaescapestring:D
11761 \cs_new_eq:NN __lua_now:n \tex_directlua:D
11762 \cs_new_eq:NN __lua_shipout:n \tex_latelua:D

(End of definition for __lua_escape:n , __lua_now:n , and __lua_shipout:n.)
These functions are set up in l3str for bootstrapping: we want to replace them with

a “proper” version at this stage, so clean up.
11763 \cs_undefine:N \lua_escape:e
11764 \cs_undefine:N \lua_now:e

\lua_now:n
\lua_now:e

\lua_shipout_e:n
\lua_shipout:n
\lua_escape:n
\lua_escape:e

Wrappers around the primitives.
11765 \cs_new:Npn \lua_now:e #1 { __lua_now:n {#1} }
11766 \cs_new:Npn \lua_now:n #1 { \lua_now:e { \exp_not:n {#1} } }
11767 \cs_new_protected:Npn \lua_shipout_e:n #1 { __lua_shipout:n {#1} }
11768 \cs_new_protected:Npn \lua_shipout:n #1
11769 { \lua_shipout_e:n { \exp_not:n {#1} } }
11770 \cs_new:Npn \lua_escape:e #1 { __lua_escape:n {#1} }
11771 \cs_new:Npn \lua_escape:n #1 { \lua_escape:e { \exp_not:n {#1} } }

(End of definition for \lua_now:n and others. These functions are documented on page 108.)

\lua_load_module:n Wrapper around require’⟨module⟩’.
11772 \str_new:N \l__lua_err_msg_str
11773 \cs_new_protected:Npn \lua_load_module:n #1
11774 {
11775 \bool_if:nF { __lua_load_module_p:n { #1 } }
11776 {
11777 \msg_error:nnnV
11778 { luatex } { module-not-found } { #1 } \l__lua_err_msg_str
11779 }
11780 }

688

(End of definition for \lua_load_module:n. This function is documented on page 109.)
As with engines other than LuaTEX these have to be macros, we give them the same

status in all cases. When LuaTEX is not in use, simply give an error message/
11781 \sys_if_engine_luatex:F
11782 {
11783 \clist_map_inline:nn
11784 {
11785 \lua_escape:n , \lua_escape:e ,
11786 \lua_now:n , \lua_now:e
11787 }
11788 {
11789 \cs_gset:Npn #1 ##1
11790 {
11791 \msg_expandable_error:nnn
11792 { luatex } { luatex-required } { #1 }
11793 }
11794 }
11795 \clist_map_inline:nn
11796 { \lua_shipout_e:n , \lua_shipout:n, \lua_load_module:n }
11797 {
11798 \cs_gset_protected:Npn #1 ##1
11799 {
11800 \msg_error:nnn
11801 { luatex } { luatex-required } { #1 }
11802 }
11803 }
11804 }

51.2 Messages
11805 \msg_new:nnnn { luatex } { luatex-required }
11806 { LuaTeX~engine~not~in~use!~Ignoring~#1. }
11807 {
11808 The~feature~you~are~using~is~only~available~
11809 with~the~LuaTeX~engine.~LaTeX3~ignored~’#1’.
11810 }
11811

11812 \msg_new:nnnn { luatex } { module-not-found }
11813 { Lua~module~‘#1’~not~found. }
11814 {
11815 The~file~‘#1.lua’~could~not~be~found.~Please~ensure~
11816 that~the~file~was~properly~installed~and~that~the~
11817 filename~database~is~current. \\ \\
11818 The~Lua~loader~provided~this~additional~information: \\
11819 #2
11820 }
11821

11822 \prop_gput:Nnn \g_msg_module_name_prop { luatex } { LaTeX }
11823 \prop_gput:Nnn \g_msg_module_type_prop { luatex } { }

11824 ⟨/tex⟩

51.3 Lua functions for internal use

689

11825 ⟨∗lua⟩

Most of the emulation of pdfTEX here is based heavily on Heiko Oberdiek’s pdftex-
cmds package.

ltx.utils Create a table for the kernel’s own use.
11826 ltx = ltx or {utils={}}
11827 ltx.utils = ltx.utils or { }
11828 local ltxutils = ltx.utils

(End of definition for ltx.utils. This function is documented on page 109.)
Local copies of global tables.

11829 local io = io
11830 local kpse = kpse
11831 local lfs = lfs
11832 local math = math
11833 local md5 = md5
11834 local os = os
11835 local string = string
11836 local tex = tex
11837 local texio = texio
11838 local tonumber = tonumber

Local copies of standard functions.
11839 local abs = math.abs
11840 local byte = string.byte
11841 local floor = math.floor
11842 local format = string.format
11843 local gsub = string.gsub
11844 local lfs_attr = lfs.attributes
11845 local open = io.open
11846 local os_date = os.date
11847 local setcatcode = tex.setcatcode
11848 local sprint = tex.sprint
11849 local cprint = tex.cprint
11850 local write = tex.write
11851 local write_nl = texio.write_nl
11852 local utf8_char = utf8.char
11853 local package_loaded = package.loaded
11854 local package_searchers = package.searchers
11855 local table_concat = table.concat
11856

11857 local scan_int = token.scan_int or token.scan_integer
11858 local scan_string = token.scan_string
11859 local scan_keyword = token.scan_keyword
11860 local put_next = token.put_next
11861 local token_create = token.create
11862 local token_new = token.new
11863 local set_macro = token.set_macro

Since token.create only returns useful values after the tokens has been added to
TeX’s hash table, we define a variant which defines it first if necessary.

11864 local token_create_safe
11865 do
11866 local is_defined = token.is_defined
11867 local set_char = token.set_char

690

11868 local runtoks = tex.runtoks
11869 local let_token = token_create’let’
11870

11871 function token_create_safe(s)
11872 local orig_token = token_create(s)
11873 if is_defined(s, true) then
11874 return orig_token
11875 end
11876 set_char(s, 0)
11877 local new_token = token_create(s)
11878 runtoks(function()
11879 put_next(let_token, new_token, orig_token)
11880 end)
11881 return new_token
11882 end
11883 end
11884

11885 local true_tok = token_create_safe’prg_return_true:’
11886 local false_tok = token_create_safe’prg_return_false:’

In ConTEXt lmtx token.command_id does not exist, but it can easily be emulated with
ConTEXt’s tokens.commands.

11887 local command_id = token.command_id
11888 if not command_id and tokens and tokens.commands then
11889 local id_map = tokens.commands
11890 function command_id(name)
11891 return id_map[name]
11892 end
11893 end

Deal with ConTEXt: doesn’t use kpse library.
11894 local kpse_find = (resolvers and resolvers.findfile) or kpse.find_file

escapehex An internal auxiliary to convert a string to the matching hex escape. This works on a byte
basis: extension to handled UTF-8 input is covered in pdftexcmds but is not currently
required here.

11895 local function escapehex(str)
11896 return (gsub(str, ".",
11897 function (ch) return format("%02X", byte(ch)) end))
11898 end

(End of definition for escapehex.)

ltx.utils.filedump Similar comments here to the next function: read the file in binary mode to avoid any
line-end weirdness.

11899 local function filedump(name,offset,length)
11900 local file = kpse_find(name,"tex",true)
11901 if not file then return end
11902 local f = open(file,"rb")
11903 if not f then return end
11904 if offset and offset > 0 then
11905 f:seek("set", offset)
11906 end
11907 local data = f:read(length or ’a’)
11908 f:close()

691

11909 return escapehex(data)
11910 end
11911 ltxutils.filedump = filedump

(End of definition for ltx.utils.filedump. This function is documented on page 109.)

md5.HEX Hash a string and return the hash in uppercase hexadecimal format. In some engines,
this is built-in. For traditional LuaTEX, the conversion to hexadecimal has to be done
by us.

11912 local md5_HEX = md5.HEX
11913 if not md5_HEX then
11914 local md5_sum = md5.sum
11915 function md5_HEX(data)
11916 return escapehex(md5_sum(data))
11917 end
11918 md5.HEX = md5_HEX
11919 end

(End of definition for md5.HEX.)

ltx.utils.filemd5sum Read an entire file and hash it: the hash function itself is a built-in. As Lua is byte-
based there is no work needed here in terms of UTF-8 (see pdftexcmds and how it handles
strings that have passed through LuaTEX). The file is read in binary mode so that no
line ending normalisation occurs.

11920 local function filemd5sum(name)
11921 local file = kpse_find(name, "tex", true) if not file then return end
11922 local f = open(file, "rb") if not f then return end
11923

11924 local data = f:read("*a")
11925 f:close()
11926 return md5_HEX(data)
11927 end
11928 ltxutils.filemd5sum = filemd5sum

(End of definition for ltx.utils.filemd5sum. This function is documented on page 109.)

ltx.utils.filemoddate There are two cases: If the C standard library is C99 compliant, we can use %z to get
the timezone in almost the right format. We only have to add primes and replace a zero
or missing offset with Z.

Of course this would be boring, so Windows does things differently. There we have
to manually calculate the offset. See procedure makepdftime in utils.c of pdfTEX.

11929 local filemoddate
11930 if os_date’%z’:match’^[+-]%d%d%d%d$’ then
11931 local pattern = lpeg.Cs(16 *
11932 (lpeg.Cg(lpeg.S’+-’ * ’0000’ * lpeg.Cc’Z’)
11933 + 3 * lpeg.Cc"’" * 2 * lpeg.Cc"’"
11934 + lpeg.Cc’Z’)
11935 * -1)
11936 function filemoddate(name)
11937 local file = kpse_find(name, "tex", true)
11938 if not file then return end
11939 local date = lfs_attr(file, "modification")
11940 if not date then return end
11941 return pattern:match(os_date("D:%Y%m%d%H%M%S%z", date))

692

11942 end
11943 else
11944 local function filemoddate(name)
11945 local file = kpse_find(name, "tex", true)
11946 if not file then return end
11947 local date = lfs_attr(file, "modification")
11948 if not date then return end
11949 local d = os_date("*t", date)
11950 local u = os_date("!*t", date)
11951 local off = 60 * (d.hour - u.hour) + d.min - u.min
11952 if d.year ~= u.year then
11953 if d.year > u.year then
11954 off = off + 1440
11955 else
11956 off = off - 1440
11957 end
11958 elseif d.yday ~= u.yday then
11959 if d.yday > u.yday then
11960 off = off + 1440
11961 else
11962 off = off - 1440
11963 end
11964 end
11965 local timezone
11966 if off == 0 then
11967 timezone = "Z"
11968 else
11969 if off < 0 then
11970 timezone = "-"
11971 off = -off
11972 else
11973 timezone = "+"
11974 end
11975 timezone = format("%s%02d’%02d’", timezone, hours // 60, hours % 60)
11976 end
11977 return format("D:%04d%02d%02d%02d%02d%02d%s",
11978 d.year, d.month, d.day, d.hour, d.min, d.sec, timezone)
11979 end
11980 end
11981 ltxutils.filemoddate = filemoddate

(End of definition for ltx.utils.filemoddate. This function is documented on page 109.)

ltx.utils.filesize A simple disk lookup.
11982 local function filesize(name)
11983 local file = kpse_find(name, "tex", true)
11984 if file then
11985 local size = lfs_attr(file, "size")
11986 if size then
11987 return size
11988 end
11989 end
11990 end
11991 ltxutils.filesize = filesize

693

(End of definition for ltx.utils.filesize. This function is documented on page 110.)

luacmd An internal function for defining control sequences form Lua which behave like primitives.
This acts as a wrapper around token.set_lua which accepts a function instead of an
index into the functions table.

11992 local luacmd do
11993 local set_lua = token.set_lua
11994 local undefined_cs = command_id’undefined_cs’
11995

11996 if not context and not luatexbase then require’ltluatex’ end
11997 if luatexbase then
11998 local new_luafunction = luatexbase.new_luafunction
11999 local functions = lua.get_functions_table()
12000 function luacmd(name, func, ...)
12001 local id
12002 local tok = token_create(name)
12003 if tok.command == undefined_cs then
12004 id = new_luafunction(name)
12005 set_lua(name, id, ...)
12006 else
12007 id = tok.index or tok.mode
12008 end
12009 functions[id] = func
12010 end
12011 elseif context then
12012 local register = context.functions.register
12013 local functions = context.functions.known
12014 function luacmd(name, func, ...)
12015 local tok = token_create(name)
12016 if tok.command == undefined_cs then
12017 token.set_lua(name, register(func), ...)
12018 else
12019 functions[tok.index or tok.mode] = func
12020 end
12021 end
12022 end
12023 end

(End of definition for luacmd.)

try_require Loads a Lua module. This function loads the module similarly to the standard Lua
global function require, with a few differences. On success, try_require returns
true, module. If the module cannot be found, it returns false, err_msg. If the module
is found, but something goes wrong when loading it, the function throws an error.

12024 local function try_require(name)
12025 if package_loaded[name] then
12026 return true, package_loaded[name]
12027 end
12028

12029 local failure_details = {}
12030 for _, searcher in ipairs(package_searchers) do
12031 local loader, data = searcher(name)
12032 if type(loader) == ’function’ then
12033 package_loaded[name] = loader(name, data) or true

694

12034 return true, package_loaded[name]
12035 elseif type(loader) == ’string’ then
12036 failure_details[#failure_details + 1] = loader
12037 end
12038 end
12039

12040 return false, table_concat(failure_details, ’\n’)
12041 end

(End of definition for try_require.)

__lua_load_module_p:n Check to see if we can load a module using require. If we can load the module, then we
load it immediately. Otherwise, we save the error message in \l_@@_err_msg_str.

12042 local char_given = command_id’char_given’
12043 local c_true_bool = token_create(1, char_given)
12044 local c_false_bool = token_create(0, char_given)
12045 local c_str_cctab = token_create(’c_str_cctab’).mode
12046

12047 luacmd(’__lua_load_module_p:n’, function()
12048 local success, result = try_require(scan_string())
12049 if success then
12050 set_macro(c_str_cctab, ’l__lua_err_msg_str’, ’’)
12051 put_next(c_true_bool)
12052 else
12053 set_macro(c_str_cctab, ’l__lua_err_msg_str’, result)
12054 put_next(c_false_bool)
12055 end
12056 end)

(End of definition for __lua_load_module_p:n.)

51.4 Preserving iniTeX Lua data for runs
12057 ⟨@@=lua⟩

The Lua state is not dumped when a format is written, therefore any Lua variables
filled doing format building need to be restored in order to be accessible during normal
runs.

We provide some kernel-internal helpers for this. They will only be available if
luatexbase is available. This is not a big restriction though, because ConTEXt (which
does not use luatexbase) does not load expl3 in the format.

12058 local register_luadata, get_luadata
12059

12060 if luatexbase then
12061 local register = token_create’@expl@luadata@bytecode’.index
12062 if status.ini_version then

register_luadata register_luadata is only available during format generation. It accept a string which
uniquely identifies the data object and has to be provided to retrieve it later. Additionally
it accepts a function which is called in the pre_dump callback and which has to return a
string that evaluates to a valid Lua object to be preserved.

12063 local luadata, luadata_order = {}, {}
12064

12065 function register_luadata(name, func)

695

12066 if luadata[name] then
12067 error(format("LaTeX error: data name %q already in use", name))
12068 end
12069 luadata[name] = func
12070 luadata_order[#luadata_order + 1] = func and name
12071 end

(End of definition for register_luadata.)
The actual work is done in pre_dump. The luadata_order is used to ensure that

the order is consistent over multiple runs.
12072 luatexbase.add_to_callback("pre_dump", function()
12073 if next(luadata) then
12074 local str = "return {"
12075 for i=1, #luadata_order do
12076 local name = luadata_order[i]
12077 str = format(’%s[%q]=%s,’, str, name, luadata[name]())
12078 end
12079 lua.bytecode[register] = assert(load(str .. "}"))
12080 end
12081 end, "ltx.luadata")
12082 else

get_luadata get_luadata is only available if data should be restored. It accept the identifier which
was used when the data object was registered and returns the associated object. Every
object can only be retrieved once.

12083 local luadata = lua.bytecode[register]
12084 if luadata then
12085 lua.bytecode[register] = nil
12086 luadata = luadata()
12087 end
12088 function get_luadata(name)
12089 if not luadata then return end
12090 local data = luadata[name]
12091 luadata[name] = nil
12092 return data
12093 end
12094 end
12095 end

(End of definition for get_luadata.)

12096 ⟨/lua⟩

12097 ⟨/package⟩

696

Chapter 52

l3legacy implementation

12098 ⟨∗package⟩

12099 ⟨@@=legacy⟩

\legacy_if_p:n
\legacy_if:nTF

A friendly wrapper. We need to use the \if:w approach here, rather than testing
against \iftrue/\iffalse as the latter approach fails for primitive conditionals such
as \ifmmode. The \reverse_if:N here means that we get a slightly more useful error if
the name is undefined.

12100 \prg_new_conditional:Npnn \legacy_if:n #1 { p , T , F , TF }
12101 {
12102 \exp_after:wN \reverse_if:N
12103 \cs:w if#1 \cs_end:
12104 \prg_return_false:
12105 \else:
12106 \prg_return_true:
12107 \fi:
12108 }

(End of definition for \legacy_if:nTF. This function is documented on page 111.)

\legacy_if_set_true:n
\legacy_if_set_false:n
\legacy_if_gset_true:n
\legacy_if_gset_false:n

A friendly wrapper.
12109 \cs_new_protected:Npn \legacy_if_set_true:n #1
12110 { \cs_set_eq:cN { if#1 } \if_true: }
12111 \cs_new_protected:Npn \legacy_if_set_false:n #1
12112 { \cs_set_eq:cN { if#1 } \if_false: }
12113 \cs_new_protected:Npn \legacy_if_gset_true:n #1
12114 { \cs_gset_eq:cN { if#1 } \if_true: }
12115 \cs_new_protected:Npn \legacy_if_gset_false:n #1
12116 { \cs_gset_eq:cN { if#1 } \if_false: }

(End of definition for \legacy_if_set_true:n and others. These functions are documented on page
111.)

\legacy_if_set:nn
\legacy_if_gset:nn

A more elaborate wrapper.
12117 \cs_new_protected:Npn \legacy_if_set:nn #1#2
12118 {
12119 \bool_if:nTF {#2} \legacy_if_set_true:n \legacy_if_set_false:n
12120 {#1}
12121 }

697

12122 \cs_new_protected:Npn \legacy_if_gset:nn #1#2
12123 {
12124 \bool_if:nTF {#2} \legacy_if_gset_true:n \legacy_if_gset_false:n
12125 {#1}
12126 }

(End of definition for \legacy_if_set:nn and \legacy_if_gset:nn. These functions are documented
on page 111.)

12127 ⟨/package⟩

698

Chapter 53

l3tl implementation

12128 ⟨∗package⟩

12129 ⟨@@=tl⟩

A token list variable is a TEX macro that holds tokens. By using the ε-TEX primitive
\unexpanded inside a TEX \edef it is possible to store any tokens, including #, in this
way.

53.1 Functions
__kernel_tl_set:Nx
__kernel_tl_gset:Nx

These two are supplied to get better performance for macros which would otherwise use
\tl_set:Ne or \tl_gset:Ne internally.

12130 \cs_new_eq:NN __kernel_tl_set:Nx \cs_set_nopar:Npe
12131 \cs_new_eq:NN __kernel_tl_gset:Nx \cs_gset_nopar:Npe

(End of definition for __kernel_tl_set:Nx and __kernel_tl_gset:Nx.)

\tl_new:N
\tl_new:c

Creating new token list variables is a case of checking for an existing definition and doing
the definition.

12132 \cs_new_protected:Npn \tl_new:N #1
12133 {
12134 __kernel_chk_if_free_cs:N #1
12135 \cs_gset_eq:NN #1 \c_empty_tl
12136 }
12137 \cs_generate_variant:Nn \tl_new:N { c }

(End of definition for \tl_new:N. This function is documented on page 113.)

\tl_const:Nn
\tl_const:Ne
\tl_const:Nx
\tl_const:cn
\tl_const:ce
\tl_const:cx

Constants are also easy to generate. They use \cs_gset_nopar:Npe instead of
__kernel_tl_gset:Nx so that the correct scope checking for c, instead of for g, is ap-
plied when \debug_on:n { check-declarations } is used. Constant assignment func-
tions are patched specially in l3debug to apply such checks.

12138 \cs_new_protected:Npn \tl_const:Nn #1#2
12139 {
12140 __kernel_chk_if_free_cs:N #1
12141 \cs_gset_nopar:Npe #1 { __kernel_exp_not:w {#2} }
12142 }
12143 \cs_generate_variant:Nn \tl_const:Nn { Ne , c , ce }
12144 \cs_generate_variant:Nn \tl_const:Nn { Nx , cx }

699

(End of definition for \tl_const:Nn. This function is documented on page 114.)

\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

Clearing a token list variable means setting it to an empty value. Error checking is sorted
out by the parent function.

12145 \cs_new_protected:Npn \tl_clear:N #1
12146 { \tex_let:D #1 = ~ \c_empty_tl }
12147 \cs_new_protected:Npn \tl_gclear:N #1
12148 { \tex_global:D \tex_let:D #1 ~ \c_empty_tl }
12149 \cs_generate_variant:Nn \tl_clear:N { c }
12150 \cs_generate_variant:Nn \tl_gclear:N { c }

(End of definition for \tl_clear:N and \tl_gclear:N. These functions are documented on page 114.)

\tl_clear_new:N
\tl_clear_new:c

\tl_gclear_new:N
\tl_gclear_new:c

Clearing a token list variable means setting it to an empty value. Error checking is sorted
out by the parent function.

12151 \cs_new_protected:Npn \tl_clear_new:N #1
12152 { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }
12153 \cs_new_protected:Npn \tl_gclear_new:N #1
12154 { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }
12155 \cs_generate_variant:Nn \tl_clear_new:N { c }
12156 \cs_generate_variant:Nn \tl_gclear_new:N { c }

(End of definition for \tl_clear_new:N and \tl_gclear_new:N. These functions are documented on
page 114.)

\tl_set_eq:NN
\tl_set_eq:Nc
\tl_set_eq:cN
\tl_set_eq:cc
\tl_gset_eq:NN
\tl_gset_eq:Nc
\tl_gset_eq:cN
\tl_gset_eq:cc

For setting token list variables equal to each other. To allow for patching, the arguments
have to be explicit. In addition this ensures that a braced second argument will not cause
problems.

12157 \cs_new_protected:Npn \tl_set_eq:NN #1#2
12158 { \tex_let:D #1 = ~ #2 }
12159 \cs_new_protected:Npn \tl_gset_eq:NN #1#2
12160 { \tex_global:D \tex_let:D #1 = ~ #2 }
12161 \cs_generate_variant:Nn \tl_set_eq:NN { cN, Nc, cc }
12162 \cs_generate_variant:Nn \tl_gset_eq:NN { cN, Nc, cc }

(End of definition for \tl_set_eq:NN and \tl_gset_eq:NN. These functions are documented on page
114.)

\tl_concat:NNN
\tl_concat:ccc

\tl_gconcat:NNN
\tl_gconcat:ccc

Concatenating token lists is easy. When checking is turned on, all three arguments must
be checked: a token list #2 or #3 equal to \scan_stop: would lead to problems later on.

12163 \cs_new_protected:Npn \tl_concat:NNN #1#2#3
12164 {
12165 __kernel_tl_set:Nx #1
12166 {
12167 __kernel_exp_not:w \exp_after:wN {#2}
12168 __kernel_exp_not:w \exp_after:wN {#3}
12169 }
12170 }
12171 \cs_new_protected:Npn \tl_gconcat:NNN #1#2#3
12172 {
12173 __kernel_tl_gset:Nx #1
12174 {
12175 __kernel_exp_not:w \exp_after:wN {#2}
12176 __kernel_exp_not:w \exp_after:wN {#3}

700

12177 }
12178 }
12179 \cs_generate_variant:Nn \tl_concat:NNN { ccc }
12180 \cs_generate_variant:Nn \tl_gconcat:NNN { ccc }

(End of definition for \tl_concat:NNN and \tl_gconcat:NNN. These functions are documented on page
114.)

\tl_if_exist_p:N
\tl_if_exist_p:c
\tl_if_exist:NTF
\tl_if_exist:cTF

Copies of the cs functions defined in l3basics.
12181 \prg_new_eq_conditional:NNn \tl_if_exist:N \cs_if_exist:N { TF , T , F , p }
12182 \prg_new_eq_conditional:NNn \tl_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End of definition for \tl_if_exist:NTF. This function is documented on page 114.)

53.2 Constant token lists
\c_empty_tl Never full. We need to define that constant before using \tl_new:N.

12183 \tl_const:Nn \c_empty_tl { }

(End of definition for \c_empty_tl. This variable is documented on page 130.)

\c_novalue_tl A special marker: as we don’t have \char_generate:nn yet, has to be created the old-
fashioned way.

12184 \group_begin:
12185 \tex_catcode:D ‘- = 11 ~
12186 \tl_const:Ne \c_novalue_tl { - NoValue \token_to_str:N - }
12187 \group_end:

(End of definition for \c_novalue_tl. This variable is documented on page 130.)

\c_space_tl A space as a token list (as opposed to as a character).
12188 \tl_const:Nn \c_space_tl { ~ }

(End of definition for \c_space_tl. This variable is documented on page 130.)

53.3 Adding to token list variables
\tl_set:Nn
\tl_set:NV
\tl_set:Nv
\tl_set:No
\tl_set:Ne
\tl_set:Nf
\tl_set:Nx
\tl_set:cn
\tl_set:cV
\tl_set:cv
\tl_set:co
\tl_set:ce
\tl_set:cf
\tl_set:cx
\tl_gset:Nn
\tl_gset:NV
\tl_gset:Nv
\tl_gset:No
\tl_gset:Ne
\tl_gset:Nf
\tl_gset:Nx
\tl_gset:cn
\tl_gset:cV
\tl_gset:cv
\tl_gset:co
\tl_gset:ce
\tl_gset:cf
\tl_gset:cx

By using \exp_not:n token list variables can contain # tokens, which makes the token
list registers provided by TEX more or less redundant. The \tl_set:No version is done
by hand as it is used quite a lot.

12189 \cs_new_protected:Npn \tl_set:Nn #1#2
12190 { __kernel_tl_set:Nx #1 { __kernel_exp_not:w {#2} } }
12191 \cs_new_protected:Npn \tl_set:No #1#2
12192 { __kernel_tl_set:Nx #1 { __kernel_exp_not:w \exp_after:wN {#2} } }
12193 \cs_new_protected:Npn \tl_gset:Nn #1#2
12194 { __kernel_tl_gset:Nx #1 { __kernel_exp_not:w {#2} } }
12195 \cs_new_protected:Npn \tl_gset:No #1#2
12196 { __kernel_tl_gset:Nx #1 { __kernel_exp_not:w \exp_after:wN {#2} } }
12197 \cs_generate_variant:Nn \tl_set:Nn { NV , Nv , Ne , Nf }
12198 \cs_generate_variant:Nn \tl_set:Nn { c, cV , cv , ce , cf }
12199 \cs_generate_variant:Nn \tl_set:No { c }
12200 \cs_generate_variant:Nn \tl_set:Nn { Nx , cx }
12201 \cs_generate_variant:Nn \tl_gset:Nn { NV , Nv , Ne , Nf }

701

12202 \cs_generate_variant:Nn \tl_gset:Nn { c, cV , cv , ce , cf }
12203 \cs_generate_variant:Nn \tl_gset:No { c }
12204 \cs_generate_variant:Nn \tl_gset:Nn { Nx , cx }

(End of definition for \tl_set:Nn and \tl_gset:Nn. These functions are documented on page 114.)

\tl_put_left:Nn
\tl_put_left:NV
\tl_put_left:Nv
\tl_put_left:Ne
\tl_put_left:No
\tl_put_left:Nx
\tl_put_left:cn
\tl_put_left:cV
\tl_put_left:cv
\tl_put_left:ce
\tl_put_left:co
\tl_put_left:cx

\tl_gput_left:Nn
\tl_gput_left:NV
\tl_gput_left:Nv
\tl_gput_left:Ne
\tl_gput_left:No
\tl_gput_left:Nx
\tl_gput_left:cn
\tl_gput_left:cV
\tl_gput_left:cv
\tl_gput_left:ce
\tl_gput_left:co
\tl_gput_left:cx

Adding to the left is done directly to gain a little performance.
12205 \cs_new_protected:Npn \tl_put_left:Nn #1#2
12206 {
12207 __kernel_tl_set:Nx #1
12208 { __kernel_exp_not:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
12209 }
12210 \cs_new_protected:Npn \tl_put_left:NV #1#2
12211 {
12212 __kernel_tl_set:Nx #1
12213 { \exp_not:V #2 __kernel_exp_not:w \exp_after:wN {#1} }
12214 }
12215 \cs_new_protected:Npn \tl_put_left:Nv #1#2
12216 {
12217 __kernel_tl_set:Nx #1
12218 { \exp_not:v {#2} __kernel_exp_not:w \exp_after:wN {#1} }
12219 }
12220 \cs_new_protected:Npn \tl_put_left:Ne #1#2
12221 {
12222 __kernel_tl_set:Nx #1
12223 {
12224 __kernel_exp_not:w \tex_expanded:D { {#2} }
12225 __kernel_exp_not:w \exp_after:wN {#1}
12226 }
12227 }
12228 \cs_new_protected:Npn \tl_put_left:No #1#2
12229 {
12230 __kernel_tl_set:Nx #1
12231 {
12232 __kernel_exp_not:w \exp_after:wN {#2}
12233 __kernel_exp_not:w \exp_after:wN {#1}
12234 }
12235 }
12236 \cs_new_protected:Npn \tl_gput_left:Nn #1#2
12237 {
12238 __kernel_tl_gset:Nx #1
12239 { __kernel_exp_not:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
12240 }
12241 \cs_new_protected:Npn \tl_gput_left:NV #1#2
12242 {
12243 __kernel_tl_gset:Nx #1
12244 { \exp_not:V #2 __kernel_exp_not:w \exp_after:wN {#1} }
12245 }
12246 \cs_new_protected:Npn \tl_gput_left:Nv #1#2
12247 {
12248 __kernel_tl_gset:Nx #1
12249 { \exp_not:v {#2} __kernel_exp_not:w \exp_after:wN {#1} }
12250 }
12251 \cs_new_protected:Npn \tl_gput_left:Ne #1#2

702

12252 {
12253 __kernel_tl_gset:Nx #1
12254 {
12255 __kernel_exp_not:w \tex_expanded:D { {#2} }
12256 __kernel_exp_not:w \exp_after:wN {#1}
12257 }
12258 }
12259 \cs_new_protected:Npn \tl_gput_left:No #1#2
12260 {
12261 __kernel_tl_gset:Nx #1
12262 {
12263 __kernel_exp_not:w \exp_after:wN {#2}
12264 __kernel_exp_not:w \exp_after:wN {#1}
12265 }
12266 }
12267 \cs_generate_variant:Nn \tl_put_left:Nn { c }
12268 \cs_generate_variant:Nn \tl_put_left:NV { c }
12269 \cs_generate_variant:Nn \tl_put_left:Nv { c }
12270 \cs_generate_variant:Nn \tl_put_left:Ne { c }
12271 \cs_generate_variant:Nn \tl_put_left:No { c }
12272 \cs_generate_variant:Nn \tl_put_left:Nn { Nx, cx }
12273 \cs_generate_variant:Nn \tl_gput_left:Nn { c }
12274 \cs_generate_variant:Nn \tl_gput_left:NV { c }
12275 \cs_generate_variant:Nn \tl_gput_left:Nv { c }
12276 \cs_generate_variant:Nn \tl_gput_left:Ne { c }
12277 \cs_generate_variant:Nn \tl_gput_left:No { c }
12278 \cs_generate_variant:Nn \tl_gput_left:Nn { Nx , cx }

(End of definition for \tl_put_left:Nn and \tl_gput_left:Nn. These functions are documented on
page 114.)

\tl_put_right:Nn
\tl_put_right:NV
\tl_put_right:Nv
\tl_put_right:Ne
\tl_put_right:No
\tl_put_right:Nx
\tl_put_right:cn
\tl_put_right:cV
\tl_put_right:cv
\tl_put_right:ce
\tl_put_right:co
\tl_put_right:cx
\tl_gput_right:Nn
\tl_gput_right:NV
\tl_gput_right:Nv
\tl_gput_right:Ne
\tl_gput_right:No
\tl_gput_right:Nx
\tl_gput_right:cn
\tl_gput_right:cV
\tl_gput_right:cv
\tl_gput_right:ce
\tl_gput_right:co
\tl_gput_right:cx

The same on the right.
12279 \cs_new_protected:Npn \tl_put_right:Nn #1#2
12280 { __kernel_tl_set:Nx #1 { __kernel_exp_not:w \exp_after:wN { #1 #2 } } }
12281 \cs_new_protected:Npn \tl_put_right:NV #1#2
12282 {
12283 __kernel_tl_set:Nx #1
12284 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:V #2 }
12285 }
12286 \cs_new_protected:Npn \tl_put_right:Nv #1#2
12287 {
12288 __kernel_tl_set:Nx #1
12289 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:v {#2} }
12290 }
12291 \cs_new_protected:Npn \tl_put_right:Ne #1#2
12292 {
12293 __kernel_tl_set:Nx #1
12294 {
12295 __kernel_exp_not:w \exp_after:wN {#1}
12296 __kernel_exp_not:w \tex_expanded:D { {#2} }
12297 }
12298 }
12299 \cs_new_protected:Npn \tl_put_right:No #1#2
12300 {

703

12301 __kernel_tl_set:Nx #1
12302 {
12303 __kernel_exp_not:w \exp_after:wN {#1}
12304 __kernel_exp_not:w \exp_after:wN {#2}
12305 }
12306 }
12307 \cs_new_protected:Npn \tl_gput_right:Nn #1#2
12308 { __kernel_tl_gset:Nx #1 { __kernel_exp_not:w \exp_after:wN { #1 #2 } } }
12309 \cs_new_protected:Npn \tl_gput_right:NV #1#2
12310 {
12311 __kernel_tl_gset:Nx #1
12312 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:V #2 }
12313 }
12314 \cs_new_protected:Npn \tl_gput_right:Nv #1#2
12315 {
12316 __kernel_tl_gset:Nx #1
12317 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:v {#2} }
12318 }
12319 \cs_new_protected:Npn \tl_gput_right:Ne #1#2
12320 {
12321 __kernel_tl_gset:Nx #1
12322 {
12323 __kernel_exp_not:w \exp_after:wN {#1}
12324 __kernel_exp_not:w \tex_expanded:D { {#2} }
12325 }
12326 }
12327 \cs_new_protected:Npn \tl_gput_right:No #1#2
12328 {
12329 __kernel_tl_gset:Nx #1
12330 {
12331 __kernel_exp_not:w \exp_after:wN {#1}
12332 __kernel_exp_not:w \exp_after:wN {#2}
12333 }
12334 }
12335 \cs_generate_variant:Nn \tl_put_right:Nn { c }
12336 \cs_generate_variant:Nn \tl_put_right:NV { c }
12337 \cs_generate_variant:Nn \tl_put_right:Nv { c }
12338 \cs_generate_variant:Nn \tl_put_right:Ne { c }
12339 \cs_generate_variant:Nn \tl_put_right:No { c }
12340 \cs_generate_variant:Nn \tl_put_right:Nn { Nx , cx }
12341 \cs_generate_variant:Nn \tl_gput_right:Nn { c }
12342 \cs_generate_variant:Nn \tl_gput_right:NV { c }
12343 \cs_generate_variant:Nn \tl_gput_right:Nv { c }
12344 \cs_generate_variant:Nn \tl_gput_right:Ne { c }
12345 \cs_generate_variant:Nn \tl_gput_right:No { c }
12346 \cs_generate_variant:Nn \tl_gput_right:Nn { Nx, cx }

(End of definition for \tl_put_right:Nn and \tl_gput_right:Nn. These functions are documented on
page 115.)

53.4 Internal quarks and quark-query functions
\q__tl_nil
\q__tl_mark
\q__tl_stop

Internal quarks.

704

12347 \quark_new:N \q__tl_nil
12348 \quark_new:N \q__tl_mark
12349 \quark_new:N \q__tl_stop

(End of definition for \q__tl_nil , \q__tl_mark , and \q__tl_stop.)

\q__tl_recursion_tail
\q__tl_recursion_stop

Internal recursion quarks.
12350 \quark_new:N \q__tl_recursion_tail
12351 \quark_new:N \q__tl_recursion_stop

(End of definition for \q__tl_recursion_tail and \q__tl_recursion_stop.)

__tl_if_recursion_tail_break:nN
__tl_if_recursion_tail_stop_p:n
__tl_if_recursion_tail_stop:nTF

Functions to query recursion quarks.
12352 __kernel_quark_new_test:N __tl_if_recursion_tail_break:nN
12353 __kernel_quark_new_conditional:Nn __tl_quark_if_nil:n { TF }

(End of definition for __tl_if_recursion_tail_break:nN and __tl_if_recursion_tail_stop:nTF.)

53.5 Reassigning token list category codes
\c__tl_rescan_marker_tl The rescanning code needs a special token list containing the same character (chosen here

to be a colon) with two different category codes: it cannot appear in the tokens being
rescanned since all colons have the same category code.

12354 \tl_const:Ne \c__tl_rescan_marker_tl { : \token_to_str:N : }

(End of definition for \c__tl_rescan_marker_tl.)

\tl_set_rescan:Nnn
\tl_set_rescan:NnV
\tl_set_rescan:Nne
\tl_set_rescan:Nno
\tl_set_rescan:Nnx
\tl_set_rescan:cnn
\tl_set_rescan:cnV
\tl_set_rescan:cne
\tl_set_rescan:cno
\tl_set_rescan:cnx
\tl_gset_rescan:Nnn
\tl_gset_rescan:NnV
\tl_gset_rescan:Nne
\tl_gset_rescan:Nno
\tl_gset_rescan:Nnx
\tl_gset_rescan:cnn
\tl_gset_rescan:cnV
\tl_gset_rescan:cne
\tl_gset_rescan:cno
\tl_gset_rescan:cnx

\tl_rescan:nn
\tl_rescan:nV

__tl_rescan_aux:
__tl_set_rescan:NNnn

__tl_set_rescan_multi:nNN
__tl_rescan:NNw

In a group, after some initial setup explained below and the user setup #3 (followed by
\scan_stop: to be safe), there is a call to __tl_set_rescan:nNN. This shared auxiliary
defined later distinguishes single-line and multi-line “files”. In the simplest case of multi-
line files, it calls (with the same arguments) __tl_set_rescan_multi:nNN, whose code
is included here to help understand the approach. This function rescans its argument #1,
closes the group, and performs the assignment.

One difficulty when rescanning is that \scantokens treats the argument as a file,
and without the correct settings a TEX error occurs:

! File ended while scanning definition of ...

A related minor issue is a warning due to opening a group before the \scantokens and
closing it inside that temporary file; we avoid that by setting \tracingnesting. The
standard solution to the “File ended” error is to grab the rescanned tokens as a delimited
argument of an auxiliary, here __tl_rescan:NNw, that performs the assignment, then let
TEX “execute” the end of file marker. As usual in delimited arguments we use \prg_do_-
nothing: to avoid stripping an outer set braces: this is removed by using o-expanding
assignments. The delimiter cannot appear within the rescanned token list because it
contains twice the same character, with different catcodes.

For \tl_rescan:nn we cannot simply call __tl_set_rescan:NNnn \prg_do_-
nothing: \use:n because that would leave the end-of-file marker after the result of
rescanning. If that rescanned result is code that looks further in the input stream for
arguments, it would break.

For multi-line files the only subtlety is that \newlinechar should be equal to
\endlinechar because \newlinechar characters become new lines and then become

705

\endlinechar characters when writing to an abstract file and reading back. This equality
is ensured by setting \newlinechar equal to \endlinechar. Prior to this, \endlinechar
is set to −1 if it was 32 (in particular true after \ExplSyntaxOn) to avoid unreasonable
line-breaks at every space for instance in error messages triggered by the user setup.
Another side effect of reading back from the file is that spaces (catcode 10) are ignored
at the beginning of lines, and spaces and tabs (character code 32 and 9) are ignored at
the end of lines.

The two \if_false: . . . \fi: are there to prevent alignment tabs to cause a change
of tabular cell while rescanning. We put the “opening” one after \group_begin: so that
if one accidentally f-expands \tl_set_rescan:Nnn braces remain balanced. This is
essential in e-type arguments when \expanded is not available.

12355 \cs_new_protected:Npn \tl_rescan:nn #1#2
12356 {
12357 \tl_set_rescan:Nnn \l__tl_internal_a_tl {#1} {#2}
12358 \exp_after:wN __tl_rescan_aux:
12359 \l__tl_internal_a_tl
12360 }
12361 \cs_generate_variant:Nn \tl_rescan:nn { nV }
12362 \exp_args:NNo \cs_new_protected:Npn __tl_rescan_aux:
12363 { \tl_clear:N \l__tl_internal_a_tl }
12364 \cs_new_protected:Npn \tl_set_rescan:Nnn
12365 { __tl_set_rescan:NNnn \tl_set:No }
12366 \cs_new_protected:Npn \tl_gset_rescan:Nnn
12367 { __tl_set_rescan:NNnn \tl_gset:No }
12368 \cs_new_protected:Npn __tl_set_rescan:NNnn #1#2#3#4
12369 {
12370 \group_begin:
12371 \if_false: { \fi:
12372 \int_set_eq:NN \tex_tracingnesting:D \c_zero_int
12373 \int_compare:nNnT \tex_endlinechar:D = { 32 }
12374 { \int_set:Nn \tex_endlinechar:D { -1 } }
12375 \int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D
12376 #3 \scan_stop:
12377 \exp_args:No __tl_set_rescan:nNN { \tl_to_str:n {#4} } #1 #2
12378 \if_false: } \fi:
12379 }
12380 \cs_new_protected:Npn __tl_set_rescan_multi:nNN #1#2#3
12381 {
12382 \tex_everyeof:D \exp_after:wN { \c__tl_rescan_marker_tl }
12383 \exp_after:wN __tl_rescan:NNw
12384 \exp_after:wN #2
12385 \exp_after:wN #3
12386 \exp_after:wN \prg_do_nothing:
12387 \tex_scantokens:D {#1}
12388 }
12389 \exp_args:Nno \use:nn
12390 { \cs_new:Npn __tl_rescan:NNw #1#2#3 } \c__tl_rescan_marker_tl
12391 {
12392 \group_end:
12393 #1 #2 {#3}
12394 }
12395 \cs_generate_variant:Nn \tl_set_rescan:Nnn { NnV , Nne , c , cnV , cne }
12396 \cs_generate_variant:Nn \tl_set_rescan:Nnn { Nno , Nnx , cno , cnx }

706

12397 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { NnV , Nne , c , cnV , cne }
12398 \cs_generate_variant:Nn \tl_gset_rescan:Nnn { Nno , Nnx , cno , cnx }

(End of definition for \tl_set_rescan:Nnn and others. These functions are documented on page 129.)

__tl_set_rescan:nNN
__tl_set_rescan_single:nnNN

__tl_set_rescan_single_aux:nnnNN
__tl_set_rescan_single_aux:w

The function __tl_set_rescan:nNN calls __tl_set_rescan_multi:nNN or __tl_-
set_rescan_single:nnNN { ’ } depending on whether its argument is a single-line
fragment of code/data or is made of multiple lines by testing for the presence of a
\newlinechar character. If \newlinechar is out of range, the argument is assumed
to be a single line.

For a single line, no \endlinechar should be added, so it is set to −1, and spaces
should not be removed. Trailing spaces and tabs are a difficult matter, as TEX removes
these at a very low level. The only way to preserve them is to rescan not the argument
but the argument followed by a character with a reasonable category code. Here, 11
(letter) and 12 (other) are accepted, as these are convenient, suitable for delimiting an
argument, and it is very unlikely that none of the ASCII characters are in one of these
categories. To avoid selecting one particular character to put at the end, whose category
code may have been modified, there is a loop through characters from ’ (ASCII 39) to
~ (ASCII 127). The choice of starting point was made because this is the start of a very
long range of characters whose standard category is letter or other, thus minimizing the
number of steps needed by the loop (most often just a single one). If no valid character
is found (very rare), fall-back on __tl_set_rescan_multi:nNN.

Otherwise, once a valid character is found (let us use ’ in this explanation) run some
code very similar to __tl_set_rescan_multi:nNN but with ’ added at both ends of
the input. Of course, we need to define the auxiliary __tl_set_rescan_single:NNww
on the fly to remove the additional ’ that is just before :: (by which we mean \c__tl_-
rescan_marker_tl). Note that the argument must be delimited by ’ with the current
catcode; this is done thanks to \char_generate:nn. Yet another issue is that the res-
canned token list may contain a comment character, in which case the ’ we expected is
not there. We fix this as follows: rather than just :: we set \everyeof to ::{⟨code1 ⟩}
’::{⟨code2 ⟩} \s__tl_stop. The auxiliary __tl_set_rescan_single:NNww runs the
o-expanding assignment, expanding either ⟨code1⟩ or ⟨code2⟩ before its the main argu-
ment #3. In the typical case without comment character, ⟨code1⟩ is expanded, removing
the leading ’. In the rarer case with comment character, ⟨code2⟩ is expanded, call-
ing __tl_set_rescan_single_aux:w, which removes the trailing ::{⟨code1 ⟩} and the
leading ’.

12399 \cs_new_protected:Npn __tl_set_rescan:nNN #1
12400 {
12401 \int_compare:nNnTF \tex_newlinechar:D < 0
12402 { \use_ii:nn }
12403 {
12404 \exp_args:Nnf \tl_if_in:nnTF {#1}
12405 { \char_generate:nn { \tex_newlinechar:D } { 12 } }
12406 }
12407 { __tl_set_rescan_multi:nNN }
12408 {
12409 \int_set:Nn \tex_endlinechar:D { -1 }
12410 __tl_set_rescan_single:nnNN { ‘’ }
12411 }
12412 {#1}
12413 }
12414 \cs_new_protected:Npn __tl_set_rescan_single:nnNN #1

707

12415 {
12416 \int_compare:nNnTF
12417 { \char_value_catcode:n {#1} / 2 } = 6
12418 {
12419 \exp_args:Nof __tl_set_rescan_single_aux:nnnNN
12420 \c__tl_rescan_marker_tl
12421 { \char_generate:nn {#1} { \char_value_catcode:n {#1} } }
12422 }
12423 {
12424 \int_compare:nNnTF {#1} < { ‘\~ }
12425 {
12426 \exp_args:Nf __tl_set_rescan_single:nnNN
12427 { \int_eval:n { #1 + 1 } }
12428 }
12429 { __tl_set_rescan_multi:nNN }
12430 }
12431 }
12432 \cs_new_protected:Npn __tl_set_rescan_single_aux:nnnNN #1#2#3#4#5
12433 {
12434 \tex_everyeof:D
12435 {
12436 #1 \use_none:n
12437 #2 #1 { \exp:w __tl_set_rescan_single_aux:w }
12438 \s__tl_stop
12439 }
12440 \cs_set:Npn __tl_rescan:NNw ##1##2##3 #2 #1 ##4 ##5 \s__tl_stop
12441 {
12442 \group_end:
12443 ##1 ##2 { ##4 ##3 }
12444 }
12445 \exp_after:wN __tl_rescan:NNw
12446 \exp_after:wN #4
12447 \exp_after:wN #5
12448 \tex_scantokens:D { #2 #3 #2 }
12449 }
12450 \exp_args:Nno \use:nn
12451 { \cs_new:Npn __tl_set_rescan_single_aux:w #1 }
12452 \c__tl_rescan_marker_tl #2
12453 { \use_i:nn \exp_end: #1 }

(End of definition for __tl_set_rescan:nNN and others.)

53.6 Modifying token list variables
\tl_replace_once:Nnn
\tl_replace_once:NVn
\tl_replace_once:NnV
\tl_replace_once:Nen
\tl_replace_once:Nne
\tl_replace_once:Nee
\tl_replace_once:Nxn
\tl_replace_once:Nnx
\tl_replace_once:Nxx
\tl_replace_once:cnn
\tl_replace_once:cVn
\tl_replace_once:cnV
\tl_replace_once:cen
\tl_replace_once:cne
\tl_replace_once:cee
\tl_replace_once:cxn
\tl_replace_once:cnx
\tl_replace_once:cxx

\tl_greplace_once:Nnn
\tl_greplace_once:NVn
\tl_greplace_once:NnV
\tl_greplace_once:Nen
\tl_greplace_once:Nne
\tl_greplace_once:Nee
\tl_greplace_once:Nxn
\tl_greplace_once:Nnx
\tl_greplace_once:Nxx
\tl_greplace_once:cnn
\tl_greplace_once:cVn
\tl_greplace_once:cnV
\tl_greplace_once:cen
\tl_greplace_once:cne
\tl_greplace_once:cee
\tl_greplace_once:cxn
\tl_greplace_once:cnx
\tl_greplace_once:cxx

\tl_replace_all:Nnn
\tl_replace_all:NVn
\tl_replace_all:NnV
\tl_replace_all:Nen
\tl_replace_all:Nne
\tl_replace_all:Nee
\tl_replace_all:Nxn
\tl_replace_all:Nnx
\tl_replace_all:Nxx
\tl_replace_all:cnn
\tl_replace_all:cVn
\tl_replace_all:cnV
\tl_replace_all:cen
\tl_replace_all:cne
\tl_replace_all:cee
\tl_replace_all:cxn
\tl_replace_all:cnx
\tl_replace_all:cxx
\tl_greplace_all:Nnn
\tl_greplace_all:NVn
\tl_greplace_all:NnV
\tl_greplace_all:Nen
\tl_greplace_all:Nne
\tl_greplace_all:Nee
\tl_greplace_all:Nxn
\tl_greplace_all:Nnx
\tl_greplace_all:Nxx
\tl_greplace_all:cnn
\tl_greplace_all:cVn
\tl_greplace_all:cnV
\tl_greplace_all:cen
\tl_greplace_all:cne
\tl_greplace_all:cee
\tl_greplace_all:cxn
\tl_greplace_all:cnx
\tl_greplace_all:cxx

All of the replace functions call __tl_replace:NnNNNnn with appropriate arguments.
The first two arguments are explained later. The next controls whether the replace-
ment function calls itself (__tl_replace_next:w) or stops (__tl_replace_wrap:w)
after the first replacement. Next comes an e-type assignment function \tl_set:Ne or
\tl_gset:Ne for local or global replacements. Finally, the three arguments ⟨tl var⟩
{⟨pattern⟩} {⟨replacement⟩} provided by the user. When describing the auxiliary func-
tions below, we denote the contents of the ⟨tl var⟩ by ⟨token list⟩.

12454 \cs_new_protected:Npn \tl_replace_once:Nnn
12455 { __tl_replace:NnNNNnn \q__tl_mark ? __tl_replace_wrap:w __kernel_tl_set:Nx }

708

12456 \cs_new_protected:Npn \tl_greplace_once:Nnn
12457 { __tl_replace:NnNNNnn \q__tl_mark ? __tl_replace_wrap:w __kernel_tl_gset:Nx }
12458 \cs_new_protected:Npn \tl_replace_all:Nnn
12459 { __tl_replace:NnNNNnn \q__tl_mark ? __tl_replace_next:w __kernel_tl_set:Nx }
12460 \cs_new_protected:Npn \tl_greplace_all:Nnn
12461 { __tl_replace:NnNNNnn \q__tl_mark ? __tl_replace_next:w __kernel_tl_gset:Nx }
12462 \cs_generate_variant:Nn \tl_replace_once:Nnn
12463 { NnV , Nne , NV , Ne , Nee , c , cnV , cne , cV , ce , cee }
12464 \cs_generate_variant:Nn \tl_replace_once:Nnn
12465 { Nx , Nnx , Nxx , cxn , cnx , cxx }
12466 \cs_generate_variant:Nn \tl_greplace_once:Nnn
12467 { NnV , Nne , NV , Ne , Nee , c , cnV , cne , cV , ce , cee }
12468 \cs_generate_variant:Nn \tl_greplace_once:Nnn
12469 { Nx , Nnx , Nxx , cxn , cnx , cxx }
12470 \cs_generate_variant:Nn \tl_replace_all:Nnn
12471 { NnV , Nne , NV , Ne , Nee , c , cnV , cne , cV , ce , cee }
12472 \cs_generate_variant:Nn \tl_replace_all:Nnn
12473 { Nx , Nnx , Nxx , cxn , cnx , cxx }
12474 \cs_generate_variant:Nn \tl_greplace_all:Nnn
12475 { NnV , Nne , NV , Ne , Nee , c , cnV , cne , cV , ce , cee }
12476 \cs_generate_variant:Nn \tl_greplace_all:Nnn
12477 { Nx , Nnx , Nxx , cxn , cnx , cxx }

(End of definition for \tl_replace_once:Nnn and others. These functions are documented on page 127.)

__tl_replace:NnNNNnn
__tl_replace_auxi:NnnNNNnn
__tl_replace_auxii:nNNNnn

__tl_replace_next:w
__tl_replace_next_aux:w

__tl_replace_wrap:w

To implement the actual replacement auxiliary __tl_replace_auxii:nNNNnn we need
a ⟨delimiter⟩ with the following properties:

• all occurrences of the ⟨pattern⟩ #6 in “⟨token list⟩ ⟨delimiter⟩” belong to the
⟨token list⟩ and have no overlap with the ⟨delimiter⟩,

• the first occurrence of the ⟨delimiter⟩ in “⟨token list⟩ ⟨delimiter⟩” is the
trailing ⟨delimiter⟩.

We first find the building blocks for the ⟨delimiter⟩, namely two tokens ⟨A⟩ and ⟨B⟩
such that ⟨A⟩ does not appear in #6 and #6 is not ⟨B⟩ (this condition is trivial if #6 has
more than one token). Then we consider the delimiters “⟨A⟩” and “⟨A⟩ ⟨A⟩n ⟨B⟩ ⟨A⟩n

⟨B⟩”, for n ≥ 1, where ⟨A⟩n denotes n copies of ⟨A⟩, and we choose as our ⟨delimiter⟩
the first one which is not in the ⟨token list⟩.

Every delimiter in the set obeys the first condition: #6 does not contain ⟨A⟩ hence
cannot be overlapping with the ⟨token list⟩ and the ⟨delimiter⟩, and it cannot be
within the ⟨delimiter⟩ since it would have to be in one of the two ⟨B⟩ hence be equal
to this single token (or empty, but this is an error case filtered separately). Given the
particular form of these delimiters, for which no prefix is also a suffix, the second condition
is actually a consequence of the weaker condition that the ⟨delimiter⟩ we choose does
not appear in the ⟨token list⟩. Additionally, the set of delimiters is such that a ⟨token
list⟩ of n tokens can contain at most O(n1/2) of them, hence we find a ⟨delimiter⟩
with at most O(n1/2) tokens in a time at most O(n3/2). Bear in mind that these upper
bounds are reached only in very contrived scenarios: we include the case “⟨A⟩” in the list
of delimiters to try, so that the ⟨delimiter⟩ is simply \q__tl_mark in the most common
situation where neither the ⟨token list⟩ nor the ⟨pattern⟩ contains \q__tl_mark.

Let us now ahead, optimizing for this most common case. First, two special cases:
an empty ⟨pattern⟩ #6 is an error, and if #1 is absent from both the ⟨token list⟩ #5

709

and the ⟨pattern⟩ #6 then we can use it as the ⟨delimiter⟩ through __tl_replace_-
auxii:nNNNnn {#1}. Otherwise, we end up calling __tl_replace:NnNNNnn repeatedly
with the first two arguments \q__tl_mark {?}, \? {??}, \?? {???}, and so on, until
#6 does not contain the control sequence #1, which we take as our ⟨A⟩. The argument #2
only serves to collect ? characters for #1. Note that the order of the tests means that the
first two are done every time, which is wasteful (for instance, we repeatedly test for the
emptyness of #6). However, this is rare enough not to matter. Finally, choose ⟨B⟩ to be
\q__tl_nil or \q__tl_stop such that it is not equal to #6.

The __tl_replace_auxi:NnnNNNnn auxiliary receives {⟨A⟩} and {⟨A⟩n⟨B⟩} as its
arguments, initially with n = 1. If “⟨A⟩ ⟨A⟩n⟨B⟩ ⟨A⟩n⟨B⟩” is in the ⟨token list⟩ then
increase n and try again. Once it is not anymore in the ⟨token list⟩ we take it as our
⟨delimiter⟩ and pass this to the auxii auxiliary.

12478 \cs_new_protected:Npn __tl_replace:NnNNNnn #1#2#3#4#5#6#7
12479 {
12480 \tl_if_empty:nTF {#6}
12481 {
12482 \msg_error:nne { kernel } { empty-search-pattern }
12483 { \tl_to_str:n {#7} }
12484 }
12485 {
12486 \tl_if_in:onTF { #5 #6 } {#1}
12487 {
12488 \tl_if_in:nnTF {#6} {#1}
12489 { \exp_args:Nc __tl_replace:NnNNNnn {#2} {#2?} }
12490 {
12491 __tl_quark_if_nil:nTF {#6}
12492 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \q__tl_stop } }
12493 { __tl_replace_auxi:NnnNNNnn #5 {#1} { #1 \q__tl_nil } }
12494 }
12495 }
12496 { __tl_replace_auxii:nNNNnn {#1} }
12497 #3#4#5 {#6} {#7}
12498 }
12499 }
12500 \cs_new_protected:Npn __tl_replace_auxi:NnnNNNnn #1#2#3
12501 {
12502 \tl_if_in:NnTF #1 { #2 #3 #3 }
12503 { __tl_replace_auxi:NnnNNNnn #1 { #2 #3 } {#2} }
12504 { __tl_replace_auxii:nNNNnn { #2 #3 #3 } }
12505 }

The auxiliary __tl_replace_auxii:nNNNnn receives the following arguments:

{⟨delimiter⟩} ⟨function⟩ ⟨assignment⟩
⟨tl var⟩ {⟨pattern⟩} {⟨replacement⟩}

All of its work is done between \group_align_safe_begin: and \group_align_safe_-
end: to avoid issues in alignments. It does the actual replacement within #3 #4 {...}, an
e-expanding ⟨assignment⟩ #3 to the ⟨tl var⟩ #4. The auxiliary __tl_replace_next:w
is called, followed by the ⟨token list⟩, some tokens including the ⟨delimiter⟩ #1,
followed by the ⟨pattern⟩ #5. This auxiliary finds an argument delimited by #5 (the
presence of a trailing #5 avoids runaway arguments) and calls __tl_replace_wrap:w
to test whether this #5 is found within the ⟨token list⟩ or is the trailing one.

710

If on the one hand it is found within the ⟨token list⟩, then ##1 cannot contain
the ⟨delimiter⟩ #1 that we worked so hard to obtain, thus __tl_replace_wrap:w
gets ##1 as its own argument ##1, and protects it against the e-expanding assignment.
It also finds \exp_not:n as ##2 and does nothing to it, thus letting through \exp_not:n
{⟨replacement⟩} into the assignment. Note that __tl_replace_next:w and __tl_-
replace_wrap:w are always called followed by two empty brace groups. These are safe
because no delimiter can match them. They prevent losing braces when grabbing delim-
ited arguments, but require the use of \exp_not:o and \use_none:nn, rather than simply
\exp_not:n. Afterwards, __tl_replace_next:w is called to repeat the replacement, or
__tl_replace_wrap:w if we only want a single replacement. In this second case, ##1
is the ⟨remaining tokens⟩ in the ⟨token list⟩ and ##2 is some ⟨ending code⟩ which
ends the assignment and removes the trailing tokens #5 using some \if_false: { \fi:
} trickery because #5 may contain any delimiter.

If on the other hand the argument ##1 of __tl_replace_next:w is delimited by the
trailing ⟨pattern⟩ #5, then ##1 is “{ } { } ⟨token list⟩ ⟨delimiter⟩ {⟨ending code⟩}”,
hence __tl_replace_wrap:w finds “{ } { } ⟨token list⟩” as ##1 and the ⟨ending
code⟩ as ##2. It leaves the ⟨token list⟩ into the assignment and unbraces the ⟨ending
code⟩ which removes what remains (essentially the ⟨delimiter⟩ and ⟨replacement⟩).

12506 \cs_new_protected:Npn __tl_replace_auxii:nNNNnn #1#2#3#4#5#6
12507 {
12508 \group_align_safe_begin:
12509 \cs_set:Npn __tl_replace_wrap:w ##1 #1 ##2
12510 { __kernel_exp_not:w \exp_after:wN { \use_none:nn ##1 } ##2 }
12511 \cs_set:Npe __tl_replace_next:w ##1 #5
12512 {
12513 \exp_not:N __tl_replace_wrap:w ##1
12514 \exp_not:n { #1 }
12515 \exp_not:n { \exp_not:n {#6} }
12516 \exp_not:n { #2 { } { } }
12517 }
12518 #3 #4
12519 {
12520 \exp_after:wN __tl_replace_next_aux:w
12521 #4
12522 #1
12523 {
12524 \if_false: { \fi: }
12525 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
12526 }
12527 #5
12528 }
12529 \group_align_safe_end:
12530 }
12531 \cs_new:Npn __tl_replace_next_aux:w { __tl_replace_next:w { } { } }
12532 \cs_new_eq:NN __tl_replace_wrap:w ?
12533 \cs_new_eq:NN __tl_replace_next:w ?

(End of definition for __tl_replace:NnNNNnn and others.)

\tl_regex_replace_once:Nnn
\tl_regex_replace_once:cnn
\tl_regex_replace_once:NNn
\tl_regex_replace_once:cNn

\tl_regex_greplace_once:Nnn
\tl_regex_greplace_once:cnn
\tl_regex_greplace_once:NNn
\tl_regex_greplace_once:cNn

\tl_regex_replace_all:Nnn
\tl_regex_replace_all:cnn
\tl_regex_replace_all:NNn
\tl_regex_replace_all:cNn
\tl_regex_greplace_all:Nnn
\tl_regex_greplace_all:cnn
\tl_regex_greplace_all:NNn
\tl_regex_greplace_all:cNn

Wrappers.
12534 \cs_new_protected:Npn \tl_regex_replace_once:Nnn #1#2#3
12535 { \regex_replace_once:nnN {#2} {#3} #1 }
12536 \cs_generate_variant:Nn \tl_regex_replace_once:Nnn { c }

711

12537 \cs_new_protected:Npn \tl_regex_replace_once:NNn #1#2#3
12538 { \regex_replace_once:NnN #2 {#3} #1 }
12539 \cs_generate_variant:Nn \tl_regex_replace_once:NNn { c }
12540 \cs_new_protected:Npn \tl_regex_replace_all:Nnn #1#2#3
12541 { \regex_replace_all:nnN {#2} {#3} #1 }
12542 \cs_generate_variant:Nn \tl_regex_replace_all:Nnn { c }
12543 \cs_new_protected:Npn \tl_regex_replace_all:NNn #1#2#3
12544 { \regex_replace_all:NnN #2 {#3} #1 }
12545 \cs_generate_variant:Nn \tl_regex_replace_all:NNn { c }
12546 \group_begin:
12547 \cs_set_protected:Npn __tl_tmp:w #1#2#3
12548 {
12549 \cs_new_protected:cpe { tl_regex_greplace_ #1 :N #2 n } ##1##2##3
12550 {
12551 \group_begin:
12552 \tl_set_eq:NN \exp_not:N \l__tl_internal_a_tl ##1
12553 \exp_not:c { regex_replace_ #1 :Nn #2 }
12554 #3 {##2} {##3} \exp_not:N \l__tl_internal_a_tl
12555 \tl_gset_eq:NN ##1 \exp_not:N \l__tl_internal_a_tl
12556 \group_end:
12557 }
12558 \cs_generate_variant:cn { tl_regex_greplace_ #1 :N #2 n } { c }
12559 }
12560 __tl_tmp:w { once } n { }
12561 __tl_tmp:w { once } N \use:n
12562 __tl_tmp:w { all } n { }
12563 __tl_tmp:w { all } N \use:n
12564 \group_end:

(End of definition for \tl_regex_replace_once:Nnn and others. These functions are documented on
page 128.)

\tl_remove_once:Nn
\tl_remove_once:NV
\tl_remove_once:Ne
\tl_remove_once:cn
\tl_remove_once:cV
\tl_remove_once:ce
\tl_gremove_once:Nn
\tl_gremove_once:NV
\tl_gremove_once:cn
\tl_gremove_once:cV

Removal is just a special case of replacement.
12565 \cs_new_protected:Npn \tl_remove_once:Nn #1#2
12566 { \tl_replace_once:Nnn #1 {#2} { } }
12567 \cs_new_protected:Npn \tl_gremove_once:Nn #1#2
12568 { \tl_greplace_once:Nnn #1 {#2} { } }
12569 \cs_generate_variant:Nn \tl_remove_once:Nn { NV , Ne , c , cV , ce }
12570 \cs_generate_variant:Nn \tl_gremove_once:Nn { NV , Ne , c , cV , ce }

(End of definition for \tl_remove_once:Nn and \tl_gremove_once:Nn. These functions are documented
on page 128.)

\tl_remove_all:Nn
\tl_remove_all:NV
\tl_remove_all:Ne
\tl_remove_all:Nx
\tl_remove_all:cn
\tl_remove_all:cV
\tl_remove_all:ce
\tl_remove_all:cx

\tl_gremove_all:Nn
\tl_gremove_all:NV
\tl_gremove_all:Ne
\tl_gremove_all:Nx
\tl_gremove_all:cn
\tl_gremove_all:cV
\tl_gremove_all:ce
\tl_gremove_all:cx

Removal is just a special case of replacement.
12571 \cs_new_protected:Npn \tl_remove_all:Nn #1#2
12572 { \tl_replace_all:Nnn #1 {#2} { } }
12573 \cs_new_protected:Npn \tl_gremove_all:Nn #1#2
12574 { \tl_greplace_all:Nnn #1 {#2} { } }
12575 \cs_generate_variant:Nn \tl_remove_all:Nn { NV , Ne , c , cV , ce }
12576 \cs_generate_variant:Nn \tl_remove_all:Nn { Nx , cx }
12577 \cs_generate_variant:Nn \tl_gremove_all:Nn { NV , Ne , c , cV , ce }
12578 \cs_generate_variant:Nn \tl_gremove_all:Nn { Nx , cx }

(End of definition for \tl_remove_all:Nn and \tl_gremove_all:Nn. These functions are documented
on page 129.)

712

53.7 Token list conditionals
\tl_if_empty_p:N
\tl_if_empty_p:c
\tl_if_empty:NTF
\tl_if_empty:cTF

These functions check whether the token list in the argument is empty and execute the
proper code from their argument(s).

12579 \prg_new_conditional:Npnn \tl_if_empty:N #1 { p , T , F , TF }
12580 {
12581 \if_meaning:w #1 \c_empty_tl
12582 \prg_return_true:
12583 \else:
12584 \prg_return_false:
12585 \fi:
12586 }
12587 \prg_generate_conditional_variant:Nnn \tl_if_empty:N
12588 { c } { p , T , F , TF }

(End of definition for \tl_if_empty:NTF. This function is documented on page 115.)

\tl_if_empty_p:n
\tl_if_empty_p:V
\tl_if_empty_p:e
\tl_if_empty:nTF
\tl_if_empty:VTF
\tl_if_empty:eTF

The \if:w triggers the expansion of \tl_to_str:n which converts the argument to a
string: this is empty if and only if the argument is. Then \if:w \scan_stop: ... \scan_stop:
is true if and only if the string ... is empty. It could be tempting to use
\if:w \scan_stop: #1 \scan_stop: directly. But this fails on a token list expand-
ing to anything starting with \scan_stop: leaving everything that follows in the input
stream.

12589 \prg_new_conditional:Npnn \tl_if_empty:n #1 { p , TF , T , F }
12590 {
12591 \if:w \scan_stop: \tl_to_str:n {#1} \scan_stop:
12592 \prg_return_true:
12593 \else:
12594 \prg_return_false:
12595 \fi:
12596 }
12597 \prg_generate_conditional_variant:Nnn \tl_if_empty:n
12598 { V , e } { p , TF , T , F }

(End of definition for \tl_if_empty:nTF. This function is documented on page 115.)

\tl_if_empty_p:o
\tl_if_empty:oTF

__tl_if_empty_if:o

The auxiliary function __tl_if_empty_if:o is for use in various token list condition-
als which reduce to testing if a given token list is empty after applying a simple func-
tion to it. The test for emptiness is based on \tl_if_empty:nTF, but the expansion
is hard-coded for efficiency, as this auxiliary function is used in several places. We
don’t put \prg_return_true: and so on in the definition of the auxiliary, because that
would prevent an optimization applied to conditionals that end with this code. Also the
\@@_if_empty_if:o is expanded once in \tl_if_empty:oTF for efficiency as well (and
to reduce code doubling).

12599 \cs_new:Npn __tl_if_empty_if:o #1
12600 {
12601 \if:w \scan_stop: __kernel_tl_to_str:w \exp_after:wN {#1} \scan_stop:
12602 }
12603 \exp_args:Nno \use:n
12604 { \prg_new_conditional:Npnn \tl_if_empty:o #1 { p , TF , T , F } }
12605 {
12606 __tl_if_empty_if:o {#1}
12607 \prg_return_true:

713

12608 \else:
12609 \prg_return_false:
12610 \fi:
12611 }

(End of definition for \tl_if_empty:nTF and __tl_if_empty_if:o. This function is documented on
page 115.)

\tl_if_blank_p:n
\tl_if_blank_p:V
\tl_if_blank_p:o
\tl_if_blank:nTF
\tl_if_blank:VTF
\tl_if_blank:oTF

__tl_if_blank_p:NNw

TEX skips spaces when reading a non-delimited arguments. Thus, a ⟨token list⟩ is
blank if and only if \use_none:n ⟨token list⟩ ? is empty after one expansion. The
auxiliary __tl_if_empty_if:o is a fast emptyness test, converting its argument to a
string (after one expansion) and using the test \if:w \scan_stop: ... \scan_stop:.

12612 \exp_args:Nno \use:n
12613 { \prg_new_conditional:Npnn \tl_if_blank:n #1 { p , T , F , TF } }
12614 {
12615 __tl_if_empty_if:o { \use_none:n #1 ? }
12616 \prg_return_true:
12617 \else:
12618 \prg_return_false:
12619 \fi:
12620 }
12621 \prg_generate_conditional_variant:Nnn \tl_if_blank:n
12622 { e , V , o } { p , T , F , TF }

(End of definition for \tl_if_blank:nTF and __tl_if_blank_p:NNw. This function is documented on
page 115.)

\tl_if_eq_p:NN
\tl_if_eq_p:Nc
\tl_if_eq_p:cN
\tl_if_eq_p:cc
\tl_if_eq:NNTF
\tl_if_eq:NcTF
\tl_if_eq:cNTF
\tl_if_eq:ccTF

Returns \c_true_bool if and only if the two token list variables are equal.
12623 \prg_new_eq_conditional:NNn \tl_if_eq:NN \cs_if_eq:NN { p , T , F , TF }
12624 \prg_generate_conditional_variant:Nnn \tl_if_eq:NN
12625 { Nc , c , cc } { p , TF , T , F }

(End of definition for \tl_if_eq:NNTF. This function is documented on page 115.)

\l__tl_internal_a_tl
\l__tl_internal_b_tl

Temporary storage.
12626 \tl_new:N \l__tl_internal_a_tl
12627 \tl_new:N \l__tl_internal_b_tl

(End of definition for \l__tl_internal_a_tl and \l__tl_internal_b_tl.)

\tl_if_eq:NnTF A simple store and compare routine.
12628 \prg_new_protected_conditional:Npnn \tl_if_eq:Nn #1#2 { T , F , TF }
12629 {
12630 \group_begin:
12631 \tl_set:Nn \l__tl_internal_b_tl {#2}
12632 \exp_after:wN
12633 \group_end:
12634 \if_meaning:w #1 \l__tl_internal_b_tl
12635 \prg_return_true:
12636 \else:
12637 \prg_return_false:
12638 \fi:
12639 }
12640 \prg_generate_conditional_variant:Nnn \tl_if_eq:Nn { c } { TF , T , F }

714

(End of definition for \tl_if_eq:NnTF. This function is documented on page 115.)

\tl_if_eq:nnTF
\tl_if_eq:nVTF
\tl_if_eq:neTF
\tl_if_eq:VnTF
\tl_if_eq:enTF
\tl_if_eq:eeTF
\tl_if_eq:xnTF
\tl_if_eq:nxTF
\tl_if_eq:xxTF

A simple store and compare routine.
12641 \prg_new_protected_conditional:Npnn \tl_if_eq:nn #1#2 { T , F , TF }
12642 {
12643 \group_begin:
12644 \tl_set:Nn \l__tl_internal_a_tl {#1}
12645 \tl_set:Nn \l__tl_internal_b_tl {#2}
12646 \exp_after:wN
12647 \group_end:
12648 \if_meaning:w \l__tl_internal_a_tl \l__tl_internal_b_tl
12649 \prg_return_true:
12650 \else:
12651 \prg_return_false:
12652 \fi:
12653 }
12654 \prg_generate_conditional_variant:Nnn \tl_if_eq:nn
12655 { nV , ne , nx , V, e , ee , x , xx }
12656 { TF , T , F }

(End of definition for \tl_if_eq:nnTF. This function is documented on page 116.)

\tl_if_in:NnTF
\tl_if_in:NVTF
\tl_if_in:NoTF
\tl_if_in:cnTF
\tl_if_in:cVTF
\tl_if_in:coTF

See \tl_if_in:nnTF for further comments. Here we simply expand the token list variable
and pass it to \tl_if_in:nnTF.

12657 \cs_new_protected:Npn \tl_if_in:NnT { \exp_args:No \tl_if_in:nnT }
12658 \cs_new_protected:Npn \tl_if_in:NnF { \exp_args:No \tl_if_in:nnF }
12659 \cs_new_protected:Npn \tl_if_in:NnTF { \exp_args:No \tl_if_in:nnTF }
12660 \prg_generate_conditional_variant:Nnn \tl_if_in:Nn
12661 { NV , No , c , cV , co } { T , F , TF }

(End of definition for \tl_if_in:NnTF. This function is documented on page 116.)

\tl_if_in:nnTF
\tl_if_in:VnTF
\tl_if_in:VVTF
\tl_if_in:onTF
\tl_if_in:ooTF
\tl_if_in:nVTF
\tl_if_in:noTF

Once more, the test relies on the emptiness test for robustness. The function __tl_-
tmp:w removes tokens until the first occurrence of #2. If this does not appear in #1, then
the final #2 is removed, leaving an empty token list. Otherwise some tokens remain, and
the test is false. See \tl_if_empty:nTF for details on the emptiness test.

Treating correctly cases like \tl_if_in:nnTF {a state}{states}, where #1#2 con-
tains #2 before the end, requires special care. To cater for this case, we insert {}{} be-
tween the two token lists. This marker may not appear in #2 because of TEX limitations
on what can delimit a parameter, hence we are safe. Using two brace groups makes the
test work also for empty arguments. The \if_false: constructions are a faster way to do
\group_align_safe_begin: and \group_align_safe_end:. The \scan_stop: ensures
that f-expanding \tl_if_in:nnTF does not lead to unbalanced braces.

12662 \prg_new_protected_conditional:Npnn \tl_if_in:nn #1#2 { T , F , TF }
12663 {
12664 \scan_stop:
12665 \if_false: { \fi:
12666 \cs_set:Npn __tl_tmp:w ##1 #2 { }
12667 \tl_if_empty:oTF { __tl_tmp:w #1 {} {} #2 }
12668 { \prg_return_false: } { \prg_return_true: }
12669 \if_false: } \fi:
12670 }
12671 \prg_generate_conditional_variant:Nnn \tl_if_in:nn
12672 { V , VV , o , oo , nV , no } { T , F , TF }

715

(End of definition for \tl_if_in:nnTF. This function is documented on page 116.)

\tl_if_novalue_p:n
\tl_if_novalue:nTF
__tl_if_novalue:w

Tests whether ##1 matches -NoValue- exactly (with suitable catcodes): this is similar
to \quark_if_nil:nTF. The first argument of __tl_if_novalue:w is empty if and
only if ##1 starts with -NoValue-, while the second argument is empty if ##1 is exactly
-NoValue- or if it has a question mark just following -NoValue-. In this second case,
however, the material after the first ?! remains and makes the emptyness test return
false.

12673 \cs_set_protected:Npn __tl_tmp:w #1
12674 {
12675 \prg_new_conditional:Npnn \tl_if_novalue:n ##1
12676 { p , T , F , TF }
12677 {
12678 __tl_if_empty_if:o { __tl_if_novalue:w {} ##1 {} ? ! #1 ? ? ! }
12679 \prg_return_true:
12680 \else:
12681 \prg_return_false:
12682 \fi:
12683 }
12684 \cs_new:Npn __tl_if_novalue:w ##1 #1 ##2 ? ##3 ? ! { ##1 ##2 }
12685 }
12686 \exp_args:No __tl_tmp:w { \c_novalue_tl }

(End of definition for \tl_if_novalue:nTF and __tl_if_novalue:w. This function is documented on
page 116.)

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF
\tl_if_single:cTF

Expand the token list and feed it to \tl_if_single:nTF.
12687 \cs_new:Npn \tl_if_single_p:N { \exp_args:No \tl_if_single_p:n }
12688 \cs_new:Npn \tl_if_single:NT { \exp_args:No \tl_if_single:nT }
12689 \cs_new:Npn \tl_if_single:NF { \exp_args:No \tl_if_single:nF }
12690 \cs_new:Npn \tl_if_single:NTF { \exp_args:No \tl_if_single:nTF }
12691 \prg_generate_conditional_variant:Nnn \tl_if_single:N {c} { p , T , F , TF }

(End of definition for \tl_if_single:NTF. This function is documented on page 116.)

\tl_if_single_p:n
\tl_if_single:nTF

__tl_if_single:nnw

This test is similar to \tl_if_empty:nTF. Expanding \use_none:nn #1 ?? once yields
an empty result if #1 is blank, a single ? if #1 has a single item, and otherwise yields
some tokens ending with ??. Then, __kernel_tl_to_str:w makes sure there are no
odd category codes. An earlier version would compare the result to a single ? using string
comparison, but the Lua call is slow in LuaTEX. Instead, __tl_if_single:nnw picks
the second token in front of it. If #1 is empty, this token is the trailing ? and the \if:w
test yields false. If #1 has a single item, the token is \scan_stop: and the \if:w test
yields true. Otherwise, it is one of the characters resulting from \tl_to_str:n, and the
\if:w test yields false. Note that \if:w and __kernel_tl_to_str:w are primitives
that take care of expansion.

12692 \prg_new_conditional:Npnn \tl_if_single:n #1 { p , T , F , TF }
12693 {
12694 \if:w \scan_stop: \exp_after:wN __tl_if_single:nnw
12695 __kernel_tl_to_str:w
12696 \exp_after:wN { \use_none:nn #1 ?? } \scan_stop: ? \s__tl_stop
12697 \prg_return_true:
12698 \else:
12699 \prg_return_false:

716

12700 \fi:
12701 }
12702 \cs_new:Npn __tl_if_single:nnw #1#2#3 \s__tl_stop {#2}

(End of definition for \tl_if_single:nTF and __tl_if_single:nnw. This function is documented on
page 116.)

\tl_if_single_token_p:n
\tl_if_single_token:nTF

There are four cases: empty token list, token list starting with a normal token, with a
brace group, or with a space token. If the token list starts with a normal token, remove
it and check for emptiness. For the next case, an empty token list is not a single token.
Finally, we have a non-empty token list starting with a space or a brace group. Applying
f-expansion yields an empty result if and only if the token list is a single space.

12703 \prg_new_conditional:Npnn \tl_if_single_token:n #1 { p , T , F , TF }
12704 {
12705 \tl_if_head_is_N_type:nTF {#1}
12706 { __tl_if_empty_if:o { \use_none:n #1 } }
12707 {
12708 \tl_if_empty:nTF {#1}
12709 { \if_false: }
12710 { __tl_if_empty_if:o { \exp:w \exp_end_continue_f:w #1 } }
12711 }
12712 \prg_return_true:
12713 \else:
12714 \prg_return_false:
12715 \fi:
12716 }

(End of definition for \tl_if_single_token:nTF. This function is documented on page 116.)

\tl_if_regex_match:nn
\tl_if_regex_match:Vn
\tl_if_regex_match:nN
\tl_if_regex_match:VN

12717 \prg_new_protected_conditional:Npnn \tl_if_regex_match:nn #1#2 { TF , T , F }
12718 {
12719 \regex_match:nnTF {#2} {#1}
12720 \prg_return_true: \prg_return_false:
12721 }
12722 \prg_generate_conditional_variant:Nnn \tl_if_regex_match:nn
12723 { V } { TF , T , F }
12724 \prg_new_protected_conditional:Npnn \tl_if_regex_match:nN #1#2 { TF , T , F }
12725 {
12726 \regex_match:nNTF {#2} #1
12727 \prg_return_true: \prg_return_false:
12728 }
12729 \prg_generate_conditional_variant:Nnn \tl_if_regex_match:nN
12730 { V } { TF , T , F }

(End of definition for \tl_if_regex_match:nn and \tl_if_regex_match:nN. These functions are docu-
mented on page ??.)

53.8 Mapping over token lists
\tl_map_function:nN
\tl_map_function:NN
\tl_map_function:cN

__tl_map_function:Nnnnnnnnn
__tl_map_function_end:w

__tl_use_none_delimit_by_s_stop:w

Expandable loop macro for token lists. We use the internal scan mark \s__tl_stop
(defined later), which is not allowed to show up in the token list #1 since it is internal to

717

l3tl. This allows us a very fast test of whether some ⟨item⟩ is the end-marker \s__tl_-
stop, namely call __tl_use_none_delimit_by_s_stop:w ⟨item⟩ ⟨function⟩ \s__-
tl_stop, which calls ⟨function⟩ if the ⟨item⟩ is the end-marker. To speed up the loop
even more, only test one out of eight items, and once we hit one of the eight end-markers,
go more slowly through the last few items of the list using __tl_map_function_end:w.

12731 \cs_new:Npn \tl_map_function:nN #1#2
12732 {
12733 __tl_map_function:Nnnnnnnnn #2 #1
12734 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12735 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12736 \prg_break_point:Nn \tl_map_break: { }
12737 }
12738 \cs_new:Npn \tl_map_function:NN
12739 { \exp_args:No \tl_map_function:nN }
12740 \cs_generate_variant:Nn \tl_map_function:NN { c }
12741 \cs_new:Npn __tl_map_function:Nnnnnnnnn #1#2#3#4#5#6#7#8#9
12742 {
12743 __tl_use_none_delimit_by_s_stop:w
12744 #9 __tl_map_function_end:w \s__tl_stop
12745 #1 {#2} #1 {#3} #1 {#4} #1 {#5} #1 {#6} #1 {#7} #1 {#8} #1 {#9}
12746 __tl_map_function:Nnnnnnnnn #1
12747 }
12748 \cs_new:Npn __tl_map_function_end:w \s__tl_stop #1#2
12749 {
12750 __tl_use_none_delimit_by_s_stop:w #2 \tl_map_break: \s__tl_stop
12751 #1 {#2}
12752 __tl_map_function_end:w \s__tl_stop
12753 }
12754 \cs_new:Npn __tl_use_none_delimit_by_s_stop:w #1 \s__tl_stop { }

(End of definition for \tl_map_function:nN and others. These functions are documented on page 121.)

\tl_map_inline:nn
\tl_map_inline:Nn
\tl_map_inline:cn

The inline functions are straight forward by now. We use a little trick with the counter
\g__kernel_prg_map_int to make them nestable. We can also make use of __tl_-
map_function:Nnnnnnnnn from before.

12755 \cs_new_protected:Npn \tl_map_inline:nn #1#2
12756 {
12757 \int_gincr:N \g__kernel_prg_map_int
12758 \cs_gset_protected:cpn
12759 { __tl_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
12760 \exp_args:Nc __tl_map_function:Nnnnnnnnn
12761 { __tl_map_ \int_use:N \g__kernel_prg_map_int :w }
12762 #1
12763 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12764 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12765 \prg_break_point:Nn \tl_map_break:
12766 { \int_gdecr:N \g__kernel_prg_map_int }
12767 }
12768 \cs_new_protected:Npn \tl_map_inline:Nn
12769 { \exp_args:No \tl_map_inline:nn }
12770 \cs_generate_variant:Nn \tl_map_inline:Nn { c }

(End of definition for \tl_map_inline:nn and \tl_map_inline:Nn. These functions are documented on
page 121.)

718

\tl_map_tokens:nn
\tl_map_tokens:Nn
\tl_map_tokens:cn

__tl_map_tokens:nnnnnnnnn
__tl_map_tokens_end:w

Much like the function mapping.
12771 \cs_new:Npn \tl_map_tokens:nn #1#2
12772 {
12773 __tl_map_tokens:nnnnnnnnn {#2} #1
12774 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12775 \s__tl_stop \s__tl_stop \s__tl_stop \s__tl_stop
12776 \prg_break_point:Nn \tl_map_break: { }
12777 }
12778 \cs_new:Npn \tl_map_tokens:Nn
12779 { \exp_args:No \tl_map_tokens:nn }
12780 \cs_generate_variant:Nn \tl_map_tokens:Nn { c }
12781 \cs_new:Npn __tl_map_tokens:nnnnnnnnn #1#2#3#4#5#6#7#8#9
12782 {
12783 __tl_use_none_delimit_by_s_stop:w
12784 #9 __tl_map_tokens_end:w \s__tl_stop
12785 \use:n {#1} {#2} \use:n {#1} {#3} \use:n {#1} {#4} \use:n {#1} {#5}
12786 \use:n {#1} {#6} \use:n {#1} {#7} \use:n {#1} {#8} \use:n {#1} {#9}
12787 __tl_map_tokens:nnnnnnnnn {#1}
12788 }
12789 \cs_new:Npn __tl_map_tokens_end:w \s__tl_stop \use:n #1#2
12790 {
12791 __tl_use_none_delimit_by_s_stop:w #2 \tl_map_break: \s__tl_stop
12792 #1 {#2}
12793 __tl_map_tokens_end:w \s__tl_stop
12794 }

(End of definition for \tl_map_tokens:nn and others. These functions are documented on page 122.)

\tl_map_variable:nNn
\tl_map_variable:NNn
\tl_map_variable:cNn

__tl_map_variable:Nnn

\tl_map_variable:nNn {⟨token list⟩} ⟨tl var⟩ {⟨action⟩} assigns ⟨tl var⟩ to each
element and executes ⟨action⟩. The assignment to ⟨tl var⟩ is done after the quark test
so that this variable does not get set to a quark.

12795 \cs_new_protected:Npn \tl_map_variable:nNn #1#2#3
12796 { \tl_map_tokens:nn {#1} { __tl_map_variable:Nnn #2 {#3} } }
12797 \cs_new_protected:Npn __tl_map_variable:Nnn #1#2#3
12798 { \tl_set:Nn #1 {#3} #2 }
12799 \cs_new_protected:Npn \tl_map_variable:NNn
12800 { \exp_args:No \tl_map_variable:nNn }
12801 \cs_generate_variant:Nn \tl_map_variable:NNn { c }

(End of definition for \tl_map_variable:nNn , \tl_map_variable:NNn , and __tl_map_variable:Nnn.
These functions are documented on page 122.)

\tl_map_break:
\tl_map_break:n

The break statements use the general \prg_map_break:Nn.
12802 \cs_new:Npn \tl_map_break:
12803 { \prg_map_break:Nn \tl_map_break: { } }
12804 \cs_new:Npn \tl_map_break:n
12805 { \prg_map_break:Nn \tl_map_break: }

(End of definition for \tl_map_break: and \tl_map_break:n. These functions are documented on page
122.)

719

53.9 Using token lists
\tl_to_str:n
\tl_to_str:o
\tl_to_str:V
\tl_to_str:v
\tl_to_str:e

Another name for a primitive: defined in l3basics.
12806 \cs_generate_variant:Nn \tl_to_str:n { o , V , v , e }

(End of definition for \tl_to_str:n. This function is documented on page 118.)

\tl_to_str:N
\tl_to_str:c

These functions return the replacement text of a token list as a string.
12807 \cs_new:Npn \tl_to_str:N #1 { __kernel_tl_to_str:w \exp_after:wN {#1} }
12808 \cs_generate_variant:Nn \tl_to_str:N { c }

(End of definition for \tl_to_str:N. This function is documented on page 119.)

\tl_use:N
\tl_use:c

Token lists which are simply not defined give a clear TEX error here. No such luck for
ones equal to \scan_stop: so instead a test is made and if there is an issue an error is
forced.

12809 \cs_new:Npn \tl_use:N #1
12810 {
12811 \tl_if_exist:NTF #1 {#1}
12812 {
12813 \msg_expandable_error:nnn
12814 { kernel } { bad-variable } {#1}
12815 }
12816 }
12817 \cs_generate_variant:Nn \tl_use:N { c }

(End of definition for \tl_use:N. This function is documented on page 119.)

53.10 Working with the contents of token lists
\tl_count:n
\tl_count:V
\tl_count:v
\tl_count:e
\tl_count:o
\tl_count:N
\tl_count:c

__tl_count:n

Count number of elements within a token list or token list variable. Brace groups within
the list are read as a single element. Spaces are ignored. __tl_count:n grabs the
element and replaces it by +1. The 0 ensures that it works on an empty list.

12818 \cs_new:Npn \tl_count:n #1
12819 {
12820 \int_eval:n
12821 { 0 \tl_map_function:nN {#1} __tl_count:n }
12822 }
12823 \cs_new:Npn \tl_count:N #1
12824 {
12825 \int_eval:n
12826 { 0 \tl_map_function:NN #1 __tl_count:n }
12827 }
12828 \cs_new:Npn __tl_count:n #1 { + 1 }
12829 \cs_generate_variant:Nn \tl_count:n { V , v , e , o }
12830 \cs_generate_variant:Nn \tl_count:N { c }

(End of definition for \tl_count:n , \tl_count:N , and __tl_count:n. These functions are documented
on page 119.)

720

\tl_count_tokens:n
__tl_act_count_normal:nN
__tl_act_count_group:nn
__tl_act_count_space:n

The token count is computed through an \int_eval:n construction. Each 1+ is output
to the left, into the integer expression, and the sum is ended by the \exp_end: inserted
by __tl_act_end:wn (which is technically implemented as \c_zero_int). Somewhat a
hack!

12831 \cs_new:Npn \tl_count_tokens:n #1
12832 {
12833 \int_eval:n
12834 {
12835 __tl_act:NNNn
12836 __tl_act_count_normal:N
12837 __tl_act_count_group:n
12838 __tl_act_count_space:
12839 {#1}
12840 }
12841 }
12842 \cs_new:Npn __tl_act_count_normal:N #1 { 1 + }
12843 \cs_new:Npn __tl_act_count_space: { 1 + }
12844 \cs_new:Npn __tl_act_count_group:n #1 { 2 + \tl_count_tokens:n {#1} + }

(End of definition for \tl_count_tokens:n and others. This function is documented on page 119.)

\tl_reverse_items:n
__tl_reverse_items:nwNwn

__tl_reverse_items:wn

Reversal of a token list is done by taking one item at a time and putting it after \s__-
tl_stop.

12845 \cs_new:Npn \tl_reverse_items:n #1
12846 {
12847 __tl_reverse_items:nwNwn #1 ?
12848 \s__tl_mark __tl_reverse_items:nwNwn
12849 \s__tl_mark __tl_reverse_items:wn
12850 \s__tl_stop { }
12851 }
12852 \cs_new:Npn __tl_reverse_items:nwNwn #1 #2 \s__tl_mark #3 #4 \s__tl_stop #5
12853 {
12854 #3 #2
12855 \s__tl_mark __tl_reverse_items:nwNwn
12856 \s__tl_mark __tl_reverse_items:wn
12857 \s__tl_stop { {#1} #5 }
12858 }
12859 \cs_new:Npn __tl_reverse_items:wn #1 \s__tl_stop #2
12860 { __kernel_exp_not:w \exp_after:wN { \use_none:nn #2 } }

(End of definition for \tl_reverse_items:n , __tl_reverse_items:nwNwn , and __tl_reverse_items:wn.
This function is documented on page 120.)

\tl_trim_spaces:n
\tl_trim_spaces:V
\tl_trim_spaces:v
\tl_trim_spaces:e
\tl_trim_spaces:o

\tl_trim_spaces_apply:nN
\tl_trim_spaces_apply:oN

\tl_trim_spaces:N
\tl_trim_spaces:c

\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

Trimming spaces from around the input is deferred to an internal function whose first
argument is the token list to trim, augmented by an initial __tl_trim_mark:, and whose
second argument is a ⟨continuation⟩, which receives as a braced argument __tl_-
trim_mark: ⟨trimmed token list⟩. The control sequence __tl_trim_mark: expands
to nothing in a single expansion. In the case at hand, we take __kernel_exp_not:w
\exp_after:wN as our continuation, so that space trimming behaves correctly within an
e-type or x-type expansion.

12861 \cs_new:Npn \tl_trim_spaces:n #1
12862 {
12863 __tl_trim_spaces:nn
12864 { __tl_trim_mark: #1 }

721

12865 { __kernel_exp_not:w \exp_after:wN }
12866 }
12867 \cs_generate_variant:Nn \tl_trim_spaces:n { V , v , e , o }
12868 \cs_new:Npn \tl_trim_spaces_apply:nN #1#2
12869 { __tl_trim_spaces:nn { __tl_trim_mark: #1 } { \exp_args:No #2 } }
12870 \cs_generate_variant:Nn \tl_trim_spaces_apply:nN { o }
12871 \cs_new_protected:Npn \tl_trim_spaces:N #1
12872 { __kernel_tl_set:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }
12873 \cs_new_protected:Npn \tl_gtrim_spaces:N #1
12874 { __kernel_tl_gset:Nx #1 { \exp_args:No \tl_trim_spaces:n {#1} } }
12875 \cs_generate_variant:Nn \tl_trim_spaces:N { c }
12876 \cs_generate_variant:Nn \tl_gtrim_spaces:N { c }

__tl_trim_spaces:nn
__tl_trim_spaces_auxi:w
__tl_trim_spaces_auxii:w
__tl_trim_spaces_auxiii:w
__tl_trim_spaces_auxiv:w

__tl_trim_mark:

Trimming spaces from around the input is done using delimited arguments and quarks,
and to get spaces at odd places in the definitions, we nest those in __tl_tmp:w, which
then receives a single space as its argument: #1 is ␣. Removing leading spaces is done
with __tl_trim_spaces_auxi:w, which loops until __tl_trim_mark:␣ matches the
end of the token list: then ##1 is the token list and ##3 is __tl_trim_spaces_auxii:w.
This hands the relevant tokens to the loop __tl_trim_spaces_auxiii:w, responsible
for trimming trailing spaces. The end is reached when ␣ \s__tl_nil matches the one
present in the definition of \tl_trim_spaces:n. Then __tl_trim_spaces_auxiv:w
puts the token list into a group, with a lingering __tl_trim_mark: at the start (which
will expand to nothing in one step of expansion), and feeds this to the ⟨continuation⟩.

12877 \cs_set_protected:Npn __tl_tmp:w #1
12878 {
12879 \cs_new:Npn __tl_trim_spaces:nn ##1
12880 {
12881 __tl_trim_spaces_auxi:w
12882 ##1
12883 \s__tl_nil
12884 __tl_trim_mark: #1 { }
12885 __tl_trim_mark: __tl_trim_spaces_auxii:w
12886 __tl_trim_spaces_auxiii:w
12887 #1 \s__tl_nil
12888 __tl_trim_spaces_auxiv:w
12889 \s__tl_stop
12890 }
12891 \cs_new:Npn
12892 __tl_trim_spaces_auxi:w ##1 __tl_trim_mark: #1 ##2 __tl_trim_mark: ##3
12893 {
12894 ##3
12895 __tl_trim_spaces_auxi:w
12896 __tl_trim_mark:
12897 ##2
12898 __tl_trim_mark: #1 {##1}
12899 }
12900 \cs_new:Npn __tl_trim_spaces_auxii:w
12901 __tl_trim_spaces_auxi:w __tl_trim_mark: __tl_trim_mark: ##1
12902 {
12903 __tl_trim_spaces_auxiii:w
12904 ##1
12905 }
12906 \cs_new:Npn __tl_trim_spaces_auxiii:w ##1 #1 \s__tl_nil ##2

722

12907 {
12908 ##2
12909 ##1 \s__tl_nil
12910 __tl_trim_spaces_auxiii:w
12911 }
12912 \cs_new:Npn __tl_trim_spaces_auxiv:w ##1 \s__tl_nil ##2 \s__tl_stop ##3
12913 { ##3 { ##1 } }
12914 \cs_new:Npn __tl_trim_mark: {}
12915 }
12916 __tl_tmp:w { ~ }

(End of definition for \tl_trim_spaces:n and others. These functions are documented on page 120.)

\tl_sort:Nn
\tl_sort:cn

\tl_gsort:Nn
\tl_gsort:cn
\tl_sort:nN

Implemented in l3sort.

(End of definition for \tl_sort:Nn , \tl_gsort:Nn , and \tl_sort:nN. These functions are documented
on page 127.)

53.11 The first token from a token list
\tl_head:N
\tl_head:n
\tl_head:V
\tl_head:v
\tl_head:f

__tl_head_auxi:nw
__tl_head_auxii:n

\tl_head:w
__tl_tl_head:w

\tl_tail:N
\tl_tail:n
\tl_tail:V
\tl_tail:v
\tl_tail:f

Finding the head of a token list expandably always strips braces, which is fine as this is
consistent with for example mapping over a list. The empty brace groups in \tl_head:n
ensure that a blank argument gives an empty result. The result is returned within the
\unexpanded primitive. The approach here is to use \if_false: to allow us to use } as
the closing delimiter: this is the only safe choice, as any other token would not be able
to parse it’s own code. More detail in http://tex.stackexchange.com/a/70168.

12917 \cs_new:Npn \tl_head:n #1
12918 {
12919 __kernel_exp_not:w \tex_expanded:D
12920 { { \if_false: { \fi: __tl_head_aux:n #1 { } } } }
12921 }
12922 \cs_new:Npn __tl_head_aux:n #1
12923 {
12924 __kernel_exp_not:w {#1}
12925 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
12926 }
12927 \cs_generate_variant:Nn \tl_head:n { V , v , f }
12928 \cs_new:Npn \tl_head:w #1#2 \q_stop {#1}
12929 \cs_new:Npn __tl_tl_head:w #1#2 \s__tl_stop {#1}
12930 \cs_new:Npn \tl_head:N { \exp_args:No \tl_head:n }

To correctly leave the tail of a token list, it’s important not to absorb any of the tail part
as an argument. For example, the simple definition

\cs_new:Npn \tl_tail:n #1 { \tl_tail:w #1 \q_stop }
\cs_new:Npn \tl_tail:w #1#2 \q_stop

would give the wrong result for \tl_tail:n { a { bc } } (the braces would be
stripped). Thus the only safe way to proceed is to first check that there is an item to grab
(i.e. that the argument is not blank) and assuming there is to dispose of the first item.
As with \tl_head:n, the result is protected from further expansion by \unexpanded.
While we could optimise the test here, this would leave some tokens “banned” in the
input, which we do not have with this definition.

723

http://tex.stackexchange.com/a/70168

12931 \exp_args:Nno \use:n { \cs_new:Npn \tl_tail:n #1 }
12932 {
12933 \exp_after:wN __kernel_exp_not:w
12934 \tl_if_blank:nTF {#1}
12935 { { } }
12936 { \exp_after:wN { \use_none:n #1 } }
12937 }
12938 \cs_generate_variant:Nn \tl_tail:n { V , v , f }
12939 \cs_new:Npn \tl_tail:N { \exp_args:No \tl_tail:n }

(End of definition for \tl_head:N and others. These functions are documented on page 123.)

\tl_if_head_eq_meaning_p:nN
\tl_if_head_eq_meaning_p:VN
\tl_if_head_eq_meaning_p:eN
\tl_if_head_eq_meaning:nNTF
\tl_if_head_eq_meaning:VNTF
\tl_if_head_eq_meaning:eNTF
\tl_if_head_eq_charcode_p:nN
\tl_if_head_eq_charcode_p:VN
\tl_if_head_eq_charcode_p:eN
\tl_if_head_eq_charcode_p:fN
\tl_if_head_eq_charcode:nNTF
\tl_if_head_eq_charcode:VNTF
\tl_if_head_eq_charcode:eNTF
\tl_if_head_eq_charcode:fNTF
\tl_if_head_eq_catcode_p:nN
\tl_if_head_eq_catcode_p:VN
\tl_if_head_eq_catcode_p:eN
\tl_if_head_eq_catcode_p:oN
\tl_if_head_eq_catcode:nNTF
\tl_if_head_eq_catcode:VNTF
\tl_if_head_eq_catcode:eNTF
\tl_if_head_eq_catcode:oNTF

__tl_head_exp_not:w
__tl_if_head_eq_empty_arg:w

Accessing the first token of a token list is tricky in three cases: when it has category code
1 (begin-group token), when it is an explicit space, with category code 10 and character
code 32, or when the token list is empty (obviously).

Forgetting temporarily about this issue we would use the following test in \tl_if_-
head_eq_charcode:nN. Here, \tl_head:w yields the first token of the token list, then
passed to \exp_not:N.

\if_charcode:w
\exp_after:wN \exp_not:N \tl_head:w #1 \q_nil \q_stop
\exp_not:N #2

The two first special cases are detected by testing if the token list starts with an N-type
token (the extra ? sends empty token lists to the true branch of this test). In those cases,
the first token is a character, and since we only care about its character code, we can use
\str_head:n to access it (this works even if it is a space character). An empty argument
results in \tl_head:w leaving two token: ^ and __tl_if_head_eq_empty_arg:w which
will result in the \if_charcode:w test being false and remove \exp_not:N and #2.

12940 \prg_new_conditional:Npnn \tl_if_head_eq_charcode:nN #1#2 { p , T , F , TF }
12941 {
12942 \if_charcode:w
12943 \tl_if_head_is_N_type:nTF { #1 ? }
12944 { __tl_head_exp_not:w #1 { ^ __tl_if_head_eq_empty_arg:w } \s__tl_stop }
12945 { \str_head:n {#1} }
12946 \exp_not:N #2
12947 \prg_return_true:
12948 \else:
12949 \prg_return_false:
12950 \fi:
12951 }
12952 \prg_generate_conditional_variant:Nnn \tl_if_head_eq_charcode:nN
12953 { V , e , f } { p , TF , T , F }

For \tl_if_head_eq_catcode:nN, again we detect special cases with a \tl_if_head_-
is_N_type:n. Then we need to test if the first token is a begin-group token or an
explicit space token, and produce the relevant token, either \c_group_begin_token or
\c_space_token. Again, for an empty argument, a hack is used, removing the token
given by the user and leaving two tokens in the input stream which will make the \if_-
catcode:w test return false.

12954 \prg_new_conditional:Npnn \tl_if_head_eq_catcode:nN #1 #2 { p , T , F , TF }
12955 {
12956 \if_catcode:w
12957 \tl_if_head_is_N_type:nTF { #1 ? }

724

12958 { __tl_head_exp_not:w #1 { ^ __tl_if_head_eq_empty_arg:w } \s__tl_stop }
12959 {
12960 \tl_if_head_is_group:nTF {#1}
12961 \c_group_begin_token
12962 \c_space_token
12963 }
12964 \exp_not:N #2
12965 \prg_return_true:
12966 \else:
12967 \prg_return_false:
12968 \fi:
12969 }
12970 \prg_generate_conditional_variant:Nnn \tl_if_head_eq_catcode:nN
12971 { V , e , o } { p , TF , T , F }

For \tl_if_head_eq_meaning:nN, again, detect special cases. In the normal case, use
\tl_head:w, with no \exp_not:N this time, since \if_meaning:w causes no expan-
sion. With an empty argument, the test is true, and \use_none:nnn removes #2 and
\prg_return_true: and \else: (it is safe this way here as in this case \prg_new_-
conditional:Npnn didn’t optimize these two away). In the special cases, we know that
the first token is a character, hence \if_charcode:w and \if_catcode:w together are
enough. We combine them in some order, hopefully faster than the reverse. Tests are
not nested because the arguments may contain unmatched primitive conditionals.

12972 \prg_new_conditional:Npnn \tl_if_head_eq_meaning:nN #1#2 { p , T , F , TF }
12973 {
12974 \tl_if_head_is_N_type:nTF { #1 ? }
12975 __tl_if_head_eq_meaning_normal:nN
12976 __tl_if_head_eq_meaning_special:nN
12977 {#1} #2
12978 }
12979 \prg_generate_conditional_variant:Nnn \tl_if_head_eq_meaning:nN
12980 { V , e } { p , TF , T , F }
12981 \cs_new:Npn __tl_if_head_eq_meaning_normal:nN #1 #2
12982 {
12983 \exp_after:wN \if_meaning:w
12984 __tl_tl_head:w #1 { ?? \use_none:nnn } \s__tl_stop #2
12985 \prg_return_true:
12986 \else:
12987 \prg_return_false:
12988 \fi:
12989 }
12990 \cs_new:Npn __tl_if_head_eq_meaning_special:nN #1 #2
12991 {
12992 \if_charcode:w \str_head:n {#1} \exp_not:N #2
12993 \exp_after:wN \use_ii:nn
12994 \else:
12995 \prg_return_false:
12996 \fi:
12997 \use_none:n
12998 {
12999 \if_catcode:w \exp_not:N #2
13000 \tl_if_head_is_group:nTF {#1}
13001 { \c_group_begin_token }
13002 { \c_space_token }

725

13003 \prg_return_true:
13004 \else:
13005 \prg_return_false:
13006 \fi:
13007 }
13008 }

Both \tl_if_head_eq_charcode:nN and \tl_if_head_eq_catcode:nN will need to
get the first token of their argument and apply \exp_not:N to it. __tl_head_exp_not:w
does exactly that.

13009 \cs_new:Npn __tl_head_exp_not:w #1 #2 \s__tl_stop
13010 { \exp_not:N #1 }

If the argument of \tl_if_head_eq_charcode:nN and \tl_if_head_eq_catcode:nN
was empty __tl_if_head_eq_empty_arg:w will be left in the input stream. This macro
has to remove \exp_not:N and the following token from the input stream to make sure
no unbalanced if-construct is created and leave tokens there which make the two tests
return false.

13011 \cs_new:Npn __tl_if_head_eq_empty_arg:w \exp_not:N #1
13012 { ? }

(End of definition for \tl_if_head_eq_meaning:nNTF and others. These functions are documented on
page 117.)

\tl_if_head_is_N_type_p:n
\tl_if_head_is_N_type:nTF

__tl_if_head_is_N_type_auxi:w
__tl_if_head_is_N_type_auxii:n

A token list can be empty, can start with an explicit space character (catcode 10 and
charcode 32), can start with a begin-group token (catcode 1), or start with an N-type
argument. In the first two cases, and when #1~ starts with {}~, __tl_if_head_is_-
N_type_auxi:w receives an empty argument hence produces f and removes everything
before the first \scan_stop:. In the third case (except when #1~ starts with {}~), the
second auxiliary removes the first copy of #1 that was used for the space test, then expands
\token_to_str:N which hits the leading begin-group token, leaving a single closing brace
to be compared with \scan_stop:. In the last case, \token_to_str:N does not change
the brace balance so that only \scan_stop: \scan_stop: remain, making the character
code test true. One cannot optimize by moving one of the \scan_stop: to the beginning:
if #1 contains primitive conditionals, all of its occurrences must be dealt with before the
\if:w tries to skip the true branch of the conditional.

13013 \prg_new_conditional:Npnn \tl_if_head_is_N_type:n #1 { p , T , F , TF }
13014 {
13015 \if:w
13016 \if_false: { \fi: __tl_if_head_is_N_type_auxi:w #1 ~ }
13017 { \exp_after:wN { \token_to_str:N #1 } }
13018 \scan_stop: \scan_stop:
13019 \prg_return_true:
13020 \else:
13021 \prg_return_false:
13022 \fi:
13023 }
13024 \exp_args:Nno \use:n { \cs_new:Npn __tl_if_head_is_N_type_auxi:w #1 ~ }
13025 {
13026 \tl_if_empty:nTF {#1}
13027 { f \exp_after:wN \use_none:nn }
13028 { \exp_after:wN __tl_if_head_is_N_type_auxii:n }
13029 \exp_after:wN { \if_false: } \fi:
13030 }

726

13031 \cs_new:Npn __tl_if_head_is_N_type_auxii:n #1
13032 { \exp_after:wN \use_none:n \exp_after:wN }

(End of definition for \tl_if_head_is_N_type:nTF , __tl_if_head_is_N_type_auxi:w , and __tl_if_-
head_is_N_type_auxii:n. This function is documented on page 118.)

\tl_if_head_is_group_p:n
\tl_if_head_is_group:nTF

__tl_if_head_is_group_fi_false:w

Pass the first token of #1 through \token_to_str:N, then check for the brace balance.
The extra ? caters for an empty argument. This could be made faster, but we need all
brace tricks to happen in one step of expansion, keeping the token list brace balanced at
all times.

13033 \prg_new_conditional:Npnn \tl_if_head_is_group:n #1 { p , T , F , TF }
13034 {
13035 \if:w
13036 \exp_after:wN \use_none:n
13037 \exp_after:wN { \exp_after:wN { \token_to_str:N #1 ? } }
13038 \scan_stop: \scan_stop:
13039 __tl_if_head_is_group_fi_false:w
13040 \fi:
13041 \if_true:
13042 \prg_return_true:
13043 \else:
13044 \prg_return_false:
13045 \fi:
13046 }
13047 \cs_new:Npn __tl_if_head_is_group_fi_false:w \fi: \if_true: { \fi: \if_false: }

(End of definition for \tl_if_head_is_group:nTF and __tl_if_head_is_group_fi_false:w. This func-
tion is documented on page 117.)

\tl_if_head_is_space_p:n
\tl_if_head_is_space:nTF
__tl_if_head_is_space:w

The auxiliary’s argument is all that is before the first explicit space in \prg_do_nothing:#1?~.
If that is a single \prg_do_nothing: the test yields true. Otherwise, that is more
than one token, and the test yields false. The work is done within braces (with an
\if_false: { \fi: ... } construction) both to hide potential alignment tab charac-
ters from TEX in a table, and to allow for removing what remains of the token list after
its first space. The use of \if:w ensures that the result of a single step of expansion
directly yields a balanced token list (no trailing closing brace).

13048 \prg_new_conditional:Npnn \tl_if_head_is_space:n #1 { p , T , F , TF }
13049 {
13050 \if:w
13051 \if_false: { \fi: __tl_if_head_is_space:w \prg_do_nothing: #1 ? ~ }
13052 \scan_stop: \scan_stop:
13053 \prg_return_true:
13054 \else:
13055 \prg_return_false:
13056 \fi:
13057 }
13058 \exp_args:Nno \use:n { \cs_new:Npn __tl_if_head_is_space:w #1 ~ }
13059 {
13060 __tl_if_empty_if:o {#1} \else: f \fi:
13061 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi:
13062 }

(End of definition for \tl_if_head_is_space:nTF and __tl_if_head_is_space:w. This function is
documented on page 118.)

727

53.12 Token by token changes
\s__tl_act_stop The __tl_act_... functions may be applied to any token list. Hence, we use a private

quark, to allow any token, even quarks, in the token list. Only \s__tl_act_stop may
not appear in the token lists manipulated by __tl_act:NNNn functions.

13063 \scan_new:N \s__tl_act_stop

(End of definition for \s__tl_act_stop.)

__tl_act:NNNn
__tl_act_output:n

__tl_act_reverse_output:n
__tl_act_loop:w

__tl_act_normal:NwNNN
__tl_act_group:nwNNN
__tl_act_space:wwNNN

__tl_act_end:wn
__tl_act_if_head_is_space:nTF

__tl_act_if_head_is_space:w
__tl_act_if_head_is_space_true:w

__tl_use_none_delimit_by_q_act_stop:w

To help control the expansion, __tl_act:NNNn should always be preceded by \exp:w
and ends by producing \exp_end: once the result has been obtained. This way no internal
token of it can be accidentally end up in the input stream. Because \s__tl_act_stop
can’t appear without braces around it in the argument #1 of __tl_act_loop:w, we can
use this marker to set up a fast test for leading spaces.

13064 \cs_set_protected:Npn __tl_tmp:w #1
13065 {
13066 \cs_new:Npn __tl_act_if_head_is_space:nTF ##1
13067 {
13068 __tl_act_if_head_is_space:w
13069 \s__tl_act_stop ##1 \s__tl_act_stop __tl_act_if_head_is_space_true:w
13070 \s__tl_act_stop #1 \s__tl_act_stop \use_ii:nn
13071 }
13072 \cs_new:Npn __tl_act_if_head_is_space:w
13073 ##1 \s__tl_act_stop #1 ##2 \s__tl_act_stop
13074 {}
13075 \cs_new:Npn __tl_act_if_head_is_space_true:w
13076 \s__tl_act_stop #1 \s__tl_act_stop \use_ii:nn ##1 ##2
13077 {##1}
13078 }
13079 __tl_tmp:w { ~ }

(We expand the definition __tl_act_if_head_is_space:nTF when setting up __tl_-
act_loop:w, so we can then undefine the auxiliary.) In the loop, we check how the token
list begins and act accordingly. In the “group” case, we may have reached \s__tl_-
act_stop, the end of the list. Then leave \exp_end: and the result in the input stream,
to terminate the expansion of \exp:w. Otherwise, apply the relevant function to the
“arguments”, #3 and to the head of the token list. Then repeat the loop. The scheme
is the same if the token list starts with an N-type or with a space, making sure that
__tl_act_space:wwNNN gobbles the space.

13080 \exp_args:Nne \use:n { \cs_new:Npn __tl_act_loop:w #1 \s__tl_act_stop }
13081 {
13082 \exp_not:o { __tl_act_if_head_is_space:nTF {#1} }
13083 \exp_not:N __tl_act_space:wwNNN
13084 {
13085 \exp_not:o { \tl_if_head_is_group:nTF {#1} }
13086 \exp_not:N __tl_act_group:nwNNN
13087 \exp_not:N __tl_act_normal:NwNNN
13088 }
13089 \exp_not:n {#1} \s__tl_act_stop
13090 }
13091 \cs_undefine:N __tl_act_if_head_is_space:nTF
13092 \cs_new:Npn __tl_act_normal:NwNNN #1 #2 \s__tl_act_stop #3
13093 {

728

13094 #3 #1
13095 __tl_act_loop:w #2 \s__tl_act_stop
13096 #3
13097 }
13098 \cs_new:Npn __tl_use_none_delimit_by_s_act_stop:w #1 \s__tl_act_stop { }
13099 \cs_new:Npn __tl_act_end:wn #1 __tl_act_result:n #2
13100 { \group_align_safe_end: \exp_end: #2 }
13101 \cs_new:Npn __tl_act_group:nwNNN #1 #2 \s__tl_act_stop #3#4#5
13102 {
13103 __tl_use_none_delimit_by_s_act_stop:w #1 __tl_act_end:wn \s__tl_act_stop
13104 #5 {#1}
13105 __tl_act_loop:w #2 \s__tl_act_stop
13106 #3 #4 #5
13107 }
13108 \exp_last_unbraced:NNo
13109 \cs_new:Npn __tl_act_space:wwNNN \c_space_tl #1 \s__tl_act_stop #2#3
13110 {
13111 #3
13112 __tl_act_loop:w #1 \s__tl_act_stop
13113 #2 #3
13114 }

__tl_act:NNNn loops over tokens, groups, and spaces in #4. {\s_@@_act_stop} serves
as the end of token list marker, the ? after it avoids losing outer braces. The result is
stored as an argument for the dummy function __tl_act_result:n.

13115 \cs_new:Npn __tl_act:NNNn #1#2#3#4
13116 {
13117 \group_align_safe_begin:
13118 __tl_act_loop:w #4 { \s__tl_act_stop } ? \s__tl_act_stop
13119 #1 #3 #2
13120 __tl_act_result:n { }
13121 }

Typically, the output is done to the right of what was already output, using __tl_-
act_output:n, but for the __tl_act_reverse functions, it should be done to the left.

13122 \cs_new:Npn __tl_act_output:n #1 #2 __tl_act_result:n #3
13123 { #2 __tl_act_result:n { #3 #1 } }
13124 \cs_new:Npn __tl_act_reverse_output:n #1 #2 __tl_act_result:n #3
13125 { #2 __tl_act_result:n { #1 #3 } }

(End of definition for __tl_act:NNNn and others.)

\tl_reverse:n
\tl_reverse:o
\tl_reverse:V
\tl_reverse:f
\tl_reverse:e

__tl_reverse_normal:nN
__tl_reverse_group_preserve:nn
__tl_reverse_space:n

The goal here is to reverse without losing spaces nor braces. This is done using the
general internal function __tl_act:NNNn. Spaces and “normal” tokens are output on
the left of the current output. Grouped tokens are output to the left but without any
reversal within the group.

13126 \cs_new:Npn \tl_reverse:n #1
13127 {
13128 __kernel_exp_not:w \exp_after:wN
13129 {
13130 \exp:w
13131 __tl_act:NNNn
13132 __tl_reverse_normal:N
13133 __tl_reverse_group_preserve:n
13134 __tl_reverse_space:

729

13135 {#1}
13136 }
13137 }
13138 \cs_generate_variant:Nn \tl_reverse:n { o , V , f , e }
13139 \cs_new:Npn __tl_reverse_normal:N
13140 { __tl_act_reverse_output:n }
13141 \cs_new:Npn __tl_reverse_group_preserve:n #1
13142 { __tl_act_reverse_output:n { {#1} } }
13143 \cs_new:Npn __tl_reverse_space:
13144 { __tl_act_reverse_output:n { ~ } }

(End of definition for \tl_reverse:n and others. This function is documented on page 119.)

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

This reverses the list, leaving \exp_stop_f: in front, which stops the f-expansion.
13145 \cs_new_protected:Npn \tl_reverse:N #1
13146 { __kernel_tl_set:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }
13147 \cs_new_protected:Npn \tl_greverse:N #1
13148 { __kernel_tl_gset:Nx #1 { \exp_args:No \tl_reverse:n { #1 } } }
13149 \cs_generate_variant:Nn \tl_reverse:N { c }
13150 \cs_generate_variant:Nn \tl_greverse:N { c }

(End of definition for \tl_reverse:N and \tl_greverse:N. These functions are documented on page
120.)

53.13 Using a single item
\tl_item:nn
\tl_item:Nn
\tl_item:cn

__tl_item_aux:nn
__tl_item:nn

The idea here is to find the offset of the item from the left, then use a loop to grab
the correct item. If the resulting offset is too large, then __tl_if_recursion_tail_-
break:nN terminates the loop, and returns nothing at all.

13151 \cs_new:Npn \tl_item:nn #1#2
13152 {
13153 \exp_args:Nf __tl_item:nn
13154 { \exp_args:Nf __tl_item_aux:nn { \int_eval:n {#2} } {#1} }
13155 #1
13156 \q__tl_recursion_tail
13157 \prg_break_point:
13158 }
13159 \cs_new:Npn __tl_item_aux:nn #1#2
13160 {
13161 \int_compare:nNnTF {#1} < 0
13162 { \int_eval:n { \tl_count:n {#2} + 1 + #1 } }
13163 {#1}
13164 }
13165 \cs_new:Npn __tl_item:nn #1#2
13166 {
13167 __tl_if_recursion_tail_break:nN {#2} \prg_break:
13168 \int_compare:nNnTF {#1} = 1
13169 { \prg_break:n { \exp_not:n {#2} } }
13170 { \exp_args:Nf __tl_item:nn { \int_eval:n { #1 - 1 } } }
13171 }
13172 \cs_new:Npn \tl_item:Nn { \exp_args:No \tl_item:nn }
13173 \cs_generate_variant:Nn \tl_item:Nn { c }

(End of definition for \tl_item:nn and others. These functions are documented on page 125.)

730

\tl_rand_item:n
\tl_rand_item:N
\tl_rand_item:c

Importantly \tl_item:nn only evaluates its argument once.
13174 \cs_new:Npn \tl_rand_item:n #1
13175 {
13176 \tl_if_blank:nF {#1}
13177 { \tl_item:nn {#1} { \int_rand:nn { 1 } { \tl_count:n {#1} } } }
13178 }
13179 \cs_new:Npn \tl_rand_item:N { \exp_args:No \tl_rand_item:n }
13180 \cs_generate_variant:Nn \tl_rand_item:N { c }

(End of definition for \tl_rand_item:n and \tl_rand_item:N. These functions are documented on page
125.)

\tl_range:Nnn
\tl_range:cnn
\tl_range:nnn

__tl_range:Nnnn
__tl_range:nnnNn
__tl_range:nnNn

__tl_range_skip:w
__tl_range:w

__tl_range_skip_spaces:n
__tl_range_collect:nn
__tl_range_collect:ff

__tl_range_collect_space:nw
__tl_range_collect_N:nN

__tl_range_collect_group:nN

To avoid checking for the end of the token list at every step, start by counting the number
l of items and “normalizing” the bounds, namely clamping them to the interval [0, l] and
dealing with negative indices. More precisely, __tl_range_items:nnNn receives the
number of items to skip at the beginning of the token list, the index of the last item
to keep, a function which is either __tl_range:w or the token list itself. If nothing
should be kept, leave {}: this stops the f-expansion of \tl_head:f and that function
produces an empty result. Otherwise, repeatedly call __tl_range_skip:w to delete #1
items from the input stream (the extra brace group avoids an off-by-one shift). For the
braced version __tl_range_braced:w sets up __tl_range_collect_braced:w which
stores items one by one in an argument after the semicolon. Depending on the first token
of the tail, either just move it (if it is a space) or also decrement the number of items left
to find. Eventually, the result is a brace group followed by the rest of the token list, and
\tl_head:f cleans up and gives the result in \exp_not:n.

13181 \cs_new:Npn \tl_range:Nnn { \exp_args:No \tl_range:nnn }
13182 \cs_generate_variant:Nn \tl_range:Nnn { c }
13183 \cs_new:Npn \tl_range:nnn { __tl_range:Nnnn __tl_range:w }
13184 \cs_new:Npn __tl_range:Nnnn #1#2#3#4
13185 {
13186 \tl_head:f
13187 {
13188 \exp_args:Nf __tl_range:nnnNn
13189 { \tl_count:n {#2} } {#3} {#4} #1 {#2}
13190 }
13191 }
13192 \cs_new:Npn __tl_range:nnnNn #1#2#3
13193 {
13194 \exp_args:Nff __tl_range:nnNn
13195 {
13196 \exp_args:Nf __tl_range_normalize:nn
13197 { \int_eval:n { #2 - 1 } } {#1}
13198 }
13199 {
13200 \exp_args:Nf __tl_range_normalize:nn
13201 { \int_eval:n {#3} } {#1}
13202 }
13203 }
13204 \cs_new:Npn __tl_range:nnNn #1#2#3#4
13205 {
13206 \if_int_compare:w #2 > #1 \exp_stop_f: \else:
13207 \exp_after:wN { \exp_after:wN }
13208 \fi:

731

13209 \exp_after:wN #3
13210 \int_value:w \int_eval:n { #2 - #1 } \exp_after:wN ;
13211 \exp_after:wN { \exp:w __tl_range_skip:w #1 ; { } #4 }
13212 }
13213 \cs_new:Npn __tl_range_skip:w #1 ; #2
13214 {
13215 \if_int_compare:w #1 > \c_zero_int
13216 \exp_after:wN __tl_range_skip:w
13217 \int_value:w \int_eval:n { #1 - 1 } \exp_after:wN ;
13218 \else:
13219 \exp_after:wN \exp_end:
13220 \fi:
13221 }
13222 \cs_new:Npn __tl_range:w #1 ; #2
13223 {
13224 \exp_args:Nf __tl_range_collect:nn
13225 { __tl_range_skip_spaces:n {#2} } {#1}
13226 }
13227 \cs_new:Npn __tl_range_skip_spaces:n #1
13228 {
13229 \tl_if_head_is_space:nTF {#1}
13230 { \exp_args:Nf __tl_range_skip_spaces:n {#1} }
13231 { { } #1 }
13232 }
13233 \cs_new:Npn __tl_range_collect:nn #1#2
13234 {
13235 \int_compare:nNnTF {#2} = 0
13236 {#1}
13237 {
13238 \exp_args:No \tl_if_head_is_space:nTF { \use_none:n #1 }
13239 {
13240 \exp_args:Nf __tl_range_collect:nn
13241 { __tl_range_collect_space:nw #1 }
13242 {#2}
13243 }
13244 {
13245 __tl_range_collect:ff
13246 {
13247 \exp_args:No \tl_if_head_is_N_type:nTF { \use_none:n #1 }
13248 { __tl_range_collect_N:nN }
13249 { __tl_range_collect_group:nn }
13250 #1
13251 }
13252 { \int_eval:n { #2 - 1 } }
13253 }
13254 }
13255 }
13256 \cs_new:Npn __tl_range_collect_space:nw #1 ~ { { #1 ~ } }
13257 \cs_new:Npn __tl_range_collect_N:nN #1#2 { { #1 #2 } }
13258 \cs_new:Npn __tl_range_collect_group:nn #1#2 { { #1 {#2} } }
13259 \cs_generate_variant:Nn __tl_range_collect:nn { ff }

(End of definition for \tl_range:Nnn and others. These functions are documented on page 126.)

__tl_range_normalize:nn This function converts an ⟨index⟩ argument into an explicit position in the token list

732

(a result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the
⟨index⟩ #1 and the string count #2. If #1 is negative, replace it by #1 + #2 + 1, then
limit to the range [0, #2].

13260 \cs_new:Npn __tl_range_normalize:nn #1#2
13261 {
13262 \int_eval:n
13263 {
13264 \if_int_compare:w #1 < \c_zero_int
13265 \if_int_compare:w #1 < -#2 \exp_stop_f:
13266 0
13267 \else:
13268 #1 + #2 + 1
13269 \fi:
13270 \else:
13271 \if_int_compare:w #1 < #2 \exp_stop_f:
13272 #1
13273 \else:
13274 #2
13275 \fi:
13276 \fi:
13277 }
13278 }

(End of definition for __tl_range_normalize:nn.)

53.14 Viewing token lists
\tl_show:N
\tl_show:c
\tl_log:N
\tl_log:c

__tl_show:NN

Showing token list variables is done after checking that the variable is defined (see
__kernel_register_show:N).

13279 \cs_new_protected:Npn \tl_show:N { __tl_show:NN \tl_show:n }
13280 \cs_generate_variant:Nn \tl_show:N { c }
13281 \cs_new_protected:Npn \tl_log:N { __tl_show:NN \tl_log:n }
13282 \cs_generate_variant:Nn \tl_log:N { c }
13283 \cs_new_protected:Npn __tl_show:NN #1#2
13284 {
13285 __kernel_chk_defined:NT #2
13286 {
13287 \exp_args:Nf \tl_if_empty:nTF
13288 { \cs_prefix_spec:N #2 \cs_parameter_spec:N #2 }
13289 {
13290 \exp_args:Ne #1
13291 { \token_to_str:N #2 = __kernel_exp_not:w \exp_after:wN {#2} }
13292 }
13293 {
13294 \msg_error:nneee { kernel } { bad-type }
13295 { \token_to_str:N #2 } { \token_to_meaning:N #2 } { tl }
13296 }
13297 }
13298 }

(End of definition for \tl_show:N , \tl_log:N , and __tl_show:NN. These functions are documented on
page 120.)

733

\tl_show:n
\tl_show:e
\tl_show:x

__tl_show:n
__tl_show:w

Many show functions are based on \tl_show:n. The argument of \tl_show:n is line-
wrapped using \iow_wrap:nnnN but with a leading >~ and trailing period, both removed
before passing the wrapped text to the \showtokens primitive. This primitive shows the
result with a leading >~ and trailing period.

The token list \l__tl_internal_a_tl containing the result of all these manip-
ulations is displayed to the terminal using \tex_showtokens:D and an odd \exp_-
after:wN which expand the closing brace to improve the output slightly. The calls to
__kernel_iow_with:Nnn ensure that the \newlinechar is set to 10 so that the \iow_-
newline: inserted by the line-wrapping code are correctly recognized by TEX, and that
\errorcontextlines is −1 to avoid printing irrelevant context.

13299 \cs_new_protected:Npn \tl_show:n #1
13300 { \iow_wrap:nnnN { >~ \tl_to_str:n {#1} . } { } { } __tl_show:n }
13301 \cs_generate_variant:Nn \tl_show:n { e , x }
13302 \cs_new_protected:Npn __tl_show:n #1
13303 {
13304 \tl_set:Nf \l__tl_internal_a_tl { __tl_show:w #1 \s__tl_stop }
13305 __kernel_iow_with:Nnn \tex_newlinechar:D { 10 }
13306 {
13307 __kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
13308 {
13309 \tex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN
13310 { \exp_after:wN \l__tl_internal_a_tl }
13311 }
13312 }
13313 }
13314 \cs_new:Npn __tl_show:w #1 > #2 . \s__tl_stop {#2}

(End of definition for \tl_show:n , __tl_show:n , and __tl_show:w. This function is documented on
page 121.)

\tl_log:n
\tl_log:e
\tl_log:x

Logging is much easier, simply line-wrap. The >~ and trailing period is there to match
the output of \tl_show:n.

13315 \cs_new_protected:Npn \tl_log:n #1
13316 { \iow_wrap:nnnN { > ~ \tl_to_str:n {#1} . } { } { } \iow_log:n }
13317 \cs_generate_variant:Nn \tl_log:n { e , x }

(End of definition for \tl_log:n. This function is documented on page 121.)

__kernel_chk_tl_type:NnnT Helper for checking that #1 has the correct internal structure to be of a certain type.
Make sure that it is defined and that it is a token list, namely a macro with no \long nor
\protected prefix. Then compare #1 to an attempt at reconstructing a valid structure
of the given type using #2 (see implementation of \seq_show:N for instance). If that is
successful run the requested code #4.

13318 \cs_new_protected:Npn __kernel_chk_tl_type:NnnT #1#2#3#4
13319 {
13320 __kernel_chk_defined:NT #1
13321 {
13322 \exp_args:Nf \tl_if_empty:nTF
13323 { \cs_prefix_spec:N #1 \cs_parameter_spec:N #1 }
13324 {
13325 \tl_set:Ne \l__tl_internal_a_tl {#3}
13326 \tl_if_eq:NNTF #1 \l__tl_internal_a_tl
13327 {#4}

734

13328 {
13329 \msg_error:nneeee { kernel } { bad-type }
13330 { \token_to_str:N #1 } { \tl_to_str:N #1 }
13331 {#2} { \tl_to_str:N \l__tl_internal_a_tl }
13332 }
13333 }
13334 {
13335 \msg_error:nneee { kernel } { bad-type }
13336 { \token_to_str:N #1 } { \token_to_meaning:N #1 } {#2}
13337 }
13338 }
13339 }

(End of definition for __kernel_chk_tl_type:NnnT.)

53.15 Internal scan marks
\s__tl_nil
\s__tl_mark
\s__tl_stop

Internal scan marks. These are defined here at the end because the code for \scan_new:N
depends on some l3tl functions.

13340 \scan_new:N \s__tl_nil
13341 \scan_new:N \s__tl_mark
13342 \scan_new:N \s__tl_stop

(End of definition for \s__tl_nil , \s__tl_mark , and \s__tl_stop.)

53.16 Scratch token lists
\g_tmpa_tl
\g_tmpb_tl

Global temporary token list variables. They are supposed to be set and used immediately,
with no delay between the definition and the use because you can’t count on other macros
not to redefine them from under you.

13343 \tl_new:N \g_tmpa_tl
13344 \tl_new:N \g_tmpb_tl

(End of definition for \g_tmpa_tl and \g_tmpb_tl. These variables are documented on page 131.)

\l_tmpa_tl
\l_tmpb_tl

These are local temporary token list variables. Be sure not to assume that the value you
put into them will survive for long—see discussion above.

13345 \tl_new:N \l_tmpa_tl
13346 \tl_new:N \l_tmpb_tl

(End of definition for \l_tmpa_tl and \l_tmpb_tl. These variables are documented on page 130.)
We finally clean up a temporary control sequence that we have used at various points

to set up some definitions.
13347 \cs_undefine:N __tl_tmp:w

13348 ⟨/package⟩

735

Chapter 54

l3tl-build implementation

13349 ⟨∗package⟩

13350 ⟨@@=tl⟩

Between \tl_build_begin:N ⟨tl var⟩ and \tl_build_end:N ⟨tl var⟩, the ⟨tl var⟩
has the structure

\exp_end: . . . \exp_end: __tl_build_last:NNn ⟨assignment⟩ ⟨next tl⟩
{⟨left⟩} ⟨right⟩

where ⟨right⟩ is not braced. The “data” it represents is ⟨left⟩ followed by the “data”
of ⟨next tl⟩ followed by ⟨right⟩. The ⟨next tl⟩ is a token list variable whose name
is that of ⟨tl var⟩ followed by ’. There are between 0 and 4 \exp_end: to keep track
of when ⟨left⟩ and ⟨right⟩ should be put into the ⟨next tl⟩. The ⟨assignment⟩ is
\cs_set_nopar:Npe if the variable is local, and \cs_gset_nopar:Npe if it is global.

\tl_build_begin:N
\tl_build_gbegin:N

__tl_build_begin:NN
__tl_build_begin:NNN

First construct the ⟨next tl⟩: using a prime here conflicts with the usual expl3 conven-
tion but we need a name that can be derived from #1 without any external data such as
a counter. Empty that ⟨next tl⟩ and setup the structure. The local and global versions
only differ by a single function \cs_(g)set_nopar:Npe used for all assignments: this is
important because only that function is stored in the ⟨tl var⟩ and ⟨next tl⟩ for sub-
sequent assignments. In principle __tl_build_begin:NNN could use \tl_(g)clear_-
new:N to empty #1 and make sure it is defined, but logging the definition does not seem
useful so we just do #3 #1 {} to clear it locally or globally as appropriate.

13351 \cs_new_protected:Npn \tl_build_begin:N #1
13352 { __tl_build_begin:NN \cs_set_nopar:Npe #1 }
13353 \cs_new_protected:Npn \tl_build_gbegin:N #1
13354 { __tl_build_begin:NN \cs_gset_nopar:Npe #1 }
13355 \cs_new_protected:Npn __tl_build_begin:NN #1#2
13356 { \exp_args:Nc __tl_build_begin:NNN { \cs_to_str:N #2 ’ } #2 #1 }
13357 \cs_new_protected:Npn __tl_build_begin:NNN #1#2#3
13358 {
13359 #3 #1 { }
13360 #3 #2
13361 {
13362 \exp_not:n { \exp_end: \exp_end: \exp_end: \exp_end: }
13363 \exp_not:n { __tl_build_last:NNn #3 #1 { } }
13364 }
13365 }

736

(End of definition for \tl_build_begin:N and others. These functions are documented on page 132.)

\tl_build_put_right:Nn
\tl_build_put_right:Ne
\tl_build_put_right:Nx
\tl_build_gput_right:Nn
\tl_build_gput_right:Ne
\tl_build_gput_right:Nx

__tl_build_last:NNn
__tl_build_put:nn
__tl_build_put:nw

Similar to \tl_put_right:Nn, but apply \exp:w to #1. Most of the time this just removes
one \exp_end:. When there are none left, __tl_build_last:NNn is expanded instead.
It resets the definition of the ⟨tl var⟩ by ending the \exp_not:n and the definition
early. Then it makes sure the ⟨next tl⟩ (its argument #1) is set-up and starts a new
definition. Then __tl_build_put:nn and __tl_build_put:nw place the ⟨left⟩ part
of the original ⟨tl var⟩ as appropriate for the definition of the ⟨next tl⟩ (the ⟨right⟩
part is left in the right place without ever becoming a macro argument). We use \exp_-
after:wN rather than some \exp_args:No to avoid reading arguments that are likely
very long token lists. We use \cs_(g)set_nopar:Npe rather than \tl_(g)set:Ne partly
for the same reason and partly because the assignments are interrupted by brace tricks,
which implies that the assignment does not simply set the token list to an e-expansion
of the second argument.

13366 \cs_new_protected:Npn \tl_build_put_right:Nn #1#2
13367 {
13368 \cs_set_nopar:Npe #1
13369 { __kernel_exp_not:w \exp_after:wN { \exp:w #1 #2 } }
13370 }
13371 \cs_generate_variant:Nn \tl_build_put_right:Nn { Ne , Nx }
13372 \cs_new_protected:Npn \tl_build_gput_right:Nn #1#2
13373 {
13374 \cs_gset_nopar:Npe #1
13375 { __kernel_exp_not:w \exp_after:wN { \exp:w #1 #2 } }
13376 }
13377 \cs_generate_variant:Nn \tl_build_gput_right:Nn { Ne , Nx }
13378 \cs_new_protected:Npn __tl_build_last:NNn #1#2
13379 {
13380 \if_false: { { \fi:
13381 \exp_end: \exp_end: \exp_end: \exp_end: \exp_end:
13382 __tl_build_last:NNn #1 #2 { }
13383 }
13384 }
13385 \if_meaning:w \c_empty_tl #2
13386 __tl_build_begin:NN #1 #2
13387 \fi:
13388 #1 #2
13389 {
13390 __kernel_exp_not:w \exp_after:wN
13391 {
13392 \exp:w \if_false: } } \fi:
13393 \exp_after:wN __tl_build_put:nn \exp_after:wN {#2}
13394 }
13395 \cs_new_protected:Npn __tl_build_put:nn #1#2 { __tl_build_put:nw {#2} #1 }
13396 \cs_new_protected:Npn __tl_build_put:nw #1#2 __tl_build_last:NNn #3#4#5
13397 { #2 __tl_build_last:NNn #3 #4 { #1 #5 } }

(End of definition for \tl_build_put_right:Nn and others. These functions are documented on page
132.)

\tl_build_put_left:Nn
\tl_build_put_left:Ne
\tl_build_put_left:Nx
\tl_build_gput_left:Nn
\tl_build_gput_left:Ne
\tl_build_gput_left:Nx

__tl_build_put_left:NNn

See \tl_build_put_right:Nn for all the machinery. We could easily provide \tl_-
build_put_left_right:Nnn, by just adding the ⟨right⟩ material after the {⟨left⟩} in
the e-expanding assignment.

737

13398 \cs_new_protected:Npn \tl_build_put_left:Nn #1
13399 { __tl_build_put_left:NNn \cs_set_nopar:Npe #1 }
13400 \cs_generate_variant:Nn \tl_build_put_left:Nn { Ne , Nx }
13401 \cs_new_protected:Npn \tl_build_gput_left:Nn #1
13402 { __tl_build_put_left:NNn \cs_gset_nopar:Npe #1 }
13403 \cs_generate_variant:Nn \tl_build_gput_left:Nn { Ne , Nx }
13404 \cs_new_protected:Npn __tl_build_put_left:NNn #1#2#3
13405 {
13406 #1 #2
13407 {
13408 __kernel_exp_not:w \exp_after:wN
13409 {
13410 \exp:w \exp_after:wN __tl_build_put:nn
13411 \exp_after:wN {#2} {#3}
13412 }
13413 }
13414 }

(End of definition for \tl_build_put_left:Nn , \tl_build_gput_left:Nn , and __tl_build_put_-
left:NNn. These functions are documented on page 132.)

\tl_build_end:N
\tl_build_gend:N

__tl_build_end_loop:NN

Get the data then clear the ⟨next tl⟩ recursively until finding an empty one. It is
perhaps wasteful to repeatedly use \cs_to_str:N. The local/global scope is checked by
\tl_set:Ne or \tl_gset:Ne.

13415 \cs_new_protected:Npn \tl_build_end:N #1
13416 {
13417 __tl_build_get:NNN __kernel_tl_set:Nx #1 #1
13418 \exp_args:Nc __tl_build_end_loop:NN { \cs_to_str:N #1 ’ } \tl_clear:N
13419 }
13420 \cs_new_protected:Npn \tl_build_gend:N #1
13421 {
13422 __tl_build_get:NNN __kernel_tl_gset:Nx #1 #1
13423 \exp_args:Nc __tl_build_end_loop:NN { \cs_to_str:N #1 ’ } \tl_gclear:N
13424 }
13425 \cs_new_protected:Npn __tl_build_end_loop:NN #1#2
13426 {
13427 \if_meaning:w \c_empty_tl #1
13428 \exp_after:wN \use_none:nnnnnn
13429 \fi:
13430 #2 #1
13431 \exp_args:Nc __tl_build_end_loop:NN { \cs_to_str:N #1 ’ } #2
13432 }

(End of definition for \tl_build_end:N , \tl_build_gend:N , and __tl_build_end_loop:NN. These func-
tions are documented on page 133.)

\tl_build_get_intermediate:NN

13433 \cs_new_protected:Npn \tl_build_get_intermediate:NN
13434 { __tl_build_get:NNN __kernel_tl_set:Nx }

(End of definition for \tl_build_get_intermediate:NN. This function is documented on page 133.)

__tl_build_get:NNN
__tl_build_get:w

__tl_build_get_end:w

The idea is to expand the ⟨tl var⟩ then the ⟨next tl⟩ and so on, all within an e-
expanding assignment, and wrap as appropriate in \exp_not:n. The various ⟨left⟩
parts are left in the assignment as we go, which enables us to expand the ⟨next tl⟩ at

738

the right place. The various ⟨right⟩ parts are eventually picked up in one last \exp_-
not:n, with a brace trick to wrap all the ⟨right⟩ parts together.

13435 \cs_new_protected:Npn __tl_build_get:NNN #1#2#3
13436 { #1 #3 { \if_false: { \fi: \exp_after:wN __tl_build_get:w #2 } } }
13437 \cs_new:Npn __tl_build_get:w #1 __tl_build_last:NNn #2#3#4
13438 {
13439 \exp_not:n {#4}
13440 \if_meaning:w \c_empty_tl #3
13441 \exp_after:wN __tl_build_get_end:w
13442 \fi:
13443 \exp_after:wN __tl_build_get:w #3
13444 }
13445 \cs_new:Npn __tl_build_get_end:w #1#2#3
13446 { __kernel_exp_not:w \exp_after:wN { \if_false: } \fi: }

(End of definition for __tl_build_get:NNN , __tl_build_get:w , and __tl_build_get_end:w.)

13447 ⟨/package⟩

739

Chapter 55

l3str implementation

13448 ⟨∗package⟩

13449 ⟨@@=str⟩

55.1 Internal auxiliaries
\s__str_mark
\s__str_stop

Internal scan marks.
13450 \scan_new:N \s__str_mark
13451 \scan_new:N \s__str_stop

(End of definition for \s__str_mark and \s__str_stop.)

__str_use_none_delimit_by_s_stop:w
__str_use_i_delimit_by_s_stop:nw

Functions to gobble up to a scan mark.
13452 \cs_new:Npn __str_use_none_delimit_by_s_stop:w #1 \s__str_stop { }
13453 \cs_new:Npn __str_use_i_delimit_by_s_stop:nw #1 #2 \s__str_stop {#1}

(End of definition for __str_use_none_delimit_by_s_stop:w and __str_use_i_delimit_by_s_stop:nw.)

\q__str_recursion_tail
\q__str_recursion_stop

Internal recursion quarks.
13454 \quark_new:N \q__str_recursion_tail
13455 \quark_new:N \q__str_recursion_stop

(End of definition for \q__str_recursion_tail and \q__str_recursion_stop.)

__str_if_recursion_tail_break:NN
__str_if_recursion_tail_stop_do:Nn

Functions to query recursion quarks.
13456 __kernel_quark_new_test:N __str_if_recursion_tail_break:NN
13457 __kernel_quark_new_test:N __str_if_recursion_tail_stop_do:Nn

(End of definition for __str_if_recursion_tail_break:NN and __str_if_recursion_tail_stop_-
do:Nn.)

740

55.2 Creating and setting string variables
\str_new:N
\str_new:c
\str_use:N
\str_use:c

\str_clear:N
\str_clear:c

\str_gclear:N
\str_gclear:c

\str_clear_new:N
\str_clear_new:c
\str_gclear_new:N
\str_gclear_new:c

\str_set_eq:NN
\str_set_eq:cN
\str_set_eq:Nc
\str_set_eq:cc
\str_gset_eq:NN
\str_gset_eq:cN
\str_gset_eq:Nc
\str_gset_eq:cc
\str_concat:NNN
\str_concat:ccc

\str_gconcat:NNN
\str_gconcat:ccc

A string is simply a token list. The full mapping system isn’t set up yet so do things by
hand.

13458 \group_begin:
13459 \cs_set_protected:Npn __str_tmp:n #1
13460 {
13461 \tl_if_blank:nF {#1}
13462 {
13463 \cs_new_eq:cc { str_ #1 :N } { tl_ #1 :N }
13464 \exp_args:Nc \cs_generate_variant:Nn { str_ #1 :N } { c }
13465 __str_tmp:n
13466 }
13467 }
13468 __str_tmp:n
13469 { new }
13470 { use }
13471 { clear }
13472 { gclear }
13473 { clear_new }
13474 { gclear_new }
13475 { }
13476 \group_end:
13477 \cs_new_eq:NN \str_set_eq:NN \tl_set_eq:NN
13478 \cs_new_eq:NN \str_gset_eq:NN \tl_gset_eq:NN
13479 \cs_generate_variant:Nn \str_set_eq:NN { c , Nc , cc }
13480 \cs_generate_variant:Nn \str_gset_eq:NN { c , Nc , cc }
13481 \cs_new_eq:NN \str_concat:NNN \tl_concat:NNN
13482 \cs_new_eq:NN \str_gconcat:NNN \tl_gconcat:NNN
13483 \cs_generate_variant:Nn \str_concat:NNN { ccc }
13484 \cs_generate_variant:Nn \str_gconcat:NNN { ccc }

(End of definition for \str_new:N and others. These functions are documented on page 135.)

\str_set:Nn
\str_set:NV
\str_set:Ne
\str_set:Nx
\str_set:cn
\str_set:cV
\str_set:ce
\str_set:cx

\str_gset:Nn
\str_gset:NV
\str_gset:Ne
\str_gset:Nx
\str_gset:cn
\str_gset:cV
\str_gset:ce
\str_gset:cx
\str_const:Nn
\str_const:NV
\str_const:Ne
\str_const:Nx
\str_const:cn
\str_const:cV
\str_const:ce
\str_const:cx

\str_put_left:Nn
\str_put_left:NV
\str_put_left:Ne
\str_put_left:Nx
\str_put_left:cn
\str_put_left:cV
\str_put_left:ce
\str_put_left:cx
\str_gput_left:Nn
\str_gput_left:NV
\str_gput_left:Ne
\str_gput_left:Nx
\str_gput_left:cn
\str_gput_left:cV
\str_gput_left:ce
\str_gput_left:cx
\str_put_right:Nn
\str_put_right:NV
\str_put_right:Ne
\str_put_right:Nx
\str_put_right:cn
\str_put_right:cV
\str_put_right:ce
\str_put_right:cx

\str_gput_right:Nn
\str_gput_right:NV
\str_gput_right:Ne
\str_gput_right:Nx
\str_gput_right:cn
\str_gput_right:cV
\str_gput_right:ce
\str_gput_right:cx

Similar to corresponding l3tl base functions, except that __kernel_exp_not:w is re-
placed with __kernel_tl_to_str:w. Just like token list, string constants use \cs_-
gset_nopar:Npe instead of __kernel_tl_gset:Nx so that the scope checking for c
is applied when l3debug is used. To maintain backward compatibility, in \str_-
(g)put_left:Nn and \str_(g)put_right:Nn, contents of string variables are wrapped
in __kernel_exp_not:w to prevent further expansion.

13485 \cs_new_protected:Npn \str_set:Nn #1#2
13486 { __kernel_tl_set:Nx #1 { __kernel_tl_to_str:w {#2} } }
13487 \cs_gset_protected:Npn \str_gset:Nn #1#2
13488 { __kernel_tl_gset:Nx #1 { __kernel_tl_to_str:w {#2} } }
13489 \cs_new_protected:Npn \str_const:Nn #1#2
13490 {
13491 __kernel_chk_if_free_cs:N #1
13492 \cs_gset_nopar:Npe #1 { __kernel_tl_to_str:w {#2} }
13493 }
13494 \cs_new_protected:Npn \str_put_left:Nn #1#2
13495 {
13496 __kernel_tl_set:Nx #1
13497 { __kernel_tl_to_str:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
13498 }

741

13499 \cs_new_protected:Npn \str_gput_left:Nn #1#2
13500 {
13501 __kernel_tl_gset:Nx #1
13502 { __kernel_tl_to_str:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
13503 }
13504 \cs_new_protected:Npn \str_put_right:Nn #1#2
13505 {
13506 __kernel_tl_set:Nx #1
13507 { __kernel_exp_not:w \exp_after:wN {#1} __kernel_tl_to_str:w {#2} }
13508 }
13509 \cs_new_protected:Npn \str_gput_right:Nn #1#2
13510 {
13511 __kernel_tl_gset:Nx #1
13512 { __kernel_exp_not:w \exp_after:wN {#1} __kernel_tl_to_str:w {#2} }
13513 }
13514 \cs_generate_variant:Nn \str_set:Nn { NV , Ne , Nx , c , cV , ce , cx }
13515 \cs_generate_variant:Nn \str_gset:Nn { NV , Ne , Nx , c , cV , ce , cx }
13516 \cs_generate_variant:Nn \str_const:Nn { NV , Ne , Nx , c , cV , ce , cx }
13517 \cs_generate_variant:Nn \str_put_left:Nn { NV , Ne , Nx , c , cV , ce , cx }
13518 \cs_generate_variant:Nn \str_gput_left:Nn { NV , Ne , Nx , c , cV , ce , cx }
13519 \cs_generate_variant:Nn \str_put_right:Nn { NV , Ne , Nx , c , cV , ce , cx }
13520 \cs_generate_variant:Nn \str_gput_right:Nn { NV , Ne , Nx , c , cV , ce , cx }

(End of definition for \str_set:Nn and others. These functions are documented on page 136.)

55.3 Modifying string variables
\str_replace_all:Nnn
\str_replace_all:cnn

\str_greplace_all:Nnn
\str_greplace_all:cnn
\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

__str_replace:NNNnn
__str_replace_aux:NNNnnn

__str_replace_next:w

Start by applying \tl_to_str:n to convert the old and new token lists to strings, and
also apply \tl_to_str:N to avoid any issues if we are fed a token list variable. Then
the code is a much simplified version of the token list code because neither the delimiter
nor the replacement can contain macro parameters or braces. The delimiter \s__str_-
mark cannot appear in the string to edit so it is used in all cases. Some e-expansion is
unnecessary. There is no need to avoid losing braces nor to protect against expansion.
The ending code is much simplified and does not need to hide in braces.

13521 \cs_new_protected:Npn \str_replace_once:Nnn
13522 { __str_replace:NNNnn \prg_do_nothing: __kernel_tl_set:Nx }
13523 \cs_new_protected:Npn \str_greplace_once:Nnn
13524 { __str_replace:NNNnn \prg_do_nothing: __kernel_tl_gset:Nx }
13525 \cs_new_protected:Npn \str_replace_all:Nnn
13526 { __str_replace:NNNnn __str_replace_next:w __kernel_tl_set:Nx }
13527 \cs_new_protected:Npn \str_greplace_all:Nnn
13528 { __str_replace:NNNnn __str_replace_next:w __kernel_tl_gset:Nx }
13529 \cs_generate_variant:Nn \str_replace_once:Nnn { c }
13530 \cs_generate_variant:Nn \str_greplace_once:Nnn { c }
13531 \cs_generate_variant:Nn \str_replace_all:Nnn { c }
13532 \cs_generate_variant:Nn \str_greplace_all:Nnn { c }
13533 \cs_new_protected:Npn __str_replace:NNNnn #1#2#3#4#5
13534 {
13535 \tl_if_empty:nTF {#4}
13536 {
13537 \msg_error:nne { kernel } { empty-search-pattern } {#5}
13538 }
13539 {

742

13540 \use:e
13541 {
13542 \exp_not:n { __str_replace_aux:NNNnnn #1 #2 #3 }
13543 { \tl_to_str:N #3 }
13544 { \tl_to_str:n {#4} } { \tl_to_str:n {#5} }
13545 }
13546 }
13547 }
13548 \cs_new_protected:Npn __str_replace_aux:NNNnnn #1#2#3#4#5#6
13549 {
13550 \cs_set:Npn __str_replace_next:w ##1 #5 { ##1 #6 #1 }
13551 #2 #3
13552 {
13553 __str_replace_next:w
13554 #4
13555 __str_use_none_delimit_by_s_stop:w
13556 #5
13557 \s__str_stop
13558 }
13559 }
13560 \cs_new_eq:NN __str_replace_next:w ?

(End of definition for \str_replace_all:Nnn and others. These functions are documented on page 143.)

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

Removal is just a special case of replacement.
13561 \cs_new_protected:Npn \str_remove_once:Nn #1#2
13562 { \str_replace_once:Nnn #1 {#2} { } }
13563 \cs_new_protected:Npn \str_gremove_once:Nn #1#2
13564 { \str_greplace_once:Nnn #1 {#2} { } }
13565 \cs_generate_variant:Nn \str_remove_once:Nn { c }
13566 \cs_generate_variant:Nn \str_gremove_once:Nn { c }

(End of definition for \str_remove_once:Nn and \str_gremove_once:Nn. These functions are docu-
mented on page 143.)

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

Removal is just a special case of replacement.
13567 \cs_new_protected:Npn \str_remove_all:Nn #1#2
13568 { \str_replace_all:Nnn #1 {#2} { } }
13569 \cs_new_protected:Npn \str_gremove_all:Nn #1#2
13570 { \str_greplace_all:Nnn #1 {#2} { } }
13571 \cs_generate_variant:Nn \str_remove_all:Nn { c }
13572 \cs_generate_variant:Nn \str_gremove_all:Nn { c }

(End of definition for \str_remove_all:Nn and \str_gremove_all:Nn. These functions are documented
on page 143.)

55.4 String comparisons
\str_if_empty_p:N
\str_if_empty_p:c
\str_if_empty:NTF
\str_if_empty:cTF
\str_if_empty_p:n
\str_if_empty:nTF
\str_if_exist_p:N
\str_if_exist_p:c
\str_if_exist:NTF
\str_if_exist:cTF

More copy-paste!
13573 \prg_new_eq_conditional:NNn \str_if_exist:N \tl_if_exist:N
13574 { p , T , F , TF }
13575 \prg_new_eq_conditional:NNn \str_if_exist:c \tl_if_exist:c
13576 { p , T , F , TF }
13577 \prg_new_eq_conditional:NNn \str_if_empty:N \tl_if_empty:N

743

13578 { p , T , F , TF }
13579 \prg_new_eq_conditional:NNn \str_if_empty:c \tl_if_empty:c
13580 { p , T , F , TF }
13581 \prg_new_eq_conditional:NNn \str_if_empty:n \tl_if_empty:n
13582 { p , T , F , TF }

(End of definition for \str_if_empty:NTF , \str_if_empty:nTF , and \str_if_exist:NTF. These func-
tions are documented on page 136.)

__str_if_eq:nn String comparisons rely on the primitive \(pdf)strcmp, so we define a new name for it.
13583 \cs_new_eq:NN __str_if_eq:nn \tex_strcmp:D

(End of definition for __str_if_eq:nn.)

\str_compare_p:nNn
\str_compare_p:eNe
\str_compare:nNnTF
\str_compare:eNeTF

Simply rely on __str_if_eq:nn, which expands to -1, 0 or 1. The ee version is created
directly because it is more efficient.

13584 \prg_new_conditional:Npnn \str_compare:nNn #1#2#3 { p , T , F , TF }
13585 {
13586 \if_int_compare:w
13587 __str_if_eq:nn { \exp_not:n {#1} } { \exp_not:n {#3} }
13588 #2 \c_zero_int
13589 \prg_return_true: \else: \prg_return_false: \fi:
13590 }
13591 \prg_new_conditional:Npnn \str_compare:eNe #1#2#3 { p , T , F , TF }
13592 {
13593 \if_int_compare:w __str_if_eq:nn {#1} {#3} #2 \c_zero_int
13594 \prg_return_true: \else: \prg_return_false: \fi:
13595 }

(End of definition for \str_compare:nNnTF. This function is documented on page 138.)

\str_if_eq_p:nn
\str_if_eq_p:Vn
\str_if_eq_p:on
\str_if_eq_p:nV
\str_if_eq_p:no
\str_if_eq_p:VV
\str_if_eq_p:ee
\str_if_eq:nnTF
\str_if_eq:VnTF
\str_if_eq:onTF
\str_if_eq:nVTF
\str_if_eq:noTF
\str_if_eq:VVTF
\str_if_eq:eeTF

Modern engines provide a direct way of comparing two token lists, but returning a num-
ber. This set of conditionals therefore makes life a bit clearer. The nn and ee versions
are created directly as this is most efficient. Since __str_if_eq:nn will expand to 0 as
an explicit character with category 12 if the two lists match (and either -1 or 1 if they
don’t) we can use \if:w here which is faster than using \if_int_compare:w.

13596 \prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }
13597 {
13598 \if:w 0 __str_if_eq:nn { \exp_not:n {#1} } { \exp_not:n {#2} }
13599 \prg_return_true: \else: \prg_return_false: \fi:
13600 }
13601 \prg_generate_conditional_variant:Nnn \str_if_eq:nn
13602 { V , v , o , nV , no , VV , nv } { p , T , F , TF }
13603 \prg_new_conditional:Npnn \str_if_eq:ee #1#2 { p , T , F , TF }
13604 {
13605 \if:w 0 __str_if_eq:nn {#1} {#2}
13606 \prg_return_true: \else: \prg_return_false: \fi:
13607 }

(End of definition for \str_if_eq:nnTF. This function is documented on page 137.)

\str_if_eq_p:NN
\str_if_eq_p:Nc
\str_if_eq_p:cN
\str_if_eq_p:cc
\str_if_eq:NNTF
\str_if_eq:NcTF
\str_if_eq:cNTF
\str_if_eq:ccTF

Note that \str_if_eq:NNTF is different from \tl_if_eq:NNTF because it needs to ignore
category codes.

13608 \prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }
13609 {

744

13610 \if:w 0 __str_if_eq:nn { \tl_to_str:N #1 } { \tl_to_str:N #2 }
13611 \prg_return_true: \else: \prg_return_false: \fi:
13612 }
13613 \prg_generate_conditional_variant:Nnn \str_if_eq:NN
13614 { c , Nc , cc } { T , F , TF , p }

(End of definition for \str_if_eq:NNTF. This function is documented on page 136.)

\str_if_in:NnTF
\str_if_in:cnTF
\str_if_in:nnTF

Everything here needs to be detokenized but beyond that it is a simple token list test.
It would be faster to fine-tune the T, F, TF variants by calling the appropriate variant of
\tl_if_in:nnTF directly but that takes more code.

13615 \prg_new_protected_conditional:Npnn \str_if_in:Nn #1#2 { T , F , TF }
13616 {
13617 \use:e
13618 { \tl_if_in:nnTF { \tl_to_str:N #1 } { \tl_to_str:n {#2} } }
13619 { \prg_return_true: } { \prg_return_false: }
13620 }
13621 \prg_generate_conditional_variant:Nnn \str_if_in:Nn
13622 { c } { T , F , TF }
13623 \prg_new_protected_conditional:Npnn \str_if_in:nn #1#2 { T , F , TF }
13624 {
13625 \use:e
13626 { \tl_if_in:nnTF { \tl_to_str:n {#1} } { \tl_to_str:n {#2} } }
13627 { \prg_return_true: } { \prg_return_false: }
13628 }

(End of definition for \str_if_in:NnTF and \str_if_in:nnTF. These functions are documented on page
137.)

\str_case:nn
\str_case:Vn
\str_case:on
\str_case:en
\str_case:nV
\str_case:nv

\str_case:nnTF
\str_case:VnTF
\str_case:onTF
\str_case:enTF
\str_case:nVTF
\str_case:nvTF

\str_case:Nn
\str_case:NnTF
\str_case_e:nn
\str_case_e:en

\str_case_e:nnTF
\str_case_e:enTF
__str_case:nnTF

__str_case_e:nnTF
__str_case:nw

__str_case_e:nw
__str_case_end:nw

The aim here is to allow the case statement to be evaluated using a known number of
expansion steps (two), and without needing to use an explicit “end of recursion” marker.
That is achieved by using the test input as the final case, as this is always true. The
trick is then to tidy up the output such that the appropriate case code plus either the
true or false branch code is inserted.

13629 \cs_new:Npn \str_case:nn #1#2
13630 {
13631 \exp:w
13632 __str_case:nnTF {#1} {#2} { } { }
13633 }
13634 \cs_new:Npn \str_case:nnT #1#2#3
13635 {
13636 \exp:w
13637 __str_case:nnTF {#1} {#2} {#3} { }
13638 }
13639 \cs_new:Npn \str_case:nnF #1#2
13640 {
13641 \exp:w
13642 __str_case:nnTF {#1} {#2} { }
13643 }
13644 \cs_new:Npn \str_case:nnTF #1#2
13645 {
13646 \exp:w
13647 __str_case:nnTF {#1} {#2}
13648 }

745

13649 \cs_new:Npn __str_case:nnTF #1#2#3#4
13650 { __str_case:nw {#1} #2 {#1} { } \s__str_mark {#3} \s__str_mark {#4} \s__str_stop }
13651 \cs_generate_variant:Nn \str_case:nn { V , o , e , nV , nv }
13652 \prg_generate_conditional_variant:Nnn \str_case:nn
13653 { V , o , e , nV , nv } { T , F , TF }
13654 \cs_new_eq:NN \str_case:Nn \str_case:Vn
13655 \cs_new_eq:NN \str_case:NnT \str_case:VnT
13656 \cs_new_eq:NN \str_case:NnF \str_case:VnF
13657 \cs_new_eq:NN \str_case:NnTF \str_case:VnTF
13658 \cs_new:Npn __str_case:nw #1#2#3
13659 {
13660 \str_if_eq:nnTF {#1} {#2}
13661 { __str_case_end:nw {#3} }
13662 { __str_case:nw {#1} }
13663 }
13664 \cs_new:Npn \str_case_e:nn #1#2
13665 {
13666 \exp:w
13667 __str_case_e:nnTF {#1} {#2} { } { }
13668 }
13669 \cs_new:Npn \str_case_e:nnT #1#2#3
13670 {
13671 \exp:w
13672 __str_case_e:nnTF {#1} {#2} {#3} { }
13673 }
13674 \cs_new:Npn \str_case_e:nnF #1#2
13675 {
13676 \exp:w
13677 __str_case_e:nnTF {#1} {#2} { }
13678 }
13679 \cs_new:Npn \str_case_e:nnTF #1#2
13680 {
13681 \exp:w
13682 __str_case_e:nnTF {#1} {#2}
13683 }
13684 \cs_new:Npn __str_case_e:nnTF #1#2#3#4
13685 { __str_case_e:nw {#1} #2 {#1} { } \s__str_mark {#3} \s__str_mark {#4} \s__str_stop }
13686 \cs_generate_variant:Nn \str_case_e:nn { e }
13687 \prg_generate_conditional_variant:Nnn \str_case_e:nn { e } { T , F , TF }
13688 \cs_new:Npn __str_case_e:nw #1#2#3
13689 {
13690 \str_if_eq:eeTF {#1} {#2}
13691 { __str_case_end:nw {#3} }
13692 { __str_case_e:nw {#1} }
13693 }

To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases
searched for, then #1 is the code to insert, #2 is the next case to check on and #3 is all of
the rest of the cases code. That means that #4 is the true branch code, and #5 tidies up
the spare \s__str_mark and the false branch. On the other hand, if none of the cases
matched then we arrive here using the “termination” case of comparing the search with
itself. That means that #1 is empty, #2 is the first \s__str_mark and so #4 is the false
code (the true code is mopped up by #3).

13694 \cs_new:Npn __str_case_end:nw #1#2#3 \s__str_mark #4#5 \s__str_stop

746

13695 { \exp_end: #1 #4 }

(End of definition for \str_case:nnTF and others. These functions are documented on page 137.)

55.5 Mapping over strings
\str_map_function:NN
\str_map_function:cN
\str_map_function:nN

\str_map_inline:Nn
\str_map_inline:cn
\str_map_inline:nn

\str_map_variable:NNn
\str_map_variable:cNn
\str_map_variable:nNn

\str_map_break:
\str_map_break:n

__str_map_function:w
__str_map_function:nn

__str_map_inline:NN
__str_map_variable:NnN

The inline and variable mappings are similar to the usual token list mappings but start
out by turning the argument to an “other string”. Doing the same for the expandable
function mapping would require __kernel_str_to_other:n, quadratic in the string
length. To deal with spaces in that case, __str_map_function:w replaces the following
space by a braced space and a further call to itself. These are received by __str_map_-
function:nn, which passes the space to #1 and calls __str_map_function:w to deal
with the next space. The space before the braced space allows to optimize the \q__-
str_recursion_tail test. Of course we need to include a trailing space (the question
mark is needed to avoid losing the space when TEX tokenizes the line). At the cost of
about three more auxiliaries this code could get a 9 times speed up by testing only every
9-th character for whether it is \q__str_recursion_tail (also by converting 9 spaces
at a time in the \str_map_function:nN case).

For the map_variable functions we use a string assignment to store each character
because spaces are made catcode 12 before the loop.

13696 \cs_new:Npn \str_map_function:nN #1#2
13697 {
13698 \exp_after:wN __str_map_function:w
13699 \exp_after:wN __str_map_function:nn \exp_after:wN #2
13700 __kernel_tl_to_str:w {#1}
13701 \q__str_recursion_tail ? ~
13702 \prg_break_point:Nn \str_map_break: { }
13703 }
13704 \cs_new:Npn \str_map_function:NN
13705 { \exp_args:No \str_map_function:nN }
13706 \cs_new:Npn __str_map_function:w #1 ~
13707 { #1 { ~ { ~ } __str_map_function:w } }
13708 \cs_new:Npn __str_map_function:nn #1#2
13709 {
13710 \if_meaning:w \q__str_recursion_tail #2
13711 \exp_after:wN \str_map_break:
13712 \fi:
13713 #1 #2 __str_map_function:nn {#1}
13714 }
13715 \cs_generate_variant:Nn \str_map_function:NN { c }
13716 \cs_new_protected:Npn \str_map_inline:nn #1#2
13717 {
13718 \int_gincr:N \g__kernel_prg_map_int
13719 \cs_gset_protected:cpn
13720 { __str_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
13721 \use:e
13722 {
13723 \exp_not:N __str_map_inline:NN
13724 \exp_not:c { __str_map_ \int_use:N \g__kernel_prg_map_int :w }
13725 __kernel_str_to_other_fast:n {#1}
13726 }
13727 \q__str_recursion_tail

747

13728 \prg_break_point:Nn \str_map_break:
13729 { \int_gdecr:N \g__kernel_prg_map_int }
13730 }
13731 \cs_new_protected:Npn \str_map_inline:Nn
13732 { \exp_args:No \str_map_inline:nn }
13733 \cs_generate_variant:Nn \str_map_inline:Nn { c }
13734 \cs_new:Npn __str_map_inline:NN #1#2
13735 {
13736 __str_if_recursion_tail_break:NN #2 \str_map_break:
13737 \exp_args:No #1 { \token_to_str:N #2 }
13738 __str_map_inline:NN #1
13739 }
13740 \cs_new_protected:Npn \str_map_variable:nNn #1#2#3
13741 {
13742 \use:e
13743 {
13744 \exp_not:n { __str_map_variable:NnN #2 {#3} }
13745 __kernel_str_to_other_fast:n {#1}
13746 }
13747 \q__str_recursion_tail
13748 \prg_break_point:Nn \str_map_break: { }
13749 }
13750 \cs_new_protected:Npn \str_map_variable:NNn
13751 { \exp_args:No \str_map_variable:nNn }
13752 \cs_new_protected:Npn __str_map_variable:NnN #1#2#3
13753 {
13754 __str_if_recursion_tail_break:NN #3 \str_map_break:
13755 \str_set:Nn #1 {#3}
13756 \use:n {#2}
13757 __str_map_variable:NnN #1 {#2}
13758 }
13759 \cs_generate_variant:Nn \str_map_variable:NNn { c }
13760 \cs_new:Npn \str_map_break:
13761 { \prg_map_break:Nn \str_map_break: { } }
13762 \cs_new:Npn \str_map_break:n
13763 { \prg_map_break:Nn \str_map_break: }

(End of definition for \str_map_function:NN and others. These functions are documented on page 138.)

\str_map_tokens:Nn
\str_map_tokens:cn
\str_map_tokens:nn

Uses an auxiliary of \str_map_function:NN.
13764 \cs_new:Npn \str_map_tokens:nn #1#2
13765 {
13766 \exp_args:Nno \use:nn
13767 { __str_map_function:w __str_map_function:nn {#2} }
13768 { __kernel_tl_to_str:w {#1} }
13769 \q__str_recursion_tail ? ~
13770 \prg_break_point:Nn \str_map_break: { }
13771 }
13772 \cs_new:Npn \str_map_tokens:Nn { \exp_args:No \str_map_tokens:nn }
13773 \cs_generate_variant:Nn \str_map_tokens:Nn { c }

(End of definition for \str_map_tokens:Nn and \str_map_tokens:nn. These functions are documented
on page 139.)

748

55.6 Accessing specific characters in a string
__kernel_str_to_other:n

__str_to_other_loop:w
__str_to_other_end:w

First apply \tl_to_str:n, then replace all spaces by “other” spaces, 8 at a time, storing
the converted part of the string between the \s__str_mark and \s__str_stop markers.
The end is detected when __str_to_other_loop:w finds one of the trailing A, distin-
guished from any contents of the initial token list by their category. Then __str_to_-
other_end:w is called, and finds the result between \s__str_mark and the first A (well,
there is also the need to remove a space).

13774 \cs_new:Npn __kernel_str_to_other:n #1
13775 {
13776 \exp_after:wN __str_to_other_loop:w
13777 \tl_to_str:n {#1} ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ \s__str_mark \s__str_stop
13778 }
13779 \group_begin:
13780 \tex_lccode:D ‘* = ‘\ %
13781 \tex_lccode:D ‘\A = ‘\A %
13782 \tex_lowercase:D
13783 {
13784 \group_end:
13785 \cs_new:Npn __str_to_other_loop:w
13786 #1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 ~ #7 ~ #8 ~ #9 \s__str_stop
13787 {
13788 \if_meaning:w A #8
13789 __str_to_other_end:w
13790 \fi:
13791 __str_to_other_loop:w
13792 #9 #1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * \s__str_stop
13793 }
13794 \cs_new:Npn __str_to_other_end:w \fi: #1 \s__str_mark #2 * A #3 \s__str_stop
13795 { \fi: #2 }
13796 }

(End of definition for __kernel_str_to_other:n , __str_to_other_loop:w , and __str_to_other_-
end:w.)

__kernel_str_to_other_fast:n
__kernel_str_to_other_fast_loop:w

__str_to_other_fast_end:w

The difference with __kernel_str_to_other:n is that the converted part is left in the
input stream, making these commands only restricted-expandable.

13797 \cs_new:Npn __kernel_str_to_other_fast:n #1
13798 {
13799 \exp_after:wN __str_to_other_fast_loop:w \tl_to_str:n {#1} ~
13800 A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ \s__str_stop
13801 }
13802 \group_begin:
13803 \tex_lccode:D ‘* = ‘\ %
13804 \tex_lccode:D ‘\A = ‘\A %
13805 \tex_lowercase:D
13806 {
13807 \group_end:
13808 \cs_new:Npn __str_to_other_fast_loop:w
13809 #1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 ~ #7 ~ #8 ~ #9 ~
13810 {
13811 \if_meaning:w A #9
13812 __str_to_other_fast_end:w
13813 \fi:

749

13814 #1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * #9
13815 __str_to_other_fast_loop:w *
13816 }
13817 \cs_new:Npn __str_to_other_fast_end:w #1 * A #2 \s__str_stop {#1}
13818 }

(End of definition for __kernel_str_to_other_fast:n , __kernel_str_to_other_fast_loop:w , and
__str_to_other_fast_end:w.)

\str_item:Nn
\str_item:cn
\str_item:nn

\str_item_ignore_spaces:nn
__str_item:nn
__str_item:w

The \str_item:nn hands its argument with spaces escaped to __str_item:nn, and
makes sure to turn the result back into a proper string (with category code 10 spaces)
eventually. The \str_item_ignore_spaces:nn function does not escape spaces, which
are thus ignored by __str_item:nn since everything else is done with undelimited ar-
guments. Evaluate the ⟨index⟩ argument #2 and count characters in the string, passing
those two numbers to __str_item:w for further analysis. If the ⟨index⟩ is negative,
shift it by the ⟨count⟩ to know the how many character to discard, and if that is still
negative give an empty result. If the ⟨index⟩ is larger than the ⟨count⟩, give an empty
result, and otherwise discard ⟨index⟩ − 1 characters before returning the following one.
The shift by −1 is obtained by inserting an empty brace group before the string in that
case: that brace group also covers the case where the ⟨index⟩ is zero.

13819 \cs_new:Npn \str_item:Nn { \exp_args:No \str_item:nn }
13820 \cs_generate_variant:Nn \str_item:Nn { c }
13821 \cs_new:Npn \str_item:nn #1#2
13822 {
13823 \exp_args:Nf \tl_to_str:n
13824 {
13825 \exp_args:Nf __str_item:nn
13826 { __kernel_str_to_other:n {#1} } {#2}
13827 }
13828 }
13829 \cs_new:Npn \str_item_ignore_spaces:nn #1
13830 { \exp_args:No __str_item:nn { \tl_to_str:n {#1} } }
13831 \cs_new:Npn __str_item:nn #1#2
13832 {
13833 \exp_after:wN __str_item:w
13834 \int_value:w \int_eval:n {#2} \exp_after:wN ;
13835 \int_value:w __str_count:n {#1} ;
13836 #1 \s__str_stop
13837 }
13838 \cs_new:Npn __str_item:w #1; #2;
13839 {
13840 \int_compare:nNnTF {#1} < 0
13841 {
13842 \int_compare:nNnTF {#1} < {-#2}
13843 { __str_use_none_delimit_by_s_stop:w }
13844 {
13845 \exp_after:wN __str_use_i_delimit_by_s_stop:nw
13846 \exp:w \exp_after:wN __str_skip_exp_end:w
13847 \int_value:w \int_eval:n { #1 + #2 } ;
13848 }
13849 }
13850 {
13851 \int_compare:nNnTF {#1} > {#2}
13852 { __str_use_none_delimit_by_s_stop:w }

750

13853 {
13854 \exp_after:wN __str_use_i_delimit_by_s_stop:nw
13855 \exp:w __str_skip_exp_end:w #1 ; { }
13856 }
13857 }
13858 }

(End of definition for \str_item:Nn and others. These functions are documented on page 141.)

__str_skip_exp_end:w
__str_skip_loop:wNNNNNNNN

__str_skip_end:w
__str_skip_end:NNNNNNNN

Removes max(#1,0) characters from the input stream, and then leaves \exp_end:. This
should be expanded using \exp:w. We remove characters 8 at a time until there are
at most 8 to remove. Then we do a dirty trick: the \if_case:w construction leaves
between 0 and 8 times the \or: control sequence, and those \or: become arguments of
__str_skip_end:NNNNNNNN. If the number of characters to remove is 6, say, then there
are two \or: left, and the 8 arguments of __str_skip_end:NNNNNNNN are the two \or:,
and 6 characters from the input stream, exactly what we wanted to remove. Then close
the \if_case:w conditional with \fi:, and stop the initial expansion with \exp_end:
(see places where __str_skip_exp_end:w is called).

13859 \cs_new:Npn __str_skip_exp_end:w #1;
13860 {
13861 \if_int_compare:w #1 > 8 \exp_stop_f:
13862 \exp_after:wN __str_skip_loop:wNNNNNNNN
13863 \else:
13864 \exp_after:wN __str_skip_end:w
13865 \int_value:w \int_eval:w
13866 \fi:
13867 #1 ;
13868 }
13869 \cs_new:Npn __str_skip_loop:wNNNNNNNN #1; #2#3#4#5#6#7#8#9
13870 {
13871 \exp_after:wN __str_skip_exp_end:w
13872 \int_value:w \int_eval:n { #1 - 8 } ;
13873 }
13874 \cs_new:Npn __str_skip_end:w #1 ;
13875 {
13876 \exp_after:wN __str_skip_end:NNNNNNNN
13877 \if_case:w #1 \exp_stop_f: \or: \or: \or: \or: \or: \or: \or: \or:
13878 }
13879 \cs_new:Npn __str_skip_end:NNNNNNNN #1#2#3#4#5#6#7#8 { \fi: \exp_end: }

(End of definition for __str_skip_exp_end:w and others.)

\str_range:Nnn
\str_range:nnn

\str_range_ignore_spaces:nnn
__str_range:nnn

__str_range:w
__str_range:nnw

Sanitize the string. Then evaluate the arguments. At this stage we also decrement
the ⟨start index⟩, since our goal is to know how many characters should be removed.
Then limit the range to be non-negative and at most the length of the string (this avoids
needing to check for the end of the string when grabbing characters), shifting negative
numbers by the appropriate amount. Afterwards, skip characters, then keep some more,
and finally drop the end of the string.

13880 \cs_new:Npn \str_range:Nnn { \exp_args:No \str_range:nnn }
13881 \cs_generate_variant:Nn \str_range:Nnn { c }
13882 \cs_new:Npn \str_range:nnn #1#2#3
13883 {
13884 \exp_args:Nf \tl_to_str:n

751

13885 {
13886 \exp_args:Nf __str_range:nnn
13887 { __kernel_str_to_other:n {#1} } {#2} {#3}
13888 }
13889 }
13890 \cs_new:Npn \str_range_ignore_spaces:nnn #1
13891 { \exp_args:No __str_range:nnn { \tl_to_str:n {#1} } }
13892 \cs_new:Npn __str_range:nnn #1#2#3
13893 {
13894 \exp_after:wN __str_range:w
13895 \int_value:w __str_count:n {#1} \exp_after:wN ;
13896 \int_value:w \int_eval:n { (#2) - 1 } \exp_after:wN ;
13897 \int_value:w \int_eval:n {#3} ;
13898 #1 \s__str_stop
13899 }
13900 \cs_new:Npn __str_range:w #1; #2; #3;
13901 {
13902 \exp_args:Nf __str_range:nnw
13903 { __str_range_normalize:nn {#2} {#1} }
13904 { __str_range_normalize:nn {#3} {#1} }
13905 }
13906 \cs_new:Npn __str_range:nnw #1#2
13907 {
13908 \exp_after:wN __str_collect_delimit_by_q_stop:w
13909 \int_value:w \int_eval:n { #2 - #1 } \exp_after:wN ;
13910 \exp:w __str_skip_exp_end:w #1 ;
13911 }

(End of definition for \str_range:Nnn and others. These functions are documented on page 142.)

__str_range_normalize:nn This function converts an ⟨index⟩ argument into an explicit position in the string (a
result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the
⟨index⟩ #1 and the string count #2. If #1 is negative, replace it by #1 + #2 + 1, then
limit to the range [0, #2].

13912 \cs_new:Npn __str_range_normalize:nn #1#2
13913 {
13914 \int_eval:n
13915 {
13916 \if_int_compare:w #1 < \c_zero_int
13917 \if_int_compare:w #1 < -#2 \exp_stop_f:
13918 0
13919 \else:
13920 #1 + #2 + 1
13921 \fi:
13922 \else:
13923 \if_int_compare:w #1 < #2 \exp_stop_f:
13924 #1
13925 \else:
13926 #2
13927 \fi:
13928 \fi:
13929 }
13930 }

(End of definition for __str_range_normalize:nn.)

752

__str_collect_delimit_by_q_stop:w
__str_collect_loop:wn

__str_collect_loop:wnNNNNNNN
__str_collect_end:wn

__str_collect_end:nnnnnnnnw

Collects max(#1,0) characters, and removes everything else until \s__str_stop. This is
somewhat similar to __str_skip_exp_end:w, but accepts integer expression arguments.
This time we can only grab 7 characters at a time. At the end, we use an \if_case:w
trick again, so that the 8 first arguments of __str_collect_end:nnnnnnnnw are some
\or:, followed by an \fi:, followed by #1 characters from the input stream. Simply
leaving this in the input stream closes the conditional properly and the \or: disappear.

13931 \cs_new:Npn __str_collect_delimit_by_q_stop:w #1;
13932 { __str_collect_loop:wn #1 ; { } }
13933 \cs_new:Npn __str_collect_loop:wn #1 ;
13934 {
13935 \if_int_compare:w #1 > 7 \exp_stop_f:
13936 \exp_after:wN __str_collect_loop:wnNNNNNNN
13937 \else:
13938 \exp_after:wN __str_collect_end:wn
13939 \fi:
13940 #1 ;
13941 }
13942 \cs_new:Npn __str_collect_loop:wnNNNNNNN #1; #2 #3#4#5#6#7#8#9
13943 {
13944 \exp_after:wN __str_collect_loop:wn
13945 \int_value:w \int_eval:n { #1 - 7 } ;
13946 { #2 #3#4#5#6#7#8#9 }
13947 }
13948 \cs_new:Npn __str_collect_end:wn #1 ;
13949 {
13950 \exp_after:wN __str_collect_end:nnnnnnnnw
13951 \if_case:w \if_int_compare:w #1 > \c_zero_int
13952 #1 \else: 0 \fi: \exp_stop_f:
13953 \or: \or: \or: \or: \or: \or: \fi:
13954 }
13955 \cs_new:Npn __str_collect_end:nnnnnnnnw #1#2#3#4#5#6#7#8 #9 \s__str_stop
13956 { #1#2#3#4#5#6#7#8 }

(End of definition for __str_collect_delimit_by_q_stop:w and others.)

55.7 Counting characters
\str_count_spaces:N
\str_count_spaces:c
\str_count_spaces:n

__str_count_spaces_loop:w

To speed up this function, we grab and discard 9 space-delimited arguments in each
iteration of the loop. The loop stops when the last argument is one of the trailing
X⟨number⟩, and that ⟨number⟩ is added to the sum of 9 that precedes, to adjust the
result.

13957 \cs_new:Npn \str_count_spaces:N
13958 { \exp_args:No \str_count_spaces:n }
13959 \cs_generate_variant:Nn \str_count_spaces:N { c }
13960 \cs_new:Npn \str_count_spaces:n #1
13961 {
13962 \int_eval:n
13963 {
13964 \exp_after:wN __str_count_spaces_loop:w
13965 \tl_to_str:n {#1} ~
13966 X 7 ~ X 6 ~ X 5 ~ X 4 ~ X 3 ~ X 2 ~ X 1 ~ X 0 ~ X -1 ~
13967 \s__str_stop

753

13968 }
13969 }
13970 \cs_new:Npn __str_count_spaces_loop:w #1~#2~#3~#4~#5~#6~#7~#8~#9~
13971 {
13972 \if_meaning:w X #9
13973 __str_use_i_delimit_by_s_stop:nw
13974 \fi:
13975 9 + __str_count_spaces_loop:w
13976 }

(End of definition for \str_count_spaces:N , \str_count_spaces:n , and __str_count_spaces_loop:w.
These functions are documented on page 140.)

\str_count:N
\str_count:c
\str_count:n

\str_count_ignore_spaces:n
__str_count:n

__str_count_aux:n
__str_count_loop:NNNNNNNNN

To count characters in a string we could first escape all spaces using __kernel_str_-
to_other:n, then pass the result to \tl_count:n. However, the escaping step would
be quadratic in the number of characters in the string, and we can do better. Namely,
sum the number of spaces (\str_count_spaces:n) and the result of \tl_count:n, which
ignores spaces. Since strings tend to be longer than token lists, we use specialized func-
tions to count characters ignoring spaces. Namely, loop, grabbing 9 non-space characters
at each step, and end as soon as we reach one of the 9 trailing items. The internal func-
tion __str_count:n, used in \str_item:nn and \str_range:nnn, is similar to \str_-
count_ignore_spaces:n but expects its argument to already be a string or a string with
spaces escaped.

13977 \cs_new:Npn \str_count:N { \exp_args:No \str_count:n }
13978 \cs_generate_variant:Nn \str_count:N { c }
13979 \cs_new:Npn \str_count:n #1
13980 {
13981 __str_count_aux:n
13982 {
13983 \str_count_spaces:n {#1}
13984 + \exp_after:wN __str_count_loop:NNNNNNNNN \tl_to_str:n {#1}
13985 }
13986 }
13987 \cs_new:Npn __str_count:n #1
13988 {
13989 __str_count_aux:n
13990 { __str_count_loop:NNNNNNNNN #1 }
13991 }
13992 \cs_new:Npn \str_count_ignore_spaces:n #1
13993 {
13994 __str_count_aux:n
13995 { \exp_after:wN __str_count_loop:NNNNNNNNN \tl_to_str:n {#1} }
13996 }
13997 \cs_new:Npn __str_count_aux:n #1
13998 {
13999 \int_eval:n
14000 {
14001 #1
14002 { X 8 } { X 7 } { X 6 }
14003 { X 5 } { X 4 } { X 3 }
14004 { X 2 } { X 1 } { X 0 }
14005 \s__str_stop
14006 }
14007 }

754

14008 \cs_new:Npn __str_count_loop:NNNNNNNNN #1#2#3#4#5#6#7#8#9
14009 {
14010 \if_meaning:w X #9
14011 \exp_after:wN __str_use_none_delimit_by_s_stop:w
14012 \fi:
14013 9 + __str_count_loop:NNNNNNNNN
14014 }

(End of definition for \str_count:N and others. These functions are documented on page 140.)

55.8 The first character in a string
\str_head:N
\str_head:c
\str_head:n

\str_head_ignore_spaces:n
__str_head:w

The _ignore_spaces variant applies \tl_to_str:n then grabs the first item, thus skip-
ping spaces. As usual, \str_head:N expands its argument and hands it to \str_head:n.
To circumvent the fact that TEX skips spaces when grabbing undelimited macro pa-
rameters, __str_head:w takes an argument delimited by a space. If #1 starts with
a non-space character, __str_use_i_delimit_by_s_stop:nw leaves that in the input
stream. On the other hand, if #1 starts with a space, the __str_head:w takes an
empty argument, and the single (initially braced) space in the definition of __str_-
head:w makes its way to the output. Finally, for an empty argument, the (braced)
empty brace group in the definition of \str_head:n gives an empty result after passing
through __str_use_i_delimit_by_s_stop:nw.

14015 \cs_new:Npn \str_head:N { \exp_args:No \str_head:n }
14016 \cs_generate_variant:Nn \str_head:N { c }
14017 \cs_new:Npn \str_head:n #1
14018 {
14019 \exp_after:wN __str_head:w
14020 \tl_to_str:n {#1}
14021 { { } } ~ \s__str_stop
14022 }
14023 \cs_new:Npn __str_head:w #1 ~ %
14024 { __str_use_i_delimit_by_s_stop:nw #1 { ~ } }
14025 \cs_new:Npn \str_head_ignore_spaces:n #1
14026 {
14027 \exp_after:wN __str_use_i_delimit_by_s_stop:nw
14028 \tl_to_str:n {#1} { } \s__str_stop
14029 }

(End of definition for \str_head:N and others. These functions are documented on page 141.)

\str_tail:N
\str_tail:c
\str_tail:n

\str_tail_ignore_spaces:n
__str_tail_auxi:w
__str_tail_auxii:w

Getting the tail is a little bit more convoluted than the head of a string. We hit the front
of the string with \reverse_if:N \if_charcode:w \scan_stop:. This removes the first
character, and necessarily makes the test true, since the character cannot match \scan_-
stop:. The auxiliary function then inserts the required \fi: to close the conditional, and
leaves the tail of the string in the input stream. The details are such that an empty string
has an empty tail (this requires in particular that the end-marker X be unexpandable and
not a control sequence). The _ignore_spaces is rather simpler: after converting the
input to a string, __str_tail_auxii:w removes one undelimited argument and leaves
everything else until an end-marker \s__str_mark. One can check that an empty (or
blank) string yields an empty tail.

14030 \cs_new:Npn \str_tail:N { \exp_args:No \str_tail:n }
14031 \cs_generate_variant:Nn \str_tail:N { c }

755

14032 \cs_new:Npn \str_tail:n #1
14033 {
14034 \exp_after:wN __str_tail_auxi:w
14035 \reverse_if:N \if_charcode:w
14036 \scan_stop: \tl_to_str:n {#1} X X \s__str_stop
14037 }
14038 \cs_new:Npn __str_tail_auxi:w #1 X #2 \s__str_stop { \fi: #1 }
14039 \cs_new:Npn \str_tail_ignore_spaces:n #1
14040 {
14041 \exp_after:wN __str_tail_auxii:w
14042 \tl_to_str:n {#1} \s__str_mark \s__str_mark \s__str_stop
14043 }
14044 \cs_new:Npn __str_tail_auxii:w #1 #2 \s__str_mark #3 \s__str_stop { #2 }

(End of definition for \str_tail:N and others. These functions are documented on page 141.)

55.9 String manipulation
\str_casefold:n
\str_casefold:V
\str_lowercase:n
\str_lowercase:f
\str_uppercase:n
\str_uppercase:f

__str_change_case:nn
__str_change_case_aux:nn

__str_change_case_result:n
__str_change_case_output:nw
__str_change_case_output:fw

__str_change_case_end:nw
__str_change_case_loop:nw
__str_change_case_space:n
__str_change_case_char:nN

__str_change_case_char_auxi:nN
__str_change_case_char_auxii:nN
__str_change_case_codepoint:nN
__str_change_case_codepoint:nNN
__str_change_case_codepoint:nNNN
__str_change_case_codepoint:nNNNN

__str_change_case_char:nnn
__str_change_case_char_aux:nnn

__str_change_case_char:nnnnn

Case changing for programmatic reasons is done by first detokenizing input then doing
a simple loop that only has to worry about spaces and everything else. The output is
detokenized to allow data sharing with text-based case changing. Similarly, for 8-bit
engines the multi-byte information is shared.

14045 \cs_new:Npn \str_casefold:n #1 { __str_change_case:nn {#1} { casefold } }
14046 \cs_new:Npn \str_lowercase:n #1 { __str_change_case:nn {#1} { lowercase } }
14047 \cs_new:Npn \str_uppercase:n #1 { __str_change_case:nn {#1} { uppercase } }
14048 \cs_generate_variant:Nn \str_casefold:n { V }
14049 \cs_generate_variant:Nn \str_lowercase:n { f }
14050 \cs_generate_variant:Nn \str_uppercase:n { f }
14051 \cs_new:Npn __str_change_case:nn #1
14052 {
14053 \exp_after:wN __str_change_case_aux:nn \exp_after:wN
14054 { \tl_to_str:n {#1} }
14055 }
14056 \cs_new:Npn __str_change_case_aux:nn #1#2
14057 {
14058 __str_change_case_loop:nw {#2} #1 \q__str_recursion_tail \q__str_recursion_stop
14059 __str_change_case_result:n { }
14060 }
14061 \cs_new:Npn __str_change_case_output:nw #1#2 __str_change_case_result:n #3
14062 { #2 __str_change_case_result:n { #3 #1 } }
14063 \cs_generate_variant:Nn __str_change_case_output:nw { f }
14064 \cs_new:Npn __str_change_case_end:wn #1 __str_change_case_result:n #2
14065 { \tl_to_str:n {#2} }
14066 \cs_new:Npn __str_change_case_loop:nw #1#2 \q__str_recursion_stop
14067 {
14068 \tl_if_head_is_space:nTF {#2}
14069 { __str_change_case_space:n }
14070 { __str_change_case_char:nN }
14071 {#1} #2 \q__str_recursion_stop
14072 }
14073 \exp_last_unbraced:NNNNo
14074 \cs_new:Npn __str_change_case_space:n #1 \c_space_tl
14075 {

756

14076 __str_change_case_output:nw { ~ }
14077 __str_change_case_loop:nw {#1}
14078 }
14079 \cs_new:Npn __str_change_case_char:nN #1#2
14080 {
14081 __str_if_recursion_tail_stop_do:Nn #2
14082 { __str_change_case_end:wn }
14083 __str_change_case_codepoint:nN {#1} #2
14084 }
14085 \if_int_compare:w 0
14086 \cs_if_exist:NT \tex_XeTeXversion:D { 1 }
14087 \cs_if_exist:NT \tex_luatexversion:D { 1 }
14088 > 0 \exp_stop_f:
14089 \cs_new:Npn __str_change_case_codepoint:nN #1#2
14090 { __str_change_case_char:fnn { \int_eval:n {‘#2} } {#1} {#2} }
14091 \else:
14092 \cs_new:Npe __str_change_case_codepoint:nN #1#2
14093 {
14094 \exp_not:N \int_compare:nNnTF {‘#2} > { "80 }
14095 {
14096 \cs_if_exist:NTF \tex_pdftexversion:D
14097 { \exp_not:N __str_change_case_char_auxi:nN }
14098 {
14099 \exp_not:N \int_compare:nNnTF {‘#2} > { "FF }
14100 { \exp_not:N __str_change_case_char_auxii:nN }
14101 { \exp_not:N __str_change_case_char_auxi:nN }
14102 }
14103 }
14104 { \exp_not:N __str_change_case_char_auxii:nN }
14105 {#1} #2
14106 }
14107 \cs_new:Npn __str_change_case_char_auxi:nN #1#2
14108 {
14109 \int_compare:nNnTF {‘#2} < { "E0 }
14110 { __str_change_case_codepoint:nNN }
14111 {
14112 \int_compare:nNnTF {‘#2} < { "F0 }
14113 { __str_change_case_codepoint:nNNN }
14114 { __str_change_case_codepoint:nNNNNN }
14115 }
14116 {#1} #2
14117 }
14118 \cs_new:Npn __str_change_case_char_auxii:nN #1#2
14119 { __str_change_case_char:fnn { \int_eval:n {‘#2} } {#1} {#2} }
14120 \cs_new:Npn __str_change_case_codepoint:nNN #1#2#3
14121 {
14122 __str_change_case_char:fnn
14123 { \int_eval:n { (‘#2 - "C0) * "40 + ‘#3 - "80 } }
14124 {#1} {#2#3}
14125 }
14126 \cs_new:Npn __str_change_case_codepoint:nNNN #1#2#3#4
14127 {
14128 __str_change_case_char:fnn
14129 {

757

14130 \int_eval:n
14131 { (‘#2 - "E0) * "1000 + (‘#3 - "80) * "40 + ‘#4 - "80 }
14132 }
14133 {#1} {#2#3#4}
14134 }
14135 \cs_new:Npn __str_change_case_codepoint:nNNNN #1#2#3#4#5
14136 {
14137 __str_change_case_char:fnn
14138 {
14139 \int_eval:n
14140 {
14141 (‘#2 - "F0) * "40000
14142 + (‘#3 - "80) * "1000
14143 + (‘#4 - "80) * "40
14144 + ‘#5 - "80
14145 }
14146 }
14147 {#1} {#2#3#4#5}
14148 }
14149 \fi:
14150 \cs_new:Npn __str_change_case_char:nnn #1#2#3
14151 {
14152 __str_change_case_output:fw
14153 {
14154 \exp_args:Ne __str_change_case_char_aux:nnn
14155 { __kernel_codepoint_case:nn {#2} {#1} } {#1} {#3}
14156 }
14157 __str_change_case_loop:nw {#2}
14158 }
14159 \cs_generate_variant:Nn __str_change_case_char:nnn { f }
14160 \cs_new:Npn __str_change_case_char_aux:nnn #1#2#3
14161 {
14162 \use:e { __str_change_case_char:nnnnn #1 {#2} {#3} }
14163 }
14164 \cs_new:Npn __str_change_case_char:nnnnn #1#2#3#4#5
14165 {
14166 \int_compare:nNnTF {#1} = {#4}
14167 { \tl_to_str:n {#5} }
14168 {
14169 \codepoint_str_generate:n {#1}
14170 \tl_if_blank:nF {#2}
14171 {
14172 \codepoint_str_generate:n {#2}
14173 \tl_if_blank:nF {#3}
14174 { \codepoint_str_generate:n {#3} }
14175 }
14176 }
14177 }

(End of definition for \str_casefold:n and others. These functions are documented on page 145.)

\str_mdfive_hash:n
\str_mdfive_hash:e 14178 \cs_new:Npn \str_mdfive_hash:n #1 { \tex_mdfivesum:D { \tl_to_str:n {#1} } }

14179 \cs_new:Npn \str_mdfive_hash:e #1 { \tex_mdfivesum:D {#1} }

758

(End of definition for \str_mdfive_hash:n. This function is documented on page 145.)

\c_ampersand_str
\c_atsign_str

\c_backslash_str
\c_left_brace_str

\c_right_brace_str
\c_circumflex_str

\c_colon_str
\c_dollar_str

\c_hash_str
\c_percent_str

\c_tilde_str
\c_underscore_str

\c_zero_str

For all of those strings, use \cs_to_str:N to get characters with the correct category
code without worries

14180 \str_const:Ne \c_ampersand_str { \cs_to_str:N \& }
14181 \str_const:Ne \c_atsign_str { \cs_to_str:N \@ }
14182 \str_const:Ne \c_backslash_str { \cs_to_str:N \\ }
14183 \str_const:Ne \c_left_brace_str { \cs_to_str:N \{ }
14184 \str_const:Ne \c_right_brace_str { \cs_to_str:N \} }
14185 \str_const:Ne \c_circumflex_str { \cs_to_str:N \^ }
14186 \str_const:Ne \c_colon_str { \cs_to_str:N \: }
14187 \str_const:Ne \c_dollar_str { \cs_to_str:N \$ }
14188 \str_const:Ne \c_hash_str { \cs_to_str:N \# }
14189 \str_const:Ne \c_percent_str { \cs_to_str:N \% }
14190 \str_const:Ne \c_tilde_str { \cs_to_str:N \~ }
14191 \str_const:Ne \c_underscore_str { \cs_to_str:N _ }
14192 \str_const:Ne \c_zero_str { 0 }

(End of definition for \c_ampersand_str and others. These variables are documented on page 146.)

\c_empty_str An empty string is simply an empty token list.
14193 \cs_new_eq:NN \c_empty_str \c_empty_tl

(End of definition for \c_empty_str. This variable is documented on page 146.)

\l_tmpa_str
\l_tmpb_str
\g_tmpa_str
\g_tmpb_str

Scratch strings.
14194 \str_new:N \l_tmpa_str
14195 \str_new:N \l_tmpb_str
14196 \str_new:N \g_tmpa_str
14197 \str_new:N \g_tmpb_str

(End of definition for \l_tmpa_str and others. These variables are documented on page 146.)

55.10 Viewing strings
\str_show:n
\str_show:N
\str_show:c
\str_log:n
\str_log:N
\str_log:c

Displays a string on the terminal.
14198 \cs_new_eq:NN \str_show:n \tl_show:n
14199 \cs_new_protected:Npn \str_show:N #1
14200 {
14201 __kernel_chk_tl_type:NnnT #1 { str } { \tl_to_str:N #1 }
14202 { \tl_show:N #1 }
14203 }
14204 \cs_generate_variant:Nn \str_show:N { c }
14205 \cs_new_eq:NN \str_log:n \tl_log:n
14206 \cs_new_protected:Npn \str_log:N #1
14207 {
14208 __kernel_chk_tl_type:NnnT #1 { str } { \tl_to_str:N #1 }
14209 { \tl_log:N #1 }
14210 }
14211 \cs_generate_variant:Nn \str_log:N { c }

(End of definition for \str_show:n and others. These functions are documented on page 145.)

14212 ⟨/package⟩

759

Chapter 56

l3str-convert implementation

14213 ⟨∗package⟩

14214 ⟨@@=str⟩

56.1 Helpers
56.1.1 Variables and constants

__str_tmp:w
\l__str_internal_tl

Internal scratch space for some functions.
14215 \cs_new_protected:Npn __str_tmp:w { }
14216 \tl_new:N \l__str_internal_tl

(End of definition for __str_tmp:w and \l__str_internal_tl.)

\g__str_result_tl The \g__str_result_tl variable is used to hold the result of various internal string
operations (mostly conversions) which are typically performed in a group. The variable
is global so that it remains defined outside the group, to be assigned to a user-provided
variable.

14217 \tl_new:N \g__str_result_tl

(End of definition for \g__str_result_tl.)

\c__str_replacement_char_int When converting, invalid bytes are replaced by the Unicode replacement character
"FFFD.

14218 \int_const:Nn \c__str_replacement_char_int { "FFFD }

(End of definition for \c__str_replacement_char_int.)

\c__str_max_byte_int The maximal byte number.
14219 \int_const:Nn \c__str_max_byte_int { 255 }

(End of definition for \c__str_max_byte_int.)

\s__str Internal scan marks.
14220 \scan_new:N \s__str

(End of definition for \s__str.)

760

\q__str_nil Internal quarks.
14221 \quark_new:N \q__str_nil

(End of definition for \q__str_nil.)

\g__str_alias_prop To avoid needing one file per encoding/escaping alias, we keep track of those in a property
list.

14222 \prop_new:N \g__str_alias_prop
14223 \prop_gput:Nnn \g__str_alias_prop { latin1 } { iso88591 }
14224 \prop_gput:Nnn \g__str_alias_prop { latin2 } { iso88592 }
14225 \prop_gput:Nnn \g__str_alias_prop { latin3 } { iso88593 }
14226 \prop_gput:Nnn \g__str_alias_prop { latin4 } { iso88594 }
14227 \prop_gput:Nnn \g__str_alias_prop { latin5 } { iso88599 }
14228 \prop_gput:Nnn \g__str_alias_prop { latin6 } { iso885910 }
14229 \prop_gput:Nnn \g__str_alias_prop { latin7 } { iso885913 }
14230 \prop_gput:Nnn \g__str_alias_prop { latin8 } { iso885914 }
14231 \prop_gput:Nnn \g__str_alias_prop { latin9 } { iso885915 }
14232 \prop_gput:Nnn \g__str_alias_prop { latin10 } { iso885916 }
14233 \prop_gput:Nnn \g__str_alias_prop { utf16le } { utf16 }
14234 \prop_gput:Nnn \g__str_alias_prop { utf16be } { utf16 }
14235 \prop_gput:Nnn \g__str_alias_prop { utf32le } { utf32 }
14236 \prop_gput:Nnn \g__str_alias_prop { utf32be } { utf32 }
14237 \prop_gput:Nnn \g__str_alias_prop { hexadecimal } { hex }
14238 \bool_lazy_any:nTF
14239 {
14240 \sys_if_engine_luatex_p:
14241 \sys_if_engine_xetex_p:
14242 }
14243 {
14244 \prop_gput:Nnn \g__str_alias_prop { default } { }
14245 }
14246 {
14247 \prop_gput:Nnn \g__str_alias_prop { default } { utf8 }
14248 }

(End of definition for \g__str_alias_prop.)

\g__str_error_bool In conversion functions with a built-in conditional, errors are not reported directly to the
user, but the information is collected in this boolean, used at the end to decide on which
branch of the conditional to take.

14249 \bool_new:N \g__str_error_bool

(End of definition for \g__str_error_bool.)

\l__str_byte_flag
\l__str_error_flag

Conversions from one ⟨encoding⟩/⟨escaping⟩ pair to another are done within e-
expanding assignments. Errors are signalled by raising the relevant flag.

14250 \flag_new:N \l__str_byte_flag
14251 \flag_new:N \l__str_error_flag

(End of definition for \l__str_byte_flag and \l__str_error_flag.)

761

56.2 String conditionals
__str_if_contains_char:NnT
__str_if_contains_char:NnTF
__str_if_contains_char:nnTF

__str_if_contains_char_aux:nn
__str_if_contains_char_auxi:nN

__str_if_contains_char_true:

__str_if_contains_char:nnTF {⟨token list⟩} ⟨char⟩
Expects the ⟨token list⟩ to be an ⟨other string⟩: the caller is responsible for

ensuring that no (too-)special catcodes remain. Loop over the characters of the string,
comparing character codes. The loop is broken if character codes match. Otherwise we
return “false”.

14252 \prg_new_conditional:Npnn __str_if_contains_char:Nn #1#2 { T , TF }
14253 {
14254 \exp_after:wN __str_if_contains_char_aux:nn \exp_after:wN {#1} {#2}
14255 { \prg_break:n { ? \fi: } }
14256 \prg_break_point:
14257 \prg_return_false:
14258 }
14259 \cs_new:Npn __str_if_contains_char_aux:nn #1#2
14260 { __str_if_contains_char_auxi:nN {#2} #1 }
14261 \prg_new_conditional:Npnn __str_if_contains_char:nn #1#2 { TF }
14262 {
14263 __str_if_contains_char_auxi:nN {#2} #1 { \prg_break:n { ? \fi: } }
14264 \prg_break_point:
14265 \prg_return_false:
14266 }
14267 \cs_new:Npn __str_if_contains_char_auxi:nN #1#2
14268 {
14269 \if_charcode:w #1 #2
14270 \exp_after:wN __str_if_contains_char_true:
14271 \fi:
14272 __str_if_contains_char_auxi:nN {#1}
14273 }
14274 \cs_new:Npn __str_if_contains_char_true:
14275 { \prg_break:n { \prg_return_true: \use_none:n } }

(End of definition for __str_if_contains_char:NnT and others.)

__str_octal_use:NTF __str_octal_use:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}
If the ⟨token⟩ is an octal digit, it is left in the input stream, followed by the ⟨true

code⟩. Otherwise, the ⟨false code⟩ is left in the input stream.

TEXhackers note: This function will fail if the escape character is an octal digit. We are
thus careful to set the escape character to a known value before using it. TEX dutifully detects

octal digits for us: if #1 is an octal digit, then the right-hand side of the comparison is
’1#1, greater than 1. Otherwise, the right-hand side stops as ’1, and the conditional
takes the false branch.

14276 \prg_new_conditional:Npnn __str_octal_use:N #1 { TF }
14277 {
14278 \if_int_compare:w 1 < ’1 \token_to_str:N #1 \exp_stop_f:
14279 #1 \prg_return_true:
14280 \else:
14281 \prg_return_false:
14282 \fi:
14283 }

(End of definition for __str_octal_use:NTF.)

762

__str_hexadecimal_use:NTF TEX detects uppercase hexadecimal digits for us (see __str_octal_use:NTF), but not
the lowercase letters, which we need to detect and replace by their uppercase counterpart.

14284 \prg_new_conditional:Npnn __str_hexadecimal_use:N #1 { TF }
14285 {
14286 \if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
14287 #1 \prg_return_true:
14288 \else:
14289 \if_case:w \int_eval:n { \exp_after:wN ‘ \token_to_str:N #1 - ‘a }
14290 A
14291 \or: B
14292 \or: C
14293 \or: D
14294 \or: E
14295 \or: F
14296 \else:
14297 \prg_return_false:
14298 \exp_after:wN \use_none:n
14299 \fi:
14300 \prg_return_true:
14301 \fi:
14302 }

(End of definition for __str_hexadecimal_use:NTF.)

56.3 Conversions
56.3.1 Producing one byte or character

\c__str_byte_0_tl
\c__str_byte_1_tl

\c__str_byte_255_tl
\c__str_byte_-1_tl

For each integer N in the range [0, 255], we create a constant token list which holds three
character tokens with category code other: the character with character code N , followed
by the representation of N as two hexadecimal digits. The value −1 is given a default
token list which ensures that later functions give an empty result for the input −1.

14303 \group_begin:
14304 __kernel_tl_set:Nx \l__str_internal_tl { \tl_to_str:n { 0123456789ABCDEF } }
14305 \tl_map_inline:Nn \l__str_internal_tl
14306 {
14307 \tl_map_inline:Nn \l__str_internal_tl
14308 {
14309 \tl_const:ce { c__str_byte_ \int_eval:n {"#1##1} _tl }
14310 { \char_generate:nn { "#1##1 } { 12 } #1 ##1 }
14311 }
14312 }
14313 \group_end:
14314 \tl_const:cn { c__str_byte_-1_tl } { { } \use_none:n { } }

(End of definition for \c__str_byte_0_tl and others.)

__str_output_byte:n
__str_output_byte:w

__str_output_hexadecimal:n
__str_output_end:

Those functions must be used carefully: feeding them a value outside the range [−1, 255]
will attempt to use the undefined token list variable \c__str_byte_⟨number⟩_tl. As-
suming that the argument is in the right range, we expand the corresponding token list,
and pick either the byte (first token) or the hexadecimal representations (second and
third tokens). The value −1 produces an empty result in both cases.

763

14315 \cs_new:Npn __str_output_byte:n #1
14316 { __str_output_byte:w #1 __str_output_end: }
14317 \cs_new:Npn __str_output_byte:w
14318 {
14319 \exp_after:wN \exp_after:wN
14320 \exp_after:wN \use_i:nnn
14321 \cs:w c__str_byte_ \int_eval:w
14322 }
14323 \cs_new:Npn __str_output_hexadecimal:n #1
14324 {
14325 \exp_after:wN \exp_after:wN
14326 \exp_after:wN \use_none:n
14327 \cs:w c__str_byte_ \int_eval:n {#1} _tl \cs_end:
14328 }
14329 \cs_new:Npn __str_output_end:
14330 { \scan_stop: _tl \cs_end: }

(End of definition for __str_output_byte:n and others.)

__str_output_byte_pair_be:n
__str_output_byte_pair_le:n
__str_output_byte_pair:nnN

Convert a number in the range [0, 65535] to a pair of bytes, either big-endian or little-
endian.

14331 \cs_new:Npn __str_output_byte_pair_be:n #1
14332 {
14333 \exp_args:Nf __str_output_byte_pair:nnN
14334 { \int_div_truncate:nn { #1 } { "100 } } {#1} \use:nn
14335 }
14336 \cs_new:Npn __str_output_byte_pair_le:n #1
14337 {
14338 \exp_args:Nf __str_output_byte_pair:nnN
14339 { \int_div_truncate:nn { #1 } { "100 } } {#1} \use_ii_i:nn
14340 }
14341 \cs_new:Npn __str_output_byte_pair:nnN #1#2#3
14342 {
14343 #3
14344 { __str_output_byte:n { #1 } }
14345 { __str_output_byte:n { #2 - #1 * "100 } }
14346 }

(End of definition for __str_output_byte_pair_be:n , __str_output_byte_pair_le:n , and __str_-
output_byte_pair:nnN.)

56.3.2 Mapping functions for conversions
__str_convert_gmap:N

__str_convert_gmap_loop:NN
This maps the function #1 over all characters in \g__str_result_tl, which should be a
byte string in most cases, sometimes a native string.

14347 \cs_new_protected:Npn __str_convert_gmap:N #1
14348 {
14349 __kernel_tl_gset:Nx \g__str_result_tl
14350 {
14351 \exp_after:wN __str_convert_gmap_loop:NN
14352 \exp_after:wN #1
14353 \g__str_result_tl { ? \prg_break: }
14354 \prg_break_point:
14355 }

764

14356 }
14357 \cs_new:Npn __str_convert_gmap_loop:NN #1#2
14358 {
14359 \use_none:n #2
14360 #1#2
14361 __str_convert_gmap_loop:NN #1
14362 }

(End of definition for __str_convert_gmap:N and __str_convert_gmap_loop:NN.)

__str_convert_gmap_internal:N
__str_convert_gmap_internal_loop:Nw

This maps the function #1 over all character codes in \g__str_result_tl, which must
be in the internal representation.

14363 \cs_new_protected:Npn __str_convert_gmap_internal:N #1
14364 {
14365 __kernel_tl_gset:Nx \g__str_result_tl
14366 {
14367 \exp_after:wN __str_convert_gmap_internal_loop:Nww
14368 \exp_after:wN #1
14369 \g__str_result_tl \s__str \s__str_stop \prg_break: \s__str
14370 \prg_break_point:
14371 }
14372 }
14373 \cs_new:Npn __str_convert_gmap_internal_loop:Nww #1 #2 \s__str #3 \s__str
14374 {
14375 __str_use_none_delimit_by_s_stop:w #3 \s__str_stop
14376 #1 {#3}
14377 __str_convert_gmap_internal_loop:Nww #1
14378 }

(End of definition for __str_convert_gmap_internal:N and __str_convert_gmap_internal_loop:Nw.)

56.3.3 Error-reporting during conversion
__str_if_flag_error:Nne

__str_if_flag_no_error:Nne
When converting using the function \str_set_convert:Nnnn, errors should be reported
to the user after each step in the conversion. Errors are signalled by raising some flag
(typically @@_error), so here we test that flag: if it is raised, give the user an error,
otherwise remove the arguments. On the other hand, in the conditional functions \str_-
set_convert:NnnnTF, errors should be suppressed. This is done by changing __str_-
if_flag_error:Nne into __str_if_flag_no_error:Nne locally.

14379 \cs_new_protected:Npn __str_if_flag_error:Nne #1
14380 {
14381 \flag_if_raised:NTF #1
14382 { \msg_error:nne { str } }
14383 { \use_none:nn }
14384 }
14385 \cs_new_protected:Npn __str_if_flag_no_error:Nne #1#2#3
14386 { \flag_if_raised:NT #1 { \bool_gset_true:N \g__str_error_bool } }

(End of definition for __str_if_flag_error:Nne and __str_if_flag_no_error:Nne.)

__str_if_flag_times:NT At the end of each conversion step, we raise all relevant errors as one error message,
built on the fly. The height of each flag indicates how many times a given error was
encountered. This function prints #2 followed by the number of occurrences of an error
if it occurred, nothing otherwise.

765

14387 \cs_new:Npn __str_if_flag_times:NT #1#2
14388 { \flag_if_raised:NT #1 { #2~(x \flag_height:N #1) } }

(End of definition for __str_if_flag_times:NT.)

56.3.4 Framework for conversions
Most functions in this module expect to be working with “native” strings. Strings can also
be stored as bytes, in one of many encodings, for instance utf8. The bytes themselves can
be expressed in various ways in terms of TEX tokens, for instance as pairs of hexadecimal
digits. The questions of going from arbitrary Unicode code points to bytes, and from
bytes to tokens are mostly independent.

Conversions are done in four steps:

• “unescape” produces a string of bytes;

• “decode” takes in a string of bytes, and converts it to a list of Unicode characters
in an internal representation, with items of the form

⟨bytes⟩ \s__str ⟨Unicode code point⟩ \s__str

where we have collected the ⟨bytes⟩ which combined to form this particular Uni-
code character, and the ⟨Unicode code point⟩ is in the range [0, "10FFFF].

• “encode” encodes the internal list of code points as a byte string in the new encod-
ing;

• “escape” escapes bytes as requested.

The process is modified in case one of the encoding is empty (or the conversion function
has been set equal to the empty encoding because it was not found): then the unescape
or escape step is ignored, and the decode or encode steps work on tokens instead of bytes.
Otherwise, each step must ensure that it passes a correct byte string or internal string
to the next step.

\str_set_convert:Nnnn
\str_gset_convert:Nnnn
\str_set_convert:NnnnTF

\str_gset_convert:NnnnTF
__str_convert:nNNnnn

The input string is stored in \g__str_result_tl, then we: unescape and decode; encode
and escape; exit the group and store the result in the user’s variable. The various con-
version functions all act on \g__str_result_tl. Errors are silenced for the conditional
functions by redefining __str_if_flag_error:Nne locally.

14389 \cs_new_protected:Npn \str_set_convert:Nnnn
14390 { __str_convert:nNNnnn { } \tl_set_eq:NN }
14391 \cs_new_protected:Npn \str_gset_convert:Nnnn
14392 { __str_convert:nNNnnn { } \tl_gset_eq:NN }
14393 \prg_new_protected_conditional:Npnn
14394 \str_set_convert:Nnnn #1#2#3#4 { T , F , TF }
14395 {
14396 \bool_gset_false:N \g__str_error_bool
14397 __str_convert:nNNnnn
14398 { \cs_set_eq:NN __str_if_flag_error:Nne __str_if_flag_no_error:Nne }
14399 \tl_set_eq:NN #1 {#2} {#3} {#4}
14400 \bool_if:NTF \g__str_error_bool \prg_return_false: \prg_return_true:
14401 }
14402 \prg_new_protected_conditional:Npnn
14403 \str_gset_convert:Nnnn #1#2#3#4 { T , F , TF }

766

14404 {
14405 \bool_gset_false:N \g__str_error_bool
14406 __str_convert:nNNnnn
14407 { \cs_set_eq:NN __str_if_flag_error:Nne __str_if_flag_no_error:Nne }
14408 \tl_gset_eq:NN #1 {#2} {#3} {#4}
14409 \bool_if:NTF \g__str_error_bool \prg_return_false: \prg_return_true:
14410 }
14411 \cs_new_protected:Npn __str_convert:nNNnnn #1#2#3#4#5#6
14412 {
14413 \group_begin:
14414 #1
14415 __kernel_tl_gset:Nx \g__str_result_tl { __kernel_str_to_other_fast:n {#4} }
14416 \exp_after:wN __str_convert:wwwnn
14417 \tl_to_str:n {#5} /// \s__str_stop
14418 { decode } { unescape }
14419 \prg_do_nothing:
14420 __str_convert_decode_:
14421 \exp_after:wN __str_convert:wwwnn
14422 \tl_to_str:n {#6} /// \s__str_stop
14423 { encode } { escape }
14424 \use_ii_i:nn
14425 __str_convert_encode_:
14426 __kernel_tl_gset:Nx \g__str_result_tl
14427 { \tl_to_str:V \g__str_result_tl }
14428 \group_end:
14429 #2 #3 \g__str_result_tl
14430 }

(End of definition for \str_set_convert:Nnnn and others. These functions are documented on page
149.)

__str_convert:wwwnn
__str_convert:NNnNN

The task of __str_convert:wwwnn is to split ⟨encoding⟩/⟨escaping⟩ pairs into their
components, #1 and #2. Calls to __str_convert:nnn ensure that the corresponding
conversion functions are defined. The third auxiliary does the main work.

• #1 is the encoding conversion function;

• #2 is the escaping function;

• #3 is the escaping name for use in an error message;

• #4 is \prg_do_nothing: for unescaping/decoding, and \use_ii_i:nn for encod-
ing/escaping;

• #5 is the default encoding function (either “decode” or “encode”), for which there
should be no escaping.

Let us ignore the native encoding for a second. In the unescaping/decoding phase, we
want to do #2#1 in this order, and in the encoding/escaping phase, the order should be
reversed: #4#2#1 does exactly that. If one of the encodings is the default (native), then
the escaping should be ignored, with an error if any was given, and only the encoding,
#1, should be performed.

14431 \cs_new_protected:Npn __str_convert:wwwnn
14432 #1 / #2 // #3 \s__str_stop #4#5
14433 {

767

14434 __str_convert:nnn {enc} {#4} {#1}
14435 __str_convert:nnn {esc} {#5} {#2}
14436 \exp_args:Ncc __str_convert:NNnNN
14437 { __str_convert_#4_#1: } { __str_convert_#5_#2: } {#2}
14438 }
14439 \cs_new_protected:Npn __str_convert:NNnNN #1#2#3#4#5
14440 {
14441 \if_meaning:w #1 #5
14442 \tl_if_empty:nF {#3}
14443 { \msg_error:nne { str } { native-escaping } {#3} }
14444 #1
14445 \else:
14446 #4 #2 #1
14447 \fi:
14448 }

(End of definition for __str_convert:wwwnn and __str_convert:NNnNN.)

__str_convert:nnn
__str_convert:nnnn

The arguments of __str_convert:nnn are: enc or esc, used to build filenames, the
type of the conversion (unescape, decode, encode, escape), and the encoding or escaping
name. If the function is already defined, no need to do anything. Otherwise, filter out
all non-alphanumerics in the name, and lowercase it. Feed that, and the same three
arguments, to __str_convert:nnnn. The task is then to make sure that the conversion
function #3_#1 corresponding to the type #3 and filtered name #1 is defined, then set
our initial conversion function #3_#4 equal to that.

How do we get the #3_#1 conversion to be defined if it isn’t? Two main cases.
First, if #1 is a key in \g__str_alias_prop, then the value \l__str_internal_tl

tells us what file to load. Loading is skipped if the file was already read, i.e., if the
conversion command based on \l__str_internal_tl already exists. Otherwise, try to
load the file; if that fails, there is an error, use the default empty name instead.

Second, #1 may be absent from the property list. The \cs_if_exist:cF test is
automatically false, and we search for a file defining the encoding or escaping #1 (this
should allow third-party .def files). If the file is not found, there is an error, use the
default empty name instead.

In all cases, the conversion based on \l__str_internal_tl is defined, so we can
set the #3_#1 function equal to that. In some cases (e.g., utf16be), the #3_#1 function
is actually defined within the file we just loaded, and it is different from the \l__str_-
internal_tl-based function: we mustn’t clobber that different definition.

14449 \cs_new_protected:Npn __str_convert:nnn #1#2#3
14450 {
14451 \cs_if_exist:cF { __str_convert_#2_#3: }
14452 {
14453 \exp_args:Ne __str_convert:nnnn
14454 { __str_convert_lowercase_alphanum:n {#3} }
14455 {#1} {#2} {#3}
14456 }
14457 }
14458 \cs_new_protected:Npn __str_convert:nnnn #1#2#3#4
14459 {
14460 \cs_if_exist:cF { __str_convert_#3_#1: }
14461 {
14462 \prop_get:NnNF \g__str_alias_prop {#1} \l__str_internal_tl
14463 { \tl_set:Nn \l__str_internal_tl {#1} }

768

14464 \cs_if_exist:cF { __str_convert_#3_ \l__str_internal_tl : }
14465 {
14466 \file_if_exist:nTF { l3str-#2- \l__str_internal_tl .def }
14467 {
14468 \group_begin:
14469 \cctab_select:N \c_code_cctab
14470 \file_input:n { l3str-#2- \l__str_internal_tl .def }
14471 \group_end:
14472 }
14473 {
14474 \tl_clear:N \l__str_internal_tl
14475 \msg_error:nnee { str } { unknown-#2 } {#4} {#1}
14476 }
14477 }
14478 \cs_if_exist:cF { __str_convert_#3_#1: }
14479 {
14480 \cs_gset_eq:cc { __str_convert_#3_#1: }
14481 { __str_convert_#3_ \l__str_internal_tl : }
14482 }
14483 }
14484 \cs_gset_eq:cc { __str_convert_#3_#4: } { __str_convert_#3_#1: }
14485 }

(End of definition for __str_convert:nnn and __str_convert:nnnn.)

__str_convert_lowercase_alphanum:n
__str_convert_lowercase_alphanum_loop:N

This function keeps only letters and digits, with upper case letters converted to lower
case.

14486 \cs_new:Npn __str_convert_lowercase_alphanum:n #1
14487 {
14488 \exp_after:wN __str_convert_lowercase_alphanum_loop:N
14489 \tl_to_str:n {#1} { ? \prg_break: }
14490 \prg_break_point:
14491 }
14492 \cs_new:Npn __str_convert_lowercase_alphanum_loop:N #1
14493 {
14494 \use_none:n #1
14495 \if_int_compare:w ‘#1 > ‘Z \exp_stop_f:
14496 \if_int_compare:w ‘#1 > ‘z \exp_stop_f: \else:
14497 \if_int_compare:w ‘#1 < ‘a \exp_stop_f: \else:
14498 #1
14499 \fi:
14500 \fi:
14501 \else:
14502 \if_int_compare:w ‘#1 < ‘A \exp_stop_f:
14503 \if_int_compare:w 1 < 1#1 \exp_stop_f:
14504 #1
14505 \fi:
14506 \else:
14507 __str_output_byte:n { ‘#1 + ‘a - ‘A }
14508 \fi:
14509 \fi:
14510 __str_convert_lowercase_alphanum_loop:N
14511 }

769

(End of definition for __str_convert_lowercase_alphanum:n and __str_convert_lowercase_alphanum_-
loop:N.)

56.3.5 Byte unescape and escape
Strings of bytes may need to be stored in auxiliary files in safe “escaping” formats. Each
such escaping is only loaded as needed. By default, on input any non-byte is filtered out,
while the output simply consists in letting bytes through.

__str_filter_bytes:n
__str_filter_bytes_aux:N

In the case of 8-bit engines, every character is a byte. For Unicode-aware engines, test
the character code; non-bytes cause us to raise the flag \l__str_byte_flag. Spaces have
already been given the correct category code when this function is called.

14512 \bool_lazy_any:nTF
14513 {
14514 \sys_if_engine_luatex_p:
14515 \sys_if_engine_xetex_p:
14516 }
14517 {
14518 \cs_new:Npn __str_filter_bytes:n #1
14519 {
14520 __str_filter_bytes_aux:N #1
14521 { ? \prg_break: }
14522 \prg_break_point:
14523 }
14524 \cs_new:Npn __str_filter_bytes_aux:N #1
14525 {
14526 \use_none:n #1
14527 \if_int_compare:w ‘#1 < 256 \exp_stop_f:
14528 #1
14529 \else:
14530 \flag_raise:N \l__str_byte_flag
14531 \fi:
14532 __str_filter_bytes_aux:N
14533 }
14534 }
14535 { \cs_new_eq:NN __str_filter_bytes:n \use:n }

(End of definition for __str_filter_bytes:n and __str_filter_bytes_aux:N.)

__str_convert_unescape_:
__str_convert_unescape_bytes:

The simplest unescaping method removes non-bytes from \g__str_result_tl.
14536 \bool_lazy_any:nTF
14537 {
14538 \sys_if_engine_luatex_p:
14539 \sys_if_engine_xetex_p:
14540 }
14541 {
14542 \cs_new_protected:Npn __str_convert_unescape_:
14543 {
14544 \flag_clear:N \l__str_byte_flag
14545 __kernel_tl_gset:Nx \g__str_result_tl
14546 { \exp_args:No __str_filter_bytes:n \g__str_result_tl }
14547 __str_if_flag_error:Nne \l__str_byte_flag { non-byte } { bytes }
14548 }
14549 }

770

14550 { \cs_new_protected:Npn __str_convert_unescape_: { } }
14551 \cs_new_eq:NN __str_convert_unescape_bytes: __str_convert_unescape_:

(End of definition for __str_convert_unescape_: and __str_convert_unescape_bytes:.)

__str_convert_escape_:
__str_convert_escape_bytes:

The simplest form of escape leaves the bytes from the previous step of the conversion
unchanged.

14552 \cs_new_protected:Npn __str_convert_escape_: { }
14553 \cs_new_eq:NN __str_convert_escape_bytes: __str_convert_escape_:

(End of definition for __str_convert_escape_: and __str_convert_escape_bytes:.)

56.3.6 Native strings
__str_convert_decode_:

__str_decode_native_char:N
Convert each character to its character code, one at a time.

14554 \cs_new_protected:Npn __str_convert_decode_:
14555 { __str_convert_gmap:N __str_decode_native_char:N }
14556 \cs_new:Npn __str_decode_native_char:N #1
14557 { #1 \s__str \int_value:w ‘#1 \s__str }

(End of definition for __str_convert_decode_: and __str_decode_native_char:N.)

__str_convert_encode_:
__str_encode_native_char:n

The conversion from an internal string to native character tokens basically maps \char_-
generate:nn through the code-points, but in non-Unicode-aware engines we use a fall-
back character ? rather than nothing when given a character code outside [0, 255]. We
detect the presence of bad characters using a flag and only produce a single error after
the e-expanding assignment.

14558 \bool_lazy_any:nTF
14559 {
14560 \sys_if_engine_luatex_p:
14561 \sys_if_engine_xetex_p:
14562 }
14563 {
14564 \cs_new_protected:Npn __str_convert_encode_:
14565 { __str_convert_gmap_internal:N __str_encode_native_char:n }
14566 \cs_new:Npn __str_encode_native_char:n #1
14567 { \char_generate:nn {#1} {12} }
14568 }
14569 {
14570 \cs_new_protected:Npn __str_convert_encode_:
14571 {
14572 \flag_clear:N \l__str_error_flag
14573 __str_convert_gmap_internal:N __str_encode_native_char:n
14574 __str_if_flag_error:Nne \l__str_error_flag
14575 { native-overflow } { }
14576 }
14577 \cs_new:Npn __str_encode_native_char:n #1
14578 {
14579 \if_int_compare:w #1 > \c__str_max_byte_int
14580 \flag_raise:N \l__str_error_flag
14581 ?
14582 \else:
14583 \char_generate:nn {#1} {12}
14584 \fi:

771

14585 }
14586 \msg_new:nnnn { str } { native-overflow }
14587 { Character~code~too~large~for~this~engine. }
14588 {
14589 This~engine~only~support~8-bit~characters:~
14590 valid~character~codes~are~in~the~range~[0,255].~
14591 To~manipulate~arbitrary~Unicode,~use~LuaTeX~or~XeTeX.
14592 }
14593 }

(End of definition for __str_convert_encode_: and __str_encode_native_char:n.)

56.3.7 clist

__str_convert_decode_clist:
__str_decode_clist_char:n

Convert each integer to the internal form. We first turn \g__str_result_tl into a clist
variable, as this avoids problems with leading or trailing commas.

14594 \cs_new_protected:Npn __str_convert_decode_clist:
14595 {
14596 \clist_gset:No \g__str_result_tl \g__str_result_tl
14597 __kernel_tl_gset:Nx \g__str_result_tl
14598 {
14599 \exp_args:No \clist_map_function:nN
14600 \g__str_result_tl __str_decode_clist_char:n
14601 }
14602 }
14603 \cs_new:Npn __str_decode_clist_char:n #1
14604 { #1 \s__str \int_eval:n {#1} \s__str }

(End of definition for __str_convert_decode_clist: and __str_decode_clist_char:n.)

__str_convert_encode_clist:
__str_encode_clist_char:n

Convert the internal list of character codes to a comma-list of character codes. The first
line produces a comma-list with a leading comma, removed in the next step (this also
works in the empty case, since \tl_tail:N does not trigger an error in this case).

14605 \cs_new_protected:Npn __str_convert_encode_clist:
14606 {
14607 __str_convert_gmap_internal:N __str_encode_clist_char:n
14608 __kernel_tl_gset:Nx \g__str_result_tl { \tl_tail:N \g__str_result_tl }
14609 }
14610 \cs_new:Npn __str_encode_clist_char:n #1 { , #1 }

(End of definition for __str_convert_encode_clist: and __str_encode_clist_char:n.)

56.3.8 8-bit encodings
It is not clear in what situations 8-bit encodings are used, hence it is not clear what should
be optimized. The current approach is reasonably efficient to convert long strings, and
it scales well when using many different encodings.

The data needed to support a given 8-bit encoding is stored in a file that consists of
a single function call

__str_declare_eight_bit_encoding:nnnn {⟨name⟩} {⟨modulo⟩} {⟨mapping⟩}
{⟨missing⟩}

772

This declares the encoding ⟨name⟩ to map bytes to Unicode characters according to the
⟨mapping⟩, and map those bytes which are not mentioned in the ⟨mapping⟩ either to the
replacement character (if they appear in ⟨missing⟩), or to themselves. The ⟨mapping⟩
argument is a token list of pairs {⟨byte⟩} {⟨Unicode⟩} expressed in uppercase hexadecimal
notation. The ⟨missing⟩ argument is a token list of {⟨byte⟩}. Every ⟨byte⟩ which does
not appear in the ⟨mapping⟩ nor the ⟨missing⟩ lists maps to itself in Unicode, so for
instance the latin1 encoding has empty ⟨mapping⟩ and ⟨missing⟩ lists. The ⟨modulo⟩
is a (decimal) integer between 256 and 558 inclusive, modulo which all Unicode code
points supported by the encodings must be different.

We use two integer arrays per encoding. When decoding we only use the decode
integer array, with entry n + 1 (offset needed because integer array indices start at 1)
equal to the Unicode code point that corresponds to the n-th byte in the encoding under
consideration, or −1 if the given byte is invalid in this encoding. When encoding we
use both arrays: upon seeing a code point n, we look up the entry (1 plus) n modulo
some number M in the encode array, which tells us the byte that might encode the given
Unicode code point, then we check in the decode array that indeed this byte encodes
the Unicode code point we want. Here, M is an encoding-dependent integer between 256
and 558 (it turns out), chosen so that among the Unicode code points that can be validly
represented in the given encoding, no pair of code points have the same value modulo M .

__str_declare_eight_bit_encoding:nnnn
__str_declare_eight_bit_aux:NNnnn
__str_declare_eight_bit_loop:Nnn
__str_declare_eight_bit_loop:Nn

Loop through both lists of bytes to fill in the decode integer array, then fill the encode
array accordingly. For bytes that are invalid in the given encoding, store −1 in the decode
array.

14611 \cs_new_protected:Npn __str_declare_eight_bit_encoding:nnnn #1
14612 {
14613 \tl_set:Nn \l__str_internal_tl {#1}
14614 \cs_new_protected:cpn { __str_convert_decode_#1: }
14615 { __str_convert_decode_eight_bit:n {#1} }
14616 \cs_new_protected:cpn { __str_convert_encode_#1: }
14617 { __str_convert_encode_eight_bit:n {#1} }
14618 \exp_args:Ncc __str_declare_eight_bit_aux:NNnnn
14619 { g__str_decode_#1_intarray } { g__str_encode_#1_intarray }
14620 }
14621 \cs_new_protected:Npn __str_declare_eight_bit_aux:NNnnn #1#2#3#4#5
14622 {
14623 \intarray_new:Nn #1 { 256 }
14624 \int_step_inline:nnn { 0 } { 255 }
14625 { \intarray_gset:Nnn #1 { 1 + ##1 } {##1} }
14626 __str_declare_eight_bit_loop:Nnn #1
14627 #4 { \s__str_stop \prg_break: } { }
14628 \prg_break_point:
14629 __str_declare_eight_bit_loop:Nn #1
14630 #5 { \s__str_stop \prg_break: }
14631 \prg_break_point:
14632 \intarray_new:Nn #2 {#3}
14633 \int_step_inline:nnn { 0 } { 255 }
14634 {
14635 \int_compare:nNnF { \intarray_item:Nn #1 { 1 + ##1 } } = { -1 }
14636 {
14637 \intarray_gset:Nnn #2
14638 {
14639 1 +

773

14640 \int_mod:nn { \intarray_item:Nn #1 { 1 + ##1 } }
14641 { \intarray_count:N #2 }
14642 }
14643 {##1}
14644 }
14645 }
14646 }
14647 \cs_new_protected:Npn __str_declare_eight_bit_loop:Nnn #1#2#3
14648 {
14649 __str_use_none_delimit_by_s_stop:w #2 \s__str_stop
14650 \intarray_gset:Nnn #1 { 1 + "#2 } { "#3 }
14651 __str_declare_eight_bit_loop:Nnn #1
14652 }
14653 \cs_new_protected:Npn __str_declare_eight_bit_loop:Nn #1#2
14654 {
14655 __str_use_none_delimit_by_s_stop:w #2 \s__str_stop
14656 \intarray_gset:Nnn #1 { 1 + "#2 } { -1 }
14657 __str_declare_eight_bit_loop:Nn #1
14658 }

(End of definition for __str_declare_eight_bit_encoding:nnnn and others.)

__str_convert_decode_eight_bit:n
__str_decode_eight_bit_aux:n
__str_decode_eight_bit_aux:Nn

The map from bytes to Unicode code points is in the decode array corresponding to the
given encoding. Define __str_tmp:w and pass it successively all bytes in the string. It
produces an internal representation with suitable \s__str inserted, and the correspond-
ing code point is obtained by looking it up in the integer array. If the entry is −1 then
issue a replacement character and raise the flag indicating that there was an error.

14659 \cs_new_protected:Npn __str_convert_decode_eight_bit:n #1
14660 {
14661 \cs_set:Npe __str_tmp:w
14662 {
14663 \exp_not:N __str_decode_eight_bit_aux:Nn
14664 \exp_not:c { g__str_decode_#1_intarray }
14665 }
14666 \flag_clear:N \l__str_error_flag
14667 __str_convert_gmap:N __str_tmp:w
14668 __str_if_flag_error:Nne \l__str_error_flag { decode-8-bit } {#1}
14669 }
14670 \cs_new:Npn __str_decode_eight_bit_aux:Nn #1#2
14671 {
14672 #2 \s__str
14673 \exp_args:Nf __str_decode_eight_bit_aux:n
14674 { \intarray_item:Nn #1 { 1 + ‘#2 } }
14675 \s__str
14676 }
14677 \cs_new:Npn __str_decode_eight_bit_aux:n #1
14678 {
14679 \if_int_compare:w #1 < \c_zero_int
14680 \flag_raise:N \l__str_error_flag
14681 \int_value:w \c__str_replacement_char_int
14682 \else:
14683 #1
14684 \fi:
14685 }

774

(End of definition for __str_convert_decode_eight_bit:n , __str_decode_eight_bit_aux:n , and _-
_str_decode_eight_bit_aux:Nn.)

__str_convert_encode_eight_bit:n
__str_encode_eight_bit_aux:nnN
__str_encode_eight_bit_aux:NNn

It is not practical to make an integer array with indices in the full Unicode range, so we
work modulo some number, which is simply the size of the encode integer array for the
given encoding. This gives us a candidate byte for representing a given Unicode code
point. Of course taking the modulo leads to collisions so we check in the decode array
that the byte we got is indeed correct. Otherwise the Unicode code point we started from
is simply not representable in the given encoding.

14686 \int_new:N \l__str_modulo_int
14687 \cs_new_protected:Npn __str_convert_encode_eight_bit:n #1
14688 {
14689 \cs_set:Npe __str_tmp:w
14690 {
14691 \exp_not:N __str_encode_eight_bit_aux:NNn
14692 \exp_not:c { g__str_encode_#1_intarray }
14693 \exp_not:c { g__str_decode_#1_intarray }
14694 }
14695 \flag_clear:N \l__str_error_flag
14696 __str_convert_gmap_internal:N __str_tmp:w
14697 __str_if_flag_error:Nne \l__str_error_flag { encode-8-bit } {#1}
14698 }
14699 \cs_new:Npn __str_encode_eight_bit_aux:NNn #1#2#3
14700 {
14701 \exp_args:Nf __str_encode_eight_bit_aux:nnN
14702 {
14703 \intarray_item:Nn #1
14704 { 1 + \int_mod:nn {#3} { \intarray_count:N #1 } }
14705 }
14706 {#3}
14707 #2
14708 }
14709 \cs_new:Npn __str_encode_eight_bit_aux:nnN #1#2#3
14710 {
14711 \int_compare:nNnTF { \intarray_item:Nn #3 { 1 + #1 } } = {#2}
14712 { __str_output_byte:n {#1} }
14713 { \flag_raise:N \l__str_error_flag }
14714 }

(End of definition for __str_convert_encode_eight_bit:n , __str_encode_eight_bit_aux:nnN , and
__str_encode_eight_bit_aux:NNn.)

56.4 Messages
General messages, and messages for the encodings and escapings loaded by default (“na-
tive”, and “bytes”).

14715 \msg_new:nnn { str } { unknown-esc }
14716 { Escaping~scheme~’#1’~(filtered:~’#2’)~unknown. }
14717 \msg_new:nnn { str } { unknown-enc }
14718 { Encoding~scheme~’#1’~(filtered:~’#2’)~unknown. }
14719 \msg_new:nnnn { str } { native-escaping }
14720 { The~’native’~encoding~scheme~does~not~support~any~escaping. }
14721 {

775

14722 Since~native~strings~do~not~consist~in~bytes,~
14723 none~of~the~escaping~methods~make~sense.~
14724 The~specified~escaping,~’#1’,~will~be~ignored.
14725 }
14726 \msg_new:nnn { str } { file-not-found }
14727 { File~’l3str-#1.def’~not~found. }

Message used when the “bytes” unescaping fails because the string given to \str_-
set_convert:Nnnn contains a non-byte. This cannot happen for the -8-bit engines.
Messages used for other escapings and encodings are defined in each definition file.

14728 \bool_lazy_any:nT
14729 {
14730 \sys_if_engine_luatex_p:
14731 \sys_if_engine_xetex_p:
14732 }
14733 {
14734 \msg_new:nnnn { str } { non-byte }
14735 { String~invalid~in~escaping~’#1’:~it~may~only~contain~bytes. }
14736 {
14737 Some~characters~in~the~string~you~asked~to~convert~are~not~
14738 8-bit~characters.~Perhaps~the~string~is~a~’native’~Unicode~string?~
14739 If~it~is,~try~using\\
14740 \\
14741 \iow_indent:n
14742 {
14743 \iow_char:N\\str_set_convert:Nnnn \\
14744 \ \ <str~var>~\{~<string>~\}~\{~native~\}~\{~<target~encoding>~\}
14745 }
14746 }
14747 }

Those messages are used when converting to and from 8-bit encodings.
14748 \msg_new:nnnn { str } { decode-8-bit }
14749 { Invalid~string~in~encoding~’#1’. }
14750 {
14751 LaTeX~came~across~a~byte~which~is~not~defined~to~represent~
14752 any~character~in~the~encoding~’#1’.
14753 }
14754 \msg_new:nnnn { str } { encode-8-bit }
14755 { Unicode~string~cannot~be~converted~to~encoding~’#1’. }
14756 {
14757 The~encoding~’#1’~only~contains~a~subset~of~all~Unicode~characters.~
14758 LaTeX~was~asked~to~convert~a~string~to~that~encoding,~but~that~
14759 string~contains~a~character~that~’#1’~does~not~support.
14760 }

56.5 Escaping definitions
Several of those encodings are defined by the pdf file format. The following byte storage
methods are defined:

• bytes (default), non-bytes are filtered out, and bytes are left untouched (this is
defined by default);

776

• hex or hexadecimal, as per the pdfTEX primitive \pdfescapehex

• name, as per the pdfTEX primitive \pdfescapename

• string, as per the pdfTEX primitive \pdfescapestring

• url, as per the percent encoding of urls.

56.5.1 Unescape methods
__str_convert_unescape_hex:
__str_unescape_hex_auxi:N

__str_unescape_hex_auxii:N

Take chars two by two, and interpret each pair as the hexadecimal code for a byte.
Anything else than hexadecimal digits is ignored, raising the flag. A string which contains
an odd number of hexadecimal digits gets 0 appended to it: this is equivalent to appending
a 0 in all cases, and dropping it if it is alone.

14761 \cs_new_protected:Npn __str_convert_unescape_hex:
14762 {
14763 \group_begin:
14764 \flag_clear:N \l__str_error_flag
14765 \int_set:Nn \tex_escapechar:D { 92 }
14766 __kernel_tl_gset:Nx \g__str_result_tl
14767 {
14768 __str_output_byte:w "
14769 \exp_last_unbraced:Nf __str_unescape_hex_auxi:N
14770 { \tl_to_str:N \g__str_result_tl }
14771 0 { ? 0 - 1 \prg_break: }
14772 \prg_break_point:
14773 __str_output_end:
14774 }
14775 __str_if_flag_error:Nne \l__str_error_flag { unescape-hex } { }
14776 \group_end:
14777 }
14778 \cs_new:Npn __str_unescape_hex_auxi:N #1
14779 {
14780 \use_none:n #1
14781 __str_hexadecimal_use:NTF #1
14782 { __str_unescape_hex_auxii:N }
14783 {
14784 \flag_raise:N \l__str_error_flag
14785 __str_unescape_hex_auxi:N
14786 }
14787 }
14788 \cs_new:Npn __str_unescape_hex_auxii:N #1
14789 {
14790 \use_none:n #1
14791 __str_hexadecimal_use:NTF #1
14792 {
14793 __str_output_end:
14794 __str_output_byte:w " __str_unescape_hex_auxi:N
14795 }
14796 {
14797 \flag_raise:N \l__str_error_flag
14798 __str_unescape_hex_auxii:N
14799 }
14800 }

777

14801 \msg_new:nnnn { str } { unescape-hex }
14802 { String~invalid~in~escaping~’hex’:~only~hexadecimal~digits~allowed. }
14803 {
14804 Some~characters~in~the~string~you~asked~to~convert~are~not~
14805 hexadecimal~digits~(0-9,~A-F,~a-f)~nor~spaces.
14806 }

(End of definition for __str_convert_unescape_hex: , __str_unescape_hex_auxi:N , and __str_-
unescape_hex_auxii:N.)

__str_convert_unescape_name:
__str_unescape_name_loop:wNN

__str_convert_unescape_url:
__str_unescape_url_loop:wNN

The __str_convert_unescape_name: function replaces each occurrence of # followed
by two hexadecimal digits in \g__str_result_tl by the corresponding byte. The url
function is identical, with escape character % instead of #. Thus we define the two to-
gether. The arguments of __str_tmp:w are the character code of # or % in hexadecimal,
the name of the main function to define, and the name of the auxiliary which performs
the loop.

The looping auxiliary #3 finds the next escape character, reads the following two
characters, and tests them. The test __str_hexadecimal_use:NTF leaves the upper-
case digit in the input stream, hence we surround the test with __str_output_byte:w "
and __str_output_end:. If both characters are hexadecimal digits, they should be
removed before looping: this is done by \use_i:nnn. If one of the characters is not
a hexadecimal digit, then feed "#1 to __str_output_byte:w to produce the escape
character, raise the flag, and call the looping function followed by the two characters
(remove \use_i:nnn).

14807 \cs_set_protected:Npn __str_tmp:w #1#2#3
14808 {
14809 \cs_new_protected:cpn { __str_convert_unescape_#2: }
14810 {
14811 \group_begin:
14812 \flag_clear:N \l__str_byte_flag
14813 \flag_clear:N \l__str_error_flag
14814 \int_set:Nn \tex_escapechar:D { 92 }
14815 __kernel_tl_gset:Nx \g__str_result_tl
14816 {
14817 \exp_after:wN #3 \g__str_result_tl
14818 #1 ? { ? \prg_break: }
14819 \prg_break_point:
14820 }
14821 __str_if_flag_error:Nne \l__str_byte_flag { non-byte } { #2 }
14822 __str_if_flag_error:Nne \l__str_error_flag { unescape-#2 } { }
14823 \group_end:
14824 }
14825 \cs_new:Npn #3 ##1#1##2##3
14826 {
14827 __str_filter_bytes:n {##1}
14828 \use_none:n ##3
14829 __str_output_byte:w "
14830 __str_hexadecimal_use:NTF ##2
14831 {
14832 __str_hexadecimal_use:NTF ##3
14833 { }
14834 {
14835 \flag_raise:N \l__str_error_flag

778

14836 * 0 + ‘#1 \use_i:nn
14837 }
14838 }
14839 {
14840 \flag_raise:N \l__str_error_flag
14841 0 + ‘#1 \use_i:nn
14842 }
14843 __str_output_end:
14844 \use_i:nnn #3 ##2##3
14845 }
14846 \msg_new:nnnn { str } { unescape-#2 }
14847 { String~invalid~in~escaping~’#2’. }
14848 {
14849 LaTeX~came~across~the~escape~character~’#1’~not~followed~by~
14850 two~hexadecimal~digits.~This~is~invalid~in~the~escaping~’#2’.
14851 }
14852 }
14853 \exp_after:wN __str_tmp:w \c_hash_str { name }
14854 __str_unescape_name_loop:wNN
14855 \exp_after:wN __str_tmp:w \c_percent_str { url }
14856 __str_unescape_url_loop:wNN

(End of definition for __str_convert_unescape_name: and others.)

__str_convert_unescape_string:
__str_unescape_string_newlines:wN
__str_unescape_string_loop:wNNN

__str_unescape_string_repeat:NNNNNN

The string escaping is somewhat similar to the name and url escapings, with escape
character \. The first step is to convert all three line endings, ^^J, ^^M, and ^^M^^J to
the common ^^J, as per the pdf specification. This step cannot raise the flag.

Then the following escape sequences are decoded.

\n Line feed (10)

\r Carriage return (13)

\t Horizontal tab (9)

\b Backspace (8)

\f Form feed (12)

\(Left parenthesis

\) Right parenthesis

\\ Backslash

\ddd (backslash followed by 1 to 3 octal digits) Byte ddd (octal), subtracting 256 in case
of overflow.

If followed by an end-of-line character, the backslash and the end-of-line are ignored. If
followed by anything else, the backslash is ignored, raising the error flag.

14857 \group_begin:
14858 \char_set_catcode_other:N \^^J
14859 \char_set_catcode_other:N \^^M
14860 \cs_set_protected:Npn __str_tmp:w #1
14861 {
14862 \cs_new_protected:Npn __str_convert_unescape_string:

779

14863 {
14864 \group_begin:
14865 \flag_clear:N \l__str_byte_flag
14866 \flag_clear:N \l__str_error_flag
14867 \int_set:Nn \tex_escapechar:D { 92 }
14868 __kernel_tl_gset:Nx \g__str_result_tl
14869 {
14870 \exp_after:wN __str_unescape_string_newlines:wN
14871 \g__str_result_tl \prg_break: ^^M ?
14872 \prg_break_point:
14873 }
14874 __kernel_tl_gset:Nx \g__str_result_tl
14875 {
14876 \exp_after:wN __str_unescape_string_loop:wNNN
14877 \g__str_result_tl #1 ?? { ? \prg_break: }
14878 \prg_break_point:
14879 }
14880 __str_if_flag_error:Nne \l__str_byte_flag { non-byte } { string }
14881 __str_if_flag_error:Nne \l__str_error_flag { unescape-string } { }
14882 \group_end:
14883 }
14884 }
14885 \exp_args:No __str_tmp:w { \c_backslash_str }
14886 \exp_last_unbraced:NNNNo
14887 \cs_new:Npn __str_unescape_string_loop:wNNN #1 \c_backslash_str #2#3#4
14888 {
14889 __str_filter_bytes:n {#1}
14890 \use_none:n #4
14891 __str_output_byte:w ’
14892 __str_octal_use:NTF #2
14893 {
14894 __str_octal_use:NTF #3
14895 {
14896 __str_octal_use:NTF #4
14897 {
14898 \if_int_compare:w #2 > 3 \exp_stop_f:
14899 - 256
14900 \fi:
14901 __str_unescape_string_repeat:NNNNNN
14902 }
14903 { __str_unescape_string_repeat:NNNNNN ? }
14904 }
14905 { __str_unescape_string_repeat:NNNNNN ?? }
14906 }
14907 {
14908 \str_case_e:nnF {#2}
14909 {
14910 { \c_backslash_str } { 134 }
14911 { (} { 50 }
14912 {) } { 51 }
14913 { r } { 15 }
14914 { f } { 14 }
14915 { n } { 12 }
14916 { t } { 11 }

780

14917 { b } { 10 }
14918 { ^^J } { 0 - 1 }
14919 }
14920 {
14921 \flag_raise:N \l__str_error_flag
14922 0 - 1 \use_i:nn
14923 }
14924 }
14925 __str_output_end:
14926 \use_i:nn __str_unescape_string_loop:wNNN #2#3#4
14927 }
14928 \cs_new:Npn __str_unescape_string_repeat:NNNNNN #1#2#3#4#5#6
14929 { __str_output_end: __str_unescape_string_loop:wNNN }
14930 \cs_new:Npn __str_unescape_string_newlines:wN #1 ^^M #2
14931 {
14932 #1
14933 \if_charcode:w ^^J #2 \else: ^^J \fi:
14934 __str_unescape_string_newlines:wN #2
14935 }
14936 \msg_new:nnnn { str } { unescape-string }
14937 { String~invalid~in~escaping~’string’. }
14938 {
14939 LaTeX~came~across~an~escape~character~’\c_backslash_str’~
14940 not~followed~by~any~of:~’n’,~’r’,~’t’,~’b’,~’f’,~’(’,~’)’,~
14941 ’\c_backslash_str’,~one~to~three~octal~digits,~or~the~end~
14942 of~a~line.
14943 }
14944 \group_end:

(End of definition for __str_convert_unescape_string: and others.)

56.5.2 Escape methods
Currently, none of the escape methods can lead to errors, assuming that their input is
made out of bytes.

__str_convert_escape_hex:
__str_escape_hex_char:N

Loop and convert each byte to hexadecimal.
14945 \cs_new_protected:Npn __str_convert_escape_hex:
14946 { __str_convert_gmap:N __str_escape_hex_char:N }
14947 \cs_new:Npn __str_escape_hex_char:N #1
14948 { __str_output_hexadecimal:n { ‘#1 } }

(End of definition for __str_convert_escape_hex: and __str_escape_hex_char:N.)

__str_convert_escape_name:
__str_escape_name_char:n
__str_if_escape_name:nTF

\c__str_escape_name_str
\c__str_escape_name_not_str

For each byte, test whether it should be output as is, or be “hash-encoded”. Roughly,
bytes outside the range ["2A, "7E] are hash-encoded. We keep two lists of exceptions:
characters in \c__str_escape_name_not_str are not hash-encoded, and characters in
the \c__str_escape_name_str are encoded.

14949 \str_const:Nn \c__str_escape_name_not_str { ! " $ & ’ } %$
14950 \str_const:Nn \c__str_escape_name_str { {}/<>[] }
14951 \cs_new_protected:Npn __str_convert_escape_name:
14952 { __str_convert_gmap:N __str_escape_name_char:n }
14953 \cs_new:Npn __str_escape_name_char:n #1
14954 {

781

14955 __str_if_escape_name:nTF {#1} {#1}
14956 { \c_hash_str __str_output_hexadecimal:n {‘#1} }
14957 }
14958 \prg_new_conditional:Npnn __str_if_escape_name:n #1 { TF }
14959 {
14960 \if_int_compare:w ‘#1 < "2A \exp_stop_f:
14961 __str_if_contains_char:NnTF \c__str_escape_name_not_str {#1}
14962 \prg_return_true: \prg_return_false:
14963 \else:
14964 \if_int_compare:w ‘#1 > "7E \exp_stop_f:
14965 \prg_return_false:
14966 \else:
14967 __str_if_contains_char:NnTF \c__str_escape_name_str {#1}
14968 \prg_return_false: \prg_return_true:
14969 \fi:
14970 \fi:
14971 }

(End of definition for __str_convert_escape_name: and others.)

__str_convert_escape_string:
__str_escape_string_char:N
__str_if_escape_string:NTF

\c__str_escape_string_str

Any character below (and including) space, and any character above (and including) del,
are converted to octal. One backslash is added before each parenthesis and backslash.

14972 \str_const:Ne \c__str_escape_string_str
14973 { \c_backslash_str () }
14974 \cs_new_protected:Npn __str_convert_escape_string:
14975 { __str_convert_gmap:N __str_escape_string_char:N }
14976 \cs_new:Npn __str_escape_string_char:N #1
14977 {
14978 __str_if_escape_string:NTF #1
14979 {
14980 __str_if_contains_char:NnT
14981 \c__str_escape_string_str {#1}
14982 { \c_backslash_str }
14983 #1
14984 }
14985 {
14986 \c_backslash_str
14987 \int_div_truncate:nn {‘#1} {64}
14988 \int_mod:nn { \int_div_truncate:nn {‘#1} { 8 } } { 8 }
14989 \int_mod:nn {‘#1} { 8 }
14990 }
14991 }
14992 \prg_new_conditional:Npnn __str_if_escape_string:N #1 { TF }
14993 {
14994 \if_int_compare:w ‘#1 < "27 \exp_stop_f:
14995 \prg_return_false:
14996 \else:
14997 \if_int_compare:w ‘#1 > "7A \exp_stop_f:
14998 \prg_return_false:
14999 \else:
15000 \prg_return_true:
15001 \fi:
15002 \fi:
15003 }

782

(End of definition for __str_convert_escape_string: and others.)

__str_convert_escape_url:
__str_escape_url_char:n
__str_if_escape_url:nTF

This function is similar to __str_convert_escape_name:, escaping different characters.
15004 \cs_new_protected:Npn __str_convert_escape_url:
15005 { __str_convert_gmap:N __str_escape_url_char:n }
15006 \cs_new:Npn __str_escape_url_char:n #1
15007 {
15008 __str_if_escape_url:nTF {#1} {#1}
15009 { \c_percent_str __str_output_hexadecimal:n { ‘#1 } }
15010 }
15011 \prg_new_conditional:Npnn __str_if_escape_url:n #1 { TF }
15012 {
15013 \if_int_compare:w ‘#1 < "30 \exp_stop_f:
15014 __str_if_contains_char:nnTF { "-. } {#1}
15015 \prg_return_true: \prg_return_false:
15016 \else:
15017 \if_int_compare:w ‘#1 > "7E \exp_stop_f:
15018 \prg_return_false:
15019 \else:
15020 __str_if_contains_char:nnTF { : ; = ? @ [] } {#1}
15021 \prg_return_false: \prg_return_true:
15022 \fi:
15023 \fi:
15024 }

(End of definition for __str_convert_escape_url: , __str_escape_url_char:n , and __str_if_-
escape_url:nTF.)

56.6 Encoding definitions
The native encoding is automatically defined. Other encodings are loaded as needed.
The following encodings are supported:

• utf-8;

• utf-16, big-, little-endian, or with byte order mark;

• utf-32, big-, little-endian, or with byte order mark;

• the iso 8859 code pages, numbered from 1 to 16, skipping the inexistent iso 8859-
12.

56.6.1 utf-8 support
__str_convert_encode_utf8:

__str_encode_utf_viii_char:n
__str_encode_utf_viii_loop:wwnnw

Loop through the internal string, and convert each character to its utf-8 representation.
The representation is built from the right-most (least significant) byte to the left-most
(most significant) byte. Continuation bytes are in the range [128, 191], taking 64 different
values, hence we roughly want to express the character code in base 64, shifting the
first digit in the representation by some number depending on how many continuation
bytes there are. In the range [0, 127], output the corresponding byte directly. In the
range [128, 2047], output the remainder modulo 64, plus 128 as a continuation byte, then
output the quotient (which is in the range [0, 31]), shifted by 192. In the next range,
[2048, 65535], split the character code into residue and quotient modulo 64, output the

783

residue as a first continuation byte, then repeat; this leaves us with a quotient in the
range [0, 15], which we output shifted by 224. The last range, [65536, 1114111], follows
the same pattern: once we realize that dividing twice by 64 leaves us with a number
larger than 15, we repeat, producing a last continuation byte, and offset the quotient by
240 for the leading byte.

How is that implemented? __str_encode_utf_vii_loop:wwnnw takes successive
quotients as its first argument, the quotient from the previous step as its second argument
(except in step 1), the bound for quotients that trigger one more step or not, and finally
the offset used if this step should produce the leading byte. Leading bytes can be in
the ranges [0, 127], [192, 223], [224, 239], and [240, 247] (really, that last limit should be
244 because Unicode stops at the code point 1114111). At each step, if the quotient
#1 is less than the limit #3 for that range, output the leading byte (#1 shifted by #4)
and stop. Otherwise, we need one more step: use the quotient of #1 by 64, and #1 as
arguments for the looping auxiliary, and output the continuation byte corresponding to
the remainder #2−64#1+128. The bizarre construction - 1 + 0 * removes the spurious
initial continuation byte (better methods welcome).

15025 \cs_new_protected:cpn { __str_convert_encode_utf8: }
15026 { __str_convert_gmap_internal:N __str_encode_utf_viii_char:n }
15027 \cs_new:Npn __str_encode_utf_viii_char:n #1
15028 {
15029 __str_encode_utf_viii_loop:wwnnw #1 ; - 1 + 0 * ;
15030 { 128 } { 0 }
15031 { 32 } { 192 }
15032 { 16 } { 224 }
15033 { 8 } { 240 }
15034 \s__str_stop
15035 }
15036 \cs_new:Npn __str_encode_utf_viii_loop:wwnnw #1; #2; #3#4 #5 \s__str_stop
15037 {
15038 \if_int_compare:w #1 < #3 \exp_stop_f:
15039 __str_output_byte:n { #1 + #4 }
15040 \exp_after:wN __str_use_none_delimit_by_s_stop:w
15041 \fi:
15042 \exp_after:wN __str_encode_utf_viii_loop:wwnnw
15043 \int_value:w \int_div_truncate:nn {#1} {64} ; #1 ;
15044 #5 \s__str_stop
15045 __str_output_byte:n { #2 - 64 * (#1 - 2) }
15046 }

(End of definition for __str_convert_encode_utf8: , __str_encode_utf_viii_char:n , and __str_-
encode_utf_viii_loop:wwnnw.)

__str_missing
__str_extra

__str_overlong
__str_overflow

When decoding a string that is purportedly in the utf-8 encoding, four different errors
can occur, signalled by a specific flag for each (we define those flags using \flag_clear_-
new:N rather than \flag_new:N, because they are shared with other encoding definition
files).

• “Missing continuation byte”: a leading byte is not followed by the right number of
continuation bytes.

• “Extra continuation byte”: a continuation byte appears where it was not expected,
i.e., not after an appropriate leading byte.

784

• “Overlong”: a Unicode character is expressed using more bytes than necessary, for
instance, "C0"80 for the code point 0, instead of a single null byte.

• “Overflow”: this occurs when decoding produces Unicode code points greater than
1114111.

We only raise one LATEX3 error message, combining all the errors which occurred. In
the short message, the leading comma must be removed to get a grammatically correct
sentence. In the long text, first remind the user what a correct utf-8 string should look
like, then add error-specific information.

15047 \flag_clear_new:N \l__str_missing_flag
15048 \flag_clear_new:N \l__str_extra_flag
15049 \flag_clear_new:N \l__str_overlong_flag
15050 \flag_clear_new:N \l__str_overflow_flag
15051 \msg_new:nnnn { str } { utf8-decode }
15052 {
15053 Invalid~UTF-8~string:
15054 \exp_last_unbraced:Nf \use_none:n
15055 {
15056 __str_if_flag_times:NT \l__str_missing_flag { ,~missing~continuation~byte }
15057 __str_if_flag_times:NT \l__str_extra_flag { ,~extra~continuation~byte }
15058 __str_if_flag_times:NT \l__str_overlong_flag { ,~overlong~form }
15059 __str_if_flag_times:NT \l__str_overflow_flag { ,~code~point~too~large }
15060 }
15061 .
15062 }
15063 {
15064 In~the~UTF-8~encoding,~each~Unicode~character~consists~in~
15065 1~to~4~bytes,~with~the~following~bit~pattern: \\
15066 \iow_indent:n
15067 {
15068 Code~point~\ \ \ \ <~128:~0xxxxxxx \\
15069 Code~point~\ \ \ <~2048:~110xxxxx~10xxxxxx \\
15070 Code~point~\ \ <~65536:~1110xxxx~10xxxxxx~10xxxxxx \\
15071 Code~point~ <~1114112:~11110xxx~10xxxxxx~10xxxxxx~10xxxxxx \\
15072 }
15073 Bytes~of~the~form~10xxxxxx~are~called~continuation~bytes.
15074 \flag_if_raised:NT \l__str_missing_flag
15075 {
15076 \\\\
15077 A~leading~byte~(in~the~range~[192,255])~was~not~followed~by~
15078 the~appropriate~number~of~continuation~bytes.
15079 }
15080 \flag_if_raised:NT \l__str_extra_flag
15081 {
15082 \\\\
15083 LaTeX~came~across~a~continuation~byte~when~it~was~not~expected.
15084 }
15085 \flag_if_raised:NT \l__str_overlong_flag
15086 {
15087 \\\\
15088 Every~Unicode~code~point~must~be~expressed~in~the~shortest~
15089 possible~form.~For~instance,~’0xC0’~’0x83’~is~not~a~valid~
15090 representation~for~the~code~point~3.

785

15091 }
15092 \flag_if_raised:NT \l__str_overflow_flag
15093 {
15094 \\\\
15095 Unicode~limits~code~points~to~the~range~[0,1114111].
15096 }
15097 }
15098 \prop_gput:Nnn \g_msg_module_name_prop { str } { LaTeX }
15099 \prop_gput:Nnn \g_msg_module_type_prop { str } { }

(End of definition for __str_missing and others.)

__str_convert_decode_utf8:
__str_decode_utf_viii_start:N

__str_decode_utf_viii_continuation:wwN
__str_decode_utf_viii_aux:wNnnwN
__str_decode_utf_viii_overflow:w

__str_decode_utf_viii_end:

Decoding is significantly harder than encoding. As before, lower some flags, which are
tested at the end (in bulk, to trigger at most one LATEX3 error, as explained above).
We expect successive multi-byte sequences of the form ⟨start byte⟩ ⟨continuation
bytes⟩. The _start auxiliary tests the first byte:

• [0, "7F]: the byte stands alone, and is converted to its own character code;

• ["80, "BF]: unexpected continuation byte, raise the appropriate flag, and convert
that byte to the replacement character "FFFD;

• ["C0, "FF]: this byte should be followed by some continuation byte(s).

In the first two cases, \use_none_delimit_by_q_stop:w removes data that only the third
case requires, namely the limits of ranges of Unicode characters which can be expressed
with 1, 2, 3, or 4 bytes.

We can now concentrate on the multi-byte case and the _continuation auxiliary.
We expect #3 to be in the range ["80, "BF]. The test for this goes as follows: if the
character code is less than "80, we compare it to −"C0, yielding false; otherwise to
"C0, yielding true in the range ["80, "BF] and false otherwise. If we find that the
byte is not a continuation range, stop the current slew of bytes, output the replacement
character, and continue parsing with the _start auxiliary, starting at the byte we just
tested. Once we know that the byte is a continuation byte, leave it behind us in the
input stream, compute what code point the bytes read so far would produce, and feed
that number to the _aux function.

The _aux function tests whether we should look for more continuation bytes or not.
If the number it receives as #1 is less than the maximum #4 for the current range, then
we are done: check for an overlong representation by comparing #1 with the maximum
#3 for the previous range. Otherwise, we call the _continuation auxiliary again, after
shifting the “current code point” by #4 (maximum from the range we just checked).

Two additional tests are needed: if we reach the end of the list of range maxima and
we are still not done, then we are faced with an overflow. Clean up, and again insert the
code point "FFFD for the replacement character. Also, every time we read a byte, we
need to check whether we reached the end of the string. In a correct utf-8 string, this
happens automatically when the _start auxiliary leaves its first argument in the input
stream: the end-marker begins with \prg_break:, which ends the loop. On the other
hand, if the end is reached when looking for a continuation byte, the \use_none:n #3
construction removes the first token from the end-marker, and leaves the _end auxiliary,
which raises the appropriate error flag before ending the mapping.

15100 \cs_new_protected:cpn { __str_convert_decode_utf8: }
15101 {

786

15102 \flag_clear:N \l__str_error_flag
15103 \flag_clear:N \l__str_missing_flag
15104 \flag_clear:N \l__str_extra_flag
15105 \flag_clear:N \l__str_overlong_flag
15106 \flag_clear:N \l__str_overflow_flag
15107 __kernel_tl_gset:Nx \g__str_result_tl
15108 {
15109 \exp_after:wN __str_decode_utf_viii_start:N \g__str_result_tl
15110 { \prg_break: __str_decode_utf_viii_end: }
15111 \prg_break_point:
15112 }
15113 __str_if_flag_error:Nne \l__str_error_flag { utf8-decode } { }
15114 }
15115 \cs_new:Npn __str_decode_utf_viii_start:N #1
15116 {
15117 #1
15118 \if_int_compare:w ‘#1 < "C0 \exp_stop_f:
15119 \s__str
15120 \if_int_compare:w ‘#1 < "80 \exp_stop_f:
15121 \int_value:w ‘#1
15122 \else:
15123 \flag_raise:N \l__str_extra_flag
15124 \flag_raise:N \l__str_error_flag
15125 \int_use:N \c__str_replacement_char_int
15126 \fi:
15127 \else:
15128 \exp_after:wN __str_decode_utf_viii_continuation:wwN
15129 \int_value:w \int_eval:n { ‘#1 - "C0 } \exp_after:wN
15130 \fi:
15131 \s__str
15132 __str_use_none_delimit_by_s_stop:w {"80} {"800} {"10000} {"110000} \s__str_stop
15133 __str_decode_utf_viii_start:N
15134 }
15135 \cs_new:Npn __str_decode_utf_viii_continuation:wwN
15136 #1 \s__str #2 __str_decode_utf_viii_start:N #3
15137 {
15138 \use_none:n #3
15139 \if_int_compare:w ‘#3 <
15140 \if_int_compare:w ‘#3 < "80 \exp_stop_f: - \fi:
15141 "C0 \exp_stop_f:
15142 #3
15143 \exp_after:wN __str_decode_utf_viii_aux:wNnnwN
15144 \int_value:w \int_eval:n { #1 * "40 + ‘#3 - "80 } \exp_after:wN
15145 \else:
15146 \s__str
15147 \flag_raise:N \l__str_missing_flag
15148 \flag_raise:N \l__str_error_flag
15149 \int_use:N \c__str_replacement_char_int
15150 \fi:
15151 \s__str
15152 #2
15153 __str_decode_utf_viii_start:N #3
15154 }
15155 \cs_new:Npn __str_decode_utf_viii_aux:wNnnwN

787

15156 #1 \s__str #2#3#4 #5 __str_decode_utf_viii_start:N #6
15157 {
15158 \if_int_compare:w #1 < #4 \exp_stop_f:
15159 \s__str
15160 \if_int_compare:w #1 < #3 \exp_stop_f:
15161 \flag_raise:N \l__str_overlong_flag
15162 \flag_raise:N \l__str_error_flag
15163 \int_use:N \c__str_replacement_char_int
15164 \else:
15165 #1
15166 \fi:
15167 \else:
15168 \if_meaning:w \s__str_stop #5
15169 __str_decode_utf_viii_overflow:w #1
15170 \fi:
15171 \exp_after:wN __str_decode_utf_viii_continuation:wwN
15172 \int_value:w \int_eval:n { #1 - #4 } \exp_after:wN
15173 \fi:
15174 \s__str
15175 #2 {#4} #5
15176 __str_decode_utf_viii_start:N
15177 }
15178 \cs_new:Npn __str_decode_utf_viii_overflow:w #1 \fi: #2 \fi:
15179 {
15180 \fi: \fi:
15181 \flag_raise:N \l__str_overflow_flag
15182 \flag_raise:N \l__str_error_flag
15183 \int_use:N \c__str_replacement_char_int
15184 }
15185 \cs_new:Npn __str_decode_utf_viii_end:
15186 {
15187 \s__str
15188 \flag_raise:N \l__str_missing_flag
15189 \flag_raise:N \l__str_error_flag
15190 \int_use:N \c__str_replacement_char_int \s__str
15191 \prg_break:
15192 }

(End of definition for __str_convert_decode_utf8: and others.)

56.6.2 utf-16 support
The definitions are done in a category code regime where the bytes 254 and 255 used by
the byte order mark have catcode 12.

15193 \group_begin:
15194 \char_set_catcode_other:N \^^fe
15195 \char_set_catcode_other:N \^^ff

__str_convert_encode_utf16:
__str_convert_encode_utf16be:
__str_convert_encode_utf16le:

__str_encode_utf_xvi_aux:N
__str_encode_utf_xvi_char:n

When the endianness is not specified, it is big-endian by default, and we add a byte-order
mark. Convert characters one by one in a loop, with different behaviours depending on
the character code.

• [0, "D7FF]: converted to two bytes;

788

• ["D800, "DFFF] are used as surrogates: they cannot be converted and are replaced
by the replacement character;

• ["E000, "FFFF]: converted to two bytes;

• ["10000, "10FFFF]: converted to a pair of surrogates, each two bytes. The magic
"D7C0 is "D800 − "10000/"400.

For the duration of this operation, __str_tmp:w is defined as a function to convert a
number in the range [0, "FFFF] to a pair of bytes (either big endian or little endian), by
feeding the quotient of the division of #1 by "100, followed by #1 to __str_encode_-
utf_xvi_be:nn or its le analog: those compute the remainder, and output two bytes for
the quotient and remainder.

15196 \cs_new_protected:cpn { __str_convert_encode_utf16: }
15197 {
15198 __str_encode_utf_xvi_aux:N __str_output_byte_pair_be:n
15199 \tl_gput_left:Ne \g__str_result_tl { ^^fe ^^ff }
15200 }
15201 \cs_new_protected:cpn { __str_convert_encode_utf16be: }
15202 { __str_encode_utf_xvi_aux:N __str_output_byte_pair_be:n }
15203 \cs_new_protected:cpn { __str_convert_encode_utf16le: }
15204 { __str_encode_utf_xvi_aux:N __str_output_byte_pair_le:n }
15205 \cs_new_protected:Npn __str_encode_utf_xvi_aux:N #1
15206 {
15207 \flag_clear:N \l__str_error_flag
15208 \cs_set_eq:NN __str_tmp:w #1
15209 __str_convert_gmap_internal:N __str_encode_utf_xvi_char:n
15210 __str_if_flag_error:Nne \l__str_error_flag { utf16-encode } { }
15211 }
15212 \cs_new:Npn __str_encode_utf_xvi_char:n #1
15213 {
15214 \if_int_compare:w #1 < "D800 \exp_stop_f:
15215 __str_tmp:w {#1}
15216 \else:
15217 \if_int_compare:w #1 < "10000 \exp_stop_f:
15218 \if_int_compare:w #1 < "E000 \exp_stop_f:
15219 \flag_raise:N \l__str_error_flag
15220 __str_tmp:w { \c__str_replacement_char_int }
15221 \else:
15222 __str_tmp:w {#1}
15223 \fi:
15224 \else:
15225 \exp_args:Nf __str_tmp:w { \int_div_truncate:nn {#1} {"400} + "D7C0 }
15226 \exp_args:Nf __str_tmp:w { \int_mod:nn {#1} {"400} + "DC00 }
15227 \fi:
15228 \fi:
15229 }

(End of definition for __str_convert_encode_utf16: and others.)

__str_missing
__str_extra
__str_end

When encoding a Unicode string to utf-16, only one error can occur: code points in
the range ["D800, "DFFF], corresponding to surrogates, cannot be encoded. We use the
all-purpose flag @@_error to signal that error.

789

When decoding a Unicode string which is purportedly in utf-16, three errors can
occur: a missing trail surrogate, an unexpected trail surrogate, and a string containing
an odd number of bytes.

15230 \flag_clear_new:N \l__str_missing_flag
15231 \flag_clear_new:N \l__str_extra_flag
15232 \flag_clear_new:N \l__str_end_flag
15233 \msg_new:nnnn { str } { utf16-encode }
15234 { Unicode~string~cannot~be~expressed~in~UTF-16:~surrogate. }
15235 {
15236 Surrogate~code~points~(in~the~range~[U+D800,~U+DFFF])~
15237 can~be~expressed~in~the~UTF-8~and~UTF-32~encodings,~
15238 but~not~in~the~UTF-16~encoding.
15239 }
15240 \msg_new:nnnn { str } { utf16-decode }
15241 {
15242 Invalid~UTF-16~string:
15243 \exp_last_unbraced:Nf \use_none:n
15244 {
15245 __str_if_flag_times:NT \l__str_missing_flag { ,~missing~trail~surrogate }
15246 __str_if_flag_times:NT \l__str_extra_flag { ,~extra~trail~surrogate }
15247 __str_if_flag_times:NT \l__str_end_flag { ,~odd~number~of~bytes }
15248 }
15249 .
15250 }
15251 {
15252 In~the~UTF-16~encoding,~each~Unicode~character~is~encoded~as~
15253 2~or~4~bytes: \\
15254 \iow_indent:n
15255 {
15256 Code~point~in~[U+0000,~U+D7FF]:~two~bytes \\
15257 Code~point~in~[U+D800,~U+DFFF]:~illegal \\
15258 Code~point~in~[U+E000,~U+FFFF]:~two~bytes \\
15259 Code~point~in~[U+10000,~U+10FFFF]:~
15260 a~lead~surrogate~and~a~trail~surrogate \\
15261 }
15262 Lead~surrogates~are~pairs~of~bytes~in~the~range~[0xD800,~0xDBFF],~
15263 and~trail~surrogates~are~in~the~range~[0xDC00,~0xDFFF].
15264 \flag_if_raised:NT \l__str_missing_flag
15265 {
15266 \\\\
15267 A~lead~surrogate~was~not~followed~by~a~trail~surrogate.
15268 }
15269 \flag_if_raised:NT \l__str_extra_flag
15270 {
15271 \\\\
15272 LaTeX~came~across~a~trail~surrogate~when~it~was~not~expected.
15273 }
15274 \flag_if_raised:NT \l__str_end_flag
15275 {
15276 \\\\
15277 The~string~contained~an~odd~number~of~bytes.~This~is~invalid:~
15278 the~basic~code~unit~for~UTF-16~is~16~bits~(2~bytes).
15279 }
15280 }

790

(End of definition for __str_missing , __str_extra , and __str_end.)

__str_convert_decode_utf16:
__str_convert_decode_utf16be:
__str_convert_decode_utf16le:

__str_decode_utf_xvi_bom:NN
__str_decode_utf_xvi:Nw

As for utf-8, decoding utf-16 is harder than encoding it. If the endianness is unknown,
check the first two bytes: if those are "FE and "FF in either order, remove them and use
the corresponding endianness, otherwise assume big-endianness. The three endianness
cases are based on a common auxiliary whose first argument is 1 for big-endian and 2 for
little-endian, and whose second argument, delimited by the scan mark \s__str_stop,
is expanded once (the string may be long; passing \g__str_result_tl as an argument
before expansion is cheaper).

The __str_decode_utf_xvi:Nw function defines __str_tmp:w to take two argu-
ments and return the character code of the first one if the string is big-endian, and the
second one if the string is little-endian, then loops over the string using __str_decode_-
utf_xvi_pair:NN described below.

15281 \cs_new_protected:cpn { __str_convert_decode_utf16be: }
15282 { __str_decode_utf_xvi:Nw 1 \g__str_result_tl \s__str_stop }
15283 \cs_new_protected:cpn { __str_convert_decode_utf16le: }
15284 { __str_decode_utf_xvi:Nw 2 \g__str_result_tl \s__str_stop }
15285 \cs_new_protected:cpn { __str_convert_decode_utf16: }
15286 {
15287 \exp_after:wN __str_decode_utf_xvi_bom:NN
15288 \g__str_result_tl \s__str_stop \s__str_stop \s__str_stop
15289 }
15290 \cs_new_protected:Npn __str_decode_utf_xvi_bom:NN #1#2
15291 {
15292 \str_if_eq:nnTF { #1#2 } { ^^ff ^^fe }
15293 { __str_decode_utf_xvi:Nw 2 }
15294 {
15295 \str_if_eq:nnTF { #1#2 } { ^^fe ^^ff }
15296 { __str_decode_utf_xvi:Nw 1 }
15297 { __str_decode_utf_xvi:Nw 1 #1#2 }
15298 }
15299 }
15300 \cs_new_protected:Npn __str_decode_utf_xvi:Nw #1#2 \s__str_stop
15301 {
15302 \flag_clear:N \l__str_error_flag
15303 \flag_clear:N \l__str_missing_flag
15304 \flag_clear:N \l__str_extra_flag
15305 \flag_clear:N \l__str_end_flag
15306 \cs_set:Npn __str_tmp:w ##1 ##2 { ‘ ## #1 }
15307 __kernel_tl_gset:Nx \g__str_result_tl
15308 {
15309 \exp_after:wN __str_decode_utf_xvi_pair:NN
15310 #2 \q__str_nil \q__str_nil
15311 \prg_break_point:
15312 }
15313 __str_if_flag_error:Nne \l__str_error_flag { utf16-decode } { }
15314 }

(End of definition for __str_convert_decode_utf16: and others.)

__str_decode_utf_xvi_pair:NN
__str_decode_utf_xvi_quad:NNwNN
__str_decode_utf_xvi_pair_end:Nw

__str_decode_utf_xvi_error:nNN
__str_decode_utf_xvi_extra:NNw

Bytes are read two at a time. At this stage, \@@_tmp:w #1#2 expands to the character
code of the most significant byte, and we distinguish cases depending on which range it
lies in:

791

• ["D8, "DB] signals a lead surrogate, and the integer expression yields 1 (ε-TEX
rounds ties away from zero);

• ["DC, "DF] signals a trail surrogate, unexpected here, and the integer expression
yields 2;

• any other value signals a code point in the Basic Multilingual Plane, which stands
for itself, and the \if_case:w construction expands to nothing (cases other than 1
or 2), leaving the relevant material in the input stream, followed by another call to
the _pair auxiliary.

The case of a lead surrogate is treated by the _quad auxiliary, whose arguments #1, #2, #4
and #5 are the four bytes. We expect the most significant byte of #4#5 to be in the range
["DC, "DF] (trail surrogate). The test is similar to the test used for continuation bytes
in the utf-8 decoding functions. In the case where #4#5 is indeed a trail surrogate, leave
#1#2#4#5 \s__str ⟨code point⟩ \s__str, and remove the pair #4#5 before looping with
__str_decode_utf_xvi_pair:NN. Otherwise, of course, complain about the missing
surrogate.

The magic number "D7F7 is such that "D7F7∗"400 = "D800∗"400+"DC00−"10000.
Every time we read a pair of bytes, we test for the end-marker \q__str_nil. When

reaching the end, we additionally check that the string had an even length. Also, if the
end is reached when expecting a trail surrogate, we treat that as a missing surrogate.

15315 \cs_new:Npn __str_decode_utf_xvi_pair:NN #1#2
15316 {
15317 \if_meaning:w \q__str_nil #2
15318 __str_decode_utf_xvi_pair_end:Nw #1
15319 \fi:
15320 \if_case:w
15321 \int_eval:n { (__str_tmp:w #1#2 - "D6) / 4 } \scan_stop:
15322 \or: \exp_after:wN __str_decode_utf_xvi_quad:NNwNN
15323 \or: \exp_after:wN __str_decode_utf_xvi_extra:NNw
15324 \fi:
15325 #1#2 \s__str
15326 \int_eval:n { "100 * __str_tmp:w #1#2 + __str_tmp:w #2#1 } \s__str
15327 __str_decode_utf_xvi_pair:NN
15328 }
15329 \cs_new:Npn __str_decode_utf_xvi_quad:NNwNN
15330 #1#2 #3 __str_decode_utf_xvi_pair:NN #4#5
15331 {
15332 \if_meaning:w \q__str_nil #5
15333 __str_decode_utf_xvi_error:nNN { missing } #1#2
15334 __str_decode_utf_xvi_pair_end:Nw #4
15335 \fi:
15336 \if_int_compare:w
15337 \if_int_compare:w __str_tmp:w #4#5 < "DC \exp_stop_f:
15338 0 = 1
15339 \else:
15340 __str_tmp:w #4#5 < "E0
15341 \fi:
15342 \exp_stop_f:
15343 #1 #2 #4 #5 \s__str
15344 \int_eval:n
15345 {

792

15346 ("100 * __str_tmp:w #1#2 + __str_tmp:w #2#1 - "D7F7) * "400
15347 + "100 * __str_tmp:w #4#5 + __str_tmp:w #5#4
15348 }
15349 \s__str
15350 \exp_after:wN \use_i:nnn
15351 \else:
15352 __str_decode_utf_xvi_error:nNN { missing } #1#2
15353 \fi:
15354 __str_decode_utf_xvi_pair:NN #4#5
15355 }
15356 \cs_new:Npn __str_decode_utf_xvi_pair_end:Nw #1 \fi:
15357 {
15358 \fi:
15359 \if_meaning:w \q__str_nil #1
15360 \else:
15361 __str_decode_utf_xvi_error:nNN { end } #1 \prg_do_nothing:
15362 \fi:
15363 \prg_break:
15364 }
15365 \cs_new:Npn __str_decode_utf_xvi_extra:NNw #1#2 \s__str #3 \s__str
15366 { __str_decode_utf_xvi_error:nNN { extra } #1#2 }
15367 \cs_new:Npn __str_decode_utf_xvi_error:nNN #1#2#3
15368 {
15369 \flag_raise:N \l__str_error_flag
15370 \flag_raise:c { l__str_#1_flag }
15371 #2 #3 \s__str
15372 \int_use:N \c__str_replacement_char_int \s__str
15373 }

(End of definition for __str_decode_utf_xvi_pair:NN and others.)
Restore the original catcodes of bytes 254 and 255.

15374 \group_end:

56.6.3 utf-32 support
The definitions are done in a category code regime where the bytes 0, 254 and 255 used
by the byte order mark have catcode “other”.

15375 \group_begin:
15376 \char_set_catcode_other:N \^^00
15377 \char_set_catcode_other:N \^^fe
15378 \char_set_catcode_other:N \^^ff

__str_convert_encode_utf32:
__str_convert_encode_utf32be:
__str_convert_encode_utf32le:

__str_encode_utf_xxxii_be:n
__str_encode_utf_xxxii_be_aux:nn

__str_encode_utf_xxxii_le:n
__str_encode_utf_xxxii_le_aux:nn

Convert each integer in the comma-list \g__str_result_tl to a sequence of four
bytes. The functions for big-endian and little-endian encodings are very similar, but
the __str_output_byte:n instructions are reversed.

15379 \cs_new_protected:cpn { __str_convert_encode_utf32: }
15380 {
15381 __str_convert_gmap_internal:N __str_encode_utf_xxxii_be:n
15382 \tl_gput_left:Ne \g__str_result_tl { ^^00 ^^00 ^^fe ^^ff }
15383 }
15384 \cs_new_protected:cpn { __str_convert_encode_utf32be: }
15385 { __str_convert_gmap_internal:N __str_encode_utf_xxxii_be:n }
15386 \cs_new_protected:cpn { __str_convert_encode_utf32le: }

793

15387 { __str_convert_gmap_internal:N __str_encode_utf_xxxii_le:n }
15388 \cs_new:Npn __str_encode_utf_xxxii_be:n #1
15389 {
15390 \exp_args:Nf __str_encode_utf_xxxii_be_aux:nn
15391 { \int_div_truncate:nn {#1} { "100 } } {#1}
15392 }
15393 \cs_new:Npn __str_encode_utf_xxxii_be_aux:nn #1#2
15394 {
15395 ^^00
15396 __str_output_byte_pair_be:n {#1}
15397 __str_output_byte:n { #2 - #1 * "100 }
15398 }
15399 \cs_new:Npn __str_encode_utf_xxxii_le:n #1
15400 {
15401 \exp_args:Nf __str_encode_utf_xxxii_le_aux:nn
15402 { \int_div_truncate:nn {#1} { "100 } } {#1}
15403 }
15404 \cs_new:Npn __str_encode_utf_xxxii_le_aux:nn #1#2
15405 {
15406 __str_output_byte:n { #2 - #1 * "100 }
15407 __str_output_byte_pair_le:n {#1}
15408 ^^00
15409 }

(End of definition for __str_convert_encode_utf32: and others.)

__str_overflow
__str_end

There can be no error when encoding in utf-32. When decoding, the string may not
have length 4n, or it may contain code points larger than "10FFFF. The latter case often
happens if the encoding was in fact not utf-32, because most arbitrary strings are not
valid in utf-32.

15410 \flag_clear_new:N \l__str_overflow_flag
15411 \flag_clear_new:N \l__str_end_flag
15412 \msg_new:nnnn { str } { utf32-decode }
15413 {
15414 Invalid~UTF-32~string:
15415 \exp_last_unbraced:Nf \use_none:n
15416 {
15417 __str_if_flag_times:NT \l__str_overflow_flag { ,~code~point~too~large }
15418 __str_if_flag_times:NT \l__str_end_flag { ,~truncated~string }
15419 }
15420 .
15421 }
15422 {
15423 In~the~UTF-32~encoding,~every~Unicode~character~
15424 (in~the~range~[U+0000,~U+10FFFF])~is~encoded~as~4~bytes.
15425 \flag_if_raised:NT \l__str_overflow_flag
15426 {
15427 \\\\
15428 LaTeX~came~across~a~code~point~larger~than~1114111,~
15429 the~maximum~code~point~defined~by~Unicode.~
15430 Perhaps~the~string~was~not~encoded~in~the~UTF-32~encoding?
15431 }
15432 \flag_if_raised:NT \l__str_end_flag
15433 {

794

15434 \\\\
15435 The~length~of~the~string~is~not~a~multiple~of~4.~
15436 Perhaps~the~string~was~truncated?
15437 }
15438 }

(End of definition for __str_overflow and __str_end.)

__str_convert_decode_utf32:
__str_convert_decode_utf32be:
__str_convert_decode_utf32le:

__str_decode_utf_xxxii_bom:NNNN
__str_decode_utf_xxxii:Nw

__str_decode_utf_xxxii_loop:NNNN
__str_decode_utf_xxxii_end:w

The structure is similar to utf-16 decoding functions. If the endianness is not given, test
the first 4 bytes of the string (possibly \s__str_stop if the string is too short) for the
presence of a byte-order mark. If there is a byte-order mark, use that endianness, and
remove the 4 bytes, otherwise default to big-endian, and leave the 4 bytes in place. The
__str_decode_utf_xxxii:Nw auxiliary receives 1 or 2 as its first argument indicating
endianness, and the string to convert as its second argument (expanded or not). It sets
__str_tmp:w to expand to the character code of either of its two arguments depending
on endianness, then triggers the _loop auxiliary inside an e-expanding assignment to
\g__str_result_tl.

The _loop auxiliary first checks for the end-of-string marker \s__str_stop, calling
the _end auxiliary if appropriate. Otherwise, leave the ⟨4 bytes⟩ \s__str behind, then
check that the code point is not overflowing: the leading byte must be 0, and the following
byte at most 16.

In the ending code, we check that there remains no byte: there should be nothing
left until the first \s__str_stop. Break the map.

15439 \cs_new_protected:cpn { __str_convert_decode_utf32be: }
15440 { __str_decode_utf_xxxii:Nw 1 \g__str_result_tl \s__str_stop }
15441 \cs_new_protected:cpn { __str_convert_decode_utf32le: }
15442 { __str_decode_utf_xxxii:Nw 2 \g__str_result_tl \s__str_stop }
15443 \cs_new_protected:cpn { __str_convert_decode_utf32: }
15444 {
15445 \exp_after:wN __str_decode_utf_xxxii_bom:NNNN \g__str_result_tl
15446 \s__str_stop \s__str_stop \s__str_stop \s__str_stop \s__str_stop
15447 }
15448 \cs_new_protected:Npn __str_decode_utf_xxxii_bom:NNNN #1#2#3#4
15449 {
15450 \str_if_eq:nnTF { #1#2#3#4 } { ^^ff ^^fe ^^00 ^^00 }
15451 { __str_decode_utf_xxxii:Nw 2 }
15452 {
15453 \str_if_eq:nnTF { #1#2#3#4 } { ^^00 ^^00 ^^fe ^^ff }
15454 { __str_decode_utf_xxxii:Nw 1 }
15455 { __str_decode_utf_xxxii:Nw 1 #1#2#3#4 }
15456 }
15457 }
15458 \cs_new_protected:Npn __str_decode_utf_xxxii:Nw #1#2 \s__str_stop
15459 {
15460 \flag_clear:N \l__str_overflow_flag
15461 \flag_clear:N \l__str_end_flag
15462 \flag_clear:N \l__str_error_flag
15463 \cs_set:Npn __str_tmp:w ##1 ##2 { ‘ ## #1 }
15464 __kernel_tl_gset:Nx \g__str_result_tl
15465 {
15466 \exp_after:wN __str_decode_utf_xxxii_loop:NNNN
15467 #2 \s__str_stop \s__str_stop \s__str_stop \s__str_stop
15468 \prg_break_point:

795

15469 }
15470 __str_if_flag_error:Nne \l__str_error_flag { utf32-decode } { }
15471 }
15472 \cs_new:Npn __str_decode_utf_xxxii_loop:NNNN #1#2#3#4
15473 {
15474 \if_meaning:w \s__str_stop #4
15475 \exp_after:wN __str_decode_utf_xxxii_end:w
15476 \fi:
15477 #1#2#3#4 \s__str
15478 \if_int_compare:w __str_tmp:w #1#4 > \c_zero_int
15479 \flag_raise:N \l__str_overflow_flag
15480 \flag_raise:N \l__str_error_flag
15481 \int_use:N \c__str_replacement_char_int
15482 \else:
15483 \if_int_compare:w __str_tmp:w #2#3 > 16 \exp_stop_f:
15484 \flag_raise:N \l__str_overflow_flag
15485 \flag_raise:N \l__str_error_flag
15486 \int_use:N \c__str_replacement_char_int
15487 \else:
15488 \int_eval:n
15489 { __str_tmp:w #2#3*"10000 + __str_tmp:w #3#2*"100 + __str_tmp:w #4#1 }
15490 \fi:
15491 \fi:
15492 \s__str
15493 __str_decode_utf_xxxii_loop:NNNN
15494 }
15495 \cs_new:Npn __str_decode_utf_xxxii_end:w #1 \s__str_stop
15496 {
15497 \tl_if_empty:nF {#1}
15498 {
15499 \flag_raise:N \l__str_end_flag
15500 \flag_raise:N \l__str_error_flag
15501 #1 \s__str
15502 \int_use:N \c__str_replacement_char_int \s__str
15503 }
15504 \prg_break:
15505 }

(End of definition for __str_convert_decode_utf32: and others.)
Restore the original catcodes of bytes 0, 254 and 255.

15506 \group_end:

56.7 PDF names and strings by expansion
\str_convert_pdfname:n

__str_convert_pdfname:n
__str_convert_pdfname_bytes:n

__str_convert_pdfname_bytes_aux:n
__str_convert_pdfname_bytes_aux:nnn

To convert to PDF names by expansion, we work purely on UTF-8 input. The first
step is to make a string with “other” spaces, after which we use a simple token-by-token
approach. In Unicode engines, we break down everything before one-byte codepoints,
but for 8-bit engines there is no need to worry. Actual escaping is covered by the same
code as used in the non-expandable route.

15507 \cs_new:Npn \str_convert_pdfname:n #1
15508 {
15509 \exp_args:Ne \tl_to_str:n

796

15510 { \str_map_function:nN {#1} __str_convert_pdfname:n }
15511 }
15512 \sys_if_engine_opentype:TF
15513 {
15514 \cs_new:Npn __str_convert_pdfname:n #1
15515 {
15516 \int_compare:nNnTF { ‘#1 } > { "7F }
15517 { __str_convert_pdfname_bytes:n {#1} }
15518 { __str_escape_name_char:n {#1} }
15519 }
15520 \cs_new:Npn __str_convert_pdfname_bytes:n #1
15521 {
15522 \exp_args:Ne __str_convert_pdfname_bytes_aux:n
15523 { __kernel_codepoint_to_bytes:n {‘#1} }
15524 }
15525 \cs_new:Npn __str_convert_pdfname_bytes_aux:n #1
15526 { __str_convert_pdfname_bytes_aux:nnnn #1 }
15527 \cs_new:Npe __str_convert_pdfname_bytes_aux:nnnn #1#2#3#4
15528 {
15529 \c_hash_str \exp_not:N __str_output_hexadecimal:n {#1}
15530 \c_hash_str \exp_not:N __str_output_hexadecimal:n {#2}
15531 \exp_not:N \tl_if_blank:nF {#3}
15532 {
15533 \c_hash_str \exp_not:N __str_output_hexadecimal:n {#3}
15534 \exp_not:N \tl_if_blank:nF {#4}
15535 {
15536 \c_hash_str \exp_not:N __str_output_hexadecimal:n {#4}
15537 }
15538 }
15539 }
15540 }
15541 { \cs_new_eq:NN __str_convert_pdfname:n __str_escape_name_char:n }

(End of definition for \str_convert_pdfname:n and others. This function is documented on page 149.)

15542 ⟨/package⟩

56.7.1 iso 8859 support
The iso-8859-1 encoding exactly matches with the 256 first Unicode characters. For
other 8-bit encodings of the iso-8859 family, we keep track only of differences, and of
unassigned bytes.

15543 ⟨∗iso88591⟩
15544 __str_declare_eight_bit_encoding:nnnn { iso88591 } { 256 }
15545 {
15546 }
15547 {
15548 }
15549 ⟨/iso88591⟩

15550 ⟨∗iso88592⟩
15551 __str_declare_eight_bit_encoding:nnnn { iso88592 } { 399 }
15552 {
15553 { A1 } { 0104 }
15554 { A2 } { 02D8 }

797

15555 { A3 } { 0141 }
15556 { A5 } { 013D }
15557 { A6 } { 015A }
15558 { A9 } { 0160 }
15559 { AA } { 015E }
15560 { AB } { 0164 }
15561 { AC } { 0179 }
15562 { AE } { 017D }
15563 { AF } { 017B }
15564 { B1 } { 0105 }
15565 { B2 } { 02DB }
15566 { B3 } { 0142 }
15567 { B5 } { 013E }
15568 { B6 } { 015B }
15569 { B7 } { 02C7 }
15570 { B9 } { 0161 }
15571 { BA } { 015F }
15572 { BB } { 0165 }
15573 { BC } { 017A }
15574 { BD } { 02DD }
15575 { BE } { 017E }
15576 { BF } { 017C }
15577 { C0 } { 0154 }
15578 { C3 } { 0102 }
15579 { C5 } { 0139 }
15580 { C6 } { 0106 }
15581 { C8 } { 010C }
15582 { CA } { 0118 }
15583 { CC } { 011A }
15584 { CF } { 010E }
15585 { D0 } { 0110 }
15586 { D1 } { 0143 }
15587 { D2 } { 0147 }
15588 { D5 } { 0150 }
15589 { D8 } { 0158 }
15590 { D9 } { 016E }
15591 { DB } { 0170 }
15592 { DE } { 0162 }
15593 { E0 } { 0155 }
15594 { E3 } { 0103 }
15595 { E5 } { 013A }
15596 { E6 } { 0107 }
15597 { E8 } { 010D }
15598 { EA } { 0119 }
15599 { EC } { 011B }
15600 { EF } { 010F }
15601 { F0 } { 0111 }
15602 { F1 } { 0144 }
15603 { F2 } { 0148 }
15604 { F5 } { 0151 }
15605 { F8 } { 0159 }
15606 { F9 } { 016F }
15607 { FB } { 0171 }
15608 { FE } { 0163 }

798

15609 { FF } { 02D9 }
15610 }
15611 {
15612 }
15613 ⟨/iso88592⟩

15614 ⟨∗iso88593⟩
15615 __str_declare_eight_bit_encoding:nnnn { iso88593 } { 384 }
15616 {
15617 { A1 } { 0126 }
15618 { A2 } { 02D8 }
15619 { A6 } { 0124 }
15620 { A9 } { 0130 }
15621 { AA } { 015E }
15622 { AB } { 011E }
15623 { AC } { 0134 }
15624 { AF } { 017B }
15625 { B1 } { 0127 }
15626 { B6 } { 0125 }
15627 { B9 } { 0131 }
15628 { BA } { 015F }
15629 { BB } { 011F }
15630 { BC } { 0135 }
15631 { BF } { 017C }
15632 { C5 } { 010A }
15633 { C6 } { 0108 }
15634 { D5 } { 0120 }
15635 { D8 } { 011C }
15636 { DD } { 016C }
15637 { DE } { 015C }
15638 { E5 } { 010B }
15639 { E6 } { 0109 }
15640 { F5 } { 0121 }
15641 { F8 } { 011D }
15642 { FD } { 016D }
15643 { FE } { 015D }
15644 { FF } { 02D9 }
15645 }
15646 {
15647 { A5 }
15648 { AE }
15649 { BE }
15650 { C3 }
15651 { D0 }
15652 { E3 }
15653 { F0 }
15654 }
15655 ⟨/iso88593⟩

15656 ⟨∗iso88594⟩
15657 __str_declare_eight_bit_encoding:nnnn { iso88594 } { 383 }
15658 {
15659 { A1 } { 0104 }
15660 { A2 } { 0138 }
15661 { A3 } { 0156 }

799

15662 { A5 } { 0128 }
15663 { A6 } { 013B }
15664 { A9 } { 0160 }
15665 { AA } { 0112 }
15666 { AB } { 0122 }
15667 { AC } { 0166 }
15668 { AE } { 017D }
15669 { B1 } { 0105 }
15670 { B2 } { 02DB }
15671 { B3 } { 0157 }
15672 { B5 } { 0129 }
15673 { B6 } { 013C }
15674 { B7 } { 02C7 }
15675 { B9 } { 0161 }
15676 { BA } { 0113 }
15677 { BB } { 0123 }
15678 { BC } { 0167 }
15679 { BD } { 014A }
15680 { BE } { 017E }
15681 { BF } { 014B }
15682 { C0 } { 0100 }
15683 { C7 } { 012E }
15684 { C8 } { 010C }
15685 { CA } { 0118 }
15686 { CC } { 0116 }
15687 { CF } { 012A }
15688 { D0 } { 0110 }
15689 { D1 } { 0145 }
15690 { D2 } { 014C }
15691 { D3 } { 0136 }
15692 { D9 } { 0172 }
15693 { DD } { 0168 }
15694 { DE } { 016A }
15695 { E0 } { 0101 }
15696 { E7 } { 012F }
15697 { E8 } { 010D }
15698 { EA } { 0119 }
15699 { EC } { 0117 }
15700 { EF } { 012B }
15701 { F0 } { 0111 }
15702 { F1 } { 0146 }
15703 { F2 } { 014D }
15704 { F3 } { 0137 }
15705 { F9 } { 0173 }
15706 { FD } { 0169 }
15707 { FE } { 016B }
15708 { FF } { 02D9 }
15709 }
15710 {
15711 }
15712 ⟨/iso88594⟩

15713 ⟨∗iso88595⟩
15714 __str_declare_eight_bit_encoding:nnnn { iso88595 } { 374 }
15715 {

800

15716 { A1 } { 0401 }
15717 { A2 } { 0402 }
15718 { A3 } { 0403 }
15719 { A4 } { 0404 }
15720 { A5 } { 0405 }
15721 { A6 } { 0406 }
15722 { A7 } { 0407 }
15723 { A8 } { 0408 }
15724 { A9 } { 0409 }
15725 { AA } { 040A }
15726 { AB } { 040B }
15727 { AC } { 040C }
15728 { AE } { 040E }
15729 { AF } { 040F }
15730 { B0 } { 0410 }
15731 { B1 } { 0411 }
15732 { B2 } { 0412 }
15733 { B3 } { 0413 }
15734 { B4 } { 0414 }
15735 { B5 } { 0415 }
15736 { B6 } { 0416 }
15737 { B7 } { 0417 }
15738 { B8 } { 0418 }
15739 { B9 } { 0419 }
15740 { BA } { 041A }
15741 { BB } { 041B }
15742 { BC } { 041C }
15743 { BD } { 041D }
15744 { BE } { 041E }
15745 { BF } { 041F }
15746 { C0 } { 0420 }
15747 { C1 } { 0421 }
15748 { C2 } { 0422 }
15749 { C3 } { 0423 }
15750 { C4 } { 0424 }
15751 { C5 } { 0425 }
15752 { C6 } { 0426 }
15753 { C7 } { 0427 }
15754 { C8 } { 0428 }
15755 { C9 } { 0429 }
15756 { CA } { 042A }
15757 { CB } { 042B }
15758 { CC } { 042C }
15759 { CD } { 042D }
15760 { CE } { 042E }
15761 { CF } { 042F }
15762 { D0 } { 0430 }
15763 { D1 } { 0431 }
15764 { D2 } { 0432 }
15765 { D3 } { 0433 }
15766 { D4 } { 0434 }
15767 { D5 } { 0435 }
15768 { D6 } { 0436 }
15769 { D7 } { 0437 }

801

15770 { D8 } { 0438 }
15771 { D9 } { 0439 }
15772 { DA } { 043A }
15773 { DB } { 043B }
15774 { DC } { 043C }
15775 { DD } { 043D }
15776 { DE } { 043E }
15777 { DF } { 043F }
15778 { E0 } { 0440 }
15779 { E1 } { 0441 }
15780 { E2 } { 0442 }
15781 { E3 } { 0443 }
15782 { E4 } { 0444 }
15783 { E5 } { 0445 }
15784 { E6 } { 0446 }
15785 { E7 } { 0447 }
15786 { E8 } { 0448 }
15787 { E9 } { 0449 }
15788 { EA } { 044A }
15789 { EB } { 044B }
15790 { EC } { 044C }
15791 { ED } { 044D }
15792 { EE } { 044E }
15793 { EF } { 044F }
15794 { F0 } { 2116 }
15795 { F1 } { 0451 }
15796 { F2 } { 0452 }
15797 { F3 } { 0453 }
15798 { F4 } { 0454 }
15799 { F5 } { 0455 }
15800 { F6 } { 0456 }
15801 { F7 } { 0457 }
15802 { F8 } { 0458 }
15803 { F9 } { 0459 }
15804 { FA } { 045A }
15805 { FB } { 045B }
15806 { FC } { 045C }
15807 { FD } { 00A7 }
15808 { FE } { 045E }
15809 { FF } { 045F }
15810 }
15811 {
15812 }
15813 ⟨/iso88595⟩

15814 ⟨∗iso88596⟩
15815 __str_declare_eight_bit_encoding:nnnn { iso88596 } { 344 }
15816 {
15817 { AC } { 060C }
15818 { BB } { 061B }
15819 { BF } { 061F }
15820 { C1 } { 0621 }
15821 { C2 } { 0622 }
15822 { C3 } { 0623 }
15823 { C4 } { 0624 }

802

15824 { C5 } { 0625 }
15825 { C6 } { 0626 }
15826 { C7 } { 0627 }
15827 { C8 } { 0628 }
15828 { C9 } { 0629 }
15829 { CA } { 062A }
15830 { CB } { 062B }
15831 { CC } { 062C }
15832 { CD } { 062D }
15833 { CE } { 062E }
15834 { CF } { 062F }
15835 { D0 } { 0630 }
15836 { D1 } { 0631 }
15837 { D2 } { 0632 }
15838 { D3 } { 0633 }
15839 { D4 } { 0634 }
15840 { D5 } { 0635 }
15841 { D6 } { 0636 }
15842 { D7 } { 0637 }
15843 { D8 } { 0638 }
15844 { D9 } { 0639 }
15845 { DA } { 063A }
15846 { E0 } { 0640 }
15847 { E1 } { 0641 }
15848 { E2 } { 0642 }
15849 { E3 } { 0643 }
15850 { E4 } { 0644 }
15851 { E5 } { 0645 }
15852 { E6 } { 0646 }
15853 { E7 } { 0647 }
15854 { E8 } { 0648 }
15855 { E9 } { 0649 }
15856 { EA } { 064A }
15857 { EB } { 064B }
15858 { EC } { 064C }
15859 { ED } { 064D }
15860 { EE } { 064E }
15861 { EF } { 064F }
15862 { F0 } { 0650 }
15863 { F1 } { 0651 }
15864 { F2 } { 0652 }
15865 }
15866 {
15867 { A1 }
15868 { A2 }
15869 { A3 }
15870 { A5 }
15871 { A6 }
15872 { A7 }
15873 { A8 }
15874 { A9 }
15875 { AA }
15876 { AB }
15877 { AE }

803

15878 { AF }
15879 { B0 }
15880 { B1 }
15881 { B2 }
15882 { B3 }
15883 { B4 }
15884 { B5 }
15885 { B6 }
15886 { B7 }
15887 { B8 }
15888 { B9 }
15889 { BA }
15890 { BC }
15891 { BD }
15892 { BE }
15893 { C0 }
15894 { DB }
15895 { DC }
15896 { DD }
15897 { DE }
15898 { DF }
15899 }
15900 ⟨/iso88596⟩

15901 ⟨∗iso88597⟩
15902 __str_declare_eight_bit_encoding:nnnn { iso88597 } { 498 }
15903 {
15904 { A1 } { 2018 }
15905 { A2 } { 2019 }
15906 { A4 } { 20AC }
15907 { A5 } { 20AF }
15908 { AA } { 037A }
15909 { AF } { 2015 }
15910 { B4 } { 0384 }
15911 { B5 } { 0385 }
15912 { B6 } { 0386 }
15913 { B8 } { 0388 }
15914 { B9 } { 0389 }
15915 { BA } { 038A }
15916 { BC } { 038C }
15917 { BE } { 038E }
15918 { BF } { 038F }
15919 { C0 } { 0390 }
15920 { C1 } { 0391 }
15921 { C2 } { 0392 }
15922 { C3 } { 0393 }
15923 { C4 } { 0394 }
15924 { C5 } { 0395 }
15925 { C6 } { 0396 }
15926 { C7 } { 0397 }
15927 { C8 } { 0398 }
15928 { C9 } { 0399 }
15929 { CA } { 039A }
15930 { CB } { 039B }
15931 { CC } { 039C }

804

15932 { CD } { 039D }
15933 { CE } { 039E }
15934 { CF } { 039F }
15935 { D0 } { 03A0 }
15936 { D1 } { 03A1 }
15937 { D3 } { 03A3 }
15938 { D4 } { 03A4 }
15939 { D5 } { 03A5 }
15940 { D6 } { 03A6 }
15941 { D7 } { 03A7 }
15942 { D8 } { 03A8 }
15943 { D9 } { 03A9 }
15944 { DA } { 03AA }
15945 { DB } { 03AB }
15946 { DC } { 03AC }
15947 { DD } { 03AD }
15948 { DE } { 03AE }
15949 { DF } { 03AF }
15950 { E0 } { 03B0 }
15951 { E1 } { 03B1 }
15952 { E2 } { 03B2 }
15953 { E3 } { 03B3 }
15954 { E4 } { 03B4 }
15955 { E5 } { 03B5 }
15956 { E6 } { 03B6 }
15957 { E7 } { 03B7 }
15958 { E8 } { 03B8 }
15959 { E9 } { 03B9 }
15960 { EA } { 03BA }
15961 { EB } { 03BB }
15962 { EC } { 03BC }
15963 { ED } { 03BD }
15964 { EE } { 03BE }
15965 { EF } { 03BF }
15966 { F0 } { 03C0 }
15967 { F1 } { 03C1 }
15968 { F2 } { 03C2 }
15969 { F3 } { 03C3 }
15970 { F4 } { 03C4 }
15971 { F5 } { 03C5 }
15972 { F6 } { 03C6 }
15973 { F7 } { 03C7 }
15974 { F8 } { 03C8 }
15975 { F9 } { 03C9 }
15976 { FA } { 03CA }
15977 { FB } { 03CB }
15978 { FC } { 03CC }
15979 { FD } { 03CD }
15980 { FE } { 03CE }
15981 }
15982 {
15983 { AE }
15984 { D2 }
15985 }

805

15986 ⟨/iso88597⟩

15987 ⟨∗iso88598⟩
15988 __str_declare_eight_bit_encoding:nnnn { iso88598 } { 308 }
15989 {
15990 { AA } { 00D7 }
15991 { BA } { 00F7 }
15992 { DF } { 2017 }
15993 { E0 } { 05D0 }
15994 { E1 } { 05D1 }
15995 { E2 } { 05D2 }
15996 { E3 } { 05D3 }
15997 { E4 } { 05D4 }
15998 { E5 } { 05D5 }
15999 { E6 } { 05D6 }
16000 { E7 } { 05D7 }
16001 { E8 } { 05D8 }
16002 { E9 } { 05D9 }
16003 { EA } { 05DA }
16004 { EB } { 05DB }
16005 { EC } { 05DC }
16006 { ED } { 05DD }
16007 { EE } { 05DE }
16008 { EF } { 05DF }
16009 { F0 } { 05E0 }
16010 { F1 } { 05E1 }
16011 { F2 } { 05E2 }
16012 { F3 } { 05E3 }
16013 { F4 } { 05E4 }
16014 { F5 } { 05E5 }
16015 { F6 } { 05E6 }
16016 { F7 } { 05E7 }
16017 { F8 } { 05E8 }
16018 { F9 } { 05E9 }
16019 { FA } { 05EA }
16020 { FD } { 200E }
16021 { FE } { 200F }
16022 }
16023 {
16024 { A1 }
16025 { BF }
16026 { C0 }
16027 { C1 }
16028 { C2 }
16029 { C3 }
16030 { C4 }
16031 { C5 }
16032 { C6 }
16033 { C7 }
16034 { C8 }
16035 { C9 }
16036 { CA }
16037 { CB }
16038 { CC }
16039 { CD }

806

16040 { CE }
16041 { CF }
16042 { D0 }
16043 { D1 }
16044 { D2 }
16045 { D3 }
16046 { D4 }
16047 { D5 }
16048 { D6 }
16049 { D7 }
16050 { D8 }
16051 { D9 }
16052 { DA }
16053 { DB }
16054 { DC }
16055 { DD }
16056 { DE }
16057 { FB }
16058 { FC }
16059 }
16060 ⟨/iso88598⟩

16061 ⟨∗iso88599⟩
16062 __str_declare_eight_bit_encoding:nnnn { iso88599 } { 352 }
16063 {
16064 { D0 } { 011E }
16065 { DD } { 0130 }
16066 { DE } { 015E }
16067 { F0 } { 011F }
16068 { FD } { 0131 }
16069 { FE } { 015F }
16070 }
16071 {
16072 }
16073 ⟨/iso88599⟩

16074 ⟨∗iso885910⟩
16075 __str_declare_eight_bit_encoding:nnnn { iso885910 } { 383 }
16076 {
16077 { A1 } { 0104 }
16078 { A2 } { 0112 }
16079 { A3 } { 0122 }
16080 { A4 } { 012A }
16081 { A5 } { 0128 }
16082 { A6 } { 0136 }
16083 { A8 } { 013B }
16084 { A9 } { 0110 }
16085 { AA } { 0160 }
16086 { AB } { 0166 }
16087 { AC } { 017D }
16088 { AE } { 016A }
16089 { AF } { 014A }
16090 { B1 } { 0105 }
16091 { B2 } { 0113 }
16092 { B3 } { 0123 }

807

16093 { B4 } { 012B }
16094 { B5 } { 0129 }
16095 { B6 } { 0137 }
16096 { B8 } { 013C }
16097 { B9 } { 0111 }
16098 { BA } { 0161 }
16099 { BB } { 0167 }
16100 { BC } { 017E }
16101 { BD } { 2015 }
16102 { BE } { 016B }
16103 { BF } { 014B }
16104 { C0 } { 0100 }
16105 { C7 } { 012E }
16106 { C8 } { 010C }
16107 { CA } { 0118 }
16108 { CC } { 0116 }
16109 { D1 } { 0145 }
16110 { D2 } { 014C }
16111 { D7 } { 0168 }
16112 { D9 } { 0172 }
16113 { E0 } { 0101 }
16114 { E7 } { 012F }
16115 { E8 } { 010D }
16116 { EA } { 0119 }
16117 { EC } { 0117 }
16118 { F1 } { 0146 }
16119 { F2 } { 014D }
16120 { F7 } { 0169 }
16121 { F9 } { 0173 }
16122 { FF } { 0138 }
16123 }
16124 {
16125 }
16126 ⟨/iso885910⟩

16127 ⟨∗iso885911⟩
16128 __str_declare_eight_bit_encoding:nnnn { iso885911 } { 369 }
16129 {
16130 { A1 } { 0E01 }
16131 { A2 } { 0E02 }
16132 { A3 } { 0E03 }
16133 { A4 } { 0E04 }
16134 { A5 } { 0E05 }
16135 { A6 } { 0E06 }
16136 { A7 } { 0E07 }
16137 { A8 } { 0E08 }
16138 { A9 } { 0E09 }
16139 { AA } { 0E0A }
16140 { AB } { 0E0B }
16141 { AC } { 0E0C }
16142 { AD } { 0E0D }
16143 { AE } { 0E0E }
16144 { AF } { 0E0F }
16145 { B0 } { 0E10 }
16146 { B1 } { 0E11 }

808

16147 { B2 } { 0E12 }
16148 { B3 } { 0E13 }
16149 { B4 } { 0E14 }
16150 { B5 } { 0E15 }
16151 { B6 } { 0E16 }
16152 { B7 } { 0E17 }
16153 { B8 } { 0E18 }
16154 { B9 } { 0E19 }
16155 { BA } { 0E1A }
16156 { BB } { 0E1B }
16157 { BC } { 0E1C }
16158 { BD } { 0E1D }
16159 { BE } { 0E1E }
16160 { BF } { 0E1F }
16161 { C0 } { 0E20 }
16162 { C1 } { 0E21 }
16163 { C2 } { 0E22 }
16164 { C3 } { 0E23 }
16165 { C4 } { 0E24 }
16166 { C5 } { 0E25 }
16167 { C6 } { 0E26 }
16168 { C7 } { 0E27 }
16169 { C8 } { 0E28 }
16170 { C9 } { 0E29 }
16171 { CA } { 0E2A }
16172 { CB } { 0E2B }
16173 { CC } { 0E2C }
16174 { CD } { 0E2D }
16175 { CE } { 0E2E }
16176 { CF } { 0E2F }
16177 { D0 } { 0E30 }
16178 { D1 } { 0E31 }
16179 { D2 } { 0E32 }
16180 { D3 } { 0E33 }
16181 { D4 } { 0E34 }
16182 { D5 } { 0E35 }
16183 { D6 } { 0E36 }
16184 { D7 } { 0E37 }
16185 { D8 } { 0E38 }
16186 { D9 } { 0E39 }
16187 { DA } { 0E3A }
16188 { DF } { 0E3F }
16189 { E0 } { 0E40 }
16190 { E1 } { 0E41 }
16191 { E2 } { 0E42 }
16192 { E3 } { 0E43 }
16193 { E4 } { 0E44 }
16194 { E5 } { 0E45 }
16195 { E6 } { 0E46 }
16196 { E7 } { 0E47 }
16197 { E8 } { 0E48 }
16198 { E9 } { 0E49 }
16199 { EA } { 0E4A }
16200 { EB } { 0E4B }

809

16201 { EC } { 0E4C }
16202 { ED } { 0E4D }
16203 { EE } { 0E4E }
16204 { EF } { 0E4F }
16205 { F0 } { 0E50 }
16206 { F1 } { 0E51 }
16207 { F2 } { 0E52 }
16208 { F3 } { 0E53 }
16209 { F4 } { 0E54 }
16210 { F5 } { 0E55 }
16211 { F6 } { 0E56 }
16212 { F7 } { 0E57 }
16213 { F8 } { 0E58 }
16214 { F9 } { 0E59 }
16215 { FA } { 0E5A }
16216 { FB } { 0E5B }
16217 }
16218 {
16219 { DB }
16220 { DC }
16221 { DD }
16222 { DE }
16223 }
16224 ⟨/iso885911⟩

16225 ⟨∗iso885913⟩
16226 __str_declare_eight_bit_encoding:nnnn { iso885913 } { 399 }
16227 {
16228 { A1 } { 201D }
16229 { A5 } { 201E }
16230 { A8 } { 00D8 }
16231 { AA } { 0156 }
16232 { AF } { 00C6 }
16233 { B4 } { 201C }
16234 { B8 } { 00F8 }
16235 { BA } { 0157 }
16236 { BF } { 00E6 }
16237 { C0 } { 0104 }
16238 { C1 } { 012E }
16239 { C2 } { 0100 }
16240 { C3 } { 0106 }
16241 { C6 } { 0118 }
16242 { C7 } { 0112 }
16243 { C8 } { 010C }
16244 { CA } { 0179 }
16245 { CB } { 0116 }
16246 { CC } { 0122 }
16247 { CD } { 0136 }
16248 { CE } { 012A }
16249 { CF } { 013B }
16250 { D0 } { 0160 }
16251 { D1 } { 0143 }
16252 { D2 } { 0145 }
16253 { D4 } { 014C }
16254 { D8 } { 0172 }

810

16255 { D9 } { 0141 }
16256 { DA } { 015A }
16257 { DB } { 016A }
16258 { DD } { 017B }
16259 { DE } { 017D }
16260 { E0 } { 0105 }
16261 { E1 } { 012F }
16262 { E2 } { 0101 }
16263 { E3 } { 0107 }
16264 { E6 } { 0119 }
16265 { E7 } { 0113 }
16266 { E8 } { 010D }
16267 { EA } { 017A }
16268 { EB } { 0117 }
16269 { EC } { 0123 }
16270 { ED } { 0137 }
16271 { EE } { 012B }
16272 { EF } { 013C }
16273 { F0 } { 0161 }
16274 { F1 } { 0144 }
16275 { F2 } { 0146 }
16276 { F4 } { 014D }
16277 { F8 } { 0173 }
16278 { F9 } { 0142 }
16279 { FA } { 015B }
16280 { FB } { 016B }
16281 { FD } { 017C }
16282 { FE } { 017E }
16283 { FF } { 2019 }
16284 }
16285 {
16286 }
16287 ⟨/iso885913⟩

16288 ⟨∗iso885914⟩
16289 __str_declare_eight_bit_encoding:nnnn { iso885914 } { 529 }
16290 {
16291 { A1 } { 1E02 }
16292 { A2 } { 1E03 }
16293 { A4 } { 010A }
16294 { A5 } { 010B }
16295 { A6 } { 1E0A }
16296 { A8 } { 1E80 }
16297 { AA } { 1E82 }
16298 { AB } { 1E0B }
16299 { AC } { 1EF2 }
16300 { AF } { 0178 }
16301 { B0 } { 1E1E }
16302 { B1 } { 1E1F }
16303 { B2 } { 0120 }
16304 { B3 } { 0121 }
16305 { B4 } { 1E40 }
16306 { B5 } { 1E41 }
16307 { B7 } { 1E56 }
16308 { B8 } { 1E81 }

811

16309 { B9 } { 1E57 }
16310 { BA } { 1E83 }
16311 { BB } { 1E60 }
16312 { BC } { 1EF3 }
16313 { BD } { 1E84 }
16314 { BE } { 1E85 }
16315 { BF } { 1E61 }
16316 { D0 } { 0174 }
16317 { D7 } { 1E6A }
16318 { DE } { 0176 }
16319 { F0 } { 0175 }
16320 { F7 } { 1E6B }
16321 { FE } { 0177 }
16322 }
16323 {
16324 }
16325 ⟨/iso885914⟩

16326 ⟨∗iso885915⟩
16327 __str_declare_eight_bit_encoding:nnnn { iso885915 } { 383 }
16328 {
16329 { A4 } { 20AC }
16330 { A6 } { 0160 }
16331 { A8 } { 0161 }
16332 { B4 } { 017D }
16333 { B8 } { 017E }
16334 { BC } { 0152 }
16335 { BD } { 0153 }
16336 { BE } { 0178 }
16337 }
16338 {
16339 }
16340 ⟨/iso885915⟩

16341 ⟨∗iso885916⟩
16342 __str_declare_eight_bit_encoding:nnnn { iso885916 } { 558 }
16343 {
16344 { A1 } { 0104 }
16345 { A2 } { 0105 }
16346 { A3 } { 0141 }
16347 { A4 } { 20AC }
16348 { A5 } { 201E }
16349 { A6 } { 0160 }
16350 { A8 } { 0161 }
16351 { AA } { 0218 }
16352 { AC } { 0179 }
16353 { AE } { 017A }
16354 { AF } { 017B }
16355 { B2 } { 010C }
16356 { B3 } { 0142 }
16357 { B4 } { 017D }
16358 { B5 } { 201D }
16359 { B8 } { 017E }
16360 { B9 } { 010D }
16361 { BA } { 0219 }

812

16362 { BC } { 0152 }
16363 { BD } { 0153 }
16364 { BE } { 0178 }
16365 { BF } { 017C }
16366 { C3 } { 0102 }
16367 { C5 } { 0106 }
16368 { D0 } { 0110 }
16369 { D1 } { 0143 }
16370 { D5 } { 0150 }
16371 { D7 } { 015A }
16372 { D8 } { 0170 }
16373 { DD } { 0118 }
16374 { DE } { 021A }
16375 { E3 } { 0103 }
16376 { E5 } { 0107 }
16377 { F0 } { 0111 }
16378 { F1 } { 0144 }
16379 { F5 } { 0151 }
16380 { F7 } { 015B }
16381 { F8 } { 0171 }
16382 { FD } { 0119 }
16383 { FE } { 021B }
16384 }
16385 {
16386 }
16387 ⟨/iso885916⟩

813

Chapter 57

l3quark implementation

The following test files are used for this code: m3quark001.lvt.
16388 ⟨∗package⟩

57.1 Quarks
16389 ⟨@@=quark⟩

\quark_new:N Allocate a new quark.
16390 \cs_new_protected:Npn \quark_new:N #1
16391 {
16392 __kernel_chk_if_free_cs:N #1
16393 \cs_gset_nopar:Npn #1 {#1}
16394 }

(End of definition for \quark_new:N. This function is documented on page 152.)

\q_nil
\q_mark

\q_no_value
\q_stop

Some “public” quarks. \q_stop is an “end of argument” marker, \q_nil is a empty value
and \q_no_value marks an empty argument.

16395 \quark_new:N \q_nil
16396 \quark_new:N \q_mark
16397 \quark_new:N \q_no_value
16398 \quark_new:N \q_stop

(End of definition for \q_nil and others. These variables are documented on page 152.)

\q_recursion_tail
\q_recursion_stop

Quarks for ending recursions. Only ever used there! \q_recursion_tail is appended to
whatever list structure we are doing recursion on, meaning it is added as a proper list
item with whatever list separator is in use. \q_recursion_stop is placed directly after
the list.

16399 \quark_new:N \q_recursion_tail
16400 \quark_new:N \q_recursion_stop

(End of definition for \q_recursion_tail and \q_recursion_stop. These variables are documented on
page 153.)

\s__quark Private scan mark used in l3quark. We don’t have l3scan yet, so we declare the scan mark
here and add it to the scan mark pool later.

16401 \cs_new_eq:NN \s__quark \scan_stop:

814

(End of definition for \s__quark.)

\q__quark_nil Private quark use for some tests.
16402 \quark_new:N \q__quark_nil

(End of definition for \q__quark_nil.)

\quark_if_recursion_tail_stop:N
\quark_if_recursion_tail_stop_do:Nn

When doing recursions, it is easy to spend a lot of time testing if the end marker has
been found. To avoid this, a dedicated end marker is used each time a recursion is set up.
Thus if the marker is found everything can be wrapper up and finished off. The simple
case is when the test can guarantee that only a single token is being tested. In this case,
there is just a dedicated copy of the standard quark test. Both a gobbling version and
one inserting end code are provided.

16403 \cs_new:Npn \quark_if_recursion_tail_stop:N #1
16404 {
16405 \if_meaning:w \q_recursion_tail #1
16406 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
16407 \fi:
16408 }
16409 \cs_new:Npn \quark_if_recursion_tail_stop_do:Nn #1
16410 {
16411 \if_meaning:w \q_recursion_tail #1
16412 \exp_after:wN \use_i_delimit_by_q_recursion_stop:nw
16413 \else:
16414 \exp_after:wN \use_none:n
16415 \fi:
16416 }

(End of definition for \quark_if_recursion_tail_stop:N and \quark_if_recursion_tail_stop_do:Nn.
These functions are documented on page 153.)

\quark_if_recursion_tail_stop:n
\quark_if_recursion_tail_stop:o

\quark_if_recursion_tail_stop_do:nn
\quark_if_recursion_tail_stop_do:on

__quark_if_recursion_tail:w

See \quark_if_nil:nTF for the details. Expanding __quark_if_recursion_tail:w
once in front of the tokens chosen here gives an empty result if and only if #1 is exactly
\q_recursion_tail.

16417 \cs_new:Npn \quark_if_recursion_tail_stop:n #1
16418 {
16419 \tl_if_empty:oTF
16420 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
16421 { \use_none_delimit_by_q_recursion_stop:w }
16422 { }
16423 }
16424 \cs_new:Npn \quark_if_recursion_tail_stop_do:nn #1
16425 {
16426 \tl_if_empty:oTF
16427 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
16428 { \use_i_delimit_by_q_recursion_stop:nw }
16429 { \use_none:n }
16430 }
16431 \cs_new:Npn __quark_if_recursion_tail:w
16432 #1 \q_recursion_tail #2 ? #3 ?! { #1 #2 }
16433 \cs_generate_variant:Nn \quark_if_recursion_tail_stop:n { o }
16434 \cs_generate_variant:Nn \quark_if_recursion_tail_stop_do:nn { o }

(End of definition for \quark_if_recursion_tail_stop:n , \quark_if_recursion_tail_stop_do:nn , and
__quark_if_recursion_tail:w. These functions are documented on page 153.)

815

\quark_if_recursion_tail_break:NN
\quark_if_recursion_tail_break:nN

Analogues of the \quark_if_recursion_tail_stop... functions. Break the mapping
using #2.

16435 \cs_new:Npn \quark_if_recursion_tail_break:NN #1#2
16436 {
16437 \if_meaning:w \q_recursion_tail #1
16438 \exp_after:wN #2
16439 \fi:
16440 }
16441 \cs_new:Npn \quark_if_recursion_tail_break:nN #1#2
16442 {
16443 \tl_if_empty:oT
16444 { __quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! }
16445 {#2}
16446 }

(End of definition for \quark_if_recursion_tail_break:NN and \quark_if_recursion_tail_break:nN.
These functions are documented on page 154.)

\quark_if_nil_p:N
\quark_if_nil:NTF

\quark_if_no_value_p:N
\quark_if_no_value_p:c
\quark_if_no_value:NTF
\quark_if_no_value:cTF

Here we test if we found a special quark as the first argument. We better start with
\q_no_value as the first argument since the whole thing may otherwise loop if #1 is
wrongly given a string like aabc instead of a single token.9

16447 \prg_new_conditional:Npnn \quark_if_nil:N #1 { p, T , F , TF }
16448 {
16449 \if_meaning:w \q_nil #1
16450 \prg_return_true:
16451 \else:
16452 \prg_return_false:
16453 \fi:
16454 }
16455 \prg_new_conditional:Npnn \quark_if_no_value:N #1 { p, T , F , TF }
16456 {
16457 \if_meaning:w \q_no_value #1
16458 \prg_return_true:
16459 \else:
16460 \prg_return_false:
16461 \fi:
16462 }
16463 \prg_generate_conditional_variant:Nnn \quark_if_no_value:N
16464 { c } { p , T , F , TF }

(End of definition for \quark_if_nil:NTF and \quark_if_no_value:NTF. These functions are docu-
mented on page 152.)

\quark_if_nil_p:n
\quark_if_nil_p:V
\quark_if_nil_p:o
\quark_if_nil:nTF
\quark_if_nil:VTF
\quark_if_nil:oTF

\quark_if_no_value_p:n
\quark_if_no_value:nTF

__quark_if_nil:w
__quark_if_no_value:w
__quark_if_empty_if:o

Let us explain \quark_if_nil:nTF. Expanding __quark_if_nil:w once is safe thanks
to the trailing \q_nil ??!. The result of expanding once is empty if and only if both
delimited arguments #1 and #2 are empty and #3 is delimited by the last tokens ?!.
Thanks to the leading {}, the argument #1 is empty if and only if the argument of
\quark_if_nil:n starts with \q_nil. The argument #2 is empty if and only if this \q_-
nil is followed immediately by ? or by {}?, coming either from the trailing tokens in the
definition of \quark_if_nil:n, or from its argument. In the first case, __quark_if_-
nil:w is followed by {}\q_nil {}? !\q_nil ??!, hence #3 is delimited by the final ?!,
and the test returns true as wanted. In the second case, the result is not empty since

9It may still loop in special circumstances however!

816

the first ?! in the definition of \quark_if_nil:n stop #3. The auxiliary here is the same
as __tl_if_empty_if:o, with the same comments applying.

16465 \prg_new_conditional:Npnn \quark_if_nil:n #1 { p, T , F , TF }
16466 {
16467 __quark_if_empty_if:o
16468 { __quark_if_nil:w {} #1 {} ? ! \q_nil ? ? ! }
16469 \prg_return_true:
16470 \else:
16471 \prg_return_false:
16472 \fi:
16473 }
16474 \cs_new:Npn __quark_if_nil:w #1 \q_nil #2 ? #3 ? ! { #1 #2 }
16475 \prg_new_conditional:Npnn \quark_if_no_value:n #1 { p, T , F , TF }
16476 {
16477 __quark_if_empty_if:o
16478 { __quark_if_no_value:w {} #1 {} ? ! \q_no_value ? ? ! }
16479 \prg_return_true:
16480 \else:
16481 \prg_return_false:
16482 \fi:
16483 }
16484 \cs_new:Npn __quark_if_no_value:w #1 \q_no_value #2 ? #3 ? ! { #1 #2 }
16485 \prg_generate_conditional_variant:Nnn \quark_if_nil:n
16486 { V , o } { p , TF , T , F }
16487 \cs_new:Npn __quark_if_empty_if:o #1
16488 {
16489 \exp_after:wN \if_meaning:w \exp_after:wN \q_nil
16490 __kernel_tl_to_str:w \exp_after:wN {#1} \q_nil
16491 }

(End of definition for \quark_if_nil:nTF and others. These functions are documented on page 152.)

__kernel_quark_new_test:N The function __kernel_quark_new_test:N defines #1 in a similar way as \quark_-
if_recursion_tail_... functions (as described below), using \q__⟨namespace⟩_-
recursion_tail as the test quark and \q__⟨namespace⟩_recursion_stop as the de-
limiter quark, where the ⟨namespace⟩ is determined as the first _-delimited part in #1.

There are six possible function types which this function can define, and which is
defined depends on the signature of the function being defined:

:n gives an analogue of \quark_if_recursion_tail_stop:n

:nn gives an analogue of \quark_if_recursion_tail_stop_do:nn

:nN gives an analogue of \quark_if_recursion_tail_break:nN

:N gives an analogue of \quark_if_recursion_tail_stop:N

:Nn gives an analogue of \quark_if_recursion_tail_stop_do:Nn

:NN gives an analogue of \quark_if_recursion_tail_break:NN

Any other signature causes an error, as does a function without signature.

817

__kernel_quark_new_conditional:Nn
Similar to __kernel_quark_new_test:N, but defines quark branching conditionals like
\quark_if_nil:nTF that test for the quark \q__⟨namespace⟩_⟨name⟩. The ⟨namespace⟩
and ⟨name⟩ are determined from the conditional #1, which must take the rather rigid form
__⟨namespace⟩_quark_if_⟨name⟩:⟨arg spec⟩. There are only two cases for the ⟨arg
spec⟩ here:

:n gives an analogue of \quark_if_nil:nTF

:N gives an analogue of \quark_if_nil:NTF

Any other signature causes an error, as does a function without signature. We use
low-level emptiness tests as l3tl is not available yet when these functions are used; thank-
fully we only care about whether strings are empty so a simple \if_meaning:w \q_nil
⟨string⟩ \q_nil suffices.

__quark_new_test:NNNn
__quark_new_test:Nccn

__quark_new_test_aux:nnNNnnnn
__quark_new_conditional:Nnnn
__quark_new_conditional:Neen

16492 \cs_new_protected:Npn __kernel_quark_new_test:N #1
16493 { __quark_new_test_aux:Ne #1 { __quark_module_name:N #1 } }
16494 \cs_new_protected:Npn __quark_new_test_aux:Nn #1 #2
16495 {
16496 \if_meaning:w \q_nil #2 \q_nil
16497 \msg_error:nne { quark } { invalid-function }
16498 { \token_to_str:N #1 }
16499 \else:
16500 __quark_new_test:Nccn #1
16501 { q__#2_recursion_tail } { q__#2_recursion_stop } { __#2 }
16502 \fi:
16503 }
16504 \cs_generate_variant:Nn __quark_new_test_aux:Nn { Ne }
16505 \cs_new_protected:Npn __quark_new_test:NNNn #1
16506 {
16507 \exp_last_unbraced:Nf __quark_new_test_aux:nnNNnnnn
16508 { \cs_split_function:N #1 }
16509 #1 { test }
16510 }
16511 \cs_generate_variant:Nn __quark_new_test:NNNn { Ncc }
16512 \cs_new_protected:Npn __kernel_quark_new_conditional:Nn #1
16513 {
16514 __quark_new_conditional:Neen #1
16515 { __quark_quark_conditional_name:N #1 }
16516 { __quark_module_name:N #1 }
16517 }
16518 \cs_new_protected:Npn __quark_new_conditional:Nnnn #1#2#3#4
16519 {
16520 \if_meaning:w \q_nil #2 \q_nil
16521 \msg_error:nne { quark } { invalid-function }
16522 { \token_to_str:N #1 }
16523 \else:
16524 \if_meaning:w \q_nil #3 \q_nil
16525 \msg_error:nne { quark } { invalid-function }
16526 { \token_to_str:N #1 }
16527 \else:
16528 \exp_last_unbraced:Nf __quark_new_test_aux:nnNNnnnn
16529 { \cs_split_function:N #1 }

818

16530 #1 { conditional }
16531 {#2} {#3} {#4}
16532 \fi:
16533 \fi:
16534 }
16535 \cs_generate_variant:Nn __quark_new_conditional:Nnnn { Nee }
16536 \cs_new_protected:Npn __quark_new_test_aux:nnNNnnnn #1 #2 #3 #4 #5
16537 {
16538 \cs_if_exist_use:cTF { __quark_new_#5_#2:Nnnn } { #4 }
16539 {
16540 \msg_error:nnee { quark } { invalid-function }
16541 { \token_to_str:N #4 } {#2}
16542 \use_none:nnn
16543 }
16544 }

(End of definition for __kernel_quark_new_test:N and others.)

__quark_new_test_n:Nnnn
__quark_new_test_nn:Nnnn
__quark_new_test_N:Nnnn
__quark_new_test_Nn:Nnnn
__quark_new_test_NN:Nnnn
__quark_new_test_NN:Nnnn

These macros implement the six possibilities mentioned above, passing the right argu-
ments to __quark_new_test_aux_do:nNNnnnnNNn, which defines some auxiliaries, and
then to __quark_new_test_define_tl:nNnNNn (:n(n) variants) or to __quark_new_-
test_define_ifx:nNnNNn (:N(n)) which define the main conditionals.

16545 \cs_new_protected:Npn __quark_new_test_n:Nnnn #1 #2 #3 #4
16546 {
16547 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { none } { } { } { }
16548 __quark_new_test_define_tl:nNnNNn #1 { }
16549 }
16550 \cs_new_protected:Npn __quark_new_test_nn:Nnnn #1 #2 #3 #4
16551 {
16552 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { i } { n } {##1} {##2}
16553 __quark_new_test_define_tl:nNnNNn #1 { \use_none:n }
16554 }
16555 \cs_new_protected:Npn __quark_new_test_nN:Nnnn #1 #2 #3 #4
16556 {
16557 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { i } { n } {##1} {##2}
16558 __quark_new_test_define_break_tl:nNNNNn #1 { }
16559 }
16560 \cs_new_protected:Npn __quark_new_test_N:Nnnn #1 #2 #3 #4
16561 {
16562 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { none } { } { } { }
16563 __quark_new_test_define_ifx:nNnNNn #1 { }
16564 }
16565 \cs_new_protected:Npn __quark_new_test_Nn:Nnnn #1 #2 #3 #4
16566 {
16567 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { i } { n } {##1} {##2}
16568 __quark_new_test_define_ifx:nNnNNn #1
16569 { \else: \exp_after:wN \use_none:n }
16570 }
16571 \cs_new_protected:Npn __quark_new_test_NN:Nnnn #1 #2 #3 #4
16572 {
16573 __quark_new_test_aux_do:nNNnnnnNNn {#4} #2 #3 { i } { n } {##1} {##2}
16574 __quark_new_test_define_break_ifx:nNNNNn #1 { }
16575 }

(End of definition for __quark_new_test_n:Nnnn and others.)

819

__quark_new_test_aux_do:nNNnnnnNNn
__quark_test_define_aux:NNNNnnNNn

__quark_new_test_aux_do:nNNnnnnNNn makes the control sequence names which will
be used by __quark_test_define_aux:NNNNnnNNn, and then later by __quark_new_-
test_define_tl:nNnNNn or __quark_new_test_define_ifx:nNnNNn. The control se-
quences defined here are analogous to __quark_if_recursion_tail:w and to \use_-
(none|i)_delimit_by_q_recursion_stop:(|n)w.

The name is composed by the name-space and the name of the quarks. Suppose
__kernel_quark_new_test:N was used with:

__kernel_quark_new_test:N __test_quark_tail:n

then the first auxiliary will be __test_quark_recursion_tail:w, and the second one
will be __test_use_none_delimit_by_q_recursion_stop:w.

Note that the actual quarks are not defined here. They should be defined separately
using \quark_new:N.

16576 \cs_new_protected:Npn __quark_new_test_aux_do:nNNnnnnNNn #1 #2 #3 #4 #5
16577 {
16578 \exp_args:Ncc __quark_test_define_aux:NNNNnnNNn
16579 { #1 _quark_recursion_tail:w }
16580 { #1 _use_ #4 _delimit_by_q_recursion_stop: #5 w }
16581 #2 #3
16582 }
16583 \cs_new_protected:Npn __quark_test_define_aux:NNNNnnNNn #1 #2 #3 #4 #5 #6 #7
16584 {
16585 \cs_gset:Npn #1 ##1 #3 ##2 ? ##3 ?! { ##1 ##2 }
16586 \cs_gset:Npn #2 ##1 #6 #4 {#5}
16587 #7 {##1} #1 #2 #3
16588 }

(End of definition for __quark_new_test_aux_do:nNNnnnnNNn and __quark_test_define_aux:NNNNnnNNn.)

__quark_new_test_define_tl:nNnNNn
__quark_new_test_define_ifx:nNnNNn

__quark_new_test_define_break_tl:nNNNNn
__quark_new_test_define_break_ifx:nNNNNn

Finally, these two macros define the main conditional function using what’s been set up
before.

16589 \cs_new_protected:Npn __quark_new_test_define_tl:nNnNNn #1 #2 #3 #4 #5 #6
16590 {
16591 \cs_new:Npn #5 #1
16592 {
16593 \tl_if_empty:oTF
16594 { #2 {} ##1 {} ?! #4 ??! }
16595 {#3} {#6}
16596 }
16597 }
16598 \cs_new_protected:Npn __quark_new_test_define_ifx:nNnNNn #1 #2 #3 #4 #5 #6
16599 {
16600 \cs_new:Npn #5 #1
16601 {
16602 \if_meaning:w #4 ##1
16603 \exp_after:wN #3
16604 #6
16605 \fi:
16606 }
16607 }
16608 \cs_new_protected:Npn __quark_new_test_define_break_tl:nNNNNn #1 #2 #3
16609 { __quark_new_test_define_tl:nNnNNn {##1##2} #2 {##2} }
16610 \cs_new_protected:Npn __quark_new_test_define_break_ifx:nNNNNn #1 #2 #3

820

16611 { __quark_new_test_define_ifx:nNnNNn {##1##2} #2 {##2} }

(End of definition for __quark_new_test_define_tl:nNnNNn and others.)

__quark_new_conditional_n:Nnnn
__quark_new_conditional_N:Nnnn

__quark_new_conditional_n_aux:NNNn
__quark_new_conditional_N_aux:NNNn

These macros implement the two possibilities for branching quark conditionals. To avoid
constructing without defining the __⟨type⟩_if_quark_⟨name⟩:w helper, N-type function
accepts a \prg_do_nothing: as a placeholder.

16612 \cs_new_protected:Npn __quark_new_conditional_n:Nnnn #1 #2 #3
16613 {
16614 \exp_args:Ncc __quark_new_conditional_n_aux:NNNn
16615 { __ #3 _if_quark_ #2 :w } { q__ #3 _ #2 } #1
16616 }
16617 \cs_new_protected:Npn __quark_new_conditional_N:Nnnn #1 #2 #3
16618 {
16619 \exp_args:NNc __quark_new_conditional_N_aux:NNNn
16620 \prg_do_nothing: { q__ #3 _ #2 } #1
16621 }
16622 \cs_new_protected:Npn __quark_new_conditional_n_aux:NNNn #1 #2 #3 #4
16623 {
16624 \cs_gset:Npn #1 ##1 #2 ##2 ? ##3 ?! { ##1##2 }
16625 \prg_new_conditional:Npnn #3 ##1 {#4}
16626 {
16627 __quark_if_empty_if:o { #1 {} ##1 {} ?! #2 ??! }
16628 \prg_return_true:
16629 \else:
16630 \prg_return_false:
16631 \fi:
16632 }
16633 }
16634 \cs_new_protected:Npn __quark_new_conditional_N_aux:NNNn #1 #2 #3 #4
16635 {
16636 \prg_new_conditional:Npnn #3 ##1 {#4}
16637 {
16638 \if_meaning:w #2 ##1
16639 \prg_return_true:
16640 \else:
16641 \prg_return_false:
16642 \fi:
16643 }
16644 }

(End of definition for __quark_new_conditional_n:Nnnn and others.)

__quark_module_name:N
__quark_module_name:w

__quark_module_name_loop:w
__quark_module_name_end:w

__quark_module_name:N takes a control sequence and returns its ⟨module⟩ name, de-
termined as the first non-empty non-single-character word, separated by _ or :. These
rules give the correct result for public functions \⟨module⟩_..., private functions __-
⟨module⟩_..., and variables such as \l_⟨module⟩_.... If no valid module is found the
result is an empty string. The approach is to first cut off everything after the (first) :
if any is present, then repeatedly grab _-delimited words until finding one of length at
least 2 (we use low-level tests as l3tl is not fully available when __kernel_quark_new_-
test:N is first used. If no ⟨module⟩ is found (such as in \::n) we get the trailing marker
\use_none:n {}, which expands to nothing.

16645 \cs_set:Npn __quark_tmp:w #1#2
16646 {

821

16647 \cs_new:Npn __quark_module_name:N ##1
16648 {
16649 \exp_last_unbraced:Nf __quark_module_name:w
16650 { \cs_to_str:N ##1 } #1 \s__quark
16651 }
16652 \cs_new:Npn __quark_module_name:w ##1 #1 ##2 \s__quark
16653 { __quark_module_name_loop:w ##1 #2 \use_none:n { } #2 \s__quark }
16654 \cs_new:Npn __quark_module_name_loop:w ##1 #2
16655 {
16656 \use_i_ii:nnn \if_meaning:w \prg_do_nothing:
16657 ##1 \prg_do_nothing: \prg_do_nothing:
16658 \exp_after:wN __quark_module_name_loop:w
16659 \else:
16660 __quark_module_name_end:w ##1
16661 \fi:
16662 }
16663 \cs_new:Npn __quark_module_name_end:w
16664 ##1 \fi: ##2 \s__quark { \fi: ##1 }
16665 }
16666 \exp_after:wN __quark_tmp:w \tl_to_str:n { : _ }

(End of definition for __quark_module_name:N and others.)

__quark_quark_conditional_name:N
__quark_quark_conditional_name:w

__quark_quark_conditional_name:N determines the quark name that the quark con-
ditional function ##1 queries, as the part of the function name between _quark_if_
and the trailing :. Again we define it through __quark_tmp:w, which receives : as #1
and _quark_if_ as #2. The auxiliary __quark_quark_conditional_name:w returns
the part between the first _quark_if_ and the next :, and we apply this auxiliary to
the function name followed by : (in case the function name is lacking a signature), and
_quark_if_: so that __quark_quark_conditional_name:N returns an empty string if
_quark_if_ is not present.

16667 \cs_set:Npn __quark_tmp:w #1 #2 \s__quark
16668 {
16669 \cs_new:Npn __quark_quark_conditional_name:N ##1
16670 {
16671 \exp_last_unbraced:Nf __quark_quark_conditional_name:w
16672 { \cs_to_str:N ##1 } #1 #2 #1 \s__quark
16673 }
16674 \cs_new:Npn __quark_quark_conditional_name:w
16675 ##1 #2 ##2 #1 ##3 \s__quark {##2}
16676 }
16677 \exp_after:wN __quark_tmp:w \tl_to_str:n { : _quark_if_ } \s__quark

(End of definition for __quark_quark_conditional_name:N and __quark_quark_conditional_name:w.)

57.2 Scan marks
16678 ⟨@@=scan⟩

\scan_new:N Check whether the variable is already a scan mark, then declare it to be equal to \scan_-
stop: globally.

16679 \cs_new_protected:Npn \scan_new:N #1
16680 {

822

16681 \tl_if_in:NnTF \g__scan_marks_tl { #1 }
16682 {
16683 \msg_error:nne { scanmark } { already-defined }
16684 { \token_to_str:N #1 }
16685 }
16686 {
16687 \tl_gput_right:Nn \g__scan_marks_tl {#1}
16688 \cs_new_eq:NN #1 \scan_stop:
16689 }
16690 }

(End of definition for \scan_new:N. This function is documented on page 155.)

\s_stop
\g__scan_marks_tl

We only declare one scan mark here, more can be defined by specific modules. Can’t
use \scan_new:N yet because l3tl isn’t loaded, so define \s_stop by hand and add it to
\g__scan_marks_tl. We also add the scan marks declared earlier to the pool here. Since
they lives in a different namespace, a little DocStrip cheating is necessary.

16691 \cs_new_eq:NN \s_stop \scan_stop:
16692 \cs_gset_nopar:Npn \g__scan_marks_tl
16693 {
16694 \s_stop
16695 ⟨@@=quark⟩
16696 \s__quark
16697 ⟨@@=cs⟩
16698 \s__cs_mark
16699 \s__cs_stop
16700 ⟨@@=scan⟩
16701 }

(End of definition for \s_stop and \g__scan_marks_tl. This variable is documented on page 155.)

\use_none_delimit_by_s_stop:w Similar to \use_none_delimit_by_q_stop:w.
16702 \cs_new:Npn \use_none_delimit_by_s_stop:w #1 \s_stop { }

(End of definition for \use_none_delimit_by_s_stop:w. This function is documented on page 155.)

16703 ⟨/package⟩

823

Chapter 58

l3seq implementation

The following test files are used for this code: m3seq002,m3seq003.
16704 ⟨∗package⟩

16705 ⟨@@=seq⟩

A sequence is a control sequence whose top-level expansion is of the form “\s__-
seq __seq_item:n {⟨item1⟩} . . . __seq_item:n {⟨itemn⟩}”, with a leading scan mark
followed by n items of the same form. An earlier implementation used the structure
“\seq_elt:w ⟨item1⟩ \seq_elt_end: . . . \seq_elt:w ⟨itemn⟩ \seq_elt_end:”. This al-
lowed rapid searching using a delimited function, but was not suitable for items containing
{, } and # tokens, and also lead to the loss of surrounding braces around items

__seq_item:n {⟨item⟩}

The internal token used to begin each sequence entry. If expanded outside of a mapping
or manipulation function, an error is raised. The definition should always be set globally.

__seq_item:n ⋆

__seq_push_item_def:n {⟨code⟩}

Saves the definition of __seq_item:n and redefines it to accept one parameter and
expand to ⟨code⟩. This function should always be balanced by use of __seq_pop_-
item_def:.

__seq_push_item_def:n
__seq_push_item_def:e

__seq_pop_item_def:

Restores the definition of __seq_item:n most recently saved by __seq_push_item_-
def:n. This function should always be used in a balanced pair with __seq_push_-
item_def:n.

__seq_pop_item_def:

\s__seq This private scan mark.
16706 \scan_new:N \s__seq

(End of definition for \s__seq.)

\s__seq_mark
\s__seq_stop

Private scan marks.
16707 \scan_new:N \s__seq_mark
16708 \scan_new:N \s__seq_stop

(End of definition for \s__seq_mark and \s__seq_stop.)

824

__seq_item:n The delimiter is always defined, but when used incorrectly simply removes its argument
and hits an undefined control sequence to raise an error.

16709 \cs_new:Npn __seq_item:n
16710 {
16711 \msg_expandable_error:nn { seq } { misused }
16712 \use_none:n
16713 }

(End of definition for __seq_item:n.)

\l__seq_internal_a_tl
\l__seq_internal_b_tl

Scratch space for various internal uses.
16714 \tl_new:N \l__seq_internal_a_tl
16715 \tl_new:N \l__seq_internal_b_tl

(End of definition for \l__seq_internal_a_tl and \l__seq_internal_b_tl.)

__seq_tmp:w Scratch function for internal use.
16716 \cs_new_eq:NN __seq_tmp:w ?

(End of definition for __seq_tmp:w.)

\c_empty_seq A sequence with no item, following the structure mentioned above.
16717 \tl_const:Nn \c_empty_seq { \s__seq }

(End of definition for \c_empty_seq. This variable is documented on page 169.)

58.1 Allocation and initialisation
\seq_new:N
\seq_new:c

Sequences are initialized to \c_empty_seq.
16718 \cs_new_protected:Npn \seq_new:N #1
16719 {
16720 __kernel_chk_if_free_cs:N #1
16721 \cs_gset_eq:NN #1 \c_empty_seq
16722 }
16723 \cs_generate_variant:Nn \seq_new:N { c }

(End of definition for \seq_new:N. This function is documented on page 156.)

\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

Clearing a sequence is similar to setting it equal to the empty one.
16724 \cs_new_protected:Npn \seq_clear:N #1
16725 { \seq_set_eq:NN #1 \c_empty_seq }
16726 \cs_generate_variant:Nn \seq_clear:N { c }
16727 \cs_new_protected:Npn \seq_gclear:N #1
16728 { \seq_gset_eq:NN #1 \c_empty_seq }
16729 \cs_generate_variant:Nn \seq_gclear:N { c }

(End of definition for \seq_clear:N and \seq_gclear:N. These functions are documented on page 156.)

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

Once again we copy code from the token list functions.
16730 \cs_new_protected:Npn \seq_clear_new:N #1
16731 { \seq_if_exist:NTF #1 { \seq_clear:N #1 } { \seq_new:N #1 } }
16732 \cs_generate_variant:Nn \seq_clear_new:N { c }
16733 \cs_new_protected:Npn \seq_gclear_new:N #1
16734 { \seq_if_exist:NTF #1 { \seq_gclear:N #1 } { \seq_new:N #1 } }
16735 \cs_generate_variant:Nn \seq_gclear_new:N { c }

825

(End of definition for \seq_clear_new:N and \seq_gclear_new:N. These functions are documented on
page 156.)

\seq_set_eq:NN
\seq_set_eq:cN
\seq_set_eq:Nc
\seq_set_eq:cc
\seq_gset_eq:NN
\seq_gset_eq:cN
\seq_gset_eq:Nc
\seq_gset_eq:cc

Copying a sequence is the same as copying the underlying token list.
16736 \cs_new_eq:NN \seq_set_eq:NN \tl_set_eq:NN
16737 \cs_new_eq:NN \seq_set_eq:Nc \tl_set_eq:Nc
16738 \cs_new_eq:NN \seq_set_eq:cN \tl_set_eq:cN
16739 \cs_new_eq:NN \seq_set_eq:cc \tl_set_eq:cc
16740 \cs_new_eq:NN \seq_gset_eq:NN \tl_gset_eq:NN
16741 \cs_new_eq:NN \seq_gset_eq:Nc \tl_gset_eq:Nc
16742 \cs_new_eq:NN \seq_gset_eq:cN \tl_gset_eq:cN
16743 \cs_new_eq:NN \seq_gset_eq:cc \tl_gset_eq:cc

(End of definition for \seq_set_eq:NN and \seq_gset_eq:NN. These functions are documented on page
156.)

\seq_set_from_clist:NN
\seq_set_from_clist:cN
\seq_set_from_clist:Nc
\seq_set_from_clist:cc
\seq_set_from_clist:Nn
\seq_set_from_clist:cn
\seq_gset_from_clist:NN
\seq_gset_from_clist:cN
\seq_gset_from_clist:Nc
\seq_gset_from_clist:cc
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

Setting a sequence from a comma-separated list is done using a simple mapping.
16744 \cs_new_protected:Npn \seq_set_from_clist:NN #1#2
16745 {
16746 __kernel_tl_set:Nx #1
16747 { \s__seq \clist_map_function:NN #2 __seq_wrap_item:n }
16748 }
16749 \cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
16750 {
16751 __kernel_tl_set:Nx #1
16752 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
16753 }
16754 \cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
16755 {
16756 __kernel_tl_gset:Nx #1
16757 { \s__seq \clist_map_function:NN #2 __seq_wrap_item:n }
16758 }
16759 \cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
16760 {
16761 __kernel_tl_gset:Nx #1
16762 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
16763 }
16764 \cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
16765 \cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
16766 \cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
16767 \cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
16768 \cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
16769 \cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }

(End of definition for \seq_set_from_clist:NN and others. These functions are documented on page
157.)

\seq_const_from_clist:Nn
\seq_const_from_clist:cn

Almost identical to \seq_set_from_clist:Nn.
16770 \cs_new_protected:Npn \seq_const_from_clist:Nn #1#2
16771 {
16772 \tl_const:Ne #1
16773 { \s__seq \clist_map_function:nN {#2} __seq_wrap_item:n }
16774 }
16775 \cs_generate_variant:Nn \seq_const_from_clist:Nn { c }

826

(End of definition for \seq_const_from_clist:Nn. This function is documented on page 157.)

\seq_set_split:Nnn
\seq_set_split:NVn
\seq_set_split:NnV
\seq_set_split:NVV
\seq_set_split:Nne
\seq_set_split:Nee
\seq_set_split:Nnx
\seq_set_split:Nxx
\seq_gset_split:Nnn
\seq_gset_split:NVn
\seq_gset_split:NnV
\seq_gset_split:NVV
\seq_gset_split:Nne
\seq_gset_split:Nee
\seq_gset_split:Nnx
\seq_gset_split:Nxx

\seq_set_split_keep_spaces:Nnn
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn
\seq_gset_split_keep_spaces:NnV
__seq_set_split:NNnn

__seq_set_split:Nw
__seq_set_split:w

__seq_set_split_end:

When the separator is empty, everything is very simple, just map __seq_wrap_item:n
through the items of the last argument. For non-trivial separators, the goal is to split a
given token list at the marker, strip spaces from each item, and remove one set of outer
braces if after removing leading and trailing spaces the item is enclosed within braces. Af-
ter \tl_replace_all:Nnn, the token list \l__seq_internal_a_tl is a repetition of the
pattern __seq_set_split:Nw \prg_do_nothing: ⟨item with spaces⟩ __seq_set_-
split_end:. Then, e-expansion causes __seq_set_split:Nw to trim spaces, and leaves
its result as __seq_set_split:w ⟨trimmed item⟩ __seq_set_split_end:. This is
then converted to the l3seq internal structure by another e-expansion. In the first step,
we insert \prg_do_nothing: to avoid losing braces too early: that would cause space
trimming to act within those lost braces. The second step is solely there to strip braces
which are outermost after space trimming.

16776 \cs_new_protected:Npn \seq_set_split:Nnn
16777 { __seq_set_split:NNNnn __kernel_tl_set:Nx \tl_trim_spaces:n }
16778 \cs_new_protected:Npn \seq_gset_split:Nnn
16779 { __seq_set_split:NNNnn __kernel_tl_gset:Nx \tl_trim_spaces:n }
16780 \cs_new_protected:Npn \seq_set_split_keep_spaces:Nnn
16781 { __seq_set_split:NNNnn __kernel_tl_set:Nx \exp_not:n }
16782 \cs_new_protected:Npn \seq_gset_split_keep_spaces:Nnn
16783 { __seq_set_split:NNNnn __kernel_tl_gset:Nx \exp_not:n }
16784 \cs_new_protected:Npn __seq_set_split:NNNnn #1#2#3#4#5
16785 {
16786 \tl_if_empty:nTF {#4}
16787 {
16788 \tl_set:Nn \l__seq_internal_a_tl
16789 { \tl_map_function:nN {#5} __seq_wrap_item:n }
16790 }
16791 {
16792 \tl_set:Nn \l__seq_internal_a_tl
16793 {
16794 __seq_set_split:Nw #2 \prg_do_nothing:
16795 #5
16796 __seq_set_split_end:
16797 }
16798 \tl_replace_all:Nnn \l__seq_internal_a_tl {#4}
16799 {
16800 __seq_set_split_end:
16801 __seq_set_split:Nw #2 \prg_do_nothing:
16802 }
16803 __kernel_tl_set:Nx \l__seq_internal_a_tl { \l__seq_internal_a_tl }
16804 }
16805 #1 #3 { \s__seq \l__seq_internal_a_tl }
16806 }
16807 \cs_new:Npn __seq_set_split:Nw #1#2 __seq_set_split_end:
16808 {
16809 \exp_not:N __seq_set_split:w
16810 \exp_args:No #1 {#2}
16811 \exp_not:N __seq_set_split_end:
16812 }
16813 \cs_new:Npn __seq_set_split:w #1 __seq_set_split_end:
16814 { __seq_wrap_item:n {#1} }

827

16815 \cs_generate_variant:Nn \seq_set_split:Nnn { NV , NnV , NVV , Nne , Nee }
16816 \cs_generate_variant:Nn \seq_set_split:Nnn { Nnx , Nxx }
16817 \cs_generate_variant:Nn \seq_gset_split:Nnn { NV , NnV , NVV , Nne , Nee }
16818 \cs_generate_variant:Nn \seq_gset_split:Nnn { Nnx , Nxx }
16819 \cs_generate_variant:Nn \seq_set_split_keep_spaces:Nnn { NnV }
16820 \cs_generate_variant:Nn \seq_gset_split_keep_spaces:Nnn { NnV }

(End of definition for \seq_set_split:Nnn and others. These functions are documented on page 157.)

\seq_set_filter:NNn
\seq_gset_filter:NNn

__seq_set_filter:NNNn

Similar to \seq_map_inline:Nn, without a \prg_break_point: because the user’s code
is performed within the evaluation of a boolean expression, and skipping out of that would
break horribly. The __seq_wrap_item:n function inserts the relevant __seq_item:n
without expansion in the input stream, hence in the e-expanding assignment.

16821 \cs_new_protected:Npn \seq_set_filter:NNn
16822 { __seq_set_filter:NNNn __kernel_tl_set:Nx }
16823 \cs_new_protected:Npn \seq_gset_filter:NNn
16824 { __seq_set_filter:NNNn __kernel_tl_gset:Nx }
16825 \cs_new_protected:Npn __seq_set_filter:NNNn #1#2#3#4
16826 {
16827 __seq_push_item_def:n { \bool_if:nT {#4} { __seq_wrap_item:n {##1} } }
16828 #1 #2 { #3 }
16829 __seq_pop_item_def:
16830 }

(End of definition for \seq_set_filter:NNn , \seq_gset_filter:NNn , and __seq_set_filter:NNNn.
These functions are documented on page 158.)

\seq_set_regex_extract_once:Nnn
\seq_set_regex_extract_once:cnn
\seq_gset_regex_extract_once:Nnn
\seq_gset_regex_extract_once:cnn

\seq_set_regex_extract_all:Nnn
\seq_set_regex_extract_all:cnn

\seq_gset_regex_extract_all:Nnn
\seq_gset_regex_extract_all:cnn
\seq_set_regex_extract_once:NNn
\seq_set_regex_extract_once:cNn
\seq_gset_regex_extract_once:NNn
\seq_gset_regex_extract_once:cNn

\seq_set_regex_extract_all:NNn
\seq_set_regex_extract_all:cNn

\seq_gset_regex_extract_all:NNn
\seq_gset_regex_extract_all:cNn

\seq_set_regex_split:Nnn
\seq_set_regex_split:cnn
\seq_gset_regex_split:Nnn
\seq_gset_regex_split:cnn
\seq_set_regex_split:NNn
\seq_set_regex_split:cNn
\seq_gset_regex_split:NNn
\seq_gset_regex_split:cNn

16831 \cs_new_protected:Npn \seq_set_regex_extract_once:Nnn #1#2#3
16832 { \regex_extract_once:nnN {#2} {#3} #1 }
16833 \cs_generate_variant:Nn \seq_set_regex_extract_once:Nnn { c }
16834 \cs_new_protected:Npn \seq_set_regex_extract_once:NNn #1#2#3
16835 { \regex_extract_once:NnN #2 {#3} #1 }
16836 \cs_generate_variant:Nn \seq_set_regex_extract_once:NNn { c }
16837 \cs_new_protected:Npn \seq_set_regex_extract_all:Nnn #1#2#3
16838 { \regex_extract_all:nnN {#2} {#3} #1 }
16839 \cs_generate_variant:Nn \seq_set_regex_extract_all:Nnn { c }
16840 \cs_new_protected:Npn \seq_set_regex_extract_all:NNn #1#2#3
16841 { \regex_extract_all:NnN #2 {#3} #1 }
16842 \cs_generate_variant:Nn \seq_set_regex_extract_all:NNn { c }
16843 \cs_new_protected:Npn \seq_set_regex_split:Nnn #1#2#3
16844 { \regex_split:nnN {#2} {#3} #1 }
16845 \cs_generate_variant:Nn \seq_set_regex_split:Nnn { c }
16846 \cs_new_protected:Npn \seq_set_regex_split:NNn #1#2#3
16847 { \regex_split:NnN #2 {#3} #1 }
16848 \cs_generate_variant:Nn \seq_set_regex_split:NNn { c }
16849 \group_begin:
16850 \cs_set_protected:Npn __seq_tmp:w #1#2#3
16851 {
16852 \cs_new_protected:cpe { seq_gset_regex_ #1 :N #2 n } ##1##2##3
16853 {
16854 \group_begin:
16855 \seq_set_eq:NN \exp_not:N \l__seq_tmp_seq ##1
16856 \exp_not:c { regex_ #1 :Nn #2 }

828

16857 #3 {##2} {##3} \exp_not:N \l__seq_tmp_seq
16858 \seq_gset_eq:NN ##1 \exp_not:N \l__seq_tmp_seq
16859 \group_end:
16860 }
16861 \cs_generate_variant:cn { seq_gset_regex_ #1 :N #2 n } { c }
16862 }
16863 __seq_tmp:w { extract_once } n { }
16864 __seq_tmp:w { extract_once } N \use:n
16865 __seq_tmp:w { extract_all } n { }
16866 __seq_tmp:w { extract_all } N \use:n
16867 __seq_tmp:w { split } n { }
16868 __seq_tmp:w { split } N \use:n
16869 \group_end:

(End of definition for \seq_set_regex_extract_once:Nnn and others. These functions are documented
on page 158.)

\seq_concat:NNN
\seq_concat:ccc
\seq_gconcat:NNN
\seq_gconcat:ccc

When concatenating sequences, one must remove the leading \s__seq of the second
sequence. The result starts with \s__seq (of the first sequence), which stops f-expansion.

16870 \cs_new_protected:Npn \seq_concat:NNN #1#2#3
16871 { \tl_set:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
16872 \cs_new_protected:Npn \seq_gconcat:NNN #1#2#3
16873 { \tl_gset:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
16874 \cs_generate_variant:Nn \seq_concat:NNN { ccc }
16875 \cs_generate_variant:Nn \seq_gconcat:NNN { ccc }

(End of definition for \seq_concat:NNN and \seq_gconcat:NNN. These functions are documented on
page 159.)

\seq_if_exist_p:N
\seq_if_exist_p:c
\seq_if_exist:NTF
\seq_if_exist:cTF

Copies of the cs functions defined in l3basics.
16876 \prg_new_eq_conditional:NNn \seq_if_exist:N \cs_if_exist:N
16877 { TF , T , F , p }
16878 \prg_new_eq_conditional:NNn \seq_if_exist:c \cs_if_exist:c
16879 { TF , T , F , p }

(End of definition for \seq_if_exist:NTF. This function is documented on page 159.)

58.2 Appending data to either end
\seq_put_left:Nn
\seq_put_left:NV
\seq_put_left:Nv
\seq_put_left:Ne
\seq_put_left:No
\seq_put_left:Nx
\seq_put_left:cn
\seq_put_left:cV
\seq_put_left:cv
\seq_put_left:ce
\seq_put_left:co
\seq_put_left:cx
\seq_gput_left:Nn
\seq_gput_left:NV
\seq_gput_left:Nv
\seq_gput_left:Ne
\seq_gput_left:No
\seq_gput_left:Nx
\seq_gput_left:cn
\seq_gput_left:cV
\seq_gput_left:cv
\seq_gput_left:ce
\seq_gput_left:co
\seq_gput_left:cx

__seq_put_left_aux:w

When adding to the left of a sequence, remove \s__seq. This is done by __seq_put_-
left_aux:w, which also stops f-expansion.

16880 \cs_new_protected:Npn \seq_put_left:Nn #1#2
16881 {
16882 __kernel_tl_set:Nx #1
16883 {
16884 \exp_not:n { \s__seq __seq_item:n {#2} }
16885 \exp_not:f { \exp_after:wN __seq_put_left_aux:w #1 }
16886 }
16887 }
16888 \cs_new_protected:Npn \seq_gput_left:Nn #1#2
16889 {
16890 __kernel_tl_gset:Nx #1
16891 {
16892 \exp_not:n { \s__seq __seq_item:n {#2} }

829

16893 \exp_not:f { \exp_after:wN __seq_put_left_aux:w #1 }
16894 }
16895 }
16896 \cs_new:Npn __seq_put_left_aux:w \s__seq { \exp_stop_f: }
16897 \cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , Ne , No , Nx }
16898 \cs_generate_variant:Nn \seq_put_left:Nn { c , cV , cv , ce , co ,cx }
16899 \cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , Ne , No , Nx }
16900 \cs_generate_variant:Nn \seq_gput_left:Nn { c , cV , cv , ce , co , cx }

(End of definition for \seq_put_left:Nn , \seq_gput_left:Nn , and __seq_put_left_aux:w. These
functions are documented on page 159.)

\seq_put_right:Nn
\seq_put_right:NV
\seq_put_right:Nv
\seq_put_right:Ne
\seq_put_right:No
\seq_put_right:Nx
\seq_put_right:cn
\seq_put_right:cV
\seq_put_right:cv
\seq_put_right:cx
\seq_put_right:co
\seq_put_right:cx

\seq_gput_right:Nn
\seq_gput_right:NV
\seq_gput_right:Nv
\seq_gput_right:Ne
\seq_gput_right:No
\seq_gput_right:Nx
\seq_gput_right:cn
\seq_gput_right:cV
\seq_gput_right:cv
\seq_gput_right:ce
\seq_gput_right:co
\seq_gput_right:cx

Since there is no trailing marker, adding an item to the right of a sequence simply means
wrapping it in __seq_item:n.

16901 \cs_new_protected:Npn \seq_put_right:Nn #1#2
16902 { \tl_put_right:Nn #1 { __seq_item:n {#2} } }
16903 \cs_new_protected:Npn \seq_gput_right:Nn #1#2
16904 { \tl_gput_right:Nn #1 { __seq_item:n {#2} } }
16905 \cs_generate_variant:Nn \seq_put_right:Nn { NV , Nv , Ne , No , Nx }
16906 \cs_generate_variant:Nn \seq_put_right:Nn { c , cV , cv , ce , co , cx }
16907 \cs_generate_variant:Nn \seq_gput_right:Nn { NV , Nv , Ne , No , Nx }
16908 \cs_generate_variant:Nn \seq_gput_right:Nn { c , cV , cv , ce , co , cx }

(End of definition for \seq_put_right:Nn and \seq_gput_right:Nn. These functions are documented
on page 159.)

58.3 Modifying sequences
__seq_wrap_item:n This function converts its argument to a proper sequence item in an e-expansion context.

16909 \cs_new:Npn __seq_wrap_item:n #1 { \exp_not:n { __seq_item:n {#1} } }

(End of definition for __seq_wrap_item:n.)

\l__seq_tmp_seq An internal sequence for the removal routines.
16910 \seq_new:N \l__seq_tmp_seq

(End of definition for \l__seq_tmp_seq.)

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

__seq_remove_duplicates:NN

Removing duplicates means making a new list then copying it.
16911 \cs_new_protected:Npn \seq_remove_duplicates:N
16912 { __seq_remove_duplicates:NN \seq_set_eq:NN }
16913 \cs_new_protected:Npn \seq_gremove_duplicates:N
16914 { __seq_remove_duplicates:NN \seq_gset_eq:NN }
16915 \cs_new_protected:Npn __seq_remove_duplicates:NN #1#2
16916 {
16917 \seq_clear:N \l__seq_tmp_seq
16918 \seq_map_inline:Nn #2
16919 {
16920 \seq_if_in:NnF \l__seq_tmp_seq {##1}
16921 { \seq_put_right:Nn \l__seq_tmp_seq {##1} }
16922 }
16923 #1 #2 \l__seq_tmp_seq
16924 }
16925 \cs_generate_variant:Nn \seq_remove_duplicates:N { c }
16926 \cs_generate_variant:Nn \seq_gremove_duplicates:N { c }

830

(End of definition for \seq_remove_duplicates:N , \seq_gremove_duplicates:N , and __seq_remove_-
duplicates:NN. These functions are documented on page 162.)

\seq_remove_all:Nn
\seq_remove_all:NV
\seq_remove_all:Ne
\seq_remove_all:Nx
\seq_remove_all:cn
\seq_remove_all:cV
\seq_remove_all:ce
\seq_remove_all:cx
\seq_gremove_all:Nn
\seq_gremove_all:NV
\seq_gremove_all:Ne
\seq_gremove_all:Nx
\seq_gremove_all:cn
\seq_gremove_all:cV
\seq_gremove_all:ce
\seq_gremove_all:Nx

__seq_remove_all_aux:NNn

The idea of the code here is to avoid a relatively expensive addition of items one at
a time to an intermediate sequence. The approach taken is therefore similar to that
in __seq_pop_right:NNN, using a “flexible” e-type expansion to do most of the work.
As \tl_if_eq:nnT is not expandable, a two-part strategy is needed. First, the e-type
expansion uses \str_if_eq:nnT to find potential matches. If one is found, the expansion
is halted and the necessary set up takes place to use the \tl_if_eq:NNT test. The e-type
is started again, including all of the items copied already. This happens repeatedly until
the entire sequence has been scanned. The code is set up to avoid needing an intermediate
scratch list: the lead-off e-type expansion (#1 #2 {#2}) ensures that nothing is lost.

16927 \cs_new_protected:Npn \seq_remove_all:Nn
16928 { __seq_remove_all_aux:NNn __kernel_tl_set:Nx }
16929 \cs_new_protected:Npn \seq_gremove_all:Nn
16930 { __seq_remove_all_aux:NNn __kernel_tl_gset:Nx }
16931 \cs_new_protected:Npn __seq_remove_all_aux:NNn #1#2#3
16932 {
16933 __seq_push_item_def:n
16934 {
16935 \str_if_eq:nnT {##1} {#3}
16936 {
16937 \if_false: { \fi: }
16938 \tl_set:Nn \l__seq_internal_b_tl {##1}
16939 #1 #2
16940 { \if_false: } \fi:
16941 \exp_not:o {#2}
16942 \tl_if_eq:NNT \l__seq_internal_a_tl \l__seq_internal_b_tl
16943 { \use_none:nn }
16944 }
16945 __seq_wrap_item:n {##1}
16946 }
16947 \tl_set:Nn \l__seq_internal_a_tl {#3}
16948 #1 #2 {#2}
16949 __seq_pop_item_def:
16950 }
16951 \cs_generate_variant:Nn \seq_remove_all:Nn { NV , Ne , c , cV , ce }
16952 \cs_generate_variant:Nn \seq_remove_all:Nn { Nx , cx }
16953 \cs_generate_variant:Nn \seq_gremove_all:Nn { NV , Ne , c , cV , ce }
16954 \cs_generate_variant:Nn \seq_gremove_all:Nn { Nx , cx }

(End of definition for \seq_remove_all:Nn , \seq_gremove_all:Nn , and __seq_remove_all_aux:NNn.
These functions are documented on page 162.)

__seq_int_eval:w Useful to more quickly go through items.
16955 \cs_new_eq:NN __seq_int_eval:w \tex_numexpr:D

(End of definition for __seq_int_eval:w.)

\seq_set_item:Nnn
\seq_set_item:cnn

\seq_set_item:NnnTF
\seq_set_item:cnnTF
\seq_gset_item:Nnn
\seq_gset_item:cnn

\seq_gset_item:NnnTF
\seq_gset_item:cnnTF

__seq_set_item:NnnNN
__seq_set_item:nnNNNN

__seq_set_item_false:nnNNNN
__seq_set_item:nNnnNNNN

__seq_set_item:wn
__seq_set_item_end:w

The conditionals are distinguished from the Nnn versions by the last argument \use_-
ii:nn vs \use_i:nn.

16956 \cs_new_protected:Npn \seq_set_item:Nnn #1#2#3
16957 { __seq_set_item:NnnNN #1 {#2} {#3} __kernel_tl_set:Nx \use_i:nn }
16958 \cs_new_protected:Npn \seq_gset_item:Nnn #1#2#3

831

16959 { __seq_set_item:NnnNN #1 {#2} {#3} __kernel_tl_gset:Nx \use_i:nn }
16960 \cs_generate_variant:Nn \seq_set_item:Nnn { c }
16961 \cs_generate_variant:Nn \seq_gset_item:Nnn { c }
16962 \prg_new_protected_conditional:Npnn \seq_set_item:Nnn #1#2#3 { TF , T , F }
16963 { __seq_set_item:NnnNN #1 {#2} {#3} __kernel_tl_set:Nx \use_ii:nn }
16964 \prg_new_protected_conditional:Npnn \seq_gset_item:Nnn #1#2#3 { TF , T , F }
16965 { __seq_set_item:NnnNN #1 {#2} {#3} __kernel_tl_gset:Nx \use_ii:nn }
16966 \prg_generate_conditional_variant:Nnn \seq_set_item:Nnn { c } { TF , T , F }
16967 \prg_generate_conditional_variant:Nnn \seq_gset_item:Nnn { c } { TF , T , F }

Save the item to be stored and evaluate the position and the sequence length only once.
Then depending on the sign of the position, check that it is not bigger than the length
(in absolute value) nor zero.

16968 \cs_new_protected:Npn __seq_set_item:NnnNN #1#2#3
16969 {
16970 \tl_set:Nn \l__seq_internal_a_tl { __seq_item:n {#3} }
16971 \exp_args:Nff __seq_set_item:nnNNNN
16972 { \int_eval:n {#2} } { \seq_count:N #1 } #1 \use_none:nn
16973 }
16974 \cs_new_protected:Npn __seq_set_item:nnNNNN #1#2
16975 {
16976 \int_compare:nNnTF {#1} > 0
16977 { \int_compare:nNnF {#1} > {#2} { __seq_set_item:nNnnNNNN { #1 - 1 } } }
16978 {
16979 \int_compare:nNnF {#1} < {-#2}
16980 {
16981 \int_compare:nNnF {#1} = 0
16982 { __seq_set_item:nNnnNNNN { #2 + #1 } }
16983 }
16984 }
16985 __seq_set_item_false:nnNNNN {#1} {#2}
16986 }

If the position is not ok, __seq_set_item_false:nnNNNN calls an error or returns false
(depending on the \use_i:nn vs \use_ii:nn argument mentioned above).

16987 \cs_new_protected:Npn __seq_set_item_false:nnNNNN #1#2#3#4#5#6
16988 {
16989 #6
16990 {
16991 \msg_error:nneee { seq } { item-too-large }
16992 { \token_to_str:N #3 } {#2} {#1}
16993 }
16994 { \prg_return_false: }
16995 }

If the position is ok, __seq_set_item:nNnnNNNN makes the assignment and returns
true (in the case of conditionals). Here #1 is an integer expression (position minus one),
it needs to be evaluated. The sequence #5 starts with \s__seq (even if empty), which
stops the integer expression and is absorbed by it. The \if_meaning:w test is slightly
faster than an integer test (but only works when testing against zero, hence the offset we
chose in the position). When we are done skipping items, insert the saved item \l__-
seq_internal_a_tl. For put functions the last argument of __seq_set_item_end:w
is \use_none:nn and it absorbs the item #2 that we are removing: this is only useful for
the pop functions.

832

16996 \cs_new_protected:Npn __seq_set_item:nNnnNNNN #1#2#3#4#5#6#7#8
16997 {
16998 #7 #5
16999 {
17000 \s__seq
17001 \exp_after:wN __seq_set_item:wn
17002 \int_value:w __seq_int_eval:w #1
17003 #5 \s__seq_stop #6
17004 }
17005 #8 { } { \prg_return_true: }
17006 }
17007 \cs_new:Npn __seq_set_item:wn #1 __seq_item:n #2
17008 {
17009 \if_meaning:w 0 #1 __seq_set_item_end:w \fi:
17010 \exp_not:n { __seq_item:n {#2} }
17011 \exp_after:wN __seq_set_item:wn
17012 \int_value:w __seq_int_eval:w #1 - 1 \s__seq
17013 }
17014 \cs_new:Npn __seq_set_item_end:w #1 \exp_not:n #2 #3 \s__seq #4 \s__seq_stop #5
17015 {
17016 #1
17017 \exp_not:o \l__seq_internal_a_tl
17018 \exp_not:n {#4}
17019 #5 #2
17020 }

(End of definition for \seq_set_item:NnnTF and others. These functions are documented on page 162.)

\seq_reverse:N
\seq_reverse:c

\seq_greverse:N
\seq_greverse:c

__seq_reverse:NN
__seq_reverse_item:nwn

Previously, \seq_reverse:N was coded by collecting the items in reverse order after an
\exp_stop_f: marker.

\cs_new_protected:Npn \seq_reverse:N #1
{
\cs_set_eq:NN \@@_item:n \@@_reverse_item:nw
\tl_set:Nf #2 { #2 \exp_stop_f: }

}
\cs_new:Npn \@@_reverse_item:nw #1 #2 \exp_stop_f:
{
#2 \exp_stop_f:
\@@_item:n {#1}

}

At first, this seems optimal, since we can forget about each item as soon as it is placed
after \exp_stop_f:. Unfortunately, TEX’s usual tail recursion does not take place in
this case: since the following __seq_reverse_item:nw only reads tokens until \exp_-
stop_f:, and never reads the \@@_item:n {#1} left by the previous call, TEX cannot
remove that previous call from the stack, and in particular must retain the various macro
parameters in memory, until the end of the replacement text is reached. The stack is thus
only flushed after all the __seq_reverse_item:nw are expanded. Keeping track of the
arguments of all those calls uses up a memory quadratic in the length of the sequence.
TEX can then not cope with more than a few thousand items.

Instead, we collect the items in the argument of \exp_not:n. The previous calls are
cleanly removed from the stack, and the memory consumption becomes linear.

833

17021 \cs_new_protected:Npn \seq_reverse:N
17022 { __seq_reverse:NN __kernel_tl_set:Nx }
17023 \cs_new_protected:Npn \seq_greverse:N
17024 { __seq_reverse:NN __kernel_tl_gset:Nx }
17025 \cs_new_protected:Npn __seq_reverse:NN #1 #2
17026 {
17027 \cs_set_eq:NN __seq_tmp:w __seq_item:n
17028 \cs_set_eq:NN __seq_item:n __seq_reverse_item:nwn
17029 #1 #2 { #2 \exp_not:n { } }
17030 \cs_set_eq:NN __seq_item:n __seq_tmp:w
17031 }
17032 \cs_new:Npn __seq_reverse_item:nwn #1 #2 \exp_not:n #3
17033 {
17034 #2
17035 \exp_not:n { __seq_item:n {#1} #3 }
17036 }
17037 \cs_generate_variant:Nn \seq_reverse:N { c }
17038 \cs_generate_variant:Nn \seq_greverse:N { c }

(End of definition for \seq_reverse:N and others. These functions are documented on page 163.)

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

Implemented in l3sort.

(End of definition for \seq_sort:Nn and \seq_gsort:Nn. These functions are documented on page 163.)

58.4 Sequence conditionals
\seq_if_empty_p:N
\seq_if_empty_p:c
\seq_if_empty:NTF
\seq_if_empty:cTF

Similar to token lists, we compare with the empty sequence.
17039 \prg_new_conditional:Npnn \seq_if_empty:N #1 { p , T , F , TF }
17040 {
17041 \if_meaning:w #1 \c_empty_seq
17042 \prg_return_true:
17043 \else:
17044 \prg_return_false:
17045 \fi:
17046 }
17047 \prg_generate_conditional_variant:Nnn \seq_if_empty:N
17048 { c } { p , T , F , TF }

(End of definition for \seq_if_empty:NTF. This function is documented on page 163.)

\seq_shuffle:N
\seq_shuffle:c

\seq_gshuffle:N
\seq_gshuffle:c

__seq_shuffle:NN
__seq_shuffle_item:n
\g__seq_internal_seq

We apply the Fisher–Yates shuffle, storing items in \toks registers. We use the primitive
\tex_uniformdeviate:D for speed reasons. Its non-uniformity is of order its argument
divided by 228, not too bad for small lists. For sequences with more than 13 elements
there are more possible permutations than possible seeds (13! > 228) so the question
of uniformity is somewhat moot. The integer variables are declared in l3int: load-order
issues.

17049 \seq_new:N \g__seq_internal_seq
17050 \cs_new_protected:Npn \seq_shuffle:N { __seq_shuffle:NN \seq_set_eq:NN }
17051 \cs_new_protected:Npn \seq_gshuffle:N { __seq_shuffle:NN \seq_gset_eq:NN }
17052 \cs_new_protected:Npn __seq_shuffle:NN #1#2
17053 {
17054 \int_compare:nNnTF { \seq_count:N #2 } > \c_max_register_int

834

17055 {
17056 \msg_error:nne { seq } { shuffle-too-large }
17057 { \token_to_str:N #2 }
17058 }
17059 {
17060 \group_begin:
17061 \int_zero:N \l__seq_internal_a_int
17062 __seq_push_item_def:
17063 \cs_gset_eq:NN __seq_item:n __seq_shuffle_item:n
17064 #2
17065 __seq_pop_item_def:
17066 \seq_gclear:N \g__seq_internal_seq
17067 \int_step_inline:nn \l__seq_internal_a_int
17068 {
17069 \seq_gput_right:Ne \g__seq_internal_seq
17070 { \tex_the:D \tex_toks:D ##1 }
17071 }
17072 \group_end:
17073 #1 #2 \g__seq_internal_seq
17074 \seq_gclear:N \g__seq_internal_seq
17075 }
17076 }
17077 \cs_new_protected:Npn __seq_shuffle_item:n
17078 {
17079 \int_incr:N \l__seq_internal_a_int
17080 \int_set:Nn \l__seq_internal_b_int
17081 { 1 + \tex_uniformdeviate:D \l__seq_internal_a_int }
17082 \tex_toks:D \l__seq_internal_a_int
17083 = \tex_toks:D \l__seq_internal_b_int
17084 \tex_toks:D \l__seq_internal_b_int
17085 }
17086 \cs_generate_variant:Nn \seq_shuffle:N { c }
17087 \cs_generate_variant:Nn \seq_gshuffle:N { c }

(End of definition for \seq_shuffle:N and others. These functions are documented on page 163.)

\seq_if_in:NnTF
\seq_if_in:NVTF
\seq_if_in:NvTF
\seq_if_in:NeTF
\seq_if_in:NoTF
\seq_if_in:NxTF
\seq_if_in:cnTF
\seq_if_in:cVTF
\seq_if_in:cvTF
\seq_if_in:ceTF
\seq_if_in:coTF
\seq_if_in:cxTF
__seq_if_in:

The approach here is to define __seq_item:n to compare its argument with the test
sequence. If the two items are equal, the mapping is terminated and \group_end: \prg_-
return_true: is inserted after skipping over the rest of the recursion. On the other hand,
if there is no match then the loop breaks, returning \prg_return_false:. Everything
is inside a group so that __seq_item:n is preserved in nested situations.

17088 \prg_new_protected_conditional:Npnn \seq_if_in:Nn #1#2
17089 { T , F , TF }
17090 {
17091 \group_begin:
17092 \tl_set:Nn \l__seq_internal_a_tl {#2}
17093 \cs_set_protected:Npn __seq_item:n ##1
17094 {
17095 \tl_set:Nn \l__seq_internal_b_tl {##1}
17096 \if_meaning:w \l__seq_internal_a_tl \l__seq_internal_b_tl
17097 \exp_after:wN __seq_if_in:
17098 \fi:
17099 }
17100 #1

835

17101 \group_end:
17102 \prg_return_false:
17103 \prg_break_point:
17104 }
17105 \cs_new:Npn __seq_if_in:
17106 { \prg_break:n { \group_end: \prg_return_true: } }
17107 \prg_generate_conditional_variant:Nnn \seq_if_in:Nn
17108 { NV , Nv , Ne , No , Nx , c , cV , cv , ce , co , cx } { T , F , TF }

(End of definition for \seq_if_in:NnTF and __seq_if_in:. This function is documented on page 163.)

58.5 Recovering data from sequences
__seq_pop:NNNN

__seq_pop_TF:NNNN
The two pop functions share their emptiness tests. We also use a common emptiness test
for all branching get and pop functions.

17109 \cs_new_protected:Npn __seq_pop:NNNN #1#2#3#4
17110 {
17111 \if_meaning:w #3 \c_empty_seq
17112 \tl_set:Nn #4 { \q_no_value }
17113 \else:
17114 #1#2#3#4
17115 \fi:
17116 }
17117 \cs_new_protected:Npn __seq_pop_TF:NNNN #1#2#3#4
17118 {
17119 \if_meaning:w #3 \c_empty_seq
17120 % \tl_set:Nn #4 { \q_no_value }
17121 \prg_return_false:
17122 \else:
17123 #1#2#3#4
17124 \prg_return_true:
17125 \fi:
17126 }

(End of definition for __seq_pop:NNNN and __seq_pop_TF:NNNN.)

\seq_get_left:NN
\seq_get_left:cN

__seq_get_left:wnw

Getting an item from the left of a sequence is pretty easy: just trim off the first item
after __seq_item:n at the start. We append a \q_no_value item to cover the case of
an empty sequence

17127 \cs_new_protected:Npn \seq_get_left:NN #1#2
17128 {
17129 __kernel_tl_set:Nx #2
17130 {
17131 \exp_after:wN __seq_get_left:wnw
17132 #1 __seq_item:n { \q_no_value } \s__seq_stop
17133 }
17134 }
17135 \cs_new:Npn __seq_get_left:wnw #1 __seq_item:n #2#3 \s__seq_stop
17136 { \exp_not:n {#2} }
17137 \cs_generate_variant:Nn \seq_get_left:NN { c }

(End of definition for \seq_get_left:NN and __seq_get_left:wnw. This function is documented on
page 160.)

836

\seq_pop_left:NN
\seq_pop_left:cN
\seq_gpop_left:NN
\seq_gpop_left:cN

__seq_pop_left:NNN
__seq_pop_left:wnwNNN

The approach to popping an item is pretty similar to that to get an item, with the only
difference being that the sequence itself has to be redefined. This makes it more sensible
to use an auxiliary function for the local and global cases.

17138 \cs_new_protected:Npn \seq_pop_left:NN
17139 { __seq_pop:NNNN __seq_pop_left:NNN \tl_set:Nn }
17140 \cs_new_protected:Npn \seq_gpop_left:NN
17141 { __seq_pop:NNNN __seq_pop_left:NNN \tl_gset:Nn }
17142 \cs_new_protected:Npn __seq_pop_left:NNN #1#2#3
17143 { \exp_after:wN __seq_pop_left:wnwNNN #2 \s__seq_stop #1#2#3 }
17144 \cs_new_protected:Npn __seq_pop_left:wnwNNN
17145 #1 __seq_item:n #2#3 \s__seq_stop #4#5#6
17146 {
17147 #4 #5 { #1 #3 }
17148 \tl_set:Nn #6 {#2}
17149 }
17150 \cs_generate_variant:Nn \seq_pop_left:NN { c }
17151 \cs_generate_variant:Nn \seq_gpop_left:NN { c }

(End of definition for \seq_pop_left:NN and others. These functions are documented on page 160.)

\seq_get_right:NN
\seq_get_right:cN

__seq_get_right_loop:nw
__seq_get_right_end:NnN

First remove \s__seq and prepend \q_no_value. The first argument of __seq_get_-
right_loop:nw is the last item found, and the second argument is empty until the end
of the loop, where it is code that applies \exp_not:n to the last item and ends the loop.

17152 \cs_new_protected:Npn \seq_get_right:NN #1#2
17153 {
17154 __kernel_tl_set:Nx #2
17155 {
17156 \exp_after:wN \use_i_ii:nnn
17157 \exp_after:wN __seq_get_right_loop:nw
17158 \exp_after:wN \q_no_value
17159 #1
17160 __seq_get_right_end:NnN __seq_item:n
17161 }
17162 }
17163 \cs_new:Npn __seq_get_right_loop:nw #1#2 __seq_item:n
17164 {
17165 #2 \use_none:n {#1}
17166 __seq_get_right_loop:nw
17167 }
17168 \cs_new:Npn __seq_get_right_end:NnN #1#2#3 { \exp_not:n {#2} }
17169 \cs_generate_variant:Nn \seq_get_right:NN { c }

(End of definition for \seq_get_right:NN , __seq_get_right_loop:nw , and __seq_get_right_end:NnN.
This function is documented on page 160.)

\seq_pop_right:NN
\seq_pop_right:cN

\seq_gpop_right:NN
\seq_gpop_right:cN

__seq_pop_right:NNN
__seq_pop_right_loop:nn

The approach to popping from the right is a bit more involved, but does use some
of the same ideas as getting from the right. What is needed is a “flexible length”
way to set a token list variable. This is supplied by the { \if_false: } \fi:
. . . \if_false: { \fi: } construct. Using an e-type expansion and a “non-expanding”
definition for __seq_item:n, the left-most n − 1 entries in a sequence of n items are
stored back in the sequence. That needs a loop of unknown length, hence using the
strange \if_false: way of including braces. When the last item of the sequence is
reached, the closing brace for the assignment is inserted, and \tl_set:Nn #3 is inserted

837

in front of the final entry. This therefore does the pop assignment. One more iteration
is performed, with an empty argument and \use_none:nn, which finally stops the loop.

17170 \cs_new_protected:Npn \seq_pop_right:NN
17171 { __seq_pop:NNNN __seq_pop_right:NNN __kernel_tl_set:Nx }
17172 \cs_new_protected:Npn \seq_gpop_right:NN
17173 { __seq_pop:NNNN __seq_pop_right:NNN __kernel_tl_gset:Nx }
17174 \cs_new_protected:Npn __seq_pop_right:NNN #1#2#3
17175 {
17176 \cs_set_eq:NN __seq_tmp:w __seq_item:n
17177 \cs_set_eq:NN __seq_item:n \scan_stop:
17178 #1 #2
17179 { \if_false: } \fi: \s__seq
17180 \exp_after:wN \use_i:nnn
17181 \exp_after:wN __seq_pop_right_loop:nn
17182 #2
17183 {
17184 \if_false: { \fi: }
17185 __kernel_tl_set:Nx #3
17186 }
17187 { } \use_none:nn
17188 \cs_set_eq:NN __seq_item:n __seq_tmp:w
17189 }
17190 \cs_new:Npn __seq_pop_right_loop:nn #1#2
17191 {
17192 #2 { \exp_not:n {#1} }
17193 __seq_pop_right_loop:nn
17194 }
17195 \cs_generate_variant:Nn \seq_pop_right:NN { c }
17196 \cs_generate_variant:Nn \seq_gpop_right:NN { c }

(End of definition for \seq_pop_right:NN and others. These functions are documented on page 160.)

\seq_get_left:NNTF
\seq_get_left:cNTF

\seq_get_right:NNTF
\seq_get_right:cNTF

Getting from the left or right with a check on the results. The first argument to __seq_-
pop_TF:NNNN is left unused.

17197 \prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
17198 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_left:NN #1#2 }
17199 \prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
17200 { __seq_pop_TF:NNNN \prg_do_nothing: \seq_get_right:NN #1#2 }
17201 \prg_generate_conditional_variant:Nnn \seq_get_left:NN
17202 { c } { T , F , TF }
17203 \prg_generate_conditional_variant:Nnn \seq_get_right:NN
17204 { c } { T , F , TF }

(End of definition for \seq_get_left:NNTF and \seq_get_right:NNTF. These functions are documented
on page 161.)

\seq_pop_left:NNTF
\seq_pop_left:cNTF

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF
\seq_pop_right:NNTF
\seq_pop_right:cNTF
\seq_gpop_right:NNTF
\seq_gpop_right:cNTF

More or less the same for popping.
17205 \prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2
17206 { T , F , TF }
17207 { __seq_pop_TF:NNNN __seq_pop_left:NNN \tl_set:Nn #1 #2 }
17208 \prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2
17209 { T , F , TF }
17210 { __seq_pop_TF:NNNN __seq_pop_left:NNN \tl_gset:Nn #1 #2 }
17211 \prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2

838

17212 { T , F , TF }
17213 { __seq_pop_TF:NNNN __seq_pop_right:NNN __kernel_tl_set:Nx #1 #2 }
17214 \prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2
17215 { T , F , TF }
17216 { __seq_pop_TF:NNNN __seq_pop_right:NNN __kernel_tl_gset:Nx #1 #2 }
17217 \prg_generate_conditional_variant:Nnn \seq_pop_left:NN { c }
17218 { T , F , TF }
17219 \prg_generate_conditional_variant:Nnn \seq_gpop_left:NN { c }
17220 { T , F , TF }
17221 \prg_generate_conditional_variant:Nnn \seq_pop_right:NN { c }
17222 { T , F , TF }
17223 \prg_generate_conditional_variant:Nnn \seq_gpop_right:NN { c }
17224 { T , F , TF }

(End of definition for \seq_pop_left:NNTF and others. These functions are documented on page 161.)

\seq_item:Nn
\seq_item:NV
\seq_item:Ne
\seq_item:cn
\seq_item:cV
\seq_item:ce

__seq_item:wNn
__seq_item:nN

__seq_item:nwn

The idea here is to find the offset of the item from the left, then use a loop to grab
the correct item. If the resulting offset is too large, then the argument delimited by
__seq_item:n is \prg_break: instead of being empty, terminating the loop and re-
turning nothing at all.

17225 \cs_new:Npn \seq_item:Nn #1
17226 { \exp_after:wN __seq_item:wNn #1 \s__seq_stop #1 }
17227 \cs_new:Npn __seq_item:wNn \s__seq #1 \s__seq_stop #2#3
17228 {
17229 \exp_args:Nf __seq_item:nwn
17230 { \exp_args:Nf __seq_item:nN { \int_eval:n {#3} } #2 }
17231 #1
17232 \prg_break: __seq_item:n { }
17233 \prg_break_point:
17234 }
17235 \cs_new:Npn __seq_item:nN #1#2
17236 {
17237 \int_compare:nNnTF {#1} < 0
17238 { \int_eval:n { \seq_count:N #2 + 1 + #1 } }
17239 {#1}
17240 }
17241 \cs_new:Npn __seq_item:nwn #1#2 __seq_item:n #3
17242 {
17243 #2
17244 \int_compare:nNnTF {#1} = 1
17245 { \prg_break:n { \exp_not:n {#3} } }
17246 { \exp_args:Nf __seq_item:nwn { \int_eval:n { #1 - 1 } } }
17247 }
17248 \cs_generate_variant:Nn \seq_item:Nn { NV , Ne , c , cV , ce }

(End of definition for \seq_item:Nn and others. This function is documented on page 160.)

\seq_rand_item:N
\seq_rand_item:c

Importantly, \seq_item:Nn only evaluates its argument once.
17249 \cs_new:Npn \seq_rand_item:N #1
17250 {
17251 \seq_if_empty:NF #1
17252 { \seq_item:Nn #1 { \int_rand:nn { 1 } { \seq_count:N #1 } } }
17253 }
17254 \cs_generate_variant:Nn \seq_rand_item:N { c }

(End of definition for \seq_rand_item:N. This function is documented on page 161.)

839

58.6 Mapping over sequences
\seq_map_break:

\seq_map_break:n
To break a function, the special token \prg_break_point:Nn is used to find the end of
the code. Any ending code is then inserted before the return value of \seq_map_break:n
is inserted.

17255 \cs_new:Npn \seq_map_break:
17256 { \prg_map_break:Nn \seq_map_break: { } }
17257 \cs_new:Npn \seq_map_break:n
17258 { \prg_map_break:Nn \seq_map_break: }

(End of definition for \seq_map_break: and \seq_map_break:n. These functions are documented on
page 165.)

\seq_map_function:NN
\seq_map_function:cN

__seq_map_function:Nw

The idea here is to apply the code of #2 to each item in the sequence without alter-
ing the definition of __seq_item:n. The even-numbered arguments of __seq_map_-
function:Nw delimited by __seq_item:n are almost always empty, except at the end
of the loop where it is \prg_break:. This allows to break the loop without needing to
do a (relatively-expensive) quark test.

17259 \cs_new:Npn \seq_map_function:NN #1#2
17260 {
17261 \exp_after:wN \use_i_ii:nnn
17262 \exp_after:wN __seq_map_function:Nw
17263 \exp_after:wN #2
17264 #1
17265 \prg_break:
17266 __seq_item:n { } __seq_item:n { } __seq_item:n { } __seq_item:n { }
17267 \prg_break_point:
17268 \prg_break_point:Nn \seq_map_break: { }
17269 }
17270 \cs_new:Npn __seq_map_function:Nw #1
17271 #2 __seq_item:n #3
17272 #4 __seq_item:n #5
17273 #6 __seq_item:n #7
17274 #8 __seq_item:n #9
17275 {
17276 #2 #1 {#3}
17277 #4 #1 {#5}
17278 #6 #1 {#7}
17279 #8 #1 {#9}
17280 __seq_map_function:Nw #1
17281 }
17282 \cs_generate_variant:Nn \seq_map_function:NN { c }

(End of definition for \seq_map_function:NN and __seq_map_function:Nw. This function is docu-
mented on page 163.)

__seq_push_item_def:n
__seq_push_item_def:e
__seq_push_item_def:
__seq_pop_item_def:

The definition of __seq_item:n needs to be saved and restored at various points within
the mapping and manipulation code. That is handled here: as always, this approach uses
global assignments.

17283 \cs_new_protected:Npn __seq_push_item_def:n
17284 {
17285 __seq_push_item_def:
17286 \cs_gset:Npn __seq_item:n ##1
17287 }

840

17288 \cs_new_protected:Npn __seq_push_item_def:e
17289 {
17290 __seq_push_item_def:
17291 \cs_gset:Npe __seq_item:n ##1
17292 }
17293 \cs_new_protected:Npn __seq_push_item_def:
17294 {
17295 \int_gincr:N \g__kernel_prg_map_int
17296 \cs_gset_eq:cN { __seq_map_ \int_use:N \g__kernel_prg_map_int :w }
17297 __seq_item:n
17298 }
17299 \cs_new_protected:Npn __seq_pop_item_def:
17300 {
17301 \cs_gset_eq:Nc __seq_item:n
17302 { __seq_map_ \int_use:N \g__kernel_prg_map_int :w }
17303 \int_gdecr:N \g__kernel_prg_map_int
17304 }

(End of definition for __seq_push_item_def:n , __seq_push_item_def: , and __seq_pop_item_def:.)

\seq_map_inline:Nn
\seq_map_inline:cn

The idea here is that __seq_item:n is already “applied” to each item in a sequence,
and so an in-line mapping is just a case of redefining __seq_item:n.

17305 \cs_new_protected:Npn \seq_map_inline:Nn #1#2
17306 {
17307 __seq_push_item_def:n {#2}
17308 #1
17309 \prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }
17310 }
17311 \cs_generate_variant:Nn \seq_map_inline:Nn { c }

(End of definition for \seq_map_inline:Nn. This function is documented on page 164.)

\seq_map_tokens:Nn
\seq_map_tokens:cn

__seq_map_tokens:nw

This is based on the function mapping but using the same tricks as described for \prop_-
map_tokens:Nn. The idea is to remove the leading \s__seq and apply the tokens such
that they are safe with the break points, hence the \use:n.

17312 \cs_new:Npn \seq_map_tokens:Nn #1#2
17313 {
17314 \exp_last_unbraced:Nno
17315 \use_i:nn { __seq_map_tokens:nw {#2} } #1
17316 \prg_break:
17317 __seq_item:n { } __seq_item:n { } __seq_item:n { } __seq_item:n { }
17318 \prg_break_point:
17319 \prg_break_point:Nn \seq_map_break: { }
17320 }
17321 \cs_generate_variant:Nn \seq_map_tokens:Nn { c }
17322 \cs_new:Npn __seq_map_tokens:nw #1
17323 #2 __seq_item:n #3
17324 #4 __seq_item:n #5
17325 #6 __seq_item:n #7
17326 #8 __seq_item:n #9
17327 {
17328 #2 \use:n {#1} {#3}
17329 #4 \use:n {#1} {#5}
17330 #6 \use:n {#1} {#7}

841

17331 #8 \use:n {#1} {#9}
17332 __seq_map_tokens:nw {#1}
17333 }

(End of definition for \seq_map_tokens:Nn and __seq_map_tokens:nw. This function is documented on
page 164.)

\seq_map_variable:NNn
\seq_map_variable:Ncn
\seq_map_variable:cNn
\seq_map_variable:ccn

This is just a specialised version of the in-line mapping function, using an e-type expan-
sion for the code set up so that the number of # tokens required is as expected.

17334 \cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
17335 {
17336 __seq_push_item_def:e
17337 {
17338 \tl_set:Nn \exp_not:N #2 {##1}
17339 \exp_not:n {#3}
17340 }
17341 #1
17342 \prg_break_point:Nn \seq_map_break: { __seq_pop_item_def: }
17343 }
17344 \cs_generate_variant:Nn \seq_map_variable:NNn { Nc }
17345 \cs_generate_variant:Nn \seq_map_variable:NNn { c , cc }

(End of definition for \seq_map_variable:NNn. This function is documented on page 164.)

\seq_map_indexed_function:NN
\seq_map_indexed_inline:Nn

__seq_map_indexed:nNN
__seq_map_indexed:Nw

Similar to \seq_map_function:NN but we keep track of the item index as a ;-delimited
argument of __seq_map_indexed:Nw.

17346 \cs_new:Npn \seq_map_indexed_function:NN #1#2
17347 {
17348 __seq_map_indexed:NN #1#2
17349 \prg_break_point:Nn \seq_map_break: { }
17350 }
17351 \cs_new_protected:Npn \seq_map_indexed_inline:Nn #1#2
17352 {
17353 \int_gincr:N \g__kernel_prg_map_int
17354 \cs_gset_protected:cpn
17355 { __seq_map_ \int_use:N \g__kernel_prg_map_int :w } ##1##2 {#2}
17356 \exp_args:NNc __seq_map_indexed:NN #1
17357 { __seq_map_ \int_use:N \g__kernel_prg_map_int :w }
17358 \prg_break_point:Nn \seq_map_break:
17359 { \int_gdecr:N \g__kernel_prg_map_int }
17360 }
17361 \cs_new:Npn __seq_map_indexed:NN #1#2
17362 {
17363 \exp_after:wN __seq_map_indexed:Nw
17364 \exp_after:wN #2
17365 \int_value:w 1
17366 \exp_after:wN \use_i:nn
17367 \exp_after:wN ;
17368 #1
17369 \prg_break: __seq_item:n { } \prg_break_point:
17370 }
17371 \cs_new:Npn __seq_map_indexed:Nw #1#2 ; #3 __seq_item:n #4
17372 {
17373 #3

842

17374 #1 {#2} {#4}
17375 \exp_after:wN __seq_map_indexed:Nw
17376 \exp_after:wN #1
17377 \int_value:w \int_eval:w 1 + #2 ;
17378 }

(End of definition for \seq_map_indexed_function:NN and others. These functions are documented on
page 164.)

\seq_map_pairwise_function:NNN
\seq_map_pairwise_function:NcN
\seq_map_pairwise_function:cNN
\seq_map_pairwise_function:ccN

__seq_map_pairwise_function:wNN
__seq_map_pairwise_function:wNw

__seq_map_pairwise_function:Nnnwnn

The idea is to first expand both sequences, adding the usual { ? \prg_break: } { }
to the end of each one. This is most conveniently done in two steps using an auxiliary
function. The mapping then throws away the first tokens of #2 and #5, which for items
in both sequences are \s__seq __seq_item:n. The function to be mapped are then be
applied to the two entries. When the code hits the end of one of the sequences, the break
material stops the entire loop and tidy up. This avoids needing to find the count of the
two sequences, or worrying about which is longer.

17379 \cs_new:Npn \seq_map_pairwise_function:NNN #1#2#3
17380 { \exp_after:wN __seq_map_pairwise_function:wNN #2 \s__seq_stop #1 #3 }
17381 \cs_new:Npn __seq_map_pairwise_function:wNN \s__seq #1 \s__seq_stop #2#3
17382 {
17383 \exp_after:wN __seq_map_pairwise_function:wNw #2 \s__seq_stop #3
17384 #1 { ? \prg_break: } { }
17385 \prg_break_point:
17386 \prg_break_point:Nn \seq_map_break: { }
17387 }
17388 \cs_new:Npn __seq_map_pairwise_function:wNw \s__seq #1 \s__seq_stop #2
17389 {
17390 __seq_map_pairwise_function:Nnnwnn #2
17391 #1 { ? \prg_break: } { }
17392 \s__seq_stop
17393 }
17394 \cs_new:Npn __seq_map_pairwise_function:Nnnwnn #1#2#3#4 \s__seq_stop #5#6
17395 {
17396 \use_none:n #2
17397 \use_none:n #5
17398 #1 {#3} {#6}
17399 __seq_map_pairwise_function:Nnnwnn #1 #4 \s__seq_stop
17400 }
17401 \cs_generate_variant:Nn \seq_map_pairwise_function:NNN { Nc , c , cc }

(End of definition for \seq_map_pairwise_function:NNN and others. This function is documented on
page 164.)

\seq_set_map_e:NNn
\seq_gset_map_e:NNn

__seq_set_map_e:NNNn

Very similar to \seq_set_filter:NNn. We could actually merge the two within a single
function, but it would have weird semantics.

17402 \cs_new_protected:Npn \seq_set_map_e:NNn
17403 { __seq_set_map_e:NNNn __kernel_tl_set:Nx }
17404 \cs_new_protected:Npn \seq_gset_map_e:NNn
17405 { __seq_set_map_e:NNNn __kernel_tl_gset:Nx }
17406 \cs_new_protected:Npn __seq_set_map_e:NNNn #1#2#3#4
17407 {
17408 __seq_push_item_def:n { \exp_not:N __seq_item:n {#4} }
17409 #1 #2 { #3 }
17410 __seq_pop_item_def:
17411 }

843

(End of definition for \seq_set_map_e:NNn , \seq_gset_map_e:NNn , and __seq_set_map_e:NNNn. These
functions are documented on page 166.)

\seq_set_map:NNn
\seq_gset_map:NNn

__seq_set_map:NNNn

Similar to \seq_set_map_e:NNn, but prevents expansion of the <inline function>.
17412 \cs_new_protected:Npn \seq_set_map:NNn
17413 { __seq_set_map:NNNn __kernel_tl_set:Nx }
17414 \cs_new_protected:Npn \seq_gset_map:NNn
17415 { __seq_set_map:NNNn __kernel_tl_gset:Nx }
17416 \cs_new_protected:Npn __seq_set_map:NNNn #1#2#3#4
17417 {
17418 __seq_push_item_def:n { \exp_not:n { __seq_item:n {#4} } }
17419 #1 #2 { #3 }
17420 __seq_pop_item_def:
17421 }

(End of definition for \seq_set_map:NNn , \seq_gset_map:NNn , and __seq_set_map:NNNn. These func-
tions are documented on page 165.)

\seq_count:N
\seq_count:c

__seq_count:w
__seq_count_end:w

Since counting the items in a sequence is quite common, we optimize it by grabbing
8 items at a time and correspondingly adding 8 to an integer expression. At the end of
the loop, #9 is __seq_count_end:w instead of being empty. It removes 8+ and instead
places the number of __seq_item:n that __seq_count:w grabbed before reaching the
end of the sequence.

17422 \cs_new:Npn \seq_count:N #1
17423 {
17424 \int_eval:n
17425 {
17426 \exp_after:wN \use_i:nn
17427 \exp_after:wN __seq_count:w
17428 #1
17429 __seq_count_end:w __seq_item:n 7
17430 __seq_count_end:w __seq_item:n 6
17431 __seq_count_end:w __seq_item:n 5
17432 __seq_count_end:w __seq_item:n 4
17433 __seq_count_end:w __seq_item:n 3
17434 __seq_count_end:w __seq_item:n 2
17435 __seq_count_end:w __seq_item:n 1
17436 __seq_count_end:w __seq_item:n 0
17437 \prg_break_point:
17438 }
17439 }
17440 \cs_new:Npn __seq_count:w
17441 #1 __seq_item:n #2 __seq_item:n #3 __seq_item:n #4 __seq_item:n
17442 #5 __seq_item:n #6 __seq_item:n #7 __seq_item:n #8 #9 __seq_item:n
17443 { #9 8 + __seq_count:w }
17444 \cs_new:Npn __seq_count_end:w 8 + __seq_count:w #1#2 \prg_break_point: {#1}
17445 \cs_generate_variant:Nn \seq_count:N { c }

(End of definition for \seq_count:N , __seq_count:w , and __seq_count_end:w. This function is doc-
umented on page 166.)

844

58.7 Using sequences
\seq_use:Nnnn
\seq_use:cnnn

__seq_use:NNnNnn
__seq_use_setup:w

__seq_use:nwwwwnwn
__seq_use:nwwn

\seq_use:Nn
\seq_use:cn

See \clist_use:Nnnn for a general explanation. The main difference is that we use
__seq_item:n as a delimiter rather than commas. We also need to add __seq_item:n
at various places, and \s__seq.

17446 \cs_new:Npn \seq_use:Nnnn #1#2#3#4
17447 {
17448 \seq_if_exist:NTF #1
17449 {
17450 \int_case:nnF { \seq_count:N #1 }
17451 {
17452 { 0 } { }
17453 { 1 } { \exp_after:wN __seq_use:NNnNnn #1 ? { } { } }
17454 { 2 } { \exp_after:wN __seq_use:NNnNnn #1 {#2} }
17455 }
17456 {
17457 \exp_after:wN __seq_use_setup:w #1 __seq_item:n
17458 \s__seq_mark { __seq_use:nwwwwnwn {#3} }
17459 \s__seq_mark { __seq_use:nwwn {#4} }
17460 \s__seq_stop { }
17461 }
17462 }
17463 {
17464 \msg_expandable_error:nnn
17465 { kernel } { bad-variable } {#1}
17466 }
17467 }
17468 \cs_generate_variant:Nn \seq_use:Nnnn { c }
17469 \cs_new:Npn __seq_use:NNnNnn #1#2#3#4#5#6 { \exp_not:n { #3 #6 #5 } }
17470 \cs_new:Npn __seq_use_setup:w \s__seq { __seq_use:nwwwwnwn { } }
17471 \cs_new:Npn __seq_use:nwwwwnwn
17472 #1 __seq_item:n #2 __seq_item:n #3 __seq_item:n #4#5
17473 \s__seq_mark #6#7 \s__seq_stop #8
17474 {
17475 #6 __seq_item:n {#3} __seq_item:n {#4} #5
17476 \s__seq_mark {#6} #7 \s__seq_stop { #8 #1 #2 }
17477 }
17478 \cs_new:Npn __seq_use:nwwn #1 __seq_item:n #2 #3 \s__seq_stop #4
17479 { \exp_not:n { #4 #1 #2 } }
17480 \cs_new:Npn \seq_use:Nn #1#2
17481 { \seq_use:Nnnn #1 {#2} {#2} {#2} }
17482 \cs_generate_variant:Nn \seq_use:Nn { c }

(End of definition for \seq_use:Nnnn and others. These functions are documented on page 166.)

58.8 Sequence stacks
The same functions as for sequences, but with the correct naming.

\seq_push:Nn
\seq_push:NV
\seq_push:Nv
\seq_push:Ne
\seq_push:No
\seq_push:Nx
\seq_push:cn
\seq_push:cV
\seq_push:cv
\seq_push:ce
\seq_push:co
\seq_push:cx
\seq_gpush:Nn
\seq_gpush:NV
\seq_gpush:Nv
\seq_gpush:Ne
\seq_gpush:No
\seq_gpush:Nx
\seq_gpush:cn
\seq_gpush:cV
\seq_gpush:cv
\seq_gpush:ce
\seq_gpush:co
\seq_gpush:cx

Pushing to a sequence is the same as adding on the left.
17483 \cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
17484 \cs_generate_variant:Nn \seq_push:Nn { NV , Nv , Ne , c , cV , cv , ce }
17485 \cs_generate_variant:Nn \seq_push:Nn { No , Nx , co , cx }

845

17486 \cs_new_eq:NN \seq_gpush:Nn \seq_gput_left:Nn
17487 \cs_generate_variant:Nn \seq_gpush:Nn { NV , Nv , Ne , c , cV , cv , ce }
17488 \cs_generate_variant:Nn \seq_gpush:Nn { No , Nx , co , cx }

(End of definition for \seq_push:Nn and \seq_gpush:Nn. These functions are documented on page 168.)

\seq_get:NN
\seq_get:cN
\seq_pop:NN
\seq_pop:cN
\seq_gpop:NN
\seq_gpop:cN

In most cases, getting items from the stack does not need to specify that this is from the
left. So alias are provided.

17489 \cs_new_eq:NN \seq_get:NN \seq_get_left:NN
17490 \cs_new_eq:NN \seq_get:cN \seq_get_left:cN
17491 \cs_new_eq:NN \seq_pop:NN \seq_pop_left:NN
17492 \cs_new_eq:NN \seq_pop:cN \seq_pop_left:cN
17493 \cs_new_eq:NN \seq_gpop:NN \seq_gpop_left:NN
17494 \cs_new_eq:NN \seq_gpop:cN \seq_gpop_left:cN

(End of definition for \seq_get:NN , \seq_pop:NN , and \seq_gpop:NN. These functions are documented
on page 167.)

\seq_get:NNTF
\seq_get:cNTF
\seq_pop:NNTF
\seq_pop:cNTF
\seq_gpop:NNTF
\seq_gpop:cNTF

More copies.
17495 \prg_new_eq_conditional:NNn \seq_get:NN \seq_get_left:NN { T , F , TF }
17496 \prg_new_eq_conditional:NNn \seq_get:cN \seq_get_left:cN { T , F , TF }
17497 \prg_new_eq_conditional:NNn \seq_pop:NN \seq_pop_left:NN { T , F , TF }
17498 \prg_new_eq_conditional:NNn \seq_pop:cN \seq_pop_left:cN { T , F , TF }
17499 \prg_new_eq_conditional:NNn \seq_gpop:NN \seq_gpop_left:NN { T , F , TF }
17500 \prg_new_eq_conditional:NNn \seq_gpop:cN \seq_gpop_left:cN { T , F , TF }

(End of definition for \seq_get:NNTF , \seq_pop:NNTF , and \seq_gpop:NNTF. These functions are docu-
mented on page 167.)

58.9 Viewing sequences
\seq_show:N
\seq_show:c
\seq_log:N
\seq_log:c

__seq_show:NN
__seq_show_validate:nn

Apply the general __kernel_chk_tl_type:NnnT.
17501 \cs_new_protected:Npn \seq_show:N { __seq_show:NN \msg_show:nneeee }
17502 \cs_generate_variant:Nn \seq_show:N { c }
17503 \cs_new_protected:Npn \seq_log:N { __seq_show:NN \msg_log:nneeee }
17504 \cs_generate_variant:Nn \seq_log:N { c }
17505 \cs_new_protected:Npn __seq_show:NN #1#2
17506 {
17507 __kernel_chk_tl_type:NnnT #2 { seq }
17508 {
17509 \s__seq
17510 \exp_after:wN \use_i:nn \exp_after:wN __seq_show_validate:nn #2
17511 \q_recursion_tail \q_recursion_tail \q_recursion_stop
17512 }
17513 {
17514 #1 { seq } { show }
17515 { \token_to_str:N #2 }
17516 { \seq_map_function:NN #2 \msg_show_item:n }
17517 { } { }
17518 }
17519 }
17520 \cs_new:Npn __seq_show_validate:nn #1#2
17521 {
17522 \quark_if_recursion_tail_stop:n {#2}

846

17523 __seq_wrap_item:n {#2}
17524 __seq_show_validate:nn
17525 }

(End of definition for \seq_show:N and others. These functions are documented on page 170.)

58.10 Scratch sequences
\l_tmpa_seq
\l_tmpb_seq
\g_tmpa_seq
\g_tmpb_seq

Temporary comma list variables.
17526 \seq_new:N \l_tmpa_seq
17527 \seq_new:N \l_tmpb_seq
17528 \seq_new:N \g_tmpa_seq
17529 \seq_new:N \g_tmpb_seq

(End of definition for \l_tmpa_seq and others. These variables are documented on page 170.)

17530 ⟨/package⟩

847

Chapter 59

l3int implementation

17531 ⟨∗package⟩

17532 ⟨@@=int⟩

The following test files are used for this code: m3int001,m3int002,m3int03.
\c_max_register_int Done in l3basics.

(End of definition for \c_max_register_int. This variable is documented on page 183.)

__int_to_roman:w
\if_int_compare:w

Done in l3basics.

(End of definition for __int_to_roman:w and \if_int_compare:w. This function is documented on page
184.)

\or: Done in l3basics.

(End of definition for \or:. This function is documented on page 184.)

\int_value:w
__int_eval:w

__int_eval_end:
\if_int_odd:w

\if_case:w

Here are the remaining primitives for number comparisons and expressions.
17533 \cs_new_eq:NN \int_value:w \tex_number:D
17534 \cs_new_eq:NN __int_eval:w \tex_numexpr:D
17535 \cs_new_eq:NN __int_eval_end: \tex_relax:D
17536 \cs_new_eq:NN \if_int_odd:w \tex_ifodd:D
17537 \cs_new_eq:NN \if_case:w \tex_ifcase:D

(End of definition for \int_value:w and others. These functions are documented on page 184.)

\s__int_mark
\s__int_stop

Scan marks used throughout the module.
17538 \scan_new:N \s__int_mark
17539 \scan_new:N \s__int_stop

(End of definition for \s__int_mark and \s__int_stop.)

__int_use_none_delimit_by_s_stop:w Function to gobble until a scan mark.
17540 \cs_new:Npn __int_use_none_delimit_by_s_stop:w #1 \s__int_stop { }

(End of definition for __int_use_none_delimit_by_s_stop:w.)

\q__int_recursion_tail
\q__int_recursion_stop

Quarks for recursion.
17541 \quark_new:N \q__int_recursion_tail
17542 \quark_new:N \q__int_recursion_stop

848

(End of definition for \q__int_recursion_tail and \q__int_recursion_stop.)

__int_if_recursion_tail_stop_do:Nn
__int_if_recursion_tail_stop:N

Functions to query quarks.
17543 __kernel_quark_new_test:N __int_if_recursion_tail_stop_do:Nn
17544 __kernel_quark_new_test:N __int_if_recursion_tail_stop:N

(End of definition for __int_if_recursion_tail_stop_do:Nn and __int_if_recursion_tail_stop:N.)

59.1 Integer expressions
\int_eval:n
\int_eval:w

Wrapper for __int_eval:w: can be used in an integer expression or directly in the input
stream. It is very slightly faster to use \the rather than \number to turn the expression
to a number. When debugging, we introduce parentheses to catch early termination (see
l3debug).

17545 \cs_new:Npn \int_eval:n #1
17546 { \tex_the:D __int_eval:w #1 __int_eval_end: }
17547 \cs_new:Npn \int_eval:w { \tex_the:D __int_eval:w }

(End of definition for \int_eval:n and \int_eval:w. These functions are documented on page 172.)

\int_sign:n
__int_sign:Nw

See \int_abs:n. Evaluate the expression once (and when debugging is enabled, check
that the expression is well-formed), then test the first character to determine the sign.
This is wrapped in \int_value:w . . . \exp_stop_f: to ensure a fixed number of expan-
sions and to avoid dealing with closing the conditionals.

17548 \cs_new:Npn \int_sign:n #1
17549 {
17550 \int_value:w \exp_after:wN __int_sign:Nw
17551 \int_value:w __int_eval:w #1 __int_eval_end: ;
17552 \exp_stop_f:
17553 }
17554 \cs_new:Npn __int_sign:Nw #1#2 ;
17555 {
17556 \if_meaning:w 0 #1
17557 0
17558 \else:
17559 \if_meaning:w - #1 - \fi: 1
17560 \fi:
17561 }

(End of definition for \int_sign:n and __int_sign:Nw. This function is documented on page 172.)

\int_abs:n
__int_abs:N
\int_max:nn
\int_min:nn

__int_maxmin:wwN

Functions for min, max, and absolute value with only one evaluation. The absolute value
is obtained by removing a leading sign if any. All three functions expand in two steps.

17562 \cs_new:Npn \int_abs:n #1
17563 {
17564 \int_value:w \exp_after:wN __int_abs:N
17565 \int_value:w __int_eval:w #1 __int_eval_end:
17566 \exp_stop_f:
17567 }
17568 \cs_new:Npn __int_abs:N #1
17569 { \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
17570 \cs_new:Npn \int_max:nn #1#2
17571 {

849

17572 \int_value:w \exp_after:wN __int_maxmin:wwN
17573 \int_value:w __int_eval:w #1 \exp_after:wN ;
17574 \int_value:w __int_eval:w #2 ;
17575 >
17576 \exp_stop_f:
17577 }
17578 \cs_new:Npn \int_min:nn #1#2
17579 {
17580 \int_value:w \exp_after:wN __int_maxmin:wwN
17581 \int_value:w __int_eval:w #1 \exp_after:wN ;
17582 \int_value:w __int_eval:w #2 ;
17583 <
17584 \exp_stop_f:
17585 }
17586 \cs_new:Npn __int_maxmin:wwN #1 ; #2 ; #3
17587 {
17588 \if_int_compare:w #1 #3 #2 ~
17589 #1
17590 \else:
17591 #2
17592 \fi:
17593 }

(End of definition for \int_abs:n and others. These functions are documented on page 172.)

\int_div_truncate:nn
\int_div_round:nn

\int_mod:nn
__int_div_truncate:NwNw

__int_mod:ww

As __int_eval:w rounds the result of a division we also provide a version that truncates
the result. We use an auxiliary to make sure numerator and denominator are only
evaluated once: this comes in handy when those are more expressions are expensive
to evaluate (e.g., \tl_count:n). If the numerator #1#2 is 0, then we divide 0 by the
denominator (this ensures that 0/0 is correctly reported as an error). Otherwise, shift
the numerator #1#2 towards 0 by (|#3#4|−1)/2, which we round away from zero. It turns
out that this quantity exactly compensates the difference between ε-TEX’s rounding and
the truncating behaviour that we want. The details are thanks to Heiko Oberdiek: getting
things right in all cases is not so easy.

17594 \cs_new:Npn \int_div_truncate:nn #1#2
17595 {
17596 \int_value:w __int_eval:w
17597 \exp_after:wN __int_div_truncate:NwNw
17598 \int_value:w __int_eval:w #1 \exp_after:wN ;
17599 \int_value:w __int_eval:w #2 ;
17600 __int_eval_end:
17601 }
17602 \cs_new:Npn __int_div_truncate:NwNw #1#2; #3#4;
17603 {
17604 \if_meaning:w 0 #1
17605 0
17606 \else:
17607 (
17608 #1#2
17609 \if_meaning:w - #1 + \else: - \fi:
17610 (\if_meaning:w - #3 - \fi: #3#4 - 1) / 2
17611)
17612 \fi:
17613 / #3#4

850

17614 }

For the sake of completeness:
17615 \cs_new:Npn \int_div_round:nn #1#2
17616 { \int_value:w __int_eval:w (#1) / (#2) __int_eval_end: }

Finally there’s the modulus operation.
17617 \cs_new:Npn \int_mod:nn #1#2
17618 {
17619 \int_value:w __int_eval:w \exp_after:wN __int_mod:ww
17620 \int_value:w __int_eval:w #1 \exp_after:wN ;
17621 \int_value:w __int_eval:w #2 ;
17622 __int_eval_end:
17623 }
17624 \cs_new:Npn __int_mod:ww #1; #2;
17625 { #1 - (__int_div_truncate:NwNw #1 ; #2 ;) * #2 }

(End of definition for \int_div_truncate:nn and others. These functions are documented on page 172.)

__kernel_int_add:nnn Equivalent to \int_eval:n {#1+#2+#3} except that overflow only occurs if the final
result overflows [−231 + 1, 231 − 1]. The idea is to choose the order in which the three
numbers are added together. If #1 and #2 have opposite signs (one is in [−231 + 1, −1]
and the other in [0, 231 − 1]) then #1+#2 cannot overflow so we compute the result as
#1+#2+#3. If they have the same sign, then either #3 has the same sign and the order
does not matter, or #3 has the opposite sign and any order in which #3 is not last will
work. We use #1+#3+#2.

17626 \cs_new:Npn __kernel_int_add:nnn #1#2#3
17627 {
17628 \int_value:w __int_eval:w #1
17629 \if_int_compare:w #2 < \c_zero_int \exp_after:wN \reverse_if:N \fi:
17630 \if_int_compare:w #1 < \c_zero_int + #2 + #3 \else: + #3 + #2 \fi:
17631 __int_eval_end:
17632 }

(End of definition for __kernel_int_add:nnn.)

59.2 Creating and initialising integers
\int_new:N
\int_new:c

Two ways to do this: one for the format and one for the LATEX 2ε package. In plain TEX,
\newcount (and other allocators) are \outer: to allow the code here to work in “generic”
mode this is therefore accessed by name. (The same applies to \newbox, \newdimen and
so on.)

17633 \cs_new_protected:Npn \int_new:N #1
17634 {
17635 __kernel_chk_if_free_cs:N #1
17636 \cs:w newcount \cs_end: #1
17637 }
17638 \cs_generate_variant:Nn \int_new:N { c }

(End of definition for \int_new:N. This function is documented on page 173.)

851

\int_const:Nn
\int_const:cn

__int_const:nN
__int_const:eN

__int_constdef:Nw
\c__int_max_constdef_int

As stated, most constants can be defined as \chardef or \mathchardef but that’s engine
dependent. As a result, there is some set up code to determine what can be done. No full
engine testing just yet so everything is a little awkward. We cannot use \int_gset:Nn
because (when check-declarations is enabled) this runs some checks that constants
would fail.

17639 \cs_new_protected:Npn \int_const:Nn #1#2
17640 { __int_const:eN { \int_eval:n {#2} } #1 }
17641 \cs_generate_variant:Nn \int_const:Nn { c }
17642 \cs_new_protected:Npn __int_const:nN #1#2
17643 {
17644 \int_compare:nNnTF {#1} < \c_zero_int
17645 {
17646 \int_new:N #2
17647 \tex_global:D
17648 }
17649 {
17650 \int_compare:nNnTF {#1} > \c__int_max_constdef_int
17651 {
17652 \int_new:N #2
17653 \tex_global:D
17654 }
17655 {
17656 __kernel_chk_if_free_cs:N #2
17657 \tex_global:D __int_constdef:Nw
17658 }
17659 }
17660 #2 = __int_eval:w #1 __int_eval_end:
17661 }
17662 \cs_generate_variant:Nn __int_const:nN { e }
17663 \if_int_odd:w 0
17664 \cs_if_exist:NT \tex_luatexversion:D { 1 }
17665 \cs_if_exist:NT \tex_omathchardef:D { 1 }
17666 \cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
17667 \cs_if_exist:NTF \tex_omathchardef:D
17668 { \cs_new_eq:NN __int_constdef:Nw \tex_omathchardef:D }
17669 { \cs_new_eq:NN __int_constdef:Nw \tex_chardef:D }
17670 \tex_global:D __int_constdef:Nw \c__int_max_constdef_int 1114111 ~
17671 \else:
17672 \cs_new_eq:NN __int_constdef:Nw \tex_mathchardef:D
17673 \tex_global:D __int_constdef:Nw \c__int_max_constdef_int 32767 ~
17674 \fi:

(End of definition for \int_const:Nn and others. This function is documented on page 173.)

\int_zero:N
\int_zero:c

\int_gzero:N
\int_gzero:c

Functions that reset an ⟨integer⟩ register to zero.
17675 \cs_new_protected:Npn \int_zero:N #1 { #1 = \c_zero_int }
17676 \cs_new_protected:Npn \int_gzero:N #1 { \tex_global:D #1 = \c_zero_int }
17677 \cs_generate_variant:Nn \int_zero:N { c }
17678 \cs_generate_variant:Nn \int_gzero:N { c }

(End of definition for \int_zero:N and \int_gzero:N. These functions are documented on page 173.)

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

Create a register if needed, otherwise clear it.
17679 \cs_new_protected:Npn \int_zero_new:N #1

852

17680 { \int_if_exist:NTF #1 { \int_zero:N #1 } { \int_new:N #1 } }
17681 \cs_new_protected:Npn \int_gzero_new:N #1
17682 { \int_if_exist:NTF #1 { \int_gzero:N #1 } { \int_new:N #1 } }
17683 \cs_generate_variant:Nn \int_zero_new:N { c }
17684 \cs_generate_variant:Nn \int_gzero_new:N { c }

(End of definition for \int_zero_new:N and \int_gzero_new:N. These functions are documented on
page 173.)

\int_set_eq:NN
\int_set_eq:cN
\int_set_eq:Nc
\int_set_eq:cc

\int_gset_eq:NN
\int_gset_eq:cN
\int_gset_eq:Nc
\int_gset_eq:cc

Setting equal means using one integer inside the set function of another. Check that
assigned integer is local/global. No need to check that the other one is defined as TEX
does it for us.

17685 \cs_new_protected:Npn \int_set_eq:NN #1#2 { #1 = #2 }
17686 \cs_generate_variant:Nn \int_set_eq:NN { c , Nc , cc }
17687 \cs_new_protected:Npn \int_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
17688 \cs_generate_variant:Nn \int_gset_eq:NN { c , Nc , cc }

(End of definition for \int_set_eq:NN and \int_gset_eq:NN. These functions are documented on page
173.)

\int_if_exist_p:N
\int_if_exist_p:c
\int_if_exist:NTF
\int_if_exist:cTF

Copies of the cs functions defined in l3basics.
17689 \prg_new_eq_conditional:NNn \int_if_exist:N \cs_if_exist:N
17690 { TF , T , F , p }
17691 \prg_new_eq_conditional:NNn \int_if_exist:c \cs_if_exist:c
17692 { TF , T , F , p }

(End of definition for \int_if_exist:NTF. This function is documented on page 173.)

59.3 Setting and incrementing integers
\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn
\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Adding and subtracting to and from a counter. Including here the optional by would
slow down these operations by a few percent.

17693 \cs_new_protected:Npn \int_add:Nn #1#2
17694 { \tex_advance:D #1 __int_eval:w #2 __int_eval_end: }
17695 \cs_new_protected:Npn \int_sub:Nn #1#2
17696 { \tex_advance:D #1 - __int_eval:w #2 __int_eval_end: }
17697 \cs_new_protected:Npn \int_gadd:Nn #1#2
17698 { \tex_global:D \tex_advance:D #1 __int_eval:w #2 __int_eval_end: }
17699 \cs_new_protected:Npn \int_gsub:Nn #1#2
17700 { \tex_global:D \tex_advance:D #1 - __int_eval:w #2 __int_eval_end: }
17701 \cs_generate_variant:Nn \int_add:Nn { c }
17702 \cs_generate_variant:Nn \int_gadd:Nn { c }
17703 \cs_generate_variant:Nn \int_sub:Nn { c }
17704 \cs_generate_variant:Nn \int_gsub:Nn { c }

(End of definition for \int_add:Nn and others. These functions are documented on page 174.)

\int_incr:N
\int_incr:c

\int_gincr:N
\int_gincr:c
\int_decr:N
\int_decr:c

\int_gdecr:N
\int_gdecr:c

Incrementing and decrementing of integer registers is done with the following functions.
17705 \cs_new_protected:Npn \int_incr:N #1
17706 { \tex_advance:D #1 \c_one_int }
17707 \cs_new_protected:Npn \int_decr:N #1
17708 { \tex_advance:D #1 - \c_one_int }
17709 \cs_new_protected:Npn \int_gincr:N #1
17710 { \tex_global:D \tex_advance:D #1 \c_one_int }

853

17711 \cs_new_protected:Npn \int_gdecr:N #1
17712 { \tex_global:D \tex_advance:D #1 - \c_one_int }
17713 \cs_generate_variant:Nn \int_incr:N { c }
17714 \cs_generate_variant:Nn \int_decr:N { c }
17715 \cs_generate_variant:Nn \int_gincr:N { c }
17716 \cs_generate_variant:Nn \int_gdecr:N { c }

(End of definition for \int_incr:N and others. These functions are documented on page 174.)

\int_set:Nn
\int_set:cn
\int_set:NV
\int_set:cV

\int_gset:Nn
\int_gset:cn
\int_gset:NV
\int_gset:cV

As integers are register-based TEX issues an error if they are not defined. While the =
sign is optional, this version with = is slightly quicker than without, while adding the
optional space after = slows things down minutely.

17717 \cs_new_protected:Npn \int_set:Nn #1#2
17718 { #1 = __int_eval:w #2 __int_eval_end: }
17719 \cs_new_protected:Npn \int_gset:Nn #1#2
17720 { \tex_global:D #1 = __int_eval:w #2 __int_eval_end: }
17721 \cs_generate_variant:Nn \int_set:Nn { NV , c , cV }
17722 \cs_generate_variant:Nn \int_gset:Nn { NV , c , cV }

(End of definition for \int_set:Nn and \int_gset:Nn. These functions are documented on page 174.)

\int_set_regex_count:Nnn
\int_set_regex_count:cnn
\int_gset_regex_count:Nnn
\int_gset_regex_count:cnn
\int_set_regex_count:NNn
\int_set_regex_count:cNn
\int_gset_regex_count:NNn
\int_set_gregex_count:cNn

17723 \cs_new_protected:Npn \int_set_regex_count:Nnn #1#2#3
17724 { \regex_count:nnN {#2} {#3} #1 }
17725 \cs_generate_variant:Nn \int_set_regex_count:Nnn { c }
17726 \cs_new_protected:Npn \int_gset_regex_count:Nnn #1#2#3
17727 {
17728 \group_begin:
17729 \int_set_eq:NN \l__int_internal_a_int #1
17730 \regex_count:nnN {#2} {#3} \l__int_internal_a_int
17731 \int_gset_eq:NN #1 \l__int_internal_a_int
17732 \group_end:
17733 }
17734 \cs_generate_variant:Nn \int_gset_regex_count:Nnn { c }
17735 \cs_new_protected:Npn \int_set_regex_count:NNn #1#2#3
17736 { \regex_count:NnN #2 {#3} #1 }
17737 \cs_generate_variant:Nn \int_set_regex_count:Nnn { c }
17738 \cs_new_protected:Npn \int_gset_regex_count:NNn #1#2#3
17739 {
17740 \group_begin:
17741 \int_set_eq:NN \l__int_internal_a_int #1
17742 \regex_count:NnN #2 {#3} \l__int_internal_a_int
17743 \int_gset_eq:NN #1 \l__int_internal_a_int
17744 \group_end:
17745 }
17746 \cs_generate_variant:Nn \int_gset_regex_count:NNn { c }

(End of definition for \int_set_regex_count:Nnn and others. These functions are documented on page
174.)

59.4 Using integers
\int_use:N
\int_use:c

Here is how counters are accessed. We hand-code the c variant for some speed gain.
17747 \cs_new_eq:NN \int_use:N \tex_the:D
17748 \cs_new:Npn \int_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

854

(End of definition for \int_use:N. This function is documented on page 175.)

59.5 Integer expression conditionals
__int_compare_error:

__int_compare_error:Nw
Those functions are used for comparison tests which use a simple syntax where only
one set of braces is required and additional operators such as != and >= are supported.
The tests first evaluate their left-hand side, with a trailing __int_compare_error:.
This marker is normally not expanded, but if the relation symbol is missing from the
test’s argument, then the marker inserts = (and itself) after triggering the relevant TEX
error. If the first token which appears after evaluating and removing the left-hand side is
not a known relation symbol, then a judiciously placed __int_compare_error:Nw gets
expanded, cleaning up the end of the test and telling the user what the problem was.

17749 \cs_new_protected:Npn __int_compare_error:
17750 {
17751 \if_int_compare:w \c_zero_int \c_zero_int \fi:
17752 =
17753 __int_compare_error:
17754 }
17755 \cs_new:Npn __int_compare_error:Nw
17756 #1#2 \s__int_stop
17757 {
17758 { }
17759 \c_zero_int \fi:
17760 \msg_expandable_error:nnn
17761 { kernel } { unknown-comparison } {#1}
17762 \prg_return_false:
17763 }

(End of definition for __int_compare_error: and __int_compare_error:Nw.)

\int_compare_p:n
\int_compare:nTF
__int_compare:w
__int_compare:Nw
__int_compare:NNw
__int_compare:nnN

__int_compare_end_=:NNw
__int_compare_=:NNw
__int_compare_<:NNw
__int_compare_>:NNw

__int_compare_==:NNw
__int_compare_!=:NNw
__int_compare_<=:NNw
__int_compare_>=:NNw

Comparison tests using a simple syntax where only one set of braces is required, additional
operators such as != and >= are supported, and multiple comparisons can be performed
at once, for instance 0 < 5 <= 1. The idea is to loop through the argument, finding one
operand at a time, and comparing it to the previous one. The looping auxiliary __int_-
compare:Nw reads one ⟨operand⟩ and one ⟨comparison⟩ symbol, and leaves roughly

⟨operand⟩ \prg_return_false: \fi:
\reverse_if:N \if_int_compare:w ⟨operand⟩ ⟨comparison⟩
__int_compare:Nw

in the input stream. Each call to this auxiliary provides the second operand of the last
call’s \if_int_compare:w. If one of the ⟨comparisons⟩ is false, the true branch of the
TEX conditional is taken (because of \reverse_if:N), immediately returning false as
the result of the test. There is no TEX conditional waiting the first operand, so we add
an \if_false: and expand by hand with \int_value:w, thus skipping \prg_return_-
false: on the first iteration.

Before starting the loop, the first step is to make sure that there is at least one
relation symbol. We first let TEX evaluate this left hand side of the (in)equality using
__int_eval:w. Since the relation symbols <, >, = and ! are not allowed in integer
expressions, they would terminate the expression. If the argument contains no relation
symbol, __int_compare_error: is expanded, inserting = and itself after an error. In
all cases, __int_compare:w receives as its argument an integer, a relation symbol, and

855

some more tokens. We then setup the loop, which is ended by the two odd-looking items
e and {=nd_}, with a trailing \s__int_stop used to grab the entire argument when
necessary.

17764 \prg_new_conditional:Npnn \int_compare:n #1 { p , T , F , TF }
17765 {
17766 \exp_after:wN __int_compare:w
17767 \int_value:w __int_eval:w #1 __int_compare_error:
17768 }
17769 \cs_new:Npn __int_compare:w #1 __int_compare_error:
17770 {
17771 \exp_after:wN \if_false: \int_value:w
17772 __int_compare:Nw #1 e { = nd_ } \s__int_stop
17773 }

The goal here is to find an ⟨operand⟩ and a ⟨comparison⟩. The ⟨operand⟩ is already
evaluated, but we cannot yet grab it as an argument. To access the following relation
symbol, we remove the number by applying __int_to_roman:w, after making sure that
the argument becomes non-positive: its roman numeral representation is then empty.
Then probe the first two tokens with __int_compare:NNw to determine the relation
symbol, building a control sequence from it (\token_to_str:N gives better errors if #1
is not a character). All the extended forms have an extra = hence the test for that as a
second token. If the relation symbol is unknown, then the control sequence is turned by
TEX into \scan_stop:, ignored thanks to \unexpanded, and __int_compare_error:Nw
raises an error.

17774 \cs_new:Npn __int_compare:Nw #1#2 \s__int_stop
17775 {
17776 \exp_after:wN __int_compare:NNw
17777 __int_to_roman:w - 0 #2 \s__int_mark
17778 #1#2 \s__int_stop
17779 }
17780 \cs_new:Npn __int_compare:NNw #1#2#3 \s__int_mark
17781 {
17782 __kernel_exp_not:w
17783 \use:c
17784 {
17785 __int_compare_ \token_to_str:N #1
17786 \if_meaning:w = #2 = \fi:
17787 :NNw
17788 }
17789 __int_compare_error:Nw #1
17790 }

When the last ⟨operand⟩ is seen, __int_compare:NNw receives e and =nd_ as arguments,
hence calling __int_compare_end_=:NNw to end the loop: return the result of the last
comparison (involving the operand that we just found). When a normal relation is found,
the appropriate auxiliary calls __int_compare:nnN where #1 is \if_int_compare:w
or \reverse_if:N \if_int_compare:w, #2 is the ⟨operand⟩, and #3 is one of <, =,
or >. As announced earlier, we leave the ⟨operand⟩ for the previous conditional. If this
conditional is true the result of the test is known, so we remove all tokens and return
false. Otherwise, we apply the conditional #1 to the ⟨operand⟩ #2 and the comparison
#3, and call __int_compare:Nw to look for additional operands, after evaluating the
following expression.

17791 \cs_new:cpn { __int_compare_end_=:NNw } #1#2#3 e #4 \s__int_stop

856

17792 {
17793 {#3} \exp_stop_f:
17794 \prg_return_false: \else: \prg_return_true: \fi:
17795 }
17796 \cs_new:Npn __int_compare:nnN #1#2#3
17797 {
17798 {#2} \exp_stop_f:
17799 \prg_return_false: \exp_after:wN __int_use_none_delimit_by_s_stop:w
17800 \fi:
17801 #1 #2 #3 \exp_after:wN __int_compare:Nw \int_value:w __int_eval:w
17802 }

The actual comparisons are then simple function calls, using the relation as delimiter for
a delimited argument and discarding __int_compare_error:Nw ⟨token⟩ responsible for
error detection.

17803 \cs_new:cpn { __int_compare_=:NNw } #1#2#3 =
17804 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
17805 \cs_new:cpn { __int_compare_<:NNw } #1#2#3 <
17806 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} < }
17807 \cs_new:cpn { __int_compare_>:NNw } #1#2#3 >
17808 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} > }
17809 \cs_new:cpn { __int_compare_==:NNw } #1#2#3 ==
17810 { __int_compare:nnN { \reverse_if:N \if_int_compare:w } {#3} = }
17811 \cs_new:cpn { __int_compare_!=:NNw } #1#2#3 !=
17812 { __int_compare:nnN { \if_int_compare:w } {#3} = }
17813 \cs_new:cpn { __int_compare_<=:NNw } #1#2#3 <=
17814 { __int_compare:nnN { \if_int_compare:w } {#3} > }
17815 \cs_new:cpn { __int_compare_>=:NNw } #1#2#3 >=
17816 { __int_compare:nnN { \if_int_compare:w } {#3} < }

(End of definition for \int_compare:nTF and others. This function is documented on page 176.)

\int_compare_p:nNn
\int_compare:nNnTF

More efficient but less natural in typing.
17817 \prg_new_conditional:Npnn \int_compare:nNn #1#2#3 { p , T , F , TF }
17818 {
17819 \if_int_compare:w __int_eval:w #1 #2 __int_eval:w #3 __int_eval_end:
17820 \prg_return_true:
17821 \else:
17822 \prg_return_false:
17823 \fi:
17824 }

(End of definition for \int_compare:nNnTF. This function is documented on page 175.)

\int_if_zero_p:n
\int_if_zero:nTF 17825 \prg_new_conditional:Npnn \int_if_zero:n #1 { p , T , F , TF }

17826 {
17827 \if_int_compare:w __int_eval:w #1 = \c_zero_int
17828 \prg_return_true:
17829 \else:
17830 \prg_return_false:
17831 \fi:
17832 }

(End of definition for \int_if_zero:nTF. This function is documented on page 177.)

857

\int_case:nn
\int_case:nnTF

__int_case:nnTF
__int_case:nw

__int_case_end:nw

For integer cases, the first task to fully expand the check condition. The over all idea is
then much the same as for \str_case:nnTF as described in l3str.

17833 \cs_new:Npn \int_case:nnTF #1
17834 {
17835 \exp:w
17836 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} }
17837 }
17838 \cs_new:Npn \int_case:nnT #1#2#3
17839 {
17840 \exp:w
17841 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} {#3} { }
17842 }
17843 \cs_new:Npn \int_case:nnF #1#2
17844 {
17845 \exp:w
17846 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} { }
17847 }
17848 \cs_new:Npn \int_case:nn #1#2
17849 {
17850 \exp:w
17851 \exp_args:Nf __int_case:nnTF { \int_eval:n {#1} } {#2} { } { }
17852 }
17853 \cs_new:Npn __int_case:nnTF #1#2#3#4
17854 { __int_case:nw {#1} #2 {#1} { } \s__int_mark {#3} \s__int_mark {#4} \s__int_stop }
17855 \cs_new:Npn __int_case:nw #1#2#3
17856 {
17857 \int_compare:nNnTF {#1} = {#2}
17858 { __int_case_end:nw {#3} }
17859 { __int_case:nw {#1} }
17860 }
17861 \cs_new:Npn __int_case_end:nw #1#2#3 \s__int_mark #4#5 \s__int_stop
17862 { \exp_end: #1 #4 }

(End of definition for \int_case:nnTF and others. This function is documented on page 177.)

\int_if_odd_p:n
\int_if_odd:nTF
\int_if_even_p:n
\int_if_even:nTF

A predicate function.
17863 \prg_new_conditional:Npnn \int_if_odd:n #1 { p , T , F , TF}
17864 {
17865 \if_int_odd:w __int_eval:w #1 __int_eval_end:
17866 \prg_return_true:
17867 \else:
17868 \prg_return_false:
17869 \fi:
17870 }
17871 \prg_new_conditional:Npnn \int_if_even:n #1 { p , T , F , TF}
17872 {
17873 \reverse_if:N \if_int_odd:w __int_eval:w #1 __int_eval_end:
17874 \prg_return_true:
17875 \else:
17876 \prg_return_false:
17877 \fi:
17878 }

(End of definition for \int_if_odd:nTF and \int_if_even:nTF. These functions are documented on
page 177.)

858

59.6 Integer expression loops
\int_while_do:nn
\int_until_do:nn
\int_do_while:nn
\int_do_until:nn

These are quite easy given the above functions. The while versions test first and then
execute the body. The do_while does it the other way round.

17879 \cs_new:Npn \int_while_do:nn #1#2
17880 {
17881 \int_compare:nT {#1}
17882 {
17883 #2
17884 \int_while_do:nn {#1} {#2}
17885 }
17886 }
17887 \cs_new:Npn \int_until_do:nn #1#2
17888 {
17889 \int_compare:nF {#1}
17890 {
17891 #2
17892 \int_until_do:nn {#1} {#2}
17893 }
17894 }
17895 \cs_new:Npn \int_do_while:nn #1#2
17896 {
17897 #2
17898 \int_compare:nT {#1}
17899 { \int_do_while:nn {#1} {#2} }
17900 }
17901 \cs_new:Npn \int_do_until:nn #1#2
17902 {
17903 #2
17904 \int_compare:nF {#1}
17905 { \int_do_until:nn {#1} {#2} }
17906 }

(End of definition for \int_while_do:nn and others. These functions are documented on page 178.)

\int_while_do:nNnn
\int_until_do:nNnn
\int_do_while:nNnn
\int_do_until:nNnn

As above but not using the more natural syntax.
17907 \cs_new:Npn \int_while_do:nNnn #1#2#3#4
17908 {
17909 \int_compare:nNnT {#1} #2 {#3}
17910 {
17911 #4
17912 \int_while_do:nNnn {#1} #2 {#3} {#4}
17913 }
17914 }
17915 \cs_new:Npn \int_until_do:nNnn #1#2#3#4
17916 {
17917 \int_compare:nNnF {#1} #2 {#3}
17918 {
17919 #4
17920 \int_until_do:nNnn {#1} #2 {#3} {#4}
17921 }
17922 }
17923 \cs_new:Npn \int_do_while:nNnn #1#2#3#4
17924 {

859

17925 #4
17926 \int_compare:nNnT {#1} #2 {#3}
17927 { \int_do_while:nNnn {#1} #2 {#3} {#4} }
17928 }
17929 \cs_new:Npn \int_do_until:nNnn #1#2#3#4
17930 {
17931 #4
17932 \int_compare:nNnF {#1} #2 {#3}
17933 { \int_do_until:nNnn {#1} #2 {#3} {#4} }
17934 }

(End of definition for \int_while_do:nNnn and others. These functions are documented on page 178.)

59.7 Integer step functions
\int_step_function:nnnN

__int_step:wwwN
__int_step:NwnnN

\int_step_function:nN
\int_step_function:nnN

Before all else, evaluate the initial value, step, and final value. Repeating a function by
steps first needs a check on the direction of the steps. After that, do the function for the
start value then step and loop around. It would be more symmetrical to test for a step
size of zero before checking the sign, but we optimize for the most frequent case (positive
step).

17935 \cs_new:Npn \int_step_function:nnnN #1#2#3
17936 {
17937 \exp_after:wN __int_step:wwwN
17938 \int_value:w __int_eval:w #1 \exp_after:wN ;
17939 \int_value:w __int_eval:w #2 \exp_after:wN ;
17940 \int_value:w __int_eval:w #3 ;
17941 }
17942 \cs_new:Npn __int_step:wwwN #1; #2; #3; #4
17943 {
17944 \int_compare:nNnTF {#2} > \c_zero_int
17945 { __int_step:NwnnN > }
17946 {
17947 \int_compare:nNnTF {#2} = \c_zero_int
17948 {
17949 \msg_expandable_error:nnn
17950 { kernel } { zero-step } {#4}
17951 \prg_break:
17952 }
17953 { __int_step:NwnnN < }
17954 }
17955 #1 ; {#2} {#3} #4
17956 \prg_break_point:
17957 }
17958 \cs_new:Npn __int_step:NwnnN #1#2 ; #3#4#5
17959 {
17960 \if_int_compare:w #2 #1 #4 \exp_stop_f:
17961 \prg_break:n
17962 \fi:
17963 #5 {#2}
17964 \exp_after:wN __int_step:NwnnN
17965 \exp_after:wN #1
17966 \int_value:w __int_eval:w #2 + #3 ; {#3} {#4} #5
17967 }

860

17968 \cs_new:Npn \int_step_function:nN
17969 { \int_step_function:nnnN { 1 } { 1 } }
17970 \cs_new:Npn \int_step_function:nnN #1
17971 { \int_step_function:nnnN {#1} { 1 } }

(End of definition for \int_step_function:nnnN and others. These functions are documented on page
179.)

\int_step_inline:nn
\int_step_inline:nnn

\int_step_inline:nnnn
\int_step_variable:nNn
\int_step_variable:nnNn

\int_step_variable:nnnNn
__int_step:NNnnnn

The approach here is to build a function, with a global integer required to make the
nesting safe (as seen in other in line functions), and map that function using \int_-
step_function:nnnN. We put a \prg_break_point:Nn so that map_break functions
from other modules correctly decrement \g__kernel_prg_map_int before looking for
their own break point. The first argument is \scan_stop:, so that no breaking function
recognizes this break point as its own.

17972 \cs_new_protected:Npn \int_step_inline:nn
17973 { \int_step_inline:nnnn { 1 } { 1 } }
17974 \cs_new_protected:Npn \int_step_inline:nnn #1
17975 { \int_step_inline:nnnn {#1} { 1 } }
17976 \cs_new_protected:Npn \int_step_inline:nnnn
17977 {
17978 \int_gincr:N \g__kernel_prg_map_int
17979 \exp_args:NNc __int_step:NNnnnn
17980 \cs_gset_protected:Npn
17981 { __int_map_ \int_use:N \g__kernel_prg_map_int :w }
17982 }
17983 \cs_new_protected:Npn \int_step_variable:nNn
17984 { \int_step_variable:nnnNn { 1 } { 1 } }
17985 \cs_new_protected:Npn \int_step_variable:nnNn #1
17986 { \int_step_variable:nnnNn {#1} { 1 } }
17987 \cs_new_protected:Npn \int_step_variable:nnnNn #1#2#3#4#5
17988 {
17989 \int_gincr:N \g__kernel_prg_map_int
17990 \exp_args:NNc __int_step:NNnnnn
17991 \cs_gset_protected:Npe
17992 { __int_map_ \int_use:N \g__kernel_prg_map_int :w }
17993 {#1}{#2}{#3}
17994 {
17995 \tl_set:Nn \exp_not:N #4 {##1}
17996 \exp_not:n {#5}
17997 }
17998 }
17999 \cs_new_protected:Npn __int_step:NNnnnn #1#2#3#4#5#6
18000 {
18001 #1 #2 ##1 {#6}
18002 \int_step_function:nnnN {#3} {#4} {#5} #2
18003 \prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int }
18004 }

(End of definition for \int_step_inline:nn and others. These functions are documented on page 179.)

59.8 Formatting integers
\int_to_arabic:n
\int_to_arabic:v

Nothing exciting here.

861

18005 \cs_new_eq:NN \int_to_arabic:n \int_eval:n
18006 \cs_generate_variant:Nn \int_to_arabic:n { v }

(End of definition for \int_to_arabic:n. This function is documented on page 180.)

\int_to_symbols:nnn
__int_to_symbols:nnnn
__int_to_symbols:ennn

For conversion of integers to arbitrary symbols the method is in general as follows. The
input number (#1) is compared to the total number of symbols available at each place
(#2). If the input is larger than the total number of symbols available then the modulus
is needed, with one added so that the positions don’t have to number from zero. Using
an f-type expansion, this is done so that the system is recursive. The actual conversion
function therefore gets a ‘nice’ number at each stage. Of course, if the initial input was
small enough then there is no problem and everything is easy.

18007 \cs_new:Npn \int_to_symbols:nnn #1#2#3
18008 {
18009 \int_compare:nNnTF {#1} > {#2}
18010 {
18011 __int_to_symbols:ennn
18012 {
18013 \int_case:nn
18014 { 1 + \int_mod:nn { #1 - 1 } {#2} }
18015 {#3}
18016 }
18017 {#1} {#2} {#3}
18018 }
18019 { \int_case:nn {#1} {#3} }
18020 }
18021 \cs_new:Npn __int_to_symbols:nnnn #1#2#3#4
18022 {
18023 \exp_args:Nf \int_to_symbols:nnn
18024 { \int_div_truncate:nn { #2 - 1 } {#3} } {#3} {#4}
18025 #1
18026 }
18027 \cs_generate_variant:Nn __int_to_symbols:nnnn { e }

(End of definition for \int_to_symbols:nnn and __int_to_symbols:nnnn. This function is documented
on page 180.)

\int_to_alph:n
\int_to_Alph:n

These both use the above function with input functions that make sense for the alphabet
in English.

18028 \cs_new:Npn \int_to_alph:n #1
18029 {
18030 \int_to_symbols:nnn {#1} { 26 }
18031 {
18032 { 1 } { a }
18033 { 2 } { b }
18034 { 3 } { c }
18035 { 4 } { d }
18036 { 5 } { e }
18037 { 6 } { f }
18038 { 7 } { g }
18039 { 8 } { h }
18040 { 9 } { i }
18041 { 10 } { j }
18042 { 11 } { k }

862

18043 { 12 } { l }
18044 { 13 } { m }
18045 { 14 } { n }
18046 { 15 } { o }
18047 { 16 } { p }
18048 { 17 } { q }
18049 { 18 } { r }
18050 { 19 } { s }
18051 { 20 } { t }
18052 { 21 } { u }
18053 { 22 } { v }
18054 { 23 } { w }
18055 { 24 } { x }
18056 { 25 } { y }
18057 { 26 } { z }
18058 }
18059 }
18060 \cs_new:Npn \int_to_Alph:n #1
18061 {
18062 \int_to_symbols:nnn {#1} { 26 }
18063 {
18064 { 1 } { A }
18065 { 2 } { B }
18066 { 3 } { C }
18067 { 4 } { D }
18068 { 5 } { E }
18069 { 6 } { F }
18070 { 7 } { G }
18071 { 8 } { H }
18072 { 9 } { I }
18073 { 10 } { J }
18074 { 11 } { K }
18075 { 12 } { L }
18076 { 13 } { M }
18077 { 14 } { N }
18078 { 15 } { O }
18079 { 16 } { P }
18080 { 17 } { Q }
18081 { 18 } { R }
18082 { 19 } { S }
18083 { 20 } { T }
18084 { 21 } { U }
18085 { 22 } { V }
18086 { 23 } { W }
18087 { 24 } { X }
18088 { 25 } { Y }
18089 { 26 } { Z }
18090 }
18091 }

(End of definition for \int_to_alph:n and \int_to_Alph:n. These functions are documented on page
180.)

\int_to_base:nn
\int_to_Base:nn

__int_to_base:nn
__int_to_Base:nn

__int_to_base:nnN
__int_to_Base:nnN
__int_to_base:nnnN
__int_to_Base:nnnN
__int_to_letter:n
__int_to_Letter:n

Converting from base ten (#1) to a second base (#2) starts with computing #1: if it is
a complicated calculation, we shouldn’t perform it twice. Then check the sign, store it,

863

either - or \c_empty_tl, and feed the absolute value to the next auxiliary function.
18092 \cs_new:Npn \int_to_base:nn #1
18093 { \exp_args:Nf __int_to_base:nn { \int_eval:n {#1} } }
18094 \cs_new:Npn \int_to_Base:nn #1
18095 { \exp_args:Nf __int_to_Base:nn { \int_eval:n {#1} } }
18096 \cs_new:Npn __int_to_base:nn #1#2
18097 {
18098 \int_compare:nNnTF {#1} < 0
18099 { \exp_args:No __int_to_base:nnN { \use_none:n #1 } {#2} - }
18100 { __int_to_base:nnN {#1} {#2} \c_empty_tl }
18101 }
18102 \cs_new:Npn __int_to_Base:nn #1#2
18103 {
18104 \int_compare:nNnTF {#1} < 0
18105 { \exp_args:No __int_to_Base:nnN { \use_none:n #1 } {#2} - }
18106 { __int_to_Base:nnN {#1} {#2} \c_empty_tl }
18107 }

Here, the idea is to provide a recursive system to deal with the input. The output is built
up after the end of the function. At each pass, the value in #1 is checked to see if it is
less than the new base (#2). If it is, then it is converted directly, putting the sign back
in front. On the other hand, if the value to convert is greater than or equal to the new
base then the modulus and remainder values are found. The modulus is converted to a
symbol and put on the right, and the remainder is carried forward to the next round.

18108 \cs_new:Npn __int_to_base:nnN #1#2#3
18109 {
18110 \int_compare:nNnTF {#1} < {#2}
18111 { \exp_last_unbraced:Nf #3 { __int_to_letter:n {#1} } }
18112 {
18113 \exp_args:Nf __int_to_base:nnnN
18114 { __int_to_letter:n { \int_mod:nn {#1} {#2} } }
18115 {#1}
18116 {#2}
18117 #3
18118 }
18119 }
18120 \cs_new:Npn __int_to_base:nnnN #1#2#3#4
18121 {
18122 \exp_args:Nf __int_to_base:nnN
18123 { \int_div_truncate:nn {#2} {#3} }
18124 {#3}
18125 #4
18126 #1
18127 }
18128 \cs_new:Npn __int_to_Base:nnN #1#2#3
18129 {
18130 \int_compare:nNnTF {#1} < {#2}
18131 { \exp_last_unbraced:Nf #3 { __int_to_Letter:n {#1} } }
18132 {
18133 \exp_args:Nf __int_to_Base:nnnN
18134 { __int_to_Letter:n { \int_mod:nn {#1} {#2} } }
18135 {#1}
18136 {#2}
18137 #3

864

18138 }
18139 }
18140 \cs_new:Npn __int_to_Base:nnnN #1#2#3#4
18141 {
18142 \exp_args:Nf __int_to_Base:nnN
18143 { \int_div_truncate:nn {#2} {#3} }
18144 {#3}
18145 #4
18146 #1
18147 }

Convert to a letter only if necessary, otherwise simply return the value unchanged. It
would be cleaner to use \int_case:nn, but in our case, the cases are contiguous, so it
is forty times faster to use the \if_case:w primitive. The first \exp_after:wN expands
the conditional, jumping to the correct case, the second one expands after the resulting
character to close the conditional. Since #1 might be an expression, and not directly a
single digit, we need to evaluate it properly, and expand the trailing \fi:.

18148 \cs_new:Npn __int_to_letter:n #1
18149 {
18150 \exp_after:wN \exp_after:wN
18151 \if_case:w __int_eval:w #1 - 10 __int_eval_end:
18152 a
18153 \or: b
18154 \or: c
18155 \or: d
18156 \or: e
18157 \or: f
18158 \or: g
18159 \or: h
18160 \or: i
18161 \or: j
18162 \or: k
18163 \or: l
18164 \or: m
18165 \or: n
18166 \or: o
18167 \or: p
18168 \or: q
18169 \or: r
18170 \or: s
18171 \or: t
18172 \or: u
18173 \or: v
18174 \or: w
18175 \or: x
18176 \or: y
18177 \or: z
18178 \else: \int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
18179 \fi:
18180 }
18181 \cs_new:Npn __int_to_Letter:n #1
18182 {
18183 \exp_after:wN \exp_after:wN
18184 \if_case:w __int_eval:w #1 - 10 __int_eval_end:

865

18185 A
18186 \or: B
18187 \or: C
18188 \or: D
18189 \or: E
18190 \or: F
18191 \or: G
18192 \or: H
18193 \or: I
18194 \or: J
18195 \or: K
18196 \or: L
18197 \or: M
18198 \or: N
18199 \or: O
18200 \or: P
18201 \or: Q
18202 \or: R
18203 \or: S
18204 \or: T
18205 \or: U
18206 \or: V
18207 \or: W
18208 \or: X
18209 \or: Y
18210 \or: Z
18211 \else: \int_value:w __int_eval:w #1 \exp_after:wN __int_eval_end:
18212 \fi:
18213 }

(End of definition for \int_to_base:nn and others. These functions are documented on page 181.)

\int_to_bin:n
\int_to_hex:n
\int_to_Hex:n
\int_to_oct:n

Wrappers around the generic function.
18214 \cs_new:Npn \int_to_bin:n #1
18215 { \int_to_base:nn {#1} { 2 } }
18216 \cs_new:Npn \int_to_hex:n #1
18217 { \int_to_base:nn {#1} { 16 } }
18218 \cs_new:Npn \int_to_Hex:n #1
18219 { \int_to_Base:nn {#1} { 16 } }
18220 \cs_new:Npn \int_to_oct:n #1
18221 { \int_to_base:nn {#1} { 8 } }

(End of definition for \int_to_bin:n and others. These functions are documented on page 181.)

\int_to_roman:n
\int_to_Roman:n

__int_to_roman:N
__int_to_roman:N

__int_to_roman_i:w
__int_to_roman_v:w
__int_to_roman_x:w
__int_to_roman_l:w
__int_to_roman_c:w
__int_to_roman_d:w
__int_to_roman_m:w
__int_to_roman_Q:w
__int_to_Roman_i:w
__int_to_Roman_v:w
__int_to_Roman_x:w
__int_to_Roman_l:w
__int_to_Roman_c:w
__int_to_Roman_d:w
__int_to_Roman_m:w
__int_to_Roman_Q:w

The __int_to_roman:w primitive creates tokens of category code 12 (other). Usually,
what is actually wanted is letters. The approach here is to convert the output of the
primitive into letters using appropriate control sequence names. That keeps everything
expandable. The loop is terminated by the conversion of the Q.

18222 \cs_new:Npn \int_to_roman:n #1
18223 {
18224 \exp_after:wN __int_to_roman:N
18225 __int_to_roman:w \int_eval:n {#1} Q
18226 }
18227 \cs_new:Npn __int_to_roman:N #1

866

18228 {
18229 \use:c { __int_to_roman_ #1 :w }
18230 __int_to_roman:N
18231 }
18232 \cs_new:Npn \int_to_Roman:n #1
18233 {
18234 \exp_after:wN __int_to_Roman_aux:N
18235 __int_to_roman:w \int_eval:n {#1} Q
18236 }
18237 \cs_new:Npn __int_to_Roman_aux:N #1
18238 {
18239 \use:c { __int_to_Roman_ #1 :w }
18240 __int_to_Roman_aux:N
18241 }
18242 \cs_new:Npn __int_to_roman_i:w { i }
18243 \cs_new:Npn __int_to_roman_v:w { v }
18244 \cs_new:Npn __int_to_roman_x:w { x }
18245 \cs_new:Npn __int_to_roman_l:w { l }
18246 \cs_new:Npn __int_to_roman_c:w { c }
18247 \cs_new:Npn __int_to_roman_d:w { d }
18248 \cs_new:Npn __int_to_roman_m:w { m }
18249 \cs_new:Npn __int_to_roman_Q:w #1 { }
18250 \cs_new:Npn __int_to_Roman_i:w { I }
18251 \cs_new:Npn __int_to_Roman_v:w { V }
18252 \cs_new:Npn __int_to_Roman_x:w { X }
18253 \cs_new:Npn __int_to_Roman_l:w { L }
18254 \cs_new:Npn __int_to_Roman_c:w { C }
18255 \cs_new:Npn __int_to_Roman_d:w { D }
18256 \cs_new:Npn __int_to_Roman_m:w { M }
18257 \cs_new:Npn __int_to_Roman_Q:w #1 { }

(End of definition for \int_to_roman:n and others. These functions are documented on page 181.)

59.9 Converting from other formats to integers
__int_pass_signs:wn

__int_pass_signs_end:wn
Called as __int_pass_signs:wn ⟨signs and digits⟩ \s__int_stop {⟨code⟩}, this
function leaves in the input stream any sign it finds, then inserts the ⟨code⟩ before
the first non-sign token (and removes \s__int_stop). More precisely, it deletes any +
and passes any - to the input stream, hence should be called in an integer expression.

18258 \cs_new:Npn __int_pass_signs:wn #1
18259 {
18260 \if:w + \if:w - \exp_not:N #1 + \fi: \exp_not:N #1
18261 \exp_after:wN __int_pass_signs:wn
18262 \else:
18263 \exp_after:wN __int_pass_signs_end:wn
18264 \exp_after:wN #1
18265 \fi:
18266 }
18267 \cs_new:Npn __int_pass_signs_end:wn #1 \s__int_stop #2 { #2 #1 }

(End of definition for __int_pass_signs:wn and __int_pass_signs_end:wn.)

\int_from_alph:n
__int_from_alph:nN
__int_from_alph:N

First take care of signs then loop through the input using the recursion quarks. The
__int_from_alph:nN auxiliary collects in its first argument the value obtained so far,

867

and the auxiliary __int_from_alph:N converts one letter to an expression which eval-
uates to the correct number.

18268 \cs_new:Npn \int_from_alph:n #1
18269 {
18270 \int_eval:n
18271 {
18272 \exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1}
18273 \s__int_stop { __int_from_alph:nN { 0 } }
18274 \q__int_recursion_tail \q__int_recursion_stop
18275 }
18276 }
18277 \cs_new:Npn __int_from_alph:nN #1#2
18278 {
18279 __int_if_recursion_tail_stop_do:Nn #2 {#1}
18280 \exp_args:Nf __int_from_alph:nN
18281 { \int_eval:n { #1 * 26 + __int_from_alph:N #2 } }
18282 }
18283 \cs_new:Npn __int_from_alph:N #1
18284 { ‘#1 - \int_compare:nNnTF { ‘#1 } < { 91 } { 64 } { 96 } }

(End of definition for \int_from_alph:n , __int_from_alph:nN , and __int_from_alph:N. This func-
tion is documented on page 181.)

\int_from_base:nn
__int_from_base:nnN
__int_from_base:N

Leave the signs into the integer expression, then loop through characters, collecting the
value found so far in the first argument of __int_from_base:nnN. To convert a single
character, __int_from_base:N checks first for digits, then distinguishes lower from
upper case letters, turning them into the appropriate number. Note that this auxiliary
does not use \int_eval:n, hence is not safe for general use.

18285 \cs_new:Npn \int_from_base:nn #1#2
18286 {
18287 \int_eval:n
18288 {
18289 \exp_after:wN __int_pass_signs:wn \tl_to_str:n {#1}
18290 \s__int_stop { __int_from_base:nnN { 0 } {#2} }
18291 \q__int_recursion_tail \q__int_recursion_stop
18292 }
18293 }
18294 \cs_new:Npn __int_from_base:nnN #1#2#3
18295 {
18296 __int_if_recursion_tail_stop_do:Nn #3 {#1}
18297 \exp_args:Nf __int_from_base:nnN
18298 { \int_eval:n { #1 * #2 + __int_from_base:N #3 } }
18299 {#2}
18300 }
18301 \cs_new:Npn __int_from_base:N #1
18302 {
18303 \int_compare:nNnTF { ‘#1 } < { 58 }
18304 {#1}
18305 { ‘#1 - \int_compare:nNnTF { ‘#1 } < { 91 } { 55 } { 87 } }
18306 }

(End of definition for \int_from_base:nn , __int_from_base:nnN , and __int_from_base:N. This func-
tion is documented on page 182.)

868

\int_from_bin:n
\int_from_hex:n
\int_from_oct:n

Wrappers around the generic function.
18307 \cs_new:Npn \int_from_bin:n #1
18308 { \int_from_base:nn {#1} { 2 } }
18309 \cs_new:Npn \int_from_hex:n #1
18310 { \int_from_base:nn {#1} { 16 } }
18311 \cs_new:Npn \int_from_oct:n #1
18312 { \int_from_base:nn {#1} { 8 } }

(End of definition for \int_from_bin:n , \int_from_hex:n , and \int_from_oct:n. These functions are
documented on page 181.)

\c__int_from_roman_i_int
\c__int_from_roman_v_int
\c__int_from_roman_x_int
\c__int_from_roman_l_int
\c__int_from_roman_c_int
\c__int_from_roman_d_int
\c__int_from_roman_m_int
\c__int_from_roman_I_int
\c__int_from_roman_V_int
\c__int_from_roman_X_int
\c__int_from_roman_L_int
\c__int_from_roman_C_int
\c__int_from_roman_D_int
\c__int_from_roman_M_int

Constants used to convert from Roman numerals to integers.
18313 \int_const:cn { c__int_from_roman_i_int } { 1 }
18314 \int_const:cn { c__int_from_roman_v_int } { 5 }
18315 \int_const:cn { c__int_from_roman_x_int } { 10 }
18316 \int_const:cn { c__int_from_roman_l_int } { 50 }
18317 \int_const:cn { c__int_from_roman_c_int } { 100 }
18318 \int_const:cn { c__int_from_roman_d_int } { 500 }
18319 \int_const:cn { c__int_from_roman_m_int } { 1000 }
18320 \int_const:cn { c__int_from_roman_I_int } { 1 }
18321 \int_const:cn { c__int_from_roman_V_int } { 5 }
18322 \int_const:cn { c__int_from_roman_X_int } { 10 }
18323 \int_const:cn { c__int_from_roman_L_int } { 50 }
18324 \int_const:cn { c__int_from_roman_C_int } { 100 }
18325 \int_const:cn { c__int_from_roman_D_int } { 500 }
18326 \int_const:cn { c__int_from_roman_M_int } { 1000 }

(End of definition for \c__int_from_roman_i_int and others.)

\int_from_roman:n
__int_from_roman:NN

__int_from_roman_error:w

The method here is to iterate through the input, finding the appropriate value for each
letter and building up a sum. This is then evaluated by TEX. If any unknown letter is
found, skip to the closing parenthesis and insert *0-1 afterwards, to replace the value by
−1.

18327 \cs_new:Npn \int_from_roman:n #1
18328 {
18329 \int_eval:n
18330 {
18331 (
18332 0
18333 \exp_after:wN __int_from_roman:NN \tl_to_str:n {#1}
18334 \q__int_recursion_tail \q__int_recursion_tail \q__int_recursion_stop
18335)
18336 }
18337 }
18338 \cs_new:Npn __int_from_roman:NN #1#2
18339 {
18340 __int_if_recursion_tail_stop:N #1
18341 \int_if_exist:cF { c__int_from_roman_ #1 _int }
18342 { __int_from_roman_error:w }
18343 __int_if_recursion_tail_stop_do:Nn #2
18344 { + \use:c { c__int_from_roman_ #1 _int } }
18345 \int_if_exist:cF { c__int_from_roman_ #2 _int }
18346 { __int_from_roman_error:w }
18347 \int_compare:nNnTF

869

18348 { \use:c { c__int_from_roman_ #1 _int } }
18349 <
18350 { \use:c { c__int_from_roman_ #2 _int } }
18351 {
18352 + \use:c { c__int_from_roman_ #2 _int }
18353 - \use:c { c__int_from_roman_ #1 _int }
18354 __int_from_roman:NN
18355 }
18356 {
18357 + \use:c { c__int_from_roman_ #1 _int }
18358 __int_from_roman:NN #2
18359 }
18360 }
18361 \cs_new:Npn __int_from_roman_error:w #1 \q__int_recursion_stop #2
18362 { #2 * 0 - 1 }

(End of definition for \int_from_roman:n , __int_from_roman:NN , and __int_from_roman_error:w.
This function is documented on page 182.)

59.10 Viewing integer
\int_show:N
\int_show:c

__int_show:nN

Diagnostics.
18363 \cs_new_eq:NN \int_show:N __kernel_register_show:N
18364 \cs_generate_variant:Nn \int_show:N { c }

(End of definition for \int_show:N and __int_show:nN. This function is documented on page 182.)

\int_show:n We don’t use the TEX primitive \showthe to show integer expressions: this gives a more
unified output.

18365 \cs_new_protected:Npn \int_show:n
18366 { __kernel_msg_show_eval:Nn \int_eval:n }

(End of definition for \int_show:n. This function is documented on page 183.)

\int_log:N
\int_log:c

Diagnostics.
18367 \cs_new_eq:NN \int_log:N __kernel_register_log:N
18368 \cs_generate_variant:Nn \int_log:N { c }

(End of definition for \int_log:N. This function is documented on page 183.)

\int_log:n Similar to \int_show:n.
18369 \cs_new_protected:Npn \int_log:n
18370 { __kernel_msg_log_eval:Nn \int_eval:n }

(End of definition for \int_log:n. This function is documented on page 183.)

59.11 Random integers
\int_rand:nn Defined in l3fp-random.

(End of definition for \int_rand:nn. This function is documented on page 182.)

870

59.12 Constant integers
\c_zero_int
\c_one_int

The zero is defined in l3basics.
18371 \int_const:Nn \c_one_int { 1 }

(End of definition for \c_zero_int and \c_one_int. These variables are documented on page 183.)

\c_max_int The largest number allowed is 231 − 1
18372 \int_const:Nn \c_max_int { 2 147 483 647 }

(End of definition for \c_max_int. This variable is documented on page 183.)

\c_max_char_int The largest character code is 1114111 (hexadecimal 10FFFF) in X ETEX and LuaTEX and
255 in other engines. In many places pTEX and upTEX support larger character codes but
for instance the values of \lccode are restricted to [0, 255].

18373 \int_const:Nn \c_max_char_int
18374 {
18375 \if_int_odd:w 0
18376 \cs_if_exist:NT \tex_luatexversion:D { 1 }
18377 \cs_if_exist:NT \tex_XeTeXversion:D { 1 } ~
18378 "10FFFF
18379 \else:
18380 "FF
18381 \fi:
18382 }

(End of definition for \c_max_char_int. This variable is documented on page 183.)

59.13 Scratch integers
\l_tmpa_int
\l_tmpb_int
\g_tmpa_int
\g_tmpb_int

We provide two local and two global scratch counters, maybe we need more or less.
18383 \int_new:N \l_tmpa_int
18384 \int_new:N \l_tmpb_int
18385 \int_new:N \g_tmpa_int
18386 \int_new:N \g_tmpb_int

(End of definition for \l_tmpa_int and others. These variables are documented on page 183.)

59.14 Integers for earlier modules
<@@=seq>

\l__int_internal_a_int
\l__int_internal_b_int 18387 \int_new:N \l__int_internal_a_int

18388 \int_new:N \l__int_internal_b_int

(End of definition for \l__int_internal_a_int and \l__int_internal_b_int.)

18389 ⟨/package⟩

871

Chapter 60

l3flag implementation

18390 ⟨∗package⟩

18391 ⟨@@=flag⟩

The following test files are used for this code: m3flag001.

60.1 Protected flag commands
The height h of a flag (which is initially zero) is stored by setting control sequences of the
form \⟨flag name⟩⟨integer⟩ to \relax for 0 ≤ ⟨integer⟩ < h. These control sequences
are produced by \cs:w ⟨flag var⟩ ⟨integer⟩ \cs_end:, namely the ⟨flag var⟩ is
actually a (protected) macro expanding to its own csname.

\flag_new:N
\flag_new:c

Evaluate the csname of #1 for use in constructing the various indexed macros.
18392 \cs_new_protected:Npn \flag_new:N #1
18393 { \cs_new_protected:Npe #1 { \cs_to_str:N #1 } }
18394 \cs_generate_variant:Nn \flag_new:N { c }

(End of definition for \flag_new:N. This function is documented on page 186.)

\l_tmpa_flag
\l_tmpb_flag

Two flag variables for scratch use.
18395 \flag_new:N \l_tmpa_flag
18396 \flag_new:N \l_tmpb_flag

(End of definition for \l_tmpa_flag and \l_tmpb_flag. These variables are documented on page 188.)

\flag_clear:N
\flag_clear:c

__flag_clear:wN

Undefine control sequences, starting from the 0 flag, upwards, until reaching an undefined
control sequence. We don’t use \cs_undefine:c because that would act globally.

18397 \cs_new_protected:Npn \flag_clear:N #1
18398 {
18399 __flag_clear:wN 0 ; #1
18400 \prg_break_point:
18401 }
18402 \cs_generate_variant:Nn \flag_clear:N { c }
18403 \cs_new_protected:Npn __flag_clear:wN #1 ; #2
18404 {
18405 \if_cs_exist:w #2 #1 \cs_end: \else:
18406 \prg_break:n
18407 \fi:

872

18408 \cs_set_eq:cN { #2 #1 } \tex_undefined:D
18409 \exp_after:wN __flag_clear:wN
18410 \int_value:w \int_eval:w \c_one_int + #1 ; #2
18411 }

(End of definition for \flag_clear:N and __flag_clear:wN. This function is documented on page 187.)

\flag_clear_new:N
\flag_clear_new:c

As for other datatypes, clear the ⟨flag var⟩ or create a new one, as appropriate.
18412 \cs_new_protected:Npn \flag_clear_new:N #1
18413 { \flag_if_exist:NTF #1 { \flag_clear:N } { \flag_new:N } #1 }
18414 \cs_generate_variant:Nn \flag_clear_new:N { c }

(End of definition for \flag_clear_new:N. This function is documented on page 187.)

\flag_show:N
\flag_show:c
\flag_log:N
\flag_log:c

__flag_show:NN

Show the height (terminal or log file) using appropriate l3msg auxiliaries.
18415 \cs_new_protected:Npn \flag_show:N { __flag_show:NN \tl_show:n }
18416 \cs_generate_variant:Nn \flag_show:N { c }
18417 \cs_new_protected:Npn \flag_log:N { __flag_show:NN \tl_log:n }
18418 \cs_generate_variant:Nn \flag_log:N { c }
18419 \cs_new_protected:Npn __flag_show:NN #1#2
18420 {
18421 __kernel_chk_defined:NT #2
18422 { \exp_args:Ne #1 { \tl_to_str:n { #2 height } = \flag_height:N #2 } }
18423 }

(End of definition for \flag_show:N , \flag_log:N , and __flag_show:NN. These functions are docu-
mented on page 187.)

60.2 Expandable flag commands
\flag_if_exist_p:N
\flag_if_exist_p:c
\flag_if_exist:NTF
\flag_if_exist:cTF

Copies of the cs functions defined in l3basics.
18424 \prg_new_eq_conditional:NNn \flag_if_exist:N \cs_if_exist:N
18425 { TF , T , F , p }
18426 \prg_new_eq_conditional:NNn \flag_if_exist:c \cs_if_exist:c
18427 { TF , T , F , p }

(End of definition for \flag_if_exist:NTF. This function is documented on page 187.)

\flag_if_raised_p:N
\flag_if_raised_p:c
\flag_if_raised:NTF
\flag_if_raised:cTF

Test if the flag has a non-zero height, by checking the 0 control sequence.
18428 \prg_new_conditional:Npnn \flag_if_raised:N #1 { p , T , F , TF }
18429 {
18430 \if_cs_exist:w #1 0 \cs_end:
18431 \prg_return_true:
18432 \else:
18433 \prg_return_false:
18434 \fi:
18435 }
18436 \prg_generate_conditional_variant:Nnn \flag_if_raised:N
18437 { c } { p , T , F , TF }

(End of definition for \flag_if_raised:NTF. This function is documented on page 187.)

873

\flag_height:N
\flag_height:c

__flag_height_loop:wN
__flag_height_end:wN

Extract the value of the flag by going through all of the control sequences starting from
0.

18438 \cs_new:Npn \flag_height:N #1 { __flag_height_loop:wN 0; #1 }
18439 \cs_new:Npn __flag_height_loop:wN #1 ; #2
18440 {
18441 \if_cs_exist:w #2 #1 \cs_end: \else:
18442 \exp_after:wN __flag_height_end:wN
18443 \fi:
18444 \exp_after:wN __flag_height_loop:wN
18445 \int_value:w \int_eval:w \c_one_int + #1 ; #2
18446 }
18447 \cs_new:Npn __flag_height_end:wN #1 + #2 ; #3 {#2}
18448 \cs_generate_variant:Nn \flag_height:N { c }

(End of definition for \flag_height:N , __flag_height_loop:wN , and __flag_height_end:wN. This
function is documented on page 187.)

\flag_raise:N
\flag_raise:c

Change the appropriate control sequence to \relax by expanding a \cs:w . . . \cs_end:
construction, then pass it to \use_none:n to avoid leaving anything in the input stream.

18449 \cs_new:Npn \flag_raise:N #1
18450 { \exp_after:wN \use_none:n \cs:w #1 \flag_height:N #1 \cs_end: }
18451 \cs_generate_variant:Nn \flag_raise:N { c }

(End of definition for \flag_raise:N. This function is documented on page 187.)

\flag_ensure_raised:N
\flag_ensure_raised:c

Pass the control sequence with name ⟨flag name⟩0 to \use_none:n. Constructing the
control sequence ensures that it changes from being undefined (if it was so) to being
\relax.

18452 \cs_new:Npn \flag_ensure_raised:N #1
18453 { \exp_after:wN \use_none:n \cs:w #1 0 \cs_end: }
18454 \cs_generate_variant:Nn \flag_ensure_raised:N { c }

(End of definition for \flag_ensure_raised:N. This function is documented on page 187.)

60.3 Old n-type flag commands
Here we keep the old flag commands since our policy is to no longer delete deprecated
functions. The idea is to simply map ⟨flag name⟩ to \l_⟨flag name⟩_flag. When the
debugging code is activated, it checks existence of the N-type flag variables that result.

\flag_new:n
\flag_clear:n

\flag_clear_new:n
\flag_if_exist_p:n
\flag_if_exist:nTF
\flag_if_raised_p:n
\flag_if_raised:nTF

\flag_height:n
\flag_raise:n

\flag_ensure_raised:n

18455 \cs_new_protected:Npn \flag_new:n #1 { \flag_new:c { l_#1_flag } }
18456 \cs_new_protected:Npn \flag_clear:n #1 { \flag_clear:c { l_#1_flag } }
18457 \cs_new_protected:Npn \flag_clear_new:n #1 { \flag_clear_new:c { l_#1_flag } }
18458 \cs_new:Npn \flag_if_exist_p:n #1 { \flag_if_exist_p:c { l_#1_flag } }
18459 \cs_new:Npn \flag_if_exist:nT #1 { \flag_if_exist:cT { l_#1_flag } }
18460 \cs_new:Npn \flag_if_exist:nF #1 { \flag_if_exist:cF { l_#1_flag } }
18461 \cs_new:Npn \flag_if_exist:nTF #1 { \flag_if_exist:cTF { l_#1_flag } }
18462 \cs_new:Npn \flag_if_raised_p:n #1 { \flag_if_raised_p:c { l_#1_flag } }
18463 \cs_new:Npn \flag_if_raised:nT #1 { \flag_if_raised:cT { l_#1_flag } }
18464 \cs_new:Npn \flag_if_raised:nF #1 { \flag_if_raised:cF { l_#1_flag } }
18465 \cs_new:Npn \flag_if_raised:nTF #1 { \flag_if_raised:cTF { l_#1_flag } }
18466 \cs_new:Npn \flag_height:n #1 { \flag_height:c { l_#1_flag } }

874

18467 \cs_new:Npn \flag_raise:n #1 { \flag_raise:c { l_#1_flag } }
18468 \cs_new:Npn \flag_ensure_raised:n #1 { \flag_ensure_raised:c { l_#1_flag } }

(End of definition for \flag_new:n and others.)

\flag_show:n
\flag_log:n

__flag_show:Nn

To avoid changing the output here we mostly keep the old code.
18469 \cs_new_protected:Npn \flag_show:n { __flag_show:Nn \tl_show:n }
18470 \cs_new_protected:Npn \flag_log:n { __flag_show:Nn \tl_log:n }
18471 \cs_new_protected:Npn __flag_show:Nn #1#2
18472 {
18473 \exp_args:Nc __kernel_chk_defined:NT { l_#2_flag }
18474 {
18475 \exp_args:Ne #1
18476 { \tl_to_str:n { flag~#2~height } = \flag_height:n {#2} }
18477 }
18478 }

(End of definition for \flag_show:n , \flag_log:n , and __flag_show:Nn.)

18479 ⟨/package⟩

875

Chapter 61

l3clist implementation

The following test files are used for this code: m3clist002.
18480 ⟨∗package⟩

18481 ⟨@@=clist⟩

\c_empty_clist An empty comma list is simply an empty token list.
18482 \cs_new_eq:NN \c_empty_clist \c_empty_tl

(End of definition for \c_empty_clist. This variable is documented on page 199.)

\l__clist_internal_clist Scratch space for various internal uses. This comma list variable cannot be declared as
such because it comes before \clist_new:N

18483 \tl_new:N \l__clist_internal_clist

(End of definition for \l__clist_internal_clist.)

\s__clist_mark
\s__clist_stop

Internal scan marks.
18484 \scan_new:N \s__clist_mark
18485 \scan_new:N \s__clist_stop

(End of definition for \s__clist_mark and \s__clist_stop.)

__clist_use_none_delimit_by_s_mark:w
__clist_use_none_delimit_by_s_stop:w

__clist_use_i_delimit_by_s_stop:nw

Functions to gobble up to a scan mark.
18486 \cs_new:Npn __clist_use_none_delimit_by_s_mark:w #1 \s__clist_mark { }
18487 \cs_new:Npn __clist_use_none_delimit_by_s_stop:w #1 \s__clist_stop { }
18488 \cs_new:Npn __clist_use_i_delimit_by_s_stop:nw #1 #2 \s__clist_stop {#1}

(End of definition for __clist_use_none_delimit_by_s_mark:w , __clist_use_none_delimit_by_s_-
stop:w , and __clist_use_i_delimit_by_s_stop:nw.)

__clist_tmp:w A temporary function for various purposes.
18489 \cs_new_protected:Npn __clist_tmp:w { }

(End of definition for __clist_tmp:w.)

876

61.1 Removing spaces around items
__clist_trim_next:w Called as \exp:w __clist_trim_next:w \prg_do_nothing: ⟨comma list⟩ . . . it ex-

pands to {⟨trimmed item⟩} where the ⟨trimmed item⟩ is the first non-empty result from
removing spaces from both ends of comma-delimited items in the ⟨comma list⟩. The
\prg_do_nothing: marker avoids losing braces. The test for blank items is a somewhat
optimized \tl_if_empty:oTF construction; if blank, another item is sought, otherwise
trim spaces.

18490 \cs_new:Npn __clist_trim_next:w #1 ,
18491 {
18492 \tl_if_empty:oTF { \use_none:nn #1 ? }
18493 { __clist_trim_next:w \prg_do_nothing: }
18494 { \tl_trim_spaces_apply:oN {#1} \exp_end: }
18495 }

(End of definition for __clist_trim_next:w.)

__clist_sanitize:n
__clist_sanitize:Nn

The auxiliary __clist_sanitize:Nn receives a delimiter (\c_empty_tl the first time,
afterwards a comma) and that item as arguments. Unless we are done with the loop it
calls __clist_wrap_item:w to unbrace the item (using a comma delimiter is safe since
#2 came from removing spaces from an argument delimited by a comma) and possibly
re-brace it if needed.

18496 \cs_new:Npn __clist_sanitize:n #1
18497 {
18498 \exp_after:wN __clist_sanitize:Nn \exp_after:wN \c_empty_tl
18499 \exp:w __clist_trim_next:w \prg_do_nothing:
18500 #1 , \s__clist_stop \prg_break: , \prg_break_point:
18501 }
18502 \cs_new:Npn __clist_sanitize:Nn #1#2
18503 {
18504 __clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop
18505 #1 __clist_wrap_item:w #2 ,
18506 \exp_after:wN __clist_sanitize:Nn \exp_after:wN ,
18507 \exp:w __clist_trim_next:w \prg_do_nothing:
18508 }

(End of definition for __clist_sanitize:n and __clist_sanitize:Nn.)

__clist_if_wrap:nTF
__clist_if_wrap:w

True if the argument must be wrapped to avoid getting altered by some clist operations.
That is the case whenever the argument

• starts or end with a space or contains a comma,

• is empty, or

• consists of a single braced group.

If the argument starts or ends with a space or contains a comma then one of the three
arguments of __clist_if_wrap:w will have its end delimiter (partly) in one of the three
copies of #1 in __clist_if_wrap:nTF; this has a knock-on effect meaning that the result
of the expansion is not empty; in that case, wrap. Otherwise, the argument is safe unless
it starts with a brace group (or is empty) and it is empty or consists of a single n-type
argument.

18509 \prg_new_conditional:Npnn __clist_if_wrap:n #1 { TF }

877

18510 {
18511 \tl_if_empty:oTF
18512 {
18513 __clist_if_wrap:w
18514 \s__clist_mark ? #1 ~ \s__clist_mark ? ~ #1
18515 \s__clist_mark , ~ \s__clist_mark #1 ,
18516 }
18517 {
18518 \tl_if_head_is_group:nTF { #1 { } }
18519 {
18520 \tl_if_empty:nTF {#1}
18521 { \prg_return_true: }
18522 {
18523 \tl_if_empty:oTF { \use_none:n #1}
18524 { \prg_return_true: }
18525 { \prg_return_false: }
18526 }
18527 }
18528 { \prg_return_false: }
18529 }
18530 { \prg_return_true: }
18531 }
18532 \cs_new:Npn __clist_if_wrap:w #1 \s__clist_mark ? ~ #2 ~ \s__clist_mark #3 , { }

(End of definition for __clist_if_wrap:nTF and __clist_if_wrap:w.)

__clist_wrap_item:w Safe items are put in \exp_not:n, otherwise we put an extra set of braces.
18533 \cs_new:Npn __clist_wrap_item:w #1 ,
18534 { __clist_if_wrap:nTF {#1} { \exp_not:n { {#1} } } { \exp_not:n {#1} } }

(End of definition for __clist_wrap_item:w.)

61.2 Allocation and initialisation
\clist_new:N
\clist_new:c

Internally, comma lists are just token lists.
18535 \cs_new_eq:NN \clist_new:N \tl_new:N
18536 \cs_new_eq:NN \clist_new:c \tl_new:c

(End of definition for \clist_new:N. This function is documented on page 190.)

\clist_const:Nn
\clist_const:Ne
\clist_const:Nx
\clist_const:cn
\clist_const:ce
\clist_const:cx

Creating and initializing a constant comma list is done by sanitizing all items (stripping
spaces and braces).

18537 \cs_new_protected:Npn \clist_const:Nn #1#2
18538 { \tl_const:Ne #1 { __clist_sanitize:n {#2} } }
18539 \cs_generate_variant:Nn \clist_const:Nn { Ne , c , ce }
18540 \cs_generate_variant:Nn \clist_const:Nn { Nx , cx }

(End of definition for \clist_const:Nn. This function is documented on page 190.)

\clist_clear:N
\clist_clear:c

\clist_gclear:N
\clist_gclear:c

Clearing comma lists is just the same as clearing token lists.
18541 \cs_new_eq:NN \clist_clear:N \tl_clear:N
18542 \cs_new_eq:NN \clist_clear:c \tl_clear:c
18543 \cs_new_eq:NN \clist_gclear:N \tl_gclear:N
18544 \cs_new_eq:NN \clist_gclear:c \tl_gclear:c

878

(End of definition for \clist_clear:N and \clist_gclear:N. These functions are documented on page
190.)

\clist_clear_new:N
\clist_clear_new:c

\clist_gclear_new:N
\clist_gclear_new:c

Once again a copy from the token list functions.
18545 \cs_new_eq:NN \clist_clear_new:N \tl_clear_new:N
18546 \cs_new_eq:NN \clist_clear_new:c \tl_clear_new:c
18547 \cs_new_eq:NN \clist_gclear_new:N \tl_gclear_new:N
18548 \cs_new_eq:NN \clist_gclear_new:c \tl_gclear_new:c

(End of definition for \clist_clear_new:N and \clist_gclear_new:N. These functions are documented
on page 190.)

\clist_set_eq:NN
\clist_set_eq:cN
\clist_set_eq:Nc
\clist_set_eq:cc
\clist_gset_eq:NN
\clist_gset_eq:cN
\clist_gset_eq:Nc
\clist_gset_eq:cc

Once again, these are simple copies from the token list functions.
18549 \cs_new_eq:NN \clist_set_eq:NN \tl_set_eq:NN
18550 \cs_new_eq:NN \clist_set_eq:Nc \tl_set_eq:Nc
18551 \cs_new_eq:NN \clist_set_eq:cN \tl_set_eq:cN
18552 \cs_new_eq:NN \clist_set_eq:cc \tl_set_eq:cc
18553 \cs_new_eq:NN \clist_gset_eq:NN \tl_gset_eq:NN
18554 \cs_new_eq:NN \clist_gset_eq:Nc \tl_gset_eq:Nc
18555 \cs_new_eq:NN \clist_gset_eq:cN \tl_gset_eq:cN
18556 \cs_new_eq:NN \clist_gset_eq:cc \tl_gset_eq:cc

(End of definition for \clist_set_eq:NN and \clist_gset_eq:NN. These functions are documented on
page 190.)

\clist_set_from_seq:NN
\clist_set_from_seq:cN
\clist_set_from_seq:Nc
\clist_set_from_seq:cc
\clist_gset_from_seq:NN
\clist_gset_from_seq:cN
\clist_gset_from_seq:Nc
\clist_gset_from_seq:cc

__clist_set_from_seq:NNNN
__clist_set_from_seq:n

Setting a comma list from a comma-separated list is done using a simple mapping. Safe
items are put in \exp_not:n, otherwise we put an extra set of braces. The first comma
must be removed, except in the case of an empty comma-list.

18557 \cs_new_protected:Npn \clist_set_from_seq:NN
18558 { __clist_set_from_seq:NNNN \clist_clear:N __kernel_tl_set:Nx }
18559 \cs_new_protected:Npn \clist_gset_from_seq:NN
18560 { __clist_set_from_seq:NNNN \clist_gclear:N __kernel_tl_gset:Nx }
18561 \cs_new_protected:Npn __clist_set_from_seq:NNNN #1#2#3#4
18562 {
18563 \seq_if_empty:NTF #4
18564 { #1 #3 }
18565 {
18566 #2 #3
18567 {
18568 \exp_after:wN \use_none:n \exp:w \exp_end_continue_f:w
18569 \seq_map_function:NN #4 __clist_set_from_seq:n
18570 }
18571 }
18572 }
18573 \cs_new:Npn __clist_set_from_seq:n #1
18574 {
18575 ,
18576 __clist_if_wrap:nTF {#1}
18577 { \exp_not:n { {#1} } }
18578 { \exp_not:n {#1} }
18579 }
18580 \cs_generate_variant:Nn \clist_set_from_seq:NN { Nc }
18581 \cs_generate_variant:Nn \clist_set_from_seq:NN { c , cc }
18582 \cs_generate_variant:Nn \clist_gset_from_seq:NN { Nc }
18583 \cs_generate_variant:Nn \clist_gset_from_seq:NN { c , cc }

879

(End of definition for \clist_set_from_seq:NN and others. These functions are documented on page
190.)

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat:NNN
\clist_gconcat:ccc

__clist_concat:NNNN

Concatenating comma lists is not quite as easy as it seems, as there needs to be the
correct addition of a comma to the output. So a little work to do.

18584 \cs_new_protected:Npn \clist_concat:NNN
18585 { __clist_concat:NNNN __kernel_tl_set:Nx }
18586 \cs_new_protected:Npn \clist_gconcat:NNN
18587 { __clist_concat:NNNN __kernel_tl_gset:Nx }
18588 \cs_new_protected:Npn __clist_concat:NNNN #1#2#3#4
18589 {
18590 #1 #2
18591 {
18592 \exp_not:o #3
18593 \clist_if_empty:NF #3 { \clist_if_empty:NF #4 { , } }
18594 \exp_not:o #4
18595 }
18596 }
18597 \cs_generate_variant:Nn \clist_concat:NNN { ccc }
18598 \cs_generate_variant:Nn \clist_gconcat:NNN { ccc }

(End of definition for \clist_concat:NNN , \clist_gconcat:NNN , and __clist_concat:NNNN. These
functions are documented on page 191.)

\clist_if_exist_p:N
\clist_if_exist_p:c
\clist_if_exist:NTF
\clist_if_exist:cTF

Copies of the cs functions defined in l3basics.
18599 \prg_new_eq_conditional:NNn \clist_if_exist:N \cs_if_exist:N
18600 { TF , T , F , p }
18601 \prg_new_eq_conditional:NNn \clist_if_exist:c \cs_if_exist:c
18602 { TF , T , F , p }

(End of definition for \clist_if_exist:NTF. This function is documented on page 191.)

61.3 Adding data to comma lists
\clist_set:Nn
\clist_set:NV
\clist_set:Ne
\clist_set:No
\clist_set:Nx
\clist_set:cn
\clist_set:cV
\clist_set:ce
\clist_set:co
\clist_set:cx
\clist_gset:Nn
\clist_gset:NV
\clist_gset:Ne
\clist_gset:No
\clist_gset:Nx
\clist_gset:cn
\clist_gset:cV
\clist_gset:ce
\clist_gset:co
\clist_gset:cx

18603 \cs_new_protected:Npn \clist_set:Nn #1#2
18604 { __kernel_tl_set:Nx #1 { __clist_sanitize:n {#2} } }
18605 \cs_new_protected:Npn \clist_gset:Nn #1#2
18606 { __kernel_tl_gset:Nx #1 { __clist_sanitize:n {#2} } }
18607 \cs_generate_variant:Nn \clist_set:Nn { NV , Ne , c , cV , ce }
18608 \cs_generate_variant:Nn \clist_set:Nn { No , Nx , co , cx }
18609 \cs_generate_variant:Nn \clist_gset:Nn { NV , Ne , c , cV , ce }
18610 \cs_generate_variant:Nn \clist_gset:Nn { No , Nx , co , cx }

(End of definition for \clist_set:Nn and \clist_gset:Nn. These functions are documented on page
191.)

\clist_put_left:Nn
\clist_put_left:NV
\clist_put_left:Nv
\clist_put_left:Ne
\clist_put_left:No
\clist_put_left:Nx
\clist_put_left:cn
\clist_put_left:cV
\clist_put_left:cv
\clist_put_left:ce
\clist_put_left:co
\clist_put_left:cx
\clist_gput_left:Nn
\clist_gput_left:NV
\clist_gput_left:Nv
\clist_gput_left:Ne
\clist_gput_left:No
\clist_gput_left:Nx
\clist_gput_left:cn
\clist_gput_left:cV
\clist_gput_left:cv
\clist_gput_left:ce
\clist_gput_left:co
\clist_gput_left:cx

__clist_put_left:NNNn

Everything is based on concatenation after storing in \l__clist_internal_clist. This
avoids having to worry here about space-trimming and so on.

18611 \cs_new_protected:Npn \clist_put_left:Nn
18612 { __clist_put_left:NNNn \clist_concat:NNN \clist_set:Nn }
18613 \cs_new_protected:Npn \clist_gput_left:Nn
18614 { __clist_put_left:NNNn \clist_gconcat:NNN \clist_set:Nn }
18615 \cs_new_protected:Npn __clist_put_left:NNNn #1#2#3#4

880

18616 {
18617 #2 \l__clist_internal_clist {#4}
18618 #1 #3 \l__clist_internal_clist #3
18619 }
18620 \cs_generate_variant:Nn \clist_put_left:Nn { NV , Nv , Ne , c , cV , cv , ce }
18621 \cs_generate_variant:Nn \clist_put_left:Nn { No , Nx , co , cx }
18622 \cs_generate_variant:Nn \clist_gput_left:Nn { NV , Nv , Ne , c , cV , cv , ce }
18623 \cs_generate_variant:Nn \clist_gput_left:Nn { No , Nx , co , cx }

(End of definition for \clist_put_left:Nn , \clist_gput_left:Nn , and __clist_put_left:NNNn. These
functions are documented on page 191.)

\clist_put_right:Nn
\clist_put_right:NV
\clist_put_right:Nv
\clist_put_right:Ne
\clist_put_right:No
\clist_put_right:Nx
\clist_put_right:cn
\clist_put_right:cV
\clist_put_right:cv
\clist_put_right:ce
\clist_put_right:co
\clist_put_right:cx
\clist_gput_right:Nn
\clist_gput_right:NV
\clist_gput_right:Nv
\clist_gput_right:Ne
\clist_gput_right:No
\clist_gput_right:Nx
\clist_gput_right:cn
\clist_gput_right:cV
\clist_gput_right:cv
\clist_gput_right:ce
\clist_gput_right:cx
\clist_gput_right:co

__clist_put_right:NNNn

18624 \cs_new_protected:Npn \clist_put_right:Nn
18625 { __clist_put_right:NNNn \clist_concat:NNN \clist_set:Nn }
18626 \cs_new_protected:Npn \clist_gput_right:Nn
18627 { __clist_put_right:NNNn \clist_gconcat:NNN \clist_set:Nn }
18628 \cs_new_protected:Npn __clist_put_right:NNNn #1#2#3#4
18629 {
18630 #2 \l__clist_internal_clist {#4}
18631 #1 #3 #3 \l__clist_internal_clist
18632 }
18633 \cs_generate_variant:Nn \clist_put_right:Nn
18634 { NV , Nv , Ne , c , cV , cv , ce }
18635 \cs_generate_variant:Nn \clist_put_right:Nn
18636 { No , Nx , co , cx }
18637 \cs_generate_variant:Nn \clist_gput_right:Nn
18638 { NV , Nv , Ne , c , cV , cv , ce }
18639 \cs_generate_variant:Nn \clist_gput_right:Nn
18640 { No , Nx , co , cx }

(End of definition for \clist_put_right:Nn , \clist_gput_right:Nn , and __clist_put_right:NNNn.
These functions are documented on page 191.)

61.4 Comma lists as stacks
\clist_get:NN
\clist_get:cN

__clist_get:wN

Getting an item from the left of a comma list is pretty easy: just trim off the first item
using the comma. No need to trim spaces as comma-list variables are assumed to have
“cleaned-up” items. (Note that grabbing a comma-delimited item removes an outer pair
of braces if present, exactly as needed to uncover the underlying item.)

18641 \cs_new_protected:Npn \clist_get:NN #1#2
18642 {
18643 \if_meaning:w #1 \c_empty_clist
18644 \tl_set:Nn #2 { \q_no_value }
18645 \else:
18646 \exp_after:wN __clist_get:wN #1 , \s__clist_stop #2
18647 \fi:
18648 }
18649 \cs_new_protected:Npn __clist_get:wN #1 , #2 \s__clist_stop #3
18650 { \tl_set:Nn #3 {#1} }
18651 \cs_generate_variant:Nn \clist_get:NN { c }

(End of definition for \clist_get:NN and __clist_get:wN. This function is documented on page 197.)

881

\clist_pop:NN
\clist_pop:cN
\clist_gpop:NN
\clist_gpop:cN

__clist_pop:NNN
__clist_pop:wwNNN

__clist_pop:wN

An empty clist leads to \q_no_value, otherwise grab until the first comma and assign to
the variable. The second argument of __clist_pop:wwNNN is a comma list ending in a
comma and \s__clist_mark, unless the original clist contained exactly one item: then
the argument is just \s__clist_mark. The next auxiliary picks either \exp_not:n or
\use_none:n as #2, ensuring that the result can safely be an empty comma list.

18652 \cs_new_protected:Npn \clist_pop:NN
18653 { __clist_pop:NNN __kernel_tl_set:Nx }
18654 \cs_new_protected:Npn \clist_gpop:NN
18655 { __clist_pop:NNN __kernel_tl_gset:Nx }
18656 \cs_new_protected:Npn __clist_pop:NNN #1#2#3
18657 {
18658 \if_meaning:w #2 \c_empty_clist
18659 \tl_set:Nn #3 { \q_no_value }
18660 \else:
18661 \exp_after:wN __clist_pop:wwNNN #2 , \s__clist_mark \s__clist_stop #1#2#3
18662 \fi:
18663 }
18664 \cs_new_protected:Npn __clist_pop:wwNNN #1 , #2 \s__clist_stop #3#4#5
18665 {
18666 \tl_set:Nn #5 {#1}
18667 #3 #4
18668 {
18669 __clist_pop:wN \prg_do_nothing:
18670 #2 \exp_not:o
18671 , \s__clist_mark \use_none:n
18672 \s__clist_stop
18673 }
18674 }
18675 \cs_new:Npn __clist_pop:wN #1 , \s__clist_mark #2 #3 \s__clist_stop { #2 {#1} }
18676 \cs_generate_variant:Nn \clist_pop:NN { c }
18677 \cs_generate_variant:Nn \clist_gpop:NN { c }

(End of definition for \clist_pop:NN and others. These functions are documented on page 197.)

\clist_get:NNTF
\clist_get:cNTF
\clist_pop:NNTF
\clist_pop:cNTF

\clist_gpop:NNTF
\clist_gpop:cNTF

__clist_pop_TF:NNN

The same, as branching code: very similar to the above.
18678 \prg_new_protected_conditional:Npnn \clist_get:NN #1#2 { T , F , TF }
18679 {
18680 \if_meaning:w #1 \c_empty_clist
18681 \prg_return_false:
18682 \else:
18683 \exp_after:wN __clist_get:wN #1 , \s__clist_stop #2
18684 \prg_return_true:
18685 \fi:
18686 }
18687 \prg_generate_conditional_variant:Nnn \clist_get:NN { c } { T , F , TF }
18688 \prg_new_protected_conditional:Npnn \clist_pop:NN #1#2 { T , F , TF }
18689 { __clist_pop_TF:NNN __kernel_tl_set:Nx #1 #2 }
18690 \prg_new_protected_conditional:Npnn \clist_gpop:NN #1#2 { T , F , TF }
18691 { __clist_pop_TF:NNN __kernel_tl_gset:Nx #1 #2 }
18692 \cs_new_protected:Npn __clist_pop_TF:NNN #1#2#3
18693 {
18694 \if_meaning:w #2 \c_empty_clist
18695 \prg_return_false:
18696 \else:

882

18697 \exp_after:wN __clist_pop:wwNNN #2 , \s__clist_mark \s__clist_stop #1#2#3
18698 \prg_return_true:
18699 \fi:
18700 }
18701 \prg_generate_conditional_variant:Nnn \clist_pop:NN { c } { T , F , TF }
18702 \prg_generate_conditional_variant:Nnn \clist_gpop:NN { c } { T , F , TF }

(End of definition for \clist_get:NNTF and others. These functions are documented on page 197.)

\clist_push:Nn
\clist_push:NV
\clist_push:No
\clist_push:Nx
\clist_push:cn
\clist_push:cV
\clist_push:co
\clist_push:cx

\clist_gpush:Nn
\clist_gpush:NV
\clist_gpush:No
\clist_gpush:Nx
\clist_gpush:cn
\clist_gpush:cV
\clist_gpush:co
\clist_gpush:cx

Pushing to a comma list is the same as adding on the left.
18703 \cs_new_eq:NN \clist_push:Nn \clist_put_left:Nn
18704 \cs_generate_variant:Nn \clist_push:Nn { NV , No , Nx , c , cV , co , cx }
18705 \cs_new_eq:NN \clist_gpush:Nn \clist_gput_left:Nn
18706 \cs_generate_variant:Nn \clist_gpush:Nn { NV , No , Nx , c , cV , co , cx }

(End of definition for \clist_push:Nn and \clist_gpush:Nn. These functions are documented on page
198.)

61.5 Modifying comma lists
\l__clist_internal_remove_clist

\l__clist_internal_remove_seq
An internal comma list and a sequence for the removal routines.

18707 \clist_new:N \l__clist_internal_remove_clist
18708 \seq_new:N \l__clist_internal_remove_seq

(End of definition for \l__clist_internal_remove_clist and \l__clist_internal_remove_seq.)

\clist_remove_duplicates:N
\clist_remove_duplicates:c

\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

__clist_remove_duplicates:NN

Removing duplicates means making a new list then copying it.
18709 \cs_new_protected:Npn \clist_remove_duplicates:N
18710 { __clist_remove_duplicates:NN \clist_set_eq:NN }
18711 \cs_new_protected:Npn \clist_gremove_duplicates:N
18712 { __clist_remove_duplicates:NN \clist_gset_eq:NN }
18713 \cs_new_protected:Npn __clist_remove_duplicates:NN #1#2
18714 {
18715 \clist_clear:N \l__clist_internal_remove_clist
18716 \clist_map_inline:Nn #2
18717 {
18718 \clist_if_in:NnF \l__clist_internal_remove_clist {##1}
18719 {
18720 \tl_put_right:Ne \l__clist_internal_remove_clist
18721 {
18722 \clist_if_empty:NF \l__clist_internal_remove_clist { , }
18723 __clist_if_wrap:nTF {##1} { \exp_not:n { {##1} } } { \exp_not:n {##1} }
18724 }
18725 }
18726 }
18727 #1 #2 \l__clist_internal_remove_clist
18728 }
18729 \cs_generate_variant:Nn \clist_remove_duplicates:N { c }
18730 \cs_generate_variant:Nn \clist_gremove_duplicates:N { c }

(End of definition for \clist_remove_duplicates:N , \clist_gremove_duplicates:N , and __clist_-
remove_duplicates:NN. These functions are documented on page 192.)

883

\clist_remove_all:Nn
\clist_remove_all:cn
\clist_remove_all:NV
\clist_remove_all:cV
\clist_remove_all:Ne
\clist_remove_all:ce
\clist_gremove_all:Nn
\clist_gremove_all:cn
\clist_gremove_all:NV
\clist_gremove_all:cV
\clist_gremove_all:Ne
\clist_gremove_all:ce

__clist_remove_all:NNNn
__clist_remove_all:w
__clist_remove_all:

The method used here for safe items is very similar to \tl_replace_all:Nnn. However,
if the item contains commas or leading/trailing spaces, or is empty, or consists of a
single brace group, we know that it can only appear within braces so the code would
fail; instead just convert to a sequence and do the removal with l3seq code (it involves
somewhat elaborate code to do most of the work expandably but the final token list
comparisons non-expandably).

For “safe” items, build a function delimited by the ⟨item⟩ that should be removed,
surrounded with commas, and call that function followed by the expanded comma list,
and another copy of the ⟨item⟩. The loop is controlled by the argument grabbed by
__clist_remove_all:w: when the item was found, the \s__clist_mark delimiter used
is the one inserted by __clist_tmp:w, and __clist_use_none_delimit_by_s_stop:w
is deleted. At the end, the final ⟨item⟩ is grabbed, and the argument of __clist_-
tmp:w contains \s__clist_mark: in that case, __clist_remove_all:w removes the
second \s__clist_mark (inserted by __clist_tmp:w), and lets __clist_use_none_-
delimit_by_s_stop:w act.

No brace is lost because items are always grabbed with a leading comma. The
result of the first assignment has an extra leading comma, which we remove in a second
assignment. Two exceptions: if the clist lost all of its elements, the result is empty, and
we shouldn’t remove anything; if the clist started up empty, the first step happens to
turn it into a single comma, and the second step removes it.

18731 \cs_new_protected:Npn \clist_remove_all:Nn
18732 { __clist_remove_all:NNNn \clist_set_from_seq:NN __kernel_tl_set:Nx }
18733 \cs_new_protected:Npn \clist_gremove_all:Nn
18734 { __clist_remove_all:NNNn \clist_gset_from_seq:NN __kernel_tl_gset:Nx }
18735 \cs_new_protected:Npn __clist_remove_all:NNNn #1#2#3#4
18736 {
18737 __clist_if_wrap:nTF {#4}
18738 {
18739 \seq_set_from_clist:NN \l__clist_internal_remove_seq #3
18740 \seq_remove_all:Nn \l__clist_internal_remove_seq {#4}
18741 #1 #3 \l__clist_internal_remove_seq
18742 }
18743 {
18744 \cs_set:Npn __clist_tmp:w ##1 , #4 ,
18745 {
18746 ##1
18747 , \s__clist_mark , __clist_use_none_delimit_by_s_stop:w ,
18748 __clist_remove_all:
18749 }
18750 #2 #3
18751 {
18752 \exp_after:wN __clist_remove_all:
18753 #3 , \s__clist_mark , #4 , \s__clist_stop
18754 }
18755 \clist_if_empty:NF #3
18756 {
18757 #2 #3
18758 {
18759 \exp_args:No \exp_not:o
18760 { \exp_after:wN \use_none:n #3 }
18761 }
18762 }

884

18763 }
18764 }
18765 \cs_new:Npn __clist_remove_all:
18766 { \exp_after:wN __clist_remove_all:w __clist_tmp:w , }
18767 \cs_new:Npn __clist_remove_all:w #1 , \s__clist_mark , #2 , { \exp_not:n {#1} }
18768 \cs_generate_variant:Nn \clist_remove_all:Nn { c , NV , cV , Ne , ce }
18769 \cs_generate_variant:Nn \clist_gremove_all:Nn { c , NV , cV , Ne , ce }

(End of definition for \clist_remove_all:Nn and others. These functions are documented on page 192.)

\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

Use \clist_reverse:n in an e-expanding assignment. The extra work that \clist_-
reverse:n does to preserve braces and spaces would not be needed for the well-controlled
case of N-type comma lists, but the slow-down is not too bad.

18770 \cs_new_protected:Npn \clist_reverse:N #1
18771 { __kernel_tl_set:Nx #1 { \exp_args:No \clist_reverse:n {#1} } }
18772 \cs_new_protected:Npn \clist_greverse:N #1
18773 { __kernel_tl_gset:Nx #1 { \exp_args:No \clist_reverse:n {#1} } }
18774 \cs_generate_variant:Nn \clist_reverse:N { c }
18775 \cs_generate_variant:Nn \clist_greverse:N { c }

(End of definition for \clist_reverse:N and \clist_greverse:N. These functions are documented on
page 192.)

\clist_reverse:n
__clist_reverse:wwNww
__clist_reverse_end:ww

The reversed token list is built one item at a time, and stored between \s__clist_-
stop and \s__clist_mark, in the form of ? followed by zero or more instances of
“⟨item⟩,”. We start from a comma list “⟨item1⟩,...,⟨itemn⟩”. During the loop, the
auxiliary __clist_reverse:wwNww receives “?⟨itemi⟩” as #1, “⟨itemi+1⟩,...,⟨itemn⟩”
as #2, __clist_reverse:wwNww as #3, what remains until \s__clist_stop as #4, and
“⟨itemi−1⟩,...,⟨item1⟩,” as #5. The auxiliary moves #1 just before #5, with a comma,
and calls itself (#3). After the last item is moved, __clist_reverse:wwNww receives
“\s__clist_mark __clist_reverse:wwNww !” as its argument #1, thus __clist_-
reverse_end:ww as its argument #3. This second auxiliary cleans up until the marker !,
removes the trailing comma (introduced when the first item was moved after \s__clist_-
stop), and leaves its argument #1 within \exp_not:n. There is also a need to remove a
leading comma, hence \exp_not:o and \use_none:n.

18776 \cs_new:Npn \clist_reverse:n #1
18777 {
18778 __clist_reverse:wwNww ? #1 ,
18779 \s__clist_mark __clist_reverse:wwNww ! ,
18780 \s__clist_mark __clist_reverse_end:ww
18781 \s__clist_stop ? \s__clist_mark
18782 }
18783 \cs_new:Npn __clist_reverse:wwNww
18784 #1 , #2 \s__clist_mark #3 #4 \s__clist_stop ? #5 \s__clist_mark
18785 { #3 ? #2 \s__clist_mark #3 #4 \s__clist_stop #1 , #5 \s__clist_mark }
18786 \cs_new:Npn __clist_reverse_end:ww #1 ! #2 , \s__clist_mark
18787 { \exp_not:o { \use_none:n #2 } }

(End of definition for \clist_reverse:n , __clist_reverse:wwNww , and __clist_reverse_end:ww.
This function is documented on page 192.)

\clist_sort:Nn
\clist_sort:cn

\clist_gsort:Nn
\clist_gsort:cn

Implemented in l3sort.

(End of definition for \clist_sort:Nn and \clist_gsort:Nn. These functions are documented on page
193.)

885

61.6 Comma list conditionals
\clist_if_empty_p:N
\clist_if_empty_p:c
\clist_if_empty:NTF
\clist_if_empty:cTF

Simple copies from the token list variable material.
18788 \prg_new_eq_conditional:NNn \clist_if_empty:N \tl_if_empty:N
18789 { p , T , F , TF }
18790 \prg_new_eq_conditional:NNn \clist_if_empty:c \tl_if_empty:c
18791 { p , T , F , TF }

(End of definition for \clist_if_empty:NTF. This function is documented on page 193.)

\clist_if_empty_p:n
\clist_if_empty:nTF

__clist_if_empty_n:w
__clist_if_empty_n:wNw

As usual, we insert a token (here ?) before grabbing any argument: this avoids losing
braces. The argument of \tl_if_empty:oTF is empty if #1 is ? followed by blank spaces
(besides, this particular variant of the emptiness test is optimized). If the item of the
comma list is blank, grab the next one. As soon as one item is non-blank, exit: the second
auxiliary grabs \prg_return_false: as #2, unless every item in the comma list was blank
and the loop actually got broken by the trailing \s__clist_mark \prg_return_false:
item.

18792 \prg_new_conditional:Npnn \clist_if_empty:n #1 { p , T , F , TF }
18793 {
18794 __clist_if_empty_n:w ? #1
18795 , \s__clist_mark \prg_return_false:
18796 , \s__clist_mark \prg_return_true:
18797 \s__clist_stop
18798 }
18799 \cs_new:Npn __clist_if_empty_n:w #1 ,
18800 {
18801 \tl_if_empty:oTF { \use_none:nn #1 ? }
18802 { __clist_if_empty_n:w ? }
18803 { __clist_if_empty_n:wNw }
18804 }
18805 \cs_new:Npn __clist_if_empty_n:wNw #1 \s__clist_mark #2#3 \s__clist_stop {#2}

(End of definition for \clist_if_empty:nTF , __clist_if_empty_n:w , and __clist_if_empty_n:wNw.
This function is documented on page 193.)

\clist_if_in:NnTF
\clist_if_in:NVTF
\clist_if_in:NoTF
\clist_if_in:cnTF
\clist_if_in:cVTF
\clist_if_in:coTF
\clist_if_in:nnTF
\clist_if_in:nVTF
\clist_if_in:noTF

__clist_if_in_return:nnN

For “safe” items, we simply surround the comma list, and the item, with commas, then
use the same code as for \tl_if_in:Nn. For “unsafe” items we follow the same route as
\seq_if_in:Nn, mapping through the list a comparison function. If found, return true
and remove \prg_return_false:.

18806 \prg_new_protected_conditional:Npnn \clist_if_in:Nn #1#2 { T , F , TF }
18807 {
18808 \exp_args:No __clist_if_in_return:nnN #1 {#2} #1
18809 }
18810 \prg_new_protected_conditional:Npnn \clist_if_in:nn #1#2 { T , F , TF }
18811 {
18812 \clist_set:Nn \l__clist_internal_clist {#1}
18813 \exp_args:No __clist_if_in_return:nnN \l__clist_internal_clist {#2}
18814 \l__clist_internal_clist
18815 }
18816 \cs_new_protected:Npn __clist_if_in_return:nnN #1#2#3
18817 {
18818 __clist_if_wrap:nTF {#2}
18819 {
18820 \cs_set:Npe __clist_tmp:w ##1

886

18821 {
18822 \exp_not:N \tl_if_eq:nnT {##1}
18823 \exp_not:n
18824 {
18825 {#2}
18826 { \clist_map_break:n { \prg_return_true: \use_none:n } }
18827 }
18828 }
18829 \clist_map_function:NN #3 __clist_tmp:w
18830 \prg_return_false:
18831 }
18832 {
18833 \cs_set:Npn __clist_tmp:w ##1 ,#2, { }
18834 \tl_if_empty:oTF
18835 { __clist_tmp:w ,#1, {} {} ,#2, }
18836 { \prg_return_false: } { \prg_return_true: }
18837 }
18838 }
18839 \prg_generate_conditional_variant:Nnn \clist_if_in:Nn
18840 { NV , No , c , cV , co } { T , F , TF }
18841 \prg_generate_conditional_variant:Nnn \clist_if_in:nn
18842 { nV , no } { T , F , TF }

(End of definition for \clist_if_in:NnTF , \clist_if_in:nnTF , and __clist_if_in_return:nnN. These
functions are documented on page 193.)

61.7 Mapping over comma lists
\clist_map_function:NN
\clist_map_function:cN

__clist_map_function:Nw
__clist_map_function_end:w

If the variable is empty, the mapping is skipped (otherwise, that comma-list would be
seen as consisting of one empty item). Then loop over the comma-list, grabbing eight
comma-delimited items at a time. The end is marked by \s__clist_stop, which may
not appear in any of the items. Once the last group of eight items has been reached,
we go through them more slowly using __clist_map_function_end:w. The auxiliary
function __clist_map_function:Nw is also used in some other clist mappings.

18843 \cs_new:Npn \clist_map_function:NN #1#2
18844 {
18845 \clist_if_empty:NF #1
18846 {
18847 \exp_after:wN __clist_map_function:Nw \exp_after:wN #2 #1 ,
18848 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18849 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18850 \prg_break_point:Nn \clist_map_break: { }
18851 }
18852 }
18853 \cs_new:Npn __clist_map_function:Nw #1 #2, #3, #4, #5, #6, #7, #8, #9,
18854 {
18855 __clist_use_none_delimit_by_s_stop:w
18856 #9 __clist_map_function_end:w \s__clist_stop
18857 #1 {#2} #1 {#3} #1 {#4} #1 {#5} #1 {#6} #1 {#7} #1 {#8} #1 {#9}
18858 __clist_map_function:Nw #1
18859 }
18860 \cs_new:Npn __clist_map_function_end:w \s__clist_stop #1#2
18861 {

887

18862 __clist_use_none_delimit_by_s_stop:w #2 \clist_map_break: \s__clist_stop
18863 #1 {#2}
18864 __clist_map_function_end:w \s__clist_stop
18865 }
18866 \cs_generate_variant:Nn \clist_map_function:NN { c }

(End of definition for \clist_map_function:NN , __clist_map_function:Nw , and __clist_map_-
function_end:w. This function is documented on page 194.)

\clist_map_function:nN
\clist_map_function:eN

__clist_map_function_n:Nn
__clist_map_unbrace:wn

The n-type mapping function is a bit more awkward, since spaces must be trimmed from
each item. Space trimming is again based on __clist_trim_next:w. The auxiliary
__clist_map_function_n:Nn receives as arguments the function, and the next non-
empty item (after space trimming but before brace removal). One level of braces is
removed by __clist_map_unbrace:wn.

18867 \cs_new:Npn \clist_map_function:nN #1#2
18868 {
18869 \exp_after:wN __clist_map_function_n:Nn \exp_after:wN #2
18870 \exp:w __clist_trim_next:w \prg_do_nothing: #1 ,
18871 \s__clist_stop \clist_map_break: ,
18872 \prg_break_point:Nn \clist_map_break: { }
18873 }
18874 \cs_generate_variant:Nn \clist_map_function:nN { e }
18875 \cs_new:Npn __clist_map_function_n:Nn #1 #2
18876 {
18877 __clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop
18878 __clist_map_unbrace:wn #2 , #1
18879 \exp_after:wN __clist_map_function_n:Nn \exp_after:wN #1
18880 \exp:w __clist_trim_next:w \prg_do_nothing:
18881 }
18882 \cs_new:Npn __clist_map_unbrace:wn #1, #2 { #2 {#1} }

(End of definition for \clist_map_function:nN , __clist_map_function_n:Nn , and __clist_map_-
unbrace:wn. This function is documented on page 194.)

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Inline mapping is done by creating a suitable function “on the fly”: this is done globally
to avoid any issues with TEX’s groups. We use a different function for each level of
nesting.

Since the mapping is non-expandable, we can perform the space-trimming needed
by the n version simply by storing the comma-list in a variable. We don’t need a different
comma-list for each nesting level: the comma-list is expanded before the mapping starts.

18883 \cs_new_protected:Npn \clist_map_inline:Nn #1#2
18884 {
18885 \clist_if_empty:NF #1
18886 {
18887 \int_gincr:N \g__kernel_prg_map_int
18888 \cs_gset_protected:cpn
18889 { __clist_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
18890 \exp_last_unbraced:Nco __clist_map_function:Nw
18891 { __clist_map_ \int_use:N \g__kernel_prg_map_int :w }
18892 #1 ,
18893 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18894 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18895 \prg_break_point:Nn \clist_map_break:
18896 { \int_gdecr:N \g__kernel_prg_map_int }

888

18897 }
18898 }
18899 \cs_new_protected:Npn \clist_map_inline:nn #1
18900 {
18901 \clist_set:Nn \l__clist_internal_clist {#1}
18902 \clist_map_inline:Nn \l__clist_internal_clist
18903 }
18904 \cs_generate_variant:Nn \clist_map_inline:Nn { c }

(End of definition for \clist_map_inline:Nn and \clist_map_inline:nn. These functions are docu-
mented on page 194.)

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

__clist_map_variable:Nnn

The N-type version is a straightforward application of \clist_map_tokens:Nn, calling
__clist_map_variable:Nnn for each item to assign the variable and run the user’s
code. The n-type version is not implemented in terms of the n-type function \clist_-
map_tokens:Nn, because here we are allowed to clean up the n-type comma list non-
expandably.

18905 \cs_new_protected:Npn \clist_map_variable:NNn #1#2#3
18906 { \clist_map_tokens:Nn #1 { __clist_map_variable:Nnn #2 {#3} } }
18907 \cs_generate_variant:Nn \clist_map_variable:NNn { c }
18908 \cs_new_protected:Npn __clist_map_variable:Nnn #1#2#3
18909 { \tl_set:Nn #1 {#3} #2 }
18910 \cs_new_protected:Npn \clist_map_variable:nNn #1
18911 {
18912 \clist_set:Nn \l__clist_internal_clist {#1}
18913 \clist_map_variable:NNn \l__clist_internal_clist
18914 }

(End of definition for \clist_map_variable:NNn , \clist_map_variable:nNn , and __clist_map_-
variable:Nnn. These functions are documented on page 194.)

\clist_map_tokens:Nn
\clist_map_tokens:cn

__clist_map_tokens:nw
__clist_map_tokens_end:w

Essentially a copy of \clist_map_function:NN with braces added.
18915 \cs_new:Npn \clist_map_tokens:Nn #1#2
18916 {
18917 \clist_if_empty:NF #1
18918 {
18919 \exp_last_unbraced:Nno __clist_map_tokens:nw {#2} #1 ,
18920 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18921 \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop ,
18922 \prg_break_point:Nn \clist_map_break: { }
18923 }
18924 }
18925 \cs_new:Npn __clist_map_tokens:nw #1 #2, #3, #4, #5, #6, #7, #8, #9,
18926 {
18927 __clist_use_none_delimit_by_s_stop:w
18928 #9 __clist_map_tokens_end:w \s__clist_stop
18929 \use:n {#1} {#2} \use:n {#1} {#3} \use:n {#1} {#4} \use:n {#1} {#5}
18930 \use:n {#1} {#6} \use:n {#1} {#7} \use:n {#1} {#8} \use:n {#1} {#9}
18931 __clist_map_tokens:nw {#1}
18932 }
18933 \cs_new:Npn __clist_map_tokens_end:w \s__clist_stop \use:n #1#2
18934 {
18935 __clist_use_none_delimit_by_s_stop:w #2 \clist_map_break: \s__clist_stop
18936 #1 {#2}

889

18937 __clist_map_tokens_end:w \s__clist_stop
18938 }
18939 \cs_generate_variant:Nn \clist_map_tokens:Nn { c }

(End of definition for \clist_map_tokens:Nn , __clist_map_tokens:nw , and __clist_map_tokens_-
end:w. This function is documented on page 194.)

\clist_map_tokens:nn
__clist_map_tokens_n:nw

Similar to \clist_map_function:nN but with a different way of grabbing items because
we cannot use \exp_after:wN to pass the ⟨code⟩.

18940 \cs_new:Npn \clist_map_tokens:nn #1#2
18941 {
18942 __clist_map_tokens_n:nw {#2}
18943 \prg_do_nothing: #1 , \s__clist_stop \clist_map_break: ,
18944 \prg_break_point:Nn \clist_map_break: { }
18945 }
18946 \cs_new:Npn __clist_map_tokens_n:nw #1#2 ,
18947 {
18948 \tl_if_empty:oF { \use_none:nn #2 ? }
18949 {
18950 __clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop
18951 \tl_trim_spaces_apply:oN {#2} \use_ii_i:nn
18952 __clist_map_unbrace:wn , {#1}
18953 }
18954 __clist_map_tokens_n:nw {#1} \prg_do_nothing:
18955 }

(End of definition for \clist_map_tokens:nn and __clist_map_tokens_n:nw. This function is docu-
mented on page 194.)

\clist_map_break:
\clist_map_break:n

The break statements use the general \prg_map_break:Nn mechanism.
18956 \cs_new:Npn \clist_map_break:
18957 { \prg_map_break:Nn \clist_map_break: { } }
18958 \cs_new:Npn \clist_map_break:n
18959 { \prg_map_break:Nn \clist_map_break: }

(End of definition for \clist_map_break: and \clist_map_break:n. These functions are documented
on page 194.)

\clist_count:N
\clist_count:c
\clist_count:n
\clist_count:e

__clist_count:n
__clist_count:w

Counting the items in a comma list is done using the same approach as for other token
count functions: turn each entry into a +1 then use integer evaluation to actually do the
mathematics. In the case of an n-type comma-list, we could of course use \clist_map_-
function:nN, but that is very slow, because it carefully removes spaces. Instead, we loop
manually, and skip blank items (but not {}, hence the extra spaces).

18960 \cs_new:Npn \clist_count:N #1
18961 {
18962 \int_eval:n
18963 {
18964 0
18965 \clist_map_function:NN #1 __clist_count:n
18966 }
18967 }
18968 \cs_generate_variant:Nn \clist_count:N { c }
18969 \cs_new:Npn __clist_count:n #1 { + 1 }
18970 \cs_set_protected:Npn __clist_tmp:w #1
18971 {

890

18972 \cs_new:Npn \clist_count:n ##1
18973 {
18974 \int_eval:n
18975 {
18976 0
18977 __clist_count:w #1
18978 ##1 , \s__clist_stop \prg_break: , \prg_break_point:
18979 }
18980 }
18981 \cs_new:Npn __clist_count:w ##1 ,
18982 {
18983 __clist_use_none_delimit_by_s_stop:w ##1 \s__clist_stop
18984 \tl_if_blank:nF {##1} { + 1 }
18985 __clist_count:w #1
18986 }
18987 }
18988 \exp_args:No __clist_tmp:w \c_space_tl
18989 \cs_generate_variant:Nn \clist_count:n { e }

(End of definition for \clist_count:N and others. These functions are documented on page 195.)

61.8 Using comma lists
\clist_use:Nnnn
\clist_use:cnnn
__clist_use:wwn

__clist_use:nwwwwnwn
__clist_use:nwwn

\clist_use:Nn
\clist_use:cn

First check that the variable exists. Then count the items in the comma list. If it has
none, output nothing. If it has one item, output that item, brace stripped (note that
space-trimming has already been done when the comma list was assigned). If it has two,
place the ⟨separator between two⟩ in the middle.

Otherwise, __clist_use:nwwwwnwn takes the following arguments; 1: a ⟨separator⟩,
2, 3, 4: three items from the comma list (or quarks), 5: the rest of the comma list, 6: a
⟨continuation⟩ function (use_ii or use_iii with its ⟨separator⟩ argument), 7: junk,
and 8: the temporary result, which is built in a brace group following \s__clist_stop.
The ⟨separator⟩ and the first of the three items are placed in the result, then we use
the ⟨continuation⟩, placing the remaining two items after it. When we begin this loop,
the three items really belong to the comma list, the first \s__clist_mark is taken as a
delimiter to the use_ii function, and the continuation is use_ii itself. When we reach
the last two items of the original token list, \s__clist_mark is taken as a third item,
and now the second \s__clist_mark serves as a delimiter to use_ii, switching to the
other ⟨continuation⟩, use_iii, which uses the ⟨separator between final two⟩.

18990 \cs_new:Npn \clist_use:Nnnn #1#2#3#4
18991 {
18992 \clist_if_exist:NTF #1
18993 {
18994 \int_case:nnF { \clist_count:N #1 }
18995 {
18996 { 0 } { }
18997 { 1 } { \exp_after:wN __clist_use:wwn #1 , , { } }
18998 { 2 } { \exp_after:wN __clist_use:wwn #1 , {#2} }
18999 }
19000 {
19001 \exp_after:wN __clist_use:nwwwwnwn
19002 \exp_after:wN { \exp_after:wN } #1 ,
19003 \s__clist_mark , { __clist_use:nwwwwnwn {#3} }

891

19004 \s__clist_mark , { __clist_use:nwwn {#4} }
19005 \s__clist_stop { }
19006 }
19007 }
19008 {
19009 \msg_expandable_error:nnn
19010 { kernel } { bad-variable } {#1}
19011 }
19012 }
19013 \cs_generate_variant:Nn \clist_use:Nnnn { c }
19014 \cs_new:Npn __clist_use:wwn #1 , #2 , #3 { \exp_not:n { #1 #3 #2 } }
19015 \cs_new:Npn __clist_use:nwwwwnwn
19016 #1#2 , #3 , #4 , #5 \s__clist_mark , #6#7 \s__clist_stop #8
19017 { #6 {#3} , {#4} , #5 \s__clist_mark , {#6} #7 \s__clist_stop { #8 #1 #2 } }
19018 \cs_new:Npn __clist_use:nwwn #1#2 , #3 \s__clist_stop #4
19019 { \exp_not:n { #4 #1 #2 } }
19020 \cs_new:Npn \clist_use:Nn #1#2
19021 { \clist_use:Nnnn #1 {#2} {#2} {#2} }
19022 \cs_generate_variant:Nn \clist_use:Nn { c }

(End of definition for \clist_use:Nnnn and others. These functions are documented on page 196.)

\clist_use:N
\clist_use:c 19023 \cs_new_eq:NN \clist_use:N \tl_use:N

19024 \cs_generate_variant:Nn \clist_use:N { c }

(End of definition for \clist_use:N. This function is documented on page 196.)

\clist_use:nnnn
\clist_use:nn

__clist_use:Nw
__clist_use_one:w
__clist_use_end:w
__clist_use_more:w

Items are grabbed by __clist_use:Nw, which detects blank items with a \tl_if_-
empty:oTF test (in which case it recurses). Non-blank items are either the end of the
list, in which case the argument #1 of __clist_use:Nw is used to properly end the
list, or are normal items, which must be trimmed and properly unbraced. As we find
successive items, the long list of __clist_use:Nw calls gets shortened and we end up
calling __clist_use_more:w once we have found 3 items. This auxiliary leaves the first-
found item and the general separator, and calls __clist_use:Nw to find more items. A
subtlety is that we use __clist_use_end:w both in the case of a two-item list and for
the last two items of a general list: to get the correct separator, __clist_use_more:w
replaces the separator-of-two by the last-separator when called, namely as soon as we
have found three items.

19025 \cs_new:Npn \clist_use:nnnn #1#2#3#4
19026 {
19027 __clist_use:Nw __clist_use_none_delimit_by_s_stop:w
19028 __clist_use:Nw __clist_use_one:w
19029 __clist_use:Nw __clist_use_end:w
19030 __clist_use_more:w ;
19031 {#2} {#3} {#4} ;
19032 \prg_do_nothing: #1 , \s__clist_mark ,
19033 \s__clist_stop
19034 }
19035 \cs_new:Npn __clist_use:Nw #1#2 ; #3 ; #4 ,
19036 {
19037 \tl_if_empty:oTF { \use_none:nn #4 ? }
19038 { __clist_use:Nw #1#2 ; }
19039 {

892

19040 __clist_use_none_delimit_by_s_mark:w #4 #1 \s__clist_mark
19041 \tl_trim_spaces_apply:oN {#4} \use_ii_i:nn
19042 __clist_map_unbrace:wn , { #2 ; }
19043 }
19044 #3 ; \prg_do_nothing:
19045 }
19046 \cs_new:Npn __clist_use_one:w \s__clist_mark #1 , #2#3#4 \s__clist_stop
19047 { \exp_not:n {#3} }
19048 \cs_new:Npn __clist_use_end:w
19049 \s__clist_mark #1 , #2#3#4#5#6 \s__clist_stop
19050 { \exp_not:n { #4 #5 #3 } }
19051 \cs_new:Npn __clist_use_more:w ; #1#2#3#4#5#6 ;
19052 {
19053 \exp_not:n { #3 #5 }
19054 __clist_use:Nw __clist_use_end:w __clist_use_more:w ;
19055 {#1} {#2} {#6} {#5} {#6} ;
19056 }
19057 \cs_new:Npn \clist_use:nn #1#2 { \clist_use:nnnn {#1} {#2} {#2} {#2} }

(End of definition for \clist_use:nnnn and others. These functions are documented on page 197.)

61.9 Using a single item
\clist_item:Nn
\clist_item:cn

__clist_item:nnnN
__clist_item:ffoN
__clist_item:ffnN

__clist_item_N_loop:nw

To avoid needing to test the end of the list at each step, we first compute the ⟨length⟩
of the list. If the item number is 0, less than −⟨length⟩, or more than ⟨length⟩, the
result is empty. If it is negative, but not less than −⟨length⟩, add ⟨length⟩ + 1 to the
item number before performing the loop. The loop itself is very simple, return the item
if the counter reached 1, otherwise, decrease the counter and repeat.

19058 \cs_new:Npn \clist_item:Nn #1#2
19059 {
19060 __clist_item:ffoN
19061 { \clist_count:N #1 }
19062 { \int_eval:n {#2} }
19063 #1
19064 __clist_item_N_loop:nw
19065 }
19066 \cs_new:Npn __clist_item:nnnN #1#2#3#4
19067 {
19068 \int_compare:nNnTF {#2} < 0
19069 {
19070 \int_compare:nNnTF {#2} < { - #1 }
19071 { __clist_use_none_delimit_by_s_stop:w }
19072 { \exp_args:Nf #4 { \int_eval:n { #2 + 1 + #1 } } }
19073 }
19074 {
19075 \int_compare:nNnTF {#2} > {#1}
19076 { __clist_use_none_delimit_by_s_stop:w }
19077 { #4 {#2} }
19078 }
19079 { } , #3 , \s__clist_stop
19080 }
19081 \cs_generate_variant:Nn __clist_item:nnnN { ffo, ff }
19082 \cs_new:Npn __clist_item_N_loop:nw #1 #2,

893

19083 {
19084 \int_compare:nNnTF {#1} = 0
19085 { __clist_use_i_delimit_by_s_stop:nw { \exp_not:n {#2} } }
19086 { \exp_args:Nf __clist_item_N_loop:nw { \int_eval:n { #1 - 1 } } }
19087 }
19088 \cs_generate_variant:Nn \clist_item:Nn { c }

(End of definition for \clist_item:Nn , __clist_item:nnnN , and __clist_item_N_loop:nw. This func-
tion is documented on page 198.)

\clist_item:nn
\clist_item:en

__clist_item_n:nw
__clist_item_n_loop:nw
__clist_item_n_end:n

__clist_item_n_strip:n
__clist_item_n_strip:w

This starts in the same way as \clist_item:Nn by counting the items of the comma list.
The final item should be space-trimmed before being brace-stripped, hence we insert a
couple of odd-looking \prg_do_nothing: to avoid losing braces. Blank items are ignored.

19089 \cs_new:Npn \clist_item:nn #1#2
19090 {
19091 __clist_item:ffnN
19092 { \clist_count:n {#1} }
19093 { \int_eval:n {#2} }
19094 {#1}
19095 __clist_item_n:nw
19096 }
19097 \cs_generate_variant:Nn \clist_item:nn { e }
19098 \cs_new:Npn __clist_item_n:nw #1
19099 { __clist_item_n_loop:nw {#1} \prg_do_nothing: }
19100 \cs_new:Npn __clist_item_n_loop:nw #1 #2,
19101 {
19102 \exp_args:No \tl_if_blank:nTF {#2}
19103 { __clist_item_n_loop:nw {#1} \prg_do_nothing: }
19104 {
19105 \int_compare:nNnTF {#1} = 0
19106 { \exp_args:No __clist_item_n_end:n {#2} }
19107 {
19108 \exp_args:Nf __clist_item_n_loop:nw
19109 { \int_eval:n { #1 - 1 } }
19110 \prg_do_nothing:
19111 }
19112 }
19113 }
19114 \cs_new:Npn __clist_item_n_end:n #1 #2 \s__clist_stop
19115 { \tl_trim_spaces_apply:nN {#1} __clist_item_n_strip:n }
19116 \cs_new:Npn __clist_item_n_strip:n #1 { __clist_item_n_strip:w #1 , }
19117 \cs_new:Npn __clist_item_n_strip:w #1 , { \exp_not:n {#1} }

(End of definition for \clist_item:nn and others. This function is documented on page 198.)

\clist_rand_item:n
\clist_rand_item:N
\clist_rand_item:c

__clist_rand_item:nn

The N-type function is not implemented through the n-type function for efficiency: for
instance comma-list variables do not require space-trimming of their items. Even testing
for emptyness of an n-type comma-list is slow, so we count items first and use that both
for the emptyness test and the pseudo-random integer. Importantly, \clist_item:Nn
and \clist_item:nn only evaluate their argument once.

19118 \cs_new:Npn \clist_rand_item:n #1
19119 { \exp_args:Nf __clist_rand_item:nn { \clist_count:n {#1} } {#1} }
19120 \cs_new:Npn __clist_rand_item:nn #1#2
19121 {

894

19122 \int_compare:nNnF {#1} = 0
19123 { \clist_item:nn {#2} { \int_rand:nn { 1 } {#1} } }
19124 }
19125 \cs_new:Npn \clist_rand_item:N #1
19126 {
19127 \clist_if_empty:NF #1
19128 { \clist_item:Nn #1 { \int_rand:nn { 1 } { \clist_count:N #1 } } }
19129 }
19130 \cs_generate_variant:Nn \clist_rand_item:N { c }

(End of definition for \clist_rand_item:n , \clist_rand_item:N , and __clist_rand_item:nn. These
functions are documented on page 198.)

61.10 Viewing comma lists
\clist_show:N
\clist_show:c
\clist_log:N
\clist_log:c

__clist_show:NN

Apply the general __kernel_chk_tl_type:NnnT with \exp_not:o #2 serving as a
dummy code to prevent a check performed by this auxiliary.

19131 \cs_new_protected:Npn \clist_show:N { __clist_show:NN \msg_show:nneeee }
19132 \cs_generate_variant:Nn \clist_show:N { c }
19133 \cs_new_protected:Npn \clist_log:N { __clist_show:NN \msg_log:nneeee }
19134 \cs_generate_variant:Nn \clist_log:N { c }
19135 \cs_new_protected:Npn __clist_show:NN #1#2
19136 {
19137 __kernel_chk_tl_type:NnnT #2 { clist } { \exp_not:o #2 }
19138 {
19139 \int_compare:nNnTF { \clist_count:N #2 }
19140 = { \exp_args:No \clist_count:n #2 }
19141 {
19142 #1 { clist } { show }
19143 { \token_to_str:N #2 }
19144 { \clist_map_function:NN #2 \msg_show_item:n }
19145 { } { }
19146 }
19147 {
19148 \msg_error:nnee { clist } { non-clist }
19149 { \token_to_str:N #2 } { \tl_to_str:N #2 }
19150 }
19151 }
19152 }

(End of definition for \clist_show:N , \clist_log:N , and __clist_show:NN. These functions are doc-
umented on page 198.)

\clist_show:n
\clist_log:n

__clist_show:Nn

A variant of the above: no existence check, empty first argument for the message.
19153 \cs_new_protected:Npn \clist_show:n { __clist_show:Nn \msg_show:nneeee }
19154 \cs_new_protected:Npn \clist_log:n { __clist_show:Nn \msg_log:nneeee }
19155 \cs_new_protected:Npn __clist_show:Nn #1#2
19156 {
19157 #1 { clist } { show }
19158 { } { \clist_map_function:nN {#2} \msg_show_item:n } { } { }
19159 }

(End of definition for \clist_show:n , \clist_log:n , and __clist_show:Nn. These functions are doc-
umented on page 199.)

895

61.11 Scratch comma lists
\l_tmpa_clist
\l_tmpb_clist
\g_tmpa_clist
\g_tmpb_clist

Temporary comma list variables.
19160 \clist_new:N \l_tmpa_clist
19161 \clist_new:N \l_tmpb_clist
19162 \clist_new:N \g_tmpa_clist
19163 \clist_new:N \g_tmpb_clist

(End of definition for \l_tmpa_clist and others. These variables are documented on page 199.)

19164 ⟨/package⟩

896

Chapter 62

l3token implementation

19165 ⟨∗package⟩

19166 ⟨∗tex⟩

19167 ⟨@@=char⟩

62.1 Internal auxiliaries
\s__char_stop Internal scan mark.

19168 \scan_new:N \s__char_stop

(End of definition for \s__char_stop.)

\q__char_no_value Internal recursion quarks.
19169 \quark_new:N \q__char_no_value

(End of definition for \q__char_no_value.)

__char_quark_if_no_value_p:N
__char_quark_if_no_value:NTF

Functions to query recursion quarks.
19170 __kernel_quark_new_conditional:Nn __char_quark_if_no_value:N { TF }

(End of definition for __char_quark_if_no_value:NTF.)

62.2 Manipulating and interrogating character tokens
\char_set_catcode:nn

\char_value_catcode:n
\char_show_value_catcode:n

Simple wrappers around the primitives.
19171 \cs_new_protected:Npn \char_set_catcode:nn #1#2
19172 { \tex_catcode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: }
19173 \cs_new:Npn \char_value_catcode:n #1
19174 { \tex_the:D \tex_catcode:D \int_eval:n {#1} \exp_stop_f: }
19175 \cs_new_protected:Npn \char_show_value_catcode:n #1
19176 { \exp_args:Nf \tl_show:n { \char_value_catcode:n {#1} } }

(End of definition for \char_set_catcode:nn , \char_value_catcode:n , and \char_show_value_catcode:n.
These functions are documented on page 203.)

897

\char_set_catcode_escape:N
\char_set_catcode_group_begin:N

\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N

\char_set_catcode_alignment:N
\char_set_catcode_end_line:N

\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N

\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N

\char_set_catcode_comment:N
\char_set_catcode_invalid:N

19177 \cs_new_protected:Npn \char_set_catcode_escape:N #1
19178 { \char_set_catcode:nn { ‘#1 } { 0 } }
19179 \cs_new_protected:Npn \char_set_catcode_group_begin:N #1
19180 { \char_set_catcode:nn { ‘#1 } { 1 } }
19181 \cs_new_protected:Npn \char_set_catcode_group_end:N #1
19182 { \char_set_catcode:nn { ‘#1 } { 2 } }
19183 \cs_new_protected:Npn \char_set_catcode_math_toggle:N #1
19184 { \char_set_catcode:nn { ‘#1 } { 3 } }
19185 \cs_new_protected:Npn \char_set_catcode_alignment:N #1
19186 { \char_set_catcode:nn { ‘#1 } { 4 } }
19187 \cs_new_protected:Npn \char_set_catcode_end_line:N #1
19188 { \char_set_catcode:nn { ‘#1 } { 5 } }
19189 \cs_new_protected:Npn \char_set_catcode_parameter:N #1
19190 { \char_set_catcode:nn { ‘#1 } { 6 } }
19191 \cs_new_protected:Npn \char_set_catcode_math_superscript:N #1
19192 { \char_set_catcode:nn { ‘#1 } { 7 } }
19193 \cs_new_protected:Npn \char_set_catcode_math_subscript:N #1
19194 { \char_set_catcode:nn { ‘#1 } { 8 } }
19195 \cs_new_protected:Npn \char_set_catcode_ignore:N #1
19196 { \char_set_catcode:nn { ‘#1 } { 9 } }
19197 \cs_new_protected:Npn \char_set_catcode_space:N #1
19198 { \char_set_catcode:nn { ‘#1 } { 10 } }
19199 \cs_new_protected:Npn \char_set_catcode_letter:N #1
19200 { \char_set_catcode:nn { ‘#1 } { 11 } }
19201 \cs_new_protected:Npn \char_set_catcode_other:N #1
19202 { \char_set_catcode:nn { ‘#1 } { 12 } }
19203 \cs_new_protected:Npn \char_set_catcode_active:N #1
19204 { \char_set_catcode:nn { ‘#1 } { 13 } }
19205 \cs_new_protected:Npn \char_set_catcode_comment:N #1
19206 { \char_set_catcode:nn { ‘#1 } { 14 } }
19207 \cs_new_protected:Npn \char_set_catcode_invalid:N #1
19208 { \char_set_catcode:nn { ‘#1 } { 15 } }

(End of definition for \char_set_catcode_escape:N and others. These functions are documented on
page 202.)

\char_set_catcode_escape:n
\char_set_catcode_group_begin:n

\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n

\char_set_catcode_alignment:n
\char_set_catcode_end_line:n

\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n

\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n

\char_set_catcode_comment:n
\char_set_catcode_invalid:n

19209 \cs_new_protected:Npn \char_set_catcode_escape:n #1
19210 { \char_set_catcode:nn {#1} { 0 } }
19211 \cs_new_protected:Npn \char_set_catcode_group_begin:n #1
19212 { \char_set_catcode:nn {#1} { 1 } }
19213 \cs_new_protected:Npn \char_set_catcode_group_end:n #1
19214 { \char_set_catcode:nn {#1} { 2 } }
19215 \cs_new_protected:Npn \char_set_catcode_math_toggle:n #1
19216 { \char_set_catcode:nn {#1} { 3 } }
19217 \cs_new_protected:Npn \char_set_catcode_alignment:n #1
19218 { \char_set_catcode:nn {#1} { 4 } }
19219 \cs_new_protected:Npn \char_set_catcode_end_line:n #1
19220 { \char_set_catcode:nn {#1} { 5 } }
19221 \cs_new_protected:Npn \char_set_catcode_parameter:n #1
19222 { \char_set_catcode:nn {#1} { 6 } }
19223 \cs_new_protected:Npn \char_set_catcode_math_superscript:n #1
19224 { \char_set_catcode:nn {#1} { 7 } }

898

19225 \cs_new_protected:Npn \char_set_catcode_math_subscript:n #1
19226 { \char_set_catcode:nn {#1} { 8 } }
19227 \cs_new_protected:Npn \char_set_catcode_ignore:n #1
19228 { \char_set_catcode:nn {#1} { 9 } }
19229 \cs_new_protected:Npn \char_set_catcode_space:n #1
19230 { \char_set_catcode:nn {#1} { 10 } }
19231 \cs_new_protected:Npn \char_set_catcode_letter:n #1
19232 { \char_set_catcode:nn {#1} { 11 } }
19233 \cs_new_protected:Npn \char_set_catcode_other:n #1
19234 { \char_set_catcode:nn {#1} { 12 } }
19235 \cs_new_protected:Npn \char_set_catcode_active:n #1
19236 { \char_set_catcode:nn {#1} { 13 } }
19237 \cs_new_protected:Npn \char_set_catcode_comment:n #1
19238 { \char_set_catcode:nn {#1} { 14 } }
19239 \cs_new_protected:Npn \char_set_catcode_invalid:n #1
19240 { \char_set_catcode:nn {#1} { 15 } }

(End of definition for \char_set_catcode_escape:n and others. These functions are documented on
page 203.)

\char_set_mathcode:nn
\char_value_mathcode:n

\char_show_value_mathcode:n
\char_set_lccode:nn
\char_value_lccode:n

\char_show_value_lccode:n
\char_set_uccode:nn
\char_value_uccode:n

\char_show_value_uccode:n
\char_set_sfcode:nn
\char_value_sfcode:n

\char_show_value_sfcode:n

Pretty repetitive, but necessary!
19241 \cs_new_protected:Npn \char_set_mathcode:nn #1#2
19242 { \tex_mathcode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: }
19243 \cs_new:Npn \char_value_mathcode:n #1
19244 { \tex_the:D \tex_mathcode:D \int_eval:n {#1} \exp_stop_f: }
19245 \cs_new_protected:Npn \char_show_value_mathcode:n #1
19246 { \exp_args:Nf \tl_show:n { \char_value_mathcode:n {#1} } }
19247 \cs_new_protected:Npn \char_set_lccode:nn #1#2
19248 { \tex_lccode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: }
19249 \cs_new:Npn \char_value_lccode:n #1
19250 { \tex_the:D \tex_lccode:D \int_eval:n {#1} \exp_stop_f: }
19251 \cs_new_protected:Npn \char_show_value_lccode:n #1
19252 { \exp_args:Nf \tl_show:n { \char_value_lccode:n {#1} } }
19253 \cs_new_protected:Npn \char_set_uccode:nn #1#2
19254 { \tex_uccode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: }
19255 \cs_new:Npn \char_value_uccode:n #1
19256 { \tex_the:D \tex_uccode:D \int_eval:n {#1} \exp_stop_f: }
19257 \cs_new_protected:Npn \char_show_value_uccode:n #1
19258 { \exp_args:Nf \tl_show:n { \char_value_uccode:n {#1} } }
19259 \cs_new_protected:Npn \char_set_sfcode:nn #1#2
19260 { \tex_sfcode:D \int_eval:n {#1} = \int_eval:n {#2} \exp_stop_f: }
19261 \cs_new:Npn \char_value_sfcode:n #1
19262 { \tex_the:D \tex_sfcode:D \int_eval:n {#1} \exp_stop_f: }
19263 \cs_new_protected:Npn \char_show_value_sfcode:n #1
19264 { \exp_args:Nf \tl_show:n { \char_value_sfcode:n {#1} } }

(End of definition for \char_set_mathcode:nn and others. These functions are documented on page
204.)

\l_char_active_seq
\l_char_special_seq

Two sequences for dealing with special characters. The first is characters which may be
active, the second longer list is for “special” characters more generally. Both lists are
escaped so that for example bulk code assignments can be carried out. In both cases, the
order is by ascii character code (as is done in for example \ExplSyntaxOn).

19265 \seq_new:N \l_char_special_seq
19266 \seq_set_split:Nnn \l_char_special_seq { }

899

19267 { \ \" \# \$ \% \& \\ \^ _ \{ \} \~ }
19268 \seq_new:N \l_char_active_seq
19269 \seq_set_split:Nnn \l_char_active_seq { }
19270 { \" \$ \& \^ _ \~ }

(End of definition for \l_char_active_seq and \l_char_special_seq. These variables are documented
on page 205.)

62.3 Creating character tokens
\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc
\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

Four simple functions with very similar definitions, so set up using an auxiliary. These
are similar to LuaTEX’s \letcharcode primitive.

19271 \group_begin:
19272 \char_set_catcode_active:N \^^@
19273 \cs_set_protected:Npn __char_tmp:nN #1#2
19274 {
19275 \cs_new_protected:cpn { #1 :nN } ##1
19276 {
19277 \group_begin:
19278 \char_set_lccode:nn { ‘\^^@ } { ##1 }
19279 \tex_lowercase:D { \group_end: #2 ^^@ }
19280 }
19281 \cs_new_protected:cpe { #1 :NN } ##1
19282 { \exp_not:c { #1 : nN } { ‘##1 } }
19283 }
19284 __char_tmp:nN { char_set_active_eq } \cs_set_eq:NN
19285 __char_tmp:nN { char_gset_active_eq } \cs_gset_eq:NN
19286 \group_end:
19287 \cs_generate_variant:Nn \char_set_active_eq:NN { Nc }
19288 \cs_generate_variant:Nn \char_gset_active_eq:NN { Nc }
19289 \cs_generate_variant:Nn \char_set_active_eq:nN { nc }
19290 \cs_generate_variant:Nn \char_gset_active_eq:nN { nc }

(End of definition for \char_set_active_eq:NN and others. These functions are documented on page
201.)

__char_int_to_roman:w For efficiency in 8-bit engines, we use the faster primitive approach to making roman
numerals.

19291 \cs_new_eq:NN __char_int_to_roman:w \tex_romannumeral:D

(End of definition for __char_int_to_roman:w.)

\char_generate:nn
__char_generate_aux:nn

__char_generate_aux:nnw
__char_generate_auxii:nnw

\l__char_tmp_tl
__char_generate_invalid_catcode:

The aim here is to generate characters of (broadly) arbitrary category code. Where
possible, that is done using engine support (X ETEX, LuaTEX). There are though various
issues which are covered below. At the interface layer, turn the two arguments into
integers up-front so this is only done once.

19292 \cs_new:Npn \char_generate:nn #1#2
19293 {
19294 \exp:w \exp_after:wN __char_generate_aux:w
19295 \int_value:w \int_eval:n {#1} \exp_after:wN ;
19296 \int_value:w \int_eval:n {#2} ;
19297 }

900

Before doing any actual conversion, first some special case filtering. Spaces are out here
as LuaTEX emulation only makes normal (charcode 32 spaces). However, ^^@ is filtered
out separately as that can’t be done with macro emulation either, so is treated separately.
That done, hand off to the engine-dependent part.

19298 \cs_new:Npn __char_generate_aux:w #1 ; #2 ;
19299 {
19300 \if_int_odd:w 0
19301 \if_int_compare:w #2 < 1 \exp_stop_f: 1 \fi:
19302 \if_int_compare:w #2 = 5 \exp_stop_f: 1 \fi:
19303 \if_int_compare:w #2 = 9 \exp_stop_f: 1 \fi:
19304 \if_int_compare:w #2 > 13 \exp_stop_f: 1 \fi: \exp_stop_f:
19305 \msg_expandable_error:nn { char }
19306 { invalid-catcode }
19307 \else:
19308 \if_int_odd:w 0
19309 \if_int_compare:w #1 < \c_zero_int 1 \fi:
19310 \if_int_compare:w #1 > \c_max_char_int 1 \fi: \exp_stop_f:
19311 \msg_expandable_error:nn { char }
19312 { out-of-range }
19313 \else:
19314 \if_int_compare:w #2#1 = 100 \exp_stop_f:
19315 \msg_expandable_error:nn { char } { null-space }
19316 \else:
19317 __char_generate_aux:nnw {#1} {#2}
19318 \fi:
19319 \fi:
19320 \fi:
19321 \exp_end:
19322 }
19323 \tl_new:N \l__char_tmp_tl

Engine-dependent definitions are now needed for the implementation. Recent (u)pTEX
and the Unicode engines LuaTEX and X ETEX have engine-level support for expandable
character creation. pdfTEX and older (u)pTEX releases do not. The branching here if
low-level to avoid fixing the category code of the null character used in the false branch.
The final level is the basic definition at the engine level: the arguments here are integers
so there is no need to worry about them too much. Older versions of X ETEX cannot
generate active characters so we filter that: at some future stage that may change: the
slightly odd ordering of auxiliaries reflects that.

19324 \group_begin:
19325 \char_set_catcode_active:N \^^L
19326 \cs_set:Npn ^^L { }
19327 \if_cs_exist:N \tex_Ucharcat:D
19328 \cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
19329 {
19330 #3
19331 \exp_after:wN \exp_end:
19332 \tex_Ucharcat:D #1 \exp_stop_f: #2 \exp_stop_f:
19333 }
19334 \else:

For engines where \Ucharcat isn’t available or emulated, we have to work in macros,
and cover only the 8-bit range. The first stage is to build up a tl containing ^^@ with
each category code that can be accessed in this way, with an error set up for the other

901

cases. This is all done such that it can be quickly accessed using a \if_case:w low-level
conditional. The list is done in reverse as this puts the case of an active token first:
that’s needed to cover the possibility that it is \outer. Getting the braces into the list
is done using some standard \if_false: manipulation, while all of the \exp_not:N are
required as there is an expansion in the setup.

19335 \char_set_catcode_active:n { 0 }
19336 \tl_set:Nn \l__char_tmp_tl { \exp_not:N ^^@ \exp_not:N \or: }
19337 \char_set_catcode_other:n { 0 }
19338 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19339 \char_set_catcode_letter:n { 0 }
19340 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }

For making spaces, there needs to be an o-type expansion of a \use:n (or some other
tokenization) to avoid dropping the space.

19341 \tl_put_right:Nn \l__char_tmp_tl { \use:n { ~ } \exp_not:N \or: }
19342 \tl_put_right:Nn \l__char_tmp_tl { \exp_not:N \or: }
19343 \char_set_catcode_math_subscript:n { 0 }
19344 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19345 \char_set_catcode_math_superscript:n { 0 }
19346 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19347 \char_set_catcode_parameter:n { 0 }
19348 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19349 \tl_put_right:Nn \l__char_tmp_tl { { \if_false: } \fi: \exp_not:N \or: }
19350 \char_set_catcode_alignment:n { 0 }
19351 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19352 \char_set_catcode_math_toggle:n { 0 }
19353 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: }
19354 \char_set_catcode_group_end:n { 0 }
19355 \tl_put_right:Nn \l__char_tmp_tl { \if_false: { \fi: ^^@ \exp_not:N \or: } % }
19356 \char_set_catcode_group_begin:n { 0 } % {
19357 \tl_put_right:Nn \l__char_tmp_tl { ^^@ \exp_not:N \or: } }

Convert the above temporary list into a series of constant token lists, one for each char-
acter code, using \tex_lowercase:D to convert ^^@ in each case. The e-type expansion
ensures that \tex_lowercase:D receives the contents of the token list.

19358 \cs_set_protected:Npn __char_tmp:n #1
19359 {
19360 \char_set_lccode:nn { 0 } {#1}
19361 \char_set_lccode:nn { 32 } {#1}
19362 \exp_args:Ne \tex_lowercase:D
19363 {
19364 \tl_const:Ne
19365 \exp_not:c { c__char_ __char_int_to_roman:w #1 _tl }
19366 { \exp_not:o \l__char_tmp_tl }
19367 }
19368 }
19369 \int_step_function:nnN { 0 } { 255 } __char_tmp:n

As TEX is very unhappy if it finds an alignment character inside a primitive \halign even
when skipping false branches, some precautions are required. TEX is happy if the token is
hidden between braces within \if_false: . . . \fi:. The rather low-level approach here
expands in one step to the ⟨target token⟩ (\or: . . .), then \exp_after:wN ⟨target
token⟩ (\or: . . .) expands in one step to ⟨target token⟩. This means that \exp_not:N
is applied to a potentially-problematic active token.

902

19370 \cs_new:Npn __char_generate_aux:nnw #1#2#3 \exp_end:
19371 {
19372 #3
19373 \if_false: { \fi:
19374 \exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
19375 \exp_after:wN \exp_after:wN
19376 \if_case:w \tex_numexpr:D 13 - #2
19377 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
19378 \exp_after:wN \exp_after:wN \exp_after:wN \scan_stop:
19379 \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N
19380 \cs:w c__char_ __char_int_to_roman:w #1 _tl \cs_end:
19381 }
19382 \fi:
19383 }
19384 \fi:
19385 \group_end:

(End of definition for \char_generate:nn and others. This function is documented on page 201.)

\c_catcode_active_space_tl While \char_generate:nn can produce active characters in some engines it cannot in
general. It would be possible to simply change the catcode of space but then the code
would need to avoid all spaces, making it quite unreadable. Instead we use the primitive
\tex_lowercase:D trick.

19386 \group_begin:
19387 \char_set_catcode_active:N *
19388 \char_set_lccode:nn { ‘* } { ‘\ }
19389 \tex_lowercase:D { \tl_const:Nn \c_catcode_active_space_tl { * } }
19390 \group_end:

(End of definition for \c_catcode_active_space_tl. This variable is documented on page 201.)

\c_catcode_other_space_tl Create a space with category code 12: an “other” space.
19391 \tl_const:Ne \c_catcode_other_space_tl { \char_generate:nn { ‘\ } { 12 } }

(End of definition for \c_catcode_other_space_tl. This function is documented on page 202.)

62.4 Generic tokens
19392 ⟨@@=token⟩

\s__token_mark
\s__token_stop

Internal scan marks.
19393 \scan_new:N \s__token_mark
19394 \scan_new:N \s__token_stop

(End of definition for \s__token_mark and \s__token_stop.)

\token_to_meaning:N
\token_to_meaning:c

\token_to_str:N
\token_to_str:c

These are all defined in l3basics, as they are needed “early”. This is just a reminder!

(End of definition for \token_to_meaning:N and \token_to_str:N. These functions are documented on
page 206.)

903

\token_to_catcode:N
__token_to_catcode:N

The macro works by comparing the input token with \if_catcode:w with all valid cat-
egory codes. Since the most common tokens in an average argument list are of category
11 or 12 those are tested first. And since a space and braces are no ordinary N-type
arguments, and only control sequences let to those categories can match them they are
tested last.

19395 \cs_new:Npn \token_to_catcode:N
19396 { \int_value:w \group_align_safe_begin: __token_to_catcode:N }
19397 \cs_new:Npn __token_to_catcode:N #1
19398 {
19399 \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
19400 11
19401 \else:
19402 \if_catcode:w \exp_not:N #1 \c_catcode_other_token
19403 12
19404 \else:
19405 \if_catcode:w \exp_not:N #1 \c_math_toggle_token
19406 3
19407 \else:
19408 \if_catcode:w \exp_not:N #1 \c_alignment_token
19409 4
19410 \else:
19411 \if_catcode:w \exp_not:N #1 ##
19412 6
19413 \else:
19414 \if_catcode:w \exp_not:N #1 \c_math_superscript_token
19415 7
19416 \else:
19417 \if_catcode:w \exp_not:N #1 \c_math_subscript_token
19418 8
19419 \else:
19420 \if_catcode:w \exp_not:N #1 \c_group_begin_token
19421 1
19422 \else:
19423 \if_catcode:w \exp_not:N #1 \c_group_end_token
19424 2
19425 \else:
19426 \if_catcode:w \exp_not:N #1 \c_space_token
19427 10
19428 \else:
19429 \token_if_cs:NTF #1 { 16 } { 13 }
19430 \fi:
19431 \fi:
19432 \fi:
19433 \fi:
19434 \fi:
19435 \fi:
19436 \fi:
19437 \fi:
19438 \fi:
19439 \fi:
19440 \group_align_safe_end:
19441 \exp_stop_f:
19442 }

904

(End of definition for \token_to_catcode:N and __token_to_catcode:N. This function is documented
on page 206.)

\c_group_begin_token
\c_group_end_token

\c_math_toggle_token
\c_alignment_token
\c_parameter_token

\c_math_superscript_token
\c_math_subscript_token

\c_space_token
\c_catcode_letter_token
\c_catcode_other_token

We define these useful tokens. For the brace and space tokens things have to be done
by hand: the formal argument spec. for \cs_new_eq:NN does not cover them so we do
things by hand. (As currently coded it would work with \cs_new_eq:NN but that’s not
really a great idea to show off: we want people to stick to the defined interfaces and that
includes us.) So that these few odd names go into the log when appropriate there is a
need to hand-apply the __kernel_chk_if_free_cs:N check.

19443 \group_begin:
19444 __kernel_chk_if_free_cs:N \c_group_begin_token
19445 \tex_global:D \tex_let:D \c_group_begin_token {
19446 __kernel_chk_if_free_cs:N \c_group_end_token
19447 \tex_global:D \tex_let:D \c_group_end_token }
19448 \char_set_catcode_math_toggle:N *
19449 \cs_new_eq:NN \c_math_toggle_token *
19450 \char_set_catcode_alignment:N *
19451 \cs_new_eq:NN \c_alignment_token *
19452 \cs_new_eq:NN \c_parameter_token #
19453 \cs_new_eq:NN \c_math_superscript_token ^
19454 \char_set_catcode_math_subscript:N *
19455 \cs_new_eq:NN \c_math_subscript_token *
19456 __kernel_chk_if_free_cs:N \c_space_token
19457 \use:n { \tex_global:D \tex_let:D \c_space_token = ~ } ~
19458 \cs_new_eq:NN \c_catcode_letter_token a
19459 \cs_new_eq:NN \c_catcode_other_token 1
19460 \group_end:

(End of definition for \c_group_begin_token and others. These functions are documented on page 205.)

\c__token_active_tl Not an implicit token!
19461 \group_begin:
19462 \char_set_catcode_active:N *
19463 \tl_const:Nn \c__token_active_tl { \exp_not:N * }
19464 \group_end:

(End of definition for \c__token_active_tl.)

62.5 Token conditionals
\token_if_group_begin_p:N
\token_if_group_begin:NTF

Check if token is a begin group token. We use the constant \c_group_begin_token for
this.

19465 \prg_new_conditional:Npnn \token_if_group_begin:N #1 { p , T , F , TF }
19466 {
19467 \if_catcode:w \exp_not:N #1 \c_group_begin_token
19468 \prg_return_true: \else: \prg_return_false: \fi:
19469 }

(End of definition for \token_if_group_begin:NTF. This function is documented on page 206.)

\token_if_group_end_p:N
\token_if_group_end:NTF

Check if token is a end group token. We use the constant \c_group_end_token for this.
19470 \prg_new_conditional:Npnn \token_if_group_end:N #1 { p , T , F , TF }
19471 {

905

19472 \if_catcode:w \exp_not:N #1 \c_group_end_token
19473 \prg_return_true: \else: \prg_return_false: \fi:
19474 }

(End of definition for \token_if_group_end:NTF. This function is documented on page 206.)

\token_if_math_toggle_p:N
\token_if_math_toggle:NTF

Check if token is a math shift token. We use the constant \c_math_toggle_token for
this.

19475 \prg_new_conditional:Npnn \token_if_math_toggle:N #1 { p , T , F , TF }
19476 {
19477 \if_catcode:w \exp_not:N #1 \c_math_toggle_token
19478 \prg_return_true: \else: \prg_return_false: \fi:
19479 }

(End of definition for \token_if_math_toggle:NTF. This function is documented on page 207.)

\token_if_alignment_p:N
\token_if_alignment:NTF

Check if token is an alignment tab token. We use the constant \c_alignment_token for
this.

19480 \prg_new_conditional:Npnn \token_if_alignment:N #1 { p , T , F , TF }
19481 {
19482 \if_catcode:w \exp_not:N #1 \c_alignment_token
19483 \prg_return_true: \else: \prg_return_false: \fi:
19484 }

(End of definition for \token_if_alignment:NTF. This function is documented on page 207.)

\token_if_parameter_p:N
\token_if_parameter:NTF

Check if token is a parameter token. We use the constant \c_parameter_token for this.
We have to trick TEX a bit to avoid an error message: within a group we prevent \c_-
parameter_token from behaving like a macro parameter character. The definitions of
\prg_new_conditional:Npnn are global, so they remain after the group.

19485 \group_begin:
19486 \cs_set_eq:NN \c_parameter_token \scan_stop:
19487 \prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T , F , TF }
19488 {
19489 \if_catcode:w \exp_not:N #1 \c_parameter_token
19490 \prg_return_true: \else: \prg_return_false: \fi:
19491 }
19492 \group_end:

(End of definition for \token_if_parameter:NTF. This function is documented on page 207.)

\token_if_math_superscript_p:N
\token_if_math_superscript:NTF

Check if token is a math superscript token. We use the constant \c_math_superscript_-
token for this.

19493 \prg_new_conditional:Npnn \token_if_math_superscript:N #1
19494 { p , T , F , TF }
19495 {
19496 \if_catcode:w \exp_not:N #1 \c_math_superscript_token
19497 \prg_return_true: \else: \prg_return_false: \fi:
19498 }

(End of definition for \token_if_math_superscript:NTF. This function is documented on page 207.)

906

\token_if_math_subscript_p:N
\token_if_math_subscript:NTF

Check if token is a math subscript token. We use the constant \c_math_subscript_-
token for this.

19499 \prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T , F , TF }
19500 {
19501 \if_catcode:w \exp_not:N #1 \c_math_subscript_token
19502 \prg_return_true: \else: \prg_return_false: \fi:
19503 }

(End of definition for \token_if_math_subscript:NTF. This function is documented on page 207.)

\token_if_space_p:N
\token_if_space:NTF

Check if token is a space token. We use the constant \c_space_token for this.
19504 \prg_new_conditional:Npnn \token_if_space:N #1 { p , T , F , TF }
19505 {
19506 \if_catcode:w \exp_not:N #1 \c_space_token
19507 \prg_return_true: \else: \prg_return_false: \fi:
19508 }

(End of definition for \token_if_space:NTF. This function is documented on page 207.)

\token_if_letter_p:N
\token_if_letter:NTF

Check if token is a letter token. We use the constant \c_catcode_letter_token for this.
19509 \prg_new_conditional:Npnn \token_if_letter:N #1 { p , T , F , TF }
19510 {
19511 \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
19512 \prg_return_true: \else: \prg_return_false: \fi:
19513 }

(End of definition for \token_if_letter:NTF. This function is documented on page 207.)

\token_if_other_p:N
\token_if_other:NTF

Check if token is an other char token. We use the constant \c_catcode_other_token
for this.

19514 \prg_new_conditional:Npnn \token_if_other:N #1 { p , T , F , TF }
19515 {
19516 \if_catcode:w \exp_not:N #1 \c_catcode_other_token
19517 \prg_return_true: \else: \prg_return_false: \fi:
19518 }

(End of definition for \token_if_other:NTF. This function is documented on page 207.)

\token_if_active_p:N
\token_if_active:NTF

Check if token is an active char token. We use the constant \c__token_active_tl for
this. A technical point is that \c__token_active_tl is in fact a macro expanding to
\exp_not:N *, where * is active.

19519 \prg_new_conditional:Npnn \token_if_active:N #1 { p , T , F , TF }
19520 {
19521 \if_catcode:w \exp_not:N #1 \c__token_active_tl
19522 \prg_return_true: \else: \prg_return_false: \fi:
19523 }

(End of definition for \token_if_active:NTF. This function is documented on page 207.)

\token_if_eq_meaning_p:NN
\token_if_eq_meaning:NNTF

Check if the tokens #1 and #2 have same meaning.
19524 \prg_new_eq_conditional:NNn \token_if_eq_meaning:NN \cs_if_eq:NN
19525 { p , T , F , TF }

(End of definition for \token_if_eq_meaning:NNTF. This function is documented on page 208.)

907

\token_if_eq_catcode_p:NN
\token_if_eq_catcode:NNTF

Check if the tokens #1 and #2 have same category code.
19526 \prg_new_conditional:Npnn \token_if_eq_catcode:NN #1#2 { p , T , F , TF }
19527 {
19528 \if_catcode:w \exp_not:N #1 \exp_not:N #2
19529 \prg_return_true: \else: \prg_return_false: \fi:
19530 }

(End of definition for \token_if_eq_catcode:NNTF. This function is documented on page 207.)

\token_if_eq_charcode_p:NN
\token_if_eq_charcode:NNTF

Check if the tokens #1 and #2 have same character code.
19531 \prg_new_conditional:Npnn \token_if_eq_charcode:NN #1#2 { p , T , F , TF }
19532 {
19533 \if_charcode:w \exp_not:N #1 \exp_not:N #2
19534 \prg_return_true: \else: \prg_return_false: \fi:
19535 }

(End of definition for \token_if_eq_charcode:NNTF. This function is documented on page 208.)

\token_if_macro_p:N
\token_if_macro:NTF

__token_if_macro_p:w

When a token is a macro, \token_to_meaning:N always outputs something like
\long macro:#1->#1 so we could naively check to see if the meaning contains ->.
However, this can fail the five \...mark primitives, whose meaning has the form
...mark:⟨user material⟩. The problem is that the ⟨user material⟩ can contain ->.

However, only characters, macros, and marks can contain the colon character. The
idea is thus to grab until the first :, and analyse what is left. However, macros can have
any combination of \long, \protected or \outer (not used in LATEX3) before the string
macro:. We thus only select the part of the meaning between the first ma and the first
following :. If this string is cro, then we have a macro. If the string is rk, then we have
a mark. The string can also be cro parameter character for a colon with a weird
category code (namely the usual category code of #). Otherwise, it is empty.

This relies on the fact that \long, \protected, \outer cannot contain ma, regardless
of the escape character, even if the escape character is m. . .

Both ma and : must be of category code 12 (other), so are detokenized.
19536 \use:e
19537 {
19538 \prg_new_conditional:Npnn \exp_not:N \token_if_macro:N #1
19539 { p , T , F , TF }
19540 {
19541 \exp_not:N \exp_after:wN \exp_not:N __token_if_macro_p:w
19542 \exp_not:N \token_to_meaning:N #1 \tl_to_str:n { ma : }
19543 \s__token_stop
19544 }
19545 \cs_new:Npn \exp_not:N __token_if_macro_p:w
19546 #1 \tl_to_str:n { ma } #2 \c_colon_str #3 \s__token_stop
19547 }
19548 {
19549 \str_if_eq:nnTF { #2 } { cro }
19550 { \prg_return_true: }
19551 { \prg_return_false: }
19552 }

(End of definition for \token_if_macro:NTF and __token_if_macro_p:w. This function is documented
on page 208.)

908

\token_if_cs_p:N
\token_if_cs:NTF

Check if token has same catcode as a control sequence. This follows the same pattern as
for \token_if_letter:N etc. We use \scan_stop: for this.

19553 \prg_new_conditional:Npnn \token_if_cs:N #1 { p , T , F , TF }
19554 {
19555 \if_catcode:w \exp_not:N #1 \scan_stop:
19556 \prg_return_true: \else: \prg_return_false: \fi:
19557 }

(End of definition for \token_if_cs:NTF. This function is documented on page 208.)

\token_if_expandable_p:N
\token_if_expandable:NTF

Check if token is expandable. We use the fact that TEX temporarily converts \exp_-
not:N ⟨token⟩ into \scan_stop: if ⟨token⟩ is expandable. An undefined token is not
considered as expandable. No problem nesting the conditionals, since the third #1 is only
skipped if it is non-expandable (hence not part of TEX’s conditional apparatus).

19558 \prg_new_conditional:Npnn \token_if_expandable:N #1 { p , T , F , TF }
19559 {
19560 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
19561 \prg_return_false:
19562 \else:
19563 \if_cs_exist:N #1
19564 \prg_return_true:
19565 \else:
19566 \prg_return_false:
19567 \fi:
19568 \fi:
19569 }

(End of definition for \token_if_expandable:NTF. This function is documented on page 208.)

__token_delimit_by_char":w
__token_delimit_by_count:w
__token_delimit_by_dimen:w
__token_delimit_by_␣font:w
__token_delimit_by_macro:w
__token_delimit_by_muskip:w
__token_delimit_by_skip:w
__token_delimit_by_toks:w

These auxiliary functions are used below to define some conditionals which detect whether
the \meaning of their argument begins with a particular string. Each auxiliary takes an
argument delimited by a string, a second one delimited by \s__token_stop, and returns
the first one and its delimiter. This result is eventually compared to another string. Note
that the “font” auxiliary is delimited by a space followed by “font”. This avoids an
unnecessary check for the \font primitive below.

19570 \group_begin:
19571 \cs_set_protected:Npn __token_tmp:w #1
19572 {
19573 \use:e
19574 {
19575 \cs_new:Npn \exp_not:c { __token_delimit_by_ #1 :w }
19576 ##1 \tl_to_str:n {#1} ##2 \s__token_stop
19577 { ##1 \tl_to_str:n {#1} }
19578 }
19579 }
19580 __token_tmp:w { char" }
19581 __token_tmp:w { count }
19582 __token_tmp:w { dimen }
19583 __token_tmp:w { ~ font }
19584 __token_tmp:w { macro }
19585 __token_tmp:w { muskip }
19586 __token_tmp:w { skip }
19587 __token_tmp:w { toks }
19588 \group_end:

909

(End of definition for __token_delimit_by_char":w and others.)

\token_if_chardef_p:N
\token_if_chardef:NTF

\token_if_mathchardef_p:N
\token_if_mathchardef:NTF
\token_if_long_macro_p:N
\token_if_long_macro:NTF

\token_if_protected_macro_p:N
\token_if_protected_macro:NTF

\token_if_protected_long_macro_p:N
\token_if_protected_long_macro:NTF

\token_if_font_selection_p:N
\token_if_font_selection:NTF
\token_if_dim_register_p:N
\token_if_dim_register:NTF
\token_if_int_register_p:N
\token_if_int_register:NTF

\token_if_muskip_register_p:N
\token_if_muskip_register:NTF
\token_if_skip_register_p:N
\token_if_skip_register:NTF
\token_if_toks_register_p:N
\token_if_toks_register:NTF

Each of these conditionals tests whether its argument’s \meaning starts with a given
string. This is essentially done by having an auxiliary grab an argument delimited by the
string and testing whether the argument was empty. Of course, a copy of this string must
first be added to the end of the \meaning to avoid a runaway argument in case it does
not contain the string. Two complications arise. First, the escape character is not fixed,
and cannot be included in the delimiter of the auxiliary function (this function cannot be
defined on the fly because tests must remain expandable): instead the first argument of
the auxiliary (plus the delimiter to avoid complications with trailing spaces) is compared
using \str_if_eq:eeTF to the result of applying \token_to_str:N to a control sequence.
Second, the \meaning of primitives such as \dimen or \dimendef starts in the same way
as registers such as \dimen123, so they must be tested for.

Characters used as delimiters must have catcode 12 and are obtained through \tl_-
to_str:n. This requires doing all definitions within e-expansion. The temporary function
__token_tmp:w used to define each conditional receives three arguments: the name of
the conditional, the auxiliary’s delimiter (also used to name the auxiliary), and the string
to which one compares the auxiliary’s result. Note that the \meaning of a protected long
macro starts with \protected\long macro, with no space after \protected but a space
after \long, hence the mixture of \token_to_str:N and \tl_to_str:n.

For the first six conditionals, \cs_if_exist:cT turns out to be false (thanks to
the leading space for font), and the code boils down to a string comparison between
the result of the auxiliary on the \meaning of the conditional’s argument ####1, and #3.
Both are evaluated at run-time, as this is important to get the correct escape character.

The other five conditionals have additional code that compares the argument ####1
to two TEX primitives which would wrongly be recognized as registers otherwise. Despite
using TEX’s primitive conditional construction, this does not break when ####1 is itself
a conditional, because branches of the conditionals are only skipped if ####1 is one of
the two primitives that are tested for (which are not TEX conditionals).

19589 \group_begin:
19590 \cs_set_protected:Npn __token_tmp:w #1#2#3
19591 {
19592 \use:e
19593 {
19594 \prg_new_conditional:Npnn \exp_not:c { token_if_ #1 :N } ##1
19595 { p , T , F , TF }
19596 {
19597 \cs_if_exist:cT { tex_ #2 :D }
19598 {
19599 \exp_not:N \if_meaning:w ##1 \exp_not:c { tex_ #2 :D }
19600 \exp_not:N \prg_return_false:
19601 \exp_not:N \else:
19602 \exp_not:N \if_meaning:w ##1 \exp_not:c { tex_ #2 def:D }
19603 \exp_not:N \prg_return_false:
19604 \exp_not:N \else:
19605 }
19606 \exp_not:N \str_if_eq:eeTF
19607 {
19608 \exp_not:N \exp_after:wN
19609 \exp_not:c { __token_delimit_by_ #2 :w }
19610 \exp_not:N \token_to_meaning:N ##1
19611 ? \tl_to_str:n {#2} \s__token_stop

910

19612 }
19613 { \exp_not:n {#3} }
19614 { \exp_not:N \prg_return_true: }
19615 { \exp_not:N \prg_return_false: }
19616 \cs_if_exist:cT { tex_ #2 :D }
19617 {
19618 \exp_not:N \fi:
19619 \exp_not:N \fi:
19620 }
19621 }
19622 }
19623 }
19624 __token_tmp:w { chardef } { char" } { \token_to_str:N \char" }
19625 __token_tmp:w { mathchardef } { char" } { \token_to_str:N \mathchar" }
19626 __token_tmp:w { long_macro } { macro } { \tl_to_str:n { \long } macro }
19627 __token_tmp:w { protected_macro } { macro }
19628 { \tl_to_str:n { \protected } macro }
19629 __token_tmp:w { protected_long_macro } { macro }
19630 { \token_to_str:N \protected \tl_to_str:n { \long } macro }
19631 __token_tmp:w { font_selection } { ~ font } { select ~ font }
19632 __token_tmp:w { dim_register } { dimen } { \token_to_str:N \dimen }
19633 __token_tmp:w { int_register } { count } { \token_to_str:N \count }
19634 __token_tmp:w { muskip_register } { muskip } { \token_to_str:N \muskip }
19635 __token_tmp:w { skip_register } { skip } { \token_to_str:N \skip }
19636 __token_tmp:w { toks_register } { toks } { \token_to_str:N \toks }
19637 \group_end:

(End of definition for \token_if_chardef:NTF and others. These functions are documented on page
208.)

\token_if_primitive_p:N
\token_if_primitive:NTF

__token_if_primitive:NNw
__token_if_primitive_space:w

__token_if_primitive_nullfont:N
__token_if_primitive_loop:N

__token_if_primitive:Nw
__token_if_primitive_undefined:N

__token_if_primitive_lua:N

We filter out macros first, because they cause endless trouble later otherwise.
Primitives are almost distinguished by the fact that the result of \token_to_-

meaning:N is formed from letters only. Every other token has either a space (e.g.,
the letter A), a digit (e.g., \count123) or a double quote (e.g., \char"A).

Ten exceptions: on the one hand, \tex_undefined:D is not a primitive, but its
meaning is undefined, only letters; on the other hand, \space, \italiccorr, \hyphen,
\firstmark, \topmark, \botmark, \splitfirstmark, \splitbotmark, and \nullfont
are primitives, but have non-letters in their meaning.

We start by removing the two first (non-space) characters from the meaning. This
removes the escape character (which may be nonexistent depending on \endlinechar),
and takes care of three of the exceptions: \space, \italiccorr and \hyphen, whose
meaning is at most two characters. This leaves a string terminated by some :, and
\s__token_stop.

The meaning of each one of the five \...mark primitives has the form ⟨letters⟩:⟨user
material⟩. In other words, the first non-letter is a colon. We remove everything after
the first colon.

We are now left with a string, which we must analyze. For primitives, it contains
only letters. For non-primitives, it contains either ", or a space, or a digit. Two excep-
tions remain: \tex_undefined:D, which is not a primitive, and \nullfont, which is a
primitive.

Spaces cannot be grabbed in an undelimited way, so we check them separately. If
there is a space, we test for \nullfont. Otherwise, we go through characters one by one,
and stop at the first character less than ‘A (this is not quite a test for “only letters”,

911

but is close enough to work in this context). If this first character is : then we have a
primitive, or \tex_undefined:D, and if it is " or a digit, then the token is not a primitive.

For LuaTEX we use a different implementation which just looks at the command
code for the token and compares it to a list of non-primitives. Again, \nullfont is a
special case because it is the only primitive with the normally non-primitive set_font
command code.

In LuaMetaTEX some of the command names are different, so we check for both
versions. The first one is always the LuaTEX version.

19638 \sys_if_engine_luatex:TF
19639 {
19640 ⟨/tex⟩
19641 ⟨∗lua⟩
19642 do
19643 local get_next = token.get_next
19644 local get_command = token.get_command
19645 local get_index = token.get_index
19646 local get_mode = token.get_mode or token.get_index
19647 local cmd = command_id
19648 local set_font = cmd’get_font’
19649 local biggest_char = token.biggest_char and token.biggest_char()
19650 or status.getconstants().max_character_code
19651

19652 local mode_below_biggest_char = {}
19653 local index_not_nil = {}
19654 local mode_not_null = {}
19655 local non_primitive = {
19656 [cmd’left_brace’] = true,
19657 [cmd’right_brace’] = true,
19658 [cmd’math_shift’] = true,
19659 [cmd’mac_param’ or cmd’parameter’] = mode_below_biggest_char,
19660 [cmd’sup_mark’ or cmd’superscript’] = true,
19661 [cmd’sub_mark’ or cmd’subscript’] = true,
19662 [cmd’endv’ or cmd’ignore’] = true,
19663 [cmd’spacer’] = true,
19664 [cmd’letter’] = true,
19665 [cmd’other_char’] = true,
19666 [cmd’tab_mark’ or cmd’alignment_tab’] = mode_below_biggest_char,
19667 [cmd’char_given’] = true,
19668 [cmd’math_given’ or ’math_char_given’] = true,
19669 [cmd’xmath_given’ or ’math_char_xgiven’] = true,
19670 [cmd’set_font’] = mode_not_null,
19671 [cmd’undefined_cs’] = true,
19672 [cmd’call’] = true,
19673 [cmd’long_call’ or cmd’protected_call’] = true,
19674 [cmd’outer_call’ or cmd’tolerant_call’] = true,
19675 [cmd’long_outer_call’ or cmd’tolerant_protected_call’] = true,
19676 [cmd’assign_glue’ or cmd’register_glue’] = index_not_nil,
19677 [cmd’assign_mu_glue’ or cmd’register_mu_glue’ or cmd’register_muglue’] = index_not_nil,
19678 [cmd’assign_toks’ or cmd’register_toks’] = index_not_nil,
19679 [cmd’assign_int’ or cmd’register_int’ or cmd’register_integer’] = index_not_nil,
19680 [cmd’assign_attr’ or cmd’register_attribute’] = true,
19681 [cmd’assign_dimen’ or cmd’register_dimen’ or cmd’register_dimension’] = index_not_nil,
19682 }

912

19683

19684 luacmd("__token_if_primitive_lua:N", function()
19685 local tok = get_next()
19686 local is_non_primitive = non_primitive[get_command(tok)]
19687 return put_next(
19688 is_non_primitive == true
19689 and false_tok
19690 or is_non_primitive == nil
19691 and true_tok
19692 or is_non_primitive == mode_not_null
19693 and (get_mode(tok) == 0 and true_tok or false_tok)
19694 or is_non_primitive == index_not_nil
19695 and (get_index(tok) and false_tok or true_tok)
19696 or is_non_primitive == mode_below_biggest_char
19697 and (get_mode(tok) > biggest_char and true_tok or false_tok))
19698 end, "global")
19699 end
19700 ⟨/lua⟩
19701 ⟨∗tex⟩
19702 \prg_new_conditional:Npnn \token_if_primitive:N #1 { p , T , F , TF }
19703 {
19704 __token_if_primitive_lua:N #1
19705 }
19706 }
19707 {
19708 \tex_global:D \tex_chardef:D \c__token_A_int = ‘A ~ %
19709 \use:e
19710 {
19711 \prg_new_conditional:Npnn \exp_not:N \token_if_primitive:N #1
19712 { p , T , F , TF }
19713 {
19714 \exp_not:N \token_if_macro:NTF #1
19715 \exp_not:N \prg_return_false:
19716 {
19717 \exp_not:N \exp_after:wN \exp_not:N __token_if_primitive:NNw
19718 \exp_not:N \token_to_meaning:N #1
19719 \tl_to_str:n { : : : } \s__token_stop #1
19720 }
19721 }
19722 \cs_new:Npn \exp_not:N __token_if_primitive:NNw
19723 #1#2 #3 \c_colon_str #4 \s__token_stop
19724 {
19725 \exp_not:N \tl_if_empty:oTF
19726 { \exp_not:N __token_if_primitive_space:w #3 ~ }
19727 {
19728 \exp_not:N __token_if_primitive_loop:N #3
19729 \c_colon_str \s__token_stop
19730 }
19731 { \exp_not:N __token_if_primitive_nullfont:N }
19732 }
19733 }
19734 \cs_new:Npn __token_if_primitive_space:w #1 ~ { }
19735 \cs_new:Npn __token_if_primitive_nullfont:N #1
19736 {

913

19737 \if_meaning:w \tex_nullfont:D #1
19738 \prg_return_true:
19739 \else:
19740 \prg_return_false:
19741 \fi:
19742 }
19743 \cs_new:Npn __token_if_primitive_loop:N #1
19744 {
19745 \if_int_compare:w ‘#1 < \c__token_A_int %
19746 \exp_after:wN __token_if_primitive:Nw
19747 \exp_after:wN #1
19748 \else:
19749 \exp_after:wN __token_if_primitive_loop:N
19750 \fi:
19751 }
19752 \cs_new:Npn __token_if_primitive:Nw #1 #2 \s__token_stop
19753 {
19754 \if:w : #1
19755 \exp_after:wN __token_if_primitive_undefined:N
19756 \else:
19757 \prg_return_false:
19758 \exp_after:wN \use_none:n
19759 \fi:
19760 }
19761 \cs_new:Npn __token_if_primitive_undefined:N #1
19762 {
19763 \if_cs_exist:N #1
19764 \prg_return_true:
19765 \else:
19766 \prg_return_false:
19767 \fi:
19768 }
19769 }

(End of definition for \token_if_primitive:NTF and others. This function is documented on page 209.)

\token_case_catcode:Nn
\token_case_catcode:NnTF
\token_case_charcode:Nn

\token_case_charcode:NnTF
\token_case_meaning:Nn

\token_case_meaning:NnTF
__token_case:NNnTF

__token_case:NNw
__token_case_end:nw

The aim here is to allow the case statement to be evaluated using a known number of
expansion steps (two), and without needing to use an explicit “end of recursion” marker.
That is achieved by using the test input as the final case, as this is always true. The
trick is then to tidy up the output such that the appropriate case code plus either the
true or false branch code is inserted.

19770 \cs_new:Npn \token_case_catcode:Nn #1#2
19771 { \exp:w __token_case:NNnTF \token_if_eq_catcode:NNTF #1 {#2} { } { } }
19772 \cs_new:Npn \token_case_catcode:NnT #1#2#3
19773 { \exp:w __token_case:NNnTF \token_if_eq_catcode:NNTF #1 {#2} {#3} { } }
19774 \cs_new:Npn \token_case_catcode:NnF #1#2
19775 { \exp:w __token_case:NNnTF \token_if_eq_catcode:NNTF #1 {#2} { } }
19776 \cs_new:Npn \token_case_catcode:NnTF
19777 { \exp:w __token_case:NNnTF \token_if_eq_catcode:NNTF }
19778 \cs_new:Npn \token_case_charcode:Nn #1#2
19779 { \exp:w __token_case:NNnTF \token_if_eq_charcode:NNTF #1 {#2} { } { } }
19780 \cs_new:Npn \token_case_charcode:NnT #1#2#3
19781 { \exp:w __token_case:NNnTF \token_if_eq_charcode:NNTF #1 {#2} {#3} { } }
19782 \cs_new:Npn \token_case_charcode:NnF #1#2

914

19783 { \exp:w __token_case:NNnTF \token_if_eq_charcode:NNTF #1 {#2} { } }
19784 \cs_new:Npn \token_case_charcode:NnTF
19785 { \exp:w __token_case:NNnTF \token_if_eq_charcode:NNTF }
19786 \cs_new:Npn \token_case_meaning:Nn #1#2
19787 { \exp:w __token_case:NNnTF \token_if_eq_meaning:NNTF #1 {#2} { } { } }
19788 \cs_new:Npn \token_case_meaning:NnT #1#2#3
19789 { \exp:w __token_case:NNnTF \token_if_eq_meaning:NNTF #1 {#2} {#3} { } }
19790 \cs_new:Npn \token_case_meaning:NnF #1#2
19791 { \exp:w __token_case:NNnTF \token_if_eq_meaning:NNTF #1 {#2} { } }
19792 \cs_new:Npn \token_case_meaning:NnTF
19793 { \exp:w __token_case:NNnTF \token_if_eq_meaning:NNTF }
19794 \cs_new:Npn __token_case:NNnTF #1#2#3#4#5
19795 {
19796 __token_case:NNw #1 #2 #3 #2 { }
19797 \s__token_mark {#4}
19798 \s__token_mark {#5}
19799 \s__token_stop
19800 }
19801 \cs_new:Npn __token_case:NNw #1#2#3#4
19802 {
19803 #1 #2 #3
19804 { __token_case_end:nw {#4} }
19805 { __token_case:NNw #1 #2 }
19806 }

To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases
searched for, then #1 is the code to insert, #2 is the next case to check on and #3 is all
of the rest of the cases code. That means that #4 is the true branch code, and #5 tidies
up the spare \s__token_mark and the false branch. On the other hand, if none of the
cases matched then we arrive here using the “termination” case of comparing the search
with itself. That means that #1 is empty, #2 is the first \s__token_mark and so #4 is
the false code (the true code is mopped up by #3).

19807 \cs_new:Npn __token_case_end:nw #1#2#3 \s__token_mark #4#5 \s__token_stop
19808 { \exp_end: #1 #4 }

(End of definition for \token_case_catcode:NnTF and others. These functions are documented on page
210.)

62.6 Peeking ahead at the next token
19809 ⟨@@=peek⟩

Peeking ahead is implemented using a two part mechanism. The outer level provides
a defined interface to the lower level material. This allows a large amount of code to be
shared. There are four cases:

1. peek at the next token;

2. peek at the next non-space token;

3. peek at the next token and remove it;

4. peek at the next non-space token and remove it.

915

\l_peek_token
\g_peek_token

Storage tokens which are publicly documented: the token peeked.
19810 \cs_new_eq:NN \l_peek_token ?
19811 \cs_new_eq:NN \g_peek_token ?

(End of definition for \l_peek_token and \g_peek_token. These variables are documented on page 210.)

\l__peek_search_token The token to search for as an implicit token: cf. \l__peek_search_tl.
19812 \cs_new_eq:NN \l__peek_search_token ?

(End of definition for \l__peek_search_token.)

\l__peek_search_tl The token to search for as an explicit token: cf. \l__peek_search_token.
19813 \tl_new:N \l__peek_search_tl

(End of definition for \l__peek_search_tl.)

__peek_true:w
__peek_true_aux:w

__peek_false:w
__peek_tmp:w

Functions used by the branching and space-stripping code.
19814 \cs_new:Npn __peek_true:w { }
19815 \cs_new:Npn __peek_true_aux:w { }
19816 \cs_new:Npn __peek_false:w { }
19817 \cs_new:Npn __peek_tmp:w { }

(End of definition for __peek_true:w and others.)

\s__peek_mark
\s__peek_stop

Internal scan marks.
19818 \scan_new:N \s__peek_mark
19819 \scan_new:N \s__peek_stop

(End of definition for \s__peek_mark and \s__peek_stop.)

__peek_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
19820 \cs_new:Npn __peek_use_none_delimit_by_s_stop:w #1 \s__peek_stop { }

(End of definition for __peek_use_none_delimit_by_s_stop:w.)

\peek_after:Nw
\peek_gafter:Nw

Simple wrappers for \futurelet: no arguments absorbed here.
19821 \cs_new_protected:Npn \peek_after:Nw
19822 { \tex_futurelet:D \l_peek_token }
19823 \cs_new_protected:Npn \peek_gafter:Nw
19824 { \tex_global:D \tex_futurelet:D \g_peek_token }

(End of definition for \peek_after:Nw and \peek_gafter:Nw. These functions are documented on page
210.)

__peek_true_remove:w A function to remove the next token and then regain control.
19825 \cs_new_protected:Npn __peek_true_remove:w
19826 {
19827 \tex_afterassignment:D __peek_true_aux:w
19828 \cs_set_eq:NN __peek_tmp:w
19829 }

(End of definition for __peek_true_remove:w.)

916

\peek_remove_spaces:n
__peek_remove_spaces:

Repeatedly use __peek_true_remove:w to remove a space and call __peek_true_-
aux:w.

19830 \cs_new_protected:Npn \peek_remove_spaces:n #1
19831 {
19832 \cs_set:Npe __peek_false:w { \exp_not:n {#1} }
19833 \group_align_safe_begin:
19834 \cs_set:Npn __peek_true_aux:w { \peek_after:Nw __peek_remove_spaces: }
19835 __peek_true_aux:w
19836 }
19837 \cs_new_protected:Npn __peek_remove_spaces:
19838 {
19839 \if_meaning:w \l_peek_token \c_space_token
19840 \exp_after:wN __peek_true_remove:w
19841 \else:
19842 \group_align_safe_end:
19843 \exp_after:wN __peek_false:w
19844 \fi:
19845 }

(End of definition for \peek_remove_spaces:n and __peek_remove_spaces:. This function is docu-
mented on page 211.)

\peek_remove_filler:n
__peek_remove_filler:w
__peek_remove_filler:

__peek_remove_filler_expand:w

Here we expand the input, removing spaces and \scan_stop: tokens until we reach a
non-expandable token. At that stage we re-insert the payload. To deal with the problem
of & tokens, we have to put the align-safe group in the correct place.

19846 \cs_new_protected:Npn \peek_remove_filler:n #1
19847 {
19848 \cs_set:Npn __peek_true_aux:w { __peek_remove_filler:w }
19849 \cs_set:Npe __peek_false:w
19850 {
19851 \exp_not:N \group_align_safe_end:
19852 \exp_not:n {#1}
19853 }
19854 \group_align_safe_begin:
19855 __peek_remove_filler:w
19856 }
19857 \cs_new_protected:Npn __peek_remove_filler:w
19858 {
19859 \exp_after:wN \peek_after:Nw \exp_after:wN __peek_remove_filler:
19860 \exp:w \exp_end_continue_f:w
19861 }

Here we can nest conditionals as \l_peek_token is only skipped over in the nested one
if it’s a space: no problems with conditionals or outer tokens.

19862 \cs_new_protected:Npn __peek_remove_filler:
19863 {
19864 \if_catcode:w \exp_not:N \l_peek_token \c_space_token
19865 \exp_after:wN __peek_true_remove:w
19866 \else:
19867 \if_meaning:w \l_peek_token \scan_stop:
19868 \exp_after:wN \exp_after:wN \exp_after:wN
19869 __peek_true_remove:w
19870 \else:
19871 \exp_after:wN \exp_after:wN \exp_after:wN

917

19872 __peek_remove_filler_expand:w
19873 \fi:
19874 \fi:
19875 }

To deal with undefined control sequences in the same way TEX does, we need to check
for expansion manually.

19876 \cs_new_protected:Npn __peek_remove_filler_expand:w
19877 {
19878 \exp_after:wN \if_meaning:w \exp_not:N \l_peek_token \l_peek_token
19879 \exp_after:wN __peek_false:w
19880 \else:
19881 \exp_after:wN __peek_remove_filler:w
19882 \fi:
19883 }

(End of definition for \peek_remove_filler:n and others. This function is documented on page 212.)

__peek_token_generic_aux:NNNTF The generic functions store the test token in both implicit and explicit modes, and the
true and false code as token lists, more or less. The two branches have to be absorbed
here as the input stream needs to be cleared for the peek function itself. Here, #1 is
__peek_true_remove:w when removing the token and __peek_true_aux:w otherwise.

19884 \cs_new_protected:Npn __peek_token_generic_aux:NNNTF #1#2#3#4#5
19885 {
19886 \group_align_safe_begin:
19887 \cs_set_eq:NN \l__peek_search_token #3
19888 \tl_set:Nn \l__peek_search_tl {#3}
19889 \cs_set:Npe __peek_true_aux:w
19890 {
19891 \exp_not:N \group_align_safe_end:
19892 \exp_not:n {#4}
19893 }
19894 \cs_set_eq:NN __peek_true:w #1
19895 \cs_set:Npe __peek_false:w
19896 {
19897 \exp_not:N \group_align_safe_end:
19898 \exp_not:n {#5}
19899 }
19900 \peek_after:Nw #2
19901 }

(End of definition for __peek_token_generic_aux:NNNTF.)

__peek_token_generic:NNTF
__peek_token_remove_generic:NNTF

For token removal there needs to be a call to the auxiliary function which does the work.
19902 \cs_new_protected:Npn __peek_token_generic:NNTF
19903 { __peek_token_generic_aux:NNNTF __peek_true_aux:w }
19904 \cs_new_protected:Npn __peek_token_generic:NNT #1#2#3
19905 { __peek_token_generic:NNTF #1 #2 {#3} { } }
19906 \cs_new_protected:Npn __peek_token_generic:NNF #1#2#3
19907 { __peek_token_generic:NNTF #1 #2 { } {#3} }
19908 \cs_new_protected:Npn __peek_token_remove_generic:NNTF
19909 { __peek_token_generic_aux:NNNTF __peek_true_remove:w }
19910 \cs_new_protected:Npn __peek_token_remove_generic:NNT #1#2#3
19911 { __peek_token_remove_generic:NNTF #1 #2 {#3} { } }

918

19912 \cs_new_protected:Npn __peek_token_remove_generic:NNF #1#2#3
19913 { __peek_token_remove_generic:NNTF #1 #2 { } {#3} }

(End of definition for __peek_token_generic:NNTF and __peek_token_remove_generic:NNTF.)

__peek_execute_branches_meaning: The meaning test is straight forward.
19914 \cs_new:Npn __peek_execute_branches_meaning:
19915 {
19916 \if_meaning:w \l_peek_token \l__peek_search_token
19917 \exp_after:wN __peek_true:w
19918 \else:
19919 \exp_after:wN __peek_false:w
19920 \fi:
19921 }

(End of definition for __peek_execute_branches_meaning:.)

__peek_execute_branches_catcode:
__peek_execute_branches_charcode:

__peek_execute_branches_catcode_aux:
__peek_execute_branches_catcode_auxii:N
__peek_execute_branches_catcode_auxiii:

The catcode and charcode tests are very similar, and in order to use the same auxiliaries
we do something a little bit odd, firing \if_catcode:w and \if_charcode:w before
finding the operands for those tests, which are only given in the auxii:N and auxiii:
auxiliaries. For our purposes, three kinds of tokens may follow the peeking function:

• control sequences which are not equal to a non-active character token (e.g., macro,
primitive);

• active characters which are not equal to a non-active character token (e.g., macro,
primitive);

• explicit non-active character tokens, or control sequences or active characters set
equal to a non-active character token.

The first two cases are not distinguishable simply using TEX’s \futurelet, because we
can only access the \meaning of tokens in that way. In those cases, detected thanks to
a comparison with \scan_stop:, we grab the following token, and compare it explicitly
with the explicit search token stored in \l__peek_search_tl. The \exp_not:N prevents
outer macros (coming from non-LATEX3 code) from blowing up. In the third case, \l_-
peek_token is good enough for the test, and we compare it again with the explicit search
token. Just like the peek token, the search token may be of any of the three types above,
hence the need to use the explicit token that was given to the peek function.

19922 \cs_new:Npn __peek_execute_branches_catcode:
19923 { \if_catcode:w __peek_execute_branches_catcode_aux: }
19924 \cs_new:Npn __peek_execute_branches_charcode:
19925 { \if_charcode:w __peek_execute_branches_catcode_aux: }
19926 \cs_new:Npn __peek_execute_branches_catcode_aux:
19927 {
19928 \if_catcode:w \exp_not:N \l_peek_token \scan_stop:
19929 \exp_after:wN \exp_after:wN
19930 \exp_after:wN __peek_execute_branches_catcode_auxii:N
19931 \exp_after:wN \exp_not:N
19932 \else:
19933 \exp_after:wN __peek_execute_branches_catcode_auxiii:
19934 \fi:
19935 }
19936 \cs_new:Npn __peek_execute_branches_catcode_auxii:N #1

919

19937 {
19938 \exp_not:N #1
19939 \exp_after:wN \exp_not:N \l__peek_search_tl
19940 \exp_after:wN __peek_true:w
19941 \else:
19942 \exp_after:wN __peek_false:w
19943 \fi:
19944 #1
19945 }
19946 \cs_new:Npn __peek_execute_branches_catcode_auxiii:
19947 {
19948 \exp_not:N \l_peek_token
19949 \exp_after:wN \exp_not:N \l__peek_search_tl
19950 \exp_after:wN __peek_true:w
19951 \else:
19952 \exp_after:wN __peek_false:w
19953 \fi:
19954 }

(End of definition for __peek_execute_branches_catcode: and others.)

\peek_catcode:NTF
\peek_catcode_remove:NTF

\peek_charcode:NTF
\peek_charcode_remove:NTF

\peek_meaning:NTF
\peek_meaning_remove:NTF

The public functions themselves cannot be defined using \prg_new_protected_conditional:Npnn.
Instead, the TF, T, F variants are defined in terms of corresponding variants of
__peek_token_generic:NNTF or __peek_token_remove_generic:NNTF, with first ar-
gument one of __peek_execute_branches_catcode:, __peek_execute_branches_-
charcode:, or __peek_execute_branches_meaning:.

19955 \tl_map_inline:nn { { catcode } { charcode } { meaning } }
19956 {
19957 \tl_map_inline:nn { { } { _remove } }
19958 {
19959 \tl_map_inline:nn { { TF } { T } { F } }
19960 {
19961 \cs_new_protected:cpe { peek_ #1 ##1 :N ####1 }
19962 {
19963 \exp_not:c { __peek_token ##1 _generic:NN ####1 }
19964 \exp_not:c { __peek_execute_branches_ #1 : }
19965 }
19966 }
19967 }
19968 }

(End of definition for \peek_catcode:NTF and others. These functions are documented on page 211.)

\peek_N_type:TF
__peek_execute_branches_N_type:

__peek_N_type:w
__peek_N_type_aux:nnw

All tokens are N-type tokens, except in four cases: begin-group tokens, end-group tokens,
space tokens with character code 32, and outer tokens. Since \l_peek_token might be
outer, we cannot use the convenient \bool_if:nTF function, and must resort to the old
trick of using \ifodd to expand a set of tests. The false branch of this test is taken if the
token is one of the first three kinds of non-N-type tokens (explicit or implicit), thus we call
__peek_false:w. In the true branch, we must detect outer tokens, without impacting
performance too much for non-outer tokens. The first filter is to search for outer in
the \meaning of \l_peek_token. If that is absent, __peek_use_none_delimit_by_-
s_stop:w cleans up, and we call __peek_true:w. Otherwise, the token can be a non-
outer macro or a primitive mark whose parameter or replacement text contains outer, it
can be the primitive \outer, or it can be an outer token. Macros and marks would have

920

ma in the part before the first occurrence of outer; the meaning of \outer has nothing
after outer, contrarily to outer macros; and that covers all cases, calling __peek_-
true:w or __peek_false:w as appropriate. Here, there is no ⟨search token⟩, so we
feed a dummy \scan_stop: to the __peek_token_generic:NNTF function.

19969 \group_begin:
19970 \cs_set_protected:Npn __peek_tmp:w #1 \s__peek_stop
19971 {
19972 \cs_new_protected:Npn __peek_execute_branches_N_type:
19973 {
19974 \if_int_odd:w
19975 \if_catcode:w \exp_not:N \l_peek_token { \c_zero_int \fi:
19976 \if_catcode:w \exp_not:N \l_peek_token } \c_zero_int \fi:
19977 \if_meaning:w \l_peek_token \c_space_token \c_zero_int \fi:
19978 \c_one_int
19979 \exp_after:wN __peek_N_type:w
19980 \token_to_meaning:N \l_peek_token
19981 \s__peek_mark __peek_N_type_aux:nnw
19982 #1 \s__peek_mark __peek_use_none_delimit_by_s_stop:w
19983 \s__peek_stop
19984 \exp_after:wN __peek_true:w
19985 \else:
19986 \exp_after:wN __peek_false:w
19987 \fi:
19988 }
19989 \cs_new_protected:Npn __peek_N_type:w ##1 #1 ##2 \s__peek_mark ##3
19990 { ##3 {##1} {##2} }
19991 }
19992 \exp_after:wN __peek_tmp:w \tl_to_str:n { outer } \s__peek_stop
19993 \group_end:
19994 \cs_new_protected:Npn __peek_N_type_aux:nnw #1 #2 #3 \fi:
19995 {
19996 \fi:
19997 \tl_if_in:noTF {#1} { \tl_to_str:n {ma} }
19998 { __peek_true:w }
19999 { \tl_if_empty:nTF {#2} { __peek_true:w } { __peek_false:w } }
20000 }
20001 \cs_new_protected:Npn \peek_N_type:TF
20002 {
20003 __peek_token_generic:NNTF
20004 __peek_execute_branches_N_type: \scan_stop:
20005 }
20006 \cs_new_protected:Npn \peek_N_type:T
20007 { __peek_token_generic:NNT __peek_execute_branches_N_type: \scan_stop: }
20008 \cs_new_protected:Npn \peek_N_type:F
20009 { __peek_token_generic:NNF __peek_execute_branches_N_type: \scan_stop: }

(End of definition for \peek_N_type:TF and others. This function is documented on page 212.)

20010 ⟨/tex⟩

20011 ⟨/package⟩

921

Chapter 63

l3prop implementation

The following test files are used for this code: m3prop001, m3prop002, m3prop003,
m3prop004, m3show001.

20012 ⟨∗package⟩

20013 ⟨@@=prop⟩

With the (default) flat data storage, a property list is a macro whose top-level
expansion is of the form

\s__prop __prop_chk:w __prop_pair:wn ⟨key1⟩ \s__prop {⟨value1⟩}
. . .
__prop_pair:wn ⟨keyn⟩ \s__prop {⟨valuen⟩}

where \s__prop is a scan mark (equal to \scan_stop:), __prop_chk:w produces a
suitable error if the property list is used directly in the input stream, and __prop_-
pair:wn can be used to map through the property list.

With the linked data storage, each property list entry ⟨keyi⟩–⟨valuei⟩ is stored into
a token list __prop ⟨prefix⟩ ⟨keyi⟩. The ⟨prefix⟩ is one or more characters (no
spaces), constructed automatically only once, when the property list is initially declared.
The control sequence name does not conform to standard naming for variables because
(1) this is an internal control sequence, not really a expl3 variable; (2) keeping track
of the scope l or g throughout all functions would be a pretty big mess, especially if
users accidentally mix local and global use (we would have to always check for such
mistakes, rather than only checking when suitable debug options are set); (3) shorter
control sequence names use less memory and are quicker in case of hash collisions, which
may matter since we are using many control sequences.

We need to enable mapping through such a property list, but without storing a list
of all entries anywhere: this is achieved by making each of these token lists also store a
pointer to the next entry. To enable efficient deletion, the token lists also store a pointer
to the previous entry. This means we have a doubly-linked list. To avoid having to
special-case the two ends of the doubly-linked list when deleting entries, we include as a
zeroth entry in the doubly-linked list the property list variable itself, and we include as an
(n + 1)-th entry in the doubly-linked list an end-pointer __prop ⟨prefix⟩ (no trailing
space, so it differs from an empty key). The space before ⟨prefix⟩ ensures there is no
collision with other l3prop internal functions, even if we have very many linked property
lists being defined.

922

The property list variable itself is a token list of the form

__prop_flatten:w __prop ⟨prefix⟩ \s__prop {⟨prefix⟩} __prop ⟨prefix⟩ ⟨key1⟩

Here, __prop_flatten:w serves as an efficiently recognized marker, and when f-
expanded it is tasked with fully unpacking the property list into the same form as the
default data storage so as to ease conversion. The ⟨prefix⟩ is used when looking up an
entry. The token list __prop ⟨prefix⟩ (see below) contains a pointer to the last key to
help insert a new entry. The pointer to ⟨key1⟩ is needed to start a mapping. The token
list labeled by ⟨keyi⟩ is of the form

\use_none:n __prop ⟨prefix⟩ ⟨keyi−1⟩ __prop_pair:wn ⟨keyi⟩ \s__-
prop {⟨valuei⟩} __prop ⟨prefix⟩ ⟨keyi+1⟩

where the pointer to ⟨keyi−1⟩ is needed when deleting the ⟨keyi⟩. Expanding this will
run __prop_pair:wn on the ⟨keyi⟩–⟨valuei⟩ pair (for speed, ⟨keyi⟩ is kept as explicit
tokens rather than slowly extracting it from a control sequence name), then move on to
the next key, thus mapping through the whole list. The mapping is ended upon expanding
__prop ⟨prefix⟩, which is the token list

\use_none:n __prop ⟨prefix⟩ ⟨keyn⟩

Let us think about deleting the ⟨keyi⟩. We need to update the ⟨keyi−1⟩ and ⟨keyi+1⟩
to point to each other instead of ⟨keyi⟩. To edit the corresponding token lists, it is
important that __prop ⟨prefix⟩ ⟨keyi⟩ be at the “same place” in the token lists also
in the boundary cases i = 1 or i = n, namely as the second token, or as the second
argument after \s__prop.

63.1 Internal auxiliaries
__prop_tmp:w Scratch macro, defined as needed, for instance to save __prop_pair:wn when concate-

nating.
20014 \cs_new_eq:NN __prop_tmp:w ?

(End of definition for __prop_tmp:w.)

\l__prop_internal_tl Token list used in various places: for the prefix; when converting from flat to linked
props; and to store the new key–value pair inserted by \prop_put:Nnn.

20015 \tl_new:N \l__prop_internal_tl

(End of definition for \l__prop_internal_tl.)

\s__prop_mark
\s__prop_stop

Internal scan marks.
20016 \scan_new:N \s__prop_mark
20017 \scan_new:N \s__prop_stop

(End of definition for \s__prop_mark and \s__prop_stop.)

\q__prop_recursion_tail
\q__prop_recursion_stop

Internal recursion quarks.
20018 \quark_new:N \q__prop_recursion_tail
20019 \quark_new:N \q__prop_recursion_stop

(End of definition for \q__prop_recursion_tail and \q__prop_recursion_stop.)

923

__prop_if_recursion_tail_stop:n
__prop_if_recursion_tail_stop:o

Functions to query recursion quarks.
20020 __kernel_quark_new_test:N __prop_if_recursion_tail_stop:n
20021 \cs_generate_variant:Nn __prop_if_recursion_tail_stop:n { o }

(End of definition for __prop_if_recursion_tail_stop:n and __prop_if_recursion_tail_stop:o.)

63.2 Structure of a property list
\s__prop A private scan mark is used as a marker after each key, and at the very beginning of the

property list.
20022 \scan_new:N \s__prop

(End of definition for \s__prop.)

__prop_chk:w
__prop_chk_loop:nw
__prop_chk_get:nw

This removes the flat property list from the input stream and complains about a bad use
of a property list. Since property lists do not have an end-marker, we slowly peek ahead
in a loop. Speed does not matter since this is for an error situation. While __prop_-
pair:wn does not keep a fixed definition, it always includes the internal \s__prop in its
argument specification, so that there is no risk of accidentally picking up a public token
instead of __prop_pair:wn when doing a meaning test. We collect the keys and values
to produce a more useful error message.

20023 \cs_new_protected:Npn __prop_chk:w { __prop_chk_loop:nw { } }
20024 \cs_new_protected:Npn __prop_chk_loop:nw #1
20025 {
20026 \peek_meaning:NTF __prop_pair:wn
20027 { __prop_chk_get:nw {#1} }
20028 { \msg_error:nne { prop } { misused } {#1} }
20029 }
20030 \cs_new_protected:Npn __prop_chk_get:nw #1 __prop_pair:wn #2 \s__prop #3
20031 { __prop_chk_loop:nw { #1 , ~ {#2} = { \tl_to_str:n {#3} } } }

(End of definition for __prop_chk:w , __prop_chk_loop:nw , and __prop_chk_get:nw.)

__prop_pair:wn Used as __prop_pair:wn ⟨key⟩ \s__prop {⟨item⟩} for both storage types, this internal
token starts each key–value pair in the property list. This default definition is changed
globally by any mapping function, so there is not much point trying to make it an error.
Instead, the error is produced by __prop_chk:w.

20032 \cs_new:Npn __prop_pair:wn #1 \s__prop #2 { }

(End of definition for __prop_pair:wn.)

__prop_flatten:w We implement here the fact that f-expanding a linked property list gives a flat property
list. Leaving a linked property list in the input stream will turn it into a flat property
list so that the error implemented by __prop_chk:w will correctly be triggered.

20033 \cs_new_protected:Npn __prop_flatten:w #1 \s__prop #2#3
20034 { \use:e { __prop_flatten_aux:N #3 } }

(End of definition for __prop_flatten:w.)

924

__prop_flatten:N
__prop_flatten_aux:w
__prop_flatten_aux:N

__prop_flatten_loop:w

The main function __prop_flatten:N receives a linked property list and flattens it.
The auxiliary __prop_flatten_aux:N receives a pointer to the first key and flattens
the linked property list into a flat property list. This is only restricted-expandable
as it involves mapping through all of the property list’s entries starting from ⟨key1⟩.
The looping function __prop_flatten_loop:w removes \use_none:n and a backwards
pointer #2, leaves the key–value pair for \use:e to receive, and calls itself again after
expanding the next key’s token list. Its argument #3 is empty, except at the end where
it is the \use_none:nnnn appearing in the definition of __prop_flatten_aux:N, which
ends the loop.

20035 \cs_new:Npn __prop_flatten:N #1
20036 { \exp_after:wN __prop_flatten_aux:w #1 }
20037 \cs_new:Npn __prop_flatten_aux:w #1 \s__prop #2 { __prop_flatten_aux:N }
20038 \cs_new:Npn __prop_flatten_aux:N #1
20039 {
20040 \s__prop __prop_chk:w
20041 \exp_after:wN __prop_flatten_loop:w #1
20042 \use_none:nnnn __prop_pair:wn \s__prop { }
20043 }
20044 \cs_new:Npn __prop_flatten_loop:w #1#2#3 __prop_pair:wn #4 \s__prop #5
20045 {
20046 #3
20047 \exp_not:n { __prop_pair:wn #4 \s__prop {#5} }
20048 \exp_after:wN __prop_flatten_loop:w
20049 }

(End of definition for __prop_flatten:N and others.)

\g__prop_prefix_int
\c__prop_basis_int

Used to assign prefixes for each linked property list. It is converted to base \c__prop_-
basis_int, then each digit is converted to a character, starting at ! (the character after
space).

20050 \int_new:N \g__prop_prefix_int
20051 \int_const:Nn \c__prop_basis_int { \c_max_char_int - ‘\! }

(End of definition for \g__prop_prefix_int and \c__prop_basis_int.)

__prop_next_prefix:
__prop_to_prefix:n

Store in \l__prop_internal_tl the conversion of \g__prop_prefix_int to characters,
and increment this integer for use in the next linked property list. No need to optimize
since this is only used when declaring the property list the first time. The aim here is to
make this string as short as we can, given the range of distinct characters available. This
speeds up the work of \cs:w . . . \cs_end: that looks up keys in the hash table.

20052 \cs_new_protected:Npn __prop_next_prefix:
20053 {
20054 \tl_set:Ne \l__prop_internal_tl
20055 { __prop_to_prefix:n { \g__prop_prefix_int } }
20056 \int_gincr:N \g__prop_prefix_int
20057 }
20058 \cs_new:Npn __prop_to_prefix:n #1
20059 {
20060 \int_compare:nNnTF {#1} > \c__prop_basis_int
20061 {
20062 \exp_args:Nf __prop_to_prefix:n
20063 { \int_div_truncate:nn {#1} \c__prop_basis_int }
20064 \exp_args:Nf __prop_to_prefix:n

925

20065 { \int_mod:nn {#1} \c__prop_basis_int }
20066 }
20067 { \char_generate:nn { ‘\! + #1 } { 12 } }
20068 }

(End of definition for __prop_next_prefix: and __prop_to_prefix:n.)

__prop_if_flat:NTF
__prop_if_flat_aux:w

We could either test for the presence of __prop_chk:w (flat property list) or of
__prop_flatten:w (linked property list). We make the second choice; this way props
that are accidentally \relax are treated as they were before. The auxiliary receives
\use_i:nn or \use_ii:nn as #3. As a transitional fix we avoid erroring in case the prop
is undefined (the \exp_after:wN is omitted in that case, taking the flat branch).

20069 \cs_new:Npn __prop_if_flat:NTF #1
20070 {
20071 \prop_if_exist:NT #1
20072 \exp_after:wN __prop_if_flat_aux:w #1
20073 \s__prop_mark \use_ii:nn
20074 __prop_flatten:w \s__prop_mark \use_i:nn \s__prop_stop
20075 }
20076 \cs_new:Npn __prop_if_flat_aux:w
20077 #1 __prop_flatten:w #2 \s__prop_mark #3 #4 \s__prop_stop {#3}

(End of definition for __prop_if_flat:NTF and __prop_if_flat_aux:w.)

63.3 Allocation and initialisation
\c_empty_prop An empty flat prop.

20078 \tl_const:Nn \c_empty_prop { \s__prop __prop_chk:w }

(End of definition for \c_empty_prop. This variable is documented on page 227.)

\prop_new:N
\prop_new:c

Flat property lists are initialized with the value \c_empty_prop.
20079 \cs_new_protected:Npn \prop_new:N #1
20080 {
20081 __kernel_chk_if_free_cs:N #1
20082 \cs_gset_eq:NN #1 \c_empty_prop
20083 }
20084 \cs_generate_variant:Nn \prop_new:N { c }

(End of definition for \prop_new:N. This function is documented on page 219.)

\prop_new_linked:N
\prop_new_linked:c

__prop_new_linked:N

The auxiliary is used in \prop_make_linked:N. For linked property lists, get a new prefix
in \l__prop_internal_tl, then use it to set up the internal structure: the last token
in #1 is usually a pointer to the first key, which is here the end-pointer. That end-pointer
has a pointer to the previous key (usually the last key), which is the variable #1 itself
that begins the doubly-linked list.

20085 \cs_new_protected:Npn \prop_new_linked:N #1
20086 {
20087 __kernel_chk_if_free_cs:N #1
20088 __prop_new_linked:N #1
20089 }
20090 \cs_new_protected:Npn __prop_new_linked:N #1
20091 {

926

20092 __prop_next_prefix:
20093 \cs_gset_nopar:Npe #1
20094 {
20095 __prop_flatten:w
20096 \exp_not:c { __prop ~ \l__prop_internal_tl }
20097 \s__prop { \l__prop_internal_tl }
20098 \exp_not:c { __prop ~ \l__prop_internal_tl }
20099 }
20100 \cs_gset_nopar:cpe { __prop ~ \l__prop_internal_tl }
20101 {
20102 \exp_not:N \use_none:n
20103 \exp_not:N #1
20104 }
20105 }
20106 \cs_generate_variant:Nn \prop_new_linked:N { c }

(End of definition for \prop_new_linked:N and __prop_new_linked:N. This function is documented on
page 219.)

\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

__prop_clear:NNN
__prop_clear:wNNN

__prop_clear_loop:Nw

Clearing a flat property list is like declaring it anew, simply setting it equal to \c_empty_-
prop. For linked property lists we must clear all of the variables storing individual keys,
which requires a loop. At each step of the loop, __prop_clear_loop:Nw receives \cs_-
(g)set_eq:NN, \use_none:n, the backwards pointer, an empty #4 (except at the end
of the loop), and the key–value pair #5=#6 which we disregard. The looping auxiliary
undefines the previous key’s token list (this includes the main token list, but that is fine
because it is restored at the end) and calls itself after expanding the next key’s token list.
The loop ends when #4 is \use_none:nnnn. After the loop, __prop_clear:wNNN cor-
rectly sets up the main variable #6 and the end-pointer #1. Importantly, this is done us-
ing \cs_(g)set_nopar:Npe and \exp_not:n because the almost-equivalent \tl_set:Nn
would complain in debug mode about the fact that the main variable is undefined at
this stage. Importantly, __prop_clear_entries:NN is used in the implementation of
\prop_set_eq:NN.

20107 \cs_new_protected:Npn \prop_clear:N
20108 { __prop_clear:NNN \cs_set_eq:NN \cs_set_nopar:Npe }
20109 \cs_generate_variant:Nn \prop_clear:N { c }
20110 \cs_new_protected:Npn \prop_gclear:N
20111 { __prop_clear:NNN \cs_gset_eq:NN \cs_gset_nopar:Npe }
20112 \cs_generate_variant:Nn \prop_gclear:N { c }
20113 \cs_new_protected:Npn __prop_clear:NNN #1#2#3
20114 {
20115 __prop_if_flat:NTF #3
20116 { #1 #3 \c_empty_prop }
20117 { \exp_after:wN __prop_clear:wNNN #3 #1 #2 #3 }
20118 }
20119 \cs_new_protected:Npn __prop_clear:wNNN
20120 __prop_flatten:w #1 \s__prop #2#3#4#5#6
20121 {
20122 __prop_clear_entries:NN #4 #3
20123 #5 #6 { \exp_not:n { __prop_flatten:w #1 \s__prop {#2} #1 } }
20124 #5 #1 { \exp_not:n { \use_none:n #6 } }
20125 }
20126 \cs_new_protected:Npn __prop_clear_entries:NN #1#2
20127 {

927

20128 \exp_after:wN __prop_clear_loop:Nw \exp_after:wN #1 #2
20129 \use_none:nnnn __prop_pair:wn \s__prop { }
20130 }
20131 \cs_new_protected:Npn __prop_clear_loop:Nw
20132 #1#2#3#4 __prop_pair:wn #5 \s__prop #6
20133 {
20134 #1 #3 \tex_undefined:D
20135 #4
20136 \exp_after:wN __prop_clear_loop:Nw
20137 \exp_after:wN #1
20138 }

(End of definition for \prop_clear:N and others. These functions are documented on page 219.)

\prop_clear_new:N
\prop_clear_new:c

\prop_gclear_new:N
\prop_gclear_new:c

\prop_clear_new_linked:N
\prop_clear_new_linked:c
\prop_gclear_new_linked:N
\prop_gclear_new_linked:c

A simple variation of the token list functions.
20139 \cs_new_protected:Npn \prop_clear_new:N #1
20140 { \prop_if_exist:NTF #1 { \prop_clear:N #1 } { \prop_new:N #1 } }
20141 \cs_generate_variant:Nn \prop_clear_new:N { c }
20142 \cs_new_protected:Npn \prop_gclear_new:N #1
20143 { \prop_if_exist:NTF #1 { \prop_gclear:N #1 } { \prop_new:N #1 } }
20144 \cs_generate_variant:Nn \prop_gclear_new:N { c }
20145 \cs_new_protected:Npn \prop_clear_new_linked:N #1
20146 { \prop_if_exist:NTF #1 { \prop_clear:N #1 } { \prop_new_linked:N #1 } }
20147 \cs_generate_variant:Nn \prop_clear_new_linked:N { c }
20148 \cs_new_protected:Npn \prop_gclear_new_linked:N #1
20149 { \prop_if_exist:NTF #1 { \prop_gclear:N #1 } { \prop_new_linked:N #1 } }
20150 \cs_generate_variant:Nn \prop_gclear_new_linked:N { c }

(End of definition for \prop_clear_new:N and others. These functions are documented on page 219.)

\prop_set_eq:NN
\prop_set_eq:cN
\prop_set_eq:Nc
\prop_set_eq:cc
\prop_gset_eq:NN
\prop_gset_eq:cN
\prop_gset_eq:Nc
\prop_gset_eq:cc

__prop_set_eq:NNNN
__prop_set_eq:wNNNN
__prop_set_eq:nNnNN

__prop_set_eq_loop:NNnw
__prop_set_eq_end:w

If both variables are accidentally the same variable (or equal flat property lists, as it
turns out) we do nothing, otherwise the following code would lose all entries. If the
target variable #3 is a flat prop, either copy directly or flatten before copying. If it is a
linked prop, we must clear it, then go through the entries in #4 to add them to #3.

20151 \cs_new_protected:Npn \prop_set_eq:NN
20152 { __prop_set_eq:NNNN \cs_set_eq:NN \cs_set_nopar:Npe }
20153 \cs_generate_variant:Nn \prop_set_eq:NN { Nc , cN , cc }
20154 \cs_new_protected:Npn \prop_gset_eq:NN
20155 { __prop_set_eq:NNNN \cs_gset_eq:NN \cs_gset_nopar:Npe }
20156 \cs_generate_variant:Nn \prop_gset_eq:NN { Nc , cN , cc }
20157 \cs_new_protected:Npn __prop_set_eq:NNNN #1#2#3#4
20158 {
20159 \cs_if_eq:NNF #3#4
20160 {
20161 __prop_if_flat:NTF #3
20162 {
20163 __prop_if_flat:NTF #4
20164 { #1 #3 #4 }
20165 { #2 #3 { __prop_flatten:N #4 } }
20166 }
20167 { \exp_after:wN __prop_set_eq:wNNNN #3 #1#2#3#4 }
20168 }
20169 }
20170 \cs_new_protected:Npn __prop_set_eq:wNNNN

928

20171 __prop_flatten:w #1 \s__prop #2#3#4#5#6#7
20172 {
20173 __prop_clear_entries:NN #4 #3
20174 \exp_args:Nf __prop_set_eq:nNnNN {#7} #1 {#2} #5 #6
20175 }

We have used that f-expanding either type of prop gives a flat prop. At this stage
__prop_set_eq:nNnNN receives the second variable as a flat prop, the end-pointer, the
prefix, the suitable \cs_(g)set_nopar:Npe assignment, and the first variable itself. Re-
move the leading \s__prop and __prop_chk:w with \use_i:nnn, then start the loop.

20176 \cs_new_protected:Npn __prop_set_eq:nNnNN #1#2#3#4#5
20177 {
20178 \use_i:nnn
20179 {
20180 __prop_set_eq_loop:NNnw #5 #4 {#3}
20181 __prop_flatten:w #2 \s__prop {#3}
20182 }
20183 #1
20184 \use_none:n __prop_pair:wn ? \s__prop
20185 }

The looping function receives the current pointer #1 (initially the variable itself), the
defining function #2 and the prefix #3, then a partial definition #4 (which in later stages
includes the backwards pointer), followed by the current value as \s__prop {#5}. It
seeks the next key #7 to construct in \l__prop_internal_tl the next pointer __-
prop ⟨prefix⟩ ⟨next key⟩ (the argument #6 is empty, except at the end of the loop,
where it is \use_none:n in such a way as to delete the ⟨space⟩ and ⟨next key⟩). Then
the token list (current pointer) #1 is set-up to contain the partial definition and current
value, as well as the newly constructed next pointer. After a line responsible for correctly
ending the loop with __prop_set_eq_end:w, we loop, setting up the next definition,
which starts with \use_none:n and a backwards pointer to #1 followed by the ⟨next
key⟩ #7 and so on.

20186 \cs_new_protected:Npn __prop_set_eq_loop:NNnw
20187 #1#2#3#4 \s__prop #5#6 __prop_pair:wn #7 \s__prop
20188 {
20189 \tl_set:Ne \l__prop_internal_tl { \exp_not:c { __prop ~ #3 #6 ~ #7 } }
20190 #2 #1 { \exp_not:n { #4 \s__prop {#5} } \exp_not:o \l__prop_internal_tl }
20191 \use_none:n #6 __prop_set_eq_end:w
20192 \exp_after:wN __prop_set_eq_loop:NNnw \l__prop_internal_tl #2 {#3}
20193 \use_none:n #1 __prop_pair:wn #7 \s__prop
20194 }

The end-code picks up what is needed to correctly assign the last token list (the end
pointer), which is simply \use_none:n __prop_⟨prefix⟩⟨space⟩⟨keyn⟩.

20195 \cs_new_protected:Npn __prop_set_eq_end:w
20196 \exp_after:wN __prop_set_eq_loop:NNnw #1#2#3
20197 \use_none:n #4#5 \s__prop
20198 {
20199 \exp_after:wN #2 \l__prop_internal_tl { \exp_not:n { \use_none:n #4 } }
20200 }

(End of definition for \prop_set_eq:NN and others. These functions are documented on page 219.)

\prop_make_flat:N
\prop_make_flat:c␣__prop_make_flat:Nn

The only interesting case is when given a linked prop. Clear the linked property list
using __prop_clear:wNNN with local assignments (it does not matter since we are at

929

the outermost group level, and \cs_set_eq:NN is very slightly faster than its global
version. Then store the contents (expanded preventively by \exp_args:NNf) with an
assignment \cs_set_nopar:Npe that does not perform l3debug checks.

20201 \cs_new_protected:Npn \prop_make_flat:N #1
20202 {
20203 \int_compare:nNnTF { \tex_currentgrouplevel:D } = 0
20204 {
20205 __prop_if_flat:NTF #1 { }
20206 { \exp_args:NNf __prop_make_flat:Nn #1 {#1} }
20207 }
20208 {
20209 \msg_error:nnee { prop } { inner-make }
20210 { \token_to_str:N \prop_make_flat:N } { \token_to_str:N #1 }
20211 }
20212 }
20213 \cs_generate_variant:Nn \prop_make_flat:N { c }
20214 \cs_new_protected:Npn __prop_make_flat:Nn #1#2
20215 {
20216 \exp_after:wN __prop_clear:wNNN #1 \cs_set_eq:NN \cs_set_nopar:Npe #1
20217 \cs_set_nopar:Npe #1 { \exp_not:n {#2} }
20218 }

(End of definition for \prop_make_flat:N and \prop_make_flat:c __prop_make_flat:Nn. This func-
tion is documented on page 220.)

\prop_make_linked:N
\prop_make_linked:c

__prop_make_linked:Nn

The only interesting case is when given a flat prop. We expand the contents for later
use. Then __prop_new_linked:N disregards that previous value of #1 and initializes the
linked prop. We can then use an auxiliary __prop_set_eq:wNNNN underlying \prop_-
set_eq:NN, with the prop contents saved as \l__prop_internal_tl. That step is a bit
unsafe, as \l__prop_internal_tl (really, a flat prop here) is used within __prop_-
set_eq:wNNNN itself, but it is in fact expanded early enough to be ok.

20219 \cs_new_protected:Npn \prop_make_linked:N #1
20220 {
20221 \int_compare:nNnTF { \tex_currentgrouplevel:D } = 0
20222 {
20223 __prop_if_flat:NTF #1
20224 { \exp_args:NNo __prop_make_linked:Nn #1 {#1} } { }
20225 }
20226 {
20227 \msg_error:nnee { prop } { inner-make }
20228 { \token_to_str:N \prop_make_linked:N } { \token_to_str:N #1 }
20229 }
20230 }
20231 \cs_generate_variant:Nn \prop_make_linked:N { c }
20232 \cs_new_protected:Npn __prop_make_linked:Nn #1#2
20233 {
20234 __prop_new_linked:N #1
20235 \tl_set:Nn \l__prop_internal_tl {#2}
20236 \exp_after:wN __prop_set_eq:wNNNN #1
20237 \cs_set_eq:NN \cs_set_nopar:Npe #1 \l__prop_internal_tl
20238 }

(End of definition for \prop_make_linked:N and __prop_make_linked:Nn. This function is documented
on page 220.)

930

\l_tmpa_prop
\l_tmpb_prop
\g_tmpa_prop
\g_tmpb_prop

We can now initialize the scratch variables.
20239 \prop_new:N \l_tmpa_prop
20240 \prop_new:N \l_tmpb_prop
20241 \prop_new:N \g_tmpa_prop
20242 \prop_new:N \g_tmpb_prop

(End of definition for \l_tmpa_prop and others. These variables are documented on page 227.)

\prop_concat:NNN
\prop_concat:ccc
\prop_gconcat:NNN
\prop_gconcat:ccc

__prop_concat:NNNNN
__prop_concat:nNNN

The basic strategy is to copy the first variable into the target, then loop through the
second variable, calling \prop_(g)put:Nnn on each item. To avoid running the l3debug
scope checks on each of these steps, we use the auxiliaries that underly \prop_set_eq:NN
and \prop_put:Nnn, whose syntax is a bit unwieldy. We work directly with the target
prop #3 as a scratch space, because copying over from a temporary variable to #3 would
be slow in the linked case. If #5 is #3 itself we have to be careful not to lose the data, and
we even take the opportunity to skip the copying step completely. To keep the correct
version of the duplicate keys we use the code underlying \prop_put_if_not_in:Nnn,
which involves passing \use_none:nnn to the auxiliary instead of nothing. There is no
need to check for the case where #3 is equal to #4 because in that case \prop_(g)set_-
eq:NN #3 #4 (or rather the underlying auxiliary) is correctly set up to do no needless
work.

20243 \cs_new_protected:Npn \prop_concat:NNN
20244 { __prop_concat:NNNNN \cs_set_eq:NN \cs_set_nopar:Npe }
20245 \cs_generate_variant:Nn \prop_concat:NNN { ccc }
20246 \cs_new_protected:Npn \prop_gconcat:NNN
20247 { __prop_concat:NNNNN \cs_gset_eq:NN \cs_gset_nopar:Npe }
20248 \cs_generate_variant:Nn \prop_gconcat:NNN { ccc }
20249 \cs_new_protected:Npn __prop_concat:NNNNN #1#2#3#4#5
20250 {
20251 \cs_if_eq:NNTF #3 #5
20252 { __prop_concat:nNNN \use_none:nnn #2 #3 #4 }
20253 {
20254 __prop_set_eq:NNNN #1 #2 #3 #4
20255 __prop_concat:nNNN { } #2 #3 #5
20256 }
20257 }
20258 \cs_new_protected:Npn __prop_concat:nNNN #1#2#3#4
20259 {
20260 \cs_gset_eq:NN __prop_tmp:w __prop_pair:wn
20261 \cs_gset_protected:Npn __prop_pair:wn ##1 \s__prop
20262 { __prop_put:nNNnn {#1} #2 #3 {##1} }
20263 \exp_last_unbraced:Nf \use_none:nn #4
20264 \cs_gset_eq:NN __prop_pair:wn __prop_tmp:w
20265 }

(End of definition for \prop_concat:NNN and others. These functions are documented on page 221.)

\prop_put_from_keyval:Nn
\prop_put_from_keyval:cn
\prop_gput_from_keyval:Nn
\prop_gput_from_keyval:cn

__prop_from_keyval:nn
__prop_from_keyval:Nnn

__prop_missing_eq:n

The core is a call to \keyval_parse:nnn, with an error message __prop_missing_eq:n
for entries without =, and a call to (essentially) \prop_(g)put:Nnn for valid key–value
pairs. To avoid repeated scope checks (and errors) when l3debug is active, we instead use
the auxiliary underlying \prop_put:Nnn. Because blank keys are valid here, in contrast
to l3keys, we set and restore \l__kernel_keyval_allow_blank_keys_bool. The key–
value argument may be quite large so we avoid reading it until it is really necessary.

20266 \cs_new_protected:Npn \prop_put_from_keyval:Nn #1

931

20267 { __prop_from_keyval:nn { __prop_put:nNNnn { } \cs_set_nopar:Npe #1 } }
20268 \cs_generate_variant:Nn \prop_put_from_keyval:Nn { c }
20269 \cs_new_protected:Npn \prop_gput_from_keyval:Nn #1
20270 { __prop_from_keyval:nn { __prop_put:nNNnn { } \cs_gset_nopar:Npe #1 } }
20271 \cs_generate_variant:Nn \prop_gput_from_keyval:Nn { c }
20272 \cs_new_protected:Npn __prop_from_keyval:nn
20273 {
20274 \bool_if:NTF \l__kernel_keyval_allow_blank_keys_bool
20275 { __prop_from_keyval:Nnn \c_true_bool }
20276 { __prop_from_keyval:Nnn \c_false_bool }
20277 }
20278 \cs_new_protected:Npn __prop_from_keyval:Nnn #1#2#3
20279 {
20280 \bool_set_eq:NN \l__kernel_keyval_allow_blank_keys_bool \c_true_bool
20281 \keyval_parse:nnn __prop_missing_eq:n {#2} {#3}
20282 \bool_set_eq:NN \l__kernel_keyval_allow_blank_keys_bool #1
20283 }
20284 \cs_new_protected:Npn __prop_missing_eq:n
20285 { \msg_error:nnn { prop } { prop-keyval } }

(End of definition for \prop_put_from_keyval:Nn and others. These functions are documented on page
222.)

\prop_set_from_keyval:Nn
\prop_set_from_keyval:cn
\prop_gset_from_keyval:Nn
\prop_gset_from_keyval:cn

Just empty the prop (with the auxiliary underlying \prop_clear:N to avoid l3debug
problems) and push key–value entries using \prop_(g)put_from_keyval:Nn.

20286 \cs_new_protected:Npn \prop_set_from_keyval:Nn #1
20287 {
20288 __prop_clear:NNN \cs_set_eq:NN \cs_set_nopar:Npe #1
20289 \prop_put_from_keyval:Nn #1
20290 }
20291 \cs_generate_variant:Nn \prop_set_from_keyval:Nn { c }
20292 \cs_new_protected:Npn \prop_gset_from_keyval:Nn #1
20293 {
20294 __prop_clear:NNN \cs_gset_eq:NN \cs_gset_nopar:Npe #1
20295 \prop_gput_from_keyval:Nn #1
20296 }
20297 \cs_generate_variant:Nn \prop_gset_from_keyval:Nn { c }

(End of definition for \prop_set_from_keyval:Nn and \prop_gset_from_keyval:Nn. These functions
are documented on page 220.)

\prop_const_from_keyval:Nn
\prop_const_from_keyval:cn

\prop_const_linked_from_keyval:Nn
\prop_const_linked_from_keyval:cn

For both flat and linked constant props, we create #1 then use the same auxiliary as for
\prop_gput_from_keyval:Nn. It is most natural to use the already packaged \prop_-
gput:Nnn, but that would mean doing an assignment on a supposedly constant property
list. To avoid errors when l3debug is activated, we use the auxiliary underlying \prop_-
gput:Nnn.

20298 \cs_new_protected:Npn \prop_const_from_keyval:Nn #1
20299 {
20300 \prop_new:N #1
20301 __prop_from_keyval:nn { __prop_put:nNNnn { } \cs_gset_nopar:Npe #1 }
20302 }
20303 \cs_generate_variant:Nn \prop_const_from_keyval:Nn { c }
20304 \cs_new_protected:Npn \prop_const_linked_from_keyval:Nn #1
20305 {

932

20306 \prop_new_linked:N #1
20307 __prop_from_keyval:nn { __prop_put:nNNnn { } \cs_gset_nopar:Npe #1 }
20308 }
20309 \cs_generate_variant:Nn \prop_const_linked_from_keyval:Nn { c }

(End of definition for \prop_const_from_keyval:Nn and \prop_const_linked_from_keyval:Nn. These
functions are documented on page 220.)

63.4 Accessing data in property lists
Accessing/deleting/adding entries is mostly done by __prop_split:NnTFn, which must
be fast because it is used in many l3prop functions. Its syntax is as follows.

__prop_split:NnTFn ⟨property list⟩ {⟨key⟩}
{⟨true code⟩} {⟨false code⟩} {⟨link code⟩}

If the ⟨property list⟩ uses the linked data storage, then it runs the ⟨link code⟩,
otherwise it does as follows.

It splits the ⟨property list⟩ at the ⟨key⟩, giving three token lists: the ⟨entries
before⟩ the ⟨key⟩, the ⟨value⟩ associated with the ⟨key⟩ and the ⟨entries after⟩ the
⟨key⟩. Both the ⟨entries before⟩ and the ⟨entries after⟩ can be empty or consist
of some number of consecutive entries __prop_pair:wn ⟨keyi⟩ \s__prop {⟨valuei⟩}. If
the ⟨key⟩ is present in the ⟨property list⟩ then the ⟨true code⟩ is left in the input
stream, with #1, #2, and #3 replaced by the ⟨entries before⟩, ⟨value⟩, and ⟨entries
after⟩. If the ⟨key⟩ is not present in the ⟨property list⟩ then the ⟨false code⟩ is
left in the input stream. Only the ⟨true code⟩ is used in the replacement text of a macro
defined internally, which requires ## doubling.

__prop_split:NnTFn
__prop_split_aux:nNTFn
__prop_split_test:wn
__prop_split_flat:w

__prop_split_linked:w
__prop_split_wrong:Nw

The aim is to distinguish four cases: a flat prop that contains the given ⟨key⟩, a flat
prop that does not contain it, a linked prop, and an invalid prop. The last case includes
those that are set to \relax by c-expansion, as well as unrelated token list variables
since these unfortunately used to “work” in earlier implementations. In the first three
cases we run the T, F, and n arguments, and in the last case we raise an error, set the
variable to a known state (empty prop), and run the F code (some conditionals such as
\prop_pop:NnNTF otherwise blow up pretty badly).

The first distinction between these cases is done by __prop_split_test:wn, which
looks for the argument after \s__prop. For a flat prop it will be __prop_chk:w, which
leads to running __prop_split_flat:w, explained below. For a linked prop it is the
prefix, consisting of characters, so we end up running __prop_split_linked:w, which
cleans up and selects the aforementioned n argument. For invalid props, or rather, vari-
ables that do not contain \s__prop, the argument includes \fi:, and we end up calling
__prop_split_wrong:Nw, which calls \prop_show:N to raise a detailed error stating
how the variable is wrong.

Let us return to __prop_split_flat:w. This function is defined dynamically as

\cs_set:Npn __prop_split_flat:w __prop_split_linked:w #1
__prop_pair:wn ⟨key⟩ \s__prop #2
#3 \s__prop_mark #4 #5 \s__prop_stop
{ #4 {⟨true code⟩} }

933

Its job is to seek the ⟨key⟩ in the property list (known to be flat at this stage) by using
an argument #1 delimited essentially by that key. If indeed the variable contained the
⟨key⟩, then #1 is the ⟨extract1⟩ before the key–value pair, #2 is the ⟨value⟩ associated
with the ⟨key⟩, #3 is the ⟨extract2⟩ after the key–value pair, #4 is \use_i:nnn, and we
run \use_i:nnn {⟨true code⟩} {⟨false code⟩} {⟨link code⟩}, selecting the ⟨true code⟩.
Otherwise, the whole property list together with \s__prop_mark \use_i:nnn is taken
in as #1, then #2 is some tokens ? \fi: __prop_split_wrong:Nw ⟨variable⟩ that
were only useful in the case of invalid props, #3 is empty, and most importantly #4 is
\use_ii:nnn. This command selects the ⟨false code⟩.

Note that we define __prop_split_flat:w in all cases even though it is only used
in the flat case. Indeed, to avoid taking in the whole property list (which may be large)
as an argument more than strictly necessary, we would have to keep the ⟨true code⟩
positioned before the expansion of the prop variable in order to use it in the definition.
The only way to do that is to store it using an assignment so we might as well just
perform the assignment that we can actually use in the flat case.

20310 \cs_new_protected:Npn __prop_split:NnTFn #1#2
20311 {
20312 \exp_after:wN __prop_split_aux:nNTFn
20313 \exp_after:wN { \tl_to_str:n {#2} } #1
20314 }
20315 \cs_new_protected:Npn __prop_split_aux:nNTFn #1#2#3
20316 {
20317 \cs_set:Npn __prop_split_flat:w __prop_split_linked:w ##1
20318 __prop_pair:wn #1 \s__prop ##2 ##3 \s__prop_mark ##4 ##5 \s__prop_stop
20319 { ##4 {#3} }
20320 \exp_after:wN __prop_split_test:wn #2 \s__prop_mark \use_i:nnn
20321 __prop_pair:wn #1 \s__prop { ? \fi: __prop_split_wrong:Nw #2 }
20322 \s__prop_mark \use_ii:nnn
20323 \s__prop_stop
20324 }
20325 \cs_new:Npn __prop_split_flat:w { }
20326 \cs_new_protected:Npn __prop_split_test:wn #1 \s__prop #2
20327 {
20328 \if_meaning:w __prop_chk:w #2 \exp_after:wN __prop_split_flat:w \fi:
20329 __prop_split_linked:w
20330 }
20331 \cs_new_protected:Npn __prop_split_linked:w #1 \s__prop_stop #2#3 {#3}
20332 \cs_new_protected:Npn __prop_split_wrong:Nw #1#2 \s__prop_stop #3#4
20333 {
20334 \prop_show:N #1
20335 \cs_gset_eq:NN #1 \c_empty_prop
20336 #3
20337 }

(End of definition for __prop_split:NnTFn and others.)

\prop_get:NnN
\prop_get:NVN
\prop_get:NvN
\prop_get:NeN
\prop_get:NoN
\prop_get:NxN
\prop_get:cnN
\prop_get:cVN
\prop_get:cvN
\prop_get:ceN
\prop_get:coN
\prop_get:cxN
\prop_get:cnc

\prop_get:NnNTF
\prop_get:NVNTF
\prop_get:NvNTF
\prop_get:NeNTF
\prop_get:NoNTF
\prop_get:NxNTF
\prop_get:cnNTF
\prop_get:cVNTF
\prop_get:cvNTF
\prop_get:ceNTF
\prop_get:coNTF
\prop_get:cxNTF
\prop_get:cncTF

__prop_get:NnnTF
__prop_get_linked:w

__prop_get_linked_aux:w

Here we implement both \prop_get:NnN and its branching version through __prop_-
get:NnnTF. It receives the prop and key, followed by an assignment used when the value
is found, ⟨true code⟩ to run after the assignment, and some fall-back ⟨false code⟩
for absent values. It relies on __prop_split:NnTFn. For a flat prop, the first four
arguments of __prop_split:NnTFn are used, and run either the assignment #3{##3}
and ⟨true code⟩ #4, or the ⟨false code⟩ #5.

934

20338 \cs_new_protected:Npn \prop_get:NnN #1#2#3
20339 {
20340 __prop_get:NnnTF #1 {#2}
20341 { \tl_set:Nn #3 } { } { \tl_set:Nn #3 { \q_no_value } }
20342 }
20343 \cs_generate_variant:Nn \prop_get:NnN { NV , Nv , Ne , c , cV , cv , ce }
20344 \cs_generate_variant:Nn \prop_get:NnN { No , Nx , co , cx }
20345 \cs_generate_variant:Nn \prop_get:NnN { cnc }
20346 \prg_new_protected_conditional:Npnn \prop_get:NnN #1#2#3 { T , F , TF }
20347 {
20348 __prop_get:NnnTF #1 {#2}
20349 { \tl_set:Nn #3 } \prg_return_true: \prg_return_false:
20350 }
20351 \prg_generate_conditional_variant:Nnn \prop_get:NnN
20352 { NV , Nv , Ne , c , cV , cv , ce } { T , F , TF }
20353 \prg_generate_conditional_variant:Nnn \prop_get:NnN
20354 { No , Nx , co , cx } { T , F , TF }
20355 \prg_generate_conditional_variant:Nnn \prop_get:NnN
20356 { cnc } { T , F , TF }
20357 \cs_new_protected:Npn __prop_get:NnnTF #1#2#3#4#5
20358 {
20359 __prop_split:NnTFn #1 {#2}
20360 { #3 {##2} #4 }
20361 {#5}
20362 { \exp_after:wN __prop_get_linked:w #1 {#2} {#3} {#4} {#5} }
20363 }

For a linked prop we must work a bit: __prop_get_linked:w is followed by the expan-
sion of the prop, then by four brace groups: the key #4, the assignment code #5, ⟨true
code⟩ #6, and ⟨false code⟩ #7. If the key is present, its value is stored in the token
list __prop_#2~#4. If that token list exists, __prop_get_linked_aux:w gets called
followed by the expansion of that token list and we grab as #2 the value associated to
that key, which we feed to the assignment code and follow-up code. If the key is absent
the token list can be \undefined or \relax. In both cases __prop_get_linked_aux:w
finds an empty brace group as #2, \use_none:n as #4 and the ⟨false code⟩ as #5. Note
that we made __prop_get_linked:w and subsequent auxiliaries expandable, because
they are also used in \prop_item:Nn.

20364 \cs_new:Npn __prop_get_linked:w
20365 __prop_flatten:w #1 \s__prop #2#3#4#5#6#7
20366 {
20367 \if_cs_exist:w __prop ~ #2 ~ \tl_to_str:n {#4} \cs_end:
20368 \exp_after:wN \exp_after:wN \exp_after:wN __prop_get_linked_aux:w
20369 \cs:w __prop ~ #2 ~ \tl_to_str:n {#4} \exp_after:wN \cs_end:
20370 \else:
20371 \exp_after:wN __prop_get_linked_aux:w
20372 \fi:
20373 \s__prop_mark {#5} {#6}
20374 \s__prop { } \s__prop_mark \use_none:n {#7}
20375 \s__prop_stop
20376 }
20377 \cs_new:Npn __prop_get_linked_aux:w
20378 #1 \s__prop #2 #3 \s__prop_mark #4 #5 #6 \s__prop_stop { #4 {#2} #5 }

(End of definition for \prop_get:NnN and others. These functions are documented on page 222.)

935

\prop_item:Nn
\prop_item:NV
\prop_item:No
\prop_item:Ne
\prop_item:cn
\prop_item:cV
\prop_item:co
\prop_item:ce

__prop_item:nnn

Getting the value corresponding to a key in a flat property list in an expandable fash-
ion simply uses \prop_map_tokens:Nn to go through the property list. The auxiliary
__prop_item:nnn receives the search string #1, the key #2 and the value #3 and re-
turns as appropriate.

20379 \cs_new:Npn \prop_item:Nn #1#2
20380 {
20381 __prop_if_flat:NTF #1
20382 {
20383 \exp_args:NNo \prop_map_tokens:Nn #1
20384 {
20385 \exp_after:wN __prop_item:nnn
20386 \exp_after:wN { \tl_to_str:n {#2} }
20387 }
20388 }
20389 { \exp_after:wN __prop_get_linked:w #1 {#2} \exp_not:n { } { } }
20390 }
20391 \cs_new:Npn __prop_item:nnn #1#2#3
20392 {
20393 \str_if_eq:eeT {#1} {#2}
20394 { \prop_map_break:n { \exp_not:n {#3} } }
20395 }
20396 \cs_generate_variant:Nn \prop_item:Nn { NV , No , Ne , c , cV , co , ce }

(End of definition for \prop_item:Nn and __prop_item:nnn. This function is documented on page 223.)

63.5 Removing data from property lists
__prop_pop:NnNNnTF

__prop_pop_linked:wnNNnTF
__prop_pop_linked:NNNn

__prop_pop_linked:w
__prop_pop_linked_prev:w
__prop_pop_linked_next:w

This auxiliary is used by both the \prop_pop family and the \prop_remove family of func-
tions. It receives a ⟨prop⟩ and a {⟨key⟩}, three assignment functions (\tl_set:Nn \cs_-
set_eq:NN \cs_set_nopar:Npe or their global versions), then {⟨code⟩} {⟨true code⟩}
{⟨false code⟩}.

For a flat prop, split it. If the ⟨key⟩ is there, reconstruct the rest of the prop from
the two extracts ##2 ##4 and assign using \tl_(g)set:Nn, then run ⟨code⟩ {⟨value⟩}
with the ⟨value⟩ found, and run the ⟨true code⟩. If the ⟨key⟩ is absent, run the ⟨false
code⟩.

For a linked prop, the removal is done by __prop_pop_linked:wnNNnTF, which
removes the key–value pair from the doubly-linked list and runs its last three arguments
{⟨code⟩} {⟨true code⟩} {⟨false code⟩} depending on whether the key–value is found, in
the same way as for flat props.

20397 \cs_new_protected:Npn __prop_pop:NnNNnTF #1#2#3#4#5#6#7
20398 {
20399 __prop_split:NnTFn #1 {#2}
20400 {
20401 #4 #1 { \exp_not:n { \s__prop __prop_chk:w ##1 ##3 } }
20402 #5 {##2}
20403 #6
20404 }
20405 {#7}
20406 {
20407 \exp_after:wN __prop_pop_linked:wnNNnTF #1 {#2}
20408 #3 #4 {#5} {#6} {#7}
20409 }

936

20410 }

The next auxiliary __prop_pop_linked:wnNNnTF, together with the NNNn auxiliary,
checks if the key is present in the ⟨linked prop⟩, then the corresponding value (if
present) is passed as a braced argument to the ⟨code⟩ and the ⟨true code⟩ or ⟨false
code⟩ is run as appropriate. Before that, there are also three assignments: the token
lists for the previous key and next key are made to point to each other, cf. __prop_-
pop_linked:w, and the token list for the given key is made undefined.

20411 \cs_new_protected:Npn __prop_pop_linked:wnNNnTF
20412 __prop_flatten:w #1 \s__prop #2#3#4#5#6#7
20413 {
20414 \if_cs_exist:w __prop ~ #2 ~ \tl_to_str:n {#4} \cs_end:
20415 \exp_after:wN __prop_pop_linked:NNNn
20416 \cs:w __prop ~ #2 ~ \tl_to_str:n {#4} \cs_end:
20417 #5 #6 {#7}
20418 \else:
20419 \exp_after:wN \use_iii:nnn
20420 \fi:
20421 \use_i:nn
20422 }
20423 \cs_new_protected:Npn __prop_pop_linked:NNNn #1#2#3#4
20424 {
20425 \if_meaning:w \scan_stop: #1
20426 \exp_after:wN \exp_after:wN \exp_after:wN \use_iii:nnn
20427 \else:
20428 \exp_after:wN __prop_pop_linked:w #1 #1 #2 #3 {#4}
20429 \fi:
20430 }
20431 \cs_new_protected:Npn __prop_pop_linked:w
20432 \use_none:n #1#2 \s__prop #3#4#5#6#7#8
20433 {
20434 #6 #5 \tex_undefined:D
20435 #7 #1
20436 {
20437 \exp_after:wN __prop_pop_linked_prev:w #1
20438 \exp_not:N #4
20439 }
20440 #7 #4
20441 {
20442 \exp_not:n { \use_none:n #1 }
20443 \exp_not:f { \exp_after:wN __prop_pop_linked_next:w #4 }
20444 }
20445 #8 {#3}
20446 }
20447 \cs_new:Npn __prop_pop_linked_prev:w #1 \s__prop #2#3
20448 { \exp_not:n { #1 \s__prop {#2} } }
20449 \cs_new:Npn __prop_pop_linked_next:w \use_none:n #1 { \exp_stop_f: }

(End of definition for __prop_pop:NnNNnTF and others.)

\prop_remove:Nn
\prop_remove:NV
\prop_remove:Ne
\prop_remove:cn
\prop_remove:cV
\prop_remove:ce
\prop_gremove:Nn
\prop_gremove:NV
\prop_gremove:Ne
\prop_gremove:cn
\prop_gremove:cV
\prop_gremove:ce

Deleting from a property relies on __prop_pop:NnNNnTF. The three assignment func-
tions are suitably local or global. The last three arguments are \use_none:n and two
empty brace groups: if the key is found we get \use_none:n {⟨key⟩} ⟨empty⟩, which ex-

937

pands to nothing, and otherwise we just get ⟨empty⟩. The auxiliary takes care of actually
removing the entry from the prop.

20450 \cs_new_protected:Npn \prop_remove:Nn #1#2
20451 {
20452 __prop_pop:NnNNnTF #1 {#2}
20453 \cs_set_eq:NN \cs_set_nopar:Npe
20454 \use_none:n { } { }
20455 }
20456 \cs_new_protected:Npn \prop_gremove:Nn #1#2
20457 {
20458 __prop_pop:NnNNnTF #1 {#2}
20459 \cs_gset_eq:NN \cs_gset_nopar:Npe
20460 \use_none:n { } { }
20461 }
20462 \cs_generate_variant:Nn \prop_remove:Nn { NV , Ne , c , cV , ce }
20463 \cs_generate_variant:Nn \prop_gremove:Nn { NV , Ne , c , cV , ce }

(End of definition for \prop_remove:Nn and \prop_gremove:Nn. These functions are documented on
page 223.)

\prop_pop:NnN
\prop_pop:NVN
\prop_pop:NoN
\prop_pop:cnN
\prop_pop:cVN
\prop_pop:coN
\prop_gpop:NnN
\prop_gpop:NVN
\prop_gpop:NoN
\prop_gpop:cnN
\prop_gpop:cVN
\prop_gpop:coN

\prop_pop:NnNTF
\prop_pop:NVNTF
\prop_pop:NoNTF
\prop_pop:cnNTF
\prop_pop:cVNTF
\prop_pop:coNTF

\prop_gpop:NnNTF
\prop_gpop:NVNTF
\prop_gpop:NoNTF
\prop_gpop:cnNTF
\prop_gpop:cVNTF
\prop_gpop:coNTF

Popping a value is almost the same, but the value found is kept. For the non-branching
version, we additionally set the target token list to \q_no_value, while for the branching
version we must produce \prg_return_true: or \prg_return_false:.

20464 \cs_new_protected:Npn \prop_pop:NnN #1#2#3
20465 {
20466 __prop_pop:NnNNnTF #1 {#2}
20467 \cs_set_eq:NN \cs_set_nopar:Npe
20468 { \tl_set:Nn #3 } { } { \tl_set:Nn #3 { \q_no_value } }
20469 }
20470 \cs_new_protected:Npn \prop_gpop:NnN #1#2#3
20471 {
20472 __prop_pop:NnNNnTF #1 {#2}
20473 \cs_gset_eq:NN \cs_gset_nopar:Npe
20474 { \tl_set:Nn #3 } { } { \tl_set:Nn #3 { \q_no_value } }
20475 }
20476 \cs_generate_variant:Nn \prop_pop:NnN { NV , No }
20477 \cs_generate_variant:Nn \prop_pop:NnN { c , cV , co }
20478 \cs_generate_variant:Nn \prop_gpop:NnN { NV , No }
20479 \cs_generate_variant:Nn \prop_gpop:NnN { c , cV , co }
20480 \prg_new_protected_conditional:Npnn \prop_pop:NnN #1#2#3 { T , F , TF }
20481 {
20482 __prop_pop:NnNNnTF #1 {#2}
20483 \cs_set_eq:NN \cs_set_nopar:Npe
20484 { \tl_set:Nn #3 } \prg_return_true: \prg_return_false:
20485 }
20486 \prg_new_protected_conditional:Npnn \prop_gpop:NnN #1#2#3 { T , F , TF }
20487 {
20488 __prop_pop:NnNNnTF #1 {#2}
20489 \cs_gset_eq:NN \cs_gset_nopar:Npe
20490 { \tl_set:Nn #3 } \prg_return_true: \prg_return_false:
20491 }
20492 \prg_generate_conditional_variant:Nnn \prop_pop:NnN
20493 { NV , No , c , cV , co } { T , F , TF }
20494 \prg_generate_conditional_variant:Nnn \prop_gpop:NnN

938

20495 { NV , No , c , cV , co } { T , F , TF }

(End of definition for \prop_pop:NnN and others. These functions are documented on page 222.)

63.6 Adding data to property lists
\prop_put:Nnn
\prop_put:NnV
\prop_put:Nnv
\prop_put:Nne
\prop_put:NVn
\prop_put:NVV
\prop_put:NVv
\prop_put:NVe
\prop_put:Nvn
\prop_put:NvV
\prop_put:Nvv
\prop_put:Nve
\prop_put:Nen
\prop_put:NeV
\prop_put:Nev
\prop_put:Nee
\prop_put:Nno
\prop_put:Non
\prop_put:Noo
\prop_put:Nnx
\prop_put:NVx
\prop_put:NxV
\prop_put:Nxx
\prop_put:cnn
\prop_put:cnV
\prop_put:cnv
\prop_put:cne
\prop_put:cVn
\prop_put:cVV
\prop_put:cVv
\prop_put:cVe
\prop_put:cvn
\prop_put:cvV
\prop_put:cvv
\prop_put:cve
\prop_put:cen
\prop_put:ceV
\prop_put:cev
\prop_put:cee
\prop_put:cno
\prop_put:con
\prop_put:coo
\prop_put:cnx
\prop_put:cVx
\prop_put:cxV
\prop_put:cxx
\prop_gput:Nnn
\prop_gput:NnV
\prop_gput:Nnv
\prop_gput:Nne
\prop_gput:NVn
\prop_gput:NVV
\prop_gput:NVv
\prop_gput:NVe
\prop_gput:Nvn
\prop_gput:NvV
\prop_gput:Nvv
\prop_gput:Nve
\prop_gput:Nen
\prop_gput:NeV
\prop_gput:Nev
\prop_gput:Nee
\prop_gput:Nno
\prop_gput:Non
\prop_gput:Noo
\prop_gput:Nnx
\prop_gput:NVx
\prop_gput:NxV
\prop_gput:Nxx
\prop_gput:cnn
\prop_gput:cnV
\prop_gput:cnv
\prop_gput:cne
\prop_gput:cVn
\prop_gput:cVV
\prop_gput:cVv
\prop_gput:cVe
\prop_gput:cvn
\prop_gput:cvV
\prop_gput:cvv
\prop_gput:cve
\prop_gput:cen
\prop_gput:ceV
\prop_gput:cev
\prop_gput:cee
\prop_gput:cno
\prop_gput:con
\prop_gput:coo
\prop_gput:cnx
\prop_gput:cVx
\prop_gput:cxV
\prop_gput:cxx

\prop_put_if_not_in:Nnn
\prop_put_if_not_in:NnV
\prop_put_if_not_in:Nnv
\prop_put_if_not_in:Nne
\prop_put_if_not_in:NVn
\prop_put_if_not_in:NVV
\prop_put_if_not_in:NVv
\prop_put_if_not_in:NVe
\prop_put_if_not_in:Nvn
\prop_put_if_not_in:NvV
\prop_put_if_not_in:Nvv
\prop_put_if_not_in:Nve
\prop_put_if_not_in:Nen
\prop_put_if_not_in:NeV
\prop_put_if_not_in:Nev
\prop_put_if_not_in:Nee
\prop_put_if_not_in:cnn
\prop_put_if_not_in:cnV
\prop_put_if_not_in:cnv
\prop_put_if_not_in:cne
\prop_put_if_not_in:cVn
\prop_put_if_not_in:cVV
\prop_put_if_not_in:cVv
\prop_put_if_not_in:cVe
\prop_put_if_not_in:cvn
\prop_put_if_not_in:cvV
\prop_put_if_not_in:cvv
\prop_put_if_not_in:cve
\prop_put_if_not_in:cen
\prop_put_if_not_in:ceV
\prop_put_if_not_in:cev
\prop_put_if_not_in:cee

\prop_gput_if_not_in:Nnn
\prop_gput_if_not_in:NnV
\prop_gput_if_not_in:Nnv
\prop_gput_if_not_in:Nne
\prop_gput_if_not_in:NVn
\prop_gput_if_not_in:NVV
\prop_gput_if_not_in:NVv
\prop_gput_if_not_in:NVe
\prop_gput_if_not_in:Nvn
\prop_gput_if_not_in:NvV
\prop_gput_if_not_in:Nvv
\prop_gput_if_not_in:Nve
\prop_gput_if_not_in:Nen
\prop_gput_if_not_in:NeV
\prop_gput_if_not_in:Nev
\prop_gput_if_not_in:Nee
\prop_gput_if_not_in:cnn
\prop_gput_if_not_in:cnV
\prop_gput_if_not_in:cnv
\prop_gput_if_not_in:cne
\prop_gput_if_not_in:cVn
\prop_gput_if_not_in:cVV
\prop_gput_if_not_in:cVv
\prop_gput_if_not_in:cVe
\prop_gput_if_not_in:cvn
\prop_gput_if_not_in:cvV
\prop_gput_if_not_in:cvv
\prop_gput_if_not_in:cve
\prop_gput_if_not_in:cen
\prop_gput_if_not_in:ceV
\prop_gput_if_not_in:cev
\prop_gput_if_not_in:cee

__prop_put:NNNnn
__prop_put_linked:wnNN
__prop_put_linked:NNNN
__prop_put_linked_old:w
__prop_put_linked_new:w

All of the \prop_(g)put(_if_new):Nnn functions are based on the same auxiliary, which
receives ⟨code⟩ and an “assignment”, followed by ⟨prop⟩ {⟨key⟩} {⟨new value⟩}. The
assignment \cs_(g)set_nopar:Npe is the primitive assignment without any checking:
in the case of linked props it is applied to individual pieces of the linked prop, which
are typically not yet defined. Debugging the scope of the variable is done at a higher
level by letting l3debug change \prop_put:Nnn and friends. This allows other l3prop
commands to directly call the underlying auxiliary to skip this checking step and avoid
getting multiple error messages for the same error. The ⟨code⟩ (empty for put and
\use_none:nnn for put_if_not_in) is placed before the assignment in cases where the
key is already present, in order to suppress the assignment in the put_if_not_in case.

20496 \cs_new_protected:Npn \prop_put:Nnn
20497 { __prop_put:nNNnn { } \cs_set_nopar:Npe }
20498 \cs_new_protected:Npn \prop_gput:Nnn
20499 { __prop_put:nNNnn { } \cs_gset_nopar:Npe }
20500 \cs_new_protected:Npn \prop_put_if_not_in:Nnn
20501 { __prop_put:nNNnn \use_none:nnn \cs_set_nopar:Npe }
20502 \cs_new_protected:Npn \prop_gput_if_not_in:Nnn
20503 { __prop_put:nNNnn \use_none:nnn \cs_gset_nopar:Npe }
20504 \cs_generate_variant:Nn \prop_put:Nnn
20505 {
20506 NnV , Nnv , Nne , NV , NVV , NVv , NVe ,
20507 Nv , NvV , Nvv , Nve , Ne , NeV , Nev , Nee
20508 }
20509 \cs_generate_variant:Nn \prop_put:Nnn
20510 { Nno , No , Noo , Nnx , NVx , NxV , Nxx }
20511 \cs_generate_variant:Nn \prop_put:Nnn
20512 {
20513 c , cnV , cnv , cne , cV , cVV , cVv , cVe ,
20514 cv , cvV , cvv , cve , ce , ceV , cev , cee
20515 }
20516 \cs_generate_variant:Nn \prop_put:Nnn
20517 { cno , co , coo , cnx , cVx , cxV , cxx }
20518 \cs_generate_variant:Nn \prop_gput:Nnn
20519 {
20520 NnV , Nnv , Nne , NV , NVV , NVv , NVe ,
20521 Nv , NvV , Nvv , Nve , Ne , NeV , Nev , Nee
20522 }
20523 \cs_generate_variant:Nn \prop_gput:Nnn
20524 { Nno , No , Noo , Nnx , NVx , NxV , Nxx }
20525 \cs_generate_variant:Nn \prop_gput:Nnn
20526 {
20527 c , cnV , cnv , cne , cV , cVV , cVv , cVe ,
20528 cv , cvV , cvv , cve , ce , ceV , cev , cee
20529 }
20530 \cs_generate_variant:Nn \prop_gput:Nnn
20531 { cno , co , coo , cnx , cVx , cxV , cxx }

939

20532 \cs_generate_variant:Nn \prop_put_if_not_in:Nnn
20533 {
20534 NnV , Nnv , Nne , NV , NVV , NVv , NVe ,
20535 Nv , NvV , Nvv , Nve , Ne , NeV , Nev , Nee ,
20536 c , cnV , cnv , cne , cV , cVV , cVv , cVe ,
20537 cv , cvV , cvv , cve , ce , ceV , cev , cee
20538 }
20539 \cs_generate_variant:Nn \prop_gput_if_not_in:Nnn
20540 {
20541 NnV , Nnv , Nne , NV , NVV , NVv , NVe ,
20542 Nv , NvV , Nvv , Nve , Ne , NeV , Nev , Nee ,
20543 c , cnV , cnv , cne , cV , cVV , cVv , cVe ,
20544 cv , cvV , cvv , cve , ce , ceV , cev , cee
20545 }

Since the true branch of __prop_split:NnTFn is used as the replacement text of an
internal macro, and since the ⟨key⟩ and new ⟨value⟩ may contain arbitrary tokens, it
is not safe to include them in the argument of __prop_split:NnTFn. We thus start
by storing in \l__prop_internal_tl tokens which (after x-expansion) encode the key–
value pair. This variable can safely be used in __prop_split:NnTFn. For a flat prop, if
the ⟨key⟩ was absent, append the new key–value to the list; otherwise concatenate the
extracts ##2 and ##4 with the new key–value pair \l__prop_internal_tl. The updated
entry is placed at the same spot as the original ⟨key⟩ in the property list, preserving the
order of entries. For a linked prop, call __prop_put_linked:wnNN, which constructs the
control sequence in which we will place the new value. If it matches \scan_stop: then
the key was not yet there and we add it using __prop_put_linked_new:w, otherwise it
was already there and we use __prop_put_linked_old:w.

20546 \cs_new_protected:Npn __prop_put:nNNnn #1#2#3#4#5
20547 {
20548 \tl_set:Nn \l__prop_internal_tl
20549 {
20550 \exp_not:N __prop_pair:wn \tl_to_str:n {#4}
20551 \s__prop { \exp_not:n {#5} }
20552 }
20553 __prop_split:NnTFn #3 {#4}
20554 {
20555 #1 #2 #3
20556 {
20557 \s__prop __prop_chk:w \exp_not:n {##1}
20558 \l__prop_internal_tl \exp_not:n {##3}
20559 }
20560 }
20561 { #2 #3 { \exp_not:o {#3} \l__prop_internal_tl } }
20562 { \exp_after:wN __prop_put_linked:wnnN #3 {#4} {#1} #2 }
20563 }
20564 \cs_new_protected:Npn __prop_put_linked:wnnN
20565 __prop_flatten:w #1 \s__prop #2#3#4
20566 {
20567 \exp_after:wN __prop_put_linked:NNnN
20568 \cs:w __prop ~ #2 ~ \tl_to_str:n {#4} \cs_end:
20569 #1
20570 }
20571 \cs_new_protected:Npn __prop_put_linked:NNnN #1#2#3#4
20572 {

940

20573 \if_meaning:w \scan_stop: #1
20574 \exp_after:wN __prop_put_linked_new:w #2 #1 #2 #4
20575 \else:
20576 \exp_after:wN __prop_put_linked_old:w #1 { #3 #4 #1 }
20577 \fi:
20578 }

To add a new entry, __prop_put_linked_new:w receives the expansion of the end-
pointer, namely \use_none:n ⟨last key pointer⟩, followed by the new key pointer #2,
the end pointer #3, and an assignment function #4. Set up the doubly-linked list in the
order #1, #2, #3, placing the key–value pair \l__prop_internal_tl in #2. To replace
an old entry, __prop_put_linked_old:w receives the expansion of that entry, and it
reassigns it (#5) using the assignment #6, by simply replacing the payload #2 \s__prop
#3 by \l__prop_internal_tl.

20579 \cs_new_protected:Npn __prop_put_linked_new:w
20580 \use_none:n #1#2#3#4
20581 {
20582 #4 #1
20583 {
20584 \exp_after:wN __prop_pop_linked_prev:w #1
20585 \exp_not:N #2
20586 }
20587 #4 #2
20588 {
20589 \exp_not:n { \use_none:n #1 }
20590 \l__prop_internal_tl
20591 \exp_not:N #3
20592 }
20593 #4 #3 { \exp_not:n { \use_none:n #2 } }
20594 }
20595 \cs_new_protected:Npn __prop_put_linked_old:w
20596 \use_none:n #1#2 \s__prop #3#4#5
20597 {
20598 #5
20599 {
20600 \exp_not:n { \use_none:n #1 }
20601 \l__prop_internal_tl
20602 \exp_not:N #4
20603 }
20604 }

(End of definition for \prop_put:Nnn and others. These functions are documented on page 221.)

63.7 Property list conditionals
\prop_if_exist_p:N
\prop_if_exist_p:c
\prop_if_exist:NTF
\prop_if_exist:cTF

Copies of the cs functions defined in l3basics.
20605 \prg_new_eq_conditional:NNn \prop_if_exist:N \cs_if_exist:N
20606 { TF , T , F , p }
20607 \prg_new_eq_conditional:NNn \prop_if_exist:c \cs_if_exist:c
20608 { TF , T , F , p }

(End of definition for \prop_if_exist:NTF. This function is documented on page 223.)

941

\prop_if_empty_p:N
\prop_if_empty_p:c
\prop_if_empty:NTF
\prop_if_empty:cTF

__prop_if_empty_return:w

A flat property list is empty if it matches \c_empty_prop. A linked property list is empty
if its second token (the end pointer) and last token (the first key pointer) are equal. There
cannot be false positives because the end pointer takes the form \use_none:n ⟨pointer⟩
while the other pointers have more elaborate structure. The subtle code branch here is
when a non-empty flat property list is given: then __prop_if_empty:w reads the whole
property list as #1 and #2, #3, #4 are 2, 3, 4, respectively.

20609 \prg_new_conditional:Npnn \prop_if_empty:N #1 { p , T , F , TF }
20610 {
20611 \if_meaning:w #1 \c_empty_prop
20612 \prg_return_true:
20613 \else:
20614 \exp_after:wN __prop_if_empty_return:w #1
20615 __prop_flatten:w 2 \s__prop 34 \s__prop_stop
20616 \fi:
20617 }
20618 \cs_new:Npn __prop_if_empty_return:w
20619 #1 __prop_flatten:w #2 \s__prop #3#4#5 \s__prop_stop
20620 {
20621 \if_meaning:w #2 #4
20622 \prg_return_true:
20623 \else:
20624 \prg_return_false:
20625 \fi:
20626 }
20627 \prg_generate_conditional_variant:Nnn \prop_if_empty:N
20628 { c } { p , T , F , TF }

(End of definition for \prop_if_empty:NTF and __prop_if_empty_return:w. This function is docu-
mented on page 224.)

\prop_if_in_p:Nn
\prop_if_in_p:NV
\prop_if_in_p:Ne
\prop_if_in_p:No
\prop_if_in_p:cn
\prop_if_in_p:cV
\prop_if_in_p:ce
\prop_if_in_p:co
\prop_if_in:NnTF
\prop_if_in:NVTF
\prop_if_in:NeTF
\prop_if_in:NoTF
\prop_if_in:cnTF
\prop_if_in:cVTF
\prop_if_in:ceTF
\prop_if_in:coTF

__prop_if_in_flat:nnn

For a linked prop, use __prop_get_linked:w to look up whether the control sequence
constructed from the prefix and the sought-after key exists; this auxiliary calls \use_-
none:n {⟨value⟩} \prg_return_true: if the key is found, and otherwise \prg_return_-
false:. For a flat prop, testing expandably if a key is there requires to go through the
key–value pairs one by one. This is rather slow, and a faster test would be

\prg_new_protected_conditional:Npnn \prop_if_in:Nn #1 #2
{
\@@_split:NnTFn #1 {#2}
{ \prg_return_true: }
{ \prg_return_false: }
{ ... }

}

but __prop_split:NnTFn is non-expandable. Instead, we use \prop_map_tokens:Nn to
compare the search key to each key in turn using \str_if_eq:ee, which is expandable.

20629 \prg_new_conditional:Npnn \prop_if_in:Nn #1#2 { p , T , F , TF }
20630 {
20631 __prop_if_flat:NTF #1
20632 {
20633 \exp_after:wN \prop_map_tokens:Nn \exp_after:wN #1
20634 {
20635 \exp_after:wN __prop_if_in_flat:nnn

942

20636 \exp_after:wN { \tl_to_str:n {#2} }
20637 }
20638 \prg_return_false:
20639 }
20640 {
20641 \exp_after:wN __prop_get_linked:w #1 {#2}
20642 \use_none:n \prg_return_true: \prg_return_false:
20643 }
20644 }
20645 \cs_new:Npn __prop_if_in_flat:nnn #1#2#3
20646 {
20647 \str_if_eq:eeT {#1} {#2}
20648 { \prop_map_break:n { \use_i:nn \prg_return_true: } }
20649 }
20650 \prg_generate_conditional_variant:Nnn \prop_if_in:Nn
20651 { NV , Ne , No , c , cV , ce , co } { p , T , F , TF }

(End of definition for \prop_if_in:NnTF and __prop_if_in_flat:nnn. This function is documented on
page 224.)

63.8 Mapping over property lists
\prop_map_function:NN
\prop_map_function:Nc
\prop_map_function:cN
\prop_map_function:cc

__prop_map_function:Nw

We first f-expand to flatten #1 in case it was a linked list. The \use_i:nnn removes the
leading \s__prop __prop_chk:w of the flattened prop. The even-numbered arguments
of __prop_map_function:Nw are keys, hence have string catcodes, except at the end
where they are \fi: \prop_map_break:. The \fi: ends the \if_false: #⟨even⟩ \fi:
construction and we jump out of the loop. No need for any quark test.

20652 \cs_new:Npn \prop_map_function:NN #1#2
20653 {
20654 \exp_last_unbraced:Nnf
20655 \use_i:nnn { __prop_map_function:Nw #2 } #1
20656 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20657 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20658 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20659 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20660 \prg_break_point:Nn \prop_map_break: { }
20661 }
20662 \cs_new:Npn __prop_map_function:Nw #1
20663 __prop_pair:wn #2 \s__prop #3
20664 __prop_pair:wn #4 \s__prop #5
20665 __prop_pair:wn #6 \s__prop #7
20666 __prop_pair:wn #8 \s__prop #9
20667 {
20668 \if_false: #2 \fi: #1 {#2} {#3}
20669 \if_false: #4 \fi: #1 {#4} {#5}
20670 \if_false: #6 \fi: #1 {#6} {#7}
20671 \if_false: #8 \fi: #1 {#8} {#9}
20672 __prop_map_function:Nw #1
20673 }
20674 \cs_generate_variant:Nn \prop_map_function:NN { Nc , c , cc }

(End of definition for \prop_map_function:NN and __prop_map_function:Nw. This function is docu-
mented on page 225.)

943

\prop_map_inline:Nn
\prop_map_inline:cn

Mapping in line requires a nesting level counter. Store the current definition of __prop_-
pair:wn, and define it anew. At the end of the loop, revert to the earlier definition. Note
that besides pairs of the form __prop_pair:wn ⟨key⟩ \s__prop {⟨value⟩}, there are a
leading and a trailing tokens, but both are equal to \scan_stop:, hence have no effect in
such inline mapping. Such \scan_stop: could have affected ligatures if they appeared
during the mapping.

20675 \cs_new_protected:Npn \prop_map_inline:Nn #1#2
20676 {
20677 \cs_gset_eq:cN
20678 { __prop_map_ \int_use:N \g__kernel_prg_map_int :wn } __prop_pair:wn
20679 \int_gincr:N \g__kernel_prg_map_int
20680 \cs_gset_protected:Npn __prop_pair:wn ##1 \s__prop ##2 {#2}
20681 \exp_last_unbraced:Nf \use_none:nn #1
20682 \prg_break_point:Nn \prop_map_break:
20683 {
20684 \int_gdecr:N \g__kernel_prg_map_int
20685 \cs_gset_eq:Nc __prop_pair:wn
20686 { __prop_map_ \int_use:N \g__kernel_prg_map_int :wn }
20687 }
20688 }
20689 \cs_generate_variant:Nn \prop_map_inline:Nn { c }

(End of definition for \prop_map_inline:Nn. This function is documented on page 225.)

\prop_map_tokens:Nn
\prop_map_tokens:cn

__prop_map_tokens:nw

The mapping is very similar to \prop_map_function:NN. The odd construction
\use:n {#1} allows #1 to contain any token without interfering with \prop_map_break:.
The loop stops when the ⟨key⟩ between __prop_pair:wn and \s__prop is \fi: \prop_-
map_break: instead of being a string.

20690 \cs_new:Npn \prop_map_tokens:Nn #1#2
20691 {
20692 \exp_last_unbraced:Nnf
20693 \use_i:nnn { __prop_map_tokens:nw {#2} } #1
20694 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20695 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20696 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20697 __prop_pair:wn \fi: \prop_map_break: \s__prop { }
20698 \prg_break_point:Nn \prop_map_break: { }
20699 }
20700 \cs_new:Npn __prop_map_tokens:nw #1
20701 __prop_pair:wn #2 \s__prop #3
20702 __prop_pair:wn #4 \s__prop #5
20703 __prop_pair:wn #6 \s__prop #7
20704 __prop_pair:wn #8 \s__prop #9
20705 {
20706 \if_false: #2 \fi: \use:n {#1} {#2} {#3}
20707 \if_false: #4 \fi: \use:n {#1} {#4} {#5}
20708 \if_false: #6 \fi: \use:n {#1} {#6} {#7}
20709 \if_false: #8 \fi: \use:n {#1} {#8} {#9}
20710 __prop_map_tokens:nw {#1}
20711 }
20712 \cs_generate_variant:Nn \prop_map_tokens:Nn { c }

(End of definition for \prop_map_tokens:Nn and __prop_map_tokens:nw. This function is documented
on page 225.)

944

\prop_map_break:
\prop_map_break:n

The break statements are based on the general \prg_map_break:Nn.
20713 \cs_new:Npn \prop_map_break:
20714 { \prg_map_break:Nn \prop_map_break: { } }
20715 \cs_new:Npn \prop_map_break:n
20716 { \prg_map_break:Nn \prop_map_break: }

(End of definition for \prop_map_break: and \prop_map_break:n. These functions are documented on
page 226.)

63.9 Uses of mapping over property lists
\prop_count:N
\prop_count:c

__prop_count:nn

Counting the key–value pairs in a property list is done using the same approach as for
other count functions: turn each entry into a +1 then use integer evaluation to actually
do the mathematics.

20717 \cs_new:Npn \prop_count:N #1
20718 {
20719 \int_eval:n
20720 {
20721 0
20722 \prop_map_function:NN #1 __prop_count:nn
20723 }
20724 }
20725 \cs_new:Npn __prop_count:nn #1#2 { + 1 }
20726 \cs_generate_variant:Nn \prop_count:N { c }

(End of definition for \prop_count:N and __prop_count:nn. This function is documented on page 223.)

\prop_to_keyval:N
__prop_to_keyval_exp_after:wN
__prop_to_keyval:nn

__prop_to_keyval:nnw

Each property name and value pair will be returned in the form ␣{⟨name⟩}=␣{⟨value⟩}.
As one of the main use cases for this macro is to pass the ⟨property list⟩ on to a
key–value parser, we have to make sure that the behaviour is as good as possible. Using
a space before the opening brace we get the correct brace stripping behaviour for most of
the key–value parsers available in LATEX. Iterate over the ⟨property list⟩ and remove
the leading comma afterwards. Only the value has to be protected in __kernel_-
exp_not:w as the property name is always a string. After the loop the leading comma
is removed by \use_none:n and afterwards __kernel_exp_not:w eventually finds the
opening brace of its argument.

20727 \cs_new:Npn \prop_to_keyval:N #1
20728 {
20729 __kernel_exp_not:w
20730 \prop_if_empty:NTF #1
20731 { {} }
20732 {
20733 \exp_after:wN \exp_after:wN \exp_after:wN
20734 {
20735 \tex_expanded:D
20736 {
20737 \exp_not:N \use_none:n
20738 \prop_map_function:NN #1 __prop_to_keyval:nn
20739 }
20740 }
20741 }
20742 }

945

20743 \cs_new:Npn __prop_to_keyval:nn #1#2
20744 { , ~ {#1} =~ { __kernel_exp_not:w {#2} } }

(End of definition for \prop_to_keyval:N and others. This function is documented on page 223.)

63.10 Viewing property lists
\prop_show:N
\prop_show:c
\prop_log:N
\prop_log:c

__prop_show:NN
__prop_show_finally:NNn

__prop_show_prepare:w
__prop_show_loop:NNw

__prop_show_bad_name:NNN
__prop_show_end:NNN

__prop_show_loop_key:wNNN
__prop_show_flat:w

__prop_show_linked:w

Experience shows one source of problems is very hard to debug: when a data structure
such as a seq or prop gets corrupted. In the past, \prop_show:N would in some cases
happily show items of such a prop, even though other more demanding l3prop functions
would choke. It is thus best to make \prop_show:N check very thoroughly the structure
and flag issues, even though that is very painful for linked props. Throughout the code
below, we strive to remain as safe as possible, but in the explanations we only state
what the arguments are when the prop is correctly formed, rather than saying at every
step that various arguments can be arbitrary junk, made safe by using \tl_to_str:n
generously.

The general __kernel_chk_tl_type:NnnT checks that its first argument is a token
list, and if it is, then it e-expands its second argument and compares with the contents of
its first argument. Thus, within this e-expansion it is safe to use __prop_if_flat:NTF
to check if the prop is flat or linked. In the flat case we simply reconstruct the expected
structure using __prop_show_flat:w, which loops through the prop and correctly turns
all keys to strings for instance. In the linked case, we use __prop_show_linked:w, which
ensures the form __prop_flatten:w __prop ⟨prefix⟩ \s__prop {⟨prefix⟩} ⟨rest⟩,
where ⟨prefix⟩ is made into a string and ⟨rest⟩ cannot be a brace group or multiple
tokens since __prop_show_linked:w would in such cases give a different result from the
original token list.

20745 \cs_new_protected:Npn \prop_show:N { __prop_show:NN \msg_show:nneeee }
20746 \cs_generate_variant:Nn \prop_show:N { c }
20747 \cs_new_protected:Npn \prop_log:N { __prop_show:NN \msg_log:nneeee }
20748 \cs_generate_variant:Nn \prop_log:N { c }
20749 \cs_new_protected:Npn __prop_show:NN #1#2
20750 {
20751 __kernel_chk_tl_type:NnnT #2 { prop }
20752 {
20753 __prop_if_flat:NTF #2
20754 {
20755 \s__prop __prop_chk:w
20756 \exp_after:wN __prop_show_flat:w #2
20757 \s__prop { }
20758 __prop_pair:wn \q__prop_recursion_tail \s__prop { }
20759 \q__prop_recursion_stop
20760 }
20761 { \exp_after:wN __prop_show_linked:w #2 \s__prop ! ? \s__prop_stop }
20762 }
20763 {
20764 __prop_if_flat:NTF #2
20765 { __prop_show_finally:NNn #1 #2 { flat } }
20766 {
20767 \tl_set:Nn \l__prop_internal_tl { #1 #2 }
20768 \exp_after:wN __prop_show_prepare:w #2 #2
20769 }
20770 }

946

20771 }
20772 \cs_new:Npn __prop_show_flat:w #1 __prop_pair:wn #2 \s__prop #3
20773 {
20774 __prop_if_recursion_tail_stop:n {#2}
20775 \exp_not:N __prop_pair:wn \tl_to_str:n {#2} \s__prop \exp_not:n { {#3} }
20776 __prop_show_flat:w
20777 }
20778 \cs_new:Npn __prop_show_linked:w #1 \s__prop #2#3#4 \s__prop_stop
20779 {
20780 \exp_not:N __prop_flatten:w
20781 \exp_not:c { __prop ~ \tl_to_str:n {#2} }
20782 \s__prop { \tl_to_str:n {#2} }
20783 \exp_not:n {#3}
20784 }

For flat props we are done by using \msg_show:nneeee or \msg_log:nneeee. The aux-
iliary __prop_show_finally:NNn is eventually also used in the linked case after some
more tests. To avoid having to bring along the message function and the property list,
we store them into \l__prop_internal_tl.

20785 \cs_new_protected:Npn __prop_show_finally:NNn #1#2#3
20786 {
20787 #1 { prop } { show }
20788 { \token_to_str:N #2 }
20789 { \prop_map_function:NN #2 \msg_show_item:nn }
20790 {#3} { }
20791 }

For linked props, we now know they have a reasonable form so that we are calling
__prop_show_prepare:w __prop_flatten:w __prop ⟨prefix⟩ \s__prop {⟨prefix⟩}
⟨token⟩ ⟨property list⟩, and the task is to loop through the linked list and check in-
tegrity. We first set things up: the auxiliary __prop_tmp:w will be in charge of checking
that various tokens start with __prop ⟨prefix⟩ (in the sense of string representations),
and calling one of __prop_show_loop_key:wNNN, __prop_show_end:NNN, __prop_-
show_bad_name:NNN.

20792 \cs_new_protected:Npn __prop_show_prepare:w
20793 __prop_flatten:w #1 \s__prop #2#3#4
20794 {
20795 \use:e
20796 {
20797 \cs_set_nopar:Npn \exp_not:N __prop_tmp:w
20798 ##1 \token_to_str:N #1 ##2 \s__prop_mark ##3 \s__prop_stop
20799 {
20800 \exp_not:N \tl_if_empty:nTF {##1}
20801 {
20802 \exp_not:N \tl_if_head_is_space:nTF {##2}
20803 { \exp_not:N \exp_args:Nf __prop_show_loop_key:wNNN }
20804 { \exp_not:N \tl_if_empty:nTF }
20805 {##2}
20806 }
20807 { \exp_not:N \use_ii:nn }
20808 __prop_show_end:NNN
20809 __prop_show_bad_name:NNN
20810 }
20811 }

947

20812 \exp_last_unbraced:NNNo __prop_show_loop:NNw #1 #4 #4
20813 }

The loop will consist of calls to __prop_show_loop:NNw __prop ⟨prefix⟩ ⟨token⟩
⟨expansion⟩, where ⟨token⟩ is one of the items in the list, specifically the key container
for ⟨keyi−1⟩ (starting at i = 1 with the property list variable itself), and ⟨expansion⟩
stands for the expansion of that token, which has already been checked, and takes the
form ⟨junk⟩ \s__prop {⟨value⟩} __prop ⟨prefix⟩ ⟨keyi⟩. Thus, the loop auxiliary
receives the prefix command as #1, and the (i − 1)-th and i-th key containers as #2
and #5. Then __prop_tmp:w checks that the name of the i-th key container is valid.

20814 \cs_new_protected:Npn __prop_show_loop:NNw #1#2 #3 \s__prop #4#5
20815 {
20816 \exp_last_two_unbraced:Noo __prop_tmp:w
20817 { \token_to_str:N #5 \s__prop_mark }
20818 { \token_to_str:N #1 \s__prop_mark \s__prop_stop }
20819 #1 #2 #5
20820 }

If the i-th key container has the wrong name we get __prop_show_bad_name:NNN __-
prop ⟨prefix⟩ ⟨previous container⟩ ⟨current container with bad name⟩.

20821 \cs_new_protected:Npn __prop_show_bad_name:NNN #1#2#3
20822 {
20823 \msg_error:nneeee { prop } { bad-link }
20824 { \tl_tail:N \l__prop_internal_tl }
20825 { \token_to_str:N #2 }
20826 { \token_to_str:N #3 }
20827 { \token_to_str:N #1 }
20828 }

If the i-th key container has the name __prop ⟨prefix⟩ (without space), it is the
trailing one. We check that it is the right kind of macro to be a token list, and that it
has the right contents \use_none:n ⟨previous container⟩. If so, we are done checking
everything, and we display the property list using the message function and property
list name stored in \l__prop_internal_tl. Note that we also use this \l__prop_-
internal_tl in the type argument of __kernel_chk_tl_type:NnnT, to build up the
name “⟨property list⟩ prop entry” used in error messages.

20829 \cs_new_protected:Npn __prop_show_end:NNN #1#2#3
20830 {
20831 __kernel_chk_tl_type:NnnT #3
20832 { \tl_tail:N \l__prop_internal_tl prop~entry }
20833 { \exp_not:n { \use_none:n #2 } }
20834 {
20835 \exp_after:wN __prop_show_finally:NNn
20836 \l__prop_internal_tl { linked }
20837 }
20838 }

If the i-th container has a name __prop ⟨prefix⟩ ⟨key⟩ (with a space before the key),
then we have a call to __prop_show_loop_key:wNNN {⟨key⟩} ⟨junk1⟩ ⟨junk2⟩ __-
prop ⟨prefix⟩ ⟨previous container⟩ ⟨current container⟩. (with an f-expansion to
eliminate the space). The first argument is the ⟨key⟩ without a leading space, thanks to
a judicious f-expansion earlier on. We check that the ⟨current container⟩ is a token
list with the expected structure \use_none:n ⟨previous container⟩ __prop_pair:wn
⟨string⟩ \s__prop {⟨anything⟩} ⟨single token⟩. The auxiliary __prop_show_flat:w

948

is reused to produce the __prop_pair:wn part, and the last token is produced by \tl_-
item:Nn (we don’t waste a specialized auxiliary to speed that up). If the check succeed,
move on to the next item.

20839 \cs_new_protected:Npn __prop_show_loop_key:wNNN #1#2#3#4#5#6
20840 {
20841 __kernel_chk_tl_type:NnnT #6
20842 { \tl_tail:N \l__prop_internal_tl prop~entry }
20843 {
20844 \exp_not:n { \use_none:n #5 }
20845 \exp_after:wN __prop_show_flat:w #6 \s__prop { }
20846 __prop_pair:wn \q__prop_recursion_tail \s__prop { }
20847 \q__prop_recursion_stop
20848 \tl_item:Nn #6 { -1 }
20849 }
20850 { \exp_last_unbraced:NNNo __prop_show_loop:NNw #4 #6 #6 }
20851 }

(End of definition for \prop_show:N and others. These functions are documented on page 226.)

20852 ⟨/package⟩

949

Chapter 64

l3skip implementation

20853 ⟨∗package⟩

20854 ⟨@@=dim⟩

64.1 Length primitives renamed
\if_dim:w

__dim_eval:w
__dim_eval_end:

Primitives renamed.
20855 \cs_new_eq:NN \if_dim:w \tex_ifdim:D
20856 \cs_new_eq:NN __dim_eval:w \tex_dimexpr:D
20857 \cs_new_eq:NN __dim_eval_end: \tex_relax:D

(End of definition for \if_dim:w , __dim_eval:w , and __dim_eval_end:. This function is documented
on page 243.)

64.2 Internal auxiliaries
\s__dim_mark
\s__dim_stop

Internal scan marks.
20858 \scan_new:N \s__dim_mark
20859 \scan_new:N \s__dim_stop

(End of definition for \s__dim_mark and \s__dim_stop.)

__dim_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
20860 \cs_new:Npn __dim_use_none_delimit_by_s_stop:w #1 \s__dim_stop { }

(End of definition for __dim_use_none_delimit_by_s_stop:w.)

64.3 Creating and initialising dim variables
\dim_new:N
\dim_new:c

Allocating ⟨dim⟩ registers . . .
20861 \cs_new_protected:Npn \dim_new:N #1
20862 {
20863 __kernel_chk_if_free_cs:N #1
20864 \cs:w newdimen \cs_end: #1
20865 }
20866 \cs_generate_variant:Nn \dim_new:N { c }

950

(End of definition for \dim_new:N. This function is documented on page 228.)

\dim_const:Nn
\dim_const:cn

Contrarily to integer constants, we cannot avoid using a register, even for constants. We
cannot use \dim_gset:Nn because debugging code would complain that the constant is
not a global variable. Since \dim_const:Nn does not need to be fast, use \dim_eval:n
to avoid needing a debugging patch that wraps the expression in checking code.

20867 \cs_new_protected:Npn \dim_const:Nn #1#2
20868 {
20869 \dim_new:N #1
20870 \tex_global:D #1 = \dim_eval:n {#2} \scan_stop:
20871 }
20872 \cs_generate_variant:Nn \dim_const:Nn { c }

(End of definition for \dim_const:Nn. This function is documented on page 228.)

\dim_zero:N
\dim_zero:c

\dim_gzero:N
\dim_gzero:c

Reset the register to zero. Using \c_zero_skip deals with the case where the variable
passed is incorrectly a skip (for example a LATEX 2ε length). Besides, these functions are
then simply copied for \skip_zero:N and related functions.

20873 \cs_new_protected:Npn \dim_zero:N #1 { #1 = \c_zero_skip }
20874 \cs_new_protected:Npn \dim_gzero:N #1
20875 { \tex_global:D #1 = \c_zero_skip }
20876 \cs_generate_variant:Nn \dim_zero:N { c }
20877 \cs_generate_variant:Nn \dim_gzero:N { c }

(End of definition for \dim_zero:N and \dim_gzero:N. These functions are documented on page 228.)

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

Create a register if needed, otherwise clear it.
20878 \cs_new_protected:Npn \dim_zero_new:N #1
20879 { \dim_if_exist:NTF #1 { \dim_zero:N #1 } { \dim_new:N #1 } }
20880 \cs_new_protected:Npn \dim_gzero_new:N #1
20881 { \dim_if_exist:NTF #1 { \dim_gzero:N #1 } { \dim_new:N #1 } }
20882 \cs_generate_variant:Nn \dim_zero_new:N { c }
20883 \cs_generate_variant:Nn \dim_gzero_new:N { c }

(End of definition for \dim_zero_new:N and \dim_gzero_new:N. These functions are documented on
page 228.)

\dim_if_exist_p:N
\dim_if_exist_p:c
\dim_if_exist:NTF
\dim_if_exist:cTF

Copies of the cs functions defined in l3basics.
20884 \prg_new_eq_conditional:NNn \dim_if_exist:N \cs_if_exist:N
20885 { TF , T , F , p }
20886 \prg_new_eq_conditional:NNn \dim_if_exist:c \cs_if_exist:c
20887 { TF , T , F , p }

(End of definition for \dim_if_exist:NTF. This function is documented on page 229.)

64.4 Setting dim variables
\dim_set:Nn
\dim_set:cn
\dim_set:NV
\dim_set:cV

\dim_gset:Nn
\dim_gset:cn
\dim_gset:NV
\dim_gset:cV

Setting dimensions is easy enough but when debugging we want both to check that the
variable is correctly local/global and to wrap the expression in some code. The \scan_-
stop: deals with the case where the variable passed is a skip (for example a LATEX 2ε
length).

20888 \cs_new_protected:Npn \dim_set:Nn #1#2
20889 { #1 = __dim_eval:w #2 __dim_eval_end: \scan_stop: }

951

20890 \cs_new_protected:Npn \dim_gset:Nn #1#2
20891 { \tex_global:D #1 = __dim_eval:w #2 __dim_eval_end: \scan_stop: }
20892 \cs_generate_variant:Nn \dim_set:Nn { NV , c , cV }
20893 \cs_generate_variant:Nn \dim_gset:Nn { NV , c , cV }

(End of definition for \dim_set:Nn and \dim_gset:Nn. These functions are documented on page 229.)

\dim_set_eq:NN
\dim_set_eq:cN
\dim_set_eq:Nc
\dim_set_eq:cc
\dim_gset_eq:NN
\dim_gset_eq:cN
\dim_gset_eq:Nc
\dim_gset_eq:cc

All straightforward, with a \scan_stop: to deal with the case where #1 is (incorrectly)
a skip.

20894 \cs_new_protected:Npn \dim_set_eq:NN #1#2
20895 { #1 = #2 \scan_stop: }
20896 \cs_generate_variant:Nn \dim_set_eq:NN { c , Nc , cc }
20897 \cs_new_protected:Npn \dim_gset_eq:NN #1#2
20898 { \tex_global:D #1 = #2 \scan_stop: }
20899 \cs_generate_variant:Nn \dim_gset_eq:NN { c , Nc , cc }

(End of definition for \dim_set_eq:NN and \dim_gset_eq:NN. These functions are documented on page
229.)

\dim_add:Nn
\dim_add:cn

\dim_gadd:Nn
\dim_gadd:cn
\dim_sub:Nn
\dim_sub:cn

\dim_gsub:Nn
\dim_gsub:cn

Using by here would slow things down just to detect nonsensical cases such as passing
\dimen 123 as the first argument. Using \scan_stop: deals with skip variables. Since
debugging checks that the variable is correctly local/global, the global versions cannot
be defined as \tex_global:D followed by the local versions.

20900 \cs_new_protected:Npn \dim_add:Nn #1#2
20901 { \tex_advance:D #1 __dim_eval:w #2 __dim_eval_end: \scan_stop: }
20902 \cs_new_protected:Npn \dim_gadd:Nn #1#2
20903 {
20904 \tex_global:D \tex_advance:D #1
20905 __dim_eval:w #2 __dim_eval_end: \scan_stop:
20906 }
20907 \cs_generate_variant:Nn \dim_add:Nn { c }
20908 \cs_generate_variant:Nn \dim_gadd:Nn { c }
20909 \cs_new_protected:Npn \dim_sub:Nn #1#2
20910 { \tex_advance:D #1 - __dim_eval:w #2 __dim_eval_end: \scan_stop: }
20911 \cs_new_protected:Npn \dim_gsub:Nn #1#2
20912 {
20913 \tex_global:D \tex_advance:D #1
20914 -__dim_eval:w #2 __dim_eval_end: \scan_stop:
20915 }
20916 \cs_generate_variant:Nn \dim_sub:Nn { c }
20917 \cs_generate_variant:Nn \dim_gsub:Nn { c }

(End of definition for \dim_add:Nn and others. These functions are documented on page 229.)

64.5 Utilities for dimension calculations
\dim_abs:n

__dim_abs:N
\dim_max:nn
\dim_min:nn

__dim_maxmin:wwN

Functions for min, max, and absolute value with only one evaluation. The absolute value
is evaluated by removing a leading - if present.

20918 \cs_new:Npn \dim_abs:n #1
20919 {
20920 \exp_after:wN __dim_abs:N
20921 \dim_use:N __dim_eval:w #1 __dim_eval_end:
20922 }

952

20923 \cs_new:Npn __dim_abs:N #1
20924 { \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
20925 \cs_new:Npn \dim_max:nn #1#2
20926 {
20927 \dim_use:N __dim_eval:w \exp_after:wN __dim_maxmin:wwN
20928 \dim_use:N __dim_eval:w #1 \exp_after:wN ;
20929 \dim_use:N __dim_eval:w #2 ;
20930 >
20931 __dim_eval_end:
20932 }
20933 \cs_new:Npn \dim_min:nn #1#2
20934 {
20935 \dim_use:N __dim_eval:w \exp_after:wN __dim_maxmin:wwN
20936 \dim_use:N __dim_eval:w #1 \exp_after:wN ;
20937 \dim_use:N __dim_eval:w #2 ;
20938 <
20939 __dim_eval_end:
20940 }
20941 \cs_new:Npn __dim_maxmin:wwN #1 ; #2 ; #3
20942 {
20943 \if_dim:w #1 #3 #2 ~
20944 #1
20945 \else:
20946 #2
20947 \fi:
20948 }

(End of definition for \dim_abs:n and others. These functions are documented on page 229.)

\dim_ratio:nn
__dim_ratio:n

With dimension expressions, something like 10 pt * (5 pt / 10 pt) does not work.
Instead, the ratio part needs to be converted to an integer expression. Using \int_-
value:w forces everything into sp, avoiding any decimal parts.

20949 \cs_new:Npn \dim_ratio:nn #1#2
20950 { __dim_ratio:n {#1} / __dim_ratio:n {#2} }
20951 \cs_new:Npn __dim_ratio:n #1
20952 { \int_value:w __dim_eval:w (#1) __dim_eval_end: }

(End of definition for \dim_ratio:nn and __dim_ratio:n. This function is documented on page 230.)

64.6 Dimension expression conditionals
\dim_compare_p:nNn
\dim_compare:nNnTF

Simple comparison.
20953 \prg_new_conditional:Npnn \dim_compare:nNn #1#2#3 { p , T , F , TF }
20954 {
20955 \if_dim:w __dim_eval:w #1 #2 __dim_eval:w #3 __dim_eval_end:
20956 \prg_return_true: \else: \prg_return_false: \fi:
20957 }

(End of definition for \dim_compare:nNnTF. This function is documented on page 230.)

\dim_compare_p:n
\dim_compare:nTF
__dim_compare:w

__dim_compare:wNN
__dim_compare_=:w
__dim_compare_!:w
__dim_compare_<:w
__dim_compare_>:w

__dim_compare_error:

This code is adapted from the \int_compare:nTF function. First make sure that there
is at least one relation operator, by evaluating a dimension expression with a trail-
ing __dim_compare_error:. Just like for integers, the looping auxiliary __dim_-
compare:wNN closes a primitive conditional and opens a new one. It is actually easier to

953

grab a dimension operand than an integer one, because once evaluated, dimensions all
end with pt (with category other). Thus we do not need specific auxiliaries for the three
“simple” relations <, =, and >.

20958 \prg_new_conditional:Npnn \dim_compare:n #1 { p , T , F , TF }
20959 {
20960 \exp_after:wN __dim_compare:w
20961 \dim_use:N __dim_eval:w #1 __dim_compare_error:
20962 }
20963 \cs_new:Npn __dim_compare:w #1 __dim_compare_error:
20964 {
20965 \exp_after:wN \if_false: \exp:w \exp_end_continue_f:w
20966 __dim_compare:wNN #1 ? { = __dim_compare_end:w \else: } \s__dim_stop
20967 }
20968 \exp_args:Nno \use:nn
20969 { \cs_new:Npn __dim_compare:wNN #1 } { \tl_to_str:n {pt} #2#3 }
20970 {
20971 \if_meaning:w = #3
20972 \use:c { __dim_compare_#2:w }
20973 \fi:
20974 #1 pt \exp_stop_f:
20975 \prg_return_false:
20976 \exp_after:wN __dim_use_none_delimit_by_s_stop:w
20977 \fi:
20978 \reverse_if:N \if_dim:w #1 pt #2
20979 \exp_after:wN __dim_compare:wNN
20980 \dim_use:N __dim_eval:w #3
20981 }
20982 \cs_new:cpn { __dim_compare_ ! :w }
20983 #1 \reverse_if:N #2 ! #3 = { #1 #2 = #3 }
20984 \cs_new:cpn { __dim_compare_ = :w }
20985 #1 __dim_eval:w = { #1 __dim_eval:w }
20986 \cs_new:cpn { __dim_compare_ < :w }
20987 #1 \reverse_if:N #2 < #3 = { #1 #2 > #3 }
20988 \cs_new:cpn { __dim_compare_ > :w }
20989 #1 \reverse_if:N #2 > #3 = { #1 #2 < #3 }
20990 \cs_new:Npn __dim_compare_end:w #1 \prg_return_false: #2 \s__dim_stop
20991 { #1 \prg_return_false: \else: \prg_return_true: \fi: }
20992 \cs_new_protected:Npn __dim_compare_error:
20993 {
20994 \if_int_compare:w \c_zero_int \c_zero_int \fi:
20995 =
20996 __dim_compare_error:
20997 }

(End of definition for \dim_compare:nTF and others. This function is documented on page 231.)

\dim_case:nn
\dim_case:nnTF

__dim_case:nnTF
__dim_case:nw

__dim_case_end:nw

For dimension cases, the first task to fully expand the check condition. The over all idea
is then much the same as for \str_case:nnTF as described in l3basics.

20998 \cs_new:Npn \dim_case:nnTF #1
20999 {
21000 \exp:w
21001 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} }
21002 }
21003 \cs_new:Npn \dim_case:nnT #1#2#3

954

21004 {
21005 \exp:w
21006 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} {#3} { }
21007 }
21008 \cs_new:Npn \dim_case:nnF #1#2
21009 {
21010 \exp:w
21011 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} { }
21012 }
21013 \cs_new:Npn \dim_case:nn #1#2
21014 {
21015 \exp:w
21016 \exp_args:Nf __dim_case:nnTF { \dim_eval:n {#1} } {#2} { } { }
21017 }
21018 \cs_new:Npn __dim_case:nnTF #1#2#3#4
21019 { __dim_case:nw {#1} #2 {#1} { } \s__dim_mark {#3} \s__dim_mark {#4} \s__dim_stop }
21020 \cs_new:Npn __dim_case:nw #1#2#3
21021 {
21022 \dim_compare:nNnTF {#1} = {#2}
21023 { __dim_case_end:nw {#3} }
21024 { __dim_case:nw {#1} }
21025 }
21026 \cs_new:Npn __dim_case_end:nw #1#2#3 \s__dim_mark #4#5 \s__dim_stop
21027 { \exp_end: #1 #4 }

(End of definition for \dim_case:nnTF and others. This function is documented on page 232.)

64.7 Dimension expression loops
\dim_while_do:nn
\dim_until_do:nn
\dim_do_while:nn
\dim_do_until:nn

while_do and do_while functions for dimensions. Same as for the int type only the
names have changed.

21028 \cs_new:Npn \dim_while_do:nn #1#2
21029 {
21030 \dim_compare:nT {#1}
21031 {
21032 #2
21033 \dim_while_do:nn {#1} {#2}
21034 }
21035 }
21036 \cs_new:Npn \dim_until_do:nn #1#2
21037 {
21038 \dim_compare:nF {#1}
21039 {
21040 #2
21041 \dim_until_do:nn {#1} {#2}
21042 }
21043 }
21044 \cs_new:Npn \dim_do_while:nn #1#2
21045 {
21046 #2
21047 \dim_compare:nT {#1}
21048 { \dim_do_while:nn {#1} {#2} }
21049 }

955

21050 \cs_new:Npn \dim_do_until:nn #1#2
21051 {
21052 #2
21053 \dim_compare:nF {#1}
21054 { \dim_do_until:nn {#1} {#2} }
21055 }

(End of definition for \dim_while_do:nn and others. These functions are documented on page 233.)

\dim_while_do:nNnn
\dim_until_do:nNnn
\dim_do_while:nNnn
\dim_do_until:nNnn

while_do and do_while functions for dimensions. Same as for the int type only the
names have changed.

21056 \cs_new:Npn \dim_while_do:nNnn #1#2#3#4
21057 {
21058 \dim_compare:nNnT {#1} #2 {#3}
21059 {
21060 #4
21061 \dim_while_do:nNnn {#1} #2 {#3} {#4}
21062 }
21063 }
21064 \cs_new:Npn \dim_until_do:nNnn #1#2#3#4
21065 {
21066 \dim_compare:nNnF {#1} #2 {#3}
21067 {
21068 #4
21069 \dim_until_do:nNnn {#1} #2 {#3} {#4}
21070 }
21071 }
21072 \cs_new:Npn \dim_do_while:nNnn #1#2#3#4
21073 {
21074 #4
21075 \dim_compare:nNnT {#1} #2 {#3}
21076 { \dim_do_while:nNnn {#1} #2 {#3} {#4} }
21077 }
21078 \cs_new:Npn \dim_do_until:nNnn #1#2#3#4
21079 {
21080 #4
21081 \dim_compare:nNnF {#1} #2 {#3}
21082 { \dim_do_until:nNnn {#1} #2 {#3} {#4} }
21083 }

(End of definition for \dim_while_do:nNnn and others. These functions are documented on page 233.)

64.8 Dimension step functions
\dim_step_function:nnnN

__dim_step:wwwN
__dim_step:NnnnN

Before all else, evaluate the initial value, step, and final value. Repeating a function by
steps first needs a check on the direction of the steps. After that, do the function for the
start value then step and loop around. It would be more symmetrical to test for a step
size of zero before checking the sign, but we optimize for the most frequent case (positive
step).

21084 \cs_new:Npn \dim_step_function:nnnN #1#2#3
21085 {
21086 \exp_after:wN __dim_step:wwwN
21087 \tex_the:D __dim_eval:w #1 \exp_after:wN ;

956

21088 \tex_the:D __dim_eval:w #2 \exp_after:wN ;
21089 \tex_the:D __dim_eval:w #3 ;
21090 }
21091 \cs_new:Npn __dim_step:wwwN #1; #2; #3; #4
21092 {
21093 \dim_compare:nNnTF {#2} > \c_zero_dim
21094 { __dim_step:NnnnN > }
21095 {
21096 \dim_compare:nNnTF {#2} = \c_zero_dim
21097 {
21098 \msg_expandable_error:nnn { kernel } { zero-step } {#4}
21099 \use_none:nnnn
21100 }
21101 { __dim_step:NnnnN < }
21102 }
21103 {#1} {#2} {#3} #4
21104 }
21105 \cs_new:Npn __dim_step:NnnnN #1#2#3#4#5
21106 {
21107 \dim_compare:nNnF {#2} #1 {#4}
21108 {
21109 #5 {#2}
21110 \exp_args:NNf __dim_step:NnnnN
21111 #1 { \dim_eval:n { #2 + #3 } } {#3} {#4} #5
21112 }
21113 }

(End of definition for \dim_step_function:nnnN , __dim_step:wwwN , and __dim_step:NnnnN. This
function is documented on page 233.)

\dim_step_inline:nnnn
\dim_step_variable:nnnNn

__dim_step:NNnnnn

The approach here is to build a function, with a global integer required to make the
nesting safe (as seen in other in line functions), and map that function using \dim_-
step_function:nnnN. We put a \prg_break_point:Nn so that map_break functions
from other modules correctly decrement \g__kernel_prg_map_int before looking for
their own break point. The first argument is \scan_stop:, so that no breaking function
recognizes this break point as its own.

21114 \cs_new_protected:Npn \dim_step_inline:nnnn
21115 {
21116 \int_gincr:N \g__kernel_prg_map_int
21117 \exp_args:NNc __dim_step:NNnnnn
21118 \cs_gset_protected:Npn
21119 { __dim_map_ \int_use:N \g__kernel_prg_map_int :w }
21120 }
21121 \cs_new_protected:Npn \dim_step_variable:nnnNn #1#2#3#4#5
21122 {
21123 \int_gincr:N \g__kernel_prg_map_int
21124 \exp_args:NNc __dim_step:NNnnnn
21125 \cs_gset_protected:Npe
21126 { __dim_map_ \int_use:N \g__kernel_prg_map_int :w }
21127 {#1}{#2}{#3}
21128 {
21129 \tl_set:Nn \exp_not:N #4 {##1}
21130 \exp_not:n {#5}
21131 }

957

21132 }
21133 \cs_new_protected:Npn __dim_step:NNnnnn #1#2#3#4#5#6
21134 {
21135 #1 #2 ##1 {#6}
21136 \dim_step_function:nnnN {#3} {#4} {#5} #2
21137 \prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int }
21138 }

(End of definition for \dim_step_inline:nnnn , \dim_step_variable:nnnNn , and __dim_step:NNnnnn.
These functions are documented on page 234.)

64.9 Using dim expressions and variables
\dim_eval:n Evaluating a dimension expression expandably.

21139 \cs_new:Npn \dim_eval:n #1
21140 { \dim_use:N __dim_eval:w #1 __dim_eval_end: }

(End of definition for \dim_eval:n. This function is documented on page 234.)

\dim_sign:n
__dim_sign:Nw

See \dim_abs:n. Contrarily to \int_sign:n the case of a zero dimension cannot be
distinguished from a positive dimension by looking only at the first character, since 0.2pt
and 0pt start the same way. We need explicit comparisons. We start by distinguishing
the most common case of a positive dimension.

21141 \cs_new:Npn \dim_sign:n #1
21142 {
21143 \int_value:w \exp_after:wN __dim_sign:Nw
21144 \dim_use:N __dim_eval:w #1 __dim_eval_end: ;
21145 \exp_stop_f:
21146 }
21147 \cs_new:Npn __dim_sign:Nw #1#2 ;
21148 {
21149 \if_dim:w #1#2 > \c_zero_dim
21150 1
21151 \else:
21152 \if_meaning:w - #1
21153 -1
21154 \else:
21155 0
21156 \fi:
21157 \fi:
21158 }

(End of definition for \dim_sign:n and __dim_sign:Nw. This function is documented on page 234.)

\dim_use:N
\dim_use:c

Accessing a ⟨dim⟩. We hand-code the c variant for some speed gain.
21159 \cs_new_eq:NN \dim_use:N \tex_the:D
21160 \cs_new:Npn \dim_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End of definition for \dim_use:N. This function is documented on page 234.)

\dim_to_decimal:n
__dim_to_decimal:w

A function which comes up often enough to deserve a place in the kernel. Evaluate the
dimension expression #1 then remove the trailing pt. When debugging is enabled, the
argument is put in parentheses as this prevents the dimension expression from terminating
early and leaving extra tokens lying around. This is used a lot by low-level manipulations.

958

21161 \cs_new:Npn \dim_to_decimal:n #1
21162 {
21163 \exp_after:wN
21164 __dim_to_decimal:w \dim_use:N __dim_eval:w #1 __dim_eval_end:
21165 }
21166 \use:e
21167 {
21168 \cs_new:Npn \exp_not:N __dim_to_decimal:w
21169 #1 . #2 \tl_to_str:n { pt }
21170 }
21171 {
21172 \int_compare:nNnTF {#2} > \c_zero_int
21173 { #1 . #2 }
21174 { #1 }
21175 }

(End of definition for \dim_to_decimal:n and __dim_to_decimal:w. This function is documented on
page 234.)

\dim_to_fp:n Defined in l3fp-convert, documented here.

(End of definition for \dim_to_fp:n. This function is documented on page 236.)

64.10 Conversion of dim to other units
The conversion from pt or sp to other units is complicated by the fact that TEX’s conver-
sion to sp involves rounding and hard-coded ratios. In order to give re-entrant outcomes,
we therefore need to do quite a bit of work: see https://github.com/latex3/latex3/
issues/954 for detailed discussion. After dealing with the trivial case, we therefore have
some work to do. The code to do this is contributed by Ruixi Zhang.

\dim_to_decimal_in_sp:n The one easy case: the only requirement here is that we avoid an overflow.
21176 \cs_new:Npn \dim_to_decimal_in_sp:n #1
21177 { \int_value:w __dim_eval:w #1 __dim_eval_end: }

(End of definition for \dim_to_decimal_in_sp:n. This function is documented on page 236.)

\dim_to_decimal_in_bp:n
\dim_to_decimal_in_cc:n
\dim_to_decimal_in_cm:n
\dim_to_decimal_in_dd:n
\dim_to_decimal_in_in:n
\dim_to_decimal_in_mm:n
\dim_to_decimal_in_pc:n
__dim_to_decimal_aux:w

We first set up a helper macro __dim_tmp:w which takes two arguments. The first
argument is one of the following engine-defined units: in, pc, cm, mm, bp, dd, cc, nd,
and nc. The second argument is 1

2 δ−1 in reduced fraction, where δ > 1 is the engine-
defined conversion factor for each unit. Note that δ must be strictly larger than 1 for the
following algorithm to work.

Here is how the algorithm works: Suppose that a user inputs a non-negative di-
mension in a unit that has conversion factor δ > 1. Then this dimension is internally
represented as X sp, where X = ⌊Nδ⌋ for some integer N ≥ 0. We then seek a formula
to express this N using X. The \dim_to_decimal_in_<unit>:n functions shall return
the number N/216 in decimal. This way, we guarantee the returned decimal followed by
the original unit will parse to exactly X sp.

So how do we get N from X? Well, since X = ⌊Nδ⌋, we have X ≤ Nδ < X + 1 and
Xδ−1 ≤ N < (X + 1)δ−1. Let’s focus on the midpoint of this bounding interval for N .
The midpoint is (X + 1

2)δ−1. The fact δ > 1 implies that the bounding interval is shorter
than 1 in length. Thus, (1) midpoint + 1

2 > N and (2) midpoint + 1
2 < N + 1. In other

words, N = ⌊midpoint + 1
2 ⌋. As long as we can rewrite the midpoint as the result of

959

https://github.com/latex3/latex3/issues/954
https://github.com/latex3/latex3/issues/954

a “scaling operation” of ε-TEX, the ⌊. . . + 1
2 ⌋ part will follow naturally. Indeed we can:

midpoint = (2X + 1) × (1
2 δ−1).

Addendum: If δ ≥ 2, then the bounding interval for N is at most 1
2 wide in length. In

this case, the leftpoint Xδ−1 suffices as N = ⌊Xδ−1 + 1
2 ⌋. Six out of the nine units listed

above can be handled in this way, which is much simpler than using midpoint. But three
remaining units have 1 < δ < 2; they are bp (δ = 7227/7200), nd (δ = 685/642), and
dd (δ = 1238/1157), and these three must be handled using midpoint. For consistency,
we shall use the midpoint approach for all nine units.

21178 \group_begin:
21179 \cs_set_protected:Npn __dim_tmp:w #1#2
21180 {
21181 \cs_new:cpn { dim_to_decimal_in_ #1 :n } ##1
21182 {
21183 \exp_after:wN __dim_to_decimal_aux:w
21184 \int_value:w __dim_eval:w ##1 __dim_eval_end: ; #2 ;
21185 }
21186 }

Conversions to other units are now coded. Consult the pdfTEX source for each conversion
factor δ. Each factor 1

2 δ−1 is hand-coded for accuracy (and speed). As the units nc and
nd are not supported by X ETEX or (u)pTEX, they are not included here.

21187 __dim_tmp:w { in } { 50 / 7227 } % delta = 7227/100
21188 __dim_tmp:w { pc } { 1 / 24 } % delta = 12/1
21189 __dim_tmp:w { cm } { 127 / 7227 } % delta = 7227/254
21190 __dim_tmp:w { mm } { 1270 / 7227 } % delta = 7227/2540
21191 __dim_tmp:w { bp } { 400 / 803 } % delta = 7227/7200
21192 __dim_tmp:w { dd } { 1157 / 2476 } % delta = 1238/1157
21193 __dim_tmp:w { cc } { 1157 / 29712 } % delta = 14856/1157
21194 \group_end:

The tokens after __dim_to_decimal_aux:w shall have the following form: <number>;<half of delta inverse>;,
where <number> represents the input dimension in sp unit. If <number> is positive, then
#1 is its leading digit and #2 (possibly empty) is all the remaining digits; If <number> is
zero, then #1 is 012 and #2 is empty; If <number> is negative, then #1 is its sign -12 and
#2 is all its digits. In all three cases, #1#2 is the original <number>. We can use #1 to
decide whether to use the -1 formula or the +1 formula.

21195 \cs_new:Npn __dim_to_decimal_aux:w #1#2 ; #3 ;
21196 {
21197 \dim_to_decimal:n
21198 {

We need different formulae depending on whether the user input dimension is negative or
not. For negative dimension (internally represented as X sp), the formula is (2X − 1) ×
(1

2 δ−1). For non-negative dimension, the formula is (2X +1) × (1
2 δ−1). The intermediate

step doubles the dimension X. To avoid overflow, we must invoke \int_eval:n.
21199 \int_eval:n
21200 { (2 * #1#2 \if:w #1 - - \else: + \fi: 1) * #3 }

Now we append sp to finish the dimension specification.
21201 sp
21202 }
21203 }

(End of definition for \dim_to_decimal_in_bp:n and others. These functions are documented on page
235.)

960

\dim_to_decimal_in_unit:nn

21204 \cs_new:Npn \dim_to_decimal_in_unit:nn #1#2
21205 {
21206 \exp_after:wN __dim_chk_unit:w
21207 \int_value:w __dim_eval:w #2 __dim_eval_end: ; {#1}
21208 }

(End of definition for \dim_to_decimal_in_unit:nn. This function is documented on page 236.)

__dim_chk_unit:w The tokens after __dim_chk_unit:w shall have the following form: <number2>;{<dimexpr1>},
where <number2> represents <dimexpr2> in sp unit. If #1 is 012, the “unit” <dimexpr2>
must also be zero. So we throw out a “division by zero” error message at this point.
Otherwise, if #1 is -12, we shall negate both <dimexpr1> and <dimexpr2> for later pro-
cedures.

21209 \cs_new:Npn __dim_chk_unit:w #1#2;#3
21210 {
21211 \token_if_eq_charcode:NNTF #1 0
21212 { \msg_expandable_error:nn { dim } { zero-unit } }
21213 {
21214 \exp_after:wN __dim_branch_unit:w
21215 \int_value:w \if:w #1 - - \fi: __dim_eval:w #3 \exp_after:wN ;
21216 \int_value:w \if:w #1 - - \fi: #1#2 ;
21217 }
21218 }

(End of definition for __dim_chk_unit:w.)

__dim_branch_unit:w The tokens after __dim_branch_unit:w shall have the following form: <number1>;<number2>;,
where <number1> represents <dimexpr1> in sp unit (whose sign is taken care of) and
<number2> represents the absolute value of <dimexpr2> in sp unit (which is strictly
positive).

As explained, the formulae (2X±1)×(1
2 δ−1) work if and only if δ = <number2>/65536 >

1. This corresponds to <dimexpr2> strictly larger than 1 pt in absolute value. In this
case, we simply call __dim_to_decimal_aux:w and supply 1

2 δ−1 = 32768/<number2>
as <half of delta inverse>.

Otherwise if <number2> = 65536, then <dimexpr2> is 1 pt in absolute value and we
call \dim_to_decimal:n directly.

Otherwise 0 < <number2> < 65536 and we shall proceed differently.
For unit less than 1 pt, write n = <number2>, then δ = n/65536 < 1. The midpoint

formulae are not optimal. Let’s go back to the inequalities Xδ−1 ≤ N < (X + 1)δ−1.
Since now δ < 1, the bounding interval is wider than 1 in length. Consider the ceiling
integer M = ⌈Xδ−1⌉, then Xδ−1 ≤ M < (X + 1)δ−1, or equivalently X ≤ Mδ < X + 1,
and thus ⌊Mδ⌋ = X. The key point here is that we don’t need to solve for N ; in fact,
any integer that can reproduce X (such as M) is good enough. So the algorithm goes
like this: (1) Compute rounding of Xδ−1, i.e., M ′ = ⌊Xδ−1 + 1

2 ⌋; this M ′ could be either
M or M − 1. (2) Check if ⌊M ′δ⌋ = X, i.e., whether our candidate M ′ can reproduce X.
If so, then this M ′ is good enough; if not, then we add one to M ′.

But when 0 < n < 65536, we cannot delay the problem of overflow any more. For
Xδ−1 = X × 65536/n, where X can go up to 230 − 1 and n can be as small as 1,
the result is well over 231 − 1 (largest integer allowed within \numexpr). For example,
\dim_to_decimal_in_unit:nn { \maxdimen } { 1sp }. Here, all inputs are legal, so
we should be able to output 1073741823 without causing arithmetic overflow.

961

As a workaround, let’s write X = qn + r with some q ≥ 0 and 0 ≤ r < n. Then
Xδ−1 = 65536q + 65536r/n, and so M ′ = 65536q + ⌊65536r/n + 1

2 ⌋ = 65536q + R′.
Computing R′ will never overflow. If this R′ can reproduce r, then it is good enough;
otherwise we add one to R′. In the end, we shall output q + R′/65536 in decimal.

Note: q = ⌊X/n⌋ = ⌊ 2X−n
2n + 1

2 ⌋ represents the “integer” part, while 0 ≤ R′ ≤ 65536
represents the “fractional” part. (Can R′ = 65536 really happen? Didn’t investigate.)

21219 \cs_new:Npn __dim_branch_unit:w #1;#2;
21220 {
21221 \int_compare:nNnTF {#2} > { 65536 }
21222 { __dim_to_decimal_aux:w #1 ; 32768 / #2 ; }
21223 {
21224 \int_compare:nNnTF {#2} = { 65536 }
21225 { \dim_to_decimal:n { #1sp } }
21226 { __dim_get_quotient:w #1 ; #2 ; }
21227 }
21228 }

(End of definition for __dim_branch_unit:w.)

__dim_get_quotient:w We wish to get the quotient q via rounding of 2X−n
2n . When 0 ≤ X < n/2, we have

2X−n
2n < 0. So, strictly speaking, \numexpr performs its rounding as ⌈ 2X−n

2n − 1
2 ⌉, not

exactly what we want. However, lucky for us, only X = 0 makes ⌈ 2X−n
2n − 1

2 ⌉ = −1 ̸= 0
(we want 0); all other 0 < X < n/2 make ⌈ 2X−n

2n − 1
2 ⌉ = 0 = q. Thus, let’s filter out

X = 0 early. If X ̸= 0, we extract its sign and leave the sign to the back. The sign does
not participate in any calculations (also the code works with positive integers only). The
sign is used at the last stages when we parse the decimal output.

After __dim_get_quotient:w has done its job, either we have the decimal 0, or we
have __dim_get_remainder:w followed by q;|X|;n;<sign of X>;.

21229 \cs_new:Npn __dim_get_quotient:w #1#2;#3;
21230 {
21231 \token_if_eq_charcode:NNTF #1 0
21232 { 0 }
21233 {
21234 \token_if_eq_charcode:NNTF #1 -
21235 {
21236 \exp_after:wN \exp_after:wN \exp_after:wN __dim_get_remainder:w
21237 \int_eval:n { (2 * #2 - #3) / (2 * #3) } ;
21238 #2 ; #3 ; - ;
21239 }
21240 {
21241 \exp_after:wN \exp_after:wN \exp_after:wN __dim_get_remainder:w
21242 \int_eval:n { (2 * #1#2 - #3) / (2 * #3) } ;
21243 #1#2 ; #3 ; ;
21244 }
21245 }
21246 }

(End of definition for __dim_get_quotient:w.)

__dim_get_remainder:w __dim_get_remainder:w does not need to read the sign. After finding the remainder r,
the number |X| is no longer needed. We should then have __dim_convert_remainder:w
followed by r;n;q;<sign of X>;.

962

21247 \cs_new:Npn __dim_get_remainder:w #1;#2;#3;
21248 {
21249 \exp_after:wN \exp_after:wN \exp_after:wN __dim_convert_remainder:w
21250 \int_eval:n { #2 - #1 * #3 } ;
21251 #3 ; #1 ;
21252 }

(End of definition for __dim_get_remainder:w.)

__dim_convert_remainder:w This is trivial. We compute R′ = ⌊65536r/n+ 1
2 ⌋, then leave __dim_test_candidate:w

followed by R′;r;n;q;<sign of X>;.
21253 \cs_new:Npn __dim_convert_remainder:w #1;#2;
21254 {
21255 \exp_after:wN \exp_after:wN \exp_after:wN __dim_test_candidate:w
21256 \int_eval:n { #1 * 65536 / #2 } ;
21257 #1 ; #2 ;
21258 }

(End of definition for __dim_convert_remainder:w.)

__dim_test_candidate:w Now the fun part: We take R′, r and n to test whether r = ⌊R′δ⌋. This is done as a
dimension comparison. The left-hand side, r, is simply r sp. The right-hand side, ⌊R′δ⌋,
is exactly <R’ as decimal><dimen = n sp>. If the result is true, then we’ve found R′;
otherwise we add one to R′. After this step, r and n are no longer needed. We should
then have __dim_parse_decimal:w followed by R′;q;<sign of X>;.

21259 \cs_new:Npn __dim_test_candidate:w #1;#2;#3;
21260 {
21261 \dim_compare:nNnTF { #2sp } =
21262 { \dim_to_decimal:n { #1sp } __dim_eval:w #3sp __dim_eval_end: }
21263 { __dim_parse_decimal:w #1 ; }
21264 {
21265 __dim_parse_decimal:w \int_eval:n { #1 + 1 } ;
21266 }
21267 }

(End of definition for __dim_test_candidate:w.)

__dim_parse_decimal:w
__dim_parse_decimal_aux:w

The Grand Finale: We sum q and R′/65536 together, and negate the result if necessary.
These are all done expandably. If 0 < R′/65536 < 1, the integer summation is naturally
terminated at the decimal point. If R′/65536 = 0 (or 1?), the summation is terminated
at the semicolon. The auxiliary function __dim_parse_decimal_aux:w takes care of
both cases.

21268 \cs_new:Npn __dim_parse_decimal:w #1;#2;#3;
21269 {
21270 \exp_after:wN __dim_parse_decimal_aux:w
21271 \int_value:w #3 \int_eval:w #2 + \dim_to_decimal:n { #1sp } ;
21272 }
21273 \cs_new:Npn __dim_parse_decimal_aux:w #1 ; {#1}

(End of definition for __dim_parse_decimal:w and __dim_parse_decimal_aux:w.)

963

64.11 Viewing dim variables
\dim_show:N
\dim_show:c

Diagnostics.
21274 \cs_new_eq:NN \dim_show:N __kernel_register_show:N
21275 \cs_generate_variant:Nn \dim_show:N { c }

(End of definition for \dim_show:N. This function is documented on page 236.)

\dim_show:n Diagnostics. We don’t use the TEX primitive \showthe to show dimension expressions:
this gives a more unified output.

21276 \cs_new_protected:Npn \dim_show:n
21277 { __kernel_msg_show_eval:Nn \dim_eval:n }

(End of definition for \dim_show:n. This function is documented on page 236.)

\dim_log:N
\dim_log:c
\dim_log:n

Diagnostics. Redirect output of \dim_show:n to the log.
21278 \cs_new_eq:NN \dim_log:N __kernel_register_log:N
21279 \cs_new_eq:NN \dim_log:c __kernel_register_log:c
21280 \cs_new_protected:Npn \dim_log:n
21281 { __kernel_msg_log_eval:Nn \dim_eval:n }

(End of definition for \dim_log:N and \dim_log:n. These functions are documented on page 236.)

64.12 Constant dimensions
\c_zero_dim
\c_max_dim

Constant dimensions.
21282 \dim_const:Nn \c_zero_dim { 0 pt }
21283 \dim_const:Nn \c_max_dim { 16383.99999 pt }

(End of definition for \c_zero_dim and \c_max_dim. These variables are documented on page 237.)

64.13 Scratch dimensions
\l_tmpa_dim
\l_tmpb_dim
\g_tmpa_dim
\g_tmpb_dim

We provide two local and two global scratch registers, maybe we need more or less.
21284 \dim_new:N \l_tmpa_dim
21285 \dim_new:N \l_tmpb_dim
21286 \dim_new:N \g_tmpa_dim
21287 \dim_new:N \g_tmpb_dim

(End of definition for \l_tmpa_dim and others. These variables are documented on page 237.)

64.14 Creating and initialising skip variables
21288 ⟨@@=skip⟩

\s__skip_stop Internal scan marks.
21289 \scan_new:N \s__skip_stop

(End of definition for \s__skip_stop.)

964

\skip_new:N
\skip_new:c

Allocation of a new internal registers.
21290 \cs_new_protected:Npn \skip_new:N #1
21291 {
21292 __kernel_chk_if_free_cs:N #1
21293 \cs:w newskip \cs_end: #1
21294 }
21295 \cs_generate_variant:Nn \skip_new:N { c }

(End of definition for \skip_new:N. This function is documented on page 237.)

\skip_const:Nn
\skip_const:cn

Contrarily to integer constants, we cannot avoid using a register, even for constants. See
\dim_const:Nn for why we cannot use \skip_gset:Nn.

21296 \cs_new_protected:Npn \skip_const:Nn #1#2
21297 {
21298 \skip_new:N #1
21299 \tex_global:D #1 = \skip_eval:n {#2} \scan_stop:
21300 }
21301 \cs_generate_variant:Nn \skip_const:Nn { c }

(End of definition for \skip_const:Nn. This function is documented on page 237.)

\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

Reset the register to zero.
21302 \cs_new_eq:NN \skip_zero:N \dim_zero:N
21303 \cs_new_eq:NN \skip_gzero:N \dim_gzero:N
21304 \cs_generate_variant:Nn \skip_zero:N { c }
21305 \cs_generate_variant:Nn \skip_gzero:N { c }

(End of definition for \skip_zero:N and \skip_gzero:N. These functions are documented on page 237.)

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

Create a register if needed, otherwise clear it.
21306 \cs_new_protected:Npn \skip_zero_new:N #1
21307 { \skip_if_exist:NTF #1 { \skip_zero:N #1 } { \skip_new:N #1 } }
21308 \cs_new_protected:Npn \skip_gzero_new:N #1
21309 { \skip_if_exist:NTF #1 { \skip_gzero:N #1 } { \skip_new:N #1 } }
21310 \cs_generate_variant:Nn \skip_zero_new:N { c }
21311 \cs_generate_variant:Nn \skip_gzero_new:N { c }

(End of definition for \skip_zero_new:N and \skip_gzero_new:N. These functions are documented on
page 238.)

\skip_if_exist_p:N
\skip_if_exist_p:c
\skip_if_exist:NTF
\skip_if_exist:cTF

Copies of the cs functions defined in l3basics.
21312 \prg_new_eq_conditional:NNn \skip_if_exist:N \cs_if_exist:N
21313 { TF , T , F , p }
21314 \prg_new_eq_conditional:NNn \skip_if_exist:c \cs_if_exist:c
21315 { TF , T , F , p }

(End of definition for \skip_if_exist:NTF. This function is documented on page 238.)

965

64.15 Setting skip variables
\skip_set:Nn
\skip_set:cn
\skip_set:NV
\skip_set:cV

\skip_gset:Nn
\skip_gset:cn
\skip_gset:NV
\skip_gset:cV

Much the same as for dimensions.
21316 \cs_new_protected:Npn \skip_set:Nn #1#2
21317 { #1 = \tex_glueexpr:D #2 \scan_stop: }
21318 \cs_new_protected:Npn \skip_gset:Nn #1#2
21319 { \tex_global:D #1 = \tex_glueexpr:D #2 \scan_stop: }
21320 \cs_generate_variant:Nn \skip_set:Nn { NV , c , cV }
21321 \cs_generate_variant:Nn \skip_gset:Nn { NV , c , cV }

(End of definition for \skip_set:Nn and \skip_gset:Nn. These functions are documented on page 238.)

\skip_set_eq:NN
\skip_set_eq:cN
\skip_set_eq:Nc
\skip_set_eq:cc
\skip_gset_eq:NN
\skip_gset_eq:cN
\skip_gset_eq:Nc
\skip_gset_eq:cc

All straightforward.
21322 \cs_new_protected:Npn \skip_set_eq:NN #1#2 { #1 = #2 }
21323 \cs_generate_variant:Nn \skip_set_eq:NN { c , Nc , cc }
21324 \cs_new_protected:Npn \skip_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
21325 \cs_generate_variant:Nn \skip_gset_eq:NN { c , Nc , cc }

(End of definition for \skip_set_eq:NN and \skip_gset_eq:NN. These functions are documented on
page 238.)

\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn
\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Using by here deals with the (incorrect) case \skip123.
21326 \cs_new_protected:Npn \skip_add:Nn #1#2
21327 { \tex_advance:D #1 \tex_glueexpr:D #2 \scan_stop: }
21328 \cs_new_protected:Npn \skip_gadd:Nn #1#2
21329 { \tex_global:D \tex_advance:D #1 \tex_glueexpr:D #2 \scan_stop: }
21330 \cs_generate_variant:Nn \skip_add:Nn { c }
21331 \cs_generate_variant:Nn \skip_gadd:Nn { c }
21332 \cs_new_protected:Npn \skip_sub:Nn #1#2
21333 { \tex_advance:D #1 - \tex_glueexpr:D #2 \scan_stop: }
21334 \cs_new_protected:Npn \skip_gsub:Nn #1#2
21335 { \tex_global:D \tex_advance:D #1 - \tex_glueexpr:D #2 \scan_stop: }
21336 \cs_generate_variant:Nn \skip_sub:Nn { c }
21337 \cs_generate_variant:Nn \skip_gsub:Nn { c }

(End of definition for \skip_add:Nn and others. These functions are documented on page 238.)

64.16 Skip expression conditionals
\skip_if_eq_p:nn
\skip_if_eq:nnTF

Comparing skips means doing two expansions to make strings, and then testing them.
As a result, only equality is tested.

21338 \prg_new_conditional:Npnn \skip_if_eq:nn #1#2 { p , T , F , TF }
21339 {
21340 \str_if_eq:eeTF { \skip_eval:n {#1} } { \skip_eval:n {#2} }
21341 { \prg_return_true: }
21342 { \prg_return_false: }
21343 }

(End of definition for \skip_if_eq:nnTF. This function is documented on page 239.)

966

\skip_if_finite_p:n
\skip_if_finite:nTF

__skip_if_finite:wwNw

With ε-TEX, we have an easy access to the order of infinities of the stretch and shrink
components of a skip. However, to access both, we either need to evaluate the expression
twice, or evaluate it, then call an auxiliary to extract both pieces of information from the
result. Since we are going to need an auxiliary anyways, it is quicker to make it search
for the string fil which characterizes infinite glue.

21344 \cs_set_protected:Npn __skip_tmp:w #1
21345 {
21346 \prg_new_conditional:Npnn \skip_if_finite:n ##1 { p , T , F , TF }
21347 {
21348 \exp_after:wN __skip_if_finite:wwNw
21349 \skip_use:N \tex_glueexpr:D ##1 ; \prg_return_false:
21350 #1 ; \prg_return_true: \s__skip_stop
21351 }
21352 \cs_new:Npn __skip_if_finite:wwNw ##1 #1 ##2 ; ##3 ##4 \s__skip_stop {##3}
21353 }
21354 \exp_args:No __skip_tmp:w { \tl_to_str:n { fil } }

(End of definition for \skip_if_finite:nTF and __skip_if_finite:wwNw. This function is documented
on page 239.)

64.17 Using skip expressions and variables
\skip_eval:n Evaluating a skip expression expandably.

21355 \cs_new:Npn \skip_eval:n #1
21356 { \skip_use:N \tex_glueexpr:D #1 \scan_stop: }

(End of definition for \skip_eval:n. This function is documented on page 239.)

\skip_use:N
\skip_use:c

Accessing a ⟨skip⟩.
21357 \cs_new_eq:NN \skip_use:N \dim_use:N
21358 \cs_new_eq:NN \skip_use:c \dim_use:c

(End of definition for \skip_use:N. This function is documented on page 239.)

64.18 Inserting skips into the output
\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Inserting skips.
21359 \cs_new_eq:NN \skip_horizontal:N \tex_hskip:D
21360 \cs_new:Npn \skip_horizontal:n #1
21361 { \skip_horizontal:N \tex_glueexpr:D #1 \scan_stop: }
21362 \cs_new_eq:NN \skip_vertical:N \tex_vskip:D
21363 \cs_new:Npn \skip_vertical:n #1
21364 { \skip_vertical:N \tex_glueexpr:D #1 \scan_stop: }
21365 \cs_generate_variant:Nn \skip_horizontal:N { c }
21366 \cs_generate_variant:Nn \skip_vertical:N { c }

(End of definition for \skip_horizontal:N and others. These functions are documented on page 240.)

967

64.19 Viewing skip variables
\skip_show:N
\skip_show:c

Diagnostics.
21367 \cs_new_eq:NN \skip_show:N __kernel_register_show:N
21368 \cs_generate_variant:Nn \skip_show:N { c }

(End of definition for \skip_show:N. This function is documented on page 239.)

\skip_show:n Diagnostics. We don’t use the TEX primitive \showthe to show skip expressions: this
gives a more unified output.

21369 \cs_new_protected:Npn \skip_show:n
21370 { __kernel_msg_show_eval:Nn \skip_eval:n }

(End of definition for \skip_show:n. This function is documented on page 239.)

\skip_log:N
\skip_log:c
\skip_log:n

Diagnostics. Redirect output of \skip_show:n to the log.
21371 \cs_new_eq:NN \skip_log:N __kernel_register_log:N
21372 \cs_new_eq:NN \skip_log:c __kernel_register_log:c
21373 \cs_new_protected:Npn \skip_log:n
21374 { __kernel_msg_log_eval:Nn \skip_eval:n }

(End of definition for \skip_log:N and \skip_log:n. These functions are documented on page 240.)

64.20 Constant skips
\c_zero_skip
\c_max_skip

Skips with no rubber component are just dimensions but need to terminate correctly.
21375 \skip_const:Nn \c_zero_skip { \c_zero_dim }
21376 \skip_const:Nn \c_max_skip { \c_max_dim }

(End of definition for \c_zero_skip and \c_max_skip. These functions are documented on page 240.)

64.21 Scratch skips
\l_tmpa_skip
\l_tmpb_skip
\g_tmpa_skip
\g_tmpb_skip

We provide two local and two global scratch registers, maybe we need more or less.
21377 \skip_new:N \l_tmpa_skip
21378 \skip_new:N \l_tmpb_skip
21379 \skip_new:N \g_tmpa_skip
21380 \skip_new:N \g_tmpb_skip

(End of definition for \l_tmpa_skip and others. These variables are documented on page 240.)

64.22 Creating and initialising muskip variables
\muskip_new:N
\muskip_new:c

And then we add muskips.
21381 \cs_new_protected:Npn \muskip_new:N #1
21382 {
21383 __kernel_chk_if_free_cs:N #1
21384 \cs:w newmuskip \cs_end: #1
21385 }
21386 \cs_generate_variant:Nn \muskip_new:N { c }

(End of definition for \muskip_new:N. This function is documented on page 241.)

968

\muskip_const:Nn
\muskip_const:cn

See \skip_const:Nn.
21387 \cs_new_protected:Npn \muskip_const:Nn #1#2
21388 {
21389 \muskip_new:N #1
21390 \tex_global:D #1 = \muskip_eval:n {#2} \scan_stop:
21391 }
21392 \cs_generate_variant:Nn \muskip_const:Nn { c }

(End of definition for \muskip_const:Nn. This function is documented on page 241.)

\muskip_zero:N
\muskip_zero:c

\muskip_gzero:N
\muskip_gzero:c

Reset the register to zero.
21393 \cs_new_protected:Npn \muskip_zero:N #1
21394 { #1 = \c_zero_muskip }
21395 \cs_new_protected:Npn \muskip_gzero:N #1
21396 { \tex_global:D #1 = \c_zero_muskip }
21397 \cs_generate_variant:Nn \muskip_zero:N { c }
21398 \cs_generate_variant:Nn \muskip_gzero:N { c }

(End of definition for \muskip_zero:N and \muskip_gzero:N. These functions are documented on page
241.)

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

Create a register if needed, otherwise clear it.
21399 \cs_new_protected:Npn \muskip_zero_new:N #1
21400 { \muskip_if_exist:NTF #1 { \muskip_zero:N #1 } { \muskip_new:N #1 } }
21401 \cs_new_protected:Npn \muskip_gzero_new:N #1
21402 { \muskip_if_exist:NTF #1 { \muskip_gzero:N #1 } { \muskip_new:N #1 } }
21403 \cs_generate_variant:Nn \muskip_zero_new:N { c }
21404 \cs_generate_variant:Nn \muskip_gzero_new:N { c }

(End of definition for \muskip_zero_new:N and \muskip_gzero_new:N. These functions are documented
on page 241.)

\muskip_if_exist_p:N
\muskip_if_exist_p:c
\muskip_if_exist:NTF
\muskip_if_exist:cTF

Copies of the cs functions defined in l3basics.
21405 \prg_new_eq_conditional:NNn \muskip_if_exist:N \cs_if_exist:N
21406 { TF , T , F , p }
21407 \prg_new_eq_conditional:NNn \muskip_if_exist:c \cs_if_exist:c
21408 { TF , T , F , p }

(End of definition for \muskip_if_exist:NTF. This function is documented on page 241.)

64.23 Setting muskip variables
\muskip_set:Nn
\muskip_set:cn
\muskip_set:NV
\muskip_set:cV

\muskip_gset:Nn
\muskip_gset:cn
\muskip_gset:NV
\muskip_gset:cV

This should be pretty familiar.
21409 \cs_new_protected:Npn \muskip_set:Nn #1#2
21410 { #1 = \tex_muexpr:D #2 \scan_stop: }
21411 \cs_new_protected:Npn \muskip_gset:Nn #1#2
21412 { \tex_global:D #1 = \tex_muexpr:D #2 \scan_stop: }
21413 \cs_generate_variant:Nn \muskip_set:Nn { NV , c , cV }
21414 \cs_generate_variant:Nn \muskip_gset:Nn { NV , c , cV }

(End of definition for \muskip_set:Nn and \muskip_gset:Nn. These functions are documented on page
242.)

969

\muskip_set_eq:NN
\muskip_set_eq:cN
\muskip_set_eq:Nc
\muskip_set_eq:cc
\muskip_gset_eq:NN
\muskip_gset_eq:cN
\muskip_gset_eq:Nc
\muskip_gset_eq:cc

All straightforward.
21415 \cs_new_protected:Npn \muskip_set_eq:NN #1#2 { #1 = #2 }
21416 \cs_generate_variant:Nn \muskip_set_eq:NN { c , Nc , cc }
21417 \cs_new_protected:Npn \muskip_gset_eq:NN #1#2 { \tex_global:D #1 = #2 }
21418 \cs_generate_variant:Nn \muskip_gset_eq:NN { c , Nc , cc }

(End of definition for \muskip_set_eq:NN and \muskip_gset_eq:NN. These functions are documented
on page 242.)

\muskip_add:Nn
\muskip_add:cn

\muskip_gadd:Nn
\muskip_gadd:cn
\muskip_sub:Nn
\muskip_sub:cn

\muskip_gsub:Nn
\muskip_gsub:cn

Using by here deals with the (incorrect) case \muskip123.
21419 \cs_new_protected:Npn \muskip_add:Nn #1#2
21420 { \tex_advance:D #1 \tex_muexpr:D #2 \scan_stop: }
21421 \cs_new_protected:Npn \muskip_gadd:Nn #1#2
21422 { \tex_global:D \tex_advance:D #1 \tex_muexpr:D #2 \scan_stop: }
21423 \cs_generate_variant:Nn \muskip_add:Nn { c }
21424 \cs_generate_variant:Nn \muskip_gadd:Nn { c }
21425 \cs_new_protected:Npn \muskip_sub:Nn #1#2
21426 { \tex_advance:D #1 - \tex_muexpr:D #2 \scan_stop: }
21427 \cs_new_protected:Npn \muskip_gsub:Nn #1#2
21428 { \tex_global:D \tex_advance:D #1 - \tex_muexpr:D #2 \scan_stop: }
21429 \cs_generate_variant:Nn \muskip_sub:Nn { c }
21430 \cs_generate_variant:Nn \muskip_gsub:Nn { c }

(End of definition for \muskip_add:Nn and others. These functions are documented on page 241.)

64.24 Using muskip expressions and variables
\muskip_eval:n Evaluating a muskip expression expandably.

21431 \cs_new:Npn \muskip_eval:n #1
21432 { \muskip_use:N \tex_muexpr:D #1 \scan_stop: }

(End of definition for \muskip_eval:n. This function is documented on page 242.)

\muskip_use:N
\muskip_use:c

Accessing a ⟨muskip⟩.
21433 \cs_new_eq:NN \muskip_use:N \dim_use:N
21434 \cs_new_eq:NN \muskip_use:c \dim_use:c

(End of definition for \muskip_use:N. This function is documented on page 242.)

64.25 Viewing muskip variables
\muskip_show:N
\muskip_show:c

Diagnostics.
21435 \cs_new_eq:NN \muskip_show:N __kernel_register_show:N
21436 \cs_generate_variant:Nn \muskip_show:N { c }

(End of definition for \muskip_show:N. This function is documented on page 242.)

\muskip_show:n Diagnostics. We don’t use the TEX primitive \showthe to show muskip expressions: this
gives a more unified output.

21437 \cs_new_protected:Npn \muskip_show:n
21438 { __kernel_msg_show_eval:Nn \muskip_eval:n }

(End of definition for \muskip_show:n. This function is documented on page 243.)

970

\muskip_log:N
\muskip_log:c
\muskip_log:n

Diagnostics. Redirect output of \muskip_show:n to the log.
21439 \cs_new_eq:NN \muskip_log:N __kernel_register_log:N
21440 \cs_new_eq:NN \muskip_log:c __kernel_register_log:c
21441 \cs_new_protected:Npn \muskip_log:n
21442 { __kernel_msg_log_eval:Nn \muskip_eval:n }

(End of definition for \muskip_log:N and \muskip_log:n. These functions are documented on page
243.)

64.26 Constant muskips
\c_zero_muskip
\c_max_muskip

Constant muskips given by their value.
21443 \muskip_const:Nn \c_zero_muskip { 0 mu }
21444 \muskip_const:Nn \c_max_muskip { 16383.99999 mu }

(End of definition for \c_zero_muskip and \c_max_muskip. These functions are documented on page
243.)

64.27 Scratch muskips
\l_tmpa_muskip
\l_tmpb_muskip
\g_tmpa_muskip
\g_tmpb_muskip

We provide two local and two global scratch registers, maybe we need more or less.
21445 \muskip_new:N \l_tmpa_muskip
21446 \muskip_new:N \l_tmpb_muskip
21447 \muskip_new:N \g_tmpa_muskip
21448 \muskip_new:N \g_tmpb_muskip

(End of definition for \l_tmpa_muskip and others. These variables are documented on page 243.)

21449 ⟨/package⟩

971

Chapter 65

l3keys implementation

21450 ⟨∗package⟩

65.1 Low-level interface
The low-level key parser’s implementation is based heavily on expkv. Compared to keyval
it adds a number of additional “safety” requirements and allows to process the parsed
list of key–value pairs in a variety of ways. The net result is that this code needs around
one and a half the amount of time as keyval to parse the same list of keys. To optimise
speed as far as reasonably practical, a number of lower-level approaches are taken rather
than using the higher-level expl3 interfaces.

21451 ⟨@@=keyval⟩

\s__keyval_nil
\s__keyval_mark
\s__keyval_stop
\s__keyval_tail

21452 \scan_new:N \s__keyval_nil
21453 \scan_new:N \s__keyval_mark
21454 \scan_new:N \s__keyval_stop
21455 \scan_new:N \s__keyval_tail

(End of definition for \s__keyval_nil and others.)

\l__kernel_keyval_allow_blank_keys_bool The general behavior of the l3keys module is to throw an error on blank key names.
However to support the usage of \keyval_parse:nnn in the l3prop module we allow this
error to be switched off temporarily and just ignore blank names.

21456 \bool_new:N \l__kernel_keyval_allow_blank_keys_bool

(End of definition for \l__kernel_keyval_allow_blank_keys_bool.)
This temporary macro will be used since some of the definitions will need an active

comma or equals sign. Inside of this macro #1 will be the active comma and #2 will be
the active equals sign.

21457 \group_begin:
21458 \cs_set_protected:Npn __keyval_tmp:w #1#2
21459 {

\keyval_parse:nnn
\keyval_parse:nnV
\keyval_parse:nnv
\keyval_parse:NNn
\keyval_parse:NNV
\keyval_parse:NNv

The main function starts the first of two loops. The outer loop splits the key–value list at
active commas, the inner loop will do so at other commas. The use of \s__keyval_mark
here prevents loss of braces from the key argument.

972

21460 \cs_new:Npn \keyval_parse:nnn ##1 ##2 ##3
21461 {
21462 __kernel_exp_not:w \tex_expanded:D
21463 {
21464 {
21465 __keyval_loop_active:nnw {##1} {##2}
21466 \s__keyval_mark ##3 #1 \s__keyval_tail #1
21467 }
21468 }
21469 }
21470 \cs_new_eq:NN \keyval_parse:NNn \keyval_parse:nnn

(End of definition for \keyval_parse:nnn and \keyval_parse:NNn. These functions are documented on
page 258.)

__keyval_loop_active:nnw First a fast test for the end of the loop is done, it’ll gobble everything up to a \s__-
keyval_tail. The loop ending macro will gobble everything to the last comma in this
definition. If the end isn’t reached yet, start the second loop splitting at other commas,
the next iteration of this first loop will be inserted by the end of __keyval_loop_-
other:nnw.

21471 \cs_new:Npn __keyval_loop_active:nnw ##1 ##2 ##3 #1
21472 {
21473 __keyval_if_recursion_tail:w ##3
21474 __keyval_end_loop_active:w \s__keyval_tail
21475 __keyval_loop_other:nnw {##1} {##2} ##3 , \s__keyval_tail ,
21476 }

(End of definition for __keyval_loop_active:nnw.)

__keyval_split_other:w
__keyval_split_active:w

These two macros allow to split at the first equals sign of category 12 or 13. At the same
time they also execute branching by inserting the first token following \s__keyval_mark
that followed the equals sign. Hence they also test for the presence of such an equals sign
simultaneously.

21477 \cs_new:Npn __keyval_split_other:w ##1 = ##2 \s__keyval_mark ##3
21478 { ##3 ##1 \s__keyval_stop \s__keyval_mark ##2 }
21479 \cs_new:Npn __keyval_split_active:w ##1 #2 ##2 \s__keyval_mark ##3
21480 { ##3 ##1 \s__keyval_stop \s__keyval_mark ##2 }

(End of definition for __keyval_split_other:w and __keyval_split_active:w.)

__keyval_loop_other:nnw The second loop uses the same test for its end as the first loop, next it splits at the first
active equals sign using __keyval_split_active:w. The \s__keyval_nil prevents
accidental brace stripping and acts as a delimiter in the next steps. First testing for an
active equals sign will reduce the number of necessary expansion steps for the expected
average use case of other equals signs and hence perform better on average.

21481 \cs_new:Npn __keyval_loop_other:nnw ##1 ##2 ##3 ,
21482 {
21483 __keyval_if_recursion_tail:w ##3
21484 __keyval_end_loop_other:w \s__keyval_tail
21485 __keyval_split_active:w ##3 \s__keyval_nil
21486 \s__keyval_mark __keyval_split_active_auxi:w
21487 #2 \s__keyval_mark __keyval_clean_up_active:w
21488 {##1} {##2}
21489 \s__keyval_mark
21490 }

973

(End of definition for __keyval_loop_other:nnw.)

__keyval_split_active_auxi:w
__keyval_split_active_auxii:w
__keyval_split_active_auxiii:w
__keyval_split_active_auxiv:w
__keyval_split_active_auxv:w

After __keyval_split_active:w the following will only be called if there was at least
one active equals sign in the current key–value pair. Therefore this is the execution
branch for a key–value pair with an active equals sign. ##1 will be everything up to the
first active equals sign. First it tests for other equals signs in the key name, which will
eventually throw an error via __keyval_misplaced_equal_after_active_error:w. If
none was found we forward the key to __keyval_split_active_auxii:w.

21491 \cs_new:Npn __keyval_split_active_auxi:w ##1 \s__keyval_stop
21492 {
21493 __keyval_split_other:w ##1 \s__keyval_nil
21494 \s__keyval_mark __keyval_misplaced_equal_after_active_error:w
21495 = \s__keyval_mark __keyval_split_active_auxii:w
21496 }

__keyval_split_active_auxii:w gets the correct key name with a leading \s__-
keyval_mark as ##1. It has to sanitise the remainder of the previous test and trims
the key name which will be forwarded to __keyval_split_active_auxiii:w.

21497 \cs_new:Npn __keyval_split_active_auxii:w
21498 ##1 \s__keyval_nil \s__keyval_mark __keyval_misplaced_equal_after_active_error:w
21499 \s__keyval_stop \s__keyval_mark
21500 ##2 \s__keyval_nil #2 \s__keyval_mark __keyval_clean_up_active:w
21501 { __keyval_trim:nN {##1} __keyval_split_active_auxiii:w ##2 \s__keyval_nil }

Next we test for a misplaced active equals sign in the value, if none is found __keyval_-
split_active_auxiv:w will be called.

21502 \cs_new:Npn __keyval_split_active_auxiii:w ##1 ##2 \s__keyval_nil
21503 {
21504 __keyval_split_active:w ##2 \s__keyval_nil
21505 \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21506 #2 \s__keyval_mark __keyval_split_active_auxiv:w
21507 {##1}
21508 }

This runs the last test after sanitising the remainder of the previous one. This time test
for a misplaced equals sign of category 12 in the value. Finally the last auxiliary macro
will be called.

21509 \cs_new:Npn __keyval_split_active_auxiv:w
21510 ##1 \s__keyval_nil \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21511 \s__keyval_stop \s__keyval_mark
21512 {
21513 __keyval_split_other:w ##1 \s__keyval_nil
21514 \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21515 = \s__keyval_mark __keyval_split_active_auxv:w
21516 }

This last macro in this execution branch sanitises the last test, trims the value and passes
it to __keyval_pair:nnnn.

21517 \cs_new:Npn __keyval_split_active_auxv:w
21518 ##1 \s__keyval_nil \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21519 \s__keyval_stop \s__keyval_mark
21520 { __keyval_trim:nN { ##1 } __keyval_pair:nnnn }

(End of definition for __keyval_split_active_auxi:w and others.)

974

__keyval_clean_up_active:w The following is the branch taken if the key–value pair doesn’t contain an active equals
sign. The remainder of that test will be cleaned up by __keyval_clean_up_active:w
which will then split at an equals sign of category other.

21521 \cs_new:Npn __keyval_clean_up_active:w
21522 ##1 \s__keyval_nil \s__keyval_mark __keyval_split_active_auxi:w \s__keyval_stop \s__keyval_mark
21523 {
21524 __keyval_split_other:w ##1 \s__keyval_nil
21525 \s__keyval_mark __keyval_split_other_auxi:w
21526 = \s__keyval_mark __keyval_clean_up_other:w
21527 }

(End of definition for __keyval_clean_up_active:w.)

__keyval_split_other_auxi:w
__keyval_split_other_auxii:w
__keyval_split_other_auxiii:w

This is executed if the key–value pair doesn’t contain an active equals sign but at least
one other. ##1 of __keyval_split_other_auxi:w will contain the complete key name,
which is trimmed and forwarded to the next auxiliary macro.

21528 \cs_new:Npn __keyval_split_other_auxi:w ##1 \s__keyval_stop
21529 { __keyval_trim:nN { ##1 } __keyval_split_other_auxii:w }

We know that the value doesn’t contain misplaced active equals signs but we have to test
for others. Also we need to sanitise the previous test, which is done here and not earlier
to avoid superfluous argument grabbing.

21530 \cs_new:Npn __keyval_split_other_auxii:w
21531 ##1 ##2 \s__keyval_nil = \s__keyval_mark __keyval_clean_up_other:w
21532 {
21533 __keyval_split_other:w ##2 \s__keyval_nil
21534 \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21535 = \s__keyval_mark __keyval_split_other_auxiii:w
21536 { ##1 }
21537 }

__keyval_split_other_auxiii:w sanitises the test for other equals signs, trims the
value and forwards it to __keyval_pair:nnnn.

21538 \cs_new:Npn __keyval_split_other_auxiii:w
21539 ##1 \s__keyval_nil \s__keyval_mark __keyval_misplaced_equal_in_split_error:w
21540 \s__keyval_stop \s__keyval_mark
21541 { __keyval_trim:nN { ##1 } __keyval_pair:nnnn }

(End of definition for __keyval_split_other_auxi:w , __keyval_split_other_auxii:w , and __-
keyval_split_other_auxiii:w.)

__keyval_clean_up_other:w __keyval_clean_up_other:w is the last branch that might exist. It is called if no
equals sign was found, hence the only possibilities left are a blank list element, which is
to be skipped, or a lonely key. If it’s no empty list element this will trim the key name
and forward it to __keyval_key:nn.

21542 \cs_new:Npn __keyval_clean_up_other:w
21543 ##1 \s__keyval_nil \s__keyval_mark __keyval_split_other_auxi:w \s__keyval_stop \s__keyval_mark
21544 {
21545 __keyval_if_blank:w ##1 \s__keyval_nil \s__keyval_stop __keyval_blank_true:w
21546 \s__keyval_mark \s__keyval_stop
21547 __keyval_trim:nN { ##1 } __keyval_key:nn
21548 }

(End of definition for __keyval_clean_up_other:w.)

975

__keyval_misplaced_equal_after_active_error:w
__keyval_misplaced_equal_in_split_error:w

All these two macros do is gobble the remainder of the current other loop execution and
throw an error. Afterwards they have to insert the next loop iteration.

21549 \cs_new:Npn __keyval_misplaced_equal_after_active_error:w
21550 \s__keyval_mark ##1 \s__keyval_stop \s__keyval_mark ##2 \s__keyval_nil
21551 = \s__keyval_mark __keyval_split_active_auxii:w
21552 \s__keyval_mark ##3 \s__keyval_nil
21553 #2 \s__keyval_mark __keyval_clean_up_active:w
21554 {
21555 \msg_expandable_error:nn
21556 { keyval } { misplaced-equals-sign }
21557 __keyval_loop_other:nnw
21558 }
21559 \cs_new:Npn __keyval_misplaced_equal_in_split_error:w
21560 \s__keyval_mark ##1 \s__keyval_stop \s__keyval_mark ##2 \s__keyval_nil
21561 ##3 \s__keyval_mark ##4 ##5
21562 {
21563 \msg_expandable_error:nn
21564 { keyval } { misplaced-equals-sign }
21565 __keyval_loop_other:nnw
21566 }

(End of definition for __keyval_misplaced_equal_after_active_error:w and __keyval_misplaced_-
equal_in_split_error:w.)

__keyval_end_loop_other:w
__keyval_end_loop_active:w

All that’s left for the parsing loops are the macros which end the recursion. Both just
gobble the remaining tokens of the respective loop including the next recursion call.
__keyval_end_loop_other:w also has to insert the next iteration of the active loop.

21567 \cs_new:Npn __keyval_end_loop_other:w
21568 \s__keyval_tail
21569 __keyval_split_active:w
21570 \s__keyval_mark \s__keyval_tail
21571 \s__keyval_nil \s__keyval_mark
21572 __keyval_split_active_auxi:w
21573 #2 \s__keyval_mark __keyval_clean_up_active:w
21574 { __keyval_loop_active:nnw }
21575 \cs_new:Npn __keyval_end_loop_active:w
21576 \s__keyval_tail
21577 __keyval_loop_other:nnw ##1 \s__keyval_mark \s__keyval_tail , \s__keyval_tail ,
21578 { }

(End of definition for __keyval_end_loop_other:w and __keyval_end_loop_active:w.)
The parsing loops are done, so here ends the definition of __keyval_tmp:w, which

will finally set up the macros.
21579 }
21580 \char_set_catcode_active:n { ‘\, }
21581 \char_set_catcode_active:n { ‘\= }
21582 __keyval_tmp:w , =
21583 \group_end:
21584 \cs_generate_variant:Nn \keyval_parse:NNn { NNV , NNv }
21585 \cs_generate_variant:Nn \keyval_parse:nnn { nnV , nnv }

__keyval_pair:nnnn
__keyval_key:nn

These macros will be called on the parsed keys and values of the key–value list. All
arguments are completely trimmed. They test for blank key names and call the func-

976

tions passed to \keyval_parse:nnn inside of \exp_not:n with the correct arguments.
Afterwards they insert the next iteration of the other loop.

21586 \group_begin:
21587 \cs_set_protected:Npn __keyval_tmp:w #1#2
21588 {
21589 \cs_new:Npn __keyval_pair:nnnn ##1 ##2 ##3 ##4
21590 {
21591 __keyval_if_blank:w \s__keyval_mark ##2 \s__keyval_nil \s__keyval_stop __keyval_blank_key_error:w
21592 \s__keyval_mark \s__keyval_stop
21593 #1
21594 \exp_not:n { ##4 {##2} {##1} }
21595 #2
21596 __keyval_loop_other:nnw {##3} {##4}
21597 }
21598 \cs_new:Npn __keyval_key:nn ##1 ##2
21599 {
21600 __keyval_if_blank:w \s__keyval_mark ##1 \s__keyval_nil \s__keyval_stop __keyval_blank_key_error:w
21601 \s__keyval_mark \s__keyval_stop
21602 #1
21603 \exp_not:n { ##2 {##1} }
21604 #2
21605 __keyval_loop_other:nnw {##2}
21606 }
21607 }
21608 __keyval_tmp:w { } { }
21609 \group_end:

(End of definition for __keyval_pair:nnnn and __keyval_key:nn.)

__keyval_if_empty:w
__keyval_if_blank:w
__keyval_if_recursion_tail:w

All these tests work by gobbling tokens until a certain combination is met, which makes
them pretty fast. The test for a blank argument should be called with an arbitrary token
following the argument. Each of these utilize the fact that the argument will contain a
leading \s__keyval_mark.

21610 \cs_new:Npn __keyval_if_empty:w #1 \s__keyval_mark \s__keyval_stop { }
21611 \cs_new:Npn __keyval_if_blank:w \s__keyval_mark #1 { __keyval_if_empty:w \s__keyval_mark }
21612 \cs_new:Npn __keyval_if_recursion_tail:w \s__keyval_mark #1 \s__keyval_tail { }

(End of definition for __keyval_if_empty:w , __keyval_if_blank:w , and __keyval_if_recursion_-
tail:w.)

__keyval_blank_true:w
__keyval_blank_key_error:w

These macros will be called if the tests above didn’t gobble them, they execute the
branching.

21613 \cs_new:Npn __keyval_blank_true:w \s__keyval_mark \s__keyval_stop __keyval_trim:nN #1 __keyval_key:nn
21614 { __keyval_loop_other:nnw }
21615 \cs_new:Npn __keyval_blank_key_error:w \s__keyval_mark \s__keyval_stop #1 __keyval_loop_other:nnw
21616 {
21617 \bool_if:NTF \l__kernel_keyval_allow_blank_keys_bool
21618 { #1 }
21619 { \msg_expandable_error:nn { keyval } { blank-key-name } }
21620 __keyval_loop_other:nnw
21621 }

(End of definition for __keyval_blank_true:w and __keyval_blank_key_error:w.)
Two messages for the low level parsing system.

977

21622 \msg_new:nnn { keyval } { misplaced-equals-sign }
21623 { Misplaced~’=’~in~key-value~input~\msg_line_context: }
21624 \msg_new:nnn { keyval } { blank-key-name }
21625 { Blank~key~name~in~key-value~input~\msg_line_context: }
21626 \prop_gput:Nnn \g_msg_module_name_prop { keyval } { LaTeX }
21627 \prop_gput:Nnn \g_msg_module_type_prop { keyval } { }

__keyval_trim:nN
__keyval_trim_auxi:w
__keyval_trim_auxii:w
__keyval_trim_auxiii:w
__keyval_trim_auxiv:w

And an adapted version of __tl_trim_spaces:nn which is a bit faster for our use case,
as it can strip the braces at the end. This is pretty much the same concept, so I won’t
comment on it here. The speed gain by using this instead of \tl_trim_spaces_apply:nN
is about 10 % of the total time for \keyval_parse:NNn with one key and one key–value
pair, so I think it’s worth it.

21628 \group_begin:
21629 \cs_set_protected:Npn __keyval_tmp:w #1
21630 {
21631 \cs_new:Npn __keyval_trim:nN ##1
21632 {
21633 __keyval_trim_auxi:w
21634 ##1
21635 \s__keyval_nil
21636 \s__keyval_mark #1 { }
21637 \s__keyval_mark __keyval_trim_auxii:w
21638 __keyval_trim_auxiii:w
21639 #1 \s__keyval_nil
21640 __keyval_trim_auxiv:w
21641 }
21642 \cs_new:Npn __keyval_trim_auxi:w ##1 \s__keyval_mark #1 ##2 \s__keyval_mark ##3
21643 {
21644 ##3
21645 __keyval_trim_auxi:w
21646 \s__keyval_mark
21647 ##2
21648 \s__keyval_mark #1 {##1}
21649 }
21650 \cs_new:Npn __keyval_trim_auxii:w __keyval_trim_auxi:w \s__keyval_mark \s__keyval_mark ##1
21651 {
21652 __keyval_trim_auxiii:w
21653 ##1
21654 }
21655 \cs_new:Npn __keyval_trim_auxiii:w ##1 #1 \s__keyval_nil ##2
21656 {
21657 ##2
21658 ##1 \s__keyval_nil
21659 __keyval_trim_auxiii:w
21660 }

This is the one macro which differs from the original definition.
21661 \cs_new:Npn __keyval_trim_auxiv:w
21662 \s__keyval_mark ##1 \s__keyval_nil
21663 __keyval_trim_auxiii:w \s__keyval_nil __keyval_trim_auxiii:w
21664 ##2
21665 { ##2 { ##1 } }
21666 }
21667 __keyval_tmp:w { ~ }

978

21668 \group_end:

(End of definition for __keyval_trim:nN and others.)

65.2 Constants and variables
21669 ⟨@@=keys⟩

\c__keys_code_root_str
\c__keys_check_root_str

\c__keys_default_root_str
\c__keys_groups_root_str
\c__keys_inherit_root_str

\c__keys_type_root_str

Various storage areas for the different data which make up keys.
21670 \str_const:Nn \c__keys_code_root_str { key~code~>~ }
21671 \str_const:Nn \c__keys_check_root_str { key~check~>~ }
21672 \str_const:Nn \c__keys_default_root_str { key~default~>~ }
21673 \str_const:Nn \c__keys_groups_root_str { key~groups~>~ }
21674 \str_const:Nn \c__keys_inherit_root_str { key~inherit~>~ }
21675 \str_const:Nn \c__keys_type_root_str { key~type~>~ }

(End of definition for \c__keys_code_root_str and others.)

\c__keys_props_root_str The prefix for storing properties.
21676 \str_const:Nn \c__keys_props_root_str { key~prop~>~ }

(End of definition for \c__keys_props_root_str.)

\l_keys_choice_int
\l_keys_choice_tl

Publicly accessible data on which choice is being used when several are generated as a
set.

21677 \int_new:N \l_keys_choice_int
21678 \tl_new:N \l_keys_choice_tl

(End of definition for \l_keys_choice_int and \l_keys_choice_tl. These variables are documented on
page 251.)

\l__keys_groups_clist Used for storing and recovering the list of groups which apply to a key: set as a comma
list but at one point we have to use this for a token list recovery.

21679 \clist_new:N \l__keys_groups_clist

(End of definition for \l__keys_groups_clist.)

\l__keys_inherit_clist For normalisation.
21680 \clist_new:N \l__keys_inherit_clist

(End of definition for \l__keys_inherit_clist.)

\l_keys_key_str The name of a key itself: needed when setting keys.
21681 \str_new:N \l_keys_key_str

(End of definition for \l_keys_key_str. This variable is documented on page 254.)

\l_keys_key_tl The tl version is deprecated but has to be handled manually.
21682 \tl_new:N \l_keys_key_tl

(End of definition for \l_keys_key_tl.)

\l__keys_module_str The module for an entire set of keys.
21683 \str_new:N \l__keys_module_str

(End of definition for \l__keys_module_str.)

979

\l__keys_no_value_bool A marker is needed internally to show if only a key or a key plus a value was seen: this
is recorded here.

21684 \bool_new:N \l__keys_no_value_bool

(End of definition for \l__keys_no_value_bool.)

\l__keys_only_known_bool Used to track if only “known” keys are being set.
21685 \bool_new:N \l__keys_only_known_bool

(End of definition for \l__keys_only_known_bool.)

\l_keys_path_str The “path” of the current key is stored here: this is available to the programmer and so
is public.

21686 \str_new:N \l_keys_path_str

(End of definition for \l_keys_path_str. This variable is documented on page 254.)

\l_keys_path_tl The older version is deprecated but has to be handled manually.
21687 \tl_new:N \l_keys_path_tl

(End of definition for \l_keys_path_tl.)

\l__keys_inherit_str

21688 \str_new:N \l__keys_inherit_str

(End of definition for \l__keys_inherit_str.)

\l__keys_relative_tl The relative path for passing keys back to the user. As this can be explicitly no-value, it
must be a token list.

21689 \tl_new:N \l__keys_relative_tl
21690 \tl_set:Nn \l__keys_relative_tl { \q__keys_no_value }

(End of definition for \l__keys_relative_tl.)

\l__keys_property_str The “property” begin set for a key at definition time is stored here.
21691 \str_new:N \l__keys_property_str

(End of definition for \l__keys_property_str.)

\l__keys_selective_bool
\l__keys_exclude_bool

Two booleans for using key groups: one to indicate that “selective” setting is active, a
second to specify which type (“opt-in” or “opt-out”).

21692 \bool_new:N \l__keys_selective_bool
21693 \bool_new:N \l__keys_exclude_bool

(End of definition for \l__keys_selective_bool and \l__keys_exclude_bool.)

\l__keys_selective_clist The list of key groups being filtered in or out during selective setting.
21694 \clist_new:N \l__keys_selective_clist

(End of definition for \l__keys_selective_clist.)

\l__keys_tmp_clist Scratch space used as a data dump.
21695 \clist_new:N \l__keys_tmp_clist

(End of definition for \l__keys_tmp_clist.)

980

\l__keys_unused_clist Used when setting only some keys to store those left over.
21696 \clist_new:N \l__keys_unused_clist

(End of definition for \l__keys_unused_clist.)

\l_keys_value_tl The value given for a key: may be empty if no value was given.
21697 \tl_new:N \l_keys_value_tl

(End of definition for \l_keys_value_tl. This variable is documented on page 254.)

\l__keys_tmp_bool
\l__keys_tmpa_tl
\l__keys_tmpb_tl

Scratch space.
21698 \bool_new:N \l__keys_tmp_bool
21699 \tl_new:N \l__keys_tmpa_tl
21700 \tl_new:N \l__keys_tmpb_tl

(End of definition for \l__keys_tmp_bool , \l__keys_tmpa_tl , and \l__keys_tmpb_tl.)

\l__keys_precompile_bool
\l__keys_precompile_tl

For digesting keys.
21701 \bool_new:N \l__keys_precompile_bool
21702 \tl_new:N \l__keys_precompile_tl

(End of definition for \l__keys_precompile_bool and \l__keys_precompile_tl.)

\l_keys_usage_load_prop
\l_keys_usage_preamble_prop

Global data for document-level information.
21703 \prop_new:N \l_keys_usage_load_prop
21704 \prop_new:N \l_keys_usage_preamble_prop

(End of definition for \l_keys_usage_load_prop and \l_keys_usage_preamble_prop. These variables
are documented on page 253.)

65.2.1 Internal auxiliaries
\s__keys_nil
\s__keys_mark
\s__keys_stop

Internal scan marks.
21705 \scan_new:N \s__keys_nil
21706 \scan_new:N \s__keys_mark
21707 \scan_new:N \s__keys_stop

(End of definition for \s__keys_nil , \s__keys_mark , and \s__keys_stop.)

\q__keys_no_value Internal quarks.
21708 \quark_new:N \q__keys_no_value

(End of definition for \q__keys_no_value.)

__keys_quark_if_no_value_p:N
__keys_quark_if_no_value:NTF

Branching quark conditional.
21709 __kernel_quark_new_conditional:Nn __keys_quark_if_no_value:N { TF }

(End of definition for __keys_quark_if_no_value:NTF.)

__keys_precompile:n An auxiliary to allow cleaner showing of code.
21710 \cs_new_protected:Npn __keys_precompile:n #1
21711 {
21712 \bool_if:NTF \l__keys_precompile_bool
21713 { \tl_put_right:Nn \l__keys_precompile_tl }
21714 { \use:n }
21715 {#1}
21716 }

981

(End of definition for __keys_precompile:n.)

__keys_cs_undefine:c Local version of \cs_undefine:c to avoid sprinkling \tex_undefined:D everywhere.
21717 \cs_new_protected:Npn __keys_cs_undefine:c #1
21718 {
21719 \if_cs_exist:w #1 \cs_end:
21720 \else:
21721 \use_i:nnnn
21722 \fi:
21723 \cs_set_eq:cN {#1} \tex_undefined:D
21724 }

(End of definition for __keys_cs_undefine:c.)

65.3 The key defining mechanism
\keys_define:nn
\keys_define:ne
\keys_define:nx

__keys_define:nnn
__keys_define:onn

The public function for definitions is just a wrapper for the lower level mechanism, more
or less. The outer function is designed to keep a track of the current module, to allow
safe nesting. The module is set removing any leading / (which is not needed here).

21725 \cs_new_protected:Npn \keys_define:nn
21726 { __keys_define:onn \l__keys_module_str }
21727 \cs_generate_variant:Nn \keys_define:nn { ne , nx }
21728 \cs_new_protected:Npn __keys_define:nnn #1#2#3
21729 {
21730 \str_set:Ne \l__keys_module_str { __keys_trim_spaces:n {#2} }
21731 \keyval_parse:NNn __keys_define:n __keys_define:nn {#3}
21732 \str_set:Nn \l__keys_module_str {#1}
21733 }
21734 \cs_generate_variant:Nn __keys_define:nnn { o }

(End of definition for \keys_define:nn and __keys_define:nnn. This function is documented on page
245.)

__keys_define:n
__keys_define:nn

__keys_define_aux:nn

The outer functions here record whether a value was given and then converge on a
common internal mechanism. There is first a search for a property in the current key
name, then a check to make sure it is known before the code hands off to the next step.

21735 \cs_new_protected:Npn __keys_define:n #1
21736 {
21737 \bool_set_true:N \l__keys_no_value_bool
21738 __keys_define_aux:nn {#1} { }
21739 }
21740 \cs_new_protected:Npn __keys_define:nn #1#2
21741 {
21742 \bool_set_false:N \l__keys_no_value_bool
21743 __keys_define_aux:nn {#1} {#2}
21744 }
21745 \cs_new_protected:Npn __keys_define_aux:nn #1#2
21746 {
21747 __keys_property_find:n {#1}
21748 \cs_if_exist:cTF { \c__keys_props_root_str \l__keys_property_str }
21749 { __keys_define_code:n {#2} }
21750 {
21751 \str_if_empty:NF \l__keys_property_str

982

21752 {
21753 \msg_error:nnee { keys } { property-unknown }
21754 \l__keys_property_str \l_keys_path_str
21755 }
21756 }
21757 }

(End of definition for __keys_define:n , __keys_define:nn , and __keys_define_aux:nn.)

__keys_property_find:n
__keys_property_find_auxi:w

__keys_property_find_auxii:w
__keys_property_find_auxiii:w
__keys_property_find_auxiv:w

__keys_property_find_err:w

Searching for a property means finding the last . in the input, and storing the text before
and after it. Everything is first turned into strings, so there is no problem using \cs_-
set_nopar:Npe instead of \str_set:Ne to set \l_keys_path_str. To gain further speed,
brace tricks are used and __keys_property_find_auxiv:w is defined as expandable.
Since spaces will already be trimmed from the module we can omit it from the argument
to __keys_trim_spaces:n.

21758 \cs_new_protected:Npn __keys_property_find:n #1
21759 {
21760 \exp_after:wN __keys_property_find_auxi:w \tl_to_str:n {#1}
21761 \s__keys_nil __keys_property_find_auxii:w
21762 . \s__keys_nil __keys_property_find_err:w
21763 }
21764 \cs_new:Npn __keys_property_find_auxi:w #1 . #2 \s__keys_nil #3
21765 {
21766 #3 #1 \s__keys_mark #2 \s__keys_nil #3
21767 }
21768 \cs_new_protected:Npn __keys_property_find_auxii:w
21769 #1 \s__keys_mark #2 \s__keys_nil __keys_property_find_auxii:w . \s__keys_nil
21770 __keys_property_find_err:w
21771 {
21772 \cs_set_nopar:Npe \l_keys_path_str
21773 {
21774 \str_if_empty:NF \l__keys_module_str { \l__keys_module_str / }
21775 \exp_after:wN __keys_trim_spaces:n \tex_expanded:D {{
21776 #1
21777 \if_false: }}} \fi:
21778 __keys_property_find_auxi:w #2 \s__keys_nil __keys_property_find_auxiii:w
21779 . \s__keys_nil __keys_property_find_auxiv:w
21780 }
21781 \cs_new:Npn __keys_property_find_auxiii:w #1 \s__keys_mark #2 . #3 \s__keys_nil #4
21782 {
21783 . #1 #4 #2 \s__keys_mark #3 \s__keys_nil #4
21784 }
21785 \cs_new:Npn __keys_property_find_auxiv:w
21786 #1 \s__keys_nil __keys_property_find_auxiii:w
21787 \s__keys_mark \s__keys_nil __keys_property_find_auxiv:w
21788 {
21789 \if_false: {{{ \fi: }}}
21790 \cs_set_nopar:Npe \l__keys_property_str { . #1 }
21791 \tl_set_eq:NN \l_keys_path_tl \l_keys_path_str
21792 }
21793 \cs_new_protected:Npn __keys_property_find_err:w
21794 #1 \s__keys_nil #2 __keys_property_find_err:w
21795 {
21796 \str_clear:N \l__keys_property_str

983

21797 \msg_error:nnn { keys } { no-property } {#1}
21798 }

(End of definition for __keys_property_find:n and others.)

__keys_define_code:n
__keys_define_code:nnn

__keys_define_code:w

Two possible cases. If there is a value for the key, then just use the function. If not,
then a check to make sure there is no need for a value with the property. If there should
be one then complain, otherwise execute it. For a LATEX 2ε property like .code which
doesn’t contain a :, treat it as having arity 1 and pass the (empty) value to it.

21799 \cs_new_protected:Npn __keys_define_code:n #1
21800 {
21801 \bool_if:NTF \l__keys_no_value_bool
21802 {
21803 __keys_define_code:nnn
21804 { \use:c { \c__keys_props_root_str \l__keys_property_str } {#1} }
21805 { \use:c { \c__keys_props_root_str \l__keys_property_str } }
21806 {
21807 \msg_error:nnee { keys } { property-requires-value }
21808 \l__keys_property_str \l_keys_path_str
21809 }
21810 }
21811 { \use:c { \c__keys_props_root_str \l__keys_property_str } {#1} }
21812 }
21813 \cs_new:Npe __keys_define_code:nnn
21814 {
21815 \exp_not:N \exp_after:wN \exp_not:N __keys_define_code:w
21816 \exp_not:N \l__keys_property_str
21817 \c_colon_str \c_colon_str
21818 \exp_not:N \s__keys_stop
21819 }
21820 \use:e
21821 {
21822 \cs_new:Npn \exp_not:N __keys_define_code:w
21823 #1 \c_colon_str #2 \c_colon_str #3 \exp_not:N \s__keys_stop
21824 }
21825 {
21826 \tl_if_empty:nTF {#3}
21827 { \use_i:nnn }
21828 {
21829 \tl_if_empty:nTF {#2}
21830 { \use_ii:nnn }
21831 { \use_iii:nnn }
21832 }
21833 }

(End of definition for __keys_define_code:n , __keys_define_code:nnn , and __keys_define_-
code:w.)

65.4 Turning properties into actions
__keys_bool_set:Nn
__keys_bool_set:cn

__keys_bool_set_inverse:Nn
__keys_bool_set_inverse:cn

__keys_bool_set:Nnnn

Boolean keys are really just choices, but all done by hand. The second argument here is
the scope: either empty or g for global.

21834 \cs_new_protected:Npn __keys_bool_set:Nn #1#2

984

21835 { __keys_bool_set:Nnnn #1 {#2} { true } { false } }
21836 \cs_generate_variant:Nn __keys_bool_set:Nn { c }
21837 \cs_new_protected:Npn __keys_bool_set_inverse:Nn #1#2
21838 { __keys_bool_set:Nnnn #1 {#2} { false } { true } }
21839 \cs_generate_variant:Nn __keys_bool_set_inverse:Nn { c }
21840 \cs_new_protected:Npn __keys_bool_set:Nnnn #1#2#3#4
21841 {
21842 \bool_if_exist:NF #1 { \bool_new:N #1 }
21843 __keys_choice_make:
21844 __keys_cmd_set:ne { \l_keys_path_str / true }
21845 { \exp_not:c { bool_ #2 set_ #3 :N } \exp_not:N #1 }
21846 __keys_cmd_set:ne { \l_keys_path_str / false }
21847 { \exp_not:c { bool_ #2 set_ #4 :N } \exp_not:N #1 }
21848 __keys_cmd_set_direct:nn { \l_keys_path_str / unknown }
21849 {
21850 \msg_error:nne { keys } { boolean-values-only }
21851 \l_keys_path_str
21852 }
21853 __keys_default_set:n { true }
21854 }
21855 \cs_generate_variant:Nn __keys_bool_set:Nn { c }

(End of definition for __keys_bool_set:Nn , __keys_bool_set_inverse:Nn , and __keys_bool_-
set:Nnnn.)

__keys_choice_make:
__keys_multichoice_make:

__keys_choice_make:N
__keys_choice_make_aux:N

To make a choice from a key, two steps: set the code, and set the unknown key. As
multichoices and choices are essentially the same bar one function, the code is given
together.

21856 \cs_new_protected:Npn __keys_choice_make:
21857 { __keys_choice_make:N __keys_choice_find:n }
21858 \cs_new_protected:Npn __keys_multichoice_make:
21859 { __keys_choice_make:N __keys_multichoice_find:n }
21860 \cs_new_protected:Npn __keys_choice_make:N #1
21861 {
21862 \cs_if_exist:cTF
21863 { \c__keys_type_root_str __keys_parent:o \l_keys_path_str }
21864 {
21865 \str_if_eq:vnTF
21866 { \c__keys_type_root_str __keys_parent:o \l_keys_path_str }
21867 { choice }
21868 {
21869 \msg_error:nnee { keys } { nested-choice-key }
21870 \l_keys_path_tl { __keys_parent:o \l_keys_path_str }
21871 }
21872 { __keys_choice_make_aux:N #1 }
21873 }
21874 { __keys_choice_make_aux:N #1 }
21875 }
21876 \cs_new_protected:Npn __keys_choice_make_aux:N #1
21877 {
21878 \cs_set_nopar:cpn { \c__keys_type_root_str \l_keys_path_str }
21879 { choice }
21880 __keys_cmd_set_direct:nn \l_keys_path_str { #1 {##1} }
21881 __keys_cmd_set_direct:nn { \l_keys_path_str / unknown }

985

21882 {
21883 \msg_error:nnee { keys } { choice-unknown }
21884 \l_keys_path_str {##1}
21885 }
21886 }

(End of definition for __keys_choice_make: and others.)

__keys_choices_make:nn
__keys_multichoices_make:nn

__keys_choices_make:Nnn

Auto-generating choices means setting up the root key as a choice, then defining each
choice in turn.

21887 \cs_new_protected:Npn __keys_choices_make:nn
21888 { __keys_choices_make:Nnn __keys_choice_make: }
21889 \cs_new_protected:Npn __keys_multichoices_make:nn
21890 { __keys_choices_make:Nnn __keys_multichoice_make: }
21891 \cs_new_protected:Npn __keys_choices_make:Nnn #1#2#3
21892 {
21893 #1
21894 \int_zero:N \l_keys_choice_int
21895 \clist_map_inline:nn {#2}
21896 {
21897 \int_incr:N \l_keys_choice_int
21898 __keys_cmd_set:ne
21899 { \l_keys_path_str / __keys_trim_spaces:n {##1} }
21900 {
21901 \tl_set:Nn \exp_not:N \l_keys_choice_tl {##1}
21902 \int_set:Nn \exp_not:N \l_keys_choice_int
21903 { \int_use:N \l_keys_choice_int }
21904 \exp_not:n {#3}
21905 }
21906 }
21907 }

(End of definition for __keys_choices_make:nn , __keys_multichoices_make:nn , and __keys_-
choices_make:Nnn.)

__keys_cmd_set:nn
__keys_cmd_set:Vn
__keys_cmd_set:ne
__keys_cmd_set:Vo

__keys_cmd_set_direct:nn

Setting the code for a key first logs if appropriate that we are defining a new key, then
saves the code.

21908 \cs_new_protected:Npn __keys_cmd_set:nn #1#2
21909 { __keys_cmd_set_direct:nn {#1} { __keys_precompile:n {#2} } }
21910 \cs_generate_variant:Nn __keys_cmd_set:nn { ne , Vn , Vo }
21911 \cs_new_protected:Npn __keys_cmd_set_direct:nn #1#2
21912 { \cs_set_protected:cpn { \c__keys_code_root_str #1 } ##1 {#2} }

(End of definition for __keys_cmd_set:nn and __keys_cmd_set_direct:nn.)

__keys_cs_set:NNpn
__keys_cs_set:Ncpn

Creating control sequences is a bit more tricky than other cases as we need to pick up
the p argument. To make the internals look clearer, the trailing n argument here is just
for appearance.

21913 \cs_new_protected:Npn __keys_cs_set:NNpn #1#2#3#
21914 {
21915 \cs_set_protected:cpe { \c__keys_code_root_str \l_keys_path_str } ##1
21916 {
21917 __keys_precompile:n
21918 { #1 \exp_not:N #2 \exp_not:n {#3} {##1} }

986

21919 }
21920 \use_none:n
21921 }
21922 \cs_generate_variant:Nn __keys_cs_set:NNpn { Nc }

(End of definition for __keys_cs_set:NNpn.)

__keys_default_set:n Setting a default value is easy. These are stored using \cs_set_nopar:cpe as this avoids
any worries about whether a token list exists.

21923 \cs_new_protected:Npn __keys_default_set:n #1
21924 {
21925 \tl_if_empty:nTF {#1}
21926 {
21927 __keys_cs_undefine:c
21928 { \c__keys_default_root_str \l_keys_path_str }
21929 }
21930 {
21931 \cs_set_nopar:cpe
21932 { \c__keys_default_root_str \l_keys_path_str }
21933 { \exp_not:n {#1} }
21934 __keys_value_requirement:nn { required } { false }
21935 }
21936 }

(End of definition for __keys_default_set:n.)

__keys_groups_set:n Assigning a key to one or more groups uses comma lists. As the list of groups only exists
if there is anything to do, the setting is done using a scratch list. For the usual grouping
reasons we use the low-level approach to undefining a list. We also use the low-level
approach for the other case to avoid tripping up the check-declarations code.

21937 \cs_new_protected:Npn __keys_groups_set:n #1
21938 {
21939 \clist_set:Ne \l__keys_groups_clist { \tl_to_str:n {#1} }
21940 \clist_if_empty:NTF \l__keys_groups_clist
21941 {
21942 __keys_cs_undefine:c
21943 { \c__keys_groups_root_str \l_keys_path_str }
21944 }
21945 {
21946 \cs_set_eq:cN { \c__keys_groups_root_str \l_keys_path_str }
21947 \l__keys_groups_clist
21948 }
21949 }

(End of definition for __keys_groups_set:n.)

__keys_inherit:n Inheritance means ignoring anything already said about the key: zap the lot and set up.
21950 \cs_new_protected:Npn __keys_inherit:n #1
21951 {
21952 __keys_undefine:
21953 \clist_set:Nn \l__keys_inherit_clist {#1}
21954 \cs_set_eq:cN { \c__keys_inherit_root_str \l_keys_path_str }
21955 \l__keys_inherit_clist
21956 }

987

(End of definition for __keys_inherit:n.)

__keys_initialise:n A set up for initialisation: just run the code if it exists. We need to set the key string
here, using the deprecated tl var as a piece of scratch space.

21957 \cs_new_protected:Npn __keys_initialise:n #1
21958 {
21959 \cs_if_exist:cTF
21960 { \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
21961 { __keys_execute_inherit: }
21962 {
21963 \str_clear:N \l__keys_inherit_str
21964 \cs_if_exist:cT { \c__keys_code_root_str \l_keys_path_str }
21965 {
21966 \exp_after:wN __keys_find_key_module:wNN
21967 \l_keys_path_str \s__keys_stop
21968 \l_keys_key_tl \l_keys_key_str
21969 \tl_set_eq:NN \l_keys_key_tl \l_keys_key_str
21970 \tl_set:Nn \l_keys_value_tl {#1}
21971 __keys_execute:no \l_keys_path_str \l_keys_value_tl
21972 }
21973 }
21974 }

(End of definition for __keys_initialise:n.)

__keys_legacy_if_set:nn
__keys_legacy_if_inverse:nn

__keys_legacy_if_inverse:nnnn

Much the same as expl3 booleans, except we assume that the switch exists.
21975 \cs_new_protected:Npn __keys_legacy_if_set:nn #1#2
21976 { __keys_legacy_if_set:nnnn {#1} {#2} { true } { false } }
21977 \cs_new_protected:Npn __keys_legacy_if_set_inverse:nn #1#2
21978 { __keys_legacy_if_set:nnnn {#1} {#2} { false } { true } }
21979 \cs_new_protected:Npn __keys_legacy_if_set:nnnn #1#2#3#4
21980 {
21981 __keys_choice_make:
21982 __keys_cmd_set:ne { \l_keys_path_str / true }
21983 { \exp_not:c { legacy_if_#2 set_ #3 :n } { \exp_not:n {#1} } }
21984 __keys_cmd_set:ne { \l_keys_path_str / false }
21985 { \exp_not:c { legacy_if_#2 set_ #4 :n } { \exp_not:n {#1} } }
21986 __keys_cmd_set:nn { \l_keys_path_str / unknown }
21987 {
21988 \msg_error:nne { keys } { boolean-values-only }
21989 \l_keys_path_str
21990 }
21991 __keys_default_set:n { true }
21992 \cs_if_exist:cF { if#1 }
21993 {
21994 \cs:w newif \exp_after:wN \cs_end:
21995 \cs:w if#1 \cs_end:
21996 }
21997 }

(End of definition for __keys_legacy_if_set:nn , __keys_legacy_if_inverse:nn , and __keys_-
legacy_if_inverse:nnnn.)

988

__keys_meta_make:n
__keys_meta_make:nn

To create a meta-key, simply set up to pass data through. The internal function is used
here as a meta key should respect the prevailing filtering, etc.

21998 \cs_new_protected:Npn __keys_meta_make:n #1
21999 {
22000 \exp_args:NVo __keys_cmd_set_direct:nn \l_keys_path_str
22001 {
22002 \exp_after:wN __keys_set:nn \exp_after:wN
22003 { \l__keys_module_str } {#1}
22004 }
22005 }
22006 \cs_new_protected:Npn __keys_meta_make:nn #1#2
22007 {
22008 \exp_args:NV __keys_cmd_set_direct:nn
22009 \l_keys_path_str { __keys_set:nn {#1} {#2} }
22010 }

(End of definition for __keys_meta_make:n and __keys_meta_make:nn.)

__keys_prop_put:Nn
__keys_prop_put:cn

Much the same as other variables, but needs a dedicated auxiliary.
22011 \cs_new_protected:Npn __keys_prop_put:Nn #1#2
22012 {
22013 \prop_if_exist:NF #1 { \prop_new:N #1 }
22014 \exp_after:wN __keys_find_key_module:wNN \l_keys_path_str \s__keys_stop
22015 \l__keys_tmpa_tl \l__keys_tmpb_tl
22016 __keys_cmd_set:ne \l_keys_path_str
22017 {
22018 \exp_not:c { prop_ #2 put:Nnn }
22019 \exp_not:N #1
22020 { \l__keys_tmpb_tl }
22021 \exp_not:n { {##1} }
22022 }
22023 }
22024 \cs_generate_variant:Nn __keys_prop_put:Nn { c }

(End of definition for __keys_prop_put:Nn.)

__keys_undefine: Undefining a key has to be done without \cs_undefine:c as that function acts globally.
22025 \cs_new_protected:Npn __keys_undefine:
22026 {
22027 \clist_map_inline:nn
22028 { code , default , groups , inherit , type , check }
22029 {
22030 __keys_cs_undefine:c
22031 { \tl_use:c { c__keys_ ##1 _root_str } \l_keys_path_str }
22032 }
22033 }

(End of definition for __keys_undefine:.)

__keys_value_requirement:nn
__keys_check_forbidden:
__keys_check_required:

Validating key input is done using a second function which runs before the main key
code. Setting that up means setting it equal to a generic stub which does the check. This
approach makes the lookup very fast at the cost of one additional csname per key that
needs it. The cleanup here has to know the structure of the following code.

22034 \cs_new_protected:Npn __keys_value_requirement:nn #1#2

989

22035 {
22036 \str_case:nnF {#2}
22037 {
22038 { true }
22039 {
22040 \cs_set_eq:cc
22041 { \c__keys_check_root_str \l_keys_path_str }
22042 { __keys_check_ #1 : }
22043 }
22044 { false }
22045 {
22046 \cs_if_eq:ccT
22047 { \c__keys_check_root_str \l_keys_path_str }
22048 { __keys_check_ #1 : }
22049 {
22050 __keys_cs_undefine:c
22051 { \c__keys_check_root_str \l_keys_path_str }
22052 }
22053 }
22054 }
22055 {
22056 \msg_error:nne { keys }
22057 { boolean-values-only }
22058 { .value_ #1 :n }
22059 }
22060 }
22061 \cs_new_protected:Npn __keys_check_forbidden:
22062 {
22063 \bool_if:NF \l__keys_no_value_bool
22064 {
22065 \msg_error:nnee { keys } { value-forbidden }
22066 \l_keys_path_str \l_keys_value_tl
22067 \use_none:nnn
22068 }
22069 }
22070 \cs_new_protected:Npn __keys_check_required:
22071 {
22072 \bool_if:NT \l__keys_no_value_bool
22073 {
22074 \msg_error:nne { keys } { value-required }
22075 \l_keys_path_str
22076 \use_none:nnn
22077 }
22078 }

(End of definition for __keys_value_requirement:nn , __keys_check_forbidden: , and __keys_-
check_required:.)

__keys_usage:n
__keys_usage:NN
__keys_usage:w

Save the relevant data.
22079 \cs_new_protected:Npn __keys_usage:n #1
22080 {
22081 \str_case:nnF {#1}
22082 {
22083 { general }

990

22084 {
22085 __keys_usage:NN \l_keys_usage_load_prop
22086 \c_false_bool
22087 __keys_usage:NN \l_keys_usage_preamble_prop
22088 \c_false_bool
22089 }
22090 { load }
22091 {
22092 __keys_usage:NN \l_keys_usage_load_prop
22093 \c_true_bool
22094 __keys_usage:NN \l_keys_usage_preamble_prop
22095 \c_false_bool
22096 }
22097 { preamble }
22098 {
22099 __keys_usage:NN \l_keys_usage_load_prop
22100 \c_false_bool
22101 __keys_usage:NN \l_keys_usage_preamble_prop
22102 \c_true_bool
22103 }
22104 }
22105 {
22106 \msg_error:nnnn { keys }
22107 { choice-unknown }
22108 { .usage:n }
22109 {#1}
22110 }
22111 }
22112 \cs_new_protected:Npn __keys_usage:NN #1#2
22113 {
22114 \prop_get:NVNF #1 \l__keys_module_str \l__keys_tmpa_tl
22115 { \tl_clear:N \l__keys_tmpa_tl }
22116 \tl_set:Ne \l__keys_tmpb_tl
22117 { \exp_after:wN __keys_usage:w \l_keys_path_str \s__keys_stop }
22118 \bool_if:NTF #2
22119 { \clist_put_right:NV \l__keys_tmpa_tl \l__keys_tmpb_tl }
22120 { \clist_remove_all:NV \l__keys_tmpa_tl \l__keys_tmpb_tl }
22121 \prop_put:NVV #1 \l__keys_module_str
22122 \l__keys_tmpa_tl
22123 }
22124 \cs_new:Npn __keys_usage:w #1 / #2 \s__keys_stop {#2}

(End of definition for __keys_usage:n , __keys_usage:NN , and __keys_usage:w.)

__keys_variable_set:NnnN
__keys_variable_set:cnnN

__keys_variable_set_required:NnnN
__keys_variable_set_required:cnnN

Setting a variable takes the type and scope separately so that it is easy to make a new
variable if needed.

22125 \cs_new_protected:Npn __keys_variable_set:NnnN #1#2#3#4
22126 {
22127 \use:c { #2_if_exist:NF } #1 { \use:c { #2 _new:N } #1 }
22128 __keys_cmd_set:ne \l_keys_path_str
22129 {
22130 \exp_not:c { #2 _ #3 set:N #4 }
22131 \exp_not:N #1
22132 \exp_not:n { {##1} }

991

22133 }
22134 }
22135 \cs_generate_variant:Nn __keys_variable_set:NnnN { c }
22136 \cs_new_protected:Npn __keys_variable_set_required:NnnN #1#2#3#4
22137 {
22138 __keys_variable_set:NnnN #1 {#2} {#3} #4
22139 __keys_value_requirement:nn { required } { true }
22140 }
22141 \cs_generate_variant:Nn __keys_variable_set_required:NnnN { c }

(End of definition for __keys_variable_set:NnnN and __keys_variable_set_required:NnnN.)

65.5 Creating key properties
The key property functions are all wrappers for internal functions, meaning that things
stay readable and can also be altered later on.

Importantly, while key properties have “normal” argument specs, the underlying
code always supplies one braced argument to these. As such, argument expansion is
handled by hand rather than using the standard tools. This shows up particularly for
the two-argument properties, where things would otherwise go badly wrong.

.bool_set:N

.bool_set:c
.bool_gset:N
.bool_gset:c

One function for this.
22142 \cs_new_protected:cpn { \c__keys_props_root_str .bool_set:N } #1
22143 { __keys_bool_set:Nn #1 { } }
22144 \cs_new_protected:cpn { \c__keys_props_root_str .bool_set:c } #1
22145 { __keys_bool_set:cn {#1} { } }
22146 \cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:N } #1
22147 { __keys_bool_set:Nn #1 { g } }
22148 \cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:c } #1
22149 { __keys_bool_set:cn {#1} { g } }

(End of definition for .bool_set:N and .bool_gset:N. These functions are documented on page 246.)

.bool_set_inverse:N

.bool_set_inverse:c
.bool_gset_inverse:N
.bool_gset_inverse:c

One function for this.
22150 \cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:N } #1
22151 { __keys_bool_set_inverse:Nn #1 { } }
22152 \cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:c } #1
22153 { __keys_bool_set_inverse:cn {#1} { } }
22154 \cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:N } #1
22155 { __keys_bool_set_inverse:Nn #1 { g } }
22156 \cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:c } #1
22157 { __keys_bool_set_inverse:cn {#1} { g } }

(End of definition for .bool_set_inverse:N and .bool_gset_inverse:N. These functions are docu-
mented on page 246.)

.choice: Making a choice is handled internally, as it is also needed by .generate_choices:n.
22158 \cs_new_protected:cpn { \c__keys_props_root_str .choice: }
22159 { __keys_choice_make: }

(End of definition for .choice:. This function is documented on page 246.)

992

.choices:nn

.choices:Vn

.choices:en

.choices:on

.choices:xn

For auto-generation of a series of mutually-exclusive choices. Here, #1 consists of two
separate arguments, hence the slightly odd-looking implementation.

22160 \cs_new_protected:cpn { \c__keys_props_root_str .choices:nn } #1
22161 { __keys_choices_make:nn #1 }
22162 \cs_new_protected:cpn { \c__keys_props_root_str .choices:Vn } #1
22163 { \exp_args:NV __keys_choices_make:nn #1 }
22164 \cs_new_protected:cpn { \c__keys_props_root_str .choices:en } #1
22165 { \exp_args:Ne __keys_choices_make:nn #1 }
22166 \cs_new_protected:cpn { \c__keys_props_root_str .choices:on } #1
22167 { \exp_args:No __keys_choices_make:nn #1 }
22168 \cs_new_protected:cpn { \c__keys_props_root_str .choices:xn } #1
22169 { \exp_args:Nx __keys_choices_make:nn #1 }

(End of definition for .choices:nn. This function is documented on page 246.)

.code:n Creating code is simply a case of passing through to the underlying set function.
22170 \cs_new_protected:cpn { \c__keys_props_root_str .code:n } #1
22171 { __keys_cmd_set:nn \l_keys_path_str {#1} }

(End of definition for .code:n. This function is documented on page 247.)

.clist_set:N

.clist_set:c
.clist_gset:N
.clist_gset:c

22172 \cs_new_protected:cpn { \c__keys_props_root_str .clist_set:N } #1
22173 { __keys_variable_set:NnnN #1 { clist } { } n }
22174 \cs_new_protected:cpn { \c__keys_props_root_str .clist_set:c } #1
22175 { __keys_variable_set:cnnN {#1} { clist } { } n }
22176 \cs_new_protected:cpn { \c__keys_props_root_str .clist_gset:N } #1
22177 { __keys_variable_set:NnnN #1 { clist } { g } n }
22178 \cs_new_protected:cpn { \c__keys_props_root_str .clist_gset:c } #1
22179 { __keys_variable_set:cnnN {#1} { clist } { g } n }

(End of definition for .clist_set:N and .clist_gset:N. These functions are documented on page 246.)

.cs_set:Np

.cs_set:cp
.cs_set_protected:Np
.cs_set_protected:cp

.cs_gset:Np

.cs_gset:cp
.cs_gset_protected:Np
.cs_gset_protected:cp

22180 \cs_new_protected:cpn { \c__keys_props_root_str .cs_set:Np } #1
22181 { __keys_cs_set:NNpn \cs_set:Npn #1 { } }
22182 \cs_new_protected:cpn { \c__keys_props_root_str .cs_set:cp } #1
22183 { __keys_cs_set:Ncpn \cs_set:Npn #1 { } }
22184 \cs_new_protected:cpn { \c__keys_props_root_str .cs_set_protected:Np } #1
22185 { __keys_cs_set:NNpn \cs_set_protected:Npn #1 { } }
22186 \cs_new_protected:cpn { \c__keys_props_root_str .cs_set_protected:cp } #1
22187 { __keys_cs_set:Ncpn \cs_set_protected:Npn #1 { } }
22188 \cs_new_protected:cpn { \c__keys_props_root_str .cs_gset:Np } #1
22189 { __keys_cs_set:NNpn \cs_gset:Npn #1 { } }
22190 \cs_new_protected:cpn { \c__keys_props_root_str .cs_gset:cp } #1
22191 { __keys_cs_set:Ncpn \cs_gset:Npn #1 { } }
22192 \cs_new_protected:cpn { \c__keys_props_root_str .cs_gset_protected:Np } #1
22193 { __keys_cs_set:NNpn \cs_gset_protected:Npn #1 { } }
22194 \cs_new_protected:cpn { \c__keys_props_root_str .cs_gset_protected:cp } #1
22195 { __keys_cs_set:Ncpn \cs_gset_protected:Npn #1 { } }

(End of definition for .cs_set:Np and others. These functions are documented on page 247.)

993

.default:n

.default:V

.default:e

.default:o

.default:x

Expansion is left to the internal functions.
22196 \cs_new_protected:cpn { \c__keys_props_root_str .default:n } #1
22197 { __keys_default_set:n {#1} }
22198 \cs_new_protected:cpn { \c__keys_props_root_str .default:V } #1
22199 { \exp_args:NV __keys_default_set:n #1 }
22200 \cs_new_protected:cpn { \c__keys_props_root_str .default:e } #1
22201 { \exp_args:Ne __keys_default_set:n {#1} }
22202 \cs_new_protected:cpn { \c__keys_props_root_str .default:o } #1
22203 { \exp_args:No __keys_default_set:n {#1} }
22204 \cs_new_protected:cpn { \c__keys_props_root_str .default:x } #1
22205 { \exp_args:Nx __keys_default_set:n {#1} }

(End of definition for .default:n. This function is documented on page 247.)

.dim_set:N

.dim_set:c
.dim_gset:N
.dim_gset:c

Setting a variable is very easy: just pass the data along.
22206 \cs_new_protected:cpn { \c__keys_props_root_str .dim_set:N } #1
22207 { __keys_variable_set_required:NnnN #1 { dim } { } n }
22208 \cs_new_protected:cpn { \c__keys_props_root_str .dim_set:c } #1
22209 { __keys_variable_set_required:cnnN {#1} { dim } { } n }
22210 \cs_new_protected:cpn { \c__keys_props_root_str .dim_gset:N } #1
22211 { __keys_variable_set_required:NnnN #1 { dim } { g } n }
22212 \cs_new_protected:cpn { \c__keys_props_root_str .dim_gset:c } #1
22213 { __keys_variable_set_required:cnnN {#1} { dim } { g } n }

(End of definition for .dim_set:N and .dim_gset:N. These functions are documented on page 247.)

.fp_set:N

.fp_set:c
.fp_gset:N
.fp_gset:c

Setting a variable is very easy: just pass the data along.
22214 \cs_new_protected:cpn { \c__keys_props_root_str .fp_set:N } #1
22215 { __keys_variable_set_required:NnnN #1 { fp } { } n }
22216 \cs_new_protected:cpn { \c__keys_props_root_str .fp_set:c } #1
22217 { __keys_variable_set_required:cnnN {#1} { fp } { } n }
22218 \cs_new_protected:cpn { \c__keys_props_root_str .fp_gset:N } #1
22219 { __keys_variable_set_required:NnnN #1 { fp } { g } n }
22220 \cs_new_protected:cpn { \c__keys_props_root_str .fp_gset:c } #1
22221 { __keys_variable_set_required:cnnN {#1} { fp } { g } n }

(End of definition for .fp_set:N and .fp_gset:N. These functions are documented on page 247.)

.groups:n A single property to create groups of keys.
22222 \cs_new_protected:cpn { \c__keys_props_root_str .groups:n } #1
22223 { __keys_groups_set:n {#1} }

(End of definition for .groups:n. This function is documented on page 248.)

.inherit:n Nothing complex: only one variant at the moment!
22224 \cs_new_protected:cpn { \c__keys_props_root_str .inherit:n } #1
22225 { __keys_inherit:n {#1} }

(End of definition for .inherit:n. This function is documented on page 248.)

994

.initial:n

.initial:V

.initial:e

.initial:o

.initial:x

The standard hand-off approach.
22226 \cs_new_protected:cpn { \c__keys_props_root_str .initial:n } #1
22227 { __keys_initialise:n {#1} }
22228 \cs_new_protected:cpn { \c__keys_props_root_str .initial:V } #1
22229 { \exp_args:NV __keys_initialise:n #1 }
22230 \cs_new_protected:cpn { \c__keys_props_root_str .initial:e } #1
22231 { \exp_args:Ne __keys_initialise:n {#1} }
22232 \cs_new_protected:cpn { \c__keys_props_root_str .initial:o } #1
22233 { \exp_args:No __keys_initialise:n {#1} }
22234 \cs_new_protected:cpn { \c__keys_props_root_str .initial:x } #1
22235 { \exp_args:Nx __keys_initialise:n {#1} }

(End of definition for .initial:n. This function is documented on page 248.)

.int_set:N

.int_set:c
.int_gset:N
.int_gset:c

Setting a variable is very easy: just pass the data along.
22236 \cs_new_protected:cpn { \c__keys_props_root_str .int_set:N } #1
22237 { __keys_variable_set_required:NnnN #1 { int } { } n }
22238 \cs_new_protected:cpn { \c__keys_props_root_str .int_set:c } #1
22239 { __keys_variable_set_required:cnnN {#1} { int } { } n }
22240 \cs_new_protected:cpn { \c__keys_props_root_str .int_gset:N } #1
22241 { __keys_variable_set_required:NnnN #1 { int } { g } n }
22242 \cs_new_protected:cpn { \c__keys_props_root_str .int_gset:c } #1
22243 { __keys_variable_set_required:cnnN {#1} { int } { g } n }

(End of definition for .int_set:N and .int_gset:N. These functions are documented on page 248.)

.legacy_if_set:n
.legacy_if_gset:n

.legacy_if_set_inverse:n
.legacy_if_gset_inverse:n

22244 \cs_new_protected:cpn { \c__keys_props_root_str .legacy_if_set:n } #1
22245 { __keys_legacy_if_set:nn {#1} { } }
22246 \cs_new_protected:cpn { \c__keys_props_root_str .legacy_if_gset:n } #1
22247 { __keys_legacy_if_set:nn {#1} { g } }
22248 \cs_new_protected:cpn { \c__keys_props_root_str .legacy_if_set_inverse:n } #1
22249 { __keys_legacy_if_set_inverse:nn {#1} { } }
22250 \cs_new_protected:cpn { \c__keys_props_root_str .legacy_if_gset_inverse:n } #1
22251 { __keys_legacy_if_set_inverse:nn {#1} { g } }

(End of definition for .legacy_if_set:n and others. These functions are documented on page 248.)

.meta:n Making a meta is handled internally.
22252 \cs_new_protected:cpn { \c__keys_props_root_str .meta:n } #1
22253 { __keys_meta_make:n {#1} }

(End of definition for .meta:n. This function is documented on page 248.)

.meta:nn Meta with path: potentially lots of variants, but for the moment no so many defined.
22254 \cs_new_protected:cpn { \c__keys_props_root_str .meta:nn } #1
22255 { __keys_meta_make:nn #1 }

(End of definition for .meta:nn. This function is documented on page 249.)

995

.multichoice:
.multichoices:nn
.multichoices:Vn
.multichoices:en
.multichoices:on
.multichoices:xn

The same idea as .choice: and .choices:nn, but where more than one choice is allowed.
22256 \cs_new_protected:cpn { \c__keys_props_root_str .multichoice: }
22257 { __keys_multichoice_make: }
22258 \cs_new_protected:cpn { \c__keys_props_root_str .multichoices:nn } #1
22259 { __keys_multichoices_make:nn #1 }
22260 \cs_new_protected:cpn { \c__keys_props_root_str .multichoices:Vn } #1
22261 { \exp_args:NV __keys_multichoices_make:nn #1 }
22262 \cs_new_protected:cpn { \c__keys_props_root_str .multichoices:en } #1
22263 { \exp_args:Ne __keys_multichoices_make:nn #1 }
22264 \cs_new_protected:cpn { \c__keys_props_root_str .multichoices:on } #1
22265 { \exp_args:No __keys_multichoices_make:nn #1 }
22266 \cs_new_protected:cpn { \c__keys_props_root_str .multichoices:xn } #1
22267 { \exp_args:Nx __keys_multichoices_make:nn #1 }

(End of definition for .multichoice: and .multichoices:nn. These functions are documented on page
249.)

.muskip_set:N

.muskip_set:c
.muskip_gset:N
.muskip_gset:c

Setting a variable is very easy: just pass the data along.
22268 \cs_new_protected:cpn { \c__keys_props_root_str .muskip_set:N } #1
22269 { __keys_variable_set_required:NnnN #1 { muskip } { } n }
22270 \cs_new_protected:cpn { \c__keys_props_root_str .muskip_set:c } #1
22271 { __keys_variable_set_required:cnnN {#1} { muskip } { } n }
22272 \cs_new_protected:cpn { \c__keys_props_root_str .muskip_gset:N } #1
22273 { __keys_variable_set_required:NnnN #1 { muskip } { g } n }
22274 \cs_new_protected:cpn { \c__keys_props_root_str .muskip_gset:c } #1
22275 { __keys_variable_set_required:cnnN {#1} { muskip } { g } n }

(End of definition for .muskip_set:N and .muskip_gset:N. These functions are documented on page
249.)

.prop_put:N

.prop_put:c
.prop_gput:N
.prop_gput:c

Setting a variable is very easy: just pass the data along.
22276 \cs_new_protected:cpn { \c__keys_props_root_str .prop_put:N } #1
22277 { __keys_prop_put:Nn #1 { } }
22278 \cs_new_protected:cpn { \c__keys_props_root_str .prop_put:c } #1
22279 { __keys_prop_put:cn {#1} { } }
22280 \cs_new_protected:cpn { \c__keys_props_root_str .prop_gput:N } #1
22281 { __keys_prop_put:Nn #1 { g } }
22282 \cs_new_protected:cpn { \c__keys_props_root_str .prop_gput:c } #1
22283 { __keys_prop_put:cn {#1} { g } }

(End of definition for .prop_put:N and .prop_gput:N. These functions are documented on page 249.)

.skip_set:N

.skip_set:c
.skip_gset:N
.skip_gset:c

Setting a variable is very easy: just pass the data along.
22284 \cs_new_protected:cpn { \c__keys_props_root_str .skip_set:N } #1
22285 { __keys_variable_set_required:NnnN #1 { skip } { } n }
22286 \cs_new_protected:cpn { \c__keys_props_root_str .skip_set:c } #1
22287 { __keys_variable_set_required:cnnN {#1} { skip } { } n }
22288 \cs_new_protected:cpn { \c__keys_props_root_str .skip_gset:N } #1
22289 { __keys_variable_set_required:NnnN #1 { skip } { g } n }
22290 \cs_new_protected:cpn { \c__keys_props_root_str .skip_gset:c } #1
22291 { __keys_variable_set_required:cnnN {#1} { skip } { g } n }

(End of definition for .skip_set:N and .skip_gset:N. These functions are documented on page 249.)

996

.str_set:N

.str_set:c
.str_gset:N
.str_gset:c
.str_set_e:N
.str_set_e:c

.str_gset_e:N

.str_gset_e:c

Setting a variable is very easy: just pass the data along.
22292 \cs_new_protected:cpn { \c__keys_props_root_str .str_set:N } #1
22293 { __keys_variable_set:NnnN #1 { str } { } n }
22294 \cs_new_protected:cpn { \c__keys_props_root_str .str_set:c } #1
22295 { __keys_variable_set:cnnN {#1} { str } { } n }
22296 \cs_new_protected:cpn { \c__keys_props_root_str .str_set_e:N } #1
22297 { __keys_variable_set:NnnN #1 { str } { } e }
22298 \cs_new_protected:cpn { \c__keys_props_root_str .str_set_e:c } #1
22299 { __keys_variable_set:cnnN {#1} { str } { } e }
22300 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset:N } #1
22301 { __keys_variable_set:NnnN #1 { str } { g } n }
22302 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset:c } #1
22303 { __keys_variable_set:cnnN {#1} { str } { g } n }
22304 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset_e:N } #1
22305 { __keys_variable_set:NnnN #1 { str } { g } e }
22306 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset_e:c } #1
22307 { __keys_variable_set:cnnN {#1} { str } { g } e }

(End of definition for .str_set:N and others. These functions are documented on page 249.)

.tl_set:N

.tl_set:c
.tl_gset:N
.tl_gset:c
.tl_set_e:N
.tl_set_e:c

.tl_gset_e:N

.tl_gset_e:c

Setting a variable is very easy: just pass the data along.
22308 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set:N } #1
22309 { __keys_variable_set:NnnN #1 { tl } { } n }
22310 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set:c } #1
22311 { __keys_variable_set:cnnN {#1} { tl } { } n }
22312 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set_e:N } #1
22313 { __keys_variable_set:NnnN #1 { tl } { } e }
22314 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set_e:c } #1
22315 { __keys_variable_set:cnnN {#1} { tl } { } e }
22316 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:N } #1
22317 { __keys_variable_set:NnnN #1 { tl } { g } n }
22318 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:c } #1
22319 { __keys_variable_set:cnnN {#1} { tl } { g } n }
22320 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_e:N } #1
22321 { __keys_variable_set:NnnN #1 { tl } { g } e }
22322 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_e:c } #1
22323 { __keys_variable_set:cnnN {#1} { tl } { g } e }

(End of definition for .tl_set:N and others. These functions are documented on page 250.)

.undefine: Another simple wrapper.
22324 \cs_new_protected:cpn { \c__keys_props_root_str .undefine: }
22325 { __keys_undefine: }

(End of definition for .undefine:. This function is documented on page 250.)

.usage:n

22326 \cs_new_protected:cpn { \c__keys_props_root_str .usage:n } #1
22327 { __keys_usage:n {#1} }

(End of definition for .usage:n. This function is documented on page 253.)

997

.value_forbidden:n
.value_required:n

These are very similar, so both call the same function.
22328 \cs_new_protected:cpn { \c__keys_props_root_str .value_forbidden:n } #1
22329 { __keys_value_requirement:nn { forbidden } {#1} }
22330 \cs_new_protected:cpn { \c__keys_props_root_str .value_required:n } #1
22331 { __keys_value_requirement:nn { required } {#1} }

(End of definition for .value_forbidden:n and .value_required:n. These functions are documented
on page 250.)

65.6 Setting keys
__keys_set:nnnnNn

__keys_set:nnnnnnnNn
__keys_reset_bool:N
__keys_reset_var:N

__keys_set:nn
__keys_set:nnn

The aim here is to allow nesting of key setting without needing lots of tracking. That
is done by expanding the appropriate tokens “around” the core keyval parsing. As there
are several different sub-paths, this needs a few steps and some generic auxiliaries. The
arguments here are

1. The root for keys

2. The key groups

3. The keys themselves

4. The relative root for return of unset keys

5. The clist var for returning unset keys

6. The code to set up the correct selection approach

22332 \cs_new_protected:Npn __keys_set:nnnnNn
22333 {
22334 \exp_args:Nooo __keys_set:nnnnnnnNn
22335 \l__keys_unused_clist
22336 \l__keys_selective_clist
22337 \l__keys_relative_tl
22338 }
22339 \cs_new_protected:Npn __keys_set:nnnnnnnNn #1#2#3#4#5#6#7#8#9
22340 {
22341 \clist_clear:N \l__keys_unused_clist
22342 \clist_set:Ne \l__keys_selective_clist { \tl_to_str:n {#5} }
22343 \tl_set:Nn \l__keys_relative_tl {#7}
22344 \use:e
22345 {
22346 \exp_not:n
22347 {
22348 #9
22349 __keys_set:nn {#4} {#6}
22350 }
22351 __keys_reset_bool:N \l__keys_only_known_bool
22352 __keys_reset_bool:N \l__keys_exclude_bool
22353 __keys_reset_bool:N \l__keys_selective_bool
22354 }
22355 \clist_set_eq:NN #8 \l__keys_unused_clist
22356 __kernel_tl_set:Nx \l__keys_unused_clist { \exp_not:n {#1} }
22357 __kernel_tl_set:Nx \l__keys_selective_clist {#2}
22358 __kernel_tl_set:Nx \l__keys_relative_tl { \exp_not:n {#3} }

998

22359 }
22360 \cs_new:Npn __keys_reset_bool:N #1
22361 {
22362 \exp_not:c
22363 { bool_set_ \bool_if:NTF #1 { true } { false } :N }
22364 \exp_not:N #1
22365 }
22366 \cs_new_protected:Npn __keys_set:nn #1#2
22367 { \exp_args:No __keys_set:nnn \l__keys_module_str {#1} {#2} }
22368 \cs_new_protected:Npn __keys_set:nnn #1#2#3
22369 {
22370 \str_set:Ne \l__keys_module_str { __keys_trim_spaces:n {#2} }
22371 \keyval_parse:NNn __keys_set_keyval:n __keys_set_keyval:nn {#3}
22372 \str_set:Nn \l__keys_module_str {#1}
22373 }

(End of definition for __keys_set:nnnnNn and others.)

\keys_set:nn
\keys_set:nV
\keys_set:nv
\keys_set:ne
\keys_set:no
\keys_set:nx

A simple wrapper allowing for nesting.
22374 \cs_new_protected:Npn \keys_set:nn #1#2
22375 {
22376 __keys_set:nnnnNn
22377 {#1} { } {#2} { \q__keys_no_value } \l__keys_tmp_clist
22378 {
22379 \bool_set_false:N \l__keys_only_known_bool
22380 \bool_set_false:N \l__keys_exclude_bool
22381 \bool_set_false:N \l__keys_selective_bool
22382 }
22383 }
22384 \cs_generate_variant:Nn \keys_set:nn { nV , nv , ne , no , nx }

(End of definition for \keys_set:nn. This function is documented on page 253.)

\keys_set_known:nnnN
\keys_set_known:nVnN
\keys_set_known:nvnN
\keys_set_known:nenN
\keys_set_known:nonN
\keys_set_known:nnN
\keys_set_known:nVN
\keys_set_known:nvN
\keys_set_known:neN
\keys_set_known:noN
\keys_set_known:nn
\keys_set_known:nV
\keys_set_known:nv
\keys_set_known:ne
\keys_set_known:no

Simply set the right variables.
22385 \cs_new_protected:Npn \keys_set_known:nnnN #1#2#3#4
22386 {
22387 __keys_set:nnnnNn
22388 {#1} { } {#2} {#3} #4
22389 {
22390 \bool_set_true:N \l__keys_only_known_bool
22391 \bool_set_false:N \l__keys_exclude_bool
22392 \bool_set_false:N \l__keys_selective_bool
22393 }
22394 }
22395 \cs_generate_variant:Nn \keys_set_known:nnnN { nV , nv , ne , no }
22396 \cs_new_protected:Npn \keys_set_known:nnN #1#2#3
22397 { \keys_set_known:nnnN {#1} {#2} { \q__keys_no_value } #3 }
22398 \cs_generate_variant:Nn \keys_set_known:nnN { nV , nv , ne , no }
22399 \cs_new_protected:Npn \keys_set_known:nn #1#2
22400 { \keys_set_known:nnnN {#1} {#2} { \q__keys_no_value } \l__keys_tmp_clist }
22401 \cs_generate_variant:Nn \keys_set_known:nn { nV , nv , ne , no }

(End of definition for \keys_set_known:nnnN , \keys_set_known:nnN , and \keys_set_known:nn. These
functions are documented on page 255.)

999

\keys_set_exclude_groups:nnnN
\keys_set_exclude_groups:nnVN
\keys_set_exclude_groups:nnvN
\keys_set_exclude_groups:nnoN
\keys_set_exclude_groups:nnnnN
\keys_set_exclude_groups:nnVnN
\keys_set_exclude_groups:nnvnN
\keys_set_exclude_groups:nnonN

\keys_set_exclude_groups:nnn
\keys_set_exclude_groups:nnV
\keys_set_exclude_groups:nnv
\keys_set_exclude_groups:nno

\keys_set_groups:nnnN
\keys_set_groups:nnVN
\keys_set_groups:nnvN
\keys_set_groups:nnoN

\keys_set_groups:nnnnN
\keys_set_groups:nnVnN
\keys_set_groups:nnvnN
\keys_set_groups:nnonN

\keys_set_groups:nnn
\keys_set_groups:nnV
\keys_set_groups:nnv
\keys_set_groups:nno

The same for (exclusion) groups.
22402 \cs_new_protected:Npn \keys_set_exclude_groups:nnnnN #1#2#3#4#5
22403 {
22404 __keys_set:nnnnNn
22405 {#1} {#2} {#3} {#4} #5
22406 {
22407 \bool_set_false:N \l__keys_only_known_bool
22408 \bool_set_true:N \l__keys_exclude_bool
22409 \bool_set_true:N \l__keys_selective_bool
22410 }
22411 }
22412 \cs_generate_variant:Nn \keys_set_exclude_groups:nnnnN { nnV , nnv , nno }
22413 \cs_new_protected:Npn \keys_set_exclude_groups:nnnN #1#2#3#4
22414 { \keys_set_exclude_groups:nnnnN {#1} {#2} {#3} { \q__keys_no_value } #4 }
22415 \cs_generate_variant:Nn \keys_set_exclude_groups:nnnN { nnV , nnv , nno }
22416 \cs_new_protected:Npn \keys_set_exclude_groups:nnn #1#2#3
22417 {
22418 \keys_set_exclude_groups:nnnnN {#1} {#2} {#3}
22419 { \q__keys_no_value } \l__keys_tmp_clist
22420 }
22421 \cs_generate_variant:Nn \keys_set_exclude_groups:nnn { nnV , nnv , nno }
22422 \cs_new_protected:Npn \keys_set_groups:nnnnN #1#2#3#4#5
22423 {
22424 __keys_set:nnnnNn
22425 {#1} {#2} {#3} {#4} #5
22426 {
22427 \bool_set_false:N \l__keys_only_known_bool
22428 \bool_set_false:N \l__keys_exclude_bool
22429 \bool_set_true:N \l__keys_selective_bool
22430 }
22431 }
22432 \cs_generate_variant:Nn \keys_set_groups:nnnnN { nnV , nnv , nno }
22433 \cs_new_protected:Npn \keys_set_groups:nnnN #1#2#3#4
22434 { \keys_set_groups:nnnnN {#1} {#2} {#3} { \q__keys_no_value } #4 }
22435 \cs_generate_variant:Nn \keys_set_groups:nnnN { nnV , nnv , nno }
22436 \cs_new_protected:Npn \keys_set_groups:nnn #1#2#3
22437 {
22438 \keys_set_groups:nnnnN {#1} {#2} {#3}
22439 { \q__keys_no_value } \l__keys_tmp_clist
22440 }
22441 \cs_generate_variant:Nn \keys_set_groups:nnn { nnV , nnv , nno }

(End of definition for \keys_set_exclude_groups:nnnN and others. These functions are documented on
page 256.)

\keys_precompile:nnN A simple wrapper.
22442 \cs_new_protected:Npn \keys_precompile:nnN #1#2#3
22443 {
22444 \bool_set_true:N \l__keys_precompile_bool
22445 \tl_clear:N \l__keys_precompile_tl
22446 \keys_set:nn {#1} {#2}
22447 \bool_set_false:N \l__keys_precompile_bool
22448 \tl_set_eq:NN #3 \l__keys_precompile_tl
22449 }

1000

(End of definition for \keys_precompile:nnN. This function is documented on page 256.)

__keys_set_keyval:n
__keys_set_keyval:nn
__keys_set_keyval:nnn
__keys_set_keyval:onn

__keys_find_key_module:wNN
__keys_find_key_module_auxi:Nw

__keys_find_key_module_auxii:Nw
__keys_find_key_module_auxiii:Nn
__keys_find_key_module_auxiv:Nw
__keys_set_selective:

A shared system once again. First, set the current path and add a default if needed.
There are then checks to see if a value is required or forbidden. If everything passes,
move on to execute the code.

22450 \cs_new_protected:Npn __keys_set_keyval:n #1
22451 {
22452 \bool_set_true:N \l__keys_no_value_bool
22453 __keys_set_keyval:onn \l__keys_module_str {#1} { }
22454 }
22455 \cs_new_protected:Npn __keys_set_keyval:nn #1#2
22456 {
22457 \bool_set_false:N \l__keys_no_value_bool
22458 __keys_set_keyval:onn \l__keys_module_str {#1} {#2}
22459 }

The key path here can be fully defined, after which there is a search for the key and
module names: the user may have passed them with part of what is actually the module
(for our purposes) in the key name. As that happens on a per-key basis, we use the stack
approach to restore the module name without a group.

22460 \cs_new_protected:Npn __keys_set_keyval:nnn #1#2#3
22461 {
22462 __kernel_tl_set:Nx \l_keys_path_str
22463 {
22464 \tl_if_blank:nF {#1}
22465 { #1 / }
22466 __keys_trim_spaces:n {#2}
22467 }
22468 \str_clear:N \l__keys_module_str
22469 \str_clear:N \l__keys_inherit_str
22470 \exp_after:wN __keys_find_key_module:wNN \l_keys_path_str \s__keys_stop
22471 \l__keys_module_str \l_keys_key_str
22472 \tl_set_eq:NN \l_keys_key_tl \l_keys_key_str
22473 __keys_value_or_default:n {#3}
22474 \bool_if:NTF \l__keys_selective_bool
22475 __keys_set_selective:
22476 __keys_execute:
22477 \str_set:Nn \l__keys_module_str {#1}
22478 }
22479 \cs_generate_variant:Nn __keys_set_keyval:nnn { o }

This function uses \cs_set_nopar:Npe internally for performance reasons, the argument
#1 is already a string in every usage, so turning it into a string again seems unnecessary.

22480 \cs_new_protected:Npn __keys_find_key_module:wNN #1 \s__keys_stop #2 #3
22481 {
22482 __keys_find_key_module_auxi:Nw #2 #1 \s__keys_nil __keys_find_key_module_auxii:Nw
22483 / \s__keys_nil __keys_find_key_module_auxiv:Nw #3
22484 }
22485 \cs_new_protected:Npn __keys_find_key_module_auxi:Nw #1 #2 / #3 \s__keys_nil #4
22486 {
22487 #4 #1 #2 \s__keys_mark #3 \s__keys_nil #4
22488 }
22489 \cs_new_protected:Npn __keys_find_key_module_auxii:Nw
22490 #1 #2 \s__keys_mark #3 \s__keys_nil __keys_find_key_module_auxii:Nw

1001

22491 {
22492 \cs_set_nopar:Npe #1 { \tl_if_empty:NF #1 { #1 / } #2 }
22493 __keys_find_key_module_auxi:Nw #1 #3 \s__keys_nil __keys_find_key_module_auxiii:Nw
22494 }
22495 \cs_new_protected:Npn __keys_find_key_module_auxiii:Nw #1 #2 \s__keys_mark
22496 {
22497 \cs_set_nopar:Npe #1 { \tl_if_empty:NF #1 { #1 / } #2 }
22498 __keys_find_key_module_auxi:Nw #1
22499 }
22500 \cs_new_protected:Npn __keys_find_key_module_auxiv:Nw
22501 #1 #2 \s__keys_nil #3 \s__keys_mark
22502 \s__keys_nil __keys_find_key_module_auxiv:Nw #4
22503 {
22504 \cs_set_nopar:Npn #4 { #2 }
22505 }

If selective setting is active, there are a number of possible sub-cases to consider. The
key name may not be known at all or if it is, it may not have any groups assigned. There
is then the question of whether the selection is opt-in or opt-out.

22506 \cs_new_protected:Npn __keys_set_selective:
22507 {
22508 \cs_if_exist:cTF { \c__keys_groups_root_str \l_keys_path_str }
22509 {
22510 \clist_set_eq:Nc \l__keys_groups_clist
22511 { \c__keys_groups_root_str \l_keys_path_str }
22512 __keys_check_groups:
22513 }
22514 {
22515 \bool_if:NTF \l__keys_exclude_bool
22516 __keys_execute:
22517 __keys_store_unused:
22518 }
22519 }

In the case where selective setting requires a comparison of the list of groups which apply
to a key with the list of those which have been set active. That requires two mappings,
and again a different outcome depending on whether opt-in or opt-out is set. It is safe
to use \clist_if_in:NnTF because both \l__keys_selective_clist and \l__keys_-
groups_clist contain the groups as strings, without leading/trailing spaces in any item,
since the l3clist functions were applied to the result of applying \tl_to_str:n.

22520 \cs_new_protected:Npn __keys_check_groups:
22521 {
22522 \bool_set_false:N \l__keys_tmp_bool
22523 \clist_map_inline:Nn \l__keys_selective_clist
22524 {
22525 \clist_if_in:NnT \l__keys_groups_clist {##1}
22526 {
22527 \bool_set_true:N \l__keys_tmp_bool
22528 \clist_map_break:
22529 }
22530 }
22531 \bool_if:NTF \l__keys_tmp_bool
22532 {
22533 \bool_if:NTF \l__keys_exclude_bool

1002

22534 __keys_store_unused:
22535 __keys_execute:
22536 }
22537 {
22538 \bool_if:NTF \l__keys_exclude_bool
22539 __keys_execute:
22540 __keys_store_unused:
22541 }
22542 }

(End of definition for __keys_set_keyval:n and others.)

__keys_value_or_default:n
__keys_default_inherit:

If a value is given, return it as #1, otherwise send a default if available.
22543 \cs_new_protected:Npn __keys_value_or_default:n #1
22544 {
22545 \bool_if:NTF \l__keys_no_value_bool
22546 {
22547 \cs_if_exist:cTF { \c__keys_default_root_str \l_keys_path_str }
22548 {
22549 \tl_set_eq:Nc
22550 \l_keys_value_tl
22551 { \c__keys_default_root_str \l_keys_path_str }
22552 }
22553 {
22554 \tl_clear:N \l_keys_value_tl
22555 \cs_if_exist:cT
22556 { \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
22557 { __keys_default_inherit: }
22558 }
22559 }
22560 { \tl_set:Nn \l_keys_value_tl {#1} }
22561 }
22562 \cs_new_protected:Npn __keys_default_inherit:
22563 {
22564 \clist_map_inline:cn
22565 { \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
22566 {
22567 \cs_if_exist:cT
22568 { \c__keys_default_root_str ##1 / \l_keys_key_str }
22569 {
22570 \tl_set_eq:Nc
22571 \l_keys_value_tl
22572 { \c__keys_default_root_str ##1 / \l_keys_key_str }
22573 \clist_map_break:
22574 }
22575 }
22576 }

(End of definition for __keys_value_or_default:n and __keys_default_inherit:.)

__keys_execute:
__keys_execute_inherit:
__keys_execute_unknown:

__keys_execute:nn
__keys_execute:no

__keys_store_unused:
__keys_store_unused_aux:

Actually executing a key is done in two parts. First, look for the key itself, then look
for the unknown key with the same path. If both of these fail, complain. What exactly
happens if a key is unknown depends on whether unknown keys are being skipped or if
an error should be raised.

1003

22577 \cs_new_protected:Npn __keys_execute:
22578 {
22579 \cs_if_exist:cTF { \c__keys_code_root_str \l_keys_path_str }
22580 {
22581 \cs_if_exist_use:c { \c__keys_check_root_str \l_keys_path_str }
22582 __keys_execute:no \l_keys_path_str \l_keys_value_tl
22583 }
22584 {
22585 \cs_if_exist:cTF
22586 { \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
22587 { __keys_execute_inherit: }
22588 { __keys_execute_unknown: }
22589 }
22590 }

To deal with the case where there is no hit, we leave __keys_execute_unknown: in the
input stream and clean it up using the break function: that avoids needing a boolean.

22591 \cs_new_protected:Npn __keys_execute_inherit:
22592 {
22593 \clist_map_inline:cn
22594 { \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
22595 {
22596 \cs_if_exist:cT
22597 { \c__keys_code_root_str ##1 / \l_keys_key_str }
22598 {
22599 \str_set:Nn \l__keys_inherit_str {##1}
22600 \cs_if_exist_use:c { \c__keys_check_root_str ##1 / \l_keys_key_str }
22601 __keys_execute:no { ##1 / \l_keys_key_str } \l_keys_value_tl
22602 \clist_map_break:n \use_none:n
22603 }
22604 }
22605 __keys_execute_unknown:
22606 }
22607 \cs_new_protected:Npn __keys_execute_unknown:
22608 {
22609 \bool_if:NTF \l__keys_only_known_bool
22610 { __keys_store_unused: }
22611 {
22612 \cs_if_exist:cTF
22613 { \c__keys_code_root_str \l__keys_module_str / unknown }
22614 {
22615 \bool_if:NT \l__keys_no_value_bool
22616 {
22617 \cs_if_exist:cT
22618 { \c__keys_default_root_str \l__keys_module_str / unknown }
22619 {
22620 \tl_set_eq:Nc
22621 \l_keys_value_tl
22622 { \c__keys_default_root_str \l__keys_module_str / unknown }
22623 }
22624 }
22625 __keys_execute:no { \l__keys_module_str / unknown } \l_keys_value_tl
22626 }
22627 {

1004

22628 \msg_error:nnee { keys } { unknown }
22629 \l_keys_path_str \l__keys_module_str
22630 }
22631 }
22632 }

A key’s code is in the control sequence with csname \c__keys_code_root_str #1. We
expand it once to get the replacement text (with argument #2) and call \use:n with
this replacement as its argument. This ensures that any undefined control sequence er-
ror in the key’s code will lead to an error message of the form <argument>. . . ⟨control
sequence⟩ in which one can read the (undefined) ⟨control sequence⟩ in full, rather
than an error message that starts with the potentially very long key name, which would
make the (undefined) ⟨control sequence⟩ be truncated or sometimes completely hid-
den. See https://github.com/latex3/latex2e/issues/351.

22633 \cs_new:Npn __keys_execute:nn #1#2
22634 { __keys_execute:no {#1} { \prg_do_nothing: #2 } }
22635 \cs_new:Npn __keys_execute:no #1#2
22636 {
22637 \exp_args:NNo \exp_args:No \use:n
22638 {
22639 \cs:w \c__keys_code_root_str #1 \exp_after:wN \cs_end:
22640 \exp_after:wN {#2}
22641 }
22642 }

When there is no relative path, things here are easy: just save the key name and value.
When we are working with a relative path, first we need to turn it into a string: that can’t
happen earlier as we need to store \q__keys_no_value. Then, use a standard delimited
approach to fish out the partial path.

22643 \cs_new_protected:Npn __keys_store_unused:
22644 {
22645 __keys_quark_if_no_value:NTF \l__keys_relative_tl
22646 {
22647 \clist_put_right:Ne \l__keys_unused_clist
22648 {
22649 \l_keys_key_str
22650 \bool_if:NF \l__keys_no_value_bool
22651 { = { \exp_not:o \l_keys_value_tl } }
22652 }
22653 }
22654 {
22655 \tl_if_empty:NTF \l__keys_relative_tl
22656 {
22657 \clist_put_right:Ne \l__keys_unused_clist
22658 {
22659 \l_keys_path_str
22660 \bool_if:NF \l__keys_no_value_bool
22661 { = { \exp_not:o \l_keys_value_tl } }
22662 }
22663 }
22664 { __keys_store_unused_aux: }
22665 }
22666 }
22667 \cs_new_protected:Npn __keys_store_unused_aux:

1005

https://github.com/latex3/latex2e/issues/351

22668 {
22669 __kernel_tl_set:Nx \l__keys_relative_tl
22670 { \exp_args:No __keys_trim_spaces:n \l__keys_relative_tl }
22671 \use:e
22672 {
22673 \cs_set_protected:Npn __keys_store_unused:w
22674 ##1 \l__keys_relative_tl /
22675 ##2 \l__keys_relative_tl /
22676 ##3 \s__keys_stop
22677 }
22678 {
22679 \tl_if_blank:nF {##1}
22680 {
22681 \msg_error:nnee { keys } { bad-relative-key-path }
22682 \l_keys_path_str
22683 \l__keys_relative_tl
22684 }
22685 \clist_put_right:Ne \l__keys_unused_clist
22686 {
22687 \exp_not:n {##2}
22688 \bool_if:NF \l__keys_no_value_bool
22689 { = { \exp_not:o \l_keys_value_tl } }
22690 }
22691 }
22692 \use:e
22693 {
22694 __keys_store_unused:w \l_keys_path_str
22695 \l__keys_relative_tl / \l__keys_relative_tl /
22696 \s__keys_stop
22697 }
22698 }
22699 \cs_new_protected:Npn __keys_store_unused:w { }

(End of definition for __keys_execute: and others.)

__keys_choice_find:n
__keys_choice_find:nn

__keys_multichoice_find:n

Executing a choice has two parts. First, try the choice given, then if that fails call the
unknown key. That always exists, as it is created when a choice is first made. So there
is no need for any escape code. For multiple choices, the same code ends up used in a
mapping.

22700 \cs_new:Npn __keys_choice_find:n #1
22701 {
22702 \str_if_empty:NTF \l__keys_inherit_str
22703 { __keys_choice_find:nn \l_keys_path_str {#1} }
22704 {
22705 __keys_choice_find:nn
22706 { \l__keys_inherit_str / \l_keys_key_str } {#1}
22707 }
22708 }
22709 \cs_new:Npn __keys_choice_find:nn #1#2
22710 {
22711 \cs_if_exist:cTF { \c__keys_code_root_str #1 / __keys_trim_spaces:n {#2} }
22712 { __keys_execute:nn { #1 / __keys_trim_spaces:n {#2} } {#2} }
22713 { __keys_execute:nn { #1 / unknown } {#2} }
22714 }

1006

22715 \cs_new:Npn __keys_multichoice_find:n #1
22716 { \clist_map_function:nN {#1} __keys_choice_find:n }

(End of definition for __keys_choice_find:n , __keys_choice_find:nn , and __keys_multichoice_-
find:n.)

65.7 Utilities
__keys_parent:o

__keys_parent_auxi:w
__keys_parent_auxii:w
__keys_parent_auxiii:n
__keys_parent_auxiv:w

Used to strip off the ending part of the key path after the last /.
22717 \cs_new:Npn __keys_parent:o #1
22718 {
22719 \exp_after:wN __keys_parent_auxi:w #1 \q_nil __keys_parent_auxii:w
22720 / \q_nil __keys_parent_auxiv:w
22721 }
22722 \cs_new:Npn __keys_parent_auxi:w #1 / #2 \q_nil #3
22723 {
22724 #3 { #1 } #2 \q_nil #3
22725 }
22726 \cs_new:Npn __keys_parent_auxii:w #1 #2 \q_nil __keys_parent_auxii:w
22727 {
22728 #1 __keys_parent_auxi:w #2 \q_nil __keys_parent_auxiii:n
22729 }
22730 \cs_new:Npn __keys_parent_auxiii:n #1
22731 {
22732 / #1 __keys_parent_auxi:w
22733 }
22734 \cs_new:Npn __keys_parent_auxiv:w #1 \q_nil __keys_parent_auxiv:w
22735 {
22736 }

(End of definition for __keys_parent:o and others.)

__keys_trim_spaces:n
__keys_trim_spaces_auxi:w

__keys_trim_spaces_auxii:w
__keys_trim_spaces_auxiii:w

Space stripping has to allow for the fact that the key here might have several parts, and
spaces need to be stripped from each part. Since the key name is turned into a string
groups can’t be stripped accidentally and the precautions of \tl_trim_spaces:n aren’t
necessary, in this case it is much faster to just directly strip spaces around /.

22737 \group_begin:
22738 \cs_set:Npn __keys_tmp:w #1
22739 {
22740 \cs_new:Npn __keys_trim_spaces:n ##1
22741 {
22742 \exp_after:wN __keys_trim_spaces_auxi:w \tl_to_str:n { / ##1 } /
22743 \s__keys_nil __keys_trim_spaces_auxi:w
22744 \s__keys_mark __keys_trim_spaces_auxii:w
22745 #1 / #1
22746 \s__keys_nil __keys_trim_spaces_auxii:w
22747 \s__keys_mark __keys_trim_spaces_auxiii:w
22748 }
22749 }
22750 __keys_tmp:w { ~ }
22751 \group_end:
22752 \cs_new:Npn __keys_trim_spaces_auxi:w #1 ~ / #2 \s__keys_nil #3
22753 {

1007

22754 #3 #1 / #2 \s__keys_nil #3
22755 }
22756 \cs_new:Npn __keys_trim_spaces_auxii:w #1 / ~ #2 \s__keys_mark #3
22757 {
22758 #3 #1 / #2 \s__keys_mark #3
22759 }
22760 \cs_new:Npn __keys_trim_spaces_auxiii:w
22761 / #1 /
22762 \s__keys_nil __keys_trim_spaces_auxi:w
22763 \s__keys_mark __keys_trim_spaces_auxii:w
22764 /
22765 \s__keys_nil __keys_trim_spaces_auxii:w
22766 \s__keys_mark __keys_trim_spaces_auxiii:w
22767 {
22768 #1
22769 }

(End of definition for __keys_trim_spaces:n and others.)

\keys_if_exist_p:nn
\keys_if_exist:nnTF

A utility for others to see if a key exists.
22770 \prg_new_conditional:Npnn \keys_if_exist:nn #1#2 { p , T , F , TF }
22771 {
22772 \cs_if_exist:cTF
22773 { \c__keys_code_root_str __keys_trim_spaces:n { #1 / #2 } }
22774 { \prg_return_true: }
22775 { \prg_return_false: }
22776 }
22777 \prg_generate_conditional_variant:Nnn \keys_if_exist:nn { ne } { p , T , F , TF }

(End of definition for \keys_if_exist:nnTF. This function is documented on page 257.)

\keys_if_choice_exist_p:nnn
\keys_if_choice_exist:nnnTF

Just an alternative view on \keys_if_exist:nnTF.
22778 \prg_new_conditional:Npnn \keys_if_choice_exist:nnn #1#2#3
22779 { p , T , F , TF }
22780 {
22781 \cs_if_exist:cTF
22782 { \c__keys_code_root_str __keys_trim_spaces:n { #1 / #2 / #3 } }
22783 { \prg_return_true: }
22784 { \prg_return_false: }
22785 }

(End of definition for \keys_if_choice_exist:nnnTF. This function is documented on page 257.)

\keys_show:nn
\keys_log:nn

__keys_show:Nnn
__keys_show:n
__keys_show:w

__keys_show:Nw

To show a key, show its code using a message.
22786 \cs_new_protected:Npn \keys_show:nn
22787 { __keys_show:Nnn \msg_show:nneeee }
22788 \cs_new_protected:Npn \keys_log:nn
22789 { __keys_show:Nnn \msg_log:nneeee }
22790 \cs_new_protected:Npn __keys_show:Nnn #1#2#3
22791 {
22792 #1 { keys } { show-key }
22793 { __keys_trim_spaces:n { #2 / #3 } }
22794 {
22795 \keys_if_exist:nnT {#2} {#3}
22796 {

1008

22797 \exp_args:Nnf \msg_show_item_unbraced:nn { code }
22798 {
22799 \exp_args:Ne __keys_show:n
22800 {
22801 \exp_args:Nc \cs_replacement_spec:N
22802 {
22803 \c__keys_code_root_str
22804 __keys_trim_spaces:n { #2 / #3 }
22805 }
22806 }
22807 }
22808 }
22809 }
22810 { } { }
22811 }
22812 \cs_new:Npe __keys_show:n #1
22813 {
22814 \exp_not:N __keys_show:w
22815 #1
22816 \tl_to_str:n { __keys_precompile:n }
22817 #1
22818 \tl_to_str:n { __keys_precompile:n }
22819 \exp_not:N \s__keys_stop
22820 }
22821 \use:e
22822 {
22823 \cs_new:Npn \exp_not:N __keys_show:w
22824 #1 \tl_to_str:n { __keys_precompile:n }
22825 #2 \tl_to_str:n { __keys_precompile:n }
22826 #3 \exp_not:N \s__keys_stop
22827 }
22828 {
22829 \tl_if_blank:nTF {#2}
22830 {#1}
22831 { __keys_show:Nw #2 \s__keys_stop }
22832 }
22833 \use:e
22834 {
22835 \cs_new:Npn \exp_not:N __keys_show:Nw #1#2
22836 \c_right_brace_str \exp_not:N \s__keys_stop
22837 }
22838 {#2}

(End of definition for \keys_show:nn and others. These functions are documented on page 257.)

65.8 Messages
For when there is a need to complain.

22839 \msg_new:nnnn { keys } { bad-relative-key-path }
22840 { The~key~’#1’~is~not~inside~the~’#2’~path. }
22841 { The~key~’#1’~cannot~be~expressed~relative~to~path~’#2’. }
22842 \msg_new:nnnn { keys } { boolean-values-only }
22843 { Key~’#1’~accepts~boolean~values~only. }

1009

22844 { The~key~’#1’~only~accepts~the~values~’true’~and~’false’. }
22845 \msg_new:nnnn { keys } { choice-unknown }
22846 { Key~’#1’~accepts~only~a~fixed~set~of~choices. }
22847 {
22848 The~key~’#1’~only~accepts~predefined~values,~
22849 and~’#2’~is~not~one~of~these.
22850 }
22851 \msg_new:nnnn { keys } { unknown }
22852 { The~key~’#1’~is~unknown~and~is~being~ignored. }
22853 {
22854 The~module~’#2’~does~not~have~a~key~called~’#1’.\\
22855 Check~that~you~have~spelled~the~key~name~correctly.
22856 }
22857 \msg_new:nnnn { keys } { nested-choice-key }
22858 { Attempt~to~define~’#1’~as~a~nested~choice~key. }
22859 {
22860 The~key~’#1’~cannot~be~defined~as~a~choice~as~the~parent~key~’#2’~is~
22861 itself~a~choice.
22862 }
22863 \msg_new:nnnn { keys } { value-forbidden }
22864 { The~key~’#1’~does~not~take~a~value. }
22865 {
22866 The~key~’#1’~should~be~given~without~a~value.\\
22867 The~value~’#2’~was~present:~the~key~will~be~ignored.
22868 }
22869 \msg_new:nnnn { keys } { value-required }
22870 { The~key~’#1’~requires~a~value. }
22871 {
22872 The~key~’#1’~must~have~a~value.\\
22873 No~value~was~present:~the~key~will~be~ignored.
22874 }
22875 \msg_new:nnn { keys } { show-key }
22876 {
22877 The~key~#1~
22878 \tl_if_empty:nTF {#2}
22879 { is~undefined. }
22880 { has~the~properties: #2 . }
22881 }
22882 \prop_gput:Nnn \g_msg_module_name_prop { keys } { LaTeX }
22883 \prop_gput:Nnn \g_msg_module_type_prop { keys } { }

22884 ⟨/package⟩

1010

Chapter 66

l3intarray implementation

22885 ⟨∗package⟩

22886 ⟨@@=intarray⟩

There are two implementations for this module: One \fontdimen based one for more
traditional TEX engines and a Lua based one for engines with Lua support.

Both versions do not allow negative array sizes.
22887 ⟨∗tex⟩
22888 \msg_new:nnn { kernel } { negative-array-size }
22889 { Size~of~array~may~not~be~negative:~#1 }

\l__intarray_loop_int A loop index.
22890 \int_new:N \l__intarray_loop_int

(End of definition for \l__intarray_loop_int.)

66.1 Lua implementation
First, let’s look at the Lua variant:

We select the Lua version if the Lua helpers were defined. This can be detected by
the presence of __intarray_gset_count:Nw.

22891 \cs_if_exist:NTF __intarray_gset_count:Nw
22892 {

66.1.1 Allocating arrays
\g__intarray_table_int

\l__intarray_bad_index_int
Used to differentiate intarrays in Lua and to record an invalid index.

22893 \int_new:N \g__intarray_table_int
22894 \int_new:N \l__intarray_bad_index_int
22895 ⟨/tex⟩

(End of definition for \g__intarray_table_int and \l__intarray_bad_index_int.)

__intarray:w Used as marker for intarrays in Lua. Followed by an unbraced number identifying the
array and a single space. This format is used to make it easy to scan from Lua.

22896 ⟨∗lua⟩
22897 luacmd(’__intarray:w’, function()
22898 scan_int()

1011

22899 tex.error’LaTeX Error: Isolated intarray ignored’
22900 end, ’protected’, ’global’)
22901 ⟨/lua⟩

(End of definition for __intarray:w.)

\intarray_new:Nn
\intarray_new:cn
__intarray_new:N

Declare #1 as a tokenlist with the scanmark and a unique number. Pass the array’s size
to the Lua helper. Every intarray must be global; it’s enough to run this check in
\intarray_new:Nn.

22902 ⟨∗tex⟩
22903 \cs_new_protected:Npn __intarray_new:N #1
22904 {
22905 __kernel_chk_if_free_cs:N #1
22906 \int_gincr:N \g__intarray_table_int
22907 \cs_gset_nopar:Npe #1 { __intarray:w \int_use:N \g__intarray_table_int \c_space_tl }
22908 }
22909 \cs_new_protected:Npn \intarray_new:Nn #1#2
22910 {
22911 __intarray_new:N #1
22912 __intarray_gset_count:Nw #1 \int_eval:n {#2} \scan_stop:
22913 \int_compare:nNnT { \intarray_count:N #1 } < 0
22914 {
22915 \msg_error:nne { kernel } { negative-array-size }
22916 { \intarray_count:N #1 }
22917 }
22918 }
22919 \cs_generate_variant:Nn \intarray_new:Nn { c }
22920 ⟨/tex⟩

(End of definition for \intarray_new:Nn and __intarray_new:N. This function is documented on page
260.)

Before we get to the first command implemented in Lua, we first need some defin-
itions. Since token.create only works correctly if TEX has seen the tokens before, we
first run a short TEX sequence to ensure that all relevant control sequences are known.

22921 ⟨∗lua⟩
22922

22923 local scan_token = token.scan_token
22924 local put_next = token.put_next
22925 local intarray_marker = token_create_safe’__intarray:w’
22926 local use_none = token_create_safe’use_none:n’
22927 local use_i = token_create_safe’use:n’
22928 local expand_after_scan_stop = {token_create_safe’exp_after:wN’,
22929 token_create_safe’scan_stop:’}
22930 local comma = token_create(string.byte’,’)

__intarray_table Internal helper to scan an intarray token, extract the associated Lua table and return an
error if the input is invalid.

22931 local __intarray_table do
22932 local tables = get_luadata and get_luadata’__intarray’ or {[0] = {}}
22933 function __intarray_table()
22934 local t = scan_token()
22935 if t ~= intarray_marker then
22936 put_next(t)
22937 tex.error’LaTeX Error: intarray expected’

1012

22938 return tables[0]
22939 end
22940 local i = scan_int()
22941 local current_table = tables[i]
22942 if current_table then return current_table end
22943 current_table = {}
22944 tables[i] = current_table
22945 return current_table
22946 end

Since in LATEX this is loaded in the format, we want to preserve any intarrays which are
created while format building for the actual run.

To do this, we use the register_luadata mechanism from l3luatex: Directly before
the format get dumped, the following function gets invoked and serializes all existing
tables into a string. This string gets compiled and dumped into the format and is made
available at the beginning of regular runs as get_luadata’@@’.

22947 if register_luadata then
22948 register_luadata(’__intarray’, function()
22949 local t = "{[0]={},"
22950 for i=1, #tables do
22951 t = string.format("%s{%s},", t, table.concat(tables[i], ’,’))
22952 end
22953 return t .. "}"
22954 end)
22955 end
22956 end

(End of definition for __intarray_table.)

\intarray_count:N
\intarray_count:c

__intarray_gset_count:Nw

Set and get the size of an array. “Setting the size” means in this context that we add
zeros until we reach the desired size.

22957

22958 local sprint = tex.sprint
22959

22960 luacmd(’__intarray_gset_count:Nw’, function()
22961 local t = __intarray_table()
22962 local n = scan_int()
22963 for i=#t+1, n do t[i] = 0 end
22964 end, ’protected’, ’global’)
22965

22966 luacmd(’intarray_count:N’, function()
22967 sprint(-2, #__intarray_table())
22968 end, ’global’)
22969 ⟨/lua⟩

22970 ⟨∗tex⟩
22971 \cs_generate_variant:Nn \intarray_count:N { c }
22972 ⟨/tex⟩

(End of definition for \intarray_count:N and __intarray_gset_count:Nw. This function is docu-
mented on page 261.)

1013

66.1.2 Array items
__intarray_gset:wF
__intarray_gset:w

The setter provided by Lua. The argument order somewhat emulates the \fontdimen:
First the array index, followed by the intarray and then the new value. This has been
chosen over a more conventional order to provide a delimiter for the numbers.

22973 ⟨∗lua⟩
22974 luacmd(’__intarray_gset:wF’, function()
22975 local i = scan_int()
22976 local t = __intarray_table()
22977 if t[i] then
22978 t[i] = scan_int()
22979 put_next(use_none)
22980 else
22981 tex.count.l__intarray_bad_index_int = i
22982 scan_int()
22983 put_next(use_i)
22984 end
22985 end, ’protected’, ’global’)
22986

22987 luacmd(’__intarray_gset:w’, function()
22988 local i = scan_int()
22989 local t = __intarray_table()
22990 t[i] = scan_int()
22991 end, ’protected’, ’global’)
22992 ⟨/lua⟩

(End of definition for __intarray_gset:wF and __intarray_gset:w.)

\intarray_gset:Nnn
\intarray_gset:cnn

__kernel_intarray_gset:Nnn

The __kernel_intarray_gset:Nnn function does not use \int_eval:n, namely its
arguments must be suitable for \int_value:w. The user version checks the position and
value are within bounds.

22993 ⟨∗tex⟩
22994 \cs_new_protected:Npn __kernel_intarray_gset:Nnn #1#2#3
22995 { __intarray_gset:w #2 #1 #3 \scan_stop: }
22996 \cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
22997 {
22998 __intarray_gset:wF \int_eval:n {#2} #1 \int_eval:n{#3}
22999 {
23000 \msg_error:nneee { kernel } { out-of-bounds }
23001 { \token_to_str:N #1 } { \int_use:N \l__intarray_bad_index_int } { \intarray_count:N #1 }
23002 }
23003 }
23004 \cs_generate_variant:Nn \intarray_gset:Nnn { c }
23005 ⟨/tex⟩

(End of definition for \intarray_gset:Nnn and __kernel_intarray_gset:Nnn. This function is docu-
mented on page 261.)

\intarray_gzero:N
\intarray_gzero:c

Set the appropriate array entry to zero. No bound checking needed.
23006 ⟨∗lua⟩
23007 luacmd(’intarray_gzero:N’, function()
23008 local t = __intarray_table()
23009 for i=1, #t do
23010 t[i] = 0

1014

23011 end
23012 end, ’global’, ’protected’)
23013 ⟨/lua⟩
23014 ⟨∗tex⟩
23015 \cs_generate_variant:Nn \intarray_gzero:N { c }
23016 ⟨/tex⟩

(End of definition for \intarray_gzero:N. This function is documented on page 260.)

\intarray_item:Nn
\intarray_item:cn

__kernel_intarray_item:Nn
__intarray_item:wF
__intarray_item:w

Get the appropriate entry and perform bound checks. The __kernel_intarray_-
item:Nn function omits bound checks and omits \int_eval:n, namely its argument
must be a TEX integer suitable for \int_value:w.

23017 ⟨∗lua⟩
23018 luacmd(’__intarray_item:wF’, function()
23019 local i = scan_int()
23020 local t = __intarray_table()
23021 local item = t[i]
23022 if item then
23023 put_next(use_none)
23024 else
23025 tex.l__intarray_bad_index_int = i
23026 put_next(use_i)
23027 end
23028 put_next(expand_after_scan_stop)
23029 scan_token()
23030 if item then
23031 sprint(-2, item)
23032 end
23033 end, ’global’)
23034

23035 luacmd(’__intarray_item:w’, function()
23036 local i = scan_int()
23037 local t = __intarray_table()
23038 sprint(-2, t[i])
23039 end, ’global’)
23040 ⟨/lua⟩

23041 ⟨∗tex⟩
23042 \cs_new:Npn __kernel_intarray_item:Nn #1#2
23043 { __intarray_item:w #2 #1 }
23044 \cs_new:Npn \intarray_item:Nn #1#2
23045 {
23046 __intarray_item:wF \int_eval:n {#2} #1
23047 {
23048 \msg_expandable_error:nnfff { kernel } { out-of-bounds }
23049 { \token_to_str:N #1 } { \int_use:N \l__intarray_bad_index_int } { \intarray_count:N #1 }
23050 0
23051 }
23052 }
23053 \cs_generate_variant:Nn \intarray_item:Nn { c }

(End of definition for \intarray_item:Nn and others. This function is documented on page 261.)

\intarray_rand_item:N
\intarray_rand_item:c

Importantly, \intarray_item:Nn only evaluates its argument once.
23054 \cs_new:Npn \intarray_rand_item:N #1

1015

23055 { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
23056 \cs_generate_variant:Nn \intarray_rand_item:N { c }

(End of definition for \intarray_rand_item:N. This function is documented on page 261.)

66.1.3 Working with contents of integer arrays
\intarray_const_from_clist:Nn
\intarray_const_from_clist:cn

We use the __kernel_intarray_gset:Nnn which does not do bounds checking and
instead automatically resizes the array. This is not implemented in Lua to ensure that
the clist parsing is consistent with the clist module.

23057 \cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
23058 {
23059 __intarray_new:N #1
23060 \int_zero:N \l__intarray_loop_int
23061 \clist_map_inline:nn {#2}
23062 {
23063 \int_incr:N \l__intarray_loop_int
23064 __kernel_intarray_gset:Nnn #1 \l__intarray_loop_int { \int_eval:n {##1} } }
23065 }
23066 \cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }

(End of definition for \intarray_const_from_clist:Nn. This function is documented on page 260.)

__intarray_to_clist:Nn
__intarray_to_clist:w

The __intarray_to_clist:Nn auxiliary allows to choose the delimiter and is also used
in \intarray_show:N. Here we just pass the information to Lua and let table.concat
do the actual work. We discard the category codes of the passed delimiter but this is not
an issue since the delimiter is always just a comma or a comma and a space. In both
cases sprint(2, ...) provides the right catcodes.

23067 ⟨/tex⟩
23068 ⟨∗lua⟩
23069 local concat = table.concat
23070 luacmd(’__intarray_to_clist:Nn’, function()
23071 local t = __intarray_table()
23072 local sep = token.scan_string()
23073 sprint(-2, concat(t, sep))
23074 end, ’global’)
23075 ⟨/lua⟩

(End of definition for __intarray_to_clist:Nn and __intarray_to_clist:w.)

__kernel_intarray_range_to_clist:Nnn
__intarray_range_to_clist:w

Loop through part of the array.
23076 ⟨∗tex⟩
23077 \cs_new:Npn __kernel_intarray_range_to_clist:Nnn #1#2#3
23078 {
23079 __intarray_range_to_clist:w #1
23080 \int_eval:n {#2} ~ \int_eval:n {#3} ~
23081 }
23082 ⟨/tex⟩
23083 ⟨∗lua⟩
23084 luacmd(’__intarray_range_to_clist:w’, function()
23085 local t = __intarray_table()
23086 local from = scan_int()
23087 local to = scan_int()
23088 sprint(-2, concat(t, ’,’, from, to))

1016

23089 end, ’global’)
23090 ⟨/lua⟩

(End of definition for __kernel_intarray_range_to_clist:Nnn and __intarray_range_to_clist:w.)

__kernel_intarray_gset_range_from_clist:Nnn
__intarray_gset_range:nNw

Loop through part of the array. We allow additional commas at the end.
23091 ⟨∗tex⟩
23092 \cs_new_protected:Npn __kernel_intarray_gset_range_from_clist:Nnn #1#2#3
23093 {
23094 __intarray_gset_range:w \int_eval:w #2 #1 #3 , , \scan_stop:
23095 }
23096 ⟨/tex⟩
23097 ⟨∗lua⟩
23098 luacmd(’__intarray_gset_range:w’, function()
23099 local from = scan_int()
23100 local t = __intarray_table()
23101 while true do
23102 local tok = scan_token()
23103 if tok == comma then
23104 repeat
23105 tok = scan_token()
23106 until tok ~= comma
23107 break
23108 else
23109 put_next(tok)
23110 end
23111 t[from] = scan_int()
23112 scan_token()
23113 from = from + 1
23114 end
23115 end, ’global’, ’protected’)
23116 ⟨/lua⟩

(End of definition for __kernel_intarray_gset_range_from_clist:Nnn and __intarray_gset_range:nNw.)

__intarray_gset_overflow_test:nw In order to allow some code sharing later we provide the __intarray_gset_overflow_-
test:nw name here. It doesn’t actually test anything since the Lua implementation
accepts all integers which could be tested with \tex_ifabsnum:D.

23117 ⟨∗tex⟩
23118 \cs_new_protected:Npn __intarray_gset_overflow_test:nw #1
23119 {
23120 }

(End of definition for __intarray_gset_overflow_test:nw.)

66.2 Font dimension based implementation
Go to the false branch of the conditional above.

23121 }
23122 {

1017

66.2.1 Allocating arrays
__intarray_entry:w
__intarray_count:w

We use these primitives quite a lot in this module.
23123 \cs_new_eq:NN __intarray_entry:w \tex_fontdimen:D
23124 \cs_new_eq:NN __intarray_count:w \tex_hyphenchar:D

(End of definition for __intarray_entry:w and __intarray_count:w.)

\c__intarray_sp_dim Used to convert integers to dimensions fast.
23125 \dim_const:Nn \c__intarray_sp_dim { 1 sp }

(End of definition for \c__intarray_sp_dim.)

\g__intarray_font_int Used to assign one font per array.
23126 \int_new:N \g__intarray_font_int

(End of definition for \g__intarray_font_int.)

\intarray_new:Nn
\intarray_new:cn
__intarray_new:N

Declare #1 to be a font (arbitrarily cmr10 at a never-used size). Store the array’s size as
the \hyphenchar of that font and make sure enough \fontdimen are allocated, by setting
the last one. Then clear any \fontdimen that cmr10 starts with. It seems LuaTEX’s
cmr10 has an extra \fontdimen parameter number 8 compared to other engines (for a
math font we would replace 8 by 22 or some such). Every intarray must be global; it’s
enough to run this check in \intarray_new:Nn.

23127 \cs_new_protected:Npn __intarray_new:N #1
23128 {
23129 __kernel_chk_if_free_cs:N #1
23130 \int_gincr:N \g__intarray_font_int
23131 \tex_global:D \tex_font:D #1
23132 = cmr10~at~ \g__intarray_font_int \c__intarray_sp_dim \scan_stop:
23133 \int_step_inline:nn { 8 }
23134 { __kernel_intarray_gset:Nnn #1 {##1} \c_zero_int }
23135 }
23136 \cs_new_protected:Npn \intarray_new:Nn #1#2
23137 {
23138 __intarray_new:N #1
23139 __intarray_count:w #1 = \int_eval:n {#2} \scan_stop:
23140 \int_compare:nNnT { \intarray_count:N #1 } < 0
23141 {
23142 \msg_error:nne { kernel } { negative-array-size }
23143 { \intarray_count:N #1 }
23144 }
23145 \int_compare:nNnT { \intarray_count:N #1 } > 0
23146 { __kernel_intarray_gset:Nnn #1 { \intarray_count:N #1 } { 0 } }
23147 }
23148 \cs_generate_variant:Nn \intarray_new:Nn { c }

(End of definition for \intarray_new:Nn and __intarray_new:N. This function is documented on page
260.)

\intarray_count:N
\intarray_count:c

Size of an array.
23149 \cs_new:Npn \intarray_count:N #1 { \int_value:w __intarray_count:w #1 }
23150 \cs_generate_variant:Nn \intarray_count:N { c }

(End of definition for \intarray_count:N. This function is documented on page 261.)

1018

66.2.2 Array items
__intarray_signed_max_dim:n Used when an item to be stored is larger than \c_max_dim in absolute value; it is replaced

by ±\c_max_dim.
23151 \cs_new:Npn __intarray_signed_max_dim:n #1
23152 { \int_value:w \int_compare:nNnT {#1} < 0 { - } \c_max_dim }

(End of definition for __intarray_signed_max_dim:n.)

__intarray_bounds:NNnTF
__intarray_bounds_error:NNnw

The functions \intarray_gset:Nnn and \intarray_item:Nn share bounds checking.
The T branch is used if #3 is within bounds of the array #2.

23153 \cs_new:Npn __intarray_bounds:NNnTF #1#2#3
23154 {
23155 \if_int_compare:w 1 > #3 \exp_stop_f:
23156 __intarray_bounds_error:NNnw #1 #2 {#3}
23157 \else:
23158 \if_int_compare:w #3 > \intarray_count:N #2 \exp_stop_f:
23159 __intarray_bounds_error:NNnw #1 #2 {#3}
23160 \fi:
23161 \fi:
23162 \use_i:nn
23163 }
23164 \cs_new:Npn __intarray_bounds_error:NNnw #1#2#3#4 \use_i:nn #5#6
23165 {
23166 #4
23167 #1 { kernel } { out-of-bounds }
23168 { \token_to_str:N #2 } {#3} { \intarray_count:N #2 }
23169 #6
23170 }

(End of definition for __intarray_bounds:NNnTF and __intarray_bounds_error:NNnw.)

\intarray_gset:Nnn
\intarray_gset:cnn

__kernel_intarray_gset:Nnn
__intarray_gset:Nnn
__intarray_gset_overflow:Nnn

Set the appropriate \fontdimen. The __kernel_intarray_gset:Nnn function does not
use \int_eval:n, namely its arguments must be suitable for \int_value:w. The user
version checks the position and value are within bounds.

23171 \cs_new_protected:Npn __kernel_intarray_gset:Nnn #1#2#3
23172 { __intarray_entry:w #2 #1 #3 \c__intarray_sp_dim }
23173 \cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
23174 {
23175 \exp_after:wN __intarray_gset:Nww
23176 \exp_after:wN #1
23177 \int_value:w \int_eval:n {#2} \exp_after:wN ;
23178 \int_value:w \int_eval:n {#3} ;
23179 }
23180 \cs_generate_variant:Nn \intarray_gset:Nnn { c }
23181 \cs_new_protected:Npn __intarray_gset:Nww #1#2 ; #3 ;
23182 {
23183 __intarray_bounds:NNnTF \msg_error:nneee #1 {#2}
23184 {
23185 __intarray_gset_overflow_test:nw {#3}
23186 __kernel_intarray_gset:Nnn #1 {#2} {#3}
23187 }
23188 { }
23189 }

1019

23190 \cs_if_exist:NTF \tex_ifabsnum:D
23191 {
23192 \cs_new_protected:Npn __intarray_gset_overflow_test:nw #1
23193 {
23194 \tex_ifabsnum:D #1 > \c_max_dim
23195 \exp_after:wN __intarray_gset_overflow:NNnn
23196 \fi:
23197 }
23198 }
23199 {
23200 \cs_new_protected:Npn __intarray_gset_overflow_test:nw #1
23201 {
23202 \if_int_compare:w \int_abs:n {#1} > \c_max_dim
23203 \exp_after:wN __intarray_gset_overflow:NNnn
23204 \fi:
23205 }
23206 }
23207 \cs_new_protected:Npn __intarray_gset_overflow:NNnn #1#2#3#4
23208 {
23209 \msg_error:nneeee { kernel } { overflow }
23210 { \token_to_str:N #2 } {#3} {#4} { __intarray_signed_max_dim:n {#4} }
23211 #1 #2 {#3} { __intarray_signed_max_dim:n {#4} }
23212 }

(End of definition for \intarray_gset:Nnn and others. This function is documented on page 261.)

\intarray_gzero:N
\intarray_gzero:c

Set the appropriate \fontdimen to zero. No bound checking needed. The \prg_-
replicate:nn possibly uses quite a lot of memory, but this is somewhat comparable
to the size of the array, and it is much faster than an \int_step_inline:nn loop.

23213 \cs_new_protected:Npn \intarray_gzero:N #1
23214 {
23215 \int_zero:N \l__intarray_loop_int
23216 \prg_replicate:nn { \intarray_count:N #1 }
23217 {
23218 \int_incr:N \l__intarray_loop_int
23219 __intarray_entry:w \l__intarray_loop_int #1 \c_zero_dim
23220 }
23221 }
23222 \cs_generate_variant:Nn \intarray_gzero:N { c }

(End of definition for \intarray_gzero:N. This function is documented on page 260.)

\intarray_item:Nn
\intarray_item:cn

__kernel_intarray_item:Nn
__intarray_item:Nw

Get the appropriate \fontdimen and perform bound checks. The __kernel_-
intarray_item:Nn function omits bound checks and omits \int_eval:n, namely its
argument must be a TEX integer suitable for \int_value:w.

23223 \cs_new:Npn __kernel_intarray_item:Nn #1#2
23224 { \int_value:w __intarray_entry:w #2 #1 }
23225 \cs_new:Npn \intarray_item:Nn #1#2
23226 {
23227 \exp_after:wN __intarray_item:Nw
23228 \exp_after:wN #1
23229 \int_value:w \int_eval:n {#2} ;
23230 }
23231 \cs_generate_variant:Nn \intarray_item:Nn { c }

1020

23232 \cs_new:Npn __intarray_item:Nw #1#2 ;
23233 {
23234 __intarray_bounds:NNnTF \msg_expandable_error:nnfff #1 {#2}
23235 { __kernel_intarray_item:Nn #1 {#2} }
23236 { 0 }
23237 }

(End of definition for \intarray_item:Nn , __kernel_intarray_item:Nn , and __intarray_item:Nw.
This function is documented on page 261.)

\intarray_rand_item:N
\intarray_rand_item:c

Importantly, \intarray_item:Nn only evaluates its argument once.
23238 \cs_new:Npn \intarray_rand_item:N #1
23239 { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
23240 \cs_generate_variant:Nn \intarray_rand_item:N { c }

(End of definition for \intarray_rand_item:N. This function is documented on page 261.)

66.2.3 Working with contents of integer arrays
\intarray_const_from_clist:Nn
\intarray_const_from_clist:cn

__intarray_const_from_clist:nN

Similar to \intarray_new:Nn (which we don’t use because when debugging is enabled
that function checks the variable name starts with g_). We make use of the fact that TEX
allows allocation of successive \fontdimen as long as no other font has been declared: no
need to count the comma list items first. We need the code in \intarray_gset:Nnn that
checks the item value is not too big, namely __intarray_gset_overflow_test:nw, but
not the code that checks bounds. At the end, set the size of the intarray.

23241 \cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
23242 {
23243 __intarray_new:N #1
23244 \int_zero:N \l__intarray_loop_int
23245 \clist_map_inline:nn {#2}
23246 { \exp_args:Nf __intarray_const_from_clist:nN { \int_eval:n {##1} } #1 }
23247 __intarray_count:w #1 \l__intarray_loop_int
23248 }
23249 \cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
23250 \cs_new_protected:Npn __intarray_const_from_clist:nN #1#2
23251 {
23252 \int_incr:N \l__intarray_loop_int
23253 __intarray_gset_overflow_test:nw {#1}
23254 __kernel_intarray_gset:Nnn #2 \l__intarray_loop_int {#1}
23255 }

(End of definition for \intarray_const_from_clist:Nn and __intarray_const_from_clist:nN. This
function is documented on page 260.)

__intarray_to_clist:Nn
__intarray_to_clist:w

Loop through the array, putting a comma before each item. Remove the leading comma
with f-expansion. We also use the auxiliary in \intarray_show:N with argument comma,
space.

23256 \cs_new:Npn __intarray_to_clist:Nn #1#2
23257 {
23258 \int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int
23259 {
23260 \exp_last_unbraced:Nf \use_none:n
23261 { __intarray_to_clist:w 1 ; #1 {#2} \prg_break_point: }
23262 }

1021

23263 }
23264 \cs_new:Npn __intarray_to_clist:w #1 ; #2#3
23265 {
23266 \if_int_compare:w #1 > __intarray_count:w #2
23267 \prg_break:n
23268 \fi:
23269 #3 __kernel_intarray_item:Nn #2 {#1}
23270 \exp_after:wN __intarray_to_clist:w
23271 \int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
23272 }

(End of definition for __intarray_to_clist:Nn and __intarray_to_clist:w.)

__kernel_intarray_range_to_clist:Nnn
__intarray_range_to_clist:ww

Loop through part of the array.
23273 \cs_new:Npn __kernel_intarray_range_to_clist:Nnn #1#2#3
23274 {
23275 \exp_last_unbraced:Nf \use_none:n
23276 {
23277 \exp_after:wN __intarray_range_to_clist:ww
23278 \int_value:w \int_eval:w #2 \exp_after:wN ;
23279 \int_value:w \int_eval:w #3 ;
23280 #1 \prg_break_point:
23281 }
23282 }
23283 \cs_new:Npn __intarray_range_to_clist:ww #1 ; #2 ; #3
23284 {
23285 \if_int_compare:w #1 > #2 \exp_stop_f:
23286 \prg_break:n
23287 \fi:
23288 , __kernel_intarray_item:Nn #3 {#1}
23289 \exp_after:wN __intarray_range_to_clist:ww
23290 \int_value:w \int_eval:w #1 + \c_one_int ; #2 ; #3
23291 }

(End of definition for __kernel_intarray_range_to_clist:Nnn and __intarray_range_to_clist:ww.)

__kernel_intarray_gset_range_from_clist:Nnn
__intarray_gset_range:Nw

Loop through part of the array.
23292 \cs_new_protected:Npn __kernel_intarray_gset_range_from_clist:Nnn #1#2#3
23293 {
23294 \int_set:Nn \l__intarray_loop_int {#2}
23295 __intarray_gset_range:Nw #1 #3 , , \prg_break_point:
23296 }
23297 \cs_new_protected:Npn __intarray_gset_range:Nw #1 #2 ,
23298 {
23299 \if_catcode:w \scan_stop: \tl_to_str:n {#2} \scan_stop:
23300 \prg_break:n
23301 \fi:
23302 __kernel_intarray_gset:Nnn #1 \l__intarray_loop_int {#2}
23303 \int_incr:N \l__intarray_loop_int
23304 __intarray_gset_range:Nw #1
23305 }

(End of definition for __kernel_intarray_gset_range_from_clist:Nnn and __intarray_gset_range:Nw.)

23306 }

1022

66.3 Common parts
\intarray_if_exist_p:N
\intarray_if_exist_p:c
\intarray_if_exist:NTF
\intarray_if_exist:cTF

Copies of the cs functions defined in l3basics.
23307 \prg_new_eq_conditional:NNn \intarray_if_exist:N \cs_if_exist:N
23308 { TF , T , F , p }
23309 \prg_new_eq_conditional:NNn \intarray_if_exist:c \cs_if_exist:c
23310 { TF , T , F , p }

(End of definition for \intarray_if_exist:NTF. This function is documented on page 261.)

\intarray_show:N
\intarray_show:c
\intarray_log:N
\intarray_log:c

Convert the list to a comma list (with spaces after each comma)
23311 \cs_new_protected:Npn \intarray_show:N { __intarray_show:NN \msg_show:nneeee }
23312 \cs_generate_variant:Nn \intarray_show:N { c }
23313 \cs_new_protected:Npn \intarray_log:N { __intarray_show:NN \msg_log:nneeee }
23314 \cs_generate_variant:Nn \intarray_log:N { c }
23315 \cs_new_protected:Npn __intarray_show:NN #1#2
23316 {
23317 __kernel_chk_defined:NT #2
23318 {
23319 #1 { intarray } { show }
23320 { \token_to_str:N #2 }
23321 { \intarray_count:N #2 }
23322 { >~ __intarray_to_clist:Nn #2 { , ~ } }
23323 { }
23324 }
23325 }

(End of definition for \intarray_show:N and \intarray_log:N. These functions are documented on
page 261.)

23326 ⟨/tex⟩
23327 ⟨/package⟩

1023

Chapter 67

l3fp implementation

Nothing to see here: everything is in the subfiles!

1024

Chapter 68

l3fp-aux implementation

23328 ⟨∗package⟩

23329 ⟨@@=fp⟩

68.1 Access to primitives
__fp_int_eval:w

__fp_int_eval_end:
__fp_int_to_roman:w

Largely for performance reasons, we need to directly access primitives rather than use
\int_eval:n. This happens a lot, so we use private names. The same is true for
\romannumeral, although it is used much less widely.

23330 \cs_new_eq:NN __fp_int_eval:w \tex_numexpr:D
23331 \cs_new_eq:NN __fp_int_eval_end: \scan_stop:
23332 \cs_new_eq:NN __fp_int_to_roman:w \tex_romannumeral:D

(End of definition for __fp_int_eval:w , __fp_int_eval_end: , and __fp_int_to_roman:w.)

68.2 Internal representation
Internally, a floating point number ⟨X⟩ is a token list containing

\s__fp __fp_chk:w ⟨case⟩ ⟨sign⟩ ⟨body⟩ ;

Let us explain each piece separately.
Internal floating point numbers are used in expressions, and in this context are sub-

ject to f-expansion. They must leave a recognizable mark after f-expansion, to prevent
the floating point number from being re-parsed. Thus, \s__fp is simply another name
for \relax.

When used directly without an accessor function, floating points should produce
an error: this is the role of __fp_chk:w. We could make floating point variables be
protected to prevent them from expanding under e/x-expansion, but it seems more con-
venient to treat them as a subcase of token list variables.

The (decimal part of the) IEEE-754-2008 standard requires the format to be able
to represent special floating point numbers besides the usual positive and negative cases.
We distinguish the various possibilities by their ⟨case⟩, which is a single digit:

0 zeros: +0 and -0,

1 “normal” numbers (positive and negative),

1025

Table 3: Internal representation of floating point numbers.
Representation Meaning

0 0 \s__fp_... ; Positive zero.
0 2 \s__fp_... ; Negative zero.
1 0 {⟨exponent⟩} {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ; Positive floating point.
1 2 {⟨exponent⟩} {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ; Negative floating point.
2 0 \s__fp_... ; Positive infinity.
2 2 \s__fp_... ; Negative infinity.
3 1 \s__fp_... ; Quiet nan.
3 1 \s__fp_... ; Signalling nan.

2 infinities: +inf and -inf,

3 quiet and signalling nan.

The ⟨sign⟩ is 0 (positive) or 2 (negative), except in the case of nan, which have ⟨sign⟩ =
1. This ensures that changing the ⟨sign⟩ digit to 2 − ⟨sign⟩ is exactly equivalent to
changing the sign of the number.

Special floating point numbers have the form

\s__fp __fp_chk:w ⟨case⟩ ⟨sign⟩ \s__fp_... ;

where \s__fp_... is a scan mark carrying information about how the number was formed
(useful for debugging).

Normal floating point numbers (⟨case⟩ = 1) have the form

\s__fp __fp_chk:w 1 ⟨sign⟩ {⟨exponent⟩} {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ;

Here, the ⟨exponent⟩ is an integer, between −10000 and 10000. The body consists in
four blocks of exactly 4 digits, 0000 ≤ ⟨Xi⟩ ≤ 9999, and the floating point is

(−1)⟨sign⟩/2⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩ · 10⟨exponent⟩−16

where we have concatenated the 16 digits. Currently, floating point numbers are normal-
ized such that the ⟨exponent⟩ is minimal, in other words, 1000 ≤ ⟨X1⟩ ≤ 9999.

Calculations are done in base 10000, i.e. one myriad.

68.3 Using arguments and semicolons
__fp_use_none_stop_f:n This function removes an argument (typically a digit) and replaces it by \exp_stop_f:,

a marker which stops f-type expansion.
23333 \cs_new:Npn __fp_use_none_stop_f:n #1 { \exp_stop_f: }

(End of definition for __fp_use_none_stop_f:n.)

__fp_use_s:n
__fp_use_s:nn

Those functions place a semicolon after one or two arguments (typically digits).
23334 \cs_new:Npn __fp_use_s:n #1 { #1; }
23335 \cs_new:Npn __fp_use_s:nn #1#2 { #1#2; }

(End of definition for __fp_use_s:n and __fp_use_s:nn.)

1026

__fp_use_none_until_s:w
__fp_use_i_until_s:nw

__fp_use_ii_until_s:nnw

Those functions select specific arguments among a set of arguments delimited by a semi-
colon.

23336 \cs_new:Npn __fp_use_none_until_s:w #1; { }
23337 \cs_new:Npn __fp_use_i_until_s:nw #1#2; {#1}
23338 \cs_new:Npn __fp_use_ii_until_s:nnw #1#2#3; {#2}

(End of definition for __fp_use_none_until_s:w , __fp_use_i_until_s:nw , and __fp_use_ii_-
until_s:nnw.)

__fp_reverse_args:Nww Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to swap two such arguments.

23339 \cs_new:Npn __fp_reverse_args:Nww #1 #2; #3; { #1 #3; #2; }

(End of definition for __fp_reverse_args:Nww.)

__fp_rrot:www Rotate three arguments delimited by semicolons. This is the inverse (or the square) of
the Forth primitive ROT, hence the name.

23340 \cs_new:Npn __fp_rrot:www #1; #2; #3; { #2; #3; #1; }

(End of definition for __fp_rrot:www.)

__fp_use_i:ww
__fp_use_i:www

Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to remove one or two such arguments.

23341 \cs_new:Npn __fp_use_i:ww #1; #2; { #1; }
23342 \cs_new:Npn __fp_use_i:www #1; #2; #3; { #1; }

(End of definition for __fp_use_i:ww and __fp_use_i:www.)

68.4 Constants, and structure of floating points
__fp_misused:n This receives a floating point object (floating point number or tuple) and generates an

error stating that it was misused. This is called when for instance an fp variable is left
in the input stream and its contents reach TEX’s stomach.

23343 \cs_new_protected:Npn __fp_misused:n #1
23344 { \msg_error:nne { fp } { misused } { \fp_to_tl:n {#1} } }

(End of definition for __fp_misused:n.)

\s__fp
__fp_chk:w

Floating points numbers all start with \s__fp __fp_chk:w, where \s__fp is equal to
the TEX primitive \relax, and __fp_chk:w is protected. The rest of the floating point
number is made of characters (or \relax). This ensures that nothing expands under
f-expansion, nor under e/x-expansion. However, when typeset, \s__fp does nothing,
and __fp_chk:w is expanded. We define __fp_chk:w to produce an error.

23345 \scan_new:N \s__fp
23346 \cs_new_protected:Npn __fp_chk:w #1 ;
23347 { __fp_misused:n { \s__fp __fp_chk:w #1 ; } }

(End of definition for \s__fp and __fp_chk:w.)

\s__fp_expr_mark
\s__fp_expr_stop

Aliases of \tex_relax:D, used to terminate expressions.
23348 \scan_new:N \s__fp_expr_mark
23349 \scan_new:N \s__fp_expr_stop

(End of definition for \s__fp_expr_mark and \s__fp_expr_stop.)

1027

\s__fp_mark
\s__fp_stop

Generic scan marks used throughout the module.
23350 \scan_new:N \s__fp_mark
23351 \scan_new:N \s__fp_stop

(End of definition for \s__fp_mark and \s__fp_stop.)

__fp_use_i_delimit_by_s_stop:nw Functions to gobble up to a scan mark.
23352 \cs_new:Npn __fp_use_i_delimit_by_s_stop:nw #1 #2 \s__fp_stop {#1}

(End of definition for __fp_use_i_delimit_by_s_stop:nw.)

\s__fp_invalid
\s__fp_underflow
\s__fp_overflow
\s__fp_division

\s__fp_exact

A couple of scan marks used to indicate where special floating point numbers come from.
23353 \scan_new:N \s__fp_invalid
23354 \scan_new:N \s__fp_underflow
23355 \scan_new:N \s__fp_overflow
23356 \scan_new:N \s__fp_division
23357 \scan_new:N \s__fp_exact

(End of definition for \s__fp_invalid and others.)

\c_zero_fp
\c_minus_zero_fp

\c_inf_fp
\c_minus_inf_fp

\c_nan_fp

The special floating points. We define the floating points here as “exact”.
23358 \tl_const:Nn \c_zero_fp { \s__fp __fp_chk:w 0 0 \s__fp_exact ; }
23359 \tl_const:Nn \c_minus_zero_fp { \s__fp __fp_chk:w 0 2 \s__fp_exact ; }
23360 \tl_const:Nn \c_inf_fp { \s__fp __fp_chk:w 2 0 \s__fp_exact ; }
23361 \tl_const:Nn \c_minus_inf_fp { \s__fp __fp_chk:w 2 2 \s__fp_exact ; }
23362 \tl_const:Nn \c_nan_fp { \s__fp __fp_chk:w 3 1 \s__fp_exact ; }

(End of definition for \c_zero_fp and others. These variables are documented on page 274.)

\c__fp_prec_int
\c__fp_half_prec_int

\c__fp_block_int

The number of digits of floating points.
23363 \int_const:Nn \c__fp_prec_int { 16 }
23364 \int_const:Nn \c__fp_half_prec_int { 8 }
23365 \int_const:Nn \c__fp_block_int { 4 }

(End of definition for \c__fp_prec_int , \c__fp_half_prec_int , and \c__fp_block_int.)

\c__fp_myriad_int Blocks have 4 digits so this integer is useful.
23366 \int_const:Nn \c__fp_myriad_int { 10000 }

(End of definition for \c__fp_myriad_int.)

\c__fp_minus_min_exponent_int
\c__fp_max_exponent_int

Normal floating point numbers have an exponent between − minus_min_exponent and
max_exponent inclusive. Larger numbers are rounded to ±∞. Smaller numbers are
rounded to ±0. It would be more natural to define a min_exponent with the opposite
sign but that would waste one TEX count.

23367 \int_const:Nn \c__fp_minus_min_exponent_int { 10000 }
23368 \int_const:Nn \c__fp_max_exponent_int { 10000 }

(End of definition for \c__fp_minus_min_exponent_int and \c__fp_max_exponent_int.)

\c__fp_max_exp_exponent_int If a number’s exponent is larger than that, its exponential overflows/underflows.
23369 \int_const:Nn \c__fp_max_exp_exponent_int { 5 }

(End of definition for \c__fp_max_exp_exponent_int.)

1028

\c__fp_overflowing_fp A floating point number that is bigger than all normal floating point numbers. This
replaces infinities when converting to formats that do not support infinities.

23370 \tl_const:Ne \c__fp_overflowing_fp
23371 {
23372 \s__fp __fp_chk:w 1 0
23373 { \int_eval:n { \c__fp_max_exponent_int + 1 } }
23374 {1000} {0000} {0000} {0000} ;
23375 }

(End of definition for \c__fp_overflowing_fp.)

__fp_zero_fp:N
__fp_inf_fp:N

In case of overflow or underflow, we have to output a zero or infinity with a given sign.
23376 \cs_new:Npn __fp_zero_fp:N #1
23377 { \s__fp __fp_chk:w 0 #1 \s__fp_underflow ; }
23378 \cs_new:Npn __fp_inf_fp:N #1
23379 { \s__fp __fp_chk:w 2 #1 \s__fp_overflow ; }

(End of definition for __fp_zero_fp:N and __fp_inf_fp:N.)

__fp_exponent:w For normal numbers, the function expands to the exponent, otherwise to 0. This is used
in l3str-format.

23380 \cs_new:Npn __fp_exponent:w \s__fp __fp_chk:w #1
23381 {
23382 \if_meaning:w 1 #1
23383 \exp_after:wN __fp_use_ii_until_s:nnw
23384 \else:
23385 \exp_after:wN __fp_use_i_until_s:nw
23386 \exp_after:wN 0
23387 \fi:
23388 }

(End of definition for __fp_exponent:w.)

__fp_neg_sign:N When appearing in an integer expression or after \int_value:w, this expands to the sign
opposite to #1, namely 0 (positive) is turned to 2 (negative), 1 (nan) to 1, and 2 to 0.

23389 \cs_new:Npn __fp_neg_sign:N #1
23390 { __fp_int_eval:w 2 - #1 __fp_int_eval_end: }

(End of definition for __fp_neg_sign:N.)

__fp_kind:w Expands to 0 for zeros, 1 for normal floating point numbers, 2 for infinities, 3 for nan, 4
for tuples.

23391 \cs_new:Npn __fp_kind:w #1
23392 {
23393 __fp_if_type_fp:NTwFw
23394 #1 __fp_use_ii_until_s:nnw
23395 \s__fp { __fp_use_i_until_s:nw 4 }
23396 \s__fp_stop
23397 }

(End of definition for __fp_kind:w.)

1029

68.5 Overflow, underflow, and exact zero
__fp_sanitize:Nw
__fp_sanitize:wN

__fp_sanitize_zero:w

Expects the sign and the exponent in some order, then the significand (which we don’t
touch). Outputs the corresponding floating point number, possibly underflowed to ±0
or overflowed to ±∞. The functions __fp_underflow:w and __fp_overflow:w are
defined in l3fp-traps.

23398 \cs_new:Npn __fp_sanitize:Nw #1 #2;
23399 {
23400 \if_case:w
23401 \if_int_compare:w #2 > \c__fp_max_exponent_int 1 ~ \else:
23402 \if_int_compare:w #2 < - \c__fp_minus_min_exponent_int 2 ~ \else:
23403 \if_meaning:w 1 #1 3 ~ \fi: \fi: \fi: 0 ~
23404 \or: \exp_after:wN __fp_overflow:w
23405 \or: \exp_after:wN __fp_underflow:w
23406 \or: \exp_after:wN __fp_sanitize_zero:w
23407 \fi:
23408 \s__fp __fp_chk:w 1 #1 {#2}
23409 }
23410 \cs_new:Npn __fp_sanitize:wN #1; #2 { __fp_sanitize:Nw #2 #1; }
23411 \cs_new:Npn __fp_sanitize_zero:w \s__fp __fp_chk:w #1 #2 #3;
23412 { \c_zero_fp }

(End of definition for __fp_sanitize:Nw , __fp_sanitize:wN , and __fp_sanitize_zero:w.)

68.6 Expanding after a floating point number

__fp_exp_after_o:w
__fp_exp_after_f:nw

__fp_exp_after_o:w ⟨floating point⟩
__fp_exp_after_f:nw {⟨tokens⟩} ⟨floating point⟩

Places ⟨tokens⟩ (empty in the case of __fp_exp_after_o:w) between the ⟨floating
point⟩ and the following tokens, then hits those tokens with o or f-expansion, and leaves
the floating point number unchanged.

We first distinguish normal floating points, which have a significand, from the much
simpler special floating points.

23413 \cs_new:Npn __fp_exp_after_o:w \s__fp __fp_chk:w #1
23414 {
23415 \if_meaning:w 1 #1
23416 \exp_after:wN __fp_exp_after_normal:nNNw
23417 \else:
23418 \exp_after:wN __fp_exp_after_special:nNNw
23419 \fi:
23420 { }
23421 #1
23422 }
23423 \cs_new:Npn __fp_exp_after_f:nw #1 \s__fp __fp_chk:w #2
23424 {
23425 \if_meaning:w 1 #2
23426 \exp_after:wN __fp_exp_after_normal:nNNw
23427 \else:
23428 \exp_after:wN __fp_exp_after_special:nNNw
23429 \fi:
23430 { \exp:w \exp_end_continue_f:w #1 }
23431 #2

1030

23432 }

(End of definition for __fp_exp_after_o:w and __fp_exp_after_f:nw.)

__fp_exp_after_special:nNNw __fp_exp_after_special:nNNw {⟨after⟩} ⟨case⟩ ⟨sign⟩ ⟨scan mark⟩ ;
Special floating point numbers are easy to jump over since they contain few tokens.

23433 \cs_new:Npn __fp_exp_after_special:nNNw #1#2#3#4;
23434 {
23435 \exp_after:wN \s__fp
23436 \exp_after:wN __fp_chk:w
23437 \exp_after:wN #2
23438 \exp_after:wN #3
23439 \exp_after:wN #4
23440 \exp_after:wN ;
23441 #1
23442 }

(End of definition for __fp_exp_after_special:nNNw.)

__fp_exp_after_normal:nNNw For normal floating point numbers, life is slightly harder, since we have many tokens to
jump over. Here it would be slightly better if the digits were not braced but instead were
delimited arguments (for instance delimited by ,). That may be changed some day.

23443 \cs_new:Npn __fp_exp_after_normal:nNNw #1 1 #2 #3 #4#5#6#7;
23444 {
23445 \exp_after:wN __fp_exp_after_normal:Nwwwww
23446 \exp_after:wN #2
23447 \int_value:w #3 \exp_after:wN ;
23448 \int_value:w 1 #4 \exp_after:wN ;
23449 \int_value:w 1 #5 \exp_after:wN ;
23450 \int_value:w 1 #6 \exp_after:wN ;
23451 \int_value:w 1 #7 \exp_after:wN ; #1
23452 }
23453 \cs_new:Npn __fp_exp_after_normal:Nwwwww
23454 #1 #2; 1 #3 ; 1 #4 ; 1 #5 ; 1 #6 ;
23455 { \s__fp __fp_chk:w 1 #1 {#2} {#3} {#4} {#5} {#6} ; }

(End of definition for __fp_exp_after_normal:nNNw.)

68.7 Other floating point types
\s__fp_tuple

__fp_tuple_chk:w
\c__fp_empty_tuple_fp

Floating point tuples take the form \s__fp_tuple __fp_tuple_chk:w { ⟨fp 1⟩ ⟨fp 2⟩
. . . } ; where each ⟨fp⟩ is a floating point number or tuple, hence ends with ; itself.
When a tuple is typeset, __fp_tuple_chk:w produces an error, just like usual floating
point numbers. Tuples may have zero or one element.

23456 \scan_new:N \s__fp_tuple
23457 \cs_new_protected:Npn __fp_tuple_chk:w #1 ;
23458 { __fp_misused:n { \s__fp_tuple __fp_tuple_chk:w #1 ; } }
23459 \tl_const:Nn \c__fp_empty_tuple_fp
23460 { \s__fp_tuple __fp_tuple_chk:w { } ; }

(End of definition for \s__fp_tuple , __fp_tuple_chk:w , and \c__fp_empty_tuple_fp.)

1031

__fp_tuple_count:w
__fp_array_count:n

__fp_tuple_count_loop:Nw

Count the number of items in a tuple of floating points by counting semicolons. The
technique is very similar to \tl_count:n, but with the loop built-in. Checking for the
end of the loop is done with the \use_none:n #1 construction.

23461 \cs_new:Npn __fp_array_count:n #1
23462 { __fp_tuple_count:w \s__fp_tuple __fp_tuple_chk:w {#1} ; }
23463 \cs_new:Npn __fp_tuple_count:w \s__fp_tuple __fp_tuple_chk:w #1 ;
23464 {
23465 \int_value:w __fp_int_eval:w 0
23466 __fp_tuple_count_loop:Nw #1 { ? \prg_break: } ;
23467 \prg_break_point:
23468 __fp_int_eval_end:
23469 }
23470 \cs_new:Npn __fp_tuple_count_loop:Nw #1#2;
23471 { \use_none:n #1 + 1 __fp_tuple_count_loop:Nw }

(End of definition for __fp_tuple_count:w , __fp_array_count:n , and __fp_tuple_count_loop:Nw.)

__fp_if_type_fp:NTwFw Used as __fp_if_type_fp:NTwFw ⟨marker⟩ {⟨true code⟩} \s__fp {⟨false code⟩} \s__-
fp_stop, this test whether the ⟨marker⟩ is \s__fp or not and runs the appropriate
⟨code⟩. The very unusual syntax is for optimization purposes as that function is used
for all floating point operations.

23472 \cs_new:Npn __fp_if_type_fp:NTwFw #1 \s__fp #2 #3 \s__fp_stop {#2}

(End of definition for __fp_if_type_fp:NTwFw.)

__fp_array_if_all_fp:nTF
__fp_array_if_all_fp_loop:w

True if all items are floating point numbers. Used for min.
23473 \cs_new:Npn __fp_array_if_all_fp:nTF #1
23474 {
23475 __fp_array_if_all_fp_loop:w #1 { \s__fp \prg_break: } ;
23476 \prg_break_point: \use_i:nn
23477 }
23478 \cs_new:Npn __fp_array_if_all_fp_loop:w #1#2 ;
23479 {
23480 __fp_if_type_fp:NTwFw
23481 #1 __fp_array_if_all_fp_loop:w
23482 \s__fp { \prg_break:n \use_iii:nnn }
23483 \s__fp_stop
23484 }

(End of definition for __fp_array_if_all_fp:nTF and __fp_array_if_all_fp_loop:w.)

__fp_type_from_scan:N
__fp_type_from_scan_other:N

__fp_type_from_scan:w

Used as __fp_type_from_scan:N ⟨token⟩. Grabs the pieces of the stringified ⟨token⟩
which lies after the first s__fp. If the ⟨token⟩ does not contain that string, the result is
_?.

23485 \cs_new:Npn __fp_type_from_scan:N #1
23486 {
23487 __fp_if_type_fp:NTwFw
23488 #1 { }
23489 \s__fp { __fp_type_from_scan_other:N #1 }
23490 \s__fp_stop
23491 }
23492 \cs_new:Npe __fp_type_from_scan_other:N #1
23493 {
23494 \exp_not:N \exp_after:wN \exp_not:N __fp_type_from_scan:w

1032

23495 \exp_not:N \token_to_str:N #1 \s__fp_mark
23496 \tl_to_str:n { s__fp _? } \s__fp_mark \s__fp_stop
23497 }
23498 \exp_last_unbraced:NNNNo
23499 \cs_new:Npn __fp_type_from_scan:w #1
23500 { \tl_to_str:n { s__fp } } #2 \s__fp_mark #3 \s__fp_stop {#2}

(End of definition for __fp_type_from_scan:N , __fp_type_from_scan_other:N , and __fp_type_-
from_scan:w.)

__fp_change_func_type:NNN
__fp_change_func_type_aux:w

__fp_change_func_type_chk:NNN

Arguments are ⟨type marker⟩ ⟨function⟩ ⟨recovery⟩. This gives the function obtained
by placing the type after @@. If the function is not defined then ⟨recovery⟩ ⟨function⟩
is used instead; however that test is not run when the ⟨type marker⟩ is \s__fp.

23501 \cs_new:Npn __fp_change_func_type:NNN #1#2#3
23502 {
23503 __fp_if_type_fp:NTwFw
23504 #1 #2
23505 \s__fp
23506 {
23507 \exp_after:wN __fp_change_func_type_chk:NNN
23508 \cs:w
23509 __fp __fp_type_from_scan_other:N #1
23510 \exp_after:wN __fp_change_func_type_aux:w \token_to_str:N #2
23511 \cs_end:
23512 #2 #3
23513 }
23514 \s__fp_stop
23515 }
23516 \exp_last_unbraced:NNNNo
23517 \cs_new:Npn __fp_change_func_type_aux:w #1 { \tl_to_str:n { __fp } } { }
23518 \cs_new:Npn __fp_change_func_type_chk:NNN #1#2#3
23519 {
23520 \if_meaning:w \scan_stop: #1
23521 \exp_after:wN #3 \exp_after:wN #2
23522 \else:
23523 \exp_after:wN #1
23524 \fi:
23525 }

(End of definition for __fp_change_func_type:NNN , __fp_change_func_type_aux:w , and __fp_-
change_func_type_chk:NNN.)

__fp_exp_after_any_f:Nnw
__fp_exp_after_any_f:nw

__fp_exp_after_expr_stop_f:nw

The Nnw function simply dispatches to the appropriate __fp_exp_after..._f:nw with
“. . . ” (either empty or _⟨type⟩) extracted from #1, which should start with \s__fp. If
it doesn’t start with \s__fp the function __fp_exp_after_?_f:nw defined in l3fp-parse
gives an error; another special ⟨type⟩ is stop, useful for loops, see below. The nw function
has an important optimization for floating points numbers; it also fetches its type marker
#2 from the floating point.

23526 \cs_new:Npn __fp_exp_after_any_f:Nnw #1
23527 { \cs:w __fp_exp_after __fp_type_from_scan_other:N #1 _f:nw \cs_end: }
23528 \cs_new:Npn __fp_exp_after_any_f:nw #1#2
23529 {
23530 __fp_if_type_fp:NTwFw
23531 #2 __fp_exp_after_f:nw

1033

23532 \s__fp { __fp_exp_after_any_f:Nnw #2 }
23533 \s__fp_stop
23534 {#1} #2
23535 }
23536 \cs_new_eq:NN __fp_exp_after_expr_stop_f:nw \use_none:nn

(End of definition for __fp_exp_after_any_f:Nnw , __fp_exp_after_any_f:nw , and __fp_exp_-
after_expr_stop_f:nw.)

__fp_exp_after_tuple_o:w
__fp_exp_after_tuple_f:nw
__fp_exp_after_array_f:w

The loop works by using the n argument of __fp_exp_after_any_f:nw to place the
loop macro after the next item in the tuple and expand it.

__fp_exp_after_array_f:w
⟨fp1⟩ ;
. . .
⟨fpn⟩ ;
\s__fp_expr_stop

23537 \cs_new:Npn __fp_exp_after_tuple_o:w
23538 { __fp_exp_after_tuple_f:nw { \exp_after:wN \exp_stop_f: } }
23539 \cs_new:Npn __fp_exp_after_tuple_f:nw
23540 #1 \s__fp_tuple __fp_tuple_chk:w #2 ;
23541 {
23542 \exp_after:wN \s__fp_tuple
23543 \exp_after:wN __fp_tuple_chk:w
23544 \exp_after:wN {
23545 \exp:w \exp_end_continue_f:w
23546 __fp_exp_after_array_f:w #2 \s__fp_expr_stop
23547 \exp_after:wN }
23548 \exp_after:wN ;
23549 \exp:w \exp_end_continue_f:w #1
23550 }
23551 \cs_new:Npn __fp_exp_after_array_f:w
23552 { __fp_exp_after_any_f:nw { __fp_exp_after_array_f:w } }

(End of definition for __fp_exp_after_tuple_o:w , __fp_exp_after_tuple_f:nw , and __fp_exp_-
after_array_f:w.)

68.8 Packing digits
When a positive integer #1 is known to be less than 108, the following trick splits it into
two blocks of 4 digits, padding with zeros on the left.

\cs_new:Npn \pack:NNNNNw #1 #2#3#4#5 #6; { {#2#3#4#5} {#6} }
\exp_after:wN \pack:NNNNNw
__fp_int_value:w __fp_int_eval:w 1 0000 0000 + #1 ;

The idea is that adding 108 to the number ensures that it has exactly 9 digits, and can
then easily find which digits correspond to what position in the number. Of course, this
can be modified for any number of digits less or equal to 9 (we are limited by TEX’s
integers). This method is very heavily relied upon in l3fp-basics.

More specifically, the auxiliary inserts + #1#2#3#4#5 ; {#6}, which allows us to
compute several blocks of 4 digits in a nested manner, performing carries on the fly. Say
we want to compute 1 2345 × 6677 8899. With simplified names, we would do

1034

\exp_after:wN \post_processing:w
__fp_int_value:w __fp_int_eval:w - 5 0000
\exp_after:wN \pack:NNNNNw
__fp_int_value:w __fp_int_eval:w 4 9995 0000
+ 12345 * 6677
\exp_after:wN \pack:NNNNNw
__fp_int_value:w __fp_int_eval:w 5 0000 0000
+ 12345 * 8899 ;

The \exp_after:wN triggers \int_value:w __fp_int_eval:w, which starts a first com-
putation, whose initial value is −5 0000 (the “leading shift”). In that computation appears
an \exp_after:wN, which triggers the nested computation \int_value:w __fp_int_-
eval:w with starting value 4 9995 0000 (the “middle shift”). That, in turn, expands
\exp_after:wN which triggers the third computation. The third computation’s value is
5 0000 0000 + 12345 × 8899, which has 9 digits. Adding 5 · 108 to the product allowed
us to know how many digits to expect as long as the numbers to multiply are not too
big; it also works to some extent with negative results. The pack function puts the last
4 of those 9 digits into a brace group, moves the semi-colon delimiter, and inserts a +,
which combines the carry with the previous computation. The shifts nicely combine into
5 0000 0000/104 + 4 9995 0000 = 5 0000 0000. As long as the operands are in some range,
the result of this second computation has 9 digits. The corresponding pack function,
expanded after the result is computed, braces the last 4 digits, and leaves + ⟨5 digits⟩
for the initial computation. The “leading shift” cancels the combination of the other
shifts, and the \post_processing:w takes care of packing the last few digits.

Admittedly, this is quite intricate. It is probably the key in making l3fp as fast as
other pure TEX floating point units despite its increased precision. In fact, this is used so
much that we provide different sets of packing functions and shifts, depending on ranges
of input.

__fp_pack:NNNNNw
\c__fp_trailing_shift_int

\c__fp_middle_shift_int
\c__fp_leading_shift_int

This set of shifts allows for computations involving results in the range [−4·108, 5·108−1].
Shifted values all have exactly 9 digits.

23553 \int_const:Nn \c__fp_leading_shift_int { - 5 0000 }
23554 \int_const:Nn \c__fp_middle_shift_int { 5 0000 * 9999 }
23555 \int_const:Nn \c__fp_trailing_shift_int { 5 0000 * 10000 }
23556 \cs_new:Npn __fp_pack:NNNNNw #1 #2#3#4#5 #6; { + #1#2#3#4#5 ; {#6} }

(End of definition for __fp_pack:NNNNNw and others.)

__fp_pack_big:NNNNNNw
\c__fp_big_trailing_shift_int

\c__fp_big_middle_shift_int
\c__fp_big_leading_shift_int

This set of shifts allows for computations involving results in the range [−5·108, 6·108 −1]
(actually a bit more). Shifted values all have exactly 10 digits. Note that the upper
bound is due to TEX’s limit of 231 − 1 on integers. The shifts are chosen to be roughly
the mid-point of 109 and 231, the two bounds on 10-digit integers in TEX.

23557 \int_const:Nn \c__fp_big_leading_shift_int { - 15 2374 }
23558 \int_const:Nn \c__fp_big_middle_shift_int { 15 2374 * 9999 }
23559 \int_const:Nn \c__fp_big_trailing_shift_int { 15 2374 * 10000 }
23560 \cs_new:Npn __fp_pack_big:NNNNNNw #1#2 #3#4#5#6 #7;
23561 { + #1#2#3#4#5#6 ; {#7} }

(End of definition for __fp_pack_big:NNNNNNw and others.)

1035

__fp_pack_Bigg:NNNNNNw
\c__fp_Bigg_trailing_shift_int

\c__fp_Bigg_middle_shift_int
\c__fp_Bigg_leading_shift_int

This set of shifts allows for computations with results in the range [−1 · 109, 147483647];
the end-point is 231 − 1 − 2 · 109 ≃ 1.47 · 108. Shifted values all have exactly 10 digits.

23562 \int_const:Nn \c__fp_Bigg_leading_shift_int { - 20 0000 }
23563 \int_const:Nn \c__fp_Bigg_middle_shift_int { 20 0000 * 9999 }
23564 \int_const:Nn \c__fp_Bigg_trailing_shift_int { 20 0000 * 10000 }
23565 \cs_new:Npn __fp_pack_Bigg:NNNNNNw #1#2 #3#4#5#6 #7;
23566 { + #1#2#3#4#5#6 ; {#7} }

(End of definition for __fp_pack_Bigg:NNNNNNw and others.)

__fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN ⟨tokens⟩ ; ⟨≥ 8 digits⟩
Grabs two sets of 4 digits and places them before the semi-colon delimiter. Putting

several copies of this function before a semicolon packs more digits since each takes the
digits packed by the others in its first argument.

23567 \cs_new:Npn __fp_pack_twice_four:wNNNNNNNN #1; #2#3#4#5 #6#7#8#9
23568 { #1 {#2#3#4#5} {#6#7#8#9} ; }

(End of definition for __fp_pack_twice_four:wNNNNNNNN.)

__fp_pack_eight:wNNNNNNNN __fp_pack_eight:wNNNNNNNN ⟨tokens⟩ ; ⟨≥ 8 digits⟩
Grabs one set of 8 digits and places them before the semi-colon delimiter as a single

group. Putting several copies of this function before a semicolon packs more digits since
each takes the digits packed by the others in its first argument.

23569 \cs_new:Npn __fp_pack_eight:wNNNNNNNN #1; #2#3#4#5 #6#7#8#9
23570 { #1 {#2#3#4#5#6#7#8#9} ; }

(End of definition for __fp_pack_eight:wNNNNNNNN.)

__fp_basics_pack_low:NNNNNw
__fp_basics_pack_high:NNNNNw
__fp_basics_pack_high_carry:w

Addition and multiplication of significands are done in two steps: first compute a (more or
less) exact result, then round and pack digits in the final (braced) form. These functions
take care of the packing, with special attention given to the case where rounding has
caused a carry. Since rounding can only shift the final digit by 1, a carry always produces
an exact power of 10. Thus, __fp_basics_pack_high_carry:w is always followed by
four times {0000}.

This is used in l3fp-basics and l3fp-extended.
23571 \cs_new:Npn __fp_basics_pack_low:NNNNNw #1 #2#3#4#5 #6;
23572 { + #1 - 1 ; {#2#3#4#5} {#6} ; }
23573 \cs_new:Npn __fp_basics_pack_high:NNNNNw #1 #2#3#4#5 #6;
23574 {
23575 \if_meaning:w 2 #1
23576 __fp_basics_pack_high_carry:w
23577 \fi:
23578 ; {#2#3#4#5} {#6}
23579 }
23580 \cs_new:Npn __fp_basics_pack_high_carry:w \fi: ; #1
23581 { \fi: + 1 ; {1000} }

(End of definition for __fp_basics_pack_low:NNNNNw , __fp_basics_pack_high:NNNNNw , and __fp_-
basics_pack_high_carry:w.)

1036

__fp_basics_pack_weird_low:NNNNw
__fp_basics_pack_weird_high:NNNNNNNNw

This is used in l3fp-basics for additions and divisions. Their syntax is confusing, hence
the name.

23582 \cs_new:Npn __fp_basics_pack_weird_low:NNNNw #1 #2#3#4 #5;
23583 {
23584 \if_meaning:w 2 #1
23585 + 1
23586 \fi:
23587 __fp_int_eval_end:
23588 #2#3#4; {#5} ;
23589 }
23590 \cs_new:Npn __fp_basics_pack_weird_high:NNNNNNNNw
23591 1 #1#2#3#4 #5#6#7#8 #9; { ; {#1#2#3#4} {#5#6#7#8} {#9} }

(End of definition for __fp_basics_pack_weird_low:NNNNw and __fp_basics_pack_weird_high:NNNNNNNNw.)

68.9 Decimate (dividing by a power of 10)

__fp_decimate:nNnnnn __fp_decimate:nNnnnn {⟨shift⟩} ⟨f1⟩
{⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩}

Each ⟨Xi⟩ consists in 4 digits exactly, and 1000 ≤ ⟨X1⟩ < 9999. The first argument
determines by how much we shift the digits. ⟨f1⟩ is called as follows:

⟨f1⟩ ⟨rounding⟩ {⟨X’1⟩} {⟨X’2⟩} ⟨extra-digits⟩ ;

where 0 ≤ ⟨X’i⟩ < 108 − 1 are 8 digit integers, forming the truncation of our number. In
other words,(4∑

i=1
⟨Xi⟩ · 10−4i · 10−⟨shift⟩

)
−
(
⟨X’1⟩·10−8+⟨X’2⟩·10−16) = 0.⟨extra-digits⟩·10−16 ∈ [0, 10−16).

To round properly later, we need to remember some information about the difference.
The ⟨rounding⟩ digit is 0 if and only if the difference is exactly 0, and 5 if and only if the
difference is exactly 0.5 · 10−16. Otherwise, it is the (non-0, non-5) digit closest to 1017

times the difference. In particular, if the shift is 17 or more, all the digits are dropped,
⟨rounding⟩ is 1 (not 0), and ⟨X’1⟩ and ⟨X’2⟩ are both zero.

If the shift is 1, the ⟨rounding⟩ digit is simply the only digit that was pushed out
of the brace groups (this is important for subtraction). It would be more natural for
the ⟨rounding⟩ digit to be placed after the ⟨X’i⟩, but the choice we make involves less
reshuffling.

Note that this function treats negative ⟨shift⟩ as 0.
23592 \cs_new:Npn __fp_decimate:nNnnnn #1
23593 {
23594 \cs:w
23595 __fp_decimate_
23596 \if_int_compare:w __fp_int_eval:w #1 > \c__fp_prec_int
23597 tiny
23598 \else:
23599 __fp_int_to_roman:w __fp_int_eval:w #1
23600 \fi:
23601 :Nnnnn
23602 \cs_end:
23603 }

1037

Each of the auxiliaries see the function ⟨f1⟩, followed by 4 blocks of 4 digits.

(End of definition for __fp_decimate:nNnnnn.)

__fp_decimate_:Nnnnn
__fp_decimate_tiny:Nnnnn

If the ⟨shift⟩ is zero, or too big, life is very easy.
23604 \cs_new:Npn __fp_decimate_:Nnnnn #1 #2#3#4#5
23605 { #1 0 {#2#3} {#4#5} ; }
23606 \cs_new:Npn __fp_decimate_tiny:Nnnnn #1 #2#3#4#5
23607 { #1 1 { 0000 0000 } { 0000 0000 } 0 #2#3#4#5 ; }

(End of definition for __fp_decimate_:Nnnnn and __fp_decimate_tiny:Nnnnn.)

__fp_decimate_auxi:Nnnnn
__fp_decimate_auxii:Nnnnn

__fp_decimate_auxiii:Nnnnn
__fp_decimate_auxiv:Nnnnn
__fp_decimate_auxv:Nnnnn
__fp_decimate_auxvi:Nnnnn

__fp_decimate_auxvii:Nnnnn
__fp_decimate_auxviii:Nnnnn
__fp_decimate_auxix:Nnnnn
__fp_decimate_auxx:Nnnnn
__fp_decimate_auxxi:Nnnnn

__fp_decimate_auxxii:Nnnnn
__fp_decimate_auxxiii:Nnnnn
__fp_decimate_auxxiv:Nnnnn
__fp_decimate_auxxv:Nnnnn

__fp_decimate_auxxvi:Nnnnn

__fp_decimate_auxi:Nnnnn ⟨f1⟩ {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩}
Shifting happens in two steps: compute the ⟨rounding⟩ digit, and repack digits into

two blocks of 8. The sixteen functions are very similar, and defined through __fp_-
tmp:w. The arguments are as follows: #1 indicates which function is being defined;
after one step of expansion, #2 yields the “extra digits” which are then converted by
__fp_round_digit:Nw to the ⟨rounding⟩ digit (note the + separating blocks of digits
to avoid overflowing TEX’s integers). This triggers the f-expansion of __fp_decimate_-
pack:nnnnnnnnnnw,10 responsible for building two blocks of 8 digits, and removing the
rest. For this to work, #3 alternates between braced and unbraced blocks of 4 digits, in
such a way that the 5 first and 5 next token groups yield the correct blocks of 8 digits.

23608 \cs_new:Npn __fp_tmp:w #1 #2 #3
23609 {
23610 \cs_new:cpn { __fp_decimate_ #1 :Nnnnn } ##1 ##2##3##4##5
23611 {
23612 \exp_after:wN ##1
23613 \int_value:w
23614 \exp_after:wN __fp_round_digit:Nw #2 ;
23615 __fp_decimate_pack:nnnnnnnnnnw #3 ;
23616 }
23617 }
23618 __fp_tmp:w {i} {\use_none:nnn #50}{ 0{#2}#3{#4}#5 }
23619 __fp_tmp:w {ii} {\use_none:nn #5 }{ 00{#2}#3{#4}#5 }
23620 __fp_tmp:w {iii} {\use_none:n #5 }{ 000{#2}#3{#4}#5 }
23621 __fp_tmp:w {iv} { #5 }{ {0000}#2{#3}#4 #5 }
23622 __fp_tmp:w {v} {\use_none:nnn #4#5 }{ 0{0000}#2{#3}#4 #5 }
23623 __fp_tmp:w {vi} {\use_none:nn #4#5 }{ 00{0000}#2{#3}#4 #5 }
23624 __fp_tmp:w {vii} {\use_none:n #4#5 }{ 000{0000}#2{#3}#4 #5 }
23625 __fp_tmp:w {viii}{ #4#5 }{ {0000}0000{#2}#3 #4 #5 }
23626 __fp_tmp:w {ix} {\use_none:nnn #3#4+#5}{ 0{0000}0000{#2}#3 #4 #5 }
23627 __fp_tmp:w {x} {\use_none:nn #3#4+#5}{ 00{0000}0000{#2}#3 #4 #5 }
23628 __fp_tmp:w {xi} {\use_none:n #3#4+#5}{ 000{0000}0000{#2}#3 #4 #5 }
23629 __fp_tmp:w {xii} { #3#4+#5}{ {0000}0000{0000}#2 #3 #4 #5 }
23630 __fp_tmp:w {xiii}{\use_none:nnn#2#3+#4#5}{ 0{0000}0000{0000}#2 #3 #4 #5 }
23631 __fp_tmp:w {xiv} {\use_none:nn #2#3+#4#5}{ 00{0000}0000{0000}#2 #3 #4 #5 }
23632 __fp_tmp:w {xv} {\use_none:n #2#3+#4#5}{ 000{0000}0000{0000}#2 #3 #4 #5 }
23633 __fp_tmp:w {xvi} { #2#3+#4#5}{{0000}0000{0000}0000 #2 #3 #4 #5}

(End of definition for __fp_decimate_auxi:Nnnnn and others.)

10No, the argument spec is not a mistake: the function calls an auxiliary to do half of the job.

1038

__fp_decimate_pack:nnnnnnnnnnw The computation of the ⟨rounding⟩ digit leaves an unfinished \int_value:w, which
expands the following functions. This allows us to repack nicely the digits we keep.
Those digits come as an alternation of unbraced and braced blocks of 4 digits, such that
the first 5 groups of token consist in 4 single digits, and one brace group (in some order),
and the next 5 have the same structure. This is followed by some digits and a semicolon.

23634 \cs_new:Npn __fp_decimate_pack:nnnnnnnnnnw #1#2#3#4#5
23635 { __fp_decimate_pack:nnnnnnw { #1#2#3#4#5 } }
23636 \cs_new:Npn __fp_decimate_pack:nnnnnnw #1 #2#3#4#5#6
23637 { {#1} {#2#3#4#5#6} }

(End of definition for __fp_decimate_pack:nnnnnnnnnnw.)

68.10 Functions for use within primitive conditional
branches

The functions described in this section are not pretty and can easily be misused. When
correctly used, each of them removes one \fi: as part of its parameter text, and puts
one back as part of its replacement text.

Many computation functions in l3fp must perform tests on the type of floating points
that they receive. This is often done in an \if_case:w statement or another conditional
statement, and only a few cases lead to actual computations: most of the special cases
are treated using a few standard functions which we define now. A typical use context
for those functions would be

\if_case:w ⟨integer⟩ \exp_stop_f:
__fp_case_return_o:Nw ⟨fp var⟩

\or: __fp_case_use:nw {⟨some computation⟩}
\or: __fp_case_return_same_o:w
\or: __fp_case_return:nw {⟨something⟩}
\fi:
⟨junk⟩
⟨floating point⟩

In this example, the case 0 returns the floating point ⟨fp var⟩, expanding once after
that floating point. Case 1 does ⟨some computation⟩ using the ⟨floating point⟩ (pre-
sumably compute the operation requested by the user in that non-trivial case). Case 2
returns the ⟨floating point⟩ without modifying it, removing the ⟨junk⟩ and expanding
once after. Case 3 closes the conditional, removes the ⟨junk⟩ and the ⟨floating point⟩,
and expands ⟨something⟩ next. In other cases, the “⟨junk⟩” is expanded, performing
some other operation on the ⟨floating point⟩. We provide similar functions with two
trailing ⟨floating points⟩.

__fp_case_use:nw This function ends a TEX conditional, removes junk until the next floating point, and
places its first argument before that floating point, to perform some operation on the
floating point.

23638 \cs_new:Npn __fp_case_use:nw #1#2 \fi: #3 \s__fp { \fi: #1 \s__fp }

(End of definition for __fp_case_use:nw.)

1039

__fp_case_return:nw This function ends a TEX conditional, removes junk and a floating point, and places its
first argument in the input stream. A quirk is that we don’t define this function requiring
a floating point to follow, simply anything ending in a semicolon. This, in turn, means
that the ⟨junk⟩ may not contain semicolons.

23639 \cs_new:Npn __fp_case_return:nw #1#2 \fi: #3 ; { \fi: #1 }

(End of definition for __fp_case_return:nw.)

__fp_case_return_o:Nw This function ends a TEX conditional, removes junk and a floating point, and returns its
first argument (an ⟨fp var⟩) then expands once after it.

23640 \cs_new:Npn __fp_case_return_o:Nw #1#2 \fi: #3 \s__fp #4 ;
23641 { \fi: \exp_after:wN #1 }

(End of definition for __fp_case_return_o:Nw.)

__fp_case_return_same_o:w This function ends a TEX conditional, removes junk, and returns the following floating
point, expanding once after it.

23642 \cs_new:Npn __fp_case_return_same_o:w #1 \fi: #2 \s__fp
23643 { \fi: __fp_exp_after_o:w \s__fp }

(End of definition for __fp_case_return_same_o:w.)

__fp_case_return_o:Nww Same as __fp_case_return_o:Nw but with two trailing floating points.
23644 \cs_new:Npn __fp_case_return_o:Nww #1#2 \fi: #3 \s__fp #4 ; #5 ;
23645 { \fi: \exp_after:wN #1 }

(End of definition for __fp_case_return_o:Nww.)

__fp_case_return_i_o:ww
__fp_case_return_ii_o:ww

Similar to __fp_case_return_same_o:w, but this returns the first or second of two
trailing floating point numbers, expanding once after the result.

23646 \cs_new:Npn __fp_case_return_i_o:ww #1 \fi: #2 \s__fp #3 ; \s__fp #4 ;
23647 { \fi: __fp_exp_after_o:w \s__fp #3 ; }
23648 \cs_new:Npn __fp_case_return_ii_o:ww #1 \fi: #2 \s__fp #3 ;
23649 { \fi: __fp_exp_after_o:w }

(End of definition for __fp_case_return_i_o:ww and __fp_case_return_ii_o:ww.)

68.11 Integer floating points
__fp_int_p:w
__fp_int:wTF

Tests if the floating point argument is an integer. For normal floating point numbers,
this holds if the rounding digit resulting from __fp_decimate:nNnnnn is 0.

23650 \prg_new_conditional:Npnn __fp_int:w \s__fp __fp_chk:w #1 #2 #3 #4;
23651 { TF , T , F , p }
23652 {
23653 \if_case:w #1 \exp_stop_f:
23654 \prg_return_true:
23655 \or:
23656 \if_charcode:w 0
23657 __fp_decimate:nNnnnn { \c__fp_prec_int - #3 }
23658 __fp_use_i_until_s:nw #4
23659 \prg_return_true:
23660 \else:
23661 \prg_return_false:

1040

23662 \fi:
23663 \else: \prg_return_false:
23664 \fi:
23665 }

(End of definition for __fp_int:wTF.)

68.12 Small integer floating points
__fp_small_int:wTF

__fp_small_int_true:wTF
__fp_small_int_normal:NnwTF
__fp_small_int_test:NnnwNTF

Tests if the floating point argument is an integer or ±∞. If so, it is clipped to an integer
in the range [−108, 108] and fed as a braced argument to the ⟨true code⟩. Otherwise,
the ⟨false code⟩ is performed.

First filter special cases: zeros and infinities are integers, nan is not. For normal
numbers, decimate. If the rounding digit is not 0 run the ⟨false code⟩. If it is, then
the integer is #2 #3; use #3 if #2 vanishes and otherwise 108.

23666 \cs_new:Npn __fp_small_int:wTF \s__fp __fp_chk:w #1#2
23667 {
23668 \if_case:w #1 \exp_stop_f:
23669 __fp_case_return:nw { __fp_small_int_true:wTF 0 ; }
23670 \or: \exp_after:wN __fp_small_int_normal:NnwTF
23671 \or:
23672 __fp_case_return:nw
23673 {
23674 \exp_after:wN __fp_small_int_true:wTF \int_value:w
23675 \if_meaning:w 2 #2 - \fi: 1 0000 0000 ;
23676 }
23677 \else: __fp_case_return:nw \use_ii:nn
23678 \fi:
23679 #2
23680 }
23681 \cs_new:Npn __fp_small_int_true:wTF #1; #2#3 { #2 {#1} }
23682 \cs_new:Npn __fp_small_int_normal:NnwTF #1#2#3;
23683 {
23684 __fp_decimate:nNnnnn { \c__fp_prec_int - #2 }
23685 __fp_small_int_test:NnnwNw
23686 #3 #1
23687 }
23688 \cs_new:Npn __fp_small_int_test:NnnwNw #1#2#3#4; #5
23689 {
23690 \if_meaning:w 0 #1
23691 \exp_after:wN __fp_small_int_true:wTF
23692 \int_value:w \if_meaning:w 2 #5 - \fi:
23693 \if_int_compare:w #2 > \c_zero_int
23694 1 0000 0000
23695 \else:
23696 #3
23697 \fi:
23698 \exp_after:wN ;
23699 \else:
23700 \exp_after:wN \use_ii:nn
23701 \fi:
23702 }

(End of definition for __fp_small_int:wTF and others.)

1041

68.13 Fast string comparison
__fp_str_if_eq:nn A private version of the low-level string comparison function.

23703 \cs_new_eq:NN __fp_str_if_eq:nn \tex_strcmp:D

(End of definition for __fp_str_if_eq:nn.)

68.14 Name of a function from its l3fp-parse name
__fp_func_to_name:N

__fp_func_to_name_aux:w
The goal is to convert for instance __fp_sin_o:w to sin. This is used in error messages
hence does not need to be fast.

23704 \cs_new:Npn __fp_func_to_name:N #1
23705 {
23706 \exp_last_unbraced:Nf
23707 __fp_func_to_name_aux:w { \cs_to_str:N #1 } X
23708 }
23709 \cs_set_protected:Npn __fp_tmp:w #1 #2
23710 { \cs_new:Npn __fp_func_to_name_aux:w ##1 #1 ##2 #2 ##3 X {##2} }
23711 \exp_args:Nff __fp_tmp:w { \tl_to_str:n { __fp_ } }
23712 { \tl_to_str:n { _o: } }

(End of definition for __fp_func_to_name:N and __fp_func_to_name_aux:w.)

68.15 Messages
Using a floating point directly is an error.

23713 \msg_new:nnnn { fp } { misused }
23714 { A~floating~point~with~value~’#1’~was~misused. }
23715 {
23716 To~obtain~the~value~of~a~floating~point~variable,~use~
23717 ’\token_to_str:N \fp_to_decimal:N’,~
23718 ’\token_to_str:N \fp_to_tl:N’,~or~other~
23719 conversion~functions.
23720 }
23721 \prop_gput:Nnn \g_msg_module_name_prop { fp } { LaTeX }
23722 \prop_gput:Nnn \g_msg_module_type_prop { fp } { }

23723 ⟨/package⟩

1042

Chapter 69

l3fp-traps implementation

23724 ⟨∗package⟩

23725 ⟨@@=fp⟩

Exceptions should be accessed by an n-type argument, among
• invalid_operation

• division_by_zero

• overflow

• underflow

• inexact (actually never used).

69.1 Flags
\l_fp_invalid_operation_flag
\l_fp_division_by_zero_flag

\l_fp_overflow_flag
\l_fp_underflow_flag

Flags to denote exceptions.
23726 \flag_new:N \l_fp_invalid_operation_flag
23727 \flag_new:N \l_fp_division_by_zero_flag
23728 \flag_new:N \l_fp_overflow_flag
23729 \flag_new:N \l_fp_underflow_flag

(End of definition for \l_fp_invalid_operation_flag and others. These variables are documented on
page 275.)

69.2 Traps
Exceptions can be trapped to obtain custom behaviour. When an invalid operation or a
division by zero is trapped, the trap receives as arguments the result as an N-type floating
point number, the function name (multiple letters for prefix operations, or a single symbol
for infix operations), and the operand(s). When an overflow or underflow is trapped, the
trap receives the resulting overly large or small floating point number if it is not too big,
otherwise it receives +∞. Currently, the inexact exception is entirely ignored.

The behaviour when an exception occurs is controlled by the definitions of the func-
tions

• __fp_invalid_operation:nnw,

1043

• __fp_invalid_operation_o:Nww,

• __fp_invalid_operation_tl_o:ff,

• __fp_division_by_zero_o:Nnw,

• __fp_division_by_zero_o:NNww,

• __fp_overflow:w,

• __fp_underflow:w.

Rather than changing them directly, we provide a user interface as \fp_trap:nn
{⟨exception⟩} {⟨way of trapping⟩}, where the ⟨way of trapping⟩ is one of error, flag,
or none.

We also provide __fp_invalid_operation_o:nw, defined in terms of __fp_-
invalid_operation:nnw.

\fp_trap:nn

23730 \cs_new_protected:Npn \fp_trap:nn #1#2
23731 {
23732 \cs_if_exist_use:cF { __fp_trap_#1_set_#2: }
23733 {
23734 \clist_if_in:nnTF
23735 { invalid_operation , division_by_zero , overflow , underflow }
23736 {#1}
23737 {
23738 \msg_error:nnee { fp }
23739 { unknown-fpu-trap-type } {#1} {#2}
23740 }
23741 {
23742 \msg_error:nne
23743 { fp } { unknown-fpu-exception } {#1}
23744 }
23745 }
23746 }

(End of definition for \fp_trap:nn. This function is documented on page 275.)

__fp_trap_invalid_operation_set_error:
__fp_trap_invalid_operation_set_flag:
__fp_trap_invalid_operation_set_none:

__fp_trap_invalid_operation_set:N

We provide three types of trapping for invalid operations: either produce an error and
raise the relevant flag; or only raise the flag; or don’t even raise the flag. In most cases,
the function produces as a result its first argument, possibly with post-expansion.

23747 \cs_new_protected:Npn __fp_trap_invalid_operation_set_error:
23748 { __fp_trap_invalid_operation_set:N \prg_do_nothing: }
23749 \cs_new_protected:Npn __fp_trap_invalid_operation_set_flag:
23750 { __fp_trap_invalid_operation_set:N \use_none:nnnnn }
23751 \cs_new_protected:Npn __fp_trap_invalid_operation_set_none:
23752 { __fp_trap_invalid_operation_set:N \use_none:nnnnnnn }
23753 \cs_new_protected:Npn __fp_trap_invalid_operation_set:N #1
23754 {
23755 \exp_args:Nno \use:n
23756 { \cs_set:Npn __fp_invalid_operation:nnw ##1##2##3; }
23757 {
23758 #1
23759 __fp_error:nnfn { invalid } {##2} { \fp_to_tl:n { ##3; } } { }

1044

23760 \flag_ensure_raised:N \l_fp_invalid_operation_flag
23761 ##1
23762 }
23763 \exp_args:Nno \use:n
23764 { \cs_set:Npn __fp_invalid_operation_o:Nww ##1##2; ##3; }
23765 {
23766 #1
23767 __fp_error:nffn { invalid-ii }
23768 { \fp_to_tl:n { ##2; } } { \fp_to_tl:n { ##3; } } {##1}
23769 \flag_ensure_raised:N \l_fp_invalid_operation_flag
23770 \exp_after:wN \c_nan_fp
23771 }
23772 \exp_args:Nno \use:n
23773 { \cs_set:Npn __fp_invalid_operation_tl_o:ff ##1##2 }
23774 {
23775 #1
23776 __fp_error:nffn { invalid } {##1} {##2} { }
23777 \flag_ensure_raised:N \l_fp_invalid_operation_flag
23778 \exp_after:wN \c_nan_fp
23779 }
23780 }

(End of definition for __fp_trap_invalid_operation_set_error: and others.)

__fp_trap_division_by_zero_set_error:
__fp_trap_division_by_zero_set_flag:
__fp_trap_division_by_zero_set_none:

__fp_trap_division_by_zero_set:N

We provide three types of trapping for invalid operations and division by zero: either
produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the
flag. In all cases, the function must produce a result, namely its first argument, ±∞ or
nan.

23781 \cs_new_protected:Npn __fp_trap_division_by_zero_set_error:
23782 { __fp_trap_division_by_zero_set:N \prg_do_nothing: }
23783 \cs_new_protected:Npn __fp_trap_division_by_zero_set_flag:
23784 { __fp_trap_division_by_zero_set:N \use_none:nnnnn }
23785 \cs_new_protected:Npn __fp_trap_division_by_zero_set_none:
23786 { __fp_trap_division_by_zero_set:N \use_none:nnnnnnn }
23787 \cs_new_protected:Npn __fp_trap_division_by_zero_set:N #1
23788 {
23789 \exp_args:Nno \use:n
23790 { \cs_set:Npn __fp_division_by_zero_o:Nnw ##1##2##3; }
23791 {
23792 #1
23793 __fp_error:nnfn { zero-div } {##2} { \fp_to_tl:n { ##3; } } { }
23794 \flag_ensure_raised:N \l_fp_division_by_zero_flag
23795 \exp_after:wN ##1
23796 }
23797 \exp_args:Nno \use:n
23798 { \cs_set:Npn __fp_division_by_zero_o:NNww ##1##2##3; ##4; }
23799 {
23800 #1
23801 __fp_error:nffn { zero-div-ii }
23802 { \fp_to_tl:n { ##3; } } { \fp_to_tl:n { ##4; } } {##2}
23803 \flag_ensure_raised:N \l_fp_division_by_zero_flag
23804 \exp_after:wN ##1
23805 }
23806 }

1045

(End of definition for __fp_trap_division_by_zero_set_error: and others.)

__fp_trap_overflow_set_error:
__fp_trap_overflow_set_flag:
__fp_trap_overflow_set_none:

__fp_trap_overflow_set:N
__fp_trap_underflow_set_error:
__fp_trap_underflow_set_flag:
__fp_trap_underflow_set_none:

__fp_trap_underflow_set:N
__fp_trap_overflow_set:NnNn

Just as for invalid operations and division by zero, the three different behaviours are
obtained by feeding \prg_do_nothing:, \use_none:nnnnn or \use_none:nnnnnnn to an
auxiliary, with a further auxiliary common to overflow and underflow functions. In most
cases, the argument of the __fp_overflow:w and __fp_underflow:w functions will
be an (almost) normal number (with an exponent outside the allowed range), and the
error message thus displays that number together with the result to which it overflowed
or underflowed. For extreme cases such as 10 ** 1e9999, the exponent would be too
large for TEX, and __fp_overflow:w receives ±∞ (__fp_underflow:w would receive
±0); then we cannot do better than simply say an overflow or underflow occurred.

23807 \cs_new_protected:Npn __fp_trap_overflow_set_error:
23808 { __fp_trap_overflow_set:N \prg_do_nothing: }
23809 \cs_new_protected:Npn __fp_trap_overflow_set_flag:
23810 { __fp_trap_overflow_set:N \use_none:nnnnn }
23811 \cs_new_protected:Npn __fp_trap_overflow_set_none:
23812 { __fp_trap_overflow_set:N \use_none:nnnnnnn }
23813 \cs_new_protected:Npn __fp_trap_overflow_set:N #1
23814 { __fp_trap_overflow_set:NnNn #1 { overflow } __fp_inf_fp:N { inf } }
23815 \cs_new_protected:Npn __fp_trap_underflow_set_error:
23816 { __fp_trap_underflow_set:N \prg_do_nothing: }
23817 \cs_new_protected:Npn __fp_trap_underflow_set_flag:
23818 { __fp_trap_underflow_set:N \use_none:nnnnn }
23819 \cs_new_protected:Npn __fp_trap_underflow_set_none:
23820 { __fp_trap_underflow_set:N \use_none:nnnnnnn }
23821 \cs_new_protected:Npn __fp_trap_underflow_set:N #1
23822 { __fp_trap_overflow_set:NnNn #1 { underflow } __fp_zero_fp:N { 0 } }
23823 \cs_new_protected:Npn __fp_trap_overflow_set:NnNn #1#2#3#4
23824 {
23825 \exp_args:Nno \use:n
23826 { \cs_set:cpn { __fp_ #2 :w } \s__fp __fp_chk:w ##1##2##3; }
23827 {
23828 #1
23829 __fp_error:nffn
23830 { flow \if_meaning:w 1 ##1 -to \fi: }
23831 { \fp_to_tl:n { \s__fp __fp_chk:w ##1##2##3; } }
23832 { \token_if_eq_meaning:NNF 0 ##2 { - } #4 }
23833 {#2}
23834 \flag_ensure_raised:c { l_fp_#2_flag }
23835 #3 ##2
23836 }
23837 }

(End of definition for __fp_trap_overflow_set_error: and others.)

__fp_invalid_operation:nnw
__fp_invalid_operation_o:Nww

__fp_invalid_operation_tl_o:ff
__fp_division_by_zero_o:Nnw

__fp_division_by_zero_o:NNww
__fp_overflow:w
__fp_underflow:w

Initialize the control sequences (to log properly their existence). Then set invalid opera-
tions to trigger an error, and division by zero, overflow, and underflow to act silently on
their flag.

23838 \cs_new:Npn __fp_invalid_operation:nnw #1#2#3; { }
23839 \cs_new:Npn __fp_invalid_operation_o:Nww #1#2; #3; { }
23840 \cs_new:Npn __fp_invalid_operation_tl_o:ff #1 #2 { }
23841 \cs_new:Npn __fp_division_by_zero_o:Nnw #1#2#3; { }
23842 \cs_new:Npn __fp_division_by_zero_o:NNww #1#2#3; #4; { }

1046

23843 \cs_new:Npn __fp_overflow:w { }
23844 \cs_new:Npn __fp_underflow:w { }
23845 \fp_trap:nn { invalid_operation } { error }
23846 \fp_trap:nn { division_by_zero } { flag }
23847 \fp_trap:nn { overflow } { flag }
23848 \fp_trap:nn { underflow } { flag }

(End of definition for __fp_invalid_operation:nnw and others.)

__fp_invalid_operation_o:nw
__fp_invalid_operation_o:fw

Convenient short-hands for returning \c_nan_fp for a unary or binary operation, and
expanding after.

23849 \cs_new:Npn __fp_invalid_operation_o:nw
23850 { __fp_invalid_operation:nnw { \exp_after:wN \c_nan_fp } }
23851 \cs_generate_variant:Nn __fp_invalid_operation_o:nw { f }

(End of definition for __fp_invalid_operation_o:nw.)

69.3 Errors
__fp_error:nnnn
__fp_error:nnfn
__fp_error:nffn
__fp_error:nfff

23852 \cs_new:Npn __fp_error:nnnn
23853 { \msg_expandable_error:nnnnn { fp } }
23854 \cs_generate_variant:Nn __fp_error:nnnn { nnf, nff , nfff }

(End of definition for __fp_error:nnnn.)

69.4 Messages
Some messages.

23855 \msg_new:nnnn { fp } { unknown-fpu-exception }
23856 {
23857 The~FPU~exception~’#1’~is~not~known:~
23858 that~trap~will~never~be~triggered.
23859 }
23860 {
23861 The~only~exceptions~to~which~traps~can~be~attached~are \\
23862 \iow_indent:n
23863 {
23864 * ~ invalid_operation \\
23865 * ~ division_by_zero \\
23866 * ~ overflow \\
23867 * ~ underflow
23868 }
23869 }
23870 \msg_new:nnnn { fp } { unknown-fpu-trap-type }
23871 { The~FPU~trap~type~’#2’~is~not~known. }
23872 {
23873 The~trap~type~must~be~one~of \\
23874 \iow_indent:n
23875 {
23876 * ~ error \\
23877 * ~ flag \\

1047

23878 * ~ none
23879 }
23880 }
23881 \msg_new:nnn { fp } { flow }
23882 { An ~ #3 ~ occurred. }
23883 \msg_new:nnn { fp } { flow-to }
23884 { #1 ~ #3 ed ~ to ~ #2 . }
23885 \msg_new:nnn { fp } { zero-div }
23886 { Division~by~zero~in~ #1 (#2) }
23887 \msg_new:nnn { fp } { zero-div-ii }
23888 { Division~by~zero~in~ (#1) #3 (#2) }
23889 \msg_new:nnn { fp } { invalid }
23890 { Invalid~operation~ #1 (#2) }
23891 \msg_new:nnn { fp } { invalid-ii }
23892 { Invalid~operation~ (#1) #3 (#2) }
23893 \msg_new:nnn { fp } { unknown-type }
23894 { Unknown~type~for~’#1’ }

23895 ⟨/package⟩

1048

Chapter 70

l3fp-round implementation

23896 ⟨∗package⟩

23897 ⟨@@=fp⟩

__fp_parse_word_trunc:N
__fp_parse_word_floor:N
__fp_parse_word_ceil:N

23898 \cs_new:Npn __fp_parse_word_trunc:N
23899 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_zero:NNN }
23900 \cs_new:Npn __fp_parse_word_floor:N
23901 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_ninf:NNN }
23902 \cs_new:Npn __fp_parse_word_ceil:N
23903 { __fp_parse_function:NNN __fp_round_o:Nw __fp_round_to_pinf:NNN }

(End of definition for __fp_parse_word_trunc:N , __fp_parse_word_floor:N , and __fp_parse_-
word_ceil:N.)

__fp_parse_word_round:N
__fp_parse_round:Nw 23904 \cs_new:Npn __fp_parse_word_round:N #1#2

23905 {
23906 __fp_parse_function:NNN
23907 __fp_round_o:Nw __fp_round_to_nearest:NNN #1
23908 #2
23909 }
23910 \cs_new:Npn __fp_parse_round:Nw #1 #2 __fp_round_to_nearest:NNN #3#4
23911 { #2 #1 #3 }
23912

(End of definition for __fp_parse_word_round:N and __fp_parse_round:Nw.)

70.1 Rounding tools
\c__fp_five_int This is used as the half-point for which numbers are rounded up/down.

23913 \int_const:Nn \c__fp_five_int { 5 }

(End of definition for \c__fp_five_int.)
Floating point operations often yield a result that cannot be exactly represented

in a significand with 16 digits. In that case, we need to round the exact result to a
representable number. The ieee standard defines four rounding modes:

1049

• Round to nearest: round to the representable floating point number whose absolute
difference with the exact result is the smallest. If the exact result lies exactly at the
mid-point between two consecutive representable floating point numbers, round to
the floating point number whose last digit is even.

• Round towards negative infinity: round to the greatest floating point number not
larger than the exact result.

• Round towards zero: round to a floating point number with the same sign as the
exact result, with the largest absolute value not larger than the absolute value of
the exact result.

• Round towards positive infinity: round to the least floating point number not
smaller than the exact result.

This is not fully implemented in l3fp yet, and transcendental functions fall back on the
“round to nearest” mode. All rounding for basic algebra is done through the functions
defined in this module, which can be redefined to change their rounding behaviour (but
there is not interface for that yet).

The rounding tools available in this module are many variations on a base function
__fp_round:NNN, which expands to 0\exp_stop_f: or 1\exp_stop_f: depending on
whether the final result should be rounded up or down.

• __fp_round:NNN ⟨sign⟩ ⟨digit1⟩ ⟨digit2⟩ can expand to 0\exp_stop_f: or
1\exp_stop_f:.

• __fp_round_s:NNNw ⟨sign⟩ ⟨digit1⟩ ⟨digit2⟩ ⟨more digits⟩; can expand to
0\exp_stop_f:; or 1\exp_stop_f:;.

• __fp_round_neg:NNN ⟨sign⟩ ⟨digit1⟩ ⟨digit2⟩ can expand to 0\exp_stop_f:
or 1\exp_stop_f:.

See implementation comments for details on the syntax.

__fp_round:NNN
__fp_round_to_nearest:NNN

__fp_round_to_nearest_ninf:NNN
__fp_round_to_nearest_zero:NNN
__fp_round_to_nearest_pinf:NNN

__fp_round_to_ninf:NNN
__fp_round_to_zero:NNN
__fp_round_to_pinf:NNN

__fp_round:NNN ⟨final sign⟩ ⟨digit1⟩ ⟨digit2⟩
If rounding the number ⟨final sign⟩⟨digit1⟩.⟨digit2⟩ to an integer rounds it to-

wards zero (truncates it), this function expands to 0\exp_stop_f:, and otherwise to
1\exp_stop_f:. Typically used within the scope of an __fp_int_eval:w, to add 1 if
needed, and thereby round correctly. The result depends on the rounding mode.

It is very important that ⟨final sign⟩ be the final sign of the result. Otherwise,
the result would be incorrect in the case of rounding towards −∞ or towards +∞. Also
recall that ⟨final sign⟩ is 0 for positive, and 2 for negative.

By default, the functions below return 0\exp_stop_f:, but this is superseded by
__fp_round_return_one:, which instead returns 1\exp_stop_f:, expanding every-
thing and removing 0\exp_stop_f: in the process. In the case of rounding towards ±∞
or towards 0, this is not really useful, but it prepares us for the “round to nearest, ties
to even” mode.

The “round to nearest” mode is the default. If the ⟨digit2⟩ is larger than 5, then
round up. If it is less than 5, round down. If it is exactly 5, then round such that
⟨digit1⟩ plus the result is even. In other words, round up if ⟨digit1⟩ is odd.

The “round to nearest” mode has three variants, which differ in how ties are rounded:
down towards −∞, truncated towards 0, or up towards +∞.

1050

23914 \cs_new:Npn __fp_round_return_one:
23915 { \exp_after:wN 1 \exp_after:wN \exp_stop_f: \exp:w }
23916 \cs_new:Npn __fp_round_to_ninf:NNN #1 #2 #3
23917 {
23918 \if_meaning:w 2 #1
23919 \if_int_compare:w #3 > \c_zero_int
23920 __fp_round_return_one:
23921 \fi:
23922 \fi:
23923 \c_zero_int
23924 }
23925 \cs_new:Npn __fp_round_to_zero:NNN #1 #2 #3 { \c_zero_int }
23926 \cs_new:Npn __fp_round_to_pinf:NNN #1 #2 #3
23927 {
23928 \if_meaning:w 0 #1
23929 \if_int_compare:w #3 > \c_zero_int
23930 __fp_round_return_one:
23931 \fi:
23932 \fi:
23933 \c_zero_int
23934 }
23935 \cs_new:Npn __fp_round_to_nearest:NNN #1 #2 #3
23936 {
23937 \if_int_compare:w #3 > \c__fp_five_int
23938 __fp_round_return_one:
23939 \else:
23940 \if_meaning:w 5 #3
23941 \if_int_odd:w #2 \exp_stop_f:
23942 __fp_round_return_one:
23943 \fi:
23944 \fi:
23945 \fi:
23946 \c_zero_int
23947 }
23948 \cs_new:Npn __fp_round_to_nearest_ninf:NNN #1 #2 #3
23949 {
23950 \if_int_compare:w #3 > \c__fp_five_int
23951 __fp_round_return_one:
23952 \else:
23953 \if_meaning:w 5 #3
23954 \if_meaning:w 2 #1
23955 __fp_round_return_one:
23956 \fi:
23957 \fi:
23958 \fi:
23959 \c_zero_int
23960 }
23961 \cs_new:Npn __fp_round_to_nearest_zero:NNN #1 #2 #3
23962 {
23963 \if_int_compare:w #3 > \c__fp_five_int
23964 __fp_round_return_one:
23965 \fi:
23966 \c_zero_int
23967 }

1051

23968 \cs_new:Npn __fp_round_to_nearest_pinf:NNN #1 #2 #3
23969 {
23970 \if_int_compare:w #3 > \c__fp_five_int
23971 __fp_round_return_one:
23972 \else:
23973 \if_meaning:w 5 #3
23974 \if_meaning:w 0 #1
23975 __fp_round_return_one:
23976 \fi:
23977 \fi:
23978 \fi:
23979 \c_zero_int
23980 }
23981 \cs_new_eq:NN __fp_round:NNN __fp_round_to_nearest:NNN

(End of definition for __fp_round:NNN and others.)

__fp_round_s:NNNw __fp_round_s:NNNw ⟨final sign⟩ ⟨digit⟩ ⟨more digits⟩ ;
Similar to __fp_round:NNN, but with an extra semicolon, this function expands to

0\exp_stop_f:; if rounding ⟨final sign⟩⟨digit⟩.⟨more digits⟩ to an integer trun-
cates, and to 1\exp_stop_f:; otherwise. The ⟨more digits⟩ part must be a digit,
followed by something that does not overflow a \int_use:N __fp_int_eval:w con-
struction. The only relevant information about this piece is whether it is zero or not.

23982 \cs_new:Npn __fp_round_s:NNNw #1 #2 #3 #4;
23983 {
23984 \exp_after:wN __fp_round:NNN
23985 \exp_after:wN #1
23986 \exp_after:wN #2
23987 \int_value:w __fp_int_eval:w
23988 \if_int_odd:w 0 \if_meaning:w 0 #3 1 \fi:
23989 \if_meaning:w 5 #3 1 \fi:
23990 \exp_stop_f:
23991 \if_int_compare:w __fp_int_eval:w #4 > \c_zero_int
23992 1 +
23993 \fi:
23994 \fi:
23995 #3
23996 ;
23997 }

(End of definition for __fp_round_s:NNNw.)

__fp_round_digit:Nw \int_value:w __fp_round_digit:Nw ⟨digit⟩ ⟨int expr⟩ ;
This function should always be called within an \int_value:w or __fp_int_eval:w

expansion; it may add an extra __fp_int_eval:w, which means that the integer or
integer expression should not be ended with a synonym of \relax, but with a semi-colon
for instance.

23998 \cs_new:Npn __fp_round_digit:Nw #1 #2;
23999 {
24000 \if_int_odd:w \if_meaning:w 0 #1 1 \else:
24001 \if_meaning:w 5 #1 1 \else:
24002 0 \fi: \fi: \exp_stop_f:
24003 \if_int_compare:w __fp_int_eval:w #2 > \c_zero_int
24004 __fp_int_eval:w 1 +

1052

24005 \fi:
24006 \fi:
24007 #1
24008 }

(End of definition for __fp_round_digit:Nw.)

__fp_round_neg:NNN
__fp_round_to_nearest_neg:NNN

__fp_round_to_nearest_ninf_neg:NNN
__fp_round_to_nearest_zero_neg:NNN
__fp_round_to_nearest_pinf_neg:NNN

__fp_round_to_ninf_neg:NNN
__fp_round_to_zero_neg:NNN
__fp_round_to_pinf_neg:NNN

__fp_round_neg:NNN ⟨final sign⟩ ⟨digit1⟩ ⟨digit2⟩
This expands to 0\exp_stop_f: or 1\exp_stop_f: after doing the following test.

Starting from a number of the form ⟨final sign⟩0.⟨15 digits⟩⟨digit1⟩ with exactly
15 (non-all-zero) digits before ⟨digit1⟩, subtract from it ⟨final sign⟩0.0 . . . 0⟨digit2⟩,
where there are 16 zeros. If in the current rounding mode the result should be rounded
down, then this function returns 1\exp_stop_f:. Otherwise, i.e., if the result is rounded
back to the first operand, then this function returns 0\exp_stop_f:.

It turns out that this negative “round to nearest” is identical to the positive one.
And this is the default mode.

24009 \cs_new_eq:NN __fp_round_to_ninf_neg:NNN __fp_round_to_pinf:NNN
24010 \cs_new:Npn __fp_round_to_zero_neg:NNN #1 #2 #3
24011 {
24012 \if_int_compare:w #3 > \c_zero_int
24013 __fp_round_return_one:
24014 \fi:
24015 \c_zero_int
24016 }
24017 \cs_new_eq:NN __fp_round_to_pinf_neg:NNN __fp_round_to_ninf:NNN
24018 \cs_new_eq:NN __fp_round_to_nearest_neg:NNN __fp_round_to_nearest:NNN
24019 \cs_new_eq:NN __fp_round_to_nearest_ninf_neg:NNN
24020 __fp_round_to_nearest_pinf:NNN
24021 \cs_new:Npn __fp_round_to_nearest_zero_neg:NNN #1 #2 #3
24022 {
24023 \if_int_compare:w #3 < \c__fp_five_int \else:
24024 __fp_round_return_one:
24025 \fi:
24026 \c_zero_int
24027 }
24028 \cs_new_eq:NN __fp_round_to_nearest_pinf_neg:NNN
24029 __fp_round_to_nearest_ninf:NNN
24030 \cs_new_eq:NN __fp_round_neg:NNN __fp_round_to_nearest_neg:NNN

(End of definition for __fp_round_neg:NNN and others.)

70.2 The round function
__fp_round_o:Nw

__fp_round_aux_o:Nw
First check that all arguments are floating point numbers. The trunc, ceil and floor
functions expect one or two arguments (the second is 0 by default), and the round function
also accepts a third argument (nan by default), which changes #1 from __fp_round_-
to_nearest:NNN to one of its analogues.

24031 \cs_new:Npn __fp_round_o:Nw #1
24032 {
24033 __fp_parse_function_all_fp_o:fnw
24034 { __fp_round_name_from_cs:N #1 }
24035 { __fp_round_aux_o:Nw #1 }

1053

24036 }
24037 \cs_new:Npn __fp_round_aux_o:Nw #1#2 @
24038 {
24039 \if_case:w
24040 __fp_int_eval:w __fp_array_count:n {#2} __fp_int_eval_end:
24041 __fp_round_no_arg_o:Nw #1 \exp:w
24042 \or: __fp_round:Nwn #1 #2 {0} \exp:w
24043 \or: __fp_round:Nww #1 #2 \exp:w
24044 \else: __fp_round:Nwww #1 #2 @ \exp:w
24045 \fi:
24046 \exp_after:wN \exp_end:
24047 }

(End of definition for __fp_round_o:Nw and __fp_round_aux_o:Nw.)

__fp_round_no_arg_o:Nw

24048 \cs_new:Npn __fp_round_no_arg_o:Nw #1
24049 {
24050 \cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
24051 { __fp_error:nnnn { num-args } { round () } { 1 } { 3 } }
24052 {
24053 __fp_error:nffn { num-args }
24054 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
24055 }
24056 \exp_after:wN \c_nan_fp
24057 }

(End of definition for __fp_round_no_arg_o:Nw.)

__fp_round:Nwww Having three arguments is only allowed for round, not trunc, ceil, floor, so check for
that case. If all is well, construct one of __fp_round_to_nearest:NNN, __fp_round_-
to_nearest_zero:NNN, __fp_round_to_nearest_ninf:NNN, __fp_round_to_nearest_-
pinf:NNN and act accordingly.

24058 \cs_new:Npn __fp_round:Nwww #1#2 ; #3 ; \s__fp __fp_chk:w #4#5#6 ; #7 @
24059 {
24060 \cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
24061 {
24062 \tl_if_empty:nTF {#7}
24063 {
24064 \exp_args:Nc __fp_round:Nww
24065 {
24066 __fp_round_to_nearest
24067 \if_meaning:w 0 #4 _zero \else:
24068 \if_case:w #5 \exp_stop_f: _pinf \or: \else: _ninf \fi: \fi:
24069 :NNN
24070 }
24071 #2 ; #3 ;
24072 }
24073 {
24074 __fp_error:nnnn { num-args } { round () } { 1 } { 3 }
24075 \exp_after:wN \c_nan_fp
24076 }
24077 }
24078 {

1054

24079 __fp_error:nffn { num-args }
24080 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
24081 \exp_after:wN \c_nan_fp
24082 }
24083 }

(End of definition for __fp_round:Nwww.)

__fp_round_name_from_cs:N

24084 \cs_new:Npn __fp_round_name_from_cs:N #1
24085 {
24086 \cs_if_eq:NNTF #1 __fp_round_to_zero:NNN { trunc }
24087 {
24088 \cs_if_eq:NNTF #1 __fp_round_to_ninf:NNN { floor }
24089 {
24090 \cs_if_eq:NNTF #1 __fp_round_to_pinf:NNN { ceil }
24091 { round }
24092 }
24093 }
24094 }

(End of definition for __fp_round_name_from_cs:N.)

__fp_round:Nww
__fp_round:Nwn

__fp_round_normal:NwNNnw
__fp_round_normal:NnnwNNnn

__fp_round_pack:Nw
__fp_round_normal:NNwNnn

__fp_round_normal_end:wwNnn
__fp_round_special:NwwNnn
__fp_round_special_aux:Nw

If the number of digits to round to is an integer or infinity all is good; if it is nan then
just produce a nan; otherwise invalid as we have something like round(1,3.14) where
the number of digits is not an integer.

24095 \cs_new:Npn __fp_round:Nww #1#2 ; #3 ;
24096 {
24097 __fp_small_int:wTF #3; { __fp_round:Nwn #1#2; }
24098 {
24099 \if:w 3 __fp_kind:w #3 ;
24100 \exp_after:wN \use_i:nn
24101 \else:
24102 \exp_after:wN \use_ii:nn
24103 \fi:
24104 { \exp_after:wN \c_nan_fp }
24105 {
24106 __fp_invalid_operation_tl_o:ff
24107 { __fp_round_name_from_cs:N #1 }
24108 { __fp_array_to_clist:n { #2; #3; } }
24109 }
24110 }
24111 }
24112 \cs_new:Npn __fp_round:Nwn #1 \s__fp __fp_chk:w #2#3#4; #5
24113 {
24114 \if_meaning:w 1 #2
24115 \exp_after:wN __fp_round_normal:NwNNnw
24116 \exp_after:wN #1
24117 \int_value:w #5
24118 \else:
24119 \exp_after:wN __fp_exp_after_o:w
24120 \fi:
24121 \s__fp __fp_chk:w #2#3#4;
24122 }

1055

24123 \cs_new:Npn __fp_round_normal:NwNNnw #1#2 \s__fp __fp_chk:w 1#3#4#5;
24124 {
24125 __fp_decimate:nNnnnn { \c__fp_prec_int - #4 - #2 }
24126 __fp_round_normal:NnnwNNnn #5 #1 #3 {#4} {#2}
24127 }
24128 \cs_new:Npn __fp_round_normal:NnnwNNnn #1#2#3#4; #5#6
24129 {
24130 \exp_after:wN __fp_round_normal:NNwNnn
24131 \int_value:w __fp_int_eval:w
24132 \if_int_compare:w #2 > \c_zero_int
24133 1 \int_value:w #2
24134 \exp_after:wN __fp_round_pack:Nw
24135 \int_value:w __fp_int_eval:w 1#3 +
24136 \else:
24137 \if_int_compare:w #3 > \c_zero_int
24138 1 \int_value:w #3 +
24139 \fi:
24140 \fi:
24141 \exp_after:wN #5
24142 \exp_after:wN #6
24143 \use_none:nnnnnnn #3
24144 #1
24145 __fp_int_eval_end:
24146 0000 0000 0000 0000 ; #6
24147 }
24148 \cs_new:Npn __fp_round_pack:Nw #1
24149 { \if_meaning:w 2 #1 + 1 \fi: __fp_int_eval_end: }
24150 \cs_new:Npn __fp_round_normal:NNwNnn #1 #2
24151 {
24152 \if_meaning:w 0 #2
24153 \exp_after:wN __fp_round_special:NwwNnn
24154 \exp_after:wN #1
24155 \fi:
24156 __fp_pack_twice_four:wNNNNNNNN
24157 __fp_pack_twice_four:wNNNNNNNN
24158 __fp_round_normal_end:wwNnn
24159 ; #2
24160 }
24161 \cs_new:Npn __fp_round_normal_end:wwNnn #1;#2;#3#4#5
24162 {
24163 \exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w
24164 __fp_sanitize:Nw #3 #4 ; #1 ;
24165 }
24166 \cs_new:Npn __fp_round_special:NwwNnn #1#2;#3;#4#5#6
24167 {
24168 \if_meaning:w 0 #1
24169 __fp_case_return:nw
24170 { \exp_after:wN __fp_zero_fp:N \exp_after:wN #4 }
24171 \else:
24172 \exp_after:wN __fp_round_special_aux:Nw
24173 \exp_after:wN #4
24174 \int_value:w __fp_int_eval:w 1
24175 \if_meaning:w 1 #1 -#6 \else: +#5 \fi:
24176 \fi:

1056

24177 ;
24178 }
24179 \cs_new:Npn __fp_round_special_aux:Nw #1#2;
24180 {
24181 \exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w
24182 __fp_sanitize:Nw #1#2; {1000}{0000}{0000}{0000};
24183 }

(End of definition for __fp_round:Nww and others.)

24184 ⟨/package⟩

1057

Chapter 71

l3fp-parse implementation

24185 ⟨∗package⟩

24186 ⟨@@=fp⟩

71.1 Work plan
The task at hand is non-trivial, and some previous failed attempts show that the code
leads to unreadable logs, so we had better get it (almost) right the first time. Let us first
describe our goal, then discuss the design precisely before writing any code.

In this file at least, a ⟨floating point object⟩ is a floating point number or tuple.
This can be extended to anything that starts with \s__fp or \s__fp_⟨type⟩ and ends
with ; with some internal structure that depends on the ⟨type⟩.

__fp_parse:n __fp_parse:n {⟨fp expr⟩}
Evaluates the ⟨fp expr⟩ and leaves the result in the input stream as a floating

point object. This function forms the basis of almost all public l3fp functions. During
evaluation, each token is fully f-expanded.

__fp_parse_o:n does the same but expands once after its result.

TEXhackers note: Registers (integers, toks, etc.) are automatically unpacked, without
requiring a function such as \int_use:N. Invalid tokens remaining after f-expansion lead to
unrecoverable low-level TEX errors.

(End of definition for __fp_parse:n.)

\c__fp_prec_func_int
\c__fp_prec_hatii_int
\c__fp_prec_hat_int
\c__fp_prec_not_int
\c__fp_prec_juxt_int
\c__fp_prec_times_int
\c__fp_prec_plus_int
\c__fp_prec_comp_int
\c__fp_prec_and_int
\c__fp_prec_or_int

\c__fp_prec_quest_int
\c__fp_prec_colon_int
\c__fp_prec_comma_int
\c__fp_prec_tuple_int
\c__fp_prec_end_int

Floating point expressions are composed of numbers, given in various forms, infix oper-
ators, such as +, **, or , (which joins two numbers into a list), and prefix operators,
such as the unary -, functions, or opening parentheses. Here is a list of precedences
which control the order of evaluation (some distinctions are irrelevant for the order of
evaluation, but serve as signals), from the tightest binding to the loosest binding.

16 Function calls.

13/14 Binary ** and ^ (right to left).

12 Unary +, -, ! (right to left).

11 Juxtaposition (implicit *) with no parenthesis.

1058

10 Binary * and /.

9 Binary + and -.

7 Comparisons.

6 Logical and, denoted by &&.

5 Logical or, denoted by ||.

4 Ternary operator ?:, piece ?.

3 Ternary operator ?:, piece :.

2 Commas.

1 Place where a comma is allowed and generates a tuple.

0 Start and end of the expression.

24187 \int_const:Nn \c__fp_prec_func_int { 16 }
24188 \int_const:Nn \c__fp_prec_hatii_int { 14 }
24189 \int_const:Nn \c__fp_prec_hat_int { 13 }
24190 \int_const:Nn \c__fp_prec_not_int { 12 }
24191 \int_const:Nn \c__fp_prec_juxt_int { 11 }
24192 \int_const:Nn \c__fp_prec_times_int { 10 }
24193 \int_const:Nn \c__fp_prec_plus_int { 9 }
24194 \int_const:Nn \c__fp_prec_comp_int { 7 }
24195 \int_const:Nn \c__fp_prec_and_int { 6 }
24196 \int_const:Nn \c__fp_prec_or_int { 5 }
24197 \int_const:Nn \c__fp_prec_quest_int { 4 }
24198 \int_const:Nn \c__fp_prec_colon_int { 3 }
24199 \int_const:Nn \c__fp_prec_comma_int { 2 }
24200 \int_const:Nn \c__fp_prec_tuple_int { 1 }
24201 \int_const:Nn \c__fp_prec_end_int { 0 }

(End of definition for \c__fp_prec_func_int and others.)

71.1.1 Storing results
The main question in parsing expressions expandably is to decide where to put the
intermediate results computed for various subexpressions.

One option is to store the values at the start of the expression, and carry them
together as the first argument of each macro. However, we want to f-expand tokens one
by one in the expression (as \int_eval:n does), and with this approach, expanding the
next unread token forces us to jump with \exp_after:wN over every value computed
earlier in the expression. With this approach, the run-time grows at least quadratically
in the length of the expression, if not as its cube (inserting the \exp_after:wN is tricky
and slow).

A second option is to place those values at the end of the expression. Then expanding
the next unread token is straightforward, but this still hits a performance issue: for long
expressions we would be reaching all the way to the end of the expression at every step
of the calculation. The run-time is again quadratic.

A variation of the above attempts to place the intermediate results which appear
when computing a parenthesized expression near the closing parenthesis. This still lets

1059

us expand tokens as we go, and avoids performance problems as long as there are enough
parentheses. However, it would be better to avoid requiring the closing parenthesis to be
present as soon as the corresponding opening parenthesis is read: the closing parenthesis
may still be hidden in a macro yet to be expanded.

Hence, we need to go for some fine expansion control: the result is stored before the
start!

Let us illustrate this idea in a simple model: adding positive integers which may be
resulting from the expansion of macros, or may be values of registers. Assume that one
number, say, 12345, has already been found, and that we want to parse the next number.
The current status of the code may look as follows.

\exp_after:wN \add:ww \int_value:w 12345 \exp_after:wN ;
\exp:w \operand:w ⟨stuff⟩

One step of expansion expands \exp_after:wN, which triggers the primitive \int_-
value:w, which reads the five digits we have already found, 12345. This integer is
unfinished, causing the second \exp_after:wN to expand, and to trigger the construction
\exp:w, which expands \operand:w, defined to read what follows and make a number
out of it, then leave \exp_end:, the number, and a semicolon in the input stream. Once
\operand:w is done expanding, we obtain essentially

\exp_after:wN \add:ww \int_value:w 12345 ;
\exp:w \exp_end: 333444 ;

where in fact \exp_after:wN has already been expanded, \int_value:w has already
seen 12345, and \exp:w is still looking for a number. It finds \exp_end:, hence expands
to nothing. Now, \int_value:w sees the ;, which cannot be part of a number. The
expansion stops, and we are left with

\add:ww 12345 ; 333444 ;

which can safely perform the addition by grabbing two arguments delimited by ;.
If we were to continue parsing the expression, then the following number should

also be cleaned up before the next use of a binary operation such as \add:ww. Just like
\int_value:w 12345 \exp_after:wN ; expanded what follows once, we need \add:ww to
do the calculation, and in the process to expand the following once. This is also true in
our real application: all the functions of the form __fp_..._o:ww expand what follows
once. This comes at the cost of leaving tokens in the input stack, and we need to be
careful not to waste this memory. All of our discussion above is nice but simplistic, as
operations should not simply be performed in the order they appear.

71.1.2 Precedence and infix operators
The various operators we will encounter have different precedences, which influence the
order of calculations: 1 + 2 × 3 = 1 + (2 × 3) because × has a higher precedence than +.
The true analog of our macro \operand:w must thus take care of that. When looking
for an operand, it needs to perform calculations until reaching an operator which has
lower precedence than the one which called \operand:w. This means that \operand:w
must know what the previous binary operator is, or rather, its precedence: we thus re-
name it \operand:Nw. Let us describe as an example how we plan to do the calculation
41-2^3*4+5. More precisely we describe how to perform the first operation in this expres-
sion. Here, we abuse notations: the first argument of \operand:Nw should be an integer

1060

constant (\c__fp_prec_plus_int, . . .) equal to the precedence of the given operator,
not directly the operator itself.

• Clean up 41 and find -. We call \operand:Nw - to find the second operand.

• Clean up 2 and find ^.

• Compare the precedences of - and ^. Since the latter is higher, we need to com-
pute the exponentiation. For this, find the second operand with a nested call to
\operand:Nw ^.

• Clean up 3 and find *.

• Compare the precedences of ^ and *. Since the former is higher, \operand:Nw ^
has found the second operand of the exponentiation, which is computed: 23 = 8.

• We now have 41-8*4+5, and \operand:Nw - is still looking for a second operand
for the subtraction. Is it 8?

• Compare the precedences of - and *. Since the latter is higher, we are not done
with 8. Call \operand:Nw * to find the second operand of the multiplication.

• Clean up 4, and find +.

• Compare the precedences of * and +. Since the former is higher, \operand:Nw *
has found the second operand of the multiplication, which is computed: 8 ∗ 4 = 32.

• We now have 41-32+5, and \operand:Nw - is still looking for a second operand for
the subtraction. Is it 32?

• Compare the precedences of - and +. Since they are equal, \operand:Nw - has
found the second operand for the subtraction, which is computed: 41 − 32 = 9.

• We now have 9+5.

The procedure above stops short of performing all computations, but adding a surround-
ing call to \operand:Nw with a very low precedence ensures that all computations are
performed before \operand:Nw is done. Adding a trailing marker with the same very low
precedence prevents the surrounding \operand:Nw from going beyond the marker.

The pattern above to find an operand for a given operator, is to find one number and
the next operator, then compare precedences to know if the next computation should be
done. If it should, then perform it after finding its second operand, and look at the next
operator, then compare precedences to know if the next computation should be done.
This continues until we find that the next computation should not be done. Then, we
stop.

We are now ready to get a bit more technical and describe which of the l3fp-parse
functions correspond to each step above.

First, __fp_parse_operand:Nw is the \operand:Nw function above, with small
modifications due to expansion issues discussed later. We denote by ⟨precedence⟩ the
argument of __fp_parse_operand:Nw, that is, the precedence of the binary operator
whose operand we are trying to find. The basic action is to read numbers from the input
stream. This is done by __fp_parse_one:Nw. A first approximation of this function is
that it reads one ⟨number⟩, performing no computation, and finds the following binary
⟨operator⟩. Then it expands to

1061

⟨number⟩
__fp_parse_infix_⟨operator⟩:N ⟨precedence⟩

expanding the infix auxiliary before leaving the above in the input stream.
We now explain the infix auxiliaries. We need some flexibility in how we treat

the case of equal precedences: most often, the first operation encountered should be
performed, such as 1-2-3 being computed as (1-2)-3, but 2^3^4 should be eval-
uated as 2^(3^4) instead. For this reason, and to support the equivalence be-
tween ** and ^ more easily, each binary operator is converted to a control sequence
__fp_parse_infix_⟨operator⟩:N when it is encountered for the first time. Instead
of passing both precedences to a test function to do the comparison steps above, we
pass the ⟨precedence⟩ (of the earlier operator) to the infix auxiliary for the following
⟨operator⟩, to know whether to perform the computation of the ⟨operator⟩. If it should
not be performed, the infix auxiliary expands to

@ \use_none:n __fp_parse_infix_⟨operator⟩:N

and otherwise it calls __fp_parse_operand:Nw with the precedence of the ⟨operator⟩
to find its second operand ⟨number2⟩ and the next ⟨operator2⟩, and expands to

@ __fp_parse_apply_binary:NwNwN
⟨operator⟩ ⟨number2⟩

@ __fp_parse_infix_⟨operator2⟩:N

The infix function is responsible for comparing precedences, but cannot directly call the
computation functions, because the first operand ⟨number⟩ is before the infix function
in the input stream. This is why we stop the expansion here and give control to another
function to close the loop.

A definition of __fp_parse_operand:Nw ⟨precedence⟩ with some of the expansion
control removed is

\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN ⟨precedence⟩
\exp:w \exp_end_continue_f:w
__fp_parse_one:Nw ⟨precedence⟩

This expands __fp_parse_one:Nw ⟨precedence⟩ completely, which finds a number,
wraps the next ⟨operator⟩ into an infix function, feeds this function the ⟨precedence⟩,
and expands it, yielding either

__fp_parse_continue:NwN ⟨precedence⟩
⟨number⟩ @
\use_none:n __fp_parse_infix_⟨operator⟩:N

or

__fp_parse_continue:NwN ⟨precedence⟩
⟨number⟩ @
__fp_parse_apply_binary:NwNwN

⟨operator⟩ ⟨number2⟩
@ __fp_parse_infix_⟨operator2⟩:N

The definition of __fp_parse_continue:NwN is then very simple:

\cs_new:Npn __fp_parse_continue:NwN #1#2@#3 { #3 #1 #2 @ }

1062

In the first case, #3 is \use_none:n, yielding

\use_none:n ⟨precedence⟩ ⟨number⟩ @
__fp_parse_infix_⟨operator⟩:N

then ⟨number⟩ @ __fp_parse_infix_⟨operator⟩:N. In the second case, #3 is __fp_-
parse_apply_binary:NwNwN, whose role is to compute ⟨number⟩ ⟨operator⟩ ⟨number2⟩
and to prepare for the next comparison of precedences: first we get

__fp_parse_apply_binary:NwNwN
⟨precedence⟩ ⟨number⟩ @
⟨operator⟩ ⟨number2⟩

@ __fp_parse_infix_⟨operator2⟩:N

then

\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN ⟨precedence⟩
\exp:w \exp_end_continue_f:w
__fp_⟨operator⟩_o:ww ⟨number⟩ ⟨number2⟩
\exp:w \exp_end_continue_f:w
__fp_parse_infix_⟨operator2⟩:N ⟨precedence⟩

where __fp_⟨operator⟩_o:ww computes ⟨number⟩ ⟨operator⟩ ⟨number2⟩ and expands
after the result, thus triggers the comparison of the precedence of the ⟨operator2⟩ and
the ⟨precedence⟩, continuing the loop.

We have introduced the most important functions here, and the next few paragraphs
we describe various subtleties.

71.1.3 Prefix operators, parentheses, and functions
Prefix operators (unary -, +, !) and parentheses are taken care of by the same mechanism,
and functions (sin, exp, etc.) as well. Finding the argument of the unary -, for instance,
is very similar to grabbing the second operand of a binary infix operator, with a subtle
precedence explained below. Once that operand is found, the operator can be applied to
it (for the unary -, this simply flips the sign). A left parenthesis is just a prefix operator
with a very low precedence equal to that of the closing parenthesis (which is treated as
an infix operator, since it normally appears just after numbers), so that all computations
are performed until the closing parenthesis. The prefix operator associated to the left
parenthesis does not alter its argument, but it removes the closing parenthesis (with some
checks).

Prefix operators are the reason why we only summarily described the function
__fp_parse_one:Nw earlier. This function is responsible for reading in the input stream
the first possible ⟨number⟩ and the next infix ⟨operator⟩. If what follows __fp_-
parse_one:Nw ⟨precedence⟩ is a prefix operator, then we must find the operand of this
prefix operator through a nested call to __fp_parse_operand:Nw with the appropriate
precedence, then apply the operator to the operand found to yield the result of __fp_-
parse_one:Nw. So far, all is simple.

The unary operators +, -, ! complicate things a little bit: -3**2 should be −(32) =
−9, and not (−3)2 = 9. This would easily be done by giving - a lower precedence,
equal to that of the infix + and -. Unfortunately, this fails in cases such as 3**-2*4,
yielding 3−2×4 instead of the correct 3−2 ×4. A second attempt would be to call __fp_-
parse_operand:Nw with the ⟨precedence⟩ of the previous operator, but 0>-2+3 is then

1063

parsed as 0>-(2+3): the addition is performed because it binds more tightly than the
comparison which precedes -. The correct approach is for a unary - to perform operations
whose precedence is greater than both that of the previous operation, and that of the
unary - itself. The unary - is given a precedence higher than multiplication and division.
This does not lead to any surprising result, since −(x/y) = (−x)/y and similarly for
multiplication, and it reduces the number of nested calls to __fp_parse_operand:Nw.

Functions are implemented as prefix operators with very high precedence, so that
their argument is the first number that can possibly be built.

Note that contrarily to the infix functions discussed earlier, the prefix functions
do perform tests on the previous ⟨precedence⟩ to decide whether to find an argument
or not, since we know that we need a number, and must never stop there.

71.1.4 Numbers and reading tokens one by one
So far, we have glossed over one important point: what is a “number”? A number
is typically given in the form ⟨significand⟩e⟨exponent⟩, where the ⟨significand⟩ is
any non-empty string composed of decimal digits and at most one decimal separator (a
period), the exponent “e⟨exponent⟩” is optional and is composed of an exponent mark e
followed by a possibly empty string of signs + or - and a non-empty string of decimal
digits. The ⟨significand⟩ can also be an integer, dimension, skip, or muskip variable,
in which case dimensions are converted from points (or mu units) to floating points, and
the ⟨exponent⟩ can also be an integer variable. Numbers can also be given as floating
point variables, or as named constants such as nan, inf or pi. We may add more types
in the future.

When __fp_parse_one:Nw is looking for a “number”, here is what happens.

• If the next token is a control sequence with the meaning of \scan_stop:, it can be:
\s__fp, in which case our job is done, as what follows is an internal floating point
number, or \s__fp_expr_mark, in which case the expression has come to an early
end, as we are still looking for a number here, or something else, in which case we
consider the control sequence to be a bad variable resulting from c-expansion.

• If the next token is a control sequence with a different meaning, we assume that it is
a register, unpack it with \tex_the:D, and use its value (in pt for dimensions and
skips, mu for muskips) as the ⟨significand⟩ of a number: we look for an exponent.

• If the next token is a digit, we remove any leading zeros, then read a significand
larger than 1 if the next character is a digit, read a significand smaller than 1 if the
next character is a period, or we have found a significand equal to 0 otherwise, and
look for an exponent.

• If the next token is a letter, we collect more letters until the first non-letter: the
resulting word may denote a function such as asin, a constant such as pi or be
unknown. In the first case, we call __fp_parse_operand:Nw to find the argument
of the function, then apply the function, before declaring that we are done. Other-
wise, we are done, either with the value of the constant, or with the value nan for
unknown words.

• If the next token is anything else, we check whether it is a known prefix operator,
in which case __fp_parse_operand:Nw finds its operand. If it is not known, then
either a number is missing (if the token is a known infix operator) or the token is
simply invalid in floating point expressions.

1064

Once a number is found, __fp_parse_one:Nw also finds an infix operator. This goes as
follows.

• If the next token is a control sequence, it could be the special marker \s__-
fp_expr_mark, and otherwise it is a case of juxtaposing numbers, such as
2\c_zero_int, with an implied multiplication.

• If the next token is a letter, it is also a case of juxtaposition, as letters cannot be
proper infix operators.

• Otherwise (including in the case of digits), if the token is a known infix operator,
the appropriate __fp_infix_⟨operator⟩:N function is built, and if it does not
exist, we complain. In particular, the juxtaposition \c_zero_int 2 is disallowed.

In the above, we need to test whether a character token #1 is a digit:

\if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
is a digit

\else:
not a digit

\fi:

To exclude 0, replace 9 by 10. The use of \token_to_str:N ensures that a digit with
any catcode is detected. To test if a character token is a letter, we need to work with
its character code, testing if ‘#1 lies in [65, 90] (uppercase letters) or [97, 112] (lowercase
letters)

\if_int_compare:w __fp_int_eval:w
(‘#1 \if_int_compare:w ‘#1 > ‘Z - 32 \fi:) / 26 = 3 \exp_stop_f:

is a letter
\else:
not a letter

\fi:

At all steps, we try to accept all category codes: when #1 is kept to be used later,
it is almost always converted to category code other through \token_to_str:N. More
precisely, catcodes {3, 6, 7, 8, 11, 12} should work without trouble, but not {1, 2, 4, 10, 13},
and of course {0, 5, 9} cannot become tokens.

Floating point expressions should behave as much as possible like ε-TEX-based integer
expressions and dimension expressions. In particular, f-expansion should be performed
as the expression is read, token by token, forcing the expansion of protected macros, and
ignoring spaces. One advantage of expanding at every step is that restricted expandable
functions can then be used in floating point expressions just as they can be in other kinds
of expressions. Problematically, spaces stop f-expansion: for instance, the macro \X
below would not be expanded if we simply performed f-expansion.

\DeclareDocumentCommand {\test} {m} { \fp_eval:n {#1} }
\ExplSyntaxOff
\test { 1 + \X }

Of course, spaces typically do not appear in a code setting, but may very easily come in
document-level input, from which some expressions may come. To avoid this problem,
at every step, we do essentially what \use:f would do: take an argument, put it back

1065

in the input stream, then f-expand it. This is not a complete solution, since a macro’s
expansion could contain leading spaces which would stop the f-expansion before further
macro calls are performed. However, in practice it should be enough: in particular,
floating point numbers are correctly expanded to the underlying \s__fp . . . structure.
The f-expansion is performed by __fp_parse_expand:w.

71.2 Main auxiliary functions
__fp_parse_operand:Nw \exp:w __fp_parse_operand:Nw ⟨precedence⟩ __fp_parse_expand:w

Reads the “...”, performing every computation with a precedence higher than
⟨precedence⟩, then expands to

⟨result⟩ @ __fp_parse_infix_⟨operation⟩:N ...

where the ⟨operation⟩ is the first operation with a lower precedence, possibly end, and
the “...” start just after the ⟨operation⟩.

(End of definition for __fp_parse_operand:Nw.)

__fp_parse_infix_+:N __fp_parse_infix_+:N ⟨precedence⟩ ...
If + has a precedence higher than the ⟨precedence⟩, cleans up a second ⟨operand⟩

and finds the ⟨operation2⟩ which follows, and expands to

@ __fp_parse_apply_binary:NwNwN + ⟨operand⟩ @ __fp_parse_infix_⟨operation2⟩:N
...

Otherwise expands to

@ \use_none:n __fp_parse_infix_+:N ...

A similar function exists for each infix operator.

(End of definition for __fp_parse_infix_+:N.)

__fp_parse_one:Nw __fp_parse_one:Nw ⟨precedence⟩ ...
Cleans up one or two operands depending on how the precedence of the next op-

eration compares to the ⟨precedence⟩. If the following ⟨operation⟩ has a precedence
higher than ⟨precedence⟩, expands to

⟨operand1⟩ @ __fp_parse_apply_binary:NwNwN ⟨operation⟩ ⟨operand2⟩ @
__fp_parse_infix_⟨operation2⟩:N ...

and otherwise expands to

⟨operand⟩ @ \use_none:n __fp_parse_infix_⟨operation⟩:N ...

(End of definition for __fp_parse_one:Nw.)

1066

71.3 Helpers
__fp_parse_expand:w \exp:w __fp_parse_expand:w ⟨tokens⟩

This function must always come within a \exp:w expansion. The ⟨tokens⟩ should
be the part of the expression that we have not yet read. This requires in particular closing
all conditionals properly before expanding.

24202 \cs_new:Npn __fp_parse_expand:w #1 { \exp_end_continue_f:w #1 }

(End of definition for __fp_parse_expand:w.)

__fp_parse_return_semicolon:w This very odd function swaps its position with the following \fi: and removes __fp_-
parse_expand:w normally responsible for expansion. That turns out to be useful.

24203 \cs_new:Npn __fp_parse_return_semicolon:w
24204 #1 \fi: __fp_parse_expand:w { \fi: ; #1 }

(End of definition for __fp_parse_return_semicolon:w.)

__fp_parse_digits_vii:N
__fp_parse_digits_vi:N
__fp_parse_digits_v:N
__fp_parse_digits_iv:N

__fp_parse_digits_iii:N
__fp_parse_digits_ii:N
__fp_parse_digits_i:N
__fp_parse_digits_:N

These functions must be called within an \int_value:w or __fp_int_eval:w construc-
tion. The first token which follows must be f-expanded prior to calling those functions.
The functions read tokens one by one, and output digits into the input stream, until
meeting a non-digit, or up to a number of digits equal to their index. The full expansion
is

⟨digits⟩ ; ⟨filling 0⟩ ; ⟨length⟩

where ⟨filling 0⟩ is a string of zeros such that ⟨digits⟩ ⟨filling 0⟩ has the length
given by the index of the function, and ⟨length⟩ is the number of zeros in the ⟨filling
0⟩ string. Each function puts a digit into the input stream and calls the next function,
until we find a non-digit. We are careful to pass the tested tokens through \token_to_-
str:N to normalize their category code.

24205 \cs_set_protected:Npn __fp_tmp:w #1 #2 #3
24206 {
24207 \cs_new:cpn { __fp_parse_digits_ #1 :N } ##1
24208 {
24209 \if_int_compare:w 9 < 1 \token_to_str:N ##1 \exp_stop_f:
24210 \token_to_str:N ##1 \exp_after:wN #2 \exp:w
24211 \else:
24212 __fp_parse_return_semicolon:w #3 ##1
24213 \fi:
24214 __fp_parse_expand:w
24215 }
24216 }
24217 __fp_tmp:w {vii} __fp_parse_digits_vi:N { 0000000 ; 7 }
24218 __fp_tmp:w {vi} __fp_parse_digits_v:N { 000000 ; 6 }
24219 __fp_tmp:w {v} __fp_parse_digits_iv:N { 00000 ; 5 }
24220 __fp_tmp:w {iv} __fp_parse_digits_iii:N { 0000 ; 4 }
24221 __fp_tmp:w {iii} __fp_parse_digits_ii:N { 000 ; 3 }
24222 __fp_tmp:w {ii} __fp_parse_digits_i:N { 00 ; 2 }
24223 __fp_tmp:w {i} __fp_parse_digits_:N { 0 ; 1 }
24224 \cs_new:Npn __fp_parse_digits_:N { ; ; 0 }

(End of definition for __fp_parse_digits_vii:N and others.)

1067

71.4 Parsing one number
__fp_parse_one:Nw This function finds one number, and packs the symbol which follows in an __fp_-

parse_infix_... csname. #1 is the previous ⟨precedence⟩, and #2 the first token of
the operand. We distinguish four cases: #2 is equal to \scan_stop: in meaning, #2 is
a different control sequence, #2 is a digit, and #2 is something else (this last case is
split further later). Despite the earlier f-expansion, #2 may still be expandable if it was
protected by \exp_not:N, as may happen with the LATEX 2ε command \protect. Using
a well placed \reverse_if:N, this case is sent to __fp_parse_one_fp:NN which deals
with it robustly.

24225 \cs_new:Npn __fp_parse_one:Nw #1 #2
24226 {
24227 \if_catcode:w \scan_stop: \exp_not:N #2
24228 \exp_after:wN \if_meaning:w \exp_not:N #2 #2 \else:
24229 \exp_after:wN \reverse_if:N
24230 \fi:
24231 \if_meaning:w \scan_stop: #2
24232 \exp_after:wN \exp_after:wN
24233 \exp_after:wN __fp_parse_one_fp:NN
24234 \else:
24235 \exp_after:wN \exp_after:wN
24236 \exp_after:wN __fp_parse_one_register:NN
24237 \fi:
24238 \else:
24239 \if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
24240 \exp_after:wN \exp_after:wN
24241 \exp_after:wN __fp_parse_one_digit:NN
24242 \else:
24243 \exp_after:wN \exp_after:wN
24244 \exp_after:wN __fp_parse_one_other:NN
24245 \fi:
24246 \fi:
24247 #1 #2
24248 }

(End of definition for __fp_parse_one:Nw.)

__fp_parse_one_fp:NN
__fp_exp_after_expr_mark_f:nw

__fp_exp_after_?_f:nw

This function receives a ⟨precedence⟩ and a control sequence equal to \scan_stop: in
meaning. There are three cases.

• \s__fp starts a floating point number, and we call __fp_exp_after_f:nw, which
f-expands after the floating point.

• \s__fp_expr_mark is a premature end, we call __fp_exp_after_expr_mark_-
f:nw, which triggers an fp-early-end error.

• For a control sequence not containing \s__fp, we call __fp_exp_after_?_f:nw,
causing a bad-variable error.

This scheme is extensible: additional types can be added by starting the variables with a
scan mark of the form \s__fp_⟨type⟩ and defining __fp_exp_after_⟨type⟩_f:nw. In
all cases, we make sure that the second argument of __fp_parse_infix:NN is correctly
expanded. A special case only enabled in LATEX 2ε is that if \protect is encountered then

1068

the error message mentions the control sequence which follows it rather than \protect it-
self. The test for LATEX 2ε uses \@unexpandable@protect rather than \protect because
\protect is often \scan_stop: hence “does not exist”.

24249 \cs_new:Npn __fp_parse_one_fp:NN #1
24250 {
24251 __fp_exp_after_any_f:nw
24252 {
24253 \exp_after:wN __fp_parse_infix:NN
24254 \exp_after:wN #1 \exp:w __fp_parse_expand:w
24255 }
24256 }
24257 \cs_new:Npn __fp_exp_after_expr_mark_f:nw #1
24258 {
24259 \int_case:nnF { \exp_after:wN \use_i:nnn \use_none:nnn #1 }
24260 {
24261 \c__fp_prec_comma_int { }
24262 \c__fp_prec_tuple_int { }
24263 \c__fp_prec_end_int
24264 {
24265 \exp_after:wN \c__fp_empty_tuple_fp
24266 \exp:w \exp_end_continue_f:w
24267 }
24268 }
24269 {
24270 \msg_expandable_error:nn { fp } { early-end }
24271 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
24272 }
24273 #1
24274 }
24275 \cs_new:cpn { __fp_exp_after_?_f:nw } #1#2
24276 {
24277 \msg_expandable_error:nnn { kernel } { bad-variable }
24278 {#2}
24279 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
24280 }
24281 \cs_set_protected:Npn __fp_tmp:w #1
24282 {
24283 \cs_if_exist:NT #1
24284 {
24285 \cs_gset:cpn { __fp_exp_after_?_f:nw } ##1##2
24286 {
24287 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w ##1
24288 \str_if_eq:nnTF {##2} { \protect }
24289 {
24290 \cs_if_eq:NNTF ##2 #1 { \use_i:nn } { \use:n }
24291 {
24292 \msg_expandable_error:nnn { fp }
24293 { robust-cmd }
24294 }
24295 }
24296 {
24297 \msg_expandable_error:nnn { kernel }
24298 { bad-variable } {##2}
24299 }

1069

24300 }
24301 }
24302 }
24303 \exp_args:Nc __fp_tmp:w { @unexpandable@protect }

(End of definition for __fp_parse_one_fp:NN , __fp_exp_after_expr_mark_f:nw , and __fp_exp_-
after_?_f:nw.)

__fp_parse_one_register:NN
__fp_parse_one_register_aux:Nw

__fp_parse_one_register_auxii:wwwNw
__fp_parse_one_register_int:www
__fp_parse_one_register_mu:www
__fp_parse_one_register_dim:ww

This is called whenever #2 is a control sequence other than \scan_stop: in meaning.
We special-case \wd, \ht, \dp (see later) and otherwise assume that it is a register,
but carefully unpack it with \tex_the:D within braces. First, we find the exponent
following #2. Then we unpack #2 with \tex_the:D, and the auxii auxiliary distinguishes
integer registers from dimensions/skips from muskips, according to the presence of a
period and/or of pt. For integers, simply convert ⟨value⟩e⟨exponent⟩ to a floating
point number with __fp_parse:n (this is somewhat wasteful). For other registers, the
decimal rounding provided by TEX does not accurately represent the binary value that
it manipulates, so we extract this binary value as a number of scaled points with \int_-
value:w \dim_to_decimal_in_sp:n { ⟨decimal value⟩ pt }, and use an auxiliary of
\dim_to_fp:n, which performs the multiplication by 2−16, correctly rounded.

24304 \cs_new:Npn __fp_parse_one_register:NN #1#2
24305 {
24306 \exp_after:wN __fp_parse_infix_after_operand:NwN
24307 \exp_after:wN #1
24308 \exp:w \exp_end_continue_f:w
24309 __fp_parse_one_register_special:N #2
24310 \exp_after:wN __fp_parse_one_register_aux:Nw
24311 \exp_after:wN #2
24312 \int_value:w
24313 \exp_after:wN __fp_parse_exponent:N
24314 \exp:w __fp_parse_expand:w
24315 }
24316 \cs_new:Npe __fp_parse_one_register_aux:Nw #1
24317 {
24318 \exp_not:n
24319 {
24320 \exp_after:wN \use:nn
24321 \exp_after:wN __fp_parse_one_register_auxii:wwwNw
24322 }
24323 \exp_not:N \exp_after:wN { \exp_not:N \tex_the:D #1 }
24324 ; \exp_not:N __fp_parse_one_register_dim:ww
24325 \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_mu:www
24326 . \tl_to_str:n { pt } ; \exp_not:N __fp_parse_one_register_int:www
24327 \s__fp_stop
24328 }
24329 \exp_args:Nno \use:nn
24330 { \cs_new:Npn __fp_parse_one_register_auxii:wwwNw #1 . #2 }
24331 { \tl_to_str:n { pt } #3 ; #4#5 \s__fp_stop }
24332 { #4 #1.#2; }
24333 \exp_args:Nno \use:nn
24334 { \cs_new:Npn __fp_parse_one_register_mu:www #1 }
24335 { \tl_to_str:n { mu } ; #2 ; }
24336 { __fp_parse_one_register_dim:ww #1 ; }
24337 \cs_new:Npn __fp_parse_one_register_int:www #1; #2.; #3;
24338 { __fp_parse:n { #1 e #3 } }

1070

24339 \cs_new:Npn __fp_parse_one_register_dim:ww #1; #2;
24340 {
24341 \exp_after:wN __fp_from_dim_test:ww
24342 \int_value:w #2 \exp_after:wN ,
24343 \int_value:w \dim_to_decimal_in_sp:n { #1 pt } ;
24344 }

(End of definition for __fp_parse_one_register:NN and others.)

__fp_parse_one_register_special:N
__fp_parse_one_register_math:NNw

__fp_parse_one_register_wd:w
__fp_parse_one_register_wd:Nw

The \wd, \dp, \ht primitives expect an integer argument. We abuse the exponent parser
to find the integer argument: simply include the exponent marker e. Once that “expo-
nent” is found, use \tex_the:D to find the box dimension and then copy what we did
for dimensions.

24345 \cs_new:Npn __fp_parse_one_register_special:N #1
24346 {
24347 \if_meaning:w \box_wd:N #1 __fp_parse_one_register_wd:w \fi:
24348 \if_meaning:w \box_ht:N #1 __fp_parse_one_register_wd:w \fi:
24349 \if_meaning:w \box_dp:N #1 __fp_parse_one_register_wd:w \fi:
24350 \if_meaning:w \infty #1
24351 __fp_parse_one_register_math:NNw \infty #1
24352 \fi:
24353 \if_meaning:w \pi #1
24354 __fp_parse_one_register_math:NNw \pi #1
24355 \fi:
24356 }
24357 \cs_new:Npn __fp_parse_one_register_math:NNw
24358 #1#2#3#4 __fp_parse_expand:w
24359 {
24360 #3
24361 \str_if_eq:nnTF {#1} {#2}
24362 {
24363 \msg_expandable_error:nnn
24364 { fp } { infty-pi } {#1}
24365 \c_nan_fp
24366 }
24367 { #4 __fp_parse_expand:w }
24368 }
24369 \cs_new:Npn __fp_parse_one_register_wd:w
24370 #1#2 \exp_after:wN #3#4 __fp_parse_expand:w
24371 {
24372 #1
24373 \exp_after:wN __fp_parse_one_register_wd:Nw
24374 #4 __fp_parse_expand:w e
24375 }
24376 \cs_new:Npn __fp_parse_one_register_wd:Nw #1#2 ;
24377 {
24378 \exp_after:wN __fp_from_dim_test:ww
24379 \exp_after:wN 0 \exp_after:wN ,
24380 \int_value:w \dim_to_decimal_in_sp:n { #1 #2 } ;
24381 }

(End of definition for __fp_parse_one_register_special:N and others.)

__fp_parse_one_digit:NN A digit marks the beginning of an explicit floating point number. Once the num-
ber is found, we catch the case of overflow and underflow with __fp_sanitize:wN,

1071

then __fp_parse_infix_after_operand:NwN expands __fp_parse_infix:NN after
the number we find, to wrap the following infix operator as required. Finding the number
itself begins by removing leading zeros: further steps are described later.

24382 \cs_new:Npn __fp_parse_one_digit:NN #1
24383 {
24384 \exp_after:wN __fp_parse_infix_after_operand:NwN
24385 \exp_after:wN #1
24386 \exp:w \exp_end_continue_f:w
24387 \exp_after:wN __fp_sanitize:wN
24388 \int_value:w __fp_int_eval:w 0 __fp_parse_trim_zeros:N
24389 }

(End of definition for __fp_parse_one_digit:NN.)

__fp_parse_one_other:NN For this function, #2 is a character token which is not a digit. If it is an ascii let-
ter, __fp_parse_letters:N beyond this one and give the result to __fp_parse_-
word:Nw. Otherwise, the character is assumed to be a prefix operator, and we build
__fp_parse_prefix_⟨operator⟩:Nw.

24390 \cs_new:Npn __fp_parse_one_other:NN #1 #2
24391 {
24392 \if_int_compare:w
24393 __fp_int_eval:w
24394 (‘#2 \if_int_compare:w ‘#2 > ‘Z - 32 \fi:) / 26
24395 = 3 \exp_stop_f:
24396 \exp_after:wN __fp_parse_word:Nw
24397 \exp_after:wN #1
24398 \exp_after:wN #2
24399 \exp:w \exp_after:wN __fp_parse_letters:N
24400 \exp:w
24401 \else:
24402 \exp_after:wN __fp_parse_prefix:NNN
24403 \exp_after:wN #1
24404 \exp_after:wN #2
24405 \cs:w
24406 __fp_parse_prefix_ \token_to_str:N #2 :Nw
24407 \exp_after:wN
24408 \cs_end:
24409 \exp:w
24410 \fi:
24411 __fp_parse_expand:w
24412 }

(End of definition for __fp_parse_one_other:NN.)

__fp_parse_word:Nw
__fp_parse_letters:N

Finding letters is a simple recursion. Once __fp_parse_letters:N has done its job,
we try to build a control sequence from the word #2. If it is a known word, then the
corresponding action is taken, and otherwise, we complain about an unknown word, yield
\c_nan_fp, and look for the following infix operator. Note that the unknown word could
be a mistyped function as well as a mistyped constant, so there is no way to tell whether
to look for arguments; we do not. The standard requires “inf” and “infinity” and “nan” to
be recognized regardless of case, but we probably don’t want to allow every l3fp word to
have an arbitrary mixture of lower and upper case, so we test and use a differently-named
control sequence.

1072

24413 \cs_new:Npn __fp_parse_word:Nw #1#2;
24414 {
24415 \cs_if_exist_use:cF { __fp_parse_word_#2:N }
24416 {
24417 \cs_if_exist_use:cF
24418 { __fp_parse_caseless_ \str_casefold:n {#2} :N }
24419 {
24420 \msg_expandable_error:nnn
24421 { fp } { unknown-fp-word } {#2}
24422 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
24423 __fp_parse_infix:NN
24424 }
24425 }
24426 #1
24427 }
24428 \cs_new:Npn __fp_parse_letters:N #1
24429 {
24430 \exp_end_continue_f:w
24431 \if_int_compare:w
24432 \if_catcode:w \scan_stop: \exp_not:N #1
24433 0
24434 \else:
24435 __fp_int_eval:w
24436 (‘#1 \if_int_compare:w ‘#1 > ‘Z - 32 \fi:) / 26
24437 \fi:
24438 = 3 \exp_stop_f:
24439 \exp_after:wN #1
24440 \exp:w \exp_after:wN __fp_parse_letters:N
24441 \exp:w
24442 \else:
24443 __fp_parse_return_semicolon:w #1
24444 \fi:
24445 __fp_parse_expand:w
24446 }

(End of definition for __fp_parse_word:Nw and __fp_parse_letters:N.)

__fp_parse_prefix:NNN
__fp_parse_prefix_unknown:NNN

For this function, #1 is the previous ⟨precedence⟩, #2 is the operator just seen, and #3 is
a control sequence which implements the operator if it is a known operator. If this control
sequence is \scan_stop:, then the operator is in fact unknown. Either the expression is
missing a number there (if the operator is valid as an infix operator), and we put nan,
wrapping the infix operator in a csname as appropriate, or the character is simply invalid
in floating point expressions, and we continue looking for a number, starting again from
__fp_parse_one:Nw.

24447 \cs_new:Npn __fp_parse_prefix:NNN #1#2#3
24448 {
24449 \if_meaning:w \scan_stop: #3
24450 \exp_after:wN __fp_parse_prefix_unknown:NNN
24451 \exp_after:wN #2
24452 \fi:
24453 #3 #1
24454 }
24455 \cs_new:Npn __fp_parse_prefix_unknown:NNN #1#2#3
24456 {

1073

24457 \cs_if_exist:cTF { __fp_parse_infix_ \token_to_str:N #1 :N }
24458 {
24459 \msg_expandable_error:nnn
24460 { fp } { missing-number } {#1}
24461 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
24462 __fp_parse_infix:NN #3 #1
24463 }
24464 {
24465 \msg_expandable_error:nnn
24466 { fp } { unknown-symbol } {#1}
24467 __fp_parse_one:Nw #3
24468 }
24469 }

(End of definition for __fp_parse_prefix:NNN and __fp_parse_prefix_unknown:NNN.)

71.4.1 Numbers: trimming leading zeros
Numbers are parsed as follows: first we trim leading zeros, then if the next character is
a digit, start reading a significand ≥ 1 with the set of functions __fp_parse_large. . . ;
if it is a period, the significand is < 1; and otherwise it is zero. In the second case,
trim additional zeros after the period, counting them for an exponent shift ⟨exp1⟩ < 0,
then read the significand with the set of functions __fp_parse_small. . . Once the
significand is read, read the exponent if e is present.

__fp_parse_trim_zeros:N
__fp_parse_trim_end:w

This function expects an already expanded token. It removes any leading zero, then
distinguishes three cases: if the first non-zero token is a digit, then call __fp_parse_-
large:N (the significand is ≥ 1); if it is ., then continue trimming zeros with __fp_-
parse_strim_zeros:N; otherwise, our number is exactly zero, and we call __fp_-
parse_zero: to take care of that case.

24470 \cs_new:Npn __fp_parse_trim_zeros:N #1
24471 {
24472 \if:w 0 \exp_not:N #1
24473 \exp_after:wN __fp_parse_trim_zeros:N
24474 \exp:w
24475 \else:
24476 \if:w . \exp_not:N #1
24477 \exp_after:wN __fp_parse_strim_zeros:N
24478 \exp:w
24479 \else:
24480 __fp_parse_trim_end:w #1
24481 \fi:
24482 \fi:
24483 __fp_parse_expand:w
24484 }
24485 \cs_new:Npn __fp_parse_trim_end:w #1 \fi: \fi: __fp_parse_expand:w
24486 {
24487 \fi:
24488 \fi:
24489 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24490 \exp_after:wN __fp_parse_large:N
24491 \else:
24492 \exp_after:wN __fp_parse_zero:

1074

24493 \fi:
24494 #1
24495 }

(End of definition for __fp_parse_trim_zeros:N and __fp_parse_trim_end:w.)

__fp_parse_strim_zeros:N
__fp_parse_strim_end:w

If we have removed all digits until a period (or if the body started with a period), then
enter the “small_trim” loop which outputs −1 for each removed 0. Those −1 are added
to an integer expression waiting for the exponent. If the first non-zero token is a digit,
call __fp_parse_small:N (our significand is smaller than 1), and otherwise, the number
is an exact zero. The name strim stands for “small trim”.

24496 \cs_new:Npn __fp_parse_strim_zeros:N #1
24497 {
24498 \if:w 0 \exp_not:N #1
24499 - 1
24500 \exp_after:wN __fp_parse_strim_zeros:N \exp:w
24501 \else:
24502 __fp_parse_strim_end:w #1
24503 \fi:
24504 __fp_parse_expand:w
24505 }
24506 \cs_new:Npn __fp_parse_strim_end:w #1 \fi: __fp_parse_expand:w
24507 {
24508 \fi:
24509 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24510 \exp_after:wN __fp_parse_small:N
24511 \else:
24512 \exp_after:wN __fp_parse_zero:
24513 \fi:
24514 #1
24515 }

(End of definition for __fp_parse_strim_zeros:N and __fp_parse_strim_end:w.)

__fp_parse_zero: After reading a significand of 0, find any exponent, then put a sign of 1 for __fp_-
sanitize:wN, which removes everything and leaves an exact zero.

24516 \cs_new:Npn __fp_parse_zero:
24517 {
24518 \exp_after:wN ; \exp_after:wN 1
24519 \int_value:w __fp_parse_exponent:N
24520 }

(End of definition for __fp_parse_zero:.)

71.4.2 Number: small significand
__fp_parse_small:N This function is called after we have passed the decimal separator and removed all leading

zeros from the significand. It is followed by a non-zero digit (with any catcode). The
goal is to read up to 16 digits. But we can’t do that all at once, because \int_value:w
(which allows us to collect digits and continue expanding) can only go up to 9 digits.
Hence we grab digits in two steps of 8 digits. Since #1 is a digit, read seven more digits
using __fp_parse_digits_vii:N. The small_leading auxiliary leaves those digits in
the \int_value:w, and grabs some more, or stops if there are no more digits. Then the

1075

pack_leading auxiliary puts the various parts in the appropriate order for the processing
further up.

24521 \cs_new:Npn __fp_parse_small:N #1
24522 {
24523 \exp_after:wN __fp_parse_pack_leading:NNNNNww
24524 \int_value:w __fp_int_eval:w 1 \token_to_str:N #1
24525 \exp_after:wN __fp_parse_small_leading:wwNN
24526 \int_value:w 1
24527 \exp_after:wN __fp_parse_digits_vii:N
24528 \exp:w __fp_parse_expand:w
24529 }

(End of definition for __fp_parse_small:N.)

__fp_parse_small_leading:wwNN __fp_parse_small_leading:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩
We leave ⟨digits⟩ ⟨zeros⟩ in the input stream: the functions used to grab digits

are such that this constitutes digits 1 through 8 of the significand. Then prepare to pack
8 more digits, with an exponent shift of zero (this shift is used in the case of a large
significand). If #4 is a digit, leave it behind for the packing function, and read 6 more
digits to reach a total of 15 digits: further digits are involved in the rounding. Otherwise
put 8 zeros in to complete the significand, then look for an exponent.

24530 \cs_new:Npn __fp_parse_small_leading:wwNN 1 #1 ; #2; #3 #4
24531 {
24532 #1 #2
24533 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
24534 \exp_after:wN 0
24535 \int_value:w __fp_int_eval:w 1
24536 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
24537 \token_to_str:N #4
24538 \exp_after:wN __fp_parse_small_trailing:wwNN
24539 \int_value:w 1
24540 \exp_after:wN __fp_parse_digits_vi:N
24541 \exp:w
24542 \else:
24543 0000 0000 __fp_parse_exponent:Nw #4
24544 \fi:
24545 __fp_parse_expand:w
24546 }

(End of definition for __fp_parse_small_leading:wwNN.)

__fp_parse_small_trailing:wwNN __fp_parse_small_trailing:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩
⟨next token⟩

Leave digits 10 to 15 (arguments #1 and #2) in the input stream. If the ⟨next token⟩
is a digit, it is the 16th digit, we keep it, then the small_round auxiliary considers this
digit and all further digits to perform the rounding: the function expands to nothing, to
+0 or to +1. Otherwise, there is no 16-th digit, so we put a 0, and look for an exponent.

24547 \cs_new:Npn __fp_parse_small_trailing:wwNN 1 #1 ; #2; #3 #4
24548 {
24549 #1 #2
24550 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
24551 \token_to_str:N #4
24552 \exp_after:wN __fp_parse_small_round:NN

1076

24553 \exp_after:wN #4
24554 \exp:w
24555 \else:
24556 0 __fp_parse_exponent:Nw #4
24557 \fi:
24558 __fp_parse_expand:w
24559 }

(End of definition for __fp_parse_small_trailing:wwNN.)

__fp_parse_pack_trailing:NNNNNNww
__fp_parse_pack_leading:NNNNNww

__fp_parse_pack_carry:w

Those functions are expanded after all the digits are found, we took care of the rounding,
as well as the exponent. The last argument is the exponent. The previous five arguments
are 8 digits which we pack in groups of 4, and the argument before that is 1, except in the
rare case where rounding lead to a carry, in which case the argument is 2. The trailing
function has an exponent shift as its first argument, which we add to the exponent found
in the e... syntax. If the trailing digits cause a carry, the integer expression for the
leading digits is incremented (+1 in the code below). If the leading digits propagate this
carry all the way up, the function __fp_parse_pack_carry:w increments the exponent,
and changes the significand from 0000... to 1000...: this is simple because such a carry
can only occur to give rise to a power of 10.

24560 \cs_new:Npn __fp_parse_pack_trailing:NNNNNNww #1 #2 #3#4#5#6 #7; #8 ;
24561 {
24562 \if_meaning:w 2 #2 + 1 \fi:
24563 ; #8 + #1 ; {#3#4#5#6} {#7};
24564 }
24565 \cs_new:Npn __fp_parse_pack_leading:NNNNNww #1 #2#3#4#5 #6; #7;
24566 {
24567 + #7
24568 \if_meaning:w 2 #1 __fp_parse_pack_carry:w \fi:
24569 ; 0 {#2#3#4#5} {#6}
24570 }
24571 \cs_new:Npn __fp_parse_pack_carry:w \fi: ; 0 #1
24572 { \fi: + 1 ; 0 {1000} }

(End of definition for __fp_parse_pack_trailing:NNNNNNww , __fp_parse_pack_leading:NNNNNww , and
__fp_parse_pack_carry:w.)

71.4.3 Number: large significand
Parsing a significand larger than 1 is a little bit more difficult than parsing small signif-
icands. We need to count the number of digits before the decimal separator, and add
that to the final exponent. We also need to test for the presence of a dot each time we
run out of digits, and branch to the appropriate parse_small function in those cases.

__fp_parse_large:N This function is followed by the first non-zero digit of a “large” significand (≥ 1). It is
called within an integer expression for the exponent. Grab up to 7 more digits, for a
total of 8 digits.

24573 \cs_new:Npn __fp_parse_large:N #1
24574 {
24575 \exp_after:wN __fp_parse_large_leading:wwNN
24576 \int_value:w 1 \token_to_str:N #1
24577 \exp_after:wN __fp_parse_digits_vii:N
24578 \exp:w __fp_parse_expand:w
24579 }

1077

(End of definition for __fp_parse_large:N.)

__fp_parse_large_leading:wwNN __fp_parse_large_leading:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩
⟨next token⟩

We shift the exponent by the number of digits in #1, namely the target number,
8, minus the ⟨number of zeros⟩ (number of digits missing). Then prepare to pack the
8 first digits. If the ⟨next token⟩ is a digit, read up to 6 more digits (digits 10 to 15). If
it is a period, try to grab the end of our 8 first digits, branching to the small functions
since the number of digit does not affect the exponent anymore. Finally, if this is the
end of the significand, insert the ⟨zeros⟩ to complete the 8 first digits, insert 8 more,
and look for an exponent.

24580 \cs_new:Npn __fp_parse_large_leading:wwNN 1 #1 ; #2; #3 #4
24581 {
24582 + \c__fp_half_prec_int - #3
24583 \exp_after:wN __fp_parse_pack_leading:NNNNNww
24584 \int_value:w __fp_int_eval:w 1 #1
24585 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
24586 \exp_after:wN __fp_parse_large_trailing:wwNN
24587 \int_value:w 1 \token_to_str:N #4
24588 \exp_after:wN __fp_parse_digits_vi:N
24589 \exp:w
24590 \else:
24591 \if:w . \exp_not:N #4
24592 \exp_after:wN __fp_parse_small_leading:wwNN
24593 \int_value:w 1
24594 \cs:w
24595 __fp_parse_digits_
24596 __fp_int_to_roman:w #3
24597 :N \exp_after:wN
24598 \cs_end:
24599 \exp:w
24600 \else:
24601 #2
24602 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
24603 \exp_after:wN 0
24604 \int_value:w 1 0000 0000
24605 __fp_parse_exponent:Nw #4
24606 \fi:
24607 \fi:
24608 __fp_parse_expand:w
24609 }

(End of definition for __fp_parse_large_leading:wwNN.)

__fp_parse_large_trailing:wwNN __fp_parse_large_trailing:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩
⟨next token⟩

We have just read 15 digits. If the ⟨next token⟩ is a digit, then the exponent
shift caused by this block of 8 digits is 8, first argument to the pack_trailing func-
tion. We keep the ⟨digits⟩ and this 16-th digit, and find how this should be rounded
using __fp_parse_large_round:NN. Otherwise, the exponent shift is the number of
⟨digits⟩, 7 minus the ⟨number of zeros⟩, and we test for a decimal point. This case
happens in 123451234512345.67 with exactly 15 digits before the decimal separator.

1078

Then branch to the appropriate small auxiliary, grabbing a few more digits to comple-
ment the digits we already grabbed. Finally, if this is truly the end of the significand,
look for an exponent after using the ⟨zeros⟩ and providing a 16-th digit of 0.

24610 \cs_new:Npn __fp_parse_large_trailing:wwNN 1 #1 ; #2; #3 #4
24611 {
24612 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
24613 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
24614 \exp_after:wN \c__fp_half_prec_int
24615 \int_value:w __fp_int_eval:w 1 #1 \token_to_str:N #4
24616 \exp_after:wN __fp_parse_large_round:NN
24617 \exp_after:wN #4
24618 \exp:w
24619 \else:
24620 \exp_after:wN __fp_parse_pack_trailing:NNNNNNww
24621 \int_value:w __fp_int_eval:w 7 - #3 \exp_stop_f:
24622 \int_value:w __fp_int_eval:w 1 #1
24623 \if:w . \exp_not:N #4
24624 \exp_after:wN __fp_parse_small_trailing:wwNN
24625 \int_value:w 1
24626 \cs:w
24627 __fp_parse_digits_
24628 __fp_int_to_roman:w #3
24629 :N \exp_after:wN
24630 \cs_end:
24631 \exp:w
24632 \else:
24633 #2 0 __fp_parse_exponent:Nw #4
24634 \fi:
24635 \fi:
24636 __fp_parse_expand:w
24637 }

(End of definition for __fp_parse_large_trailing:wwNN.)

71.4.4 Number: beyond 16 digits, rounding
__fp_parse_round_loop:N

__fp_parse_round_up:N
This loop is called when rounding a number (whether the mantissa is small or large).
It should appear in an integer expression. This function reads digits one by one, until
reaching a non-digit, and adds 1 to the integer expression for each digit. If all digits
found are 0, the function ends the expression by ;0, otherwise by ;1. This is done by
switching the loop to round_up at the first non-zero digit, thus we avoid to test whether
digits are 0 or not once we see a first non-zero digit.

24638 \cs_new:Npn __fp_parse_round_loop:N #1
24639 {
24640 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24641 + 1
24642 \if:w 0 \token_to_str:N #1
24643 \exp_after:wN __fp_parse_round_loop:N
24644 \exp:w
24645 \else:
24646 \exp_after:wN __fp_parse_round_up:N
24647 \exp:w
24648 \fi:

1079

24649 \else:
24650 __fp_parse_return_semicolon:w 0 #1
24651 \fi:
24652 __fp_parse_expand:w
24653 }
24654 \cs_new:Npn __fp_parse_round_up:N #1
24655 {
24656 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24657 + 1
24658 \exp_after:wN __fp_parse_round_up:N
24659 \exp:w
24660 \else:
24661 __fp_parse_return_semicolon:w 1 #1
24662 \fi:
24663 __fp_parse_expand:w
24664 }

(End of definition for __fp_parse_round_loop:N and __fp_parse_round_up:N.)

__fp_parse_round_after:wN After the loop __fp_parse_round_loop:N, this function fetches an exponent with
__fp_parse_exponent:N, and combines it with the number of digits counted by
__fp_parse_round_loop:N. At the same time, the result 0 or 1 is added to the sur-
rounding integer expression.

24665 \cs_new:Npn __fp_parse_round_after:wN #1; #2
24666 {
24667 + #2 \exp_after:wN ;
24668 \int_value:w __fp_int_eval:w #1 + __fp_parse_exponent:N
24669 }

(End of definition for __fp_parse_round_after:wN.)

__fp_parse_small_round:NN
__fp_parse_round_after:wN

Here, #1 is the digit that we are currently rounding (we only care whether it is even
or odd). If #2 is not a digit, then fetch an exponent and expand to ;⟨exponent⟩ only.
Otherwise, we expand to +0 or +1, then ;⟨exponent⟩. To decide which, call __fp_-
round_s:NNNw to know whether to round up, giving it as arguments a sign 0 (all explicit
numbers are positive), the digit #1 to round, the first following digit #2, and either +0
or +1 depending on whether the following digits are all zero or not. This last argu-
ment is obtained by __fp_parse_round_loop:N, whose number of digits we discard by
multiplying it by 0. The exponent which follows the number is also fetched by __fp_-
parse_round_after:wN.

24670 \cs_new:Npn __fp_parse_small_round:NN #1#2
24671 {
24672 \if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
24673 +
24674 \exp_after:wN __fp_round_s:NNNw
24675 \exp_after:wN 0
24676 \exp_after:wN #1
24677 \exp_after:wN #2
24678 \int_value:w __fp_int_eval:w
24679 \exp_after:wN __fp_parse_round_after:wN
24680 \int_value:w __fp_int_eval:w 0 * __fp_int_eval:w 0
24681 \exp_after:wN __fp_parse_round_loop:N
24682 \exp:w
24683 \else:

1080

24684 __fp_parse_exponent:Nw #2
24685 \fi:
24686 __fp_parse_expand:w
24687 }

(End of definition for __fp_parse_small_round:NN and __fp_parse_round_after:wN.)

__fp_parse_large_round:NN
__fp_parse_large_round_test:NN
__fp_parse_large_round_aux:wNN

Large numbers are harder to round, as there may be a period in the way. Again, #1 is
the digit that we are currently rounding (we only care whether it is even or odd). If there
are no more digits (#2 is not a digit), then we must test for a period: if there is one,
then switch to the rounding function for small significands, otherwise fetch an exponent.
If there are more digits (#2 is a digit), then round, checking with __fp_parse_round_-
loop:N if all further digits vanish, or some are non-zero. This loop is not enough, as it is
stopped by a period. After the loop, the aux function tests for a period: if it is present,
then we must continue looking for digits, this time discarding the number of digits we
find.

24688 \cs_new:Npn __fp_parse_large_round:NN #1#2
24689 {
24690 \if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
24691 +
24692 \exp_after:wN __fp_round_s:NNNw
24693 \exp_after:wN 0
24694 \exp_after:wN #1
24695 \exp_after:wN #2
24696 \int_value:w __fp_int_eval:w
24697 \exp_after:wN __fp_parse_large_round_aux:wNN
24698 \int_value:w __fp_int_eval:w 1
24699 \exp_after:wN __fp_parse_round_loop:N
24700 \else: %^^A could be dot, or e, or other
24701 \exp_after:wN __fp_parse_large_round_test:NN
24702 \exp_after:wN #1
24703 \exp_after:wN #2
24704 \fi:
24705 }
24706 \cs_new:Npn __fp_parse_large_round_test:NN #1#2
24707 {
24708 \if:w . \exp_not:N #2
24709 \exp_after:wN __fp_parse_small_round:NN
24710 \exp_after:wN #1
24711 \exp:w
24712 \else:
24713 __fp_parse_exponent:Nw #2
24714 \fi:
24715 __fp_parse_expand:w
24716 }
24717 \cs_new:Npn __fp_parse_large_round_aux:wNN #1 ; #2 #3
24718 {
24719 + #2
24720 \exp_after:wN __fp_parse_round_after:wN
24721 \int_value:w __fp_int_eval:w #1
24722 \if:w . \exp_not:N #3
24723 + 0 * __fp_int_eval:w 0
24724 \exp_after:wN __fp_parse_round_loop:N
24725 \exp:w \exp_after:wN __fp_parse_expand:w

1081

24726 \else:
24727 \exp_after:wN ;
24728 \exp_after:wN 0
24729 \exp_after:wN #3
24730 \fi:
24731 }

(End of definition for __fp_parse_large_round:NN , __fp_parse_large_round_test:NN , and __fp_-
parse_large_round_aux:wNN.)

71.4.5 Number: finding the exponent
Expansion is a little bit tricky here, in part because we accept input where multiplication
is implicit.

__fp_parse:n { 3.2 erf(0.1) }
__fp_parse:n { 3.2 e\l_my_int }
__fp_parse:n { 3.2 \c_pi_fp }

The first case indicates that just looking one character ahead for an “e” is not enough,
since we would mistake the function erf for an exponent of “rf”. An alternative would
be to look two tokens ahead and check if what follows is a sign or a digit, considering
in that case that we must be finding an exponent. But taking care of the second case
requires that we unpack registers after e. However, blindly expanding the two tokens
ahead completely would break the third example (unpacking is even worse). Indeed, in
the course of reading 3.2, \c_pi_fp is expanded to \s__fp __fp_chk:w 1 0 {-1} {3141}
· · · ; and \s__fp stops the expansion. Expanding two tokens ahead would then force
the expansion of __fp_chk:w (despite it being protected), and that function tries to
produce an error.

What can we do? Really, the reason why this last case breaks is that just as TEX
does, we should read ahead as little as possible. Here, the only case where there may be
an exponent is if the first token ahead is e. Then we expand (and possibly unpack) the
second token.

__fp_parse_exponent:Nw This auxiliary is convenient to smuggle some material through \fi: ending conditional
processing. We place those \fi: (argument #2) at a very odd place because this allows
us to insert __fp_int_eval:w . . . there if needed.

24732 \cs_new:Npn __fp_parse_exponent:Nw #1 #2 __fp_parse_expand:w
24733 {
24734 \exp_after:wN ;
24735 \int_value:w #2 __fp_parse_exponent:N #1
24736 }

(End of definition for __fp_parse_exponent:Nw.)

__fp_parse_exponent:N
__fp_parse_exponent_aux:NN

This function should be called within an \int_value:w expansion (or within an integer
expression). It leaves digits of the exponent behind it in the input stream, and terminates
the expansion with a semicolon. If there is no e (or E), leave an exponent of 0. If there
is an e or E, expand the next token to run some tests on it. The first rough test is that
if the character code of #1 is greater than that of 9 (largest code valid for an exponent,
less than any code valid for an identifier), there was in fact no exponent; otherwise, we
search for the sign of the exponent.

24737 \cs_new:Npn __fp_parse_exponent:N #1

1082

24738 {
24739 \if:w e \if:w E \exp_not:N #1 e \else: \exp_not:N #1 \fi:
24740 \exp_after:wN __fp_parse_exponent_aux:NN
24741 \exp_after:wN #1
24742 \exp:w
24743 \else:
24744 0 __fp_parse_return_semicolon:w #1
24745 \fi:
24746 __fp_parse_expand:w
24747 }
24748 \cs_new:Npn __fp_parse_exponent_aux:NN #1#2
24749 {
24750 \if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #2
24751 0 \else: ‘#2 \fi: > ‘9 \exp_stop_f:
24752 0 \exp_after:wN ; \exp_after:wN #1
24753 \else:
24754 \exp_after:wN __fp_parse_exponent_sign:N
24755 \fi:
24756 #2
24757 }

(End of definition for __fp_parse_exponent:N and __fp_parse_exponent_aux:NN.)

__fp_parse_exponent_sign:N Read signs one by one (if there is any).
24758 \cs_new:Npn __fp_parse_exponent_sign:N #1
24759 {
24760 \if:w + \if:w - \exp_not:N #1 + \fi: \token_to_str:N #1
24761 \exp_after:wN __fp_parse_exponent_sign:N
24762 \exp:w \exp_after:wN __fp_parse_expand:w
24763 \else:
24764 \exp_after:wN __fp_parse_exponent_body:N
24765 \exp_after:wN #1
24766 \fi:
24767 }

(End of definition for __fp_parse_exponent_sign:N.)

__fp_parse_exponent_body:N An exponent can be an explicit integer (most common case), or various other things
(most of which are invalid).

24768 \cs_new:Npn __fp_parse_exponent_body:N #1
24769 {
24770 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24771 \token_to_str:N #1
24772 \exp_after:wN __fp_parse_exponent_digits:N
24773 \exp:w
24774 \else:
24775 __fp_parse_exponent_keep:NTF #1
24776 { __fp_parse_return_semicolon:w #1 }
24777 {
24778 \exp_after:wN ;
24779 \exp:w
24780 }
24781 \fi:
24782 __fp_parse_expand:w
24783 }

1083

(End of definition for __fp_parse_exponent_body:N.)

__fp_parse_exponent_digits:N Read digits one by one, and leave them behind in the input stream. When finding a
non-digit, stop, and insert a semicolon. Note that we do not check for overflow of the
exponent, hence there can be a TEX error. It is mostly harmless, except when parsing
0e9876543210, which should be a valid representation of 0, but is not.

24784 \cs_new:Npn __fp_parse_exponent_digits:N #1
24785 {
24786 \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f:
24787 \token_to_str:N #1
24788 \exp_after:wN __fp_parse_exponent_digits:N
24789 \exp:w
24790 \else:
24791 __fp_parse_return_semicolon:w #1
24792 \fi:
24793 __fp_parse_expand:w
24794 }

(End of definition for __fp_parse_exponent_digits:N.)

__fp_parse_exponent_keep:NTF This is the last building block for parsing exponents. The argument #1 is already fully
expanded, and neither + nor - nor a digit. It can be:

• \s__fp, marking the start of an internal floating point, invalid here;

• another control sequence equal to \relax, probably a bad variable;

• a register: in this case we make sure that it is an integer register, not a dimension;

• a character other than +, - or digits, again, an error.

24795 \prg_new_conditional:Npnn __fp_parse_exponent_keep:N #1 { TF }
24796 {
24797 \if_catcode:w \scan_stop: \exp_not:N #1
24798 \if_meaning:w \scan_stop: #1
24799 \if:w 0 __fp_str_if_eq:nn { \s__fp } { \exp_not:N #1 }
24800 0
24801 \msg_expandable_error:nnn
24802 { fp } { after-e } { floating~point~ }
24803 \prg_return_true:
24804 \else:
24805 0
24806 \msg_expandable_error:nnn
24807 { kernel } { bad-variable } {#1}
24808 \prg_return_false:
24809 \fi:
24810 \else:
24811 \if:w 0 __fp_str_if_eq:nn { \int_value:w #1 } { \tex_the:D #1 }
24812 \int_value:w #1
24813 \else:
24814 0
24815 \msg_expandable_error:nnn
24816 { fp } { after-e } { dimension~#1 }
24817 \fi:
24818 \prg_return_false:

1084

24819 \fi:
24820 \else:
24821 0
24822 \msg_expandable_error:nnn
24823 { fp } { missing } { exponent }
24824 \prg_return_true:
24825 \fi:
24826 }

(End of definition for __fp_parse_exponent_keep:NTF.)

71.5 Constants, functions and prefix operators
71.5.1 Prefix operators

__fp_parse_prefix_+:Nw A unary + does nothing: we should continue looking for a number.
24827 \cs_new_eq:cN { __fp_parse_prefix_+:Nw } __fp_parse_one:Nw

(End of definition for __fp_parse_prefix_+:Nw.)

__fp_parse_apply_function:NNNwN Here, #1 is a precedence, #2 is some extra data used by some functions, #3 is e.g.,
__fp_sin_o:w, and expands once after the calculation, #4 is the operand, and #5 is a
__fp_parse_infix_...:N function. We feed the data #2, and the argument #4, to the
function #3, which expands \exp:w thus the infix function #5.

24828 \cs_new:Npn __fp_parse_apply_function:NNNwN #1#2#3#4@#5
24829 {
24830 #3 #2 #4 @
24831 \exp:w \exp_end_continue_f:w #5 #1
24832 }

(End of definition for __fp_parse_apply_function:NNNwN.)

__fp_parse_apply_unary:NNNwN
__fp_parse_apply_unary_chk:NwNw
__fp_parse_apply_unary_chk:nNNNw
__fp_parse_apply_unary_type:NNN
__fp_parse_apply_unary_error:NNw

In contrast to __fp_parse_apply_function:NNNwN, this checks that the operand #4 is
a single argument (namely there is a single ;). We use the fact that any floating point
starts with a “safe” token like \s__fp. If there is no argument produce the fp-no-arg
error; if there are at least two produce fp-multi-arg. For the error message extract
the mathematical function name (such as sin) from the expl3 function that computes it,
such as __fp_sin_o:w.

In addition, since there is a single argument we can dispatch on type and check that
the resulting function exists. This catches things like sin((1,2)) where it does not make
sense to take the sine of a tuple.

24833 \cs_new:Npn __fp_parse_apply_unary:NNNwN #1#2#3#4@#5
24834 {
24835 __fp_parse_apply_unary_chk:NwNw #4 @ ; . \s__fp_stop
24836 __fp_parse_apply_unary_type:NNN
24837 #3 #2 #4 @
24838 \exp:w \exp_end_continue_f:w #5 #1
24839 }
24840 \cs_new:Npn __fp_parse_apply_unary_chk:NwNw #1#2 ; #3#4 \s__fp_stop
24841 {
24842 \if_meaning:w @ #3 \else:
24843 \token_if_eq_meaning:NNTF . #3
24844 { __fp_parse_apply_unary_chk:nNNNNw { no } }

1085

24845 { __fp_parse_apply_unary_chk:nNNNNw { multi } }
24846 \fi:
24847 }
24848 \cs_new:Npn __fp_parse_apply_unary_chk:nNNNNw #1#2#3#4#5#6 @
24849 {
24850 #2
24851 __fp_error:nffn { #1-arg } { __fp_func_to_name:N #4 } { } { }
24852 \exp_after:wN #4 \exp_after:wN #5 \c_nan_fp @
24853 }
24854 \cs_new:Npn __fp_parse_apply_unary_type:NNN #1#2#3
24855 {
24856 __fp_change_func_type:NNN #3 #1 __fp_parse_apply_unary_error:NNw
24857 #2 #3
24858 }
24859 \cs_new:Npn __fp_parse_apply_unary_error:NNw #1#2#3 @
24860 { __fp_invalid_operation_o:fw { __fp_func_to_name:N #1 } #3 }

(End of definition for __fp_parse_apply_unary:NNNwN and others.)

__fp_parse_prefix_-:Nw
__fp_parse_prefix_!:Nw

The unary - and boolean not are harder: we parse the operand using a precedence equal
to the maximum of the previous precedence ##1 and the precedence \c__fp_prec_not_-
int of the unary operator, then call the appropriate __fp_⟨operation⟩_o:w function,
where the ⟨operation⟩ is set_sign or not.

24861 \cs_set_protected:Npn __fp_tmp:w #1#2#3#4
24862 {
24863 \cs_new:cpn { __fp_parse_prefix_ #1 :Nw } ##1
24864 {
24865 \exp_after:wN __fp_parse_apply_unary:NNNwN
24866 \exp_after:wN ##1
24867 \exp_after:wN #4
24868 \exp_after:wN #3
24869 \exp:w
24870 \if_int_compare:w #2 < ##1
24871 __fp_parse_operand:Nw ##1
24872 \else:
24873 __fp_parse_operand:Nw #2
24874 \fi:
24875 __fp_parse_expand:w
24876 }
24877 }
24878 __fp_tmp:w - \c__fp_prec_not_int __fp_set_sign_o:w 2
24879 __fp_tmp:w ! \c__fp_prec_not_int __fp_not_o:w ?

(End of definition for __fp_parse_prefix_-:Nw and __fp_parse_prefix_!:Nw.)

__fp_parse_prefix_.:Nw Numbers which start with a decimal separator (a period) end up here. Of course, we do
not look for an operand, but for the rest of the number. This function is very similar to
__fp_parse_one_digit:NN but calls __fp_parse_strim_zeros:N to trim zeros after
the decimal point, rather than the trim_zeros function for zeros before the decimal
point.

24880 \cs_new:cpn { __fp_parse_prefix_.:Nw } #1
24881 {
24882 \exp_after:wN __fp_parse_infix_after_operand:NwN
24883 \exp_after:wN #1

1086

24884 \exp:w \exp_end_continue_f:w
24885 \exp_after:wN __fp_sanitize:wN
24886 \int_value:w __fp_int_eval:w 0 __fp_parse_strim_zeros:N
24887 }

(End of definition for __fp_parse_prefix_.:Nw.)

__fp_parse_prefix_(:Nw
__fp_parse_lparen_after:NwN

The left parenthesis is treated as a unary prefix operator because it appears in exactly
the same settings. If the previous precedence is \c__fp_prec_func_int we are parsing
arguments of a function and commas should not build tuples; otherwise commas should
build tuples. We distinguish these cases by precedence: \c__fp_prec_comma_int for the
case of arguments, \c__fp_prec_tuple_int for the case of tuples. Once the operand
is found, the lparen_after auxiliary makes sure that there was a closing parenthesis
(otherwise it complains), and leaves in the input stream an operand, fetching the following
infix operator.

24888 \cs_new:cpn { __fp_parse_prefix_(:Nw } #1
24889 {
24890 \exp_after:wN __fp_parse_lparen_after:NwN
24891 \exp_after:wN #1
24892 \exp:w
24893 \if_int_compare:w #1 = \c__fp_prec_func_int
24894 __fp_parse_operand:Nw \c__fp_prec_comma_int
24895 \else:
24896 __fp_parse_operand:Nw \c__fp_prec_tuple_int
24897 \fi:
24898 __fp_parse_expand:w
24899 }
24900 \cs_new:Npe __fp_parse_lparen_after:NwN #1#2 @ #3
24901 {
24902 \exp_not:N \token_if_eq_meaning:NNTF #3
24903 \exp_not:c { __fp_parse_infix_):N }
24904 {
24905 \exp_not:N __fp_exp_after_array_f:w #2 \s__fp_expr_stop
24906 \exp_not:N \exp_after:wN
24907 \exp_not:N __fp_parse_infix_after_paren:NN
24908 \exp_not:N \exp_after:wN #1
24909 \exp_not:N \exp:w
24910 \exp_not:N __fp_parse_expand:w
24911 }
24912 {
24913 \exp_not:N \msg_expandable_error:nnn
24914 { fp } { missing } {) }
24915 \exp_not:N \tl_if_empty:nT {#2} \exp_not:N \c__fp_empty_tuple_fp
24916 #2 @
24917 \exp_not:N \use_none:n #3
24918 }
24919 }

(End of definition for __fp_parse_prefix_(:Nw and __fp_parse_lparen_after:NwN.)

__fp_parse_prefix_):Nw The right parenthesis can appear as a prefix in two similar cases: in an empty tuple or
tuple ending with a comma, or in an empty argument list or argument list ending with
a comma, such as in max(1,2,) or in rand().

24920 \cs_new:cpn { __fp_parse_prefix_):Nw } #1

1087

24921 {
24922 \if_int_compare:w #1 = \c__fp_prec_comma_int
24923 \else:
24924 \if_int_compare:w #1 = \c__fp_prec_tuple_int
24925 \exp_after:wN \c__fp_empty_tuple_fp \exp:w
24926 \else:
24927 \msg_expandable_error:nnn
24928 { fp } { missing-number } {) }
24929 \exp_after:wN \c_nan_fp \exp:w
24930 \fi:
24931 \exp_end_continue_f:w
24932 \fi:
24933 __fp_parse_infix_after_paren:NN #1)
24934 }

(End of definition for __fp_parse_prefix_):Nw.)

71.5.2 Constants
__fp_parse_word_inf:N
__fp_parse_word_nan:N
__fp_parse_word_pi:N
__fp_parse_word_deg:N
__fp_parse_word_true:N

__fp_parse_word_false:N

Some words correspond to constant floating points. The floating point constant is left as
a result of __fp_parse_one:Nw after expanding __fp_parse_infix:NN.

24935 \cs_set_protected:Npn __fp_tmp:w #1 #2
24936 {
24937 \cs_new:cpn { __fp_parse_word_#1:N }
24938 { \exp_after:wN #2 \exp:w \exp_end_continue_f:w __fp_parse_infix:NN }
24939 }
24940 __fp_tmp:w { inf } \c_inf_fp
24941 __fp_tmp:w { nan } \c_nan_fp
24942 __fp_tmp:w { pi } \c_pi_fp
24943 __fp_tmp:w { deg } \c_one_degree_fp
24944 __fp_tmp:w { true } \c_one_fp
24945 __fp_tmp:w { false } \c_zero_fp

(End of definition for __fp_parse_word_inf:N and others.)

__fp_parse_caseless_inf:N
__fp_parse_caseless_infinity:N

__fp_parse_caseless_nan:N

Copies of __fp_parse_word_...:N commands, to allow arbitrary case as mandated by
the standard.

24946 \cs_new_eq:NN __fp_parse_caseless_inf:N __fp_parse_word_inf:N
24947 \cs_new_eq:NN __fp_parse_caseless_infinity:N __fp_parse_word_inf:N
24948 \cs_new_eq:NN __fp_parse_caseless_nan:N __fp_parse_word_nan:N

(End of definition for __fp_parse_caseless_inf:N , __fp_parse_caseless_infinity:N , and __fp_-
parse_caseless_nan:N.)

__fp_parse_word_pt:N
__fp_parse_word_in:N
__fp_parse_word_pc:N
__fp_parse_word_cm:N
__fp_parse_word_mm:N
__fp_parse_word_dd:N
__fp_parse_word_cc:N
__fp_parse_word_nd:N
__fp_parse_word_nc:N
__fp_parse_word_bp:N
__fp_parse_word_sp:N

Dimension units are also floating point constants but their value is not stored as a floating
point constant. We give the values explicitly here.

24949 \cs_set_protected:Npn __fp_tmp:w #1 #2
24950 {
24951 \cs_new:cpn { __fp_parse_word_#1:N }
24952 {
24953 __fp_exp_after_f:nw { __fp_parse_infix:NN }
24954 \s__fp __fp_chk:w 10 #2 ;
24955 }
24956 }

1088

24957 __fp_tmp:w {pt} { {1} {1000} {0000} {0000} {0000} }
24958 __fp_tmp:w {in} { {2} {7227} {0000} {0000} {0000} }
24959 __fp_tmp:w {pc} { {2} {1200} {0000} {0000} {0000} }
24960 __fp_tmp:w {cm} { {2} {2845} {2755} {9055} {1181} }
24961 __fp_tmp:w {mm} { {1} {2845} {2755} {9055} {1181} }
24962 __fp_tmp:w {dd} { {1} {1070} {0085} {6496} {0630} }
24963 __fp_tmp:w {cc} { {2} {1284} {0102} {7795} {2756} }
24964 __fp_tmp:w {nd} { {1} {1066} {9783} {4645} {6693} }
24965 __fp_tmp:w {nc} { {2} {1280} {3740} {1574} {8031} }
24966 __fp_tmp:w {bp} { {1} {1003} {7500} {0000} {0000} }
24967 __fp_tmp:w {sp} { {-4} {1525} {8789} {0625} {0000} }

(End of definition for __fp_parse_word_pt:N and others.)

__fp_parse_word_em:N
__fp_parse_word_ex:N

The font-dependent units em and ex must be evaluated on the fly. We reuse an auxiliary
of \dim_to_fp:n.

24968 \tl_map_inline:nn { {em} {ex} }
24969 {
24970 \cs_new:cpn { __fp_parse_word_#1:N }
24971 {
24972 \exp_after:wN __fp_from_dim_test:ww
24973 \exp_after:wN 0 \exp_after:wN ,
24974 \int_value:w \dim_to_decimal_in_sp:n { 1 #1 } \exp_after:wN ;
24975 \exp:w \exp_end_continue_f:w __fp_parse_infix:NN
24976 }
24977 }

(End of definition for __fp_parse_word_em:N and __fp_parse_word_ex:N.)

71.5.3 Functions
__fp_parse_unary_function:NNN

__fp_parse_function:NNN 24978 \cs_new:Npn __fp_parse_unary_function:NNN #1#2#3
24979 {
24980 \exp_after:wN __fp_parse_apply_unary:NNNwN
24981 \exp_after:wN #3
24982 \exp_after:wN #2
24983 \exp_after:wN #1
24984 \exp:w
24985 __fp_parse_operand:Nw \c__fp_prec_func_int __fp_parse_expand:w
24986 }
24987 \cs_new:Npn __fp_parse_function:NNN #1#2#3
24988 {
24989 \exp_after:wN __fp_parse_apply_function:NNNwN
24990 \exp_after:wN #3
24991 \exp_after:wN #2
24992 \exp_after:wN #1
24993 \exp:w
24994 __fp_parse_operand:Nw \c__fp_prec_func_int __fp_parse_expand:w
24995 }

(End of definition for __fp_parse_unary_function:NNN and __fp_parse_function:NNN.)

1089

71.6 Main functions
__fp_parse:n

__fp_parse_o:n
__fp_parse_after:ww

Start an \exp:w expansion so that __fp_parse:n expands in two steps. The __fp_-
parse_operand:Nw function performs computations until reaching an operation with
precedence \c__fp_prec_end_int or less, namely, the end of the expression. The marker
\s__fp_expr_mark indicates that the next token is an already parsed version of an infix
operator, and __fp_parse_infix_end:N has infinitely negative precedence. Finally,
clean up a (well-defined) set of extra tokens and stop the initial expansion with \exp_-
end:.

24996 \cs_new:Npn __fp_parse:n #1
24997 {
24998 \exp:w
24999 \exp_after:wN __fp_parse_after:ww
25000 \exp:w
25001 __fp_parse_operand:Nw \c__fp_prec_end_int
25002 __fp_parse_expand:w #1
25003 \s__fp_expr_mark __fp_parse_infix_end:N
25004 \s__fp_expr_stop
25005 \exp_end:
25006 }
25007 \cs_new:Npn __fp_parse_after:ww
25008 #1@ __fp_parse_infix_end:N \s__fp_expr_stop #2 { #2 #1 }
25009 \cs_new:Npn __fp_parse_o:n #1
25010 {
25011 \exp:w
25012 \exp_after:wN __fp_parse_after:ww
25013 \exp:w
25014 __fp_parse_operand:Nw \c__fp_prec_end_int
25015 __fp_parse_expand:w #1
25016 \s__fp_expr_mark __fp_parse_infix_end:N
25017 \s__fp_expr_stop
25018 {
25019 \exp_end_continue_f:w
25020 __fp_exp_after_any_f:nw { \exp_after:wN \exp_stop_f: }
25021 }
25022 }

(End of definition for __fp_parse:n , __fp_parse_o:n , and __fp_parse_after:ww.)

__fp_parse_operand:Nw
__fp_parse_continue:NwN

This is just a shorthand which sets up both __fp_parse_continue:NwN and __fp_-
parse_one:Nw with the same precedence. Note the trailing \exp:w.

25023 \cs_new:Npn __fp_parse_operand:Nw #1
25024 {
25025 \exp_end_continue_f:w
25026 \exp_after:wN __fp_parse_continue:NwN
25027 \exp_after:wN #1
25028 \exp:w \exp_end_continue_f:w
25029 \exp_after:wN __fp_parse_one:Nw
25030 \exp_after:wN #1
25031 \exp:w
25032 }
25033 \cs_new:Npn __fp_parse_continue:NwN #1 #2 @ #3 { #3 #1 #2 @ }

(End of definition for __fp_parse_operand:Nw and __fp_parse_continue:NwN.)

1090

__fp_parse_apply_binary:NwNwN
__fp_parse_apply_binary_chk:NN

__fp_parse_apply_binary_error:NNN

Receives ⟨precedence⟩ ⟨operand1⟩ @ ⟨operation⟩ ⟨operand2⟩ @ ⟨infix command⟩.
Builds the appropriate call to the ⟨operation⟩ #3, dispatching on both types. If the
resulting control sequence does not exist, the operation is not allowed.

This is redefined in l3fp-extras.
25034 \cs_new:Npn __fp_parse_apply_binary:NwNwN #1 #2#3@ #4 #5#6@ #7
25035 {
25036 \exp_after:wN __fp_parse_continue:NwN
25037 \exp_after:wN #1
25038 \exp:w \exp_end_continue_f:w
25039 \exp_after:wN __fp_parse_apply_binary_chk:NN
25040 \cs:w
25041 __fp
25042 __fp_type_from_scan:N #2
25043 _#4
25044 __fp_type_from_scan:N #5
25045 _o:ww
25046 \cs_end:
25047 #4
25048 #2#3 #5#6
25049 \exp:w \exp_end_continue_f:w #7 #1
25050 }
25051 \cs_new:Npn __fp_parse_apply_binary_chk:NN #1#2
25052 {
25053 \if_meaning:w \scan_stop: #1
25054 __fp_parse_apply_binary_error:NNN #2
25055 \fi:
25056 #1
25057 }
25058 \cs_new:Npn __fp_parse_apply_binary_error:NNN #1#2#3
25059 {
25060 #2
25061 __fp_invalid_operation_o:Nww #1
25062 }

(End of definition for __fp_parse_apply_binary:NwNwN , __fp_parse_apply_binary_chk:NN , and _-
_fp_parse_apply_binary_error:NNN.)

__fp_binary_type_o:Nww
__fp_binary_rev_type_o:Nww

Applies the operator #1 to its two arguments, dispatching according to their types, and
expands once after the result. The rev version swaps its arguments before doing this.

25063 \cs_new:Npn __fp_binary_type_o:Nww #1 #2#3 ; #4
25064 {
25065 \exp_after:wN __fp_parse_apply_binary_chk:NN
25066 \cs:w
25067 __fp
25068 __fp_type_from_scan:N #2
25069 _ #1
25070 __fp_type_from_scan:N #4
25071 _o:ww
25072 \cs_end:
25073 #1
25074 #2 #3 ; #4
25075 }
25076 \cs_new:Npn __fp_binary_rev_type_o:Nww #1 #2#3 ; #4#5 ;
25077 {

1091

25078 \exp_after:wN __fp_parse_apply_binary_chk:NN
25079 \cs:w
25080 __fp
25081 __fp_type_from_scan:N #4
25082 _ #1
25083 __fp_type_from_scan:N #2
25084 _o:ww
25085 \cs_end:
25086 #1
25087 #4 #5 ; #2 #3 ;
25088 }

(End of definition for __fp_binary_type_o:Nww and __fp_binary_rev_type_o:Nww.)

71.7 Infix operators
__fp_parse_infix_after_operand:NwN

25089 \cs_new:Npn __fp_parse_infix_after_operand:NwN #1 #2;
25090 {
25091 __fp_exp_after_f:nw { __fp_parse_infix:NN #1 }
25092 #2;
25093 }
25094 \cs_new:Npn __fp_parse_infix:NN #1 #2
25095 {
25096 \if_catcode:w \scan_stop: \exp_not:N #2
25097 \if:w 0 __fp_str_if_eq:nn { \s__fp_expr_mark } { \exp_not:N #2 }
25098 \exp_after:wN \exp_after:wN
25099 \exp_after:wN __fp_parse_infix_mark:NNN
25100 \else:
25101 \exp_after:wN \exp_after:wN
25102 \exp_after:wN __fp_parse_infix_juxt:N
25103 \fi:
25104 \else:
25105 \if_int_compare:w
25106 __fp_int_eval:w
25107 (‘#2 \if_int_compare:w ‘#2 > ‘Z - 32 \fi:) / 26
25108 = 3 \exp_stop_f:
25109 \exp_after:wN \exp_after:wN
25110 \exp_after:wN __fp_parse_infix_juxt:N
25111 \else:
25112 \exp_after:wN __fp_parse_infix_check:NNN
25113 \cs:w
25114 __fp_parse_infix_ \token_to_str:N #2 :N
25115 \exp_after:wN \exp_after:wN \exp_after:wN
25116 \cs_end:
25117 \fi:
25118 \fi:
25119 #1
25120 #2
25121 }
25122 \cs_new:Npn __fp_parse_infix_check:NNN #1#2#3
25123 {
25124 \if_meaning:w \scan_stop: #1

1092

25125 \msg_expandable_error:nnn
25126 { fp } { missing } { * }
25127 \exp_after:wN __fp_parse_infix_mul:N
25128 \exp_after:wN #2
25129 \exp_after:wN #3
25130 \else:
25131 \exp_after:wN #1
25132 \exp_after:wN #2
25133 \exp:w \exp_after:wN __fp_parse_expand:w
25134 \fi:
25135 }

(End of definition for __fp_parse_infix_after_operand:NwN.)

__fp_parse_infix_after_paren:NN Variant of __fp_parse_infix:NN for use after a closing parenthesis. The only difference
is that __fp_parse_infix_juxt:N is replaced by __fp_parse_infix_mul:N.

25136 \cs_new:Npn __fp_parse_infix_after_paren:NN #1 #2
25137 {
25138 \if_catcode:w \scan_stop: \exp_not:N #2
25139 \if:w 0 __fp_str_if_eq:nn { \s__fp_expr_mark } { \exp_not:N #2 }
25140 \exp_after:wN \exp_after:wN
25141 \exp_after:wN __fp_parse_infix_mark:NNN
25142 \else:
25143 \exp_after:wN \exp_after:wN
25144 \exp_after:wN __fp_parse_infix_mul:N
25145 \fi:
25146 \else:
25147 \if_int_compare:w
25148 __fp_int_eval:w
25149 (‘#2 \if_int_compare:w ‘#2 > ‘Z - 32 \fi:) / 26
25150 = 3 \exp_stop_f:
25151 \exp_after:wN \exp_after:wN
25152 \exp_after:wN __fp_parse_infix_mul:N
25153 \else:
25154 \exp_after:wN __fp_parse_infix_check:NNN
25155 \cs:w
25156 __fp_parse_infix_ \token_to_str:N #2 :N
25157 \exp_after:wN \exp_after:wN \exp_after:wN
25158 \cs_end:
25159 \fi:
25160 \fi:
25161 #1
25162 #2
25163 }

(End of definition for __fp_parse_infix_after_paren:NN.)

71.7.1 Closing parentheses and commas
__fp_parse_infix_mark:NNN As an infix operator, \s__fp_expr_mark means that the next token (#3) has already

gone through __fp_parse_infix:NN and should be provided the precedence #1. The
scan mark #2 is discarded.

25164 \cs_new:Npn __fp_parse_infix_mark:NNN #1#2#3 { #3 #1 }

1093

(End of definition for __fp_parse_infix_mark:NNN.)

__fp_parse_infix_end:N This one is a little bit odd: force every previous operator to end, regardless of the
precedence.

25165 \cs_new:Npn __fp_parse_infix_end:N #1
25166 { @ \use_none:n __fp_parse_infix_end:N }

(End of definition for __fp_parse_infix_end:N.)

__fp_parse_infix_):N This is very similar to __fp_parse_infix_end:N, complaining about an extra closing
parenthesis if the previous operator was the beginning of the expression, with precedence
\c__fp_prec_end_int.

25167 \cs_set_protected:Npn __fp_tmp:w #1
25168 {
25169 \cs_new:Npn #1 ##1
25170 {
25171 \if_int_compare:w ##1 > \c__fp_prec_end_int
25172 \exp_after:wN @
25173 \exp_after:wN \use_none:n
25174 \exp_after:wN #1
25175 \else:
25176 \msg_expandable_error:nnn { fp } { extra } {) }
25177 \exp_after:wN __fp_parse_infix:NN
25178 \exp_after:wN ##1
25179 \exp:w \exp_after:wN __fp_parse_expand:w
25180 \fi:
25181 }
25182 }
25183 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_):N }

(End of definition for __fp_parse_infix_):N.)

__fp_parse_infix_,:N
__fp_parse_infix_comma:w

__fp_parse_apply_comma:NwNwN

As for other infix operations, if the previous operations has higher precedence the comma
waits. Otherwise we call __fp_parse_operand:Nw to read more comma-delimited argu-
ments that __fp_parse_infix_comma:w simply concatenates into a @-delimited array.
The first comma in a tuple that is not a function argument is distinguished: in that case
call __fp_parse_apply_comma:NwNwN whose job is to convert the first item of the tuple
and an array of the remaining items into a tuple. In contrast to __fp_parse_apply_-
binary:NwNwN this function’s operands are not single-object arrays.

25184 \cs_set_protected:Npn __fp_tmp:w #1
25185 {
25186 \cs_new:Npn #1 ##1
25187 {
25188 \if_int_compare:w ##1 > \c__fp_prec_comma_int
25189 \exp_after:wN @
25190 \exp_after:wN \use_none:n
25191 \exp_after:wN #1
25192 \else:
25193 \if_int_compare:w ##1 < \c__fp_prec_comma_int
25194 \exp_after:wN @
25195 \exp_after:wN __fp_parse_apply_comma:NwNwN
25196 \exp_after:wN ,
25197 \exp:w
25198 \else:

1094

25199 \exp_after:wN __fp_parse_infix_comma:w
25200 \exp:w
25201 \fi:
25202 __fp_parse_operand:Nw \c__fp_prec_comma_int
25203 \exp_after:wN __fp_parse_expand:w
25204 \fi:
25205 }
25206 }
25207 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_,:N }
25208 \cs_new:Npn __fp_parse_infix_comma:w #1 @
25209 { #1 @ \use_none:n }
25210 \cs_new:Npn __fp_parse_apply_comma:NwNwN #1 #2@ #3 #4@ #5
25211 {
25212 \exp_after:wN __fp_parse_continue:NwN
25213 \exp_after:wN #1
25214 \exp:w \exp_end_continue_f:w
25215 __fp_exp_after_tuple_f:nw { }
25216 \s__fp_tuple __fp_tuple_chk:w { #2 #4 } ;
25217 #5 #1
25218 }

(End of definition for __fp_parse_infix_,:N , __fp_parse_infix_comma:w , and __fp_parse_apply_-
comma:NwNwN.)

71.7.2 Usual infix operators
__fp_parse_infix_+:N
__fp_parse_infix_-:N

__fp_parse_infix_juxt:N
__fp_parse_infix_/:N

__fp_parse_infix_mul:N
__fp_parse_infix_and:N
__fp_parse_infix_or:N
__fp_parse_infix_^:N

As described in the “work plan”, each infix operator has an associated \..._infix_...
function, a computing function, and precedence, given as arguments to __fp_tmp:w.
Using the general mechanism for arithmetic operations. The power operation must be
associative in the opposite order from all others. For this, we use two distinct precedences.

25219 \cs_set_protected:Npn __fp_tmp:w #1#2#3#4
25220 {
25221 \cs_new:Npn #1 ##1
25222 {
25223 \if_int_compare:w ##1 < #3
25224 \exp_after:wN @
25225 \exp_after:wN __fp_parse_apply_binary:NwNwN
25226 \exp_after:wN #2
25227 \exp:w
25228 __fp_parse_operand:Nw #4
25229 \exp_after:wN __fp_parse_expand:w
25230 \else:
25231 \exp_after:wN @
25232 \exp_after:wN \use_none:n
25233 \exp_after:wN #1
25234 \fi:
25235 }
25236 }
25237 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_^:N } ^
25238 \c__fp_prec_hatii_int \c__fp_prec_hat_int
25239 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_juxt:N } *
25240 \c__fp_prec_juxt_int \c__fp_prec_juxt_int
25241 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_/:N } /
25242 \c__fp_prec_times_int \c__fp_prec_times_int

1095

25243 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_mul:N } *
25244 \c__fp_prec_times_int \c__fp_prec_times_int
25245 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_-:N } -
25246 \c__fp_prec_plus_int \c__fp_prec_plus_int
25247 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_+:N } +
25248 \c__fp_prec_plus_int \c__fp_prec_plus_int
25249 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_and:N } &
25250 \c__fp_prec_and_int \c__fp_prec_and_int
25251 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_or:N } |
25252 \c__fp_prec_or_int \c__fp_prec_or_int

(End of definition for __fp_parse_infix_+:N and others.)

71.7.3 Juxtaposition
__fp_parse_infix_(:N When an opening parenthesis appears where we expect an infix operator, we compute

the product of the previous operand and the contents of the parentheses using __fp_-
parse_infix_mul:N.

25253 \cs_new:cpn { __fp_parse_infix_(:N } #1
25254 { __fp_parse_infix_mul:N #1 (}

(End of definition for __fp_parse_infix_(:N.)

71.7.4 Multi-character cases
__fp_parse_infix_*:N

25255 \cs_set_protected:Npn __fp_tmp:w #1
25256 {
25257 \cs_new:cpn { __fp_parse_infix_*:N } ##1##2
25258 {
25259 \if:w * \exp_not:N ##2
25260 \exp_after:wN #1
25261 \exp_after:wN ##1
25262 \else:
25263 \exp_after:wN __fp_parse_infix_mul:N
25264 \exp_after:wN ##1
25265 \exp_after:wN ##2
25266 \fi:
25267 }
25268 }
25269 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_^:N }

(End of definition for __fp_parse_infix_*:N.)

__fp_parse_infix_|:Nw
__fp_parse_infix_&:Nw 25270 \cs_set_protected:Npn __fp_tmp:w #1#2#3

25271 {
25272 \cs_new:Npn #1 ##1##2
25273 {
25274 \if:w #2 \exp_not:N ##2
25275 \exp_after:wN #1
25276 \exp_after:wN ##1
25277 \exp:w \exp_after:wN __fp_parse_expand:w
25278 \else:

1096

25279 \exp_after:wN #3
25280 \exp_after:wN ##1
25281 \exp_after:wN ##2
25282 \fi:
25283 }
25284 }
25285 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_|:N } | __fp_parse_infix_or:N
25286 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_&:N } & __fp_parse_infix_and:N

(End of definition for __fp_parse_infix_|:Nw and __fp_parse_infix_&:Nw.)

71.7.5 Ternary operator
__fp_parse_infix_?:N
__fp_parse_infix_::N 25287 \cs_set_protected:Npn __fp_tmp:w #1#2#3#4

25288 {
25289 \cs_new:Npn #1 ##1
25290 {
25291 \if_int_compare:w ##1 < \c__fp_prec_quest_int
25292 #4
25293 \exp_after:wN @
25294 \exp_after:wN #2
25295 \exp:w
25296 __fp_parse_operand:Nw #3
25297 \exp_after:wN __fp_parse_expand:w
25298 \else:
25299 \exp_after:wN @
25300 \exp_after:wN \use_none:n
25301 \exp_after:wN #1
25302 \fi:
25303 }
25304 }
25305 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_?:N }
25306 __fp_ternary:NwwN \c__fp_prec_quest_int { }
25307 \exp_args:Nc __fp_tmp:w { __fp_parse_infix_::N }
25308 __fp_ternary_auxii:NwwN \c__fp_prec_colon_int
25309 {
25310 \msg_expandable_error:nnnn
25311 { fp } { missing } { ? } { ~for~?: }
25312 }

(End of definition for __fp_parse_infix_?:N and __fp_parse_infix_::N.)

71.7.6 Comparisons
__fp_parse_infix_<:N
__fp_parse_infix_=:N
__fp_parse_infix_>:N
__fp_parse_infix_!:N

__fp_parse_excl_error:
__fp_parse_compare:NNNNNNN

__fp_parse_compare_auxi:NNNNNNN
__fp_parse_compare_auxii:NNNNN

__fp_parse_compare_end:NNNNw
__fp_compare:wNNNNw

25313 \cs_new:cpn { __fp_parse_infix_<:N } #1
25314 { __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 < }
25315 \cs_new:cpn { __fp_parse_infix_=:N } #1
25316 { __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 = }
25317 \cs_new:cpn { __fp_parse_infix_>:N } #1
25318 { __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 > }
25319 \cs_new:cpn { __fp_parse_infix_!:N } #1
25320 {

1097

25321 \exp_after:wN __fp_parse_compare:NNNNNNN
25322 \exp_after:wN #1
25323 \exp_after:wN 0
25324 \exp_after:wN 1
25325 \exp_after:wN 1
25326 \exp_after:wN 1
25327 \exp_after:wN 1
25328 }
25329 \cs_new:Npn __fp_parse_excl_error:
25330 {
25331 \msg_expandable_error:nnnn
25332 { fp } { missing } { = } { ~after~!. }
25333 }
25334 \cs_new:Npn __fp_parse_compare:NNNNNNN #1
25335 {
25336 \if_int_compare:w #1 < \c__fp_prec_comp_int
25337 \exp_after:wN __fp_parse_compare_auxi:NNNNNNN
25338 \exp_after:wN __fp_parse_excl_error:
25339 \else:
25340 \exp_after:wN @
25341 \exp_after:wN \use_none:n
25342 \exp_after:wN __fp_parse_compare:NNNNNNN
25343 \fi:
25344 }
25345 \cs_new:Npn __fp_parse_compare_auxi:NNNNNNN #1#2#3#4#5#6#7
25346 {
25347 \if_case:w
25348 __fp_int_eval:w \exp_after:wN ‘ \token_to_str:N #7 - ‘<
25349 __fp_int_eval_end:
25350 __fp_parse_compare_auxii:NNNNN #2#2#4#5#6
25351 \or: __fp_parse_compare_auxii:NNNNN #2#3#2#5#6
25352 \or: __fp_parse_compare_auxii:NNNNN #2#3#4#2#6
25353 \or: __fp_parse_compare_auxii:NNNNN #2#3#4#5#2
25354 \else: #1 __fp_parse_compare_end:NNNNw #3#4#5#6#7
25355 \fi:
25356 }
25357 \cs_new:Npn __fp_parse_compare_auxii:NNNNN #1#2#3#4#5
25358 {
25359 \exp_after:wN __fp_parse_compare_auxi:NNNNNNN
25360 \exp_after:wN \prg_do_nothing:
25361 \exp_after:wN #1
25362 \exp_after:wN #2
25363 \exp_after:wN #3
25364 \exp_after:wN #4
25365 \exp_after:wN #5
25366 \exp:w \exp_after:wN __fp_parse_expand:w
25367 }
25368 \cs_new:Npn __fp_parse_compare_end:NNNNw #1#2#3#4#5 \fi:
25369 {
25370 \fi:
25371 \exp_after:wN @
25372 \exp_after:wN __fp_parse_apply_compare:NwNNNNNwN
25373 \exp_after:wN \c_one_fp
25374 \exp_after:wN #1

1098

25375 \exp_after:wN #2
25376 \exp_after:wN #3
25377 \exp_after:wN #4
25378 \exp:w
25379 __fp_parse_operand:Nw \c__fp_prec_comp_int __fp_parse_expand:w #5
25380 }
25381 \cs_new:Npn __fp_parse_apply_compare:NwNNNNNwN
25382 #1 #2@ #3 #4#5#6#7 #8@ #9
25383 {
25384 \if_int_odd:w
25385 \if_meaning:w \c_zero_fp #3
25386 0
25387 \else:
25388 \if_case:w __fp_compare_back_any:ww #8 #2 \exp_stop_f:
25389 #5 \or: #6 \or: #7 \else: #4
25390 \fi:
25391 \fi:
25392 \exp_stop_f:
25393 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
25394 \exp_after:wN \c_one_fp
25395 \else:
25396 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
25397 \exp_after:wN \c_zero_fp
25398 \fi:
25399 #1 #8 #9
25400 }
25401 \cs_new:Npn __fp_parse_apply_compare_aux:NNwN #1 #2 #3; #4
25402 {
25403 \if_meaning:w __fp_parse_compare:NNNNNNN #4
25404 \exp_after:wN __fp_parse_continue_compare:NNwNN
25405 \exp_after:wN #1
25406 \exp_after:wN #2
25407 \exp:w \exp_end_continue_f:w
25408 __fp_exp_after_o:w #3;
25409 \exp:w \exp_end_continue_f:w
25410 \else:
25411 \exp_after:wN __fp_parse_continue:NwN
25412 \exp_after:wN #2
25413 \exp:w \exp_end_continue_f:w
25414 \exp_after:wN #1
25415 \exp:w \exp_end_continue_f:w
25416 \fi:
25417 #4 #2
25418 }
25419 \cs_new:Npn __fp_parse_continue_compare:NNwNN #1#2 #3@ #4#5
25420 { #4 #2 #3@ #1 }

(End of definition for __fp_parse_infix_<:N and others.)

71.8 Tools for functions
__fp_parse_function_all_fp_o:fnw Followed by {⟨function name⟩} {⟨code⟩} ⟨float array⟩ @ this checks all floats are float-

ing point numbers (no tuples).

1099

25421 \cs_new:Npn __fp_parse_function_all_fp_o:fnw #1#2#3 @
25422 {
25423 __fp_array_if_all_fp:nTF {#3}
25424 { #2 #3 @ }
25425 {
25426 __fp_error:nffn { bad-args }
25427 {#1}
25428 { \fp_to_tl:n { \s__fp_tuple __fp_tuple_chk:w {#3} ; } }
25429 { }
25430 \exp_after:wN \c_nan_fp
25431 }
25432 }

(End of definition for __fp_parse_function_all_fp_o:fnw.)

__fp_parse_function_one_two:nnw
__fp_parse_function_one_two_error_o:w
__fp_parse_function_one_two_aux:nnw

__fp_parse_function_one_two_auxii:nnw

This is followed by {⟨function name⟩} {⟨code⟩} ⟨float array⟩ @. It checks that the
⟨float array⟩ consists of one or two floating point numbers (not tuples), then leaves
the ⟨code⟩ (if there is one float) or its tail (if there are two floats) followed by the ⟨float
array⟩. The ⟨code⟩ should start with a single token such as __fp_atan_default:w
that deals with the single-float case.

The first __fp_if_type_fp:NTwFw test catches the case of no argument and the
case of a tuple argument. The next one distinguishes the case of a single argument (no
error, just add \c_one_fp) from a tuple second argument. Finally check there is no
further argument.

25433 \cs_new:Npn __fp_parse_function_one_two:nnw #1#2#3
25434 {
25435 __fp_if_type_fp:NTwFw
25436 #3 { } \s__fp __fp_parse_function_one_two_error_o:w \s__fp_stop
25437 __fp_parse_function_one_two_aux:nnw {#1} {#2} #3
25438 }
25439 \cs_new:Npn __fp_parse_function_one_two_error_o:w #1#2#3#4 @
25440 {
25441 __fp_error:nffn { bad-args }
25442 {#2}
25443 { \fp_to_tl:n { \s__fp_tuple __fp_tuple_chk:w {#4} ; } }
25444 { }
25445 \exp_after:wN \c_nan_fp
25446 }
25447 \cs_new:Npn __fp_parse_function_one_two_aux:nnw #1#2 #3; #4
25448 {
25449 __fp_if_type_fp:NTwFw
25450 #4 { }
25451 \s__fp
25452 {
25453 \if_meaning:w @ #4
25454 \exp_after:wN \use_iv:nnnn
25455 \fi:
25456 __fp_parse_function_one_two_error_o:w
25457 }
25458 \s__fp_stop
25459 __fp_parse_function_one_two_auxii:nnw {#1} {#2} #3; #4
25460 }
25461 \cs_new:Npn __fp_parse_function_one_two_auxii:nnw #1#2#3; #4; #5
25462 {

1100

25463 \if_meaning:w @ #5 \else:
25464 \exp_after:wN __fp_parse_function_one_two_error_o:w
25465 \fi:
25466 \use_ii:nn {#1} { \use_none:n #2 } #3; #4; #5
25467 }

(End of definition for __fp_parse_function_one_two:nnw and others.)

__fp_tuple_map_o:nw
__fp_tuple_map_loop_o:nw

Apply #1 to all items in the following tuple and expand once afterwards. The code #1
should itself expand once after its result.

25468 \cs_new:Npn __fp_tuple_map_o:nw #1 \s__fp_tuple __fp_tuple_chk:w #2 ;
25469 {
25470 \exp_after:wN \s__fp_tuple
25471 \exp_after:wN __fp_tuple_chk:w
25472 \exp_after:wN {
25473 \exp:w \exp_end_continue_f:w
25474 __fp_tuple_map_loop_o:nw {#1} #2
25475 { \s__fp \prg_break: } ;
25476 \prg_break_point:
25477 \exp_after:wN } \exp_after:wN ;
25478 }
25479 \cs_new:Npn __fp_tuple_map_loop_o:nw #1#2#3 ;
25480 {
25481 \use_none:n #2
25482 #1 #2 #3 ;
25483 \exp:w \exp_end_continue_f:w
25484 __fp_tuple_map_loop_o:nw {#1}
25485 }

(End of definition for __fp_tuple_map_o:nw and __fp_tuple_map_loop_o:nw.)

__fp_tuple_mapthread_o:nww
__fp_tuple_mapthread_loop_o:nw

Apply #1 to pairs of items in the two following tuples and expand once afterwards.
25486 \cs_new:Npn __fp_tuple_mapthread_o:nww #1
25487 \s__fp_tuple __fp_tuple_chk:w #2 ;
25488 \s__fp_tuple __fp_tuple_chk:w #3 ;
25489 {
25490 \exp_after:wN \s__fp_tuple
25491 \exp_after:wN __fp_tuple_chk:w
25492 \exp_after:wN {
25493 \exp:w \exp_end_continue_f:w
25494 __fp_tuple_mapthread_loop_o:nw {#1}
25495 #2 { \s__fp \prg_break: } ; @
25496 #3 { \s__fp \prg_break: } ;
25497 \prg_break_point:
25498 \exp_after:wN } \exp_after:wN ;
25499 }
25500 \cs_new:Npn __fp_tuple_mapthread_loop_o:nw #1#2#3 ; #4 @ #5#6 ;
25501 {
25502 \use_none:n #2
25503 \use_none:n #5
25504 #1 #2 #3 ; #5 #6 ;
25505 \exp:w \exp_end_continue_f:w
25506 __fp_tuple_mapthread_loop_o:nw {#1} #4 @
25507 }

(End of definition for __fp_tuple_mapthread_o:nww and __fp_tuple_mapthread_loop_o:nw.)

1101

71.9 Messages
25508 \msg_new:nnn { fp } { deprecated }
25509 { ’#1’~deprecated;~use~’#2’ }
25510 \msg_new:nnn { fp } { unknown-fp-word }
25511 { Unknown~fp~word~#1. }
25512 \msg_new:nnn { fp } { missing }
25513 { Missing~#1~inserted #2. }
25514 \msg_new:nnn { fp } { extra }
25515 { Extra~#1~ignored. }
25516 \msg_new:nnn { fp } { early-end }
25517 { Premature~end~in~fp~expression. }
25518 \msg_new:nnn { fp } { after-e }
25519 { Cannot~use~#1 after~’e’. }
25520 \msg_new:nnn { fp } { missing-number }
25521 { Missing~number~before~’#1’. }
25522 \msg_new:nnn { fp } { unknown-symbol }
25523 { Unknown~symbol~#1~ignored. }
25524 \msg_new:nnn { fp } { extra-comma }
25525 { Unexpected~comma~turned~to~nan~result. }
25526 \msg_new:nnn { fp } { no-arg }
25527 { #1~got~no~argument;~used~nan. }
25528 \msg_new:nnn { fp } { multi-arg }
25529 { #1~got~more~than~one~argument;~used~nan. }
25530 \msg_new:nnn { fp } { num-args }
25531 { #1~expects~between~#2~and~#3~arguments. }
25532 \msg_new:nnn { fp } { bad-args }
25533 { Arguments~in~#1#2~are~invalid. }
25534 \msg_new:nnn { fp } { infty-pi }
25535 { Math~command~#1 is~not~an~fp }
25536 \cs_if_exist:cT { @unexpandable@protect }
25537 {
25538 \msg_new:nnn { fp } { robust-cmd }
25539 { Robust~command~#1 invalid~in~fp~expression! }
25540 }

25541 ⟨/package⟩

1102

Chapter 72

l3fp-assign implementation

25542 ⟨∗package⟩

25543 ⟨@@=fp⟩

72.1 Assigning values
\fp_new:N Floating point variables are initialized to be +0.

25544 \cs_new_protected:Npn \fp_new:N #1
25545 { \cs_new_eq:NN #1 \c_zero_fp }
25546 \cs_generate_variant:Nn \fp_new:N {c}

(End of definition for \fp_new:N. This function is documented on page 265.)

\fp_set:Nn
\fp_set:cn
\fp_set:NV
\fp_set:cV
\fp_gset:Nn
\fp_gset:cn
\fp_gset:NV
\fp_gset:cV
\fp_const:Nn
\fp_const:cn

Simply use __fp_parse:n within various f-expanding assignments.
25547 \cs_new_protected:Npn \fp_set:Nn #1#2
25548 { __kernel_tl_set:Nx #1 { \exp_not:f { __fp_parse:n {#2} } } }
25549 \cs_new_protected:Npn \fp_gset:Nn #1#2
25550 { __kernel_tl_gset:Nx #1 { \exp_not:f { __fp_parse:n {#2} } } }
25551 \cs_new_protected:Npn \fp_const:Nn #1#2
25552 { \tl_const:Ne #1 { \exp_not:f { __fp_parse:n {#2} } } }
25553 \cs_generate_variant:Nn \fp_set:Nn { NV , c , cV }
25554 \cs_generate_variant:Nn \fp_gset:Nn { NV , c , cV }
25555 \cs_generate_variant:Nn \fp_const:Nn {c}

(End of definition for \fp_set:Nn , \fp_gset:Nn , and \fp_const:Nn. These functions are documented
on page 265.)

\fp_set_eq:NN
\fp_set_eq:cN
\fp_set_eq:Nc
\fp_set_eq:cc
\fp_gset_eq:NN
\fp_gset_eq:cN
\fp_gset_eq:Nc
\fp_gset_eq:cc

Copying a floating point is the same as copying the underlying token list.
25556 \cs_new_eq:NN \fp_set_eq:NN \tl_set_eq:NN
25557 \cs_new_eq:NN \fp_gset_eq:NN \tl_gset_eq:NN
25558 \cs_generate_variant:Nn \fp_set_eq:NN { c , Nc , cc }
25559 \cs_generate_variant:Nn \fp_gset_eq:NN { c , Nc , cc }

(End of definition for \fp_set_eq:NN and \fp_gset_eq:NN. These functions are documented on page
265.)

1103

\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Setting a floating point to zero: copy \c_zero_fp.
25560 \cs_new_protected:Npn \fp_zero:N #1 { \fp_set_eq:NN #1 \c_zero_fp }
25561 \cs_new_protected:Npn \fp_gzero:N #1 { \fp_gset_eq:NN #1 \c_zero_fp }
25562 \cs_generate_variant:Nn \fp_zero:N { c }
25563 \cs_generate_variant:Nn \fp_gzero:N { c }

(End of definition for \fp_zero:N and \fp_gzero:N. These functions are documented on page 265.)

\fp_zero_new:N
\fp_zero_new:c

\fp_gzero_new:N
\fp_gzero_new:c

Set the floating point to zero, or define it if needed.
25564 \cs_new_protected:Npn \fp_zero_new:N #1
25565 { \fp_if_exist:NTF #1 { \fp_zero:N #1 } { \fp_new:N #1 } }
25566 \cs_new_protected:Npn \fp_gzero_new:N #1
25567 { \fp_if_exist:NTF #1 { \fp_gzero:N #1 } { \fp_new:N #1 } }
25568 \cs_generate_variant:Nn \fp_zero_new:N { c }
25569 \cs_generate_variant:Nn \fp_gzero_new:N { c }

(End of definition for \fp_zero_new:N and \fp_gzero_new:N. These functions are documented on page
265.)

72.2 Updating values
These match the equivalent functions in l3int and l3skip.

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn
\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

__fp_add:NNNn

For the sake of error recovery we should not simply set #1 to #1± (#2): for instance, if #2
is 0)+2, the parsing error would be raised at the last closing parenthesis rather than at
the closing parenthesis in the user argument. Thus we evaluate #2 instead of just putting
parentheses. As an optimization we use __fp_parse:n rather than \fp_eval:n, which
would convert the result away from the internal representation and back.

25570 \cs_new_protected:Npn \fp_add:Nn { __fp_add:NNNn \fp_set:Nn + }
25571 \cs_new_protected:Npn \fp_gadd:Nn { __fp_add:NNNn \fp_gset:Nn + }
25572 \cs_new_protected:Npn \fp_sub:Nn { __fp_add:NNNn \fp_set:Nn - }
25573 \cs_new_protected:Npn \fp_gsub:Nn { __fp_add:NNNn \fp_gset:Nn - }
25574 \cs_new_protected:Npn __fp_add:NNNn #1#2#3#4
25575 { #1 #3 { #3 #2 __fp_parse:n {#4} } }
25576 \cs_generate_variant:Nn \fp_add:Nn { c }
25577 \cs_generate_variant:Nn \fp_gadd:Nn { c }
25578 \cs_generate_variant:Nn \fp_sub:Nn { c }
25579 \cs_generate_variant:Nn \fp_gsub:Nn { c }

(End of definition for \fp_add:Nn and others. These functions are documented on page 265.)

72.3 Showing values
\fp_show:N
\fp_show:c
\fp_log:N
\fp_log:c

__fp_show:NN

This shows the result of computing its argument by passing the right data to \tl_show:n
or \tl_log:n.

25580 \cs_new_protected:Npn \fp_show:N { __fp_show:NN \tl_show:n }
25581 \cs_generate_variant:Nn \fp_show:N { c }
25582 \cs_new_protected:Npn \fp_log:N { __fp_show:NN \tl_log:n }
25583 \cs_generate_variant:Nn \fp_log:N { c }
25584 \cs_new_protected:Npn __fp_show:NN #1#2
25585 {
25586 __kernel_chk_tl_type:NnnT #2 { fp }

1104

25587 { \exp_args:No __fp_show_validate:n #2 }
25588 { \exp_args:Ne #1 { \token_to_str:N #2 = \fp_to_tl:N #2 } }
25589 }

(End of definition for \fp_show:N , \fp_log:N , and __fp_show:NN. These functions are documented on
page 276.)

__fp_show_validate:n
__fp_show_validate_aux:n

__fp_show_validate:nn
__fp_show_validate:w

__fp_tuple_show_validate:w
__fp_symbolic_show_validate:w

To support symbolic expression, validation has to be done recursively. Two \@@_show_validate:nn
wrappers are used to distinguish between initial and recursive calls, in which the former
provides a demo of possible forms a fp variable would have.

25590 \cs_new:Npn __fp_show_validate:n #1
25591 {
25592 __fp_show_validate:nn { #1 }
25593 {
25594 \s__fp __fp_chk:w ??? ;~ or \iow_newline:
25595 \s__fp_tuple __fp_tuple_chk:w ? ;~ or \iow_newline:
25596 \s__fp_symbolic __fp_symbolic_chk:w ? , ? ;
25597 }
25598 }
25599 \cs_new:Npn __fp_show_validate_aux:n #1
25600 {
25601 __fp_show_validate:nn { #1 } { }
25602 }
25603 \cs_new:Npn __fp_show_validate:nn #1#2
25604 {
25605 \tl_if_empty:nF { #1 }
25606 {
25607 \str_case:enF { \tl_head:n { #1 } }
25608 {
25609 { \s__fp }
25610 {
25611 __fp_show_validate:w #1 \s__fp
25612 __fp_chk:w ??? ; \s__fp_stop
25613 }
25614 { \s__fp_tuple }
25615 {
25616 __fp_tuple_show_validate:w #1
25617 \s__fp_tuple __fp_tuple_chk:w ?? ; \s__fp_stop
25618 }
25619 { \s__fp_symbolic }
25620 {
25621 __fp_symbolic_show_validate:w #1
25622 \s__fp_symbolic __fp_symbolic_chk:w ? , ?? ; \s__fp_stop
25623 }
25624 }
25625 { #2 }
25626 }
25627 }
25628 \cs_new:Npn __fp_show_validate:w
25629 #1 \s__fp __fp_chk:w #2#3#4#5 ; #6 \s__fp_stop
25630 {
25631 \str_if_eq:nnF { #2 } {?}
25632 {
25633 \token_if_eq_meaning:NNTF #2 1

1105

25634 { \s__fp __fp_chk:w #2 #3 { #4 } #5 ; }
25635 { \s__fp __fp_chk:w #2 #3 #4 #5 ; }
25636 __fp_show_validate_aux:n { #6 }
25637 }
25638 }
25639 \cs_new:Npn __fp_tuple_show_validate:w
25640 #1 \s__fp_tuple __fp_tuple_chk:w #2#3 ; #4 \s__fp_stop
25641 {
25642 \str_if_eq:nnF { #2 } {?}
25643 { \s__fp_tuple __fp_tuple_chk:w { __fp_show_validate_aux:n { #2 } } ; }
25644 }
25645 \cs_new:Npn __fp_symbolic_show_validate:w
25646 #1 \s__fp_symbolic __fp_symbolic_chk:w #2 , #3#4 ; #5 \s__fp_stop
25647 {
25648 \str_if_eq:nnF { #2 } {?}
25649 {
25650 \s__fp_symbolic __fp_symbolic_chk:w \exp_not:n { #2 } ,
25651 { __fp_show_validate_aux:n { #3 } };
25652 __fp_show_validate_aux:n { #5 }
25653 }
25654 }

(End of definition for __fp_show_validate:n and others.)

\fp_show:n
\fp_log:n

Use general tools.
25655 \cs_new_protected:Npn \fp_show:n
25656 { __kernel_msg_show_eval:Nn \fp_to_tl:n }
25657 \cs_new_protected:Npn \fp_log:n
25658 { __kernel_msg_log_eval:Nn \fp_to_tl:n }

(End of definition for \fp_show:n and \fp_log:n. These functions are documented on page 276.)

72.4 Some useful constants and scratch variables
\c_one_fp

\c_e_fp
Some constants.

25659 \fp_const:Nn \c_e_fp { 2.718 2818 2845 9045 }
25660 \fp_const:Nn \c_one_fp { 1 }

(End of definition for \c_one_fp and \c_e_fp. These variables are documented on page 274.)

\c_pi_fp
\c_one_degree_fp

We simply round π to and π/180 to 16 significant digits.
25661 \fp_const:Nn \c_pi_fp { 3.141 5926 5358 9793 }
25662 \fp_const:Nn \c_one_degree_fp { 0.0 1745 3292 5199 4330 }

(End of definition for \c_pi_fp and \c_one_degree_fp. These variables are documented on page 274.)

\l_tmpa_fp
\l_tmpb_fp
\g_tmpa_fp
\g_tmpb_fp

Scratch variables are simply initialized there.
25663 \fp_new:N \l_tmpa_fp
25664 \fp_new:N \l_tmpb_fp
25665 \fp_new:N \g_tmpa_fp
25666 \fp_new:N \g_tmpb_fp

(End of definition for \l_tmpa_fp and others. These variables are documented on page 274.)

25667 ⟨/package⟩

1106

Chapter 73

l3fp-logic implementation

25668 ⟨∗package⟩

25669 ⟨@@=fp⟩

__fp_parse_word_max:N
__fp_parse_word_min:N

Those functions may receive a variable number of arguments.
25670 \cs_new:Npn __fp_parse_word_max:N
25671 { __fp_parse_function:NNN __fp_minmax_o:Nw 2 }
25672 \cs_new:Npn __fp_parse_word_min:N
25673 { __fp_parse_function:NNN __fp_minmax_o:Nw 0 }

(End of definition for __fp_parse_word_max:N and __fp_parse_word_min:N.)

73.1 Syntax of internal functions
• __fp_compare_npos:nwnw {⟨expo1⟩} ⟨body1⟩ ; {⟨expo2⟩} ⟨body2⟩ ;

• __fp_minmax_o:Nw ⟨sign⟩ ⟨floating point array⟩

• __fp_not_o:w ? ⟨floating point array⟩ (with one floating point number only)

• __fp_&_o:ww ⟨floating point⟩ ⟨floating point⟩

• __fp_|_o:ww ⟨floating point⟩ ⟨floating point⟩

• __fp_ternary:NwwN, __fp_ternary_auxi:NwwN, __fp_ternary_auxii:NwwN
have to be understood.

73.2 Tests
\fp_if_exist_p:N
\fp_if_exist_p:c
\fp_if_exist:NTF
\fp_if_exist:cTF

Copies of the cs functions defined in l3basics.
25674 \prg_new_eq_conditional:NNn \fp_if_exist:N \cs_if_exist:N { TF , T , F , p }
25675 \prg_new_eq_conditional:NNn \fp_if_exist:c \cs_if_exist:c { TF , T , F , p }

(End of definition for \fp_if_exist:NTF. This function is documented on page 267.)

1107

\fp_if_nan_p:n
\fp_if_nan:nTF

Evaluate and check if the result is a floating point of the same kind as nan.
25676 \prg_new_conditional:Npnn \fp_if_nan:n #1 { TF , T , F , p }
25677 {
25678 \if:w 3 \exp_last_unbraced:Nf __fp_kind:w { __fp_parse:n {#1} }
25679 \prg_return_true:
25680 \else:
25681 \prg_return_false:
25682 \fi:
25683 }

(End of definition for \fp_if_nan:nTF. This function is documented on page 269.)

73.3 Comparison
\fp_compare_p:n
\fp_compare:nTF

__fp_compare_return:w

Within floating point expressions, comparison operators are treated as operations, so we
evaluate #1, then compare with ±0. Tuples are true.

25684 \prg_new_conditional:Npnn \fp_compare:n #1 { p , T , F , TF }
25685 {
25686 \exp_after:wN __fp_compare_return:w
25687 \exp:w \exp_end_continue_f:w __fp_parse:n {#1}
25688 }
25689 \cs_new:Npn __fp_compare_return:w #1#2#3;
25690 {
25691 \if_charcode:w 0
25692 __fp_if_type_fp:NTwFw
25693 #1 { __fp_use_i_delimit_by_s_stop:nw #3 \s__fp_stop }
25694 \s__fp 1 \s__fp_stop
25695 \prg_return_false:
25696 \else:
25697 \prg_return_true:
25698 \fi:
25699 }

(End of definition for \fp_compare:nTF and __fp_compare_return:w. This function is documented on
page 269.)

\fp_compare_p:nNn
\fp_compare:nNnTF

__fp_compare_aux:wn

Evaluate #1 and #3, using an auxiliary to expand both, and feed the two floating point
numbers swapped to __fp_compare_back_any:ww, defined below. Compare the result
with ‘#2-‘=, which is −1 for <, 0 for =, 1 for > and 2 for ?.

25700 \prg_new_conditional:Npnn \fp_compare:nNn #1#2#3 { p , T , F , TF }
25701 {
25702 \if_int_compare:w
25703 \exp_after:wN __fp_compare_aux:wn
25704 \exp:w \exp_end_continue_f:w __fp_parse:n {#1} {#3}
25705 = __fp_int_eval:w ‘#2 - ‘= __fp_int_eval_end:
25706 \prg_return_true:
25707 \else:
25708 \prg_return_false:
25709 \fi:
25710 }
25711 \cs_new:Npn __fp_compare_aux:wn #1; #2
25712 {
25713 \exp_after:wN __fp_compare_back_any:ww

1108

25714 \exp:w \exp_end_continue_f:w __fp_parse:n {#2} #1;
25715 }

(End of definition for \fp_compare:nNnTF and __fp_compare_aux:wn. This function is documented on
page 268.)

__fp_compare_back:ww
__fp_bcmp:ww

__fp_compare_back_any:ww
__fp_compare_nan:w

__fp_compare_back_any:ww ⟨y⟩ ; ⟨x⟩ ;
Expands (in the same way as \int_eval:n) to −1 if x < y, 0 if x = y, 1 if x > y,

and 2 otherwise (denoted as x?y). If either operand is nan, stop the comparison with
__fp_compare_nan:w returning 2. If x is negative, swap the outputs 1 and −1 (i.e., >
and <); we can henceforth assume that x ≥ 0. If y ≥ 0, and they have the same type,
either they are normal and we compare them with __fp_compare_npos:nwnw, or they
are equal. If y ≥ 0, but of a different type, the highest type is a larger number. Finally,
if y ≤ 0, then x > y, unless both are zero.

25716 \cs_new:Npn __fp_compare_back:ww #1#2; #3#4;
25717 {
25718 \cs:w
25719 __fp
25720 __fp_type_from_scan:N #1
25721 _bcmp
25722 __fp_type_from_scan:N #3
25723 :ww
25724 \cs_end:
25725 #1#2; #3#4;
25726 }
25727 \cs_new:Npn __fp_compare_back_any:ww #1#2; #3
25728 {
25729 __fp_if_type_fp:NTwFw
25730 #1 { __fp_if_type_fp:NTwFw #3 \use_i:nn \s__fp \use_ii:nn \s__fp_stop }
25731 \s__fp \use_ii:nn \s__fp_stop
25732 __fp_compare_back:ww
25733 {
25734 \cs:w
25735 __fp
25736 __fp_type_from_scan:N #1
25737 _compare_back
25738 __fp_type_from_scan:N #3
25739 :ww
25740 \cs_end:
25741 }
25742 #1#2 ; #3
25743 }
25744 \cs_new:Npn __fp_bcmp:ww
25745 \s__fp __fp_chk:w #1 #2 #3;
25746 \s__fp __fp_chk:w #4 #5 #6;
25747 {
25748 \int_value:w
25749 \if_meaning:w 3 #1 \exp_after:wN __fp_compare_nan:w \fi:
25750 \if_meaning:w 3 #4 \exp_after:wN __fp_compare_nan:w \fi:
25751 \if_meaning:w 2 #5 - \fi:
25752 \if_meaning:w #2 #5
25753 \if_meaning:w #1 #4
25754 \if_meaning:w 1 #1
25755 __fp_compare_npos:nwnw #6; #3;

1109

25756 \else:
25757 0
25758 \fi:
25759 \else:
25760 \if_int_compare:w #4 < #1 - \fi: 1
25761 \fi:
25762 \else:
25763 \if_int_compare:w #1#4 = \c_zero_int
25764 0
25765 \else:
25766 1
25767 \fi:
25768 \fi:
25769 \exp_stop_f:
25770 }
25771 \cs_new:Npn __fp_compare_nan:w #1 \fi: \exp_stop_f: { 2 \exp_stop_f: }

(End of definition for __fp_compare_back:ww and others.)

__fp_compare_back_tuple:ww
__fp_tuple_compare_back:ww

__fp_tuple_compare_back_tuple:ww
__fp_tuple_compare_back_loop:w

Tuple and floating point numbers are not comparable so return 2 in mixed cases or
when tuples have a different number of items. Otherwise compare pairs of items with
__fp_compare_back_any:ww and if any don’t match return 2 (as \int_value:w 02
\exp_stop_f:).

25772 \cs_new:Npn __fp_compare_back_tuple:ww #1; #2; { 2 }
25773 \cs_new:Npn __fp_tuple_compare_back:ww #1; #2; { 2 }
25774 \cs_new:Npn __fp_tuple_compare_back_tuple:ww
25775 \s__fp_tuple __fp_tuple_chk:w #1;
25776 \s__fp_tuple __fp_tuple_chk:w #2;
25777 {
25778 \int_compare:nNnTF { __fp_array_count:n {#1} } =
25779 { __fp_array_count:n {#2} }
25780 {
25781 \int_value:w 0
25782 __fp_tuple_compare_back_loop:w
25783 #1 { \s__fp \prg_break: } ; @
25784 #2 { \s__fp \prg_break: } ;
25785 \prg_break_point:
25786 \exp_stop_f:
25787 }
25788 { 2 }
25789 }
25790 \cs_new:Npn __fp_tuple_compare_back_loop:w #1#2 ; #3 @ #4#5 ;
25791 {
25792 \use_none:n #1
25793 \use_none:n #4
25794 \if_int_compare:w
25795 __fp_compare_back_any:ww #1 #2 ; #4 #5 ; = \c_zero_int
25796 \else:
25797 2 \exp_after:wN \prg_break:
25798 \fi:
25799 __fp_tuple_compare_back_loop:w #3 @
25800 }

(End of definition for __fp_compare_back_tuple:ww and others.)

1110

__fp_compare_npos:nwnw
__fp_compare_significand:nnnnnnnn

__fp_compare_npos:nwnw {⟨expo1⟩} ⟨body1⟩ ; {⟨expo2⟩} ⟨body2⟩ ;
Within an \int_value:w . . . \exp_stop_f: construction, this expands to 0 if the

two numbers are equal, −1 if the first is smaller, and 1 if the first is bigger. First
compare the exponents: the larger one denotes the larger number. If they are equal, we
must compare significands. If both the first 8 digits and the next 8 digits coincide, the
numbers are equal. If only the first 8 digits coincide, the next 8 decide. Otherwise, the
first 8 digits are compared.

25801 \cs_new:Npn __fp_compare_npos:nwnw #1#2; #3#4;
25802 {
25803 \if_int_compare:w #1 = #3 \exp_stop_f:
25804 __fp_compare_significand:nnnnnnnn #2 #4
25805 \else:
25806 \if_int_compare:w #1 < #3 - \fi: 1
25807 \fi:
25808 }
25809 \cs_new:Npn __fp_compare_significand:nnnnnnnn #1#2#3#4#5#6#7#8
25810 {
25811 \if_int_compare:w #1#2 = #5#6 \exp_stop_f:
25812 \if_int_compare:w #3#4 = #7#8 \exp_stop_f:
25813 0
25814 \else:
25815 \if_int_compare:w #3#4 < #7#8 - \fi: 1
25816 \fi:
25817 \else:
25818 \if_int_compare:w #1#2 < #5#6 - \fi: 1
25819 \fi:
25820 }

(End of definition for __fp_compare_npos:nwnw and __fp_compare_significand:nnnnnnnn.)

73.4 Floating point expression loops
\fp_do_until:nn
\fp_do_while:nn
\fp_until_do:nn
\fp_while_do:nn

These are quite easy given the above functions. The do_until and do_while versions
execute the body, then test. The until_do and while_do do it the other way round.

25821 \cs_new:Npn \fp_do_until:nn #1#2
25822 {
25823 #2
25824 \fp_compare:nF {#1}
25825 { \fp_do_until:nn {#1} {#2} }
25826 }
25827 \cs_new:Npn \fp_do_while:nn #1#2
25828 {
25829 #2
25830 \fp_compare:nT {#1}
25831 { \fp_do_while:nn {#1} {#2} }
25832 }
25833 \cs_new:Npn \fp_until_do:nn #1#2
25834 {
25835 \fp_compare:nF {#1}
25836 {
25837 #2
25838 \fp_until_do:nn {#1} {#2}

1111

25839 }
25840 }
25841 \cs_new:Npn \fp_while_do:nn #1#2
25842 {
25843 \fp_compare:nT {#1}
25844 {
25845 #2
25846 \fp_while_do:nn {#1} {#2}
25847 }
25848 }

(End of definition for \fp_do_until:nn and others. These functions are documented on page 270.)

\fp_do_until:nNnn
\fp_do_while:nNnn
\fp_until_do:nNnn
\fp_while_do:nNnn

As above but not using the nNn syntax.
25849 \cs_new:Npn \fp_do_until:nNnn #1#2#3#4
25850 {
25851 #4
25852 \fp_compare:nNnF {#1} #2 {#3}
25853 { \fp_do_until:nNnn {#1} #2 {#3} {#4} }
25854 }
25855 \cs_new:Npn \fp_do_while:nNnn #1#2#3#4
25856 {
25857 #4
25858 \fp_compare:nNnT {#1} #2 {#3}
25859 { \fp_do_while:nNnn {#1} #2 {#3} {#4} }
25860 }
25861 \cs_new:Npn \fp_until_do:nNnn #1#2#3#4
25862 {
25863 \fp_compare:nNnF {#1} #2 {#3}
25864 {
25865 #4
25866 \fp_until_do:nNnn {#1} #2 {#3} {#4}
25867 }
25868 }
25869 \cs_new:Npn \fp_while_do:nNnn #1#2#3#4
25870 {
25871 \fp_compare:nNnT {#1} #2 {#3}
25872 {
25873 #4
25874 \fp_while_do:nNnn {#1} #2 {#3} {#4}
25875 }
25876 }

(End of definition for \fp_do_until:nNnn and others. These functions are documented on page 269.)

\fp_step_function:nnnN
\fp_step_function:nnnc

__fp_step:wwwN
__fp_step_fp:wwwN
__fp_step:NnnnnN
__fp_step:NfnnnN

The approach here is somewhat similar to \int_step_function:nnnN. There are two
subtleties: we use the internal parser __fp_parse:n to avoid converting back and forth
from the internal representation; and (due to rounding) even a non-zero step does not
guarantee that the loop counter increases.

25877 \cs_new:Npn \fp_step_function:nnnN #1#2#3
25878 {
25879 \exp_after:wN __fp_step:wwwN
25880 \exp:w \exp_end_continue_f:w __fp_parse_o:n {#1}
25881 \exp:w \exp_end_continue_f:w __fp_parse_o:n {#2}

1112

25882 \exp:w \exp_end_continue_f:w __fp_parse:n {#3}
25883 }
25884 \cs_generate_variant:Nn \fp_step_function:nnnN { nnnc }

Only floating point numbers (not tuples) are allowed arguments. Only “normal” floating
points (not ±0, ±inf, nan) can be used as step; if positive, call __fp_step:NnnnnN
with argument > otherwise <. This function has one more argument than its integer
counterpart, namely the previous value, to catch the case where the loop has made no
progress. Conversion to decimal is done just before calling the user’s function.

25885 \cs_new:Npn __fp_step:wwwN #1#2; #3#4; #5#6; #7
25886 {
25887 __fp_if_type_fp:NTwFw #1 { } \s__fp \prg_break: \s__fp_stop
25888 __fp_if_type_fp:NTwFw #3 { } \s__fp \prg_break: \s__fp_stop
25889 __fp_if_type_fp:NTwFw #5 { } \s__fp \prg_break: \s__fp_stop
25890 \use_i:nnnn { __fp_step_fp:wwwN #1#2; #3#4; #5#6; #7 }
25891 \prg_break_point:
25892 \use:n
25893 {
25894 __fp_error:nfff { step-tuple } { \fp_to_tl:n { #1#2 ; } }
25895 { \fp_to_tl:n { #3#4 ; } } { \fp_to_tl:n { #5#6 ; } }
25896 }
25897 }
25898 \cs_new:Npn __fp_step_fp:wwwN #1 ; \s__fp __fp_chk:w #2#3#4 ; #5; #6
25899 {
25900 \token_if_eq_meaning:NNTF #2 1
25901 {
25902 \token_if_eq_meaning:NNTF #3 0
25903 { __fp_step:NnnnnN > }
25904 { __fp_step:NnnnnN < }
25905 }
25906 {
25907 \token_if_eq_meaning:NNTF #2 0
25908 {
25909 \msg_expandable_error:nnn { kernel }
25910 { zero-step } {#6}
25911 }
25912 {
25913 __fp_error:nnfn { bad-step } { }
25914 { \fp_to_tl:n { \s__fp __fp_chk:w #2#3#4 ; } } {#6}
25915 }
25916 \use_none:nnnnn
25917 }
25918 { #1 ; } { \c_nan_fp } { \s__fp __fp_chk:w #2#3#4 ; } { #5 ; } #6
25919 }
25920 \cs_new:Npn __fp_step:NnnnnN #1#2#3#4#5#6
25921 {
25922 \fp_compare:nNnTF {#2} = {#3}
25923 {
25924 __fp_error:nffn { tiny-step }
25925 { \fp_to_tl:n {#3} } { \fp_to_tl:n {#4} } {#6}
25926 }
25927 {
25928 \fp_compare:nNnF {#2} #1 {#5}
25929 {

1113

25930 \exp_args:Nf #6 { __fp_to_decimal_dispatch:w #2 }
25931 __fp_step:NfnnnN
25932 #1 { __fp_parse:n { #2 + #4 } } {#2} {#4} {#5} #6
25933 }
25934 }
25935 }
25936 \cs_generate_variant:Nn __fp_step:NnnnnN { Nf }

(End of definition for \fp_step_function:nnnN and others. This function is documented on page 271.)

\fp_step_inline:nnnn
\fp_step_variable:nnnNn

__fp_step:NNnnnn

As for \int_step_inline:nnnn, create a global function and apply it, following up with
a break point.

25937 \cs_new_protected:Npn \fp_step_inline:nnnn
25938 {
25939 \int_gincr:N \g__kernel_prg_map_int
25940 \exp_args:NNc __fp_step:NNnnnn
25941 \cs_gset_protected:Npn
25942 { __fp_map_ \int_use:N \g__kernel_prg_map_int :w }
25943 }
25944 \cs_new_protected:Npn \fp_step_variable:nnnNn #1#2#3#4#5
25945 {
25946 \int_gincr:N \g__kernel_prg_map_int
25947 \exp_args:NNc __fp_step:NNnnnn
25948 \cs_gset_protected:Npe
25949 { __fp_map_ \int_use:N \g__kernel_prg_map_int :w }
25950 {#1} {#2} {#3}
25951 {
25952 \tl_set:Nn \exp_not:N #4 {##1}
25953 \exp_not:n {#5}
25954 }
25955 }
25956 \cs_new_protected:Npn __fp_step:NNnnnn #1#2#3#4#5#6
25957 {
25958 #1 #2 ##1 {#6}
25959 \fp_step_function:nnnN {#3} {#4} {#5} #2
25960 \prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int }
25961 }

(End of definition for \fp_step_inline:nnnn , \fp_step_variable:nnnNn , and __fp_step:NNnnnn.
These functions are documented on page 271.)

25962 \msg_new:nnn { fp } { step-tuple }
25963 { Tuple~argument~in~fp_step_...~{#1}{#2}{#3}. }
25964 \msg_new:nnn { fp } { bad-step }
25965 { Invalid~step~size~#2~for~function~#3. }
25966 \msg_new:nnn { fp } { tiny-step }
25967 { Tiny~step~size~(#1+#2=#1)~for~function~#3. }

73.5 Extrema
__fp_minmax_o:Nw

__fp_minmax_aux_o:Nw
First check all operands are floating point numbers. The argument #1 is 2 to find the
maximum of an array #2 of floating point numbers, and 0 to find the minimum. We
read numbers sequentially, keeping track of the largest (smallest) number found so far. If
numbers are equal (for instance ±0), the first is kept. We append −∞ (∞), for the case

1114

of an empty array. Since no number is smaller (larger) than that, this additional item
only affects the maximum (minimum) in the case of max() and min() with no argument.
The weird fp-like trailing marker breaks the loop correctly: see the precise definition of
__fp_minmax_loop:Nww.

25968 \cs_new:Npn __fp_minmax_o:Nw #1
25969 {
25970 __fp_parse_function_all_fp_o:fnw
25971 { \token_if_eq_meaning:NNTF 0 #1 { min } { max } }
25972 { __fp_minmax_aux_o:Nw #1 }
25973 }
25974 \cs_new:Npn __fp_minmax_aux_o:Nw #1#2 @
25975 {
25976 \if_meaning:w 0 #1
25977 \exp_after:wN __fp_minmax_loop:Nww \exp_after:wN +
25978 \else:
25979 \exp_after:wN __fp_minmax_loop:Nww \exp_after:wN -
25980 \fi:
25981 #2
25982 \s__fp __fp_chk:w 2 #1 \s__fp_exact ;
25983 \s__fp __fp_chk:w { 3 __fp_minmax_break_o:w } ;
25984 }

(End of definition for __fp_minmax_o:Nw and __fp_minmax_aux_o:Nw.)

__fp_minmax_loop:Nww The first argument is − or + to denote the case where the currently largest (smallest)
number found (first floating point argument) should be replaced by the new number
(second floating point argument). If the new number is nan, keep that as the extremum,
unless that extremum is already a nan. Otherwise, compare the two numbers. If the new
number is larger (in the case of max) or smaller (in the case of min), the test yields true,
and we keep the second number as a new maximum; otherwise we keep the first number.
Then loop.

25985 \cs_new:Npn __fp_minmax_loop:Nww
25986 #1 \s__fp __fp_chk:w #2#3; \s__fp __fp_chk:w #4#5;
25987 {
25988 \if_meaning:w 3 #4
25989 \if_meaning:w 3 #2
25990 __fp_minmax_auxi:ww
25991 \else:
25992 __fp_minmax_auxii:ww
25993 \fi:
25994 \else:
25995 \if_int_compare:w
25996 __fp_compare_back:ww
25997 \s__fp __fp_chk:w #4#5;
25998 \s__fp __fp_chk:w #2#3;
25999 = #1 1 \exp_stop_f:
26000 __fp_minmax_auxii:ww
26001 \else:
26002 __fp_minmax_auxi:ww
26003 \fi:
26004 \fi:
26005 __fp_minmax_loop:Nww #1
26006 \s__fp __fp_chk:w #2#3;

1115

26007 \s__fp __fp_chk:w #4#5;
26008 }

(End of definition for __fp_minmax_loop:Nww.)

__fp_minmax_auxi:ww
__fp_minmax_auxii:ww

Keep the first/second number, and remove the other.
26009 \cs_new:Npn __fp_minmax_auxi:ww #1 \fi: \fi: #2 \s__fp #3 ; \s__fp #4;
26010 { \fi: \fi: #2 \s__fp #3 ; }
26011 \cs_new:Npn __fp_minmax_auxii:ww #1 \fi: \fi: #2 \s__fp #3 ;
26012 { \fi: \fi: #2 }

(End of definition for __fp_minmax_auxi:ww and __fp_minmax_auxii:ww.)

__fp_minmax_break_o:w This function is called from within an \if_meaning:w test. Skip to the end of the tests,
close the current test with \fi:, clean up, and return the appropriate number with one
post-expansion.

26013 \cs_new:Npn __fp_minmax_break_o:w #1 \fi: \fi: #2 \s__fp #3; #4;
26014 { \fi: __fp_exp_after_o:w \s__fp #3; }

(End of definition for __fp_minmax_break_o:w.)

73.6 Boolean operations
__fp_not_o:w

__fp_tuple_not_o:w
Return true or false, with two expansions, one to exit the conditional, and one to please
l3fp-parse. The first argument is provided by l3fp-parse and is ignored.

26015 \cs_new:Npn __fp_not_o:w #1 \s__fp __fp_chk:w #2#3; @
26016 {
26017 \if_meaning:w 0 #2
26018 \exp_after:wN \exp_after:wN \exp_after:wN \c_one_fp
26019 \else:
26020 \exp_after:wN \exp_after:wN \exp_after:wN \c_zero_fp
26021 \fi:
26022 }
26023 \cs_new:Npn __fp_tuple_not_o:w #1 @ { \exp_after:wN \c_zero_fp }

(End of definition for __fp_not_o:w and __fp_tuple_not_o:w.)

__fp_&_o:ww
__fp_tuple_&_o:ww
__fp_&_tuple_o:ww

__fp_tuple_&_tuple_o:ww
__fp_|_o:ww

__fp_tuple_|_o:ww
__fp_|_tuple_o:ww

__fp_tuple_|_tuple_o:ww
__fp_and_return:wNw

For and, if the first number is zero, return it (with the same sign). Otherwise, return
the second one. For or, the logic is reversed: if the first number is non-zero, return
it, otherwise return the second number: we achieve that by hi-jacking __fp_&_o:ww,
inserting an extra argument, \else:, before \s__fp. In all cases, expand after the
floating point number.

26024 \group_begin:
26025 \char_set_catcode_letter:N &
26026 \char_set_catcode_letter:N |
26027 \cs_new:Npn __fp_&_o:ww #1 \s__fp __fp_chk:w #2#3;
26028 {
26029 \if_meaning:w 0 #2 #1
26030 __fp_and_return:wNw \s__fp __fp_chk:w #2#3;
26031 \fi:
26032 __fp_exp_after_o:w
26033 }
26034 \cs_new:Npn __fp_&_tuple_o:ww #1 \s__fp __fp_chk:w #2#3;

1116

26035 {
26036 \if_meaning:w 0 #2 #1
26037 __fp_and_return:wNw \s__fp __fp_chk:w #2#3;
26038 \fi:
26039 __fp_exp_after_tuple_o:w
26040 }
26041 \cs_new:Npn __fp_tuple_&_o:ww #1; { __fp_exp_after_o:w }
26042 \cs_new:Npn __fp_tuple_&_tuple_o:ww #1; { __fp_exp_after_tuple_o:w }
26043 \cs_new:Npn __fp_|_o:ww { __fp_&_o:ww \else: }
26044 \cs_new:Npn __fp_|_tuple_o:ww { __fp_&_tuple_o:ww \else: }
26045 \cs_new:Npn __fp_tuple_|_o:ww #1; #2; { __fp_exp_after_tuple_o:w #1; }
26046 \cs_new:Npn __fp_tuple_|_tuple_o:ww #1; #2;
26047 { __fp_exp_after_tuple_o:w #1; }
26048 \group_end:
26049 \cs_new:Npn __fp_and_return:wNw #1; \fi: #2;
26050 { \fi: __fp_exp_after_o:w #1; }

(End of definition for __fp_&_o:ww and others.)

73.7 Ternary operator
__fp_ternary:NwwN

__fp_ternary_auxi:NwwN
__fp_ternary_auxii:NwwN

The first function receives the test and the true branch of the ?: ternary operator.
It calls __fp_ternary_auxii:NwwN if the test branch is a floating point number ±0,
and otherwise calls __fp_ternary_auxi:NwwN. These functions select one of their two
arguments.

26051 \cs_new:Npn __fp_ternary:NwwN #1 #2#3@ #4@ #5
26052 {
26053 \if_meaning:w __fp_parse_infix_::N #5
26054 \if_charcode:w 0
26055 __fp_if_type_fp:NTwFw
26056 #2 { \use_i:nn __fp_use_i_delimit_by_s_stop:nw #3 \s__fp_stop }
26057 \s__fp 1 \s__fp_stop
26058 \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxii:NwwN
26059 \else:
26060 \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxi:NwwN
26061 \fi:
26062 \exp_after:wN #1
26063 \exp:w \exp_end_continue_f:w
26064 __fp_exp_after_array_f:w #4 \s__fp_expr_stop
26065 \exp_after:wN @
26066 \exp:w
26067 __fp_parse_operand:Nw \c__fp_prec_colon_int
26068 __fp_parse_expand:w
26069 \else:
26070 \msg_expandable_error:nnnn
26071 { fp } { missing } { : } { ~for~?: }
26072 \exp_after:wN __fp_parse_continue:NwN
26073 \exp_after:wN #1
26074 \exp:w \exp_end_continue_f:w
26075 __fp_exp_after_array_f:w #4 \s__fp_expr_stop
26076 \exp_after:wN #5
26077 \exp_after:wN #1
26078 \fi:

1117

26079 }
26080 \cs_new:Npn __fp_ternary_auxi:NwwN #1#2@#3@#4
26081 {
26082 \exp_after:wN __fp_parse_continue:NwN
26083 \exp_after:wN #1
26084 \exp:w \exp_end_continue_f:w
26085 __fp_exp_after_array_f:w #2 \s__fp_expr_stop
26086 #4 #1
26087 }
26088 \cs_new:Npn __fp_ternary_auxii:NwwN #1#2@#3@#4
26089 {
26090 \exp_after:wN __fp_parse_continue:NwN
26091 \exp_after:wN #1
26092 \exp:w \exp_end_continue_f:w
26093 __fp_exp_after_array_f:w #3 \s__fp_expr_stop
26094 #4 #1
26095 }

(End of definition for __fp_ternary:NwwN , __fp_ternary_auxi:NwwN , and __fp_ternary_auxii:NwwN.)

26096 ⟨/package⟩

1118

Chapter 74

l3fp-basics implementation

26097 ⟨∗package⟩

26098 ⟨@@=fp⟩

The l3fp-basics module implements addition, subtraction, multiplication, and divi-
sion of two floating points, and the absolute value and sign-changing operations on one
floating point. All operations implemented in this module yield the outcome of rounding
the infinitely precise result of the operation to the nearest floating point.

Some algorithms used below end up being quite similar to some described in “What
Every Computer Scientist Should Know About Floating Point Arithmetic”, by David
Goldberg, which can be found at http://cr.yp.to/2005-590/goldberg.pdf.

__fp_parse_word_abs:N
__fp_parse_word_logb:N
__fp_parse_word_sign:N
__fp_parse_word_sqrt:N

Unary functions.
26099 \cs_new:Npn __fp_parse_word_abs:N
26100 { __fp_parse_unary_function:NNN __fp_set_sign_o:w 0 }
26101 \cs_new:Npn __fp_parse_word_logb:N
26102 { __fp_parse_unary_function:NNN __fp_logb_o:w ? }
26103 \cs_new:Npn __fp_parse_word_sign:N
26104 { __fp_parse_unary_function:NNN __fp_sign_o:w ? }
26105 \cs_new:Npn __fp_parse_word_sqrt:N
26106 { __fp_parse_unary_function:NNN __fp_sqrt_o:w ? }

(End of definition for __fp_parse_word_abs:N and others.)

74.1 Addition and subtraction
We define here two functions, __fp_-_o:ww and __fp_+_o:ww, which perform the
subtraction and addition of their two floating point operands, and expand the tokens
following the result once.

A more obscure function, __fp_add_big_i_o:wNww, is used in l3fp-expo.
The logic goes as follows:

• __fp_-_o:ww calls __fp_+_o:ww to do the work, with the sign of the second
operand flipped;

• __fp_+_o:ww dispatches depending on the type of floating point, calling specialized
auxiliaries;

1119

• in all cases except summing two normal floating point numbers, we return one or
the other operands depending on the signs, or detect an invalid operation in the
case of ∞ − ∞;

• for normal floating point numbers, compare the signs;

• to add two floating point numbers of the same sign or of opposite signs, shift the
significand of the smaller one to match the bigger one, perform the addition or
subtraction of significands, check for a carry, round, and pack using the __fp_-
basics_pack_... functions.

The trickiest part is to round correctly when adding or subtracting normal floating point
numbers.

74.1.1 Sign, exponent, and special numbers
__fp_-_o:ww The __fp_+_o:ww auxiliary has a hook: it takes one argument between the first \s__-

fp and __fp_chk:w, which is applied to the sign of the second operand. Positioning
the hook there means that __fp_+_o:ww can still perform the sanity check that it was
followed by \s__fp.

26107 \cs_new:cpe { __fp_-_o:ww } \s__fp
26108 {
26109 \exp_not:c { __fp_+_o:ww }
26110 \exp_not:n { \s__fp __fp_neg_sign:N }
26111 }

(End of definition for __fp_-_o:ww.)

__fp_+_o:ww This function is either called directly with an empty #1 to compute an addition, or it
is called by __fp_-_o:ww with __fp_neg_sign:N as #1 to compute a subtraction, in
which case the second operand’s sign should be changed. If the ⟨types⟩ #2 and #4 are
the same, dispatch to case #2 (0, 1, 2, or 3), where we call specialized functions: thanks to
\int_value:w, those receive the tweaked ⟨sign2⟩ (expansion of #1#5) as an argument. If
the ⟨types⟩ are distinct, the result is simply the floating point number with the highest
⟨type⟩. Since case 3 (used for two nan) also picks the first operand, we can also use
it when ⟨type1⟩ is greater than ⟨type2⟩. Also note that we don’t need to worry about
⟨sign2⟩ in that case since the second operand is discarded.

26112 \cs_new:cpn { __fp_+_o:ww }
26113 \s__fp #1 __fp_chk:w #2 #3 ; \s__fp __fp_chk:w #4 #5
26114 {
26115 \if_case:w
26116 \if_meaning:w #2 #4
26117 #2
26118 \else:
26119 \if_int_compare:w #2 > #4 \exp_stop_f:
26120 3
26121 \else:
26122 4
26123 \fi:
26124 \fi:
26125 \exp_stop_f:
26126 \exp_after:wN __fp_add_zeros_o:Nww \int_value:w
26127 \or: \exp_after:wN __fp_add_normal_o:Nww \int_value:w

1120

26128 \or: \exp_after:wN __fp_add_inf_o:Nww \int_value:w
26129 \or: __fp_case_return_i_o:ww
26130 \else: \exp_after:wN __fp_add_return_ii_o:Nww \int_value:w
26131 \fi:
26132 #1 #5
26133 \s__fp __fp_chk:w #2 #3 ;
26134 \s__fp __fp_chk:w #4 #5
26135 }

(End of definition for __fp_+_o:ww.)

__fp_add_return_ii_o:Nww Ignore the first operand, and return the second, but using the sign #1 rather than #4. As
usual, expand after the floating point.

26136 \cs_new:Npn __fp_add_return_ii_o:Nww #1 #2 ; \s__fp __fp_chk:w #3 #4
26137 { __fp_exp_after_o:w \s__fp __fp_chk:w #3 #1 }

(End of definition for __fp_add_return_ii_o:Nww.)

__fp_add_zeros_o:Nww Adding two zeros yields \c_zero_fp, except if both zeros were −0.
26138 \cs_new:Npn __fp_add_zeros_o:Nww #1 \s__fp __fp_chk:w 0 #2
26139 {
26140 \if_int_compare:w #2 #1 = 20 \exp_stop_f:
26141 \exp_after:wN __fp_add_return_ii_o:Nww
26142 \else:
26143 __fp_case_return_i_o:ww
26144 \fi:
26145 #1
26146 \s__fp __fp_chk:w 0 #2
26147 }

(End of definition for __fp_add_zeros_o:Nww.)

__fp_add_inf_o:Nww If both infinities have the same sign, just return that infinity, otherwise, it is an invalid
operation. We find out if that invalid operation is an addition or a subtraction by testing
whether the tweaked ⟨sign2⟩ (#1) and the ⟨sign2⟩ (#4) are identical.

26148 \cs_new:Npn __fp_add_inf_o:Nww
26149 #1 \s__fp __fp_chk:w 2 #2 #3; \s__fp __fp_chk:w 2 #4
26150 {
26151 \if_meaning:w #1 #2
26152 __fp_case_return_i_o:ww
26153 \else:
26154 __fp_case_use:nw
26155 {
26156 \exp_last_unbraced:Nf __fp_invalid_operation_o:Nww
26157 { \token_if_eq_meaning:NNTF #1 #4 + - }
26158 }
26159 \fi:
26160 \s__fp __fp_chk:w 2 #2 #3;
26161 \s__fp __fp_chk:w 2 #4
26162 }

(End of definition for __fp_add_inf_o:Nww.)

1121

__fp_add_normal_o:Nww __fp_add_normal_o:Nww ⟨sign2⟩ \s__fp __fp_chk:w 1 ⟨sign1⟩ ⟨exp1⟩
⟨body1⟩ ; \s__fp __fp_chk:w 1 ⟨initial sign2⟩ ⟨exp2⟩ ⟨body2⟩ ;

We now have two normal numbers to add, and we have to check signs and exponents
more carefully before performing the addition.

26163 \cs_new:Npn __fp_add_normal_o:Nww #1 \s__fp __fp_chk:w 1 #2
26164 {
26165 \if_meaning:w #1#2
26166 \exp_after:wN __fp_add_npos_o:NnwNnw
26167 \else:
26168 \exp_after:wN __fp_sub_npos_o:NnwNnw
26169 \fi:
26170 #2
26171 }

(End of definition for __fp_add_normal_o:Nww.)

74.1.2 Absolute addition
In this subsection, we perform the addition of two positive normal numbers.

__fp_add_npos_o:NnwNnw __fp_add_npos_o:NnwNnw ⟨sign1⟩ ⟨exp1⟩ ⟨body1⟩ ; \s__fp __fp_chk:w 1
⟨initial sign2⟩ ⟨exp2⟩ ⟨body2⟩ ;

Since we are doing an addition, the final sign is ⟨sign1⟩. Start an __fp_int_-
eval:w, responsible for computing the exponent: the result, and the ⟨final sign⟩ are
then given to __fp_sanitize:Nw which checks for overflow. The exponent is computed
as the largest exponent #2 or #5, incremented if there is a carry. To add the significands,
we decimate the smaller number by the difference between the exponents. This is done
by __fp_add_big_i:wNww or __fp_add_big_ii:wNww. We need to bring the final sign
with us in the midst of the calculation to round properly at the end.

26172 \cs_new:Npn __fp_add_npos_o:NnwNnw #1#2#3 ; \s__fp __fp_chk:w 1 #4 #5
26173 {
26174 \exp_after:wN __fp_sanitize:Nw
26175 \exp_after:wN #1
26176 \int_value:w __fp_int_eval:w
26177 \if_int_compare:w #2 > #5 \exp_stop_f:
26178 #2
26179 \exp_after:wN __fp_add_big_i_o:wNww \int_value:w -
26180 \else:
26181 #5
26182 \exp_after:wN __fp_add_big_ii_o:wNww \int_value:w
26183 \fi:
26184 __fp_int_eval:w #5 - #2 ; #1 #3;
26185 }

(End of definition for __fp_add_npos_o:NnwNnw.)

__fp_add_big_i_o:wNww
__fp_add_big_ii_o:wNww

__fp_add_big_i_o:wNww ⟨shift⟩ ; ⟨final sign⟩ ⟨body1⟩ ; ⟨body2⟩ ;
Used in l3fp-expo. Shift the significand of the small number, then add with __fp_-

add_significand_o:NnnwnnnnN.
26186 \cs_new:Npn __fp_add_big_i_o:wNww #1; #2 #3; #4;
26187 {
26188 __fp_decimate:nNnnnn {#1}
26189 __fp_add_significand_o:NnnwnnnnN

1122

26190 #4
26191 #3
26192 #2
26193 }
26194 \cs_new:Npn __fp_add_big_ii_o:wNww #1; #2 #3; #4;
26195 {
26196 __fp_decimate:nNnnnn {#1}
26197 __fp_add_significand_o:NnnwnnnnN
26198 #3
26199 #4
26200 #2
26201 }

(End of definition for __fp_add_big_i_o:wNww and __fp_add_big_ii_o:wNww.)

__fp_add_significand_o:NnnwnnnnN
__fp_add_significand_pack:NNNNNNN

__fp_add_significand_test_o:N

__fp_add_significand_o:NnnwnnnnN ⟨rounding digit⟩ {⟨Y’1⟩} {⟨Y’2⟩}
⟨extra-digits⟩ ; {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ⟨final sign⟩

To round properly, we must know at which digit the rounding should occur. This
requires to know whether the addition produces an overall carry or not. Thus, we do the
computation now and check for a carry, then go back and do the rounding. The rounding
may cause a carry in very rare cases such as 0.99 · · · 95 → 1.00 · · · 0, but this situation
always give an exact power of 10, for which it is easy to correct the result at the end.

26202 \cs_new:Npn __fp_add_significand_o:NnnwnnnnN #1 #2#3 #4; #5#6#7#8
26203 {
26204 \exp_after:wN __fp_add_significand_test_o:N
26205 \int_value:w __fp_int_eval:w 1#5#6 + #2
26206 \exp_after:wN __fp_add_significand_pack:NNNNNNN
26207 \int_value:w __fp_int_eval:w 1#7#8 + #3 ; #1
26208 }
26209 \cs_new:Npn __fp_add_significand_pack:NNNNNNN #1 #2#3#4#5#6#7
26210 {
26211 \if_meaning:w 2 #1
26212 + 1
26213 \fi:
26214 ; #2 #3 #4 #5 #6 #7 ;
26215 }
26216 \cs_new:Npn __fp_add_significand_test_o:N #1
26217 {
26218 \if_meaning:w 2 #1
26219 \exp_after:wN __fp_add_significand_carry_o:wwwNN
26220 \else:
26221 \exp_after:wN __fp_add_significand_no_carry_o:wwwNN
26222 \fi:
26223 }

(End of definition for __fp_add_significand_o:NnnwnnnnN , __fp_add_significand_pack:NNNNNNN ,
and __fp_add_significand_test_o:N.)

__fp_add_significand_no_carry_o:wwwNN __fp_add_significand_no_carry_o:wwwNN ⟨8d⟩ ; ⟨6d⟩ ; ⟨2d⟩ ; ⟨rounding
digit⟩ ⟨sign⟩

If there’s no carry, grab all the digits again and round. The packing function __fp_-
basics_pack_high:NNNNNw takes care of the case where rounding brings a carry.

26224 \cs_new:Npn __fp_add_significand_no_carry_o:wwwNN
26225 #1; #2; #3#4 ; #5#6

1123

26226 {
26227 \exp_after:wN __fp_basics_pack_high:NNNNNw
26228 \int_value:w __fp_int_eval:w 1 #1
26229 \exp_after:wN __fp_basics_pack_low:NNNNNw
26230 \int_value:w __fp_int_eval:w 1 #2 #3#4
26231 + __fp_round:NNN #6 #4 #5
26232 \exp_after:wN ;
26233 }

(End of definition for __fp_add_significand_no_carry_o:wwwNN.)

__fp_add_significand_carry_o:wwwNN __fp_add_significand_carry_o:wwwNN ⟨8d⟩ ; ⟨6d⟩ ; ⟨2d⟩ ; ⟨rounding
digit⟩ ⟨sign⟩

The case where there is a carry is very similar. Rounding can even raise the first
digit from 1 to 2, but we don’t care.

26234 \cs_new:Npn __fp_add_significand_carry_o:wwwNN
26235 #1; #2; #3#4; #5#6
26236 {
26237 + 1
26238 \exp_after:wN __fp_basics_pack_weird_high:NNNNNNNNw
26239 \int_value:w __fp_int_eval:w 1 1 #1
26240 \exp_after:wN __fp_basics_pack_weird_low:NNNNw
26241 \int_value:w __fp_int_eval:w 1 #2#3 +
26242 \exp_after:wN __fp_round:NNN
26243 \exp_after:wN #6
26244 \exp_after:wN #3
26245 \int_value:w __fp_round_digit:Nw #4 #5 ;
26246 \exp_after:wN ;
26247 }

(End of definition for __fp_add_significand_carry_o:wwwNN.)

74.1.3 Absolute subtraction
__fp_sub_npos_o:NnwNnw

__fp_sub_eq_o:Nnwnw
__fp_sub_npos_ii_o:Nnwnw

__fp_sub_npos_o:NnwNnw ⟨sign1⟩ ⟨exp1⟩ ⟨body1⟩ ; \s__fp __fp_chk:w 1
⟨initial sign2⟩ ⟨exp2⟩ ⟨body2⟩ ;

Rounding properly in some modes requires to know what the sign of the result will
be. Thus, we start by comparing the exponents and significands. If the numbers coincide,
return zero. If the second number is larger, swap the numbers and call __fp_sub_npos_-
i_o:Nnwnw with the opposite of ⟨sign1⟩.

26248 \cs_new:Npn __fp_sub_npos_o:NnwNnw #1#2#3; \s__fp __fp_chk:w 1 #4#5#6;
26249 {
26250 \if_case:w __fp_compare_npos:nwnw {#2} #3; {#5} #6; \exp_stop_f:
26251 \exp_after:wN __fp_sub_eq_o:Nnwnw
26252 \or:
26253 \exp_after:wN __fp_sub_npos_i_o:Nnwnw
26254 \else:
26255 \exp_after:wN __fp_sub_npos_ii_o:Nnwnw
26256 \fi:
26257 #1 {#2} #3; {#5} #6;
26258 }
26259 \cs_new:Npn __fp_sub_eq_o:Nnwnw #1#2; #3; { \exp_after:wN \c_zero_fp }
26260 \cs_new:Npn __fp_sub_npos_ii_o:Nnwnw #1 #2; #3;

1124

26261 {
26262 \exp_after:wN __fp_sub_npos_i_o:Nnwnw
26263 \int_value:w __fp_neg_sign:N #1
26264 #3; #2;
26265 }

(End of definition for __fp_sub_npos_o:NnwNnw , __fp_sub_eq_o:Nnwnw , and __fp_sub_npos_ii_-
o:Nnwnw.)

__fp_sub_npos_i_o:Nnwnw After the computation is done, __fp_sanitize:Nw checks for overflow/underflow. It
expects the ⟨final sign⟩ and the ⟨exponent⟩ (delimited by ;). Start an integer expres-
sion for the exponent, which starts with the exponent of the largest number, and may be
decreased if the two numbers are very close. If the two numbers have the same exponent,
call the near auxiliary. Otherwise, decimate y, then call the far auxiliary to evaluate
the difference between the two significands. Note that we decimate by 1 less than one
could expect.

26266 \cs_new:Npn __fp_sub_npos_i_o:Nnwnw #1 #2#3; #4#5;
26267 {
26268 \exp_after:wN __fp_sanitize:Nw
26269 \exp_after:wN #1
26270 \int_value:w __fp_int_eval:w
26271 #2
26272 \if_int_compare:w #2 = #4 \exp_stop_f:
26273 \exp_after:wN __fp_sub_back_near_o:nnnnnnnnN
26274 \else:
26275 \exp_after:wN __fp_decimate:nNnnnn \exp_after:wN
26276 { \int_value:w __fp_int_eval:w #2 - #4 - 1 \exp_after:wN }
26277 \exp_after:wN __fp_sub_back_far_o:NnnwnnnnN
26278 \fi:
26279 #5
26280 #3
26281 #1
26282 }

(End of definition for __fp_sub_npos_i_o:Nnwnw.)

__fp_sub_back_near_o:nnnnnnnnN
__fp_sub_back_near_pack:NNNNNNw
__fp_sub_back_near_after:wNNNNw

__fp_sub_back_near_o:nnnnnnnnN {⟨Y1⟩} {⟨Y2⟩} {⟨Y3⟩} {⟨Y4⟩} {⟨X1⟩}
{⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ⟨final sign⟩

In this case, the subtraction is exact, so we discard the ⟨final sign⟩ #9. The very
large shifts of 109 and 1.1 ·109 are unnecessary here, but allow the auxiliaries to be reused
later. Each integer expression produces a 10 digit result. If the resulting 16 digits start
with a 0, then we need to shift the group, padding with trailing zeros.

26283 \cs_new:Npn __fp_sub_back_near_o:nnnnnnnnN #1#2#3#4 #5#6#7#8 #9
26284 {
26285 \exp_after:wN __fp_sub_back_near_after:wNNNNw
26286 \int_value:w __fp_int_eval:w 10#5#6 - #1#2 - 11
26287 \exp_after:wN __fp_sub_back_near_pack:NNNNNNw
26288 \int_value:w __fp_int_eval:w 11#7#8 - #3#4 \exp_after:wN ;
26289 }
26290 \cs_new:Npn __fp_sub_back_near_pack:NNNNNNw #1#2#3#4#5#6#7 ;
26291 { + #1#2 ; {#3#4#5#6} {#7} ; }
26292 \cs_new:Npn __fp_sub_back_near_after:wNNNNw 10 #1#2#3#4 #5 ;
26293 {
26294 \if_meaning:w 0 #1

1125

26295 \exp_after:wN __fp_sub_back_shift:wnnnn
26296 \fi:
26297 ; {#1#2#3#4} {#5}
26298 }

(End of definition for __fp_sub_back_near_o:nnnnnnnnN , __fp_sub_back_near_pack:NNNNNNw , and
__fp_sub_back_near_after:wNNNNw.)

__fp_sub_back_shift:wnnnn
__fp_sub_back_shift_ii:ww

__fp_sub_back_shift_iii:NNNNNNNNw
__fp_sub_back_shift_iv:nnnnw

__fp_sub_back_shift:wnnnn ; {⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ;
This function is called with ⟨Z1⟩ ≤ 999. Act with \number to trim leading zeros from

⟨Z1⟩ ⟨Z2⟩ (we don’t do all four blocks at once, since non-zero blocks would then overflow
TEX’s integers). If the first two blocks are zero, the auxiliary receives an empty #1 and
trims #2#30 from leading zeros, yielding a total shift between 7 and 16 to the exponent.
Otherwise we get the shift from #1 alone, yielding a result between 1 and 6. Once the
exponent is taken care of, trim leading zeros from #1#2#3 (when #1 is empty, the space
before #2#3 is ignored), get four blocks of 4 digits and finally clean up. Trailing zeros are
added so that digits can be grabbed safely.

26299 \cs_new:Npn __fp_sub_back_shift:wnnnn ; #1#2
26300 {
26301 \exp_after:wN __fp_sub_back_shift_ii:ww
26302 \int_value:w #1 #2 0 ;
26303 }
26304 \cs_new:Npn __fp_sub_back_shift_ii:ww #1 0 ; #2#3 ;
26305 {
26306 \if_meaning:w @ #1 @
26307 - 7
26308 - \exp_after:wN \use_i:nnn
26309 \exp_after:wN __fp_sub_back_shift_iii:NNNNNNNNw
26310 \int_value:w #2#3 0 ~ 123456789;
26311 \else:
26312 - __fp_sub_back_shift_iii:NNNNNNNNw #1 123456789;
26313 \fi:
26314 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
26315 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
26316 \exp_after:wN __fp_sub_back_shift_iv:nnnnw
26317 \exp_after:wN ;
26318 \int_value:w
26319 #1 ~ #2#3 0 ~ 0000 0000 0000 000 ;
26320 }
26321 \cs_new:Npn __fp_sub_back_shift_iii:NNNNNNNNw #1#2#3#4#5#6#7#8#9; {#8}
26322 \cs_new:Npn __fp_sub_back_shift_iv:nnnnw #1 ; #2 ; { ; #1 ; }

(End of definition for __fp_sub_back_shift:wnnnn and others.)

__fp_sub_back_far_o:NnnwnnnnN __fp_sub_back_far_o:NnnwnnnnN ⟨rounding⟩ {⟨Y’1⟩} {⟨Y’2⟩}
⟨extra-digits⟩ ; {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ⟨final sign⟩

If the difference is greater than 10⟨expox⟩, call the very_far auxiliary. If the result is
less than 10⟨expox⟩, call the not_far auxiliary. If it is too close a call to know yet, namely
if 1⟨Y’1⟩⟨Y’2⟩ = ⟨X1⟩⟨X2⟩⟨X3⟩⟨X4⟩0, then call the quite_far auxiliary. We use the odd
combination of space and semi-colon delimiters to allow the not_far auxiliary to grab
each piece individually, the very_far auxiliary to use __fp_pack_eight:wNNNNNNNN,
and the quite_far to ignore the significands easily (using the ; delimiter).

26323 \cs_new:Npn __fp_sub_back_far_o:NnnwnnnnN #1 #2#3 #4; #5#6#7#8

1126

26324 {
26325 \if_case:w
26326 \if_int_compare:w 1 #2 = #5#6 \use_i:nnnn #7 \exp_stop_f:
26327 \if_int_compare:w #3 = \use_none:n #7#8 0 \exp_stop_f:
26328 0
26329 \else:
26330 \if_int_compare:w #3 > \use_none:n #7#8 0 - \fi: 1
26331 \fi:
26332 \else:
26333 \if_int_compare:w 1 #2 > #5#6 \use_i:nnnn #7 - \fi: 1
26334 \fi:
26335 \exp_stop_f:
26336 \exp_after:wN __fp_sub_back_quite_far_o:wwNN
26337 \or: \exp_after:wN __fp_sub_back_very_far_o:wwwwNN
26338 \else: \exp_after:wN __fp_sub_back_not_far_o:wwwwNN
26339 \fi:
26340 #2 ~ #3 ; #5 #6 ~ #7 #8 ; #1
26341 }

(End of definition for __fp_sub_back_far_o:NnnwnnnnN.)

__fp_sub_back_quite_far_o:wwNN
__fp_sub_back_quite_far_ii:NN

The easiest case is when x−y is extremely close to a power of 10, namely the first digit of
x is 1, and all others vanish when subtracting y. Then the ⟨rounding⟩ #3 and the ⟨final
sign⟩ #4 control whether we get 1 or 0.9999999999999999. In the usual round-to-nearest
mode, we get 1 whenever the ⟨rounding⟩ digit is less than or equal to 5 (remember that
the ⟨rounding⟩ digit is only equal to 5 if there was no further non-zero digit).

26342 \cs_new:Npn __fp_sub_back_quite_far_o:wwNN #1; #2; #3#4
26343 {
26344 \exp_after:wN __fp_sub_back_quite_far_ii:NN
26345 \exp_after:wN #3
26346 \exp_after:wN #4
26347 }
26348 \cs_new:Npn __fp_sub_back_quite_far_ii:NN #1#2
26349 {
26350 \if_case:w __fp_round_neg:NNN #2 0 #1
26351 \exp_after:wN \use_i:nn
26352 \else:
26353 \exp_after:wN \use_ii:nn
26354 \fi:
26355 { ; {1000} {0000} {0000} {0000} ; }
26356 { - 1 ; {9999} {9999} {9999} {9999} ; }
26357 }

(End of definition for __fp_sub_back_quite_far_o:wwNN and __fp_sub_back_quite_far_ii:NN.)

__fp_sub_back_not_far_o:wwwwNN In the present case, x and y have different exponents, but y is large enough that x−y has
a smaller exponent than x. Decrement the exponent (with -1). Then proceed in a way
similar to the near auxiliaries seen earlier, but multiplying x by 10 (#30 and #40 below),
and with the added quirk that the ⟨rounding⟩ digit has to be taken into account. Namely,
we may have to decrease the result by one unit if __fp_round_neg:NNN returns 1. This
function expects the ⟨final sign⟩ #6, the last digit of 1100000000+#40-#2, and the
⟨rounding⟩ digit. Instead of redoing the computation for the second argument, we note
that __fp_round_neg:NNN only cares about its parity, which is identical to that of the
last digit of #2.

1127

26358 \cs_new:Npn __fp_sub_back_not_far_o:wwwwNN #1 ~ #2; #3 ~ #4; #5#6
26359 {
26360 - 1
26361 \exp_after:wN __fp_sub_back_near_after:wNNNNw
26362 \int_value:w __fp_int_eval:w 1#30 - #1 - 11
26363 \exp_after:wN __fp_sub_back_near_pack:NNNNNNw
26364 \int_value:w __fp_int_eval:w 11 0000 0000 + #40 - #2
26365 - \exp_after:wN __fp_round_neg:NNN
26366 \exp_after:wN #6
26367 \use_none:nnnnnnn #2 #5
26368 \exp_after:wN ;
26369 }

(End of definition for __fp_sub_back_not_far_o:wwwwNN.)

__fp_sub_back_very_far_o:wwwwNN
__fp_sub_back_very_far_ii_o:nnNwwNN

The case where x − y and x have the same exponent is a bit more tricky, mostly because
it cannot reuse the same auxiliaries. Shift the y significand by adding a leading 0. Then
the logic is similar to the not_far functions above. Rounding is a bit more complicated:
we have two ⟨rounding⟩ digits #3 and #6 (from the decimation, and from the new shift)
to take into account, and getting the parity of the main result requires a computation.
The first \int_value:w triggers the second one because the number is unfinished; we
can thus not use 0 in place of 2 there.

26370 \cs_new:Npn __fp_sub_back_very_far_o:wwwwNN #1#2#3#4#5#6#7
26371 {
26372 __fp_pack_eight:wNNNNNNNN
26373 __fp_sub_back_very_far_ii_o:nnNwwNN
26374 { 0 #1#2#3 #4#5#6#7 }
26375 ;
26376 }
26377 \cs_new:Npn __fp_sub_back_very_far_ii_o:nnNwwNN #1#2 ; #3 ; #4 ~ #5; #6#7
26378 {
26379 \exp_after:wN __fp_basics_pack_high:NNNNNw
26380 \int_value:w __fp_int_eval:w 1#4 - #1 - 1
26381 \exp_after:wN __fp_basics_pack_low:NNNNNw
26382 \int_value:w __fp_int_eval:w 2#5 - #2
26383 - \exp_after:wN __fp_round_neg:NNN
26384 \exp_after:wN #7
26385 \int_value:w
26386 \if_int_odd:w __fp_int_eval:w #5 - #2 __fp_int_eval_end:
26387 1 \else: 2 \fi:
26388 \int_value:w __fp_round_digit:Nw #3 #6 ;
26389 \exp_after:wN ;
26390 }

(End of definition for __fp_sub_back_very_far_o:wwwwNN and __fp_sub_back_very_far_ii_o:nnNwwNN.)

74.2 Multiplication
74.2.1 Signs, and special numbers

__fp_*_o:ww We go through an auxiliary, which is common with __fp_/_o:ww. The first argument
is the operation, used for the invalid operation exception. The second is inserted in a
formula to dispatch cases slightly differently between multiplication and division. The

1128

third is the operation for normal floating points. The fourth is there for extra cases
needed in __fp_/_o:ww.

26391 \cs_new:cpn { __fp_*_o:ww }
26392 {
26393 __fp_mul_cases_o:NnNnww
26394 *
26395 { - 2 + }
26396 __fp_mul_npos_o:Nww
26397 { }
26398 }

(End of definition for __fp_*_o:ww.)

__fp_mul_cases_o:nNnnww Split into 10 cases (12 for division). If both numbers are normal, go to case 0 (same sign)
or case 1 (opposite signs): in both cases, call __fp_mul_npos_o:Nww to do the work. If
the first operand is nan, go to case 2, in which the second operand is discarded; if the
second operand is nan, go to case 3, in which the first operand is discarded (note the
weird interaction with the final test on signs). Then we separate the case where the first
number is normal and the second is zero: this goes to cases 4 and 5 for multiplication,
10 and 11 for division. Otherwise, we do a computation which dispatches the products
0×0 = 0×1 = 1×0 = 0 to case 4 or 5 depending on the combined sign, the products 0×∞
and ∞×0 to case 6 or 7 (invalid operation), and the products 1×∞ = ∞×1 = ∞×∞ = ∞
to cases 8 and 9. Note that the code for these two cases (which return ±∞) is inserted
as argument #4, because it differs in the case of divisions.

26399 \cs_new:Npn __fp_mul_cases_o:NnNnww
26400 #1#2#3#4 \s__fp __fp_chk:w #5#6#7; \s__fp __fp_chk:w #8#9
26401 {
26402 \if_case:w __fp_int_eval:w
26403 \if_int_compare:w #5 #8 = 11 ~
26404 1
26405 \else:
26406 \if_meaning:w 3 #8
26407 3
26408 \else:
26409 \if_meaning:w 3 #5
26410 2
26411 \else:
26412 \if_int_compare:w #5 #8 = 10 ~
26413 9 #2 - 2
26414 \else:
26415 (#5 #2 #8) / 2 * 2 + 7
26416 \fi:
26417 \fi:
26418 \fi:
26419 \fi:
26420 \if_meaning:w #6 #9 - 1 \fi:
26421 __fp_int_eval_end:
26422 __fp_case_use:nw { #3 0 }
26423 \or: __fp_case_use:nw { #3 2 }
26424 \or: __fp_case_return_i_o:ww
26425 \or: __fp_case_return_ii_o:ww
26426 \or: __fp_case_return_o:Nww \c_zero_fp
26427 \or: __fp_case_return_o:Nww \c_minus_zero_fp

1129

26428 \or: __fp_case_use:nw { __fp_invalid_operation_o:Nww #1 }
26429 \or: __fp_case_use:nw { __fp_invalid_operation_o:Nww #1 }
26430 \or: __fp_case_return_o:Nww \c_inf_fp
26431 \or: __fp_case_return_o:Nww \c_minus_inf_fp
26432 #4
26433 \fi:
26434 \s__fp __fp_chk:w #5 #6 #7;
26435 \s__fp __fp_chk:w #8 #9
26436 }

(End of definition for __fp_mul_cases_o:nNnnww.)

74.2.2 Absolute multiplication
In this subsection, we perform the multiplication of two positive normal numbers.

__fp_mul_npos_o:Nww __fp_mul_npos_o:Nww ⟨final sign⟩ \s__fp __fp_chk:w 1 ⟨sign1⟩ {⟨exp1⟩}
⟨body1⟩ ; \s__fp __fp_chk:w 1 ⟨sign2⟩ {⟨exp2⟩} ⟨body2⟩ ;

After the computation, __fp_sanitize:Nw checks for overflow or underflow. As we
did for addition, __fp_int_eval:w computes the exponent, catching any shift coming
from the computation in the significand. The ⟨final sign⟩ is needed to do the rounding
properly in the significand computation. We setup the post-expansion here, triggered by
__fp_mul_significand_o:nnnnNnnnn.

This is also used in l3fp-convert.
26437 \cs_new:Npn __fp_mul_npos_o:Nww
26438 #1 \s__fp __fp_chk:w #2 #3 #4 #5 ; \s__fp __fp_chk:w #6 #7 #8 #9 ;
26439 {
26440 \exp_after:wN __fp_sanitize:Nw
26441 \exp_after:wN #1
26442 \int_value:w __fp_int_eval:w
26443 #4 + #8
26444 __fp_mul_significand_o:nnnnNnnnn #5 #1 #9
26445 }

(End of definition for __fp_mul_npos_o:Nww.)

__fp_mul_significand_o:nnnnNnnnn
__fp_mul_significand_drop:NNNNNw
__fp_mul_significand_keep:NNNNNw

__fp_mul_significand_o:nnnnNnnnn {⟨X1⟩} {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ⟨sign⟩
{⟨Y1⟩} {⟨Y2⟩} {⟨Y3⟩} {⟨Y4⟩}

Note the three semicolons at the end of the definition. One is for the last __fp_-
mul_significand_drop:NNNNNw; one is for __fp_round_digit:Nw later on; and one,
preceded by \exp_after:wN, which is correctly expanded (within an __fp_int_eval:w),
is used by __fp_basics_pack_low:NNNNNw.

The product of two 16 digit integers has 31 or 32 digits, but it is impossible to
know which one before computing. The place where we round depends on that number
of digits, and may depend on all digits until the last in some rare cases. The approach
is thus to compute the 5 first blocks of 4 digits (the first one is between 100 and 9999
inclusive), and a compact version of the remaining 3 blocks. Afterwards, the number of
digits is known, and we can do the rounding within yet another set of __fp_int_eval:w.

26446 \cs_new:Npn __fp_mul_significand_o:nnnnNnnnn #1#2#3#4 #5 #6#7#8#9
26447 {
26448 \exp_after:wN __fp_mul_significand_test_f:NNN
26449 \exp_after:wN #5
26450 \int_value:w __fp_int_eval:w 99990000 + #1*#6 +

1130

26451 \exp_after:wN __fp_mul_significand_keep:NNNNNw
26452 \int_value:w __fp_int_eval:w 99990000 + #1*#7 + #2*#6 +
26453 \exp_after:wN __fp_mul_significand_keep:NNNNNw
26454 \int_value:w __fp_int_eval:w 99990000 + #1*#8 + #2*#7 + #3*#6 +
26455 \exp_after:wN __fp_mul_significand_drop:NNNNNw
26456 \int_value:w __fp_int_eval:w 99990000 + #1*#9 + #2*#8 +
26457 #3*#7 + #4*#6 +
26458 \exp_after:wN __fp_mul_significand_drop:NNNNNw
26459 \int_value:w __fp_int_eval:w 99990000 + #2*#9 + #3*#8 +
26460 #4*#7 +
26461 \exp_after:wN __fp_mul_significand_drop:NNNNNw
26462 \int_value:w __fp_int_eval:w 99990000 + #3*#9 + #4*#8 +
26463 \exp_after:wN __fp_mul_significand_drop:NNNNNw
26464 \int_value:w __fp_int_eval:w 100000000 + #4*#9 ;
26465 ; \exp_after:wN ;
26466 }
26467 \cs_new:Npn __fp_mul_significand_drop:NNNNNw #1#2#3#4#5 #6;
26468 { #1#2#3#4#5 ; + #6 }
26469 \cs_new:Npn __fp_mul_significand_keep:NNNNNw #1#2#3#4#5 #6;
26470 { #1#2#3#4#5 ; #6 ; }

(End of definition for __fp_mul_significand_o:nnnnNnnnn , __fp_mul_significand_drop:NNNNNw , and
__fp_mul_significand_keep:NNNNNw.)

__fp_mul_significand_test_f:NNN __fp_mul_significand_test_f:NNN ⟨sign⟩ 1 ⟨digits 1–8⟩ ; ⟨digits
9–12⟩ ; ⟨digits 13–16⟩ ; + ⟨digits 17–20⟩ + ⟨digits 21–24⟩ + ⟨digits
25–28⟩ + ⟨digits 29–32⟩ ; \exp_after:wN ;

If the ⟨digit 1⟩ is non-zero, then for rounding we only care about the digits 16 and
17, and whether further digits are zero or not (check for exact ties). On the other hand,
if ⟨digit 1⟩ is zero, we care about digits 17 and 18, and whether further digits are zero.

26471 \cs_new:Npn __fp_mul_significand_test_f:NNN #1 #2 #3
26472 {
26473 \if_meaning:w 0 #3
26474 \exp_after:wN __fp_mul_significand_small_f:NNwwwN
26475 \else:
26476 \exp_after:wN __fp_mul_significand_large_f:NwwNNNN
26477 \fi:
26478 #1 #3
26479 }

(End of definition for __fp_mul_significand_test_f:NNN.)

__fp_mul_significand_large_f:NwwNNNN In this branch, ⟨digit 1⟩ is non-zero. The result is thus ⟨digits 1–16⟩, plus some
rounding which depends on the digits 16, 17, and whether all subsequent digits are
zero or not. Here, __fp_round_digit:Nw takes digits 17 and further (as an integer
expression), and replaces it by a ⟨rounding digit⟩, suitable for __fp_round:NNN.

26480 \cs_new:Npn __fp_mul_significand_large_f:NwwNNNN #1 #2; #3; #4#5#6#7; +
26481 {
26482 \exp_after:wN __fp_basics_pack_high:NNNNNw
26483 \int_value:w __fp_int_eval:w 1#2
26484 \exp_after:wN __fp_basics_pack_low:NNNNNw
26485 \int_value:w __fp_int_eval:w 1#3#4#5#6#7
26486 + \exp_after:wN __fp_round:NNN
26487 \exp_after:wN #1

1131

26488 \exp_after:wN #7
26489 \int_value:w __fp_round_digit:Nw
26490 }

(End of definition for __fp_mul_significand_large_f:NwwNNNN.)

__fp_mul_significand_small_f:NNwwwN In this branch, ⟨digit 1⟩ is zero. Our result is thus ⟨digits 2–17⟩, plus some rounding
which depends on the digits 17, 18, and whether all subsequent digits are zero or not.
The 8 digits 1#3 are followed, after expansion of the small_pack auxiliary, by the next
digit, to form a 9 digit number.

26491 \cs_new:Npn __fp_mul_significand_small_f:NNwwwN #1 #2#3; #4#5; #6; + #7
26492 {
26493 - 1
26494 \exp_after:wN __fp_basics_pack_high:NNNNNw
26495 \int_value:w __fp_int_eval:w 1#3#4
26496 \exp_after:wN __fp_basics_pack_low:NNNNNw
26497 \int_value:w __fp_int_eval:w 1#5#6#7
26498 + \exp_after:wN __fp_round:NNN
26499 \exp_after:wN #1
26500 \exp_after:wN #7
26501 \int_value:w __fp_round_digit:Nw
26502 }

(End of definition for __fp_mul_significand_small_f:NNwwwN.)

74.3 Division
74.3.1 Signs, and special numbers
Time is now ripe to tackle the hardest of the four elementary operations: division.

__fp_/_o:ww Filtering special floating point is very similar to what we did for multiplications, with a
few variations. Invalid operation exceptions display / rather than *. In the formula for
dispatch, we replace - 2 + by -. The case of normal numbers is treated using __fp_-
div_npos_o:Nww rather than __fp_mul_npos_o:Nww. There are two additional cases: if
the first operand is normal and the second is a zero, then the division by zero exception is
raised: cases 10 and 11 of the \if_case:w construction in __fp_mul_cases_o:NnNnww
are provided as the fourth argument here.

26503 \cs_new:cpn { __fp_/_o:ww }
26504 {
26505 __fp_mul_cases_o:NnNnww
26506 /
26507 { - }
26508 __fp_div_npos_o:Nww
26509 {
26510 \or:
26511 __fp_case_use:nw
26512 { __fp_division_by_zero_o:NNww \c_inf_fp / }
26513 \or:
26514 __fp_case_use:nw
26515 { __fp_division_by_zero_o:NNww \c_minus_inf_fp / }
26516 }
26517 }

1132

(End of definition for __fp_/_o:ww.)

__fp_div_npos_o:Nww __fp_div_npos_o:Nww ⟨final sign⟩ \s__fp __fp_chk:w 1 ⟨signA⟩ {⟨exp
A⟩} {⟨A1⟩} {⟨A2⟩} {⟨A3⟩} {⟨A4⟩} ; \s__fp __fp_chk:w 1 ⟨signZ⟩ {⟨exp
Z ⟩} {⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ;

We want to compute A/Z. As for multiplication, __fp_sanitize:Nw checks for
overflow or underflow; we provide it with the ⟨final sign⟩, and an integer expression in
which we compute the exponent. We set up the arguments of __fp_div_significand_-
i_o:wnnw, namely an integer ⟨y⟩ obtained by adding 1 to the first 5 digits of Z (expla-
nation given soon below), then the four {⟨Ai⟩}, then the four {⟨Zi⟩}, a semi-colon, and
the ⟨final sign⟩, used for rounding at the end.

26518 \cs_new:Npn __fp_div_npos_o:Nww
26519 #1 \s__fp __fp_chk:w 1 #2 #3 #4 ; \s__fp __fp_chk:w 1 #5 #6 #7#8#9;
26520 {
26521 \exp_after:wN __fp_sanitize:Nw
26522 \exp_after:wN #1
26523 \int_value:w __fp_int_eval:w
26524 #3 - #6
26525 \exp_after:wN __fp_div_significand_i_o:wnnw
26526 \int_value:w __fp_int_eval:w #7 \use_i:nnnn #8 + 1 ;
26527 #4
26528 {#7}{#8}#9 ;
26529 #1
26530 }

(End of definition for __fp_div_npos_o:Nww.)

74.3.2 Work plan
In this subsection, we explain how to avoid overflowing TEX’s integers when performing
the division of two positive normal numbers.

We are given two numbers, A = 0.A1A2A3A4 and Z = 0.Z1Z2Z3Z4, in blocks of 4
digits, and we know that the first digits of A1 and of Z1 are non-zero. To compute A/Z,
we proceed as follows.

• Find an integer QA ≃ 104A/Z.

• Replace A by B = 104A − QAZ.

• Find an integer QB ≃ 104B/Z.

• Replace B by C = 104B − QBZ.

• Find an integer QC ≃ 104C/Z.

• Replace C by D = 104C − QCZ.

• Find an integer QD ≃ 104D/Z.

• Consider E = 104D − QDZ, and ensure correct rounding.

1133

The result is then Q = 10−4QA + 10−8QB + 10−12QC + 10−16QD + rounding. Since
the Qi are integers, B, C, D, and E are all exact multiples of 10−16, in other words,
computing with 16 digits after the decimal separator yields exact results. The problem
is the risk of overflow: in general B, C, D, and E may be greater than 1.

Unfortunately, things are not as easy as they seem. In particular, we want all
intermediate steps to be positive, since negative results would require extra calculations
at the end. This requires that QA ≤ 104A/Z etc. A reasonable attempt would be to
define QA as

\int_eval:n
{

A1A2

Z1 + 1 − 1
}

≤ 104 A

Z

Subtracting 1 at the end takes care of the fact that ε-TEX’s __fp_int_eval:w rounds
divisions instead of truncating (really, 1/2 would be sufficient, but we work with integers).
We add 1 to Z1 because Z1 ≤ 104Z < Z1 + 1 and we need QA to be an underestimate.
However, we are now underestimating QA too much: it can be wrong by up to 100, for
instance when Z = 0.1 and A ≃ 1. Then B could take values up to 10 (maybe more),
and a few steps down the line, we would run into arithmetic overflow, since TEX can only
handle integers less than roughly 2 · 109.

A better formula is to take

QA = \int_eval:n
{

10 · A1A2

⌊10−3 · Z1Z2⌋ + 1 − 1
}

.

This is always less than 109A/(105Z), as we wanted. In words, we take the 5 first digits
of Z into account, and the 8 first digits of A, using 0 as a 9-th digit rather than the true
digit for efficiency reasons. We shall prove that using this formula to define all the Qi

avoids any overflow. For convenience, let us denote

y =
⌊
10−3 · Z1Z2

⌋
+ 1,

so that, taking into account the fact that ε-TEX rounds ties away from zero,

QA =
⌊

A1A20
y

− 1
2

⌋
>

A1A20
y

− 3
2 .

Note that 104 < y ≤ 105, and 999 ≤ QA ≤ 99989. Also note that this formula does not
cause an overflow as long as A < (231 − 1)/109 ≃ 2.147 · · · , since the numerator involves
an integer slightly smaller than 109A.

Let us bound B:

105B = A1A20 + 10 · 0.A3A4 − 10 · Z1.Z2Z3Z4 · QA

< A1A20 ·
(

1 − 10 · Z1.Z2Z3Z4

y

)
+ 3

2 · 10 · Z1.Z2Z3Z4 + 10

≤ A1A20 · (y − 10 · Z1.Z2Z3Z4)
y

+ 3
2y + 10

≤ A1A20 · 1
y

+ 3
2y + 10 ≤ 109A

y
+ 1.6 · y.

1134

At the last step, we hide 10 into the second term for later convenience. The same
reasoning yields

105B < 109A/y + 1.6y,

105C < 109B/y + 1.6y,

105D < 109C/y + 1.6y,

105E < 109D/y + 1.6y.

The goal is now to prove that none of B, C, D, and E can go beyond (231 − 1)/109 =
2.147 · · · .

Combining the various inequalities together with A < 1, we get

105B < 109/y + 1.6y,

105C < 1013/y2 + 1.6(y + 104),
105D < 1017/y3 + 1.6(y + 104 + 108/y),
105E < 1021/y4 + 1.6(y + 104 + 108/y + 1012/y2).

All of those bounds are convex functions of y (since every power of y involved is convex,
and the coefficients are positive), and thus maximal at one of the end-points of the allowed
range 104 < y ≤ 105. Thus,

105B < max(1.16 · 105, 1.7 · 105),
105C < max(1.32 · 105, 1.77 · 105),
105D < max(1.48 · 105, 1.777 · 105),
105E < max(1.64 · 105, 1.7777 · 105).

All of those bounds are less than 2.147 · 105, and we are thus within TEX’s bounds in all
cases!

We later need to have a bound on the Qi. Their definitions imply that QA <
109A/y − 1/2 < 105A and similarly for the other Qi. Thus, all of them are less than
177770.

The last step is to ensure correct rounding. We have

A/Z =
4∑

i=1

(
10−4iQi

)
+ 10−16E/Z

exactly. Furthermore, we know that the result is in [0.1, 10), hence will be rounded to
a multiple of 10−16 or of 10−15, so we only need to know the integer part of E/Z, and
a “rounding” digit encoding the rest. Equivalently, we need to find the integer part of
2E/Z, and determine whether it was an exact integer or not (this serves to detect ties).
Since

2E

Z
= 2105E

105Z
≤ 2105E

104 < 36,

1135

this integer part is between 0 and 35 inclusive. We let ε-TEX round

P = \int_eval:n
{

2 · E1E2

Z1Z2

}
,

which differs from 2E/Z by at most

1
2 + 2

∣∣∣∣EZ − E

10−8Z1Z2

∣∣∣∣+ 2
∣∣∣∣108E − E1E2

Z1Z2

∣∣∣∣ < 1,

(1/2 comes from ε-TEX’s rounding) because each absolute value is less than 10−7. Thus
P is either the correct integer part, or is off by 1; furthermore, if 2E/Z is an integer, P =
2E/Z. We will check the sign of 2E −PZ. If it is negative, then E/Z ∈

(
(P −1)/2, P/2

)
.

If it is zero, then E/Z = P/2. If it is positive, then E/Z ∈
(
P/2, (P −1)/2

)
. In each case,

we know how to round to an integer, depending on the parity of P , and the rounding
mode.

74.3.3 Implementing the significand division
__fp_div_significand_i_o:wnnw __fp_div_significand_i_o:wnnw ⟨y⟩ ; {⟨A1⟩} {⟨A2⟩} {⟨A3⟩} {⟨A4⟩}

{⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ; ⟨sign⟩
Compute 106 + QA (a 7 digit number thanks to the shift), unbrace ⟨A1⟩ and ⟨A2⟩,

and prepare the ⟨continuation⟩ arguments for 4 consecutive calls to __fp_div_-
significand_calc:wwnnnnnnn. Each of these calls needs ⟨y⟩ (#1), and it turns out that
we need post-expansion there, hence the \int_value:w. Here, #4 is six brace groups,
which give the six first n-type arguments of the calc function.

26531 \cs_new:Npn __fp_div_significand_i_o:wnnw #1 ; #2#3 #4 ;
26532 {
26533 \exp_after:wN __fp_div_significand_test_o:w
26534 \int_value:w __fp_int_eval:w
26535 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
26536 \int_value:w __fp_int_eval:w 999999 + #2 #3 0 / #1 ;
26537 #2 #3 ;
26538 #4
26539 { \exp_after:wN __fp_div_significand_ii:wwn \int_value:w #1 }
26540 { \exp_after:wN __fp_div_significand_ii:wwn \int_value:w #1 }
26541 { \exp_after:wN __fp_div_significand_ii:wwn \int_value:w #1 }
26542 { \exp_after:wN __fp_div_significand_iii:wwnnnnn \int_value:w #1 }
26543 }

(End of definition for __fp_div_significand_i_o:wnnw.)

__fp_div_significand_calc:wwnnnnnnn
__fp_div_significand_calc_i:wwnnnnnnn
__fp_div_significand_calc_ii:wwnnnnnnn

__fp_div_significand_calc:wwnnnnnnn ⟨106 + QA⟩ ; ⟨A1⟩ ⟨A2⟩ ; {⟨A3⟩}
{⟨A4⟩} {⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} {⟨continuation⟩}

expands to

⟨106 +QA⟩ ⟨continuation⟩ ; ⟨B1⟩ ⟨B2⟩ ; {⟨B3⟩} {⟨B4⟩} {⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩}
{⟨Z4⟩}

where B = 104A − QA · Z. This function is also used to compute C, D, E (with the
input shifted accordingly), and is used in l3fp-expo.

We know that 0 < QA < 1.8 ·105, so the product of QA with each Zi is within TEX’s
bounds. However, it is a little bit too large for our purposes: we would not be able to

1136

use the usual trick of adding a large power of 10 to ensure that the number of digits is
fixed.

The bound on QA, implies that 106 + QA starts with the digit 1, followed by 0 or
1. We test, and call different auxiliaries for the two cases. An earlier implementation
did the tests within the computation, but since we added a ⟨continuation⟩, this is not
possible because the macro has 9 parameters.

The result we want is then (the overall power of 10 is arbitrary):

10−4(#2 − #1 · #5 − 10 · ⟨i⟩ · #5#6) + 10−8(#3 − #1 · #6 − 10 · ⟨i⟩ · #7)
+ 10−12(#4 − #1 · #7 − 10 · ⟨i⟩ · #8) + 10−16(−#1 · #8),

where ⟨i⟩ stands for the 105 digit of QA, which is 0 or 1, and #1, #2, etc. are the
parameters of either auxiliary. The factors of 10 come from the fact that QA = 10 ·
104 · ⟨i⟩ + #1. As usual, to combine all the terms, we need to choose some shifts which
must ensure that the number of digits of the second, third, and fourth terms are each
fixed. Here, the positive contributions are at most 108 and the negative contributions
can go up to 109. Indeed, for the auxiliary with ⟨i⟩ = 1, #1 is at most 80000, leading
to contributions of at worse −8 · 1084, while the other negative term is very small < 106

(except in the first expression, where we don’t care about the number of digits); for the
auxiliary with ⟨i⟩ = 0, #1 can go up to 99999, but there is no other negative term.
Hence, a good choice is 2 · 109, which produces totals in the range [109, 2.1 · 109]. We are
flirting with TEX’s limits once more.

26544 \cs_new:Npn __fp_div_significand_calc:wwnnnnnnn 1#1
26545 {
26546 \if_meaning:w 1 #1
26547 \exp_after:wN __fp_div_significand_calc_i:wwnnnnnnn
26548 \else:
26549 \exp_after:wN __fp_div_significand_calc_ii:wwnnnnnnn
26550 \fi:
26551 }
26552 \cs_new:Npn __fp_div_significand_calc_i:wwnnnnnnn
26553 #1; #2;#3#4 #5#6#7#8 #9
26554 {
26555 1 1 #1
26556 #9 \exp_after:wN ;
26557 \int_value:w __fp_int_eval:w \c__fp_Bigg_leading_shift_int
26558 + #2 - #1 * #5 - #5#60
26559 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26560 \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int
26561 + #3 - #1 * #6 - #70
26562 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26563 \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int
26564 + #4 - #1 * #7 - #80
26565 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26566 \int_value:w __fp_int_eval:w \c__fp_Bigg_trailing_shift_int
26567 - #1 * #8 ;
26568 {#5}{#6}{#7}{#8}
26569 }
26570 \cs_new:Npn __fp_div_significand_calc_ii:wwnnnnnnn
26571 #1; #2;#3#4 #5#6#7#8 #9
26572 {
26573 1 0 #1

1137

26574 #9 \exp_after:wN ;
26575 \int_value:w __fp_int_eval:w \c__fp_Bigg_leading_shift_int
26576 + #2 - #1 * #5
26577 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26578 \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int
26579 + #3 - #1 * #6
26580 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26581 \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int
26582 + #4 - #1 * #7
26583 \exp_after:wN __fp_pack_Bigg:NNNNNNw
26584 \int_value:w __fp_int_eval:w \c__fp_Bigg_trailing_shift_int
26585 - #1 * #8 ;
26586 {#5}{#6}{#7}{#8}
26587 }

(End of definition for __fp_div_significand_calc:wwnnnnnnn , __fp_div_significand_calc_i:wwnnnnnnn ,
and __fp_div_significand_calc_ii:wwnnnnnnn.)

__fp_div_significand_ii:wwn __fp_div_significand_ii:wwn ⟨y⟩ ; ⟨B1⟩ ; {⟨B2⟩} {⟨B3⟩} {⟨B4⟩} {⟨Z1⟩}
{⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ⟨continuations⟩ ⟨sign⟩

Compute QB by evaluating ⟨B1⟩⟨B2⟩0/y − 1. The result is output to the left, in an
__fp_int_eval:w which we start now. Once that is evaluated (and the other Qi also,
since later expansions are triggered by this one), a packing auxiliary takes care of placing
the digits of QB in an appropriate way for the final addition to obtain Q. This auxiliary
is also used to compute QC and QD with the inputs C and D instead of B.

26588 \cs_new:Npn __fp_div_significand_ii:wwn #1; #2;#3
26589 {
26590 \exp_after:wN __fp_div_significand_pack:NNN
26591 \int_value:w __fp_int_eval:w
26592 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
26593 \int_value:w __fp_int_eval:w 999999 + #2 #3 0 / #1 ; #2 #3 ;
26594 }

(End of definition for __fp_div_significand_ii:wwn.)

__fp_div_significand_iii:wwnnnnn __fp_div_significand_iii:wwnnnnn ⟨y⟩ ; ⟨E1⟩ ; {⟨E2⟩} {⟨E3⟩} {⟨E4⟩}
{⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ⟨sign⟩

We compute P ≃ 2E/Z by rounding 2E1E2/Z1Z2. Note the first 0, which multiplies
QD by 10: we later add (roughly) 5 · P , which amounts to adding P/2 ≃ E/Z to QD,
the appropriate correction from a hypothetical QE .

26595 \cs_new:Npn __fp_div_significand_iii:wwnnnnn #1; #2;#3#4#5 #6#7
26596 {
26597 0
26598 \exp_after:wN __fp_div_significand_iv:wwnnnnnnn
26599 \int_value:w __fp_int_eval:w (2 * #2 #3) / #6 #7 ; % <- P
26600 #2 ; {#3} {#4} {#5}
26601 {#6} {#7}
26602 }

(End of definition for __fp_div_significand_iii:wwnnnnn.)

__fp_div_significand_iv:wwnnnnnnn
__fp_div_significand_v:NNw
__fp_div_significand_vi:Nw

__fp_div_significand_iv:wwnnnnnnn ⟨P⟩ ; ⟨E1⟩ ; {⟨E2⟩} {⟨E3⟩} {⟨E4⟩}
{⟨Z1⟩} {⟨Z2⟩} {⟨Z3⟩} {⟨Z4⟩} ⟨sign⟩

1138

This adds to the current expression (107 + 10 · QD) a contribution of 5 · P + sign(T)
with T = 2E −PZ. This amounts to adding P/2 to QD, with an extra ⟨rounding⟩ digit.
This ⟨rounding⟩ digit is 0 or 5 if T does not contribute, i.e., if 0 = T = 2E − PZ, in
other words if 1016A/Z is an integer or half-integer. Otherwise it is in the appropriate
range, [1, 4] or [6, 9]. This is precise enough for rounding purposes (in any mode).

It seems an overkill to compute T exactly as I do here, but I see no faster way right
now.

Once more, we need to be careful and show that the calculation #1 · #6#7 below
does not cause an overflow: naively, P can be up to 35, and #6#7 up to 108, but both
cannot happen simultaneously. To show that things are fine, we split in two (non-disjoint)
cases.

• For P < 10, the product obeys P · #6#7 < 108 · P < 109.

• For large P ≥ 3, the rounding error on P , which is at most 1, is less than a factor
of 2, hence P ≤ 4E/Z. Also, #6#7 ≤ 108 · Z, hence P · #6#7 ≤ 4E · 108 < 109.

Both inequalities could be made tighter if needed.
Note however that P ·#8#9 may overflow, since the two factors are now independent,

and the result may reach 3.5 · 109. Thus we compute the two lower levels separately.
The rest is standard, except that we use + as a separator (ending integer expressions
explicitly). T is negative if the first character is -, it is positive if the first character
is neither 0 nor -. It is also positive if the first character is 0 and second argument of
__fp_div_significand_vi:Nw, a sum of several terms, is also zero. Otherwise, there
was an exact agreement: T = 0.

26603 \cs_new:Npn __fp_div_significand_iv:wwnnnnnnn #1; #2;#3#4#5 #6#7#8#9
26604 {
26605 + 5 * #1
26606 \exp_after:wN __fp_div_significand_vi:Nw
26607 \int_value:w __fp_int_eval:w -50 + 2*#2#3 - #1*#6#7 +
26608 \exp_after:wN __fp_div_significand_v:NN
26609 \int_value:w __fp_int_eval:w 499950 + 2*#4 - #1*#8 +
26610 \exp_after:wN __fp_div_significand_v:NN
26611 \int_value:w __fp_int_eval:w 500000 + 2*#5 - #1*#9 ;
26612 }
26613 \cs_new:Npn __fp_div_significand_v:NN #1#2 { #1#2 __fp_int_eval_end: + }
26614 \cs_new:Npn __fp_div_significand_vi:Nw #1#2;
26615 {
26616 \if_meaning:w 0 #1
26617 \if_int_compare:w __fp_int_eval:w #2 > 0 + 1 \fi:
26618 \else:
26619 \if_meaning:w - #1 - \else: + \fi: 1
26620 \fi:
26621 ;
26622 }

(End of definition for __fp_div_significand_iv:wwnnnnnnn , __fp_div_significand_v:NNw , and _-
_fp_div_significand_vi:Nw.)

__fp_div_significand_pack:NNN At this stage, we are in the following situation: TEX is in the process of expanding several
integer expressions, thus functions at the bottom expand before those above.

1139

__fp_div_significand_test_o:w 106 + QA __fp_div_significand_-
pack:NNN 106 + QB __fp_div_significand_pack:NNN 106 + QC __fp_-
div_significand_pack:NNN 107 + 10 · QD + 5 · P + ε ; ⟨sign⟩

Here, ε = sign(T) is 0 in case 2E = PZ, 1 in case 2E > PZ, which means that P was
the correct value, but not with an exact quotient, and −1 if 2E < PZ, i.e., P was an
overestimate. The packing function we define now does nothing special: it removes the
106 and carries two digits (for the 105’s and the 104’s).

26623 \cs_new:Npn __fp_div_significand_pack:NNN 1 #1 #2 { + #1 #2 ; }

(End of definition for __fp_div_significand_pack:NNN.)

__fp_div_significand_test_o:w __fp_div_significand_test_o:w 1 0 ⟨5d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ; ⟨5d⟩ ; ⟨sign⟩
The reason we know that the first two digits are 1 and 0 is that the final result is

known to be between 0.1 (inclusive) and 10, hence Q̃A (the tilde denoting the contribution
from the other Qi) is at most 99999, and 106 + Q̃A = 10 · · · .

It is now time to round. This depends on how many digits the final result will have.
26624 \cs_new:Npn __fp_div_significand_test_o:w 10 #1
26625 {
26626 \if_meaning:w 0 #1
26627 \exp_after:wN __fp_div_significand_small_o:wwwNNNNwN
26628 \else:
26629 \exp_after:wN __fp_div_significand_large_o:wwwNNNNwN
26630 \fi:
26631 #1
26632 }

(End of definition for __fp_div_significand_test_o:w.)

__fp_div_significand_small_o:wwwNNNNwN __fp_div_significand_small_o:wwwNNNNwN 0 ⟨4d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ; ⟨5d⟩
; ⟨final sign⟩

Standard use of the functions __fp_basics_pack_low:NNNNNw and __fp_basics_-
pack_high:NNNNNw. We finally get to use the ⟨final sign⟩ which has been sitting there
for a while.

26633 \cs_new:Npn __fp_div_significand_small_o:wwwNNNNwN
26634 0 #1; #2; #3; #4#5#6#7#8; #9
26635 {
26636 \exp_after:wN __fp_basics_pack_high:NNNNNw
26637 \int_value:w __fp_int_eval:w 1 #1#2
26638 \exp_after:wN __fp_basics_pack_low:NNNNNw
26639 \int_value:w __fp_int_eval:w 1 #3#4#5#6#7
26640 + __fp_round:NNN #9 #7 #8
26641 \exp_after:wN ;
26642 }

(End of definition for __fp_div_significand_small_o:wwwNNNNwN.)

__fp_div_significand_large_o:wwwNNNNwN __fp_div_significand_large_o:wwwNNNNwN ⟨5d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ; ⟨5d⟩ ;
⟨sign⟩

We know that the final result cannot reach 10, hence 1#1#2, together with contri-
butions from the level below, cannot reach 2 · 109. For rounding, we build the ⟨rounding
digit⟩ from the last two of our 18 digits.

26643 \cs_new:Npn __fp_div_significand_large_o:wwwNNNNwN

1140

26644 #1; #2; #3; #4#5#6#7#8; #9
26645 {
26646 + 1
26647 \exp_after:wN __fp_basics_pack_weird_high:NNNNNNNNw
26648 \int_value:w __fp_int_eval:w 1 #1 #2
26649 \exp_after:wN __fp_basics_pack_weird_low:NNNNw
26650 \int_value:w __fp_int_eval:w 1 #3 #4 #5 #6 +
26651 \exp_after:wN __fp_round:NNN
26652 \exp_after:wN #9
26653 \exp_after:wN #6
26654 \int_value:w __fp_round_digit:Nw #7 #8 ;
26655 \exp_after:wN ;
26656 }

(End of definition for __fp_div_significand_large_o:wwwNNNNwN.)

74.4 Square root
__fp_sqrt_o:w Zeros are unchanged:

√
−0 = −0 and

√
+0 = +0. Negative numbers (other than −0)

have no real square root. Positive infinity, and nan, are unchanged. Finally, for normal
positive numbers, there is some work to do.

26657 \cs_new:Npn __fp_sqrt_o:w #1 \s__fp __fp_chk:w #2#3#4; @
26658 {
26659 \if_meaning:w 0 #2 __fp_case_return_same_o:w \fi:
26660 \if_meaning:w 2 #3
26661 __fp_case_use:nw { __fp_invalid_operation_o:nw { sqrt } }
26662 \fi:
26663 \if_meaning:w 1 #2 \else: __fp_case_return_same_o:w \fi:
26664 __fp_sqrt_npos_o:w
26665 \s__fp __fp_chk:w #2 #3 #4;
26666 }

(End of definition for __fp_sqrt_o:w.)

__fp_sqrt_npos_o:w
__fp_sqrt_npos_auxi_o:wwnnN

__fp_sqrt_npos_auxii_o:wNNNNNNNN

Prepare __fp_sanitize:Nw to receive the final sign 0 (the result is always positive) and
the exponent, equal to half of the exponent #1 of the argument. If the exponent #1 is even,
find a first approximation of the square root of the significand 108a1+a2 = 108#2#3+#4#5
through Newton’s method, starting at x = 57234133 ≃ 107.75. Otherwise, first shift the
significand of the argument by one digit, getting a′

1 ∈ [106, 107) instead of [107, 108), then
use Newton’s method starting at 17782794 ≃ 107.25.

26667 \cs_new:Npn __fp_sqrt_npos_o:w \s__fp __fp_chk:w 1 0 #1#2#3#4#5;
26668 {
26669 \exp_after:wN __fp_sanitize:Nw
26670 \exp_after:wN 0
26671 \int_value:w __fp_int_eval:w
26672 \if_int_odd:w #1 \exp_stop_f:
26673 \exp_after:wN __fp_sqrt_npos_auxi_o:wwnnN
26674 \fi:
26675 #1 / 2
26676 __fp_sqrt_Newton_o:wwn 56234133; 0; {#2#3} {#4#5} 0
26677 }
26678 \cs_new:Npn __fp_sqrt_npos_auxi_o:wwnnN #1 / 2 #2; 0; #3#4#5
26679 {

1141

26680 (#1 + 1) / 2
26681 __fp_pack_eight:wNNNNNNNN
26682 __fp_sqrt_npos_auxii_o:wNNNNNNNN
26683 ;
26684 0 #3 #4
26685 }
26686 \cs_new:Npn __fp_sqrt_npos_auxii_o:wNNNNNNNN #1; #2#3#4#5#6#7#8#9
26687 { __fp_sqrt_Newton_o:wwn 17782794; 0; {#1} {#2#3#4#5#6#7#8#9} }

(End of definition for __fp_sqrt_npos_o:w , __fp_sqrt_npos_auxi_o:wwnnN , and __fp_sqrt_npos_-
auxii_o:wNNNNNNNN.)

__fp_sqrt_Newton_o:wwn Newton’s method maps x 7→
[
(x + [108a1/x])/2

]
in each iteration, where [b/c] denotes

ε-TEX’s division. This division rounds the real number b/c to the closest integer, rounding
ties away from zero, hence when c is even, b/c − 1/2 + 1/c ≤ [b/c] ≤ b/c + 1/2 and when
c is odd, b/c − 1/2 + 1/(2c) ≤ [b/c] ≤ b/c + 1/2 − 1/(2c). For all c, b/c − 1/2 + 1/(2c) ≤
[b/c] ≤ b/c + 1/2.

Let us prove that the method converges when implemented with ε-TEX integer di-
vision, for any 106 ≤ a1 < 108 and starting value 106 ≤ x < 108. Using the inequalities
above and the arithmetic–geometric inequality (x + t)/2 ≥

√
xt for t = 108a1/x, we find

x′ =
[

x + [108a1/x]
2

]
≥ x + 108a1/x − 1/2 + 1/(2x)

2 ≥
√

108a1 − 1
4 + 1

4x
.

After any step of iteration, we thus have δ = x −
√

108a1 ≥ −0.25 + 0.25 · 10−8. The new
difference δ′ = x′ −

√
108a1 after one step is bounded above as

x′ −
√

108a1 ≤ x + 108a1/x + 1/2
2 + 1

2 −
√

108a1 ≤ δ

2
δ√

108a1 + δ
+ 3

4 .

For δ > 3/2, this last expression is ≤ δ/2 + 3/4 < δ, hence δ decreases at each step: since
all x are integers, δ must reach a value −1/4 < δ ≤ 3/2. In this range of values, we get
δ′ ≤ 3

4
3

2
√

108a1
+ 3

4 ≤ 0.75 + 1.125 · 10−7. We deduce that the difference δ = x −
√

108a1

eventually reaches a value in the interval [−0.25 + 0.25 · 10−8, 0.75 + 11.25 · 10−8], whose
width is 1 + 11 · 10−8. The corresponding interval for x may contain two integers, hence
x might oscillate between those two values.

However, the fact that x 7→ x − 1 and x − 1 7→ x puts stronger constraints, which
are not compatible: the first implies

x + [108a1/x] ≤ 2x − 2

hence 108a1/x ≤ x − 3/2, while the second implies

x − 1 + [108a1/(x − 1)] ≥ 2x − 1

hence 108a1/(x − 1) ≥ x − 1/2. Combining the two inequalities yields x2 − 3x/2 ≥
108a1 ≥ x − 3x/2 + 1/2, which cannot hold. Therefore, the iteration always converges
to a single integer x. To stop the iteration when two consecutive results are equal,
the function __fp_sqrt_Newton_o:wwn receives the newly computed result as #1, the
previous result as #2, and a1 as #3. Note that ε-TEX combines the computation of a
multiplication and a following division, thus avoiding overflow in #3 * 100000000 / #1.
In any case, the result is within [107, 108].

1142

26688 \cs_new:Npn __fp_sqrt_Newton_o:wwn #1; #2; #3
26689 {
26690 \if_int_compare:w #1 = #2 \exp_stop_f:
26691 \exp_after:wN __fp_sqrt_auxi_o:NNNNwnnN
26692 \int_value:w __fp_int_eval:w 9999 9999 +
26693 \exp_after:wN __fp_use_none_until_s:w
26694 \fi:
26695 \exp_after:wN __fp_sqrt_Newton_o:wwn
26696 \int_value:w __fp_int_eval:w (#1 + #3 * 1 0000 0000 / #1) / 2 ;
26697 #1; {#3}
26698 }

(End of definition for __fp_sqrt_Newton_o:wwn.)

__fp_sqrt_auxi_o:NNNNwnnN This function is followed by 108 + x − 1, which has 9 digits starting with 1, then ;
{⟨a1⟩} {⟨a2⟩} ⟨a’⟩. Here, x ≃

√
108a1 and we want to estimate the square root of

a = 10−8a1 + 10−16a2 + 10−17a′. We set up an initial underestimate

y = (x − 1)10−8 + 0.2499998875 · 10−8 ≲
√

a .

From the inequalities shown earlier, we know that y ≤
√

10−8a1 ≤
√

a and that√
10−8a1 ≤ y + 10−8 + 11 · 10−16 hence (using 0.1 ≤ y ≤

√
a ≤ 1)

a − y2 ≤ 10−8a1 + 10−8 − y2 ≤ (y + 10−8 + 11 · 10−16)2 − y2 + 10−8 < 3.2 · 10−8 ,

and
√

a − y = (a − y2)/(
√

a + y) ≤ 16 · 10−8. Next, __fp_sqrt_auxii_o:NnnnnnnnN is
called several times to get closer and closer underestimates of

√
a. By construction, the

underestimates y are always increasing, a − y2 < 3.2 · 10−8 for all. Also, y < 1.
26699 \cs_new:Npn __fp_sqrt_auxi_o:NNNNwnnN 1 #1#2#3#4#5;
26700 {
26701 __fp_sqrt_auxii_o:NnnnnnnnN
26702 __fp_sqrt_auxiii_o:wnnnnnnnn
26703 {#1#2#3#4} {#5} {2499} {9988} {7500}
26704 }

(End of definition for __fp_sqrt_auxi_o:NNNNwnnN.)

__fp_sqrt_auxii_o:NnnnnnnnN This receives a continuation function #1, then five blocks of 4 digits for y, then two 8-digit
blocks and a single digit for a. A common estimate of

√
a − y = (a − y2)/(

√
a + y) is (a −

y2)/(2y), which leads to alternating overestimates and underestimates. We tweak this, to
only work with underestimates (no need then to worry about signs in the computation).
Each step finds the largest integer j ≤ 6 such that 104j(a − y2) < 2 · 108, then computes
the integer (with ε-TEX’s rounding division)

104jz =
[(

⌊104j(a − y2)⌋ − 257
)

· (0.5 · 108)
/

⌊108y + 1⌋
]

.

The choice of j ensures that 104jz < 2 · 108 · 0.5 · 108/107 = 109, thus 109 + 104jz has
exactly 10 digits, does not overflow TEX’s integer range, and starts with 1. Incidentally,
since all a − y2 ≤ 3.2 · 10−8, we know that j ≥ 3.

Let us show that z is an underestimate of
√

a−y. On the one hand,
√

a−y ≤ 16·10−8

because this holds for the initial y and values of y can only increase. On the other hand,
the choice of j implies that

√
a−y ≤ 5(

√
a+y)(

√
a−y) = 5(a−y2) < 109−4j . For j = 3,

1143

the first bound is better, while for larger j, the second bound is better. For all j ∈ [3, 6],
we find

√
a − y < 16 · 10−2j . From this, we deduce that

104j(
√

a − y) =
104j

(
a − y2 − (

√
a − y)2)

2y
≥
⌊
104j(a − y2)

⌋
− 257

2 · 10−8⌊108y + 1⌋
+ 1

2

where we have replaced the bound 104j(16 · 10−2j) = 256 by 257 and extracted the
corresponding term 1/

(
2 · 10−8⌊108y + 1⌋

)
≥ 1/2. Given that ε-TEX’s integer division

obeys [b/c] ≤ b/c + 1/2, we deduce that 104jz ≤ 104j(
√

a − y), hence y + z ≤
√

a is an
underestimate of

√
a, as claimed. One implementation detail: because the computation

involves -#4*#4 - 2*#3*#5 - 2*#2*#6 which may be as low as −5 · 108, we need to use
the pack_big functions, and the big shifts.

26705 \cs_new:Npn __fp_sqrt_auxii_o:NnnnnnnnN #1 #2#3#4#5#6 #7#8#9
26706 {
26707 \exp_after:wN #1
26708 \int_value:w __fp_int_eval:w \c__fp_big_leading_shift_int
26709 + #7 - #2 * #2
26710 \exp_after:wN __fp_pack_big:NNNNNNw
26711 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26712 - 2 * #2 * #3
26713 \exp_after:wN __fp_pack_big:NNNNNNw
26714 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26715 + #8 - #3 * #3 - 2 * #2 * #4
26716 \exp_after:wN __fp_pack_big:NNNNNNw
26717 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26718 - 2 * #3 * #4 - 2 * #2 * #5
26719 \exp_after:wN __fp_pack_big:NNNNNNw
26720 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26721 + #9 000 0000 - #4 * #4 - 2 * #3 * #5 - 2 * #2 * #6
26722 \exp_after:wN __fp_pack_big:NNNNNNw
26723 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26724 - 2 * #4 * #5 - 2 * #3 * #6
26725 \exp_after:wN __fp_pack_big:NNNNNNw
26726 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
26727 - #5 * #5 - 2 * #4 * #6
26728 \exp_after:wN __fp_pack_big:NNNNNNw
26729 \int_value:w __fp_int_eval:w
26730 \c__fp_big_middle_shift_int
26731 - 2 * #5 * #6
26732 \exp_after:wN __fp_pack_big:NNNNNNw
26733 \int_value:w __fp_int_eval:w
26734 \c__fp_big_trailing_shift_int
26735 - #6 * #6 ;
26736 % (
26737 - 257) * 5000 0000 / (#2#3 + 1) + 10 0000 0000 ;
26738 {#2}{#3}{#4}{#5}{#6} {#7}{#8}#9
26739 }

(End of definition for __fp_sqrt_auxii_o:NnnnnnnnN.)

__fp_sqrt_auxiii_o:wnnnnnnnn
__fp_sqrt_auxiv_o:NNNNNw
__fp_sqrt_auxv_o:NNNNNw
__fp_sqrt_auxvi_o:NNNNNw
__fp_sqrt_auxvii_o:NNNNNw

We receive here the difference a − y2 = d =
∑

i di · 10−4i, as ⟨d2⟩ ; {⟨d3⟩} . . . {⟨d10⟩},
where each block has 4 digits, except ⟨d2⟩. This function finds the largest j ≤ 6 such
that 104j(a−y2) < 2 ·108, then leaves an open parenthesis and the integer

⌊
104j(a−y2)

⌋
1144

in an integer expression. The closing parenthesis is provided by the caller __fp_sqrt_-
auxii_o:NnnnnnnnN, which completes the expression

104jz =
[(

⌊104j(a − y2)⌋ − 257
)

· (0.5 · 108)
/

⌊108y + 1⌋
]

for an estimate of 104j(
√

a−y). If d2 ≥ 2, j = 3 and the auxiv auxiliary receives 1012z. If
d2 ≤ 1 but 104d2 +d3 ≥ 2, j = 4 and the auxv auxiliary is called, and receives 1016z, and
so on. In all those cases, the auxviii auxiliary is set up to add z to y, then go back to
the auxii step with continuation auxiii (the function we are currently describing). The
maximum value of j is 6, regardless of whether 1012d2 + 108d3 + 104d4 + d5 ≥ 1. In this
last case, we detect when 1024z < 107, which essentially means

√
a−y ≲ 10−17: once this

threshold is reached, there is enough information to find the correctly rounded
√

a with
only one more call to __fp_sqrt_auxii_o:NnnnnnnnN. Note that the iteration cannot
be stuck before reaching j = 6, because for j < 6, one has 2 · 108 ≤ 104(j+1)(a − y2),
hence

104jz ≥ (20000 − 257)(0.5 · 108)
⌊108y + 1⌋

≥ (20000 − 257) · 0.5 > 0 .

26740 \cs_new:Npn __fp_sqrt_auxiii_o:wnnnnnnnn
26741 #1; #2#3#4#5#6#7#8#9
26742 {
26743 \if_int_compare:w #1 > \c_one_int
26744 \exp_after:wN __fp_sqrt_auxiv_o:NNNNNw
26745 \int_value:w __fp_int_eval:w (#1#2 %)
26746 \else:
26747 \if_int_compare:w #1#2 > \c_one_int
26748 \exp_after:wN __fp_sqrt_auxv_o:NNNNNw
26749 \int_value:w __fp_int_eval:w (#1#2#3 %)
26750 \else:
26751 \if_int_compare:w #1#2#3 > \c_one_int
26752 \exp_after:wN __fp_sqrt_auxvi_o:NNNNNw
26753 \int_value:w __fp_int_eval:w (#1#2#3#4 %)
26754 \else:
26755 \exp_after:wN __fp_sqrt_auxvii_o:NNNNNw
26756 \int_value:w __fp_int_eval:w (#1#2#3#4#5 %)
26757 \fi:
26758 \fi:
26759 \fi:
26760 }
26761 \cs_new:Npn __fp_sqrt_auxiv_o:NNNNNw 1#1#2#3#4#5#6;
26762 { __fp_sqrt_auxviii_o:nnnnnnn {#1#2#3#4#5#6} {00000000} }
26763 \cs_new:Npn __fp_sqrt_auxv_o:NNNNNw 1#1#2#3#4#5#6;
26764 { __fp_sqrt_auxviii_o:nnnnnnn {000#1#2#3#4#5} {#60000} }
26765 \cs_new:Npn __fp_sqrt_auxvi_o:NNNNNw 1#1#2#3#4#5#6;
26766 { __fp_sqrt_auxviii_o:nnnnnnn {0000000#1} {#2#3#4#5#6} }
26767 \cs_new:Npn __fp_sqrt_auxvii_o:NNNNNw 1#1#2#3#4#5#6;
26768 {
26769 \if_int_compare:w #1#2 = \c_zero_int
26770 \exp_after:wN __fp_sqrt_auxx_o:Nnnnnnnn
26771 \fi:
26772 __fp_sqrt_auxviii_o:nnnnnnn {00000000} {000#1#2#3#4#5}
26773 }

(End of definition for __fp_sqrt_auxiii_o:wnnnnnnnn and others.)

1145

__fp_sqrt_auxviii_o:nnnnnnn
__fp_sqrt_auxix_o:wnwnw

Simply add the two 8-digit blocks of z, aligned to the last four of the five 4-digit blocks
of y, then call the auxii auxiliary to evaluate y′2 = (y + z)2.

26774 \cs_new:Npn __fp_sqrt_auxviii_o:nnnnnnn #1#2 #3#4#5#6#7
26775 {
26776 \exp_after:wN __fp_sqrt_auxix_o:wnwnw
26777 \int_value:w __fp_int_eval:w #3
26778 \exp_after:wN __fp_basics_pack_low:NNNNNw
26779 \int_value:w __fp_int_eval:w #1 + 1#4#5
26780 \exp_after:wN __fp_basics_pack_low:NNNNNw
26781 \int_value:w __fp_int_eval:w #2 + 1#6#7 ;
26782 }
26783 \cs_new:Npn __fp_sqrt_auxix_o:wnwnw #1; #2#3; #4#5;
26784 {
26785 __fp_sqrt_auxii_o:NnnnnnnnN
26786 __fp_sqrt_auxiii_o:wnnnnnnnn {#1}{#2}{#3}{#4}{#5}
26787 }

(End of definition for __fp_sqrt_auxviii_o:nnnnnnn and __fp_sqrt_auxix_o:wnwnw.)

__fp_sqrt_auxx_o:Nnnnnnnn
__fp_sqrt_auxxi_o:wwnnN

At this stage, j = 6 and 1024z < 107, hence

107 + 1/2 > 1024z + 1/2 ≥
(
1024(a − y2) − 258

)
· (0.5 · 108)

/
(108y + 1) ,

then 1024(a − y2) − 258 < 2(107 + 1/2)(y + 10−8), and

1024(a − y2) < (107 + 1290.5)(1 + 10−8/y)(2y) < (107 + 1290.5)(1 + 10−7)(y +
√

a) ,

which finally implies 0 ≤
√

a − y < 0.2 · 10−16. In particular, y is an underestimate
of

√
a and y + 0.5 · 10−16 is a (strict) overestimate. There is at exactly one multiple m of

0.5 ·10−16 in the interval [y, y+0.5 ·10−16). If m2 > a, then the square root is inexact and
is obtained by rounding m − ϵ to a multiple of 10−16 (the precise shift 0 < ϵ < 0.5 · 10−16

is irrelevant for rounding). If m2 = a then the square root is exactly m, and there is no
rounding. If m2 < a then we round m + ϵ. For now, discard a few irrelevant arguments
#1, #2, #3, and find the multiple of 0.5 · 10−16 within [y, y + 0.5 · 10−16); rather, only the
last 4 digits #8 of y are considered, and we do not perform any carry yet. The auxxi
auxiliary sets up auxii with a continuation function auxxii instead of auxiii as before.
To prevent auxii from giving a negative results a − m2, we compute a + 10−16 − m2

instead, always positive since m <
√

a + 0.5 · 10−16 and a ≤ 1 − 10−16.
26788 \cs_new:Npn __fp_sqrt_auxx_o:Nnnnnnnn #1#2#3 #4#5#6#7#8
26789 {
26790 \exp_after:wN __fp_sqrt_auxxi_o:wwnnN
26791 \int_value:w __fp_int_eval:w
26792 (#8 + 2499) / 5000 * 5000 ;
26793 {#4} {#5} {#6} {#7} ;
26794 }
26795 \cs_new:Npn __fp_sqrt_auxxi_o:wwnnN #1; #2; #3#4#5
26796 {
26797 __fp_sqrt_auxii_o:NnnnnnnnN
26798 __fp_sqrt_auxxii_o:nnnnnnnnw
26799 #2 {#1}
26800 {#3} { #4 + 1 } #5
26801 }

1146

(End of definition for __fp_sqrt_auxx_o:Nnnnnnnn and __fp_sqrt_auxxi_o:wwnnN.)

__fp_sqrt_auxxii_o:nnnnnnnnw
__fp_sqrt_auxxiii_o:w

The difference 0 ≤ a + 10−16 − m2 ≤ 10−16 + (
√

a − m)(
√

a + m) ≤ 2 · 10−16 was just
computed: its first 8 digits vanish, as do the next four, #1, and most of the following
four, #2. The guess m is an overestimate if a + 10−16 − m2 < 10−16, that is, #1#2
vanishes. Otherwise it is an underestimate, unless a + 10−16 − m2 = 10−16 exactly. For
an underestimate, call the auxxiv function with argument 9998. For an exact result call
it with 9999, and for an overestimate call it with 10000.

26802 \cs_new:Npn __fp_sqrt_auxxii_o:nnnnnnnnw 0; #1#2#3#4#5#6#7#8 #9;
26803 {
26804 \if_int_compare:w #1#2 > \c_zero_int
26805 \if_int_compare:w #1#2 = \c_one_int
26806 \if_int_compare:w #3#4 = \c_zero_int
26807 \if_int_compare:w #5#6 = \c_zero_int
26808 \if_int_compare:w #7#8 = \c_zero_int
26809 __fp_sqrt_auxxiii_o:w
26810 \fi:
26811 \fi:
26812 \fi:
26813 \fi:
26814 \exp_after:wN __fp_sqrt_auxxiv_o:wnnnnnnnN
26815 \int_value:w 9998
26816 \else:
26817 \exp_after:wN __fp_sqrt_auxxiv_o:wnnnnnnnN
26818 \int_value:w 10000
26819 \fi:
26820 ;
26821 }
26822 \cs_new:Npn __fp_sqrt_auxxiii_o:w \fi: \fi: \fi: \fi: #1 \fi: ;
26823 {
26824 \fi: \fi: \fi: \fi: \fi:
26825 __fp_sqrt_auxxiv_o:wnnnnnnnN 9999 ;
26826 }

(End of definition for __fp_sqrt_auxxii_o:nnnnnnnnw and __fp_sqrt_auxxiii_o:w.)

__fp_sqrt_auxxiv_o:wnnnnnnnN This receives 9998, 9999 or 10000 as #1 when m is an underestimate, exact, or an overes-
timate, respectively. Then comes m as five blocks of 4 digits, but where the last block #6
may be 0, 5000, or 10000. In the latter case, we need to add a carry, unless m is an
overestimate (#1 is then 10000). Then comes a as three arguments. Rounding is done
by __fp_round:NNN, whose first argument is the final sign 0 (square roots are positive).
We fake its second argument. It should be the last digit kept, but this is only used when
ties are “rounded to even”, and only when the result is exactly half-way between two
representable numbers rational square roots of numbers with 16 significant digits have:
this situation never arises for the square root, as any exact square root of a 16 digit
number has at most 8 significant digits. Finally, the last argument is the next digit,
possibly shifted by 1 when there are further nonzero digits. This is achieved by __fp_-
round_digit:Nw, which receives (after removal of the 10000’s digit) one of 0000, 0001,
4999, 5000, 5001, or 9999, which it converts to 0, 1, 4, 5, 6, and 9, respectively.

26827 \cs_new:Npn __fp_sqrt_auxxiv_o:wnnnnnnnN #1; #2#3#4#5#6 #7#8#9
26828 {
26829 \exp_after:wN __fp_basics_pack_high:NNNNNw
26830 \int_value:w __fp_int_eval:w 1 0000 0000 + #2#3

1147

26831 \exp_after:wN __fp_basics_pack_low:NNNNNw
26832 \int_value:w __fp_int_eval:w 1 0000 0000
26833 + #4#5
26834 \if_int_compare:w #6 > #1 \exp_stop_f: + 1 \fi:
26835 + \exp_after:wN __fp_round:NNN
26836 \exp_after:wN 0
26837 \exp_after:wN 0
26838 \int_value:w
26839 \exp_after:wN \use_i:nn
26840 \exp_after:wN __fp_round_digit:Nw
26841 \int_value:w __fp_int_eval:w #6 + 19999 - #1 ;
26842 \exp_after:wN ;
26843 }

(End of definition for __fp_sqrt_auxxiv_o:wnnnnnnnN.)

74.5 About the sign and exponent
__fp_logb_o:w

__fp_logb_aux_o:w
The exponent of a normal number is its ⟨exponent⟩ minus one.

26844 \cs_new:Npn __fp_logb_o:w ? \s__fp __fp_chk:w #1#2; @
26845 {
26846 \if_case:w #1 \exp_stop_f:
26847 __fp_case_use:nw
26848 { __fp_division_by_zero_o:Nnw \c_minus_inf_fp { logb } }
26849 \or: \exp_after:wN __fp_logb_aux_o:w
26850 \or: __fp_case_return_o:Nw \c_inf_fp
26851 \else: __fp_case_return_same_o:w
26852 \fi:
26853 \s__fp __fp_chk:w #1 #2;
26854 }
26855 \cs_new:Npn __fp_logb_aux_o:w \s__fp __fp_chk:w #1 #2 #3 #4 ;
26856 {
26857 \exp_after:wN __fp_parse:n \exp_after:wN
26858 { \int_value:w \int_eval:w #3 - 1 \exp_after:wN }
26859 }

(End of definition for __fp_logb_o:w and __fp_logb_aux_o:w.)

__fp_sign_o:w
__fp_sign_aux_o:w

Find the sign of the floating point: nan, +0, -0, +1 or -1.
26860 \cs_new:Npn __fp_sign_o:w ? \s__fp __fp_chk:w #1#2; @
26861 {
26862 \if_case:w #1 \exp_stop_f:
26863 __fp_case_return_same_o:w
26864 \or: \exp_after:wN __fp_sign_aux_o:w
26865 \or: \exp_after:wN __fp_sign_aux_o:w
26866 \else: __fp_case_return_same_o:w
26867 \fi:
26868 \s__fp __fp_chk:w #1 #2;
26869 }
26870 \cs_new:Npn __fp_sign_aux_o:w \s__fp __fp_chk:w #1 #2 #3 ;
26871 { \exp_after:wN __fp_set_sign_o:w \exp_after:wN #2 \c_one_fp @ }

(End of definition for __fp_sign_o:w and __fp_sign_aux_o:w.)

1148

__fp_set_sign_o:w This function is used for the unary minus and for abs. It leaves the sign of nan invariant,
turns negative numbers (sign 2) to positive numbers (sign 0) and positive numbers (sign 0)
to positive or negative numbers depending on #1. It also expands after itself in the input
stream, just like __fp_+_o:ww.

26872 \cs_new:Npn __fp_set_sign_o:w #1 \s__fp __fp_chk:w #2#3#4; @
26873 {
26874 \exp_after:wN __fp_exp_after_o:w
26875 \exp_after:wN \s__fp
26876 \exp_after:wN __fp_chk:w
26877 \exp_after:wN #2
26878 \int_value:w
26879 \if_case:w #3 \exp_stop_f: #1 \or: 1 \or: 0 \fi: \exp_stop_f:
26880 #4;
26881 }

(End of definition for __fp_set_sign_o:w.)

74.6 Operations on tuples
__fp_tuple_set_sign_o:w

__fp_tuple_set_sign_aux_o:Nnw
__fp_tuple_set_sign_aux_o:w

Two cases: abs(⟨tuple⟩) for which #1 is 0 (invalid for tuples) and -⟨tuple⟩ for which
#1 is 2. In that case, map over all items in the tuple an auxiliary that dispatches to the
type-appropriate sign-flipping function.

26882 \cs_new:Npn __fp_tuple_set_sign_o:w #1#2 @
26883 {
26884 \if_meaning:w 2 #1
26885 \exp_after:wN __fp_tuple_set_sign_aux_o:Nnw
26886 \fi:
26887 __fp_invalid_operation_o:nw { abs }
26888 #2
26889 }
26890 \cs_new:Npn __fp_tuple_set_sign_aux_o:Nnw #1#2
26891 { __fp_tuple_map_o:nw __fp_tuple_set_sign_aux_o:w }
26892 \cs_new:Npn __fp_tuple_set_sign_aux_o:w #1#2 ;
26893 {
26894 __fp_change_func_type:NNN #1 __fp_set_sign_o:w
26895 __fp_parse_apply_unary_error:NNw
26896 2 #1 #2 ; @
26897 }

(End of definition for __fp_tuple_set_sign_o:w , __fp_tuple_set_sign_aux_o:Nnw , and __fp_-
tuple_set_sign_aux_o:w.)

__fp_*_tuple_o:ww
__fp_tuple_*_o:ww
__fp_tuple_/_o:ww

For ⟨number⟩*⟨tuple⟩ and ⟨tuple⟩*⟨number⟩ and ⟨tuple⟩/⟨number⟩, loop through the
⟨tuple⟩ some code that multiplies or divides by the appropriate ⟨number⟩. Importantly
we need to dispatch according to the type, and we make sure to apply the operator in
the correct order.

26898 \cs_new:cpn { __fp_*_tuple_o:ww } #1 ;
26899 { __fp_tuple_map_o:nw { __fp_binary_type_o:Nww * #1 ; } }
26900 \cs_new:cpn { __fp_tuple_*_o:ww } #1 ; #2 ;
26901 { __fp_tuple_map_o:nw { __fp_binary_rev_type_o:Nww * #2 ; } #1 ; }
26902 \cs_new:cpn { __fp_tuple_/_o:ww } #1 ; #2 ;
26903 { __fp_tuple_map_o:nw { __fp_binary_rev_type_o:Nww / #2 ; } #1 ; }

1149

(End of definition for __fp_*_tuple_o:ww , __fp_tuple_*_o:ww , and __fp_tuple_/_o:ww.)

__fp_tuple_+_tuple_o:ww
__fp_tuple_-_tuple_o:ww

Check the two tuples have the same number of items and map through these a helper
that dispatches appropriately depending on the types. This means (1,2)+((1,1),2)
gives (nan,4).

26904 \cs_set_protected:Npn __fp_tmp:w #1
26905 {
26906 \cs_new:cpn { __fp_tuple_#1_tuple_o:ww }
26907 \s__fp_tuple __fp_tuple_chk:w ##1 ;
26908 \s__fp_tuple __fp_tuple_chk:w ##2 ;
26909 {
26910 \int_compare:nNnTF
26911 { __fp_array_count:n {##1} } = { __fp_array_count:n {##2} }
26912 { __fp_tuple_mapthread_o:nww { __fp_binary_type_o:Nww #1 } }
26913 { __fp_invalid_operation_o:nww #1 }
26914 \s__fp_tuple __fp_tuple_chk:w {##1} ;
26915 \s__fp_tuple __fp_tuple_chk:w {##2} ;
26916 }
26917 }
26918 __fp_tmp:w +
26919 __fp_tmp:w -

(End of definition for __fp_tuple_+_tuple_o:ww and __fp_tuple_-_tuple_o:ww.)

26920 ⟨/package⟩

1150

Chapter 75

l3fp-extended implementation

26921 ⟨∗package⟩

26922 ⟨@@=fp⟩

75.1 Description of fixed point numbers
This module provides a few functions to manipulate positive floating point numbers with
extended precision (24 digits), but mostly provides functions for fixed-point numbers
with this precision (24 digits). Those are used in the computation of Taylor series for
the logarithm, exponential, and trigonometric functions. Since we eventually only care
about the 16 first digits of the final result, some of the calculations are not performed
with the full 24-digit precision. In other words, the last two blocks of each fixed point
number may be wrong as long as the error is small enough to be rounded away when
converting back to a floating point number. The fixed point numbers are expressed as

{⟨a1⟩} {⟨a2⟩} {⟨a3⟩} {⟨a4⟩} {⟨a5⟩} {⟨a6⟩} ;

where each ⟨ai⟩ is exactly 4 digits (ranging from 0000 to 9999), except ⟨a1⟩, which may
be any “not-too-large” non-negative integer, with or without leading zeros. Here, “not-
too-large” depends on the specific function (see the corresponding comments for details).
Checking for overflow is the responsibility of the code calling those functions. The fixed
point number a corresponding to the representation above is a =

∑6
i=1 ⟨ai⟩ · 10−4i.

Most functions we define here have the form

__fp_fixed_⟨calculation⟩:wwn ⟨operand1⟩ ; ⟨operand2⟩ ; {⟨continuation⟩}

They perform the ⟨calculation⟩ on the two ⟨operands⟩, then feed the result (6 brace
groups followed by a semicolon) to the ⟨continuation⟩, responsible for the next step
of the calculation. Some functions only accept an N-type ⟨continuation⟩. This allows
constructions such as

__fp_fixed_add:wwn ⟨X1⟩ ; ⟨X2⟩ ;
__fp_fixed_mul:wwn ⟨X3⟩ ;
__fp_fixed_add:wwn ⟨X4⟩ ;

1151

to compute (X1 + X2) · X3 + X4. This turns out to be very appropriate for computing
continued fractions and Taylor series.

At the end of the calculation, the result is turned back to a floating point number
using __fp_fixed_to_float_o:wN. This function has to change the exponent of the
floating point number: it must be used after starting an integer expression for the overall
exponent of the result.

75.2 Helpers for numbers with extended precision
\c__fp_one_fixed_tl The fixed-point number 1, used in l3fp-expo.

26923 \tl_const:Nn \c__fp_one_fixed_tl
26924 { {10000} {0000} {0000} {0000} {0000} {0000} ; }

(End of definition for \c__fp_one_fixed_tl.)

__fp_fixed_continue:wn This function simply calls the next function.
26925 \cs_new:Npn __fp_fixed_continue:wn #1; #2 { #2 #1; }

(End of definition for __fp_fixed_continue:wn.)

__fp_fixed_add_one:wN __fp_fixed_add_one:wN ⟨a⟩ ; ⟨continuation⟩
This function adds 1 to the fixed point ⟨a⟩, by changing a1 to 10000 + a1, then calls

the ⟨continuation⟩. This requires a1 + 10000 < 231.
26926 \cs_new:Npn __fp_fixed_add_one:wN #1#2; #3
26927 {
26928 \exp_after:wN #3 \exp_after:wN
26929 { \int_value:w __fp_int_eval:w \c__fp_myriad_int + #1 } #2 ;
26930 }

(End of definition for __fp_fixed_add_one:wN.)

__fp_fixed_div_myriad:wn Divide a fixed point number by 10000. This is a little bit more subtle than just removing
the last group and adding a leading group of zeros: the first group #1 may have any
number of digits, and we must split #1 into the new first group and a second group of
exactly 4 digits. The choice of shifts allows #1 to be in the range [0, 5 · 108 − 1].

26931 \cs_new:Npn __fp_fixed_div_myriad:wn #1#2#3#4#5#6;
26932 {
26933 \exp_after:wN __fp_fixed_mul_after:wwn
26934 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
26935 \exp_after:wN __fp_pack:NNNNNw
26936 \int_value:w __fp_int_eval:w \c__fp_trailing_shift_int
26937 + #1 ; {#2}{#3}{#4}{#5};
26938 }

(End of definition for __fp_fixed_div_myriad:wn.)

__fp_fixed_mul_after:wwn The fixed point operations which involve multiplication end by calling this auxiliary. It
braces the last block of digits, and places the ⟨continuation⟩ #3 in front.

26939 \cs_new:Npn __fp_fixed_mul_after:wwn #1; #2; #3 { #3 {#1} #2; }

(End of definition for __fp_fixed_mul_after:wwn.)

1152

75.3 Multiplying a fixed point number by a short one

__fp_fixed_mul_short:wwn
__fp_fixed_mul_short:wwn
{⟨a1⟩} {⟨a2⟩} {⟨a3⟩} {⟨a4⟩} {⟨a5⟩} {⟨a6⟩} ;
{⟨b0⟩} {⟨b1⟩} {⟨b2⟩} ; {⟨continuation⟩}

Computes the product c = ab of a =
∑

i ⟨ai⟩10−4i and b =
∑

i ⟨bi⟩10−4i, rounds
it to the closest multiple of 10−24, and leaves ⟨continuation⟩ {⟨c1⟩} . . . {⟨c6⟩} ; in
the input stream, where each of the ⟨ci⟩ are blocks of 4 digits, except ⟨c1⟩, which is
any TEX integer. Note that indices for ⟨b⟩ start at 0: for instance a second operand of
{0001}{0000}{0000} leaves the first operand unchanged (rather than dividing it by 104,
as __fp_fixed_mul:wwn would).

26940 \cs_new:Npn __fp_fixed_mul_short:wwn #1#2#3#4#5#6; #7#8#9;
26941 {
26942 \exp_after:wN __fp_fixed_mul_after:wwn
26943 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
26944 + #1*#7
26945 \exp_after:wN __fp_pack:NNNNNw
26946 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
26947 + #1*#8 + #2*#7
26948 \exp_after:wN __fp_pack:NNNNNw
26949 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
26950 + #1*#9 + #2*#8 + #3*#7
26951 \exp_after:wN __fp_pack:NNNNNw
26952 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
26953 + #2*#9 + #3*#8 + #4*#7
26954 \exp_after:wN __fp_pack:NNNNNw
26955 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
26956 + #3*#9 + #4*#8 + #5*#7
26957 \exp_after:wN __fp_pack:NNNNNw
26958 \int_value:w __fp_int_eval:w \c__fp_trailing_shift_int
26959 + #4*#9 + #5*#8 + #6*#7
26960 + (#5*#9 + #6*#8 + #6*#9 / \c__fp_myriad_int)
26961 / \c__fp_myriad_int ; ;
26962 }

(End of definition for __fp_fixed_mul_short:wwn.)

75.4 Dividing a fixed point number by a small integer
__fp_fixed_div_int:wwN
__fp_fixed_div_int:wnN

__fp_fixed_div_int_auxi:wnn
__fp_fixed_div_int_auxii:wnn

__fp_fixed_div_int_pack:Nw
__fp_fixed_div_int_after:Nw

__fp_fixed_div_int:wwN ⟨a⟩ ; ⟨n⟩ ; ⟨continuation⟩
Divides the fixed point number ⟨a⟩ by the (small) integer 0 < ⟨n⟩ < 104 and feeds

the result to the ⟨continuation⟩. There is no bound on a1.
The arguments of the i auxiliary are 1: one of the ai, 2: n, 3: the ii or the iii

auxiliary. It computes a (somewhat tight) lower bound Qi for the ratio ai/n.
The ii auxiliary receives Qi, n, and ai as arguments. It adds Qi to a surrounding

integer expression, and starts a new one with the initial value 9999, which ensures that
the result of this expression has 5 digits. The auxiliary also computes ai − n · Qi, placing
the result in front of the 4 digits of ai+1. The resulting a′

i+1 = 104(ai − n · Qi) + ai+1
serves as the first argument for a new call to the i auxiliary.

When the iii auxiliary is called, the situation looks like this:

1153

__fp_fixed_div_int_after:Nw ⟨continuation⟩
−1 + Q1
__fp_fixed_div_int_pack:Nw 9999 + Q2
__fp_fixed_div_int_pack:Nw 9999 + Q3
__fp_fixed_div_int_pack:Nw 9999 + Q4
__fp_fixed_div_int_pack:Nw 9999 + Q5
__fp_fixed_div_int_pack:Nw 9999
__fp_fixed_div_int_auxii:wnn Q6 ; {⟨n⟩} {⟨a6⟩}

where expansion is happening from the last line up. The iii auxiliary adds Q6 + 2 ≃
a6/n + 1 to the last 9999, giving the integer closest to 10000 + a6/n.

Each pack auxiliary receives 5 digits followed by a semicolon. The first digit is added
as a carry to the integer expression above, and the 4 other digits are braced. Each call
to the pack auxiliary thus produces one brace group. The last brace group is produced
by the after auxiliary, which places the ⟨continuation⟩ as appropriate.

26963 \cs_new:Npn __fp_fixed_div_int:wwN #1#2#3#4#5#6 ; #7 ; #8
26964 {
26965 \exp_after:wN __fp_fixed_div_int_after:Nw
26966 \exp_after:wN #8
26967 \int_value:w __fp_int_eval:w - 1
26968 __fp_fixed_div_int:wnN
26969 #1; {#7} __fp_fixed_div_int_auxi:wnn
26970 #2; {#7} __fp_fixed_div_int_auxi:wnn
26971 #3; {#7} __fp_fixed_div_int_auxi:wnn
26972 #4; {#7} __fp_fixed_div_int_auxi:wnn
26973 #5; {#7} __fp_fixed_div_int_auxi:wnn
26974 #6; {#7} __fp_fixed_div_int_auxii:wnn ;
26975 }
26976 \cs_new:Npn __fp_fixed_div_int:wnN #1; #2 #3
26977 {
26978 \exp_after:wN #3
26979 \int_value:w __fp_int_eval:w #1 / #2 - 1 ;
26980 {#2}
26981 {#1}
26982 }
26983 \cs_new:Npn __fp_fixed_div_int_auxi:wnn #1; #2 #3
26984 {
26985 + #1
26986 \exp_after:wN __fp_fixed_div_int_pack:Nw
26987 \int_value:w __fp_int_eval:w 9999
26988 \exp_after:wN __fp_fixed_div_int:wnN
26989 \int_value:w __fp_int_eval:w #3 - #1*#2 __fp_int_eval_end:
26990 }
26991 \cs_new:Npn __fp_fixed_div_int_auxii:wnn #1; #2 #3 { + #1 + 2 ; }
26992 \cs_new:Npn __fp_fixed_div_int_pack:Nw #1 #2; { + #1; {#2} }
26993 \cs_new:Npn __fp_fixed_div_int_after:Nw #1 #2; { #1 {#2} }

(End of definition for __fp_fixed_div_int:wwN and others.)

75.5 Adding and subtracting fixed points
__fp_fixed_add:wwn
__fp_fixed_sub:wwn

__fp_fixed_add:Nnnnnwnn
__fp_fixed_add:nnNnnnwn

__fp_fixed_add_pack:NNNNNwn
__fp_fixed_add_after:NNNNNwn

__fp_fixed_add:wwn ⟨a⟩ ; ⟨b⟩ ; {⟨continuation⟩}

1154

Computes a+b (resp. a−b) and feeds the result to the ⟨continuation⟩. This function
requires 0 ≤ a1, b1 ≤ 114748, its result must be positive (this happens automatically for
addition) and its first group must have at most 5 digits: (a ± b)1 < 100000. The two
functions only differ by a sign, hence use a common auxiliary. It would be nice to grab
the 12 brace groups in one go; only 9 parameters are allowed. Start by grabbing the
sign, a1, . . . , a4, the rest of a, and b1 and b2. The second auxiliary receives the rest of
a, the sign multiplying b, the rest of b, and the ⟨continuation⟩ as arguments. After
going down through the various level, we go back up, packing digits and bringing the
⟨continuation⟩ (#8, then #7) from the end of the argument list to its start.

26994 \cs_new:Npn __fp_fixed_add:wwn { __fp_fixed_add:Nnnnnwnn + }
26995 \cs_new:Npn __fp_fixed_sub:wwn { __fp_fixed_add:Nnnnnwnn - }
26996 \cs_new:Npn __fp_fixed_add:Nnnnnwnn #1 #2#3#4#5 #6; #7#8
26997 {
26998 \exp_after:wN __fp_fixed_add_after:NNNNNwn
26999 \int_value:w __fp_int_eval:w 9 9999 9998 + #2#3 #1 #7#8
27000 \exp_after:wN __fp_fixed_add_pack:NNNNNwn
27001 \int_value:w __fp_int_eval:w 1 9999 9998 + #4#5
27002 __fp_fixed_add:nnNnnnwn #6 #1
27003 }
27004 \cs_new:Npn __fp_fixed_add:nnNnnnwn #1#2 #3 #4#5 #6#7 ; #8
27005 {
27006 #3 #4#5
27007 \exp_after:wN __fp_fixed_add_pack:NNNNNwn
27008 \int_value:w __fp_int_eval:w 2 0000 0000 #3 #6#7 + #1#2 ; {#8} ;
27009 }
27010 \cs_new:Npn __fp_fixed_add_pack:NNNNNwn #1 #2#3#4#5 #6; #7
27011 { + #1 ; {#7} {#2#3#4#5} {#6} }
27012 \cs_new:Npn __fp_fixed_add_after:NNNNNwn 1 #1 #2#3#4#5 #6; #7
27013 { #7 {#1#2#3#4#5} {#6} }

(End of definition for __fp_fixed_add:wwn and others.)

75.6 Multiplying fixed points
__fp_fixed_mul:wwn

__fp_fixed_mul:nnnnnnnw
__fp_fixed_mul:wwn ⟨a⟩ ; ⟨b⟩ ; {⟨continuation⟩}

Computes a × b and feeds the result to ⟨continuation⟩. This function requires
0 ≤ a1, b1 < 10000. Once more, we need to play around the limit of 9 arguments for
TEX macros. Note that we don’t need to obtain an exact rounding, contrarily to the *
operator, so things could be harder. We wish to perform carries in

a × b =a1 · b1 · 10−8

+ (a1 · b2 + a2 · b1) · 10−12

+ (a1 · b3 + a2 · b2 + a3 · b1) · 10−16

+ (a1 · b4 + a2 · b3 + a3 · b2 + a4 · b1) · 10−20

+
(

a2 · b4 + a3 · b3 + a4 · b2

+ a3 · b4 + a4 · b3 + a1 · b6 + a2 · b5 + a5 · b2 + a6 · b1

104

+ a1 · b5 + a5 · b1

)
· 10−24 + O(10−24),

1155

where the O(10−24) stands for terms which are at most 5 · 10−24; ignoring those leads
to an error of at most 5 ulp. Note how the first 15 terms only depend on a1, . . . , a4
and b1, . . . , b4, while the last 6 terms only depend on a1, a2, a5, a6, and the corresponding
parts of b. Hence, the first function grabs a1, . . . , a4, the rest of a, and b1, . . . , b4, and
writes the 15 first terms of the expression, including a left parenthesis for the fraction.
The i auxiliary receives a5, a6, b1, b2, a1, a2, b5, b6 and finally the ⟨continuation⟩ as
arguments. It writes the end of the expression, including the right parenthesis and the
denominator of the fraction. The ⟨continuation⟩ is finally placed in front of the 6 brace
groups by __fp_fixed_mul_after:wwn.

27014 \cs_new:Npn __fp_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9
27015 {
27016 \exp_after:wN __fp_fixed_mul_after:wwn
27017 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
27018 \exp_after:wN __fp_pack:NNNNNw
27019 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27020 + #1*#6
27021 \exp_after:wN __fp_pack:NNNNNw
27022 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27023 + #1*#7 + #2*#6
27024 \exp_after:wN __fp_pack:NNNNNw
27025 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27026 + #1*#8 + #2*#7 + #3*#6
27027 \exp_after:wN __fp_pack:NNNNNw
27028 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27029 + #1*#9 + #2*#8 + #3*#7 + #4*#6
27030 \exp_after:wN __fp_pack:NNNNNw
27031 \int_value:w __fp_int_eval:w \c__fp_trailing_shift_int
27032 + #2*#9 + #3*#8 + #4*#7
27033 + (#3*#9 + #4*#8
27034 + __fp_fixed_mul:nnnnnnnw #5 {#6}{#7} {#1}{#2}
27035 }
27036 \cs_new:Npn __fp_fixed_mul:nnnnnnnw #1#2 #3#4 #5#6 #7#8 ;
27037 {
27038 #1*#4 + #2*#3 + #5*#8 + #6*#7) / \c__fp_myriad_int
27039 + #1*#3 + #5*#7 ; ;
27040 }

(End of definition for __fp_fixed_mul:wwn and __fp_fixed_mul:nnnnnnnw.)

75.7 Combining product and sum of fixed points

__fp_fixed_mul_add:wwwn
__fp_fixed_mul_sub_back:wwwn

__fp_fixed_mul_one_minus_mul:wwn

__fp_fixed_mul_add:wwwn ⟨a⟩ ; ⟨b⟩ ; ⟨c⟩ ; {⟨continuation⟩}
__fp_fixed_mul_sub_back:wwwn ⟨a⟩ ; ⟨b⟩ ; ⟨c⟩ ; {⟨continuation⟩}
__fp_fixed_one_minus_mul:wwn ⟨a⟩ ; ⟨b⟩ ; {⟨continuation⟩}

Sometimes called FMA (fused multiply-add), these functions compute a×b+c, c−a×b,
and 1 − a × b and feed the result to the ⟨continuation⟩. Those functions require 0 ≤
a1, b1, c1 ≤ 10000. Since those functions are at the heart of the computation of Taylor
expansions, we over-optimize them a bit, and in particular we do not factor out the
common parts of the three functions.

1156

For definiteness, consider the task of computing a × b + c. We perform carries in

a × b + c =(a1 · b1 + c1c2) · 10−8

+ (a1 · b2 + a2 · b1) · 10−12

+ (a1 · b3 + a2 · b2 + a3 · b1 + c3c4) · 10−16

+ (a1 · b4 + a2 · b3 + a3 · b2 + a4 · b1) · 10−20

+
(

a2 · b4 + a3 · b3 + a4 · b2

+ a3 · b4 + a4 · b3 + a1 · b6 + a2 · b5 + a5 · b2 + a6 · b1

104

+ a1 · b5 + a5 · b1 + c5c6

)
· 10−24 + O(10−24),

where c1c2, c3c4, c5c6 denote the 8-digit number obtained by juxtaposing the two blocks
of digits of c, and · denotes multiplication. The task is obviously tough because we have
18 brace groups in front of us.

Each of the three function starts the first two levels (the first, corresponding to 10−4,
is empty), with c1c2 in the first level, calls the i auxiliary with arguments described later,
and adds a trailing + c5c6 ; {⟨continuation⟩} ;. The + c5c6 piece, which is omitted for
__fp_fixed_one_minus_mul:wwn, is taken in the integer expression for the 10−24 level.

27041 \cs_new:Npn __fp_fixed_mul_add:wwwn #1; #2; #3#4#5#6#7#8;
27042 {
27043 \exp_after:wN __fp_fixed_mul_after:wwn
27044 \int_value:w __fp_int_eval:w \c__fp_big_leading_shift_int
27045 \exp_after:wN __fp_pack_big:NNNNNNw
27046 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int + #3 #4
27047 __fp_fixed_mul_add:Nwnnnwnnn +
27048 + #5 #6 ; #2 ; #1 ; #2 ; +
27049 + #7 #8 ; ;
27050 }
27051 \cs_new:Npn __fp_fixed_mul_sub_back:wwwn #1; #2; #3#4#5#6#7#8;
27052 {
27053 \exp_after:wN __fp_fixed_mul_after:wwn
27054 \int_value:w __fp_int_eval:w \c__fp_big_leading_shift_int
27055 \exp_after:wN __fp_pack_big:NNNNNNw
27056 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int + #3 #4
27057 __fp_fixed_mul_add:Nwnnnwnnn -
27058 + #5 #6 ; #2 ; #1 ; #2 ; -
27059 + #7 #8 ; ;
27060 }
27061 \cs_new:Npn __fp_fixed_one_minus_mul:wwn #1; #2;
27062 {
27063 \exp_after:wN __fp_fixed_mul_after:wwn
27064 \int_value:w __fp_int_eval:w \c__fp_big_leading_shift_int
27065 \exp_after:wN __fp_pack_big:NNNNNNw
27066 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int +
27067 1 0000 0000
27068 __fp_fixed_mul_add:Nwnnnwnnn -
27069 ; #2 ; #1 ; #2 ; -
27070 ; ;
27071 }

1157

(End of definition for __fp_fixed_mul_add:wwwn , __fp_fixed_mul_sub_back:wwwn , and __fp_-
fixed_mul_one_minus_mul:wwn.)

__fp_fixed_mul_add:Nwnnnwnnn
__fp_fixed_mul_add:Nwnnnwnnn ⟨op⟩ + ⟨c3⟩ ⟨c4⟩ ;

⟨b⟩ ; ⟨a⟩ ; ⟨b⟩ ; ⟨op⟩
+ ⟨c5⟩ ⟨c6⟩ ;

Here, ⟨op⟩ is either + or -. Arguments #3, #4, #5 are ⟨b1⟩, ⟨b2⟩, ⟨b3⟩; arguments #7,
#8, #9 are ⟨a1⟩, ⟨a2⟩, ⟨a3⟩. We can build three levels: a1 · b1 for 10−8, (a1 · b2 + a2 · b1) for
10−12, and (a1 · b3 + a2 · b2 + a3 · b1 + c3c4) for 10−16. The a–b products use the sign #1.
Note that #2 is empty for __fp_fixed_one_minus_mul:wwn. We call the ii auxiliary
for levels 10−20 and 10−24, keeping the pieces of ⟨a⟩ we’ve read, but not ⟨b⟩, since there
is another copy later in the input stream.

27072 \cs_new:Npn __fp_fixed_mul_add:Nwnnnwnnn #1 #2; #3#4#5#6; #7#8#9
27073 {
27074 #1 #7*#3
27075 \exp_after:wN __fp_pack_big:NNNNNNw
27076 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
27077 #1 #7*#4 #1 #8*#3
27078 \exp_after:wN __fp_pack_big:NNNNNNw
27079 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
27080 #1 #7*#5 #1 #8*#4 #1 #9*#3 #2
27081 \exp_after:wN __fp_pack_big:NNNNNNw
27082 \int_value:w __fp_int_eval:w \c__fp_big_middle_shift_int
27083 #1 __fp_fixed_mul_add:nnnnwnnnn {#7}{#8}{#9}
27084 }

(End of definition for __fp_fixed_mul_add:Nwnnnwnnn.)

__fp_fixed_mul_add:nnnnwnnnn __fp_fixed_mul_add:nnnnwnnnn ⟨a⟩ ; ⟨b⟩ ; ⟨op⟩
+ ⟨c5⟩ ⟨c6⟩ ;

Level 10−20 is (a1 · b4 + a2 · b3 + a3 · b2 + a4 · b1), multiplied by the sign, which
was inserted by the i auxiliary. Then we prepare level 10−24. We don’t have access to
all parts of ⟨a⟩ and ⟨b⟩ needed to make all products. Instead, we prepare the partial
expressions

b1 + a4 · b2 + a3 · b3 + a2 · b4 + a1

b2 + a4 · b3 + a3 · b4 + a2.

Obviously, those expressions make no mathematical sense: we complete them with a5 ·
and · b5, and with a6 · b1 + a5 · and · b5 + a1 · b6, and of course with the trailing + c5c6.
To do all this, we keep a1, a5, a6, and the corresponding pieces of ⟨b⟩.

27085 \cs_new:Npn __fp_fixed_mul_add:nnnnwnnnn #1#2#3#4#5; #6#7#8#9
27086 {
27087 (#1*#9 + #2*#8 + #3*#7 + #4*#6)
27088 \exp_after:wN __fp_pack_big:NNNNNNw
27089 \int_value:w __fp_int_eval:w \c__fp_big_trailing_shift_int
27090 __fp_fixed_mul_add:nnnnwnnwN
27091 { #6 + #4*#7 + #3*#8 + #2*#9 + #1 }
27092 { #7 + #4*#8 + #3*#9 + #2 }
27093 {#1} #5;
27094 {#6}
27095 }

1158

(End of definition for __fp_fixed_mul_add:nnnnwnnnn.)

__fp_fixed_mul_add:nnnnwnnwN
__fp_fixed_mul_add:nnnnwnnwN {⟨partial1⟩} {⟨partial2⟩}

{⟨a1⟩} {⟨a5⟩} {⟨a6⟩} ; {⟨b1⟩} {⟨b5⟩} {⟨b6⟩} ;
⟨op⟩ + ⟨c5⟩ ⟨c6⟩ ;

Complete the ⟨partial1⟩ and ⟨partial2⟩ expressions as explained for the ii auxil-
iary. The second one is divided by 10000: this is the carry from level 10−28. The trailing
+ c5c6 is taken into the expression for level 10−24. Note that the total of level 10−24 is
in the interval [−5 · 108, 6 · 108 (give or take a couple of 10000), hence adding it to the
shift gives a 10-digit number, as expected by the packing auxiliaries. See l3fp-aux for the
definition of the shifts and packing auxiliaries.

27096 \cs_new:Npn __fp_fixed_mul_add:nnnnwnnwN #1#2 #3#4#5; #6#7#8; #9
27097 {
27098 #9 (#4* #1 *#7)
27099 #9 (#5*#6+#4* #2 *#7+#3*#8) / \c__fp_myriad_int
27100 }

(End of definition for __fp_fixed_mul_add:nnnnwnnwN.)

75.8 Extended-precision floating point numbers
In this section we manipulate floating point numbers with roughly 24 significant figures
(“extended-precision” numbers, in short, “ep”), which take the form of an integer expo-
nent, followed by a comma, then six groups of digits, ending with a semicolon. The first
group of digit may be any non-negative integer, while other groups of digits have 4 digits.
In other words, an extended-precision number is an exponent ending in a comma, then a
fixed point number. The corresponding value is 0.⟨digits⟩ ·10⟨exponent⟩. This convention
differs from floating points.

__fp_ep_to_fixed:wwn
__fp_ep_to_fixed_auxi:www

__fp_ep_to_fixed_auxii:nnnnnnnwn

Converts an extended-precision number with an exponent at most 4 and a first block less
than 108 to a fixed point number whose first block has 12 digits, hopefully starting with
many zeros.

27101 \cs_new:Npn __fp_ep_to_fixed:wwn #1,#2
27102 {
27103 \exp_after:wN __fp_ep_to_fixed_auxi:www
27104 \int_value:w __fp_int_eval:w 1 0000 0000 + #2 \exp_after:wN ;
27105 \exp:w \exp_end_continue_f:w
27106 \prg_replicate:nn { 4 - \int_max:nn {#1} { -32 } } { 0 } ;
27107 }
27108 \cs_new:Npn __fp_ep_to_fixed_auxi:www 1#1; #2; #3#4#5#6#7;
27109 {
27110 __fp_pack_eight:wNNNNNNNN
27111 __fp_pack_twice_four:wNNNNNNNN
27112 __fp_pack_twice_four:wNNNNNNNN
27113 __fp_pack_twice_four:wNNNNNNNN
27114 __fp_ep_to_fixed_auxii:nnnnnnnwn ;
27115 #2 #1#3#4#5#6#7 0000 !
27116 }
27117 \cs_new:Npn __fp_ep_to_fixed_auxii:nnnnnnnwn #1#2#3#4#5#6#7; #8! #9
27118 { #9 {#1#2}{#3}{#4}{#5}{#6}{#7}; }

(End of definition for __fp_ep_to_fixed:wwn , __fp_ep_to_fixed_auxi:www , and __fp_ep_to_-
fixed_auxii:nnnnnnnwn.)

1159

__fp_ep_to_ep:wwN
__fp_ep_to_ep_loop:N
__fp_ep_to_ep_end:www
__fp_ep_to_ep_zero:ww

Normalize an extended-precision number. More precisely, leading zeros are removed from
the mantissa of the argument, decreasing its exponent as appropriate. Then the digits
are packed into 6 groups of 4 (discarding any remaining digit, not rounding). Finally,
the continuation #8 is placed before the resulting exponent–mantissa pair. The input
exponent may in fact be given as an integer expression. The loop auxiliary grabs a
digit: if it is 0, decrement the exponent and continue looping, and otherwise call the end
auxiliary, which places all digits in the right order (the digit that was not 0, and any
remaining digits), followed by some 0, then packs them up neatly in 3 × 2 = 6 blocks of
four. At the end of the day, remove with __fp_use_i:ww any digit that did not make it
in the final mantissa (typically only zeros, unless the original first block has more than 4
digits).

27119 \cs_new:Npn __fp_ep_to_ep:wwN #1,#2#3#4#5#6#7; #8
27120 {
27121 \exp_after:wN #8
27122 \int_value:w __fp_int_eval:w #1 + 4
27123 \exp_after:wN \use_i:nn
27124 \exp_after:wN __fp_ep_to_ep_loop:N
27125 \int_value:w __fp_int_eval:w 1 0000 0000 + #2 __fp_int_eval_end:
27126 #3#4#5#6#7 ; ; !
27127 }
27128 \cs_new:Npn __fp_ep_to_ep_loop:N #1
27129 {
27130 \if_meaning:w 0 #1
27131 - 1
27132 \else:
27133 __fp_ep_to_ep_end:www #1
27134 \fi:
27135 __fp_ep_to_ep_loop:N
27136 }
27137 \cs_new:Npn __fp_ep_to_ep_end:www
27138 #1 \fi: __fp_ep_to_ep_loop:N #2; #3!
27139 {
27140 \fi:
27141 \if_meaning:w ; #1
27142 - 2 * \c__fp_max_exponent_int
27143 __fp_ep_to_ep_zero:ww
27144 \fi:
27145 __fp_pack_twice_four:wNNNNNNNN
27146 __fp_pack_twice_four:wNNNNNNNN
27147 __fp_pack_twice_four:wNNNNNNNN
27148 __fp_use_i:ww , ;
27149 #1 #2 0000 0000 0000 0000 0000 0000 ;
27150 }
27151 \cs_new:Npn __fp_ep_to_ep_zero:ww \fi: #1; #2; #3;
27152 { \fi: , {1000}{0000}{0000}{0000}{0000}{0000} ; }

(End of definition for __fp_ep_to_ep:wwN and others.)

__fp_ep_compare:wwww
__fp_ep_compare_aux:wwww

In l3fp-trig we need to compare two extended-precision numbers. This is based on the
same function for positive floating point numbers, with an extra test if comparing only
16 decimals is not enough to distinguish the numbers. Note that this function only works
if the numbers are normalized so that their first block is in [1000, 9999].

27153 \cs_new:Npn __fp_ep_compare:wwww #1,#2#3#4#5#6#7;

1160

27154 { __fp_ep_compare_aux:wwww {#1}{#2}{#3}{#4}{#5}; #6#7; }
27155 \cs_new:Npn __fp_ep_compare_aux:wwww #1;#2;#3,#4#5#6#7#8#9;
27156 {
27157 \if_case:w
27158 __fp_compare_npos:nwnw #1; {#3}{#4}{#5}{#6}{#7}; \exp_stop_f:
27159 \if_int_compare:w #2 = #8#9 \exp_stop_f:
27160 0
27161 \else:
27162 \if_int_compare:w #2 < #8#9 - \fi: 1
27163 \fi:
27164 \or: 1
27165 \else: -1
27166 \fi:
27167 }

(End of definition for __fp_ep_compare:wwww and __fp_ep_compare_aux:wwww.)

__fp_ep_mul:wwwwn
__fp_ep_mul_raw:wwwwN

Multiply two extended-precision numbers: first normalize them to avoid losing too much
precision, then multiply the mantissas #2 and #4 as fixed point numbers, and sum the
exponents #1 and #3. The result’s first block is in [100, 9999].

27168 \cs_new:Npn __fp_ep_mul:wwwwn #1,#2; #3,#4;
27169 {
27170 __fp_ep_to_ep:wwN #3,#4;
27171 __fp_fixed_continue:wn
27172 {
27173 __fp_ep_to_ep:wwN #1,#2;
27174 __fp_ep_mul_raw:wwwwN
27175 }
27176 __fp_fixed_continue:wn
27177 }
27178 \cs_new:Npn __fp_ep_mul_raw:wwwwN #1,#2; #3,#4; #5
27179 {
27180 __fp_fixed_mul:wwn #2; #4;
27181 { \exp_after:wN #5 \int_value:w __fp_int_eval:w #1 + #3 , }
27182 }

(End of definition for __fp_ep_mul:wwwwn and __fp_ep_mul_raw:wwwwN.)

75.9 Dividing extended-precision numbers
Divisions of extended-precision numbers are difficult to perform with exact rounding: the
technique used in l3fp-basics for 16-digit floating point numbers does not generalize easily
to 24-digit numbers. Thankfully, there is no need for exact rounding.

Let us call ⟨n⟩ the numerator and ⟨d⟩ the denominator. After a simple normalization
step, we can assume that ⟨n⟩ ∈ [0.1, 1) and ⟨d⟩ ∈ [0.1, 1), and compute ⟨n⟩/(10⟨d⟩) ∈
(0.01, 1). In terms of the 6 blocks of digits ⟨n1⟩ · · · ⟨n6⟩ and the 6 blocks ⟨d1⟩ · · · ⟨d6⟩, the
condition translates to ⟨n1⟩, ⟨d1⟩ ∈ [1000, 9999].

1161

We first find an integer estimate a ≃ 108/⟨d⟩ by computing

α =
[

109

⟨d1⟩ + 1

]
β =

[
109

⟨d1⟩

]
a = 103α + (β − α) ·

(
103 −

[
⟨d2⟩
10

])
− 1250,

where
[•

•
]

denotes ε-TEX’s rounding division, which rounds ties away from zero. The
idea is to interpolate between 103α and 103β with a parameter ⟨d2⟩/104, so that when
⟨d2⟩ = 0 one gets a = 103β − 1250 ≃ 1012/⟨d1⟩ ≃ 108/⟨d⟩, while when ⟨d2⟩ = 9999 one
gets a = 103α − 1250 ≃ 1012/(⟨d1⟩ + 1) ≃ 108/⟨d⟩. The shift by 1250 helps to ensure
that a is an underestimate of the correct value. We shall prove that

1 − 1.755 · 10−5 <
⟨d⟩a
108 < 1.

We can then compute the inverse of ⟨d⟩a/108 = 1 − ϵ using the relation 1/(1 − ϵ) ≃
(1 + ϵ)(1 + ϵ2) + ϵ4, which is correct up to a relative error of ϵ5 < 1.6 · 10−24. This allows
us to find the desired ratio as

⟨n⟩
⟨d⟩

= ⟨n⟩a
108

(
(1 + ϵ)(1 + ϵ2) + ϵ4).

Let us prove the upper bound first (multiplied by 1015). Note that 107⟨d⟩ < 103⟨d1⟩+
10−1(⟨d2⟩ + 1), and that ε-TEX’s division

[
⟨d2⟩
10

]
underestimates 10−1(⟨d2⟩ + 1) by 0.5 at

most, as can be checked for each possible last digit of ⟨d2⟩. Then,

107⟨d⟩a <

(
103⟨d1⟩ +

[
⟨d2⟩
10

]
+ 1

2

)((
103 −

[
⟨d2⟩
10

])
β +

[
⟨d2⟩
10

]
α − 1250

)
(1)

<

(
103⟨d1⟩ +

[
⟨d2⟩
10

]
+ 1

2

)
(2)((

103 −
[

⟨d2⟩
10

])(
109

⟨d1⟩
+ 1

2

)
+
[

⟨d2⟩
10

](
109

⟨d1⟩ + 1 + 1
2

)
− 1250

)
(3)

<

(
103⟨d1⟩ +

[
⟨d2⟩
10

]
+ 1

2

)(
1012

⟨d1⟩
−
[

⟨d2⟩
10

]
109

⟨d1⟩(⟨d1⟩ + 1) − 750
)

(4)

We recognize a quadratic polynomial in [⟨d2⟩/10] with a negative leading coefficient: this
polynomial is bounded above, according to ([⟨d2⟩/10]+a)(b−c[⟨d2⟩/10]) ≤ (b+ca)2/(4c).
Hence,

107⟨d⟩a <
1015

⟨d1⟩(⟨d1⟩ + 1)

(
⟨d1⟩ + 1

2 + 1
410−3 − 3

8 · 10−9⟨d1⟩(⟨d1⟩ + 1)
)2

Since ⟨d1⟩ takes integer values within [1000, 9999], it is a simple programming exercise to
check that the squared expression is always less than ⟨d1⟩(⟨d1⟩+1), hence 107⟨d⟩a < 1015.
The upper bound is proven. We also find that 3

8 can be replaced by slightly smaller
numbers, but nothing less than 0.374563 . . ., and going back through the derivation of

1162

the upper bound, we find that 1250 is as small a shift as we can obtain without breaking
the bound.

Now, the lower bound. The same computation as for the upper bound implies

107⟨d⟩a >

(
103⟨d1⟩ +

[
⟨d2⟩
10

]
− 1

2

)(
1012

⟨d1⟩
−
[

⟨d2⟩
10

]
109

⟨d1⟩(⟨d1⟩ + 1) − 1750
)

This time, we want to find the minimum of this quadratic polynomial. Since the leading
coefficient is still negative, the minimum is reached for one of the extreme values [y/10] =
0 or [y/10] = 100, and we easily check the bound for those values.

We have proven that the algorithm gives us a precise enough answer. Incidentally,
the upper bound that we derived tells us that a < 108/⟨d⟩ ≤ 109, hence we can compute
a safely as a TEX integer, and even add 109 to it to ease grabbing of all the digits. The
lower bound implies 108 − 1755 < a, which we do not care about.

__fp_ep_div:wwwwn Compute the ratio of two extended-precision numbers. The result is an extended-
precision number whose first block lies in the range [100, 9999], and is placed after the
⟨continuation⟩ once we are done. First normalize the inputs so that both first block
lie in [1000, 9999], then call __fp_ep_div_esti:wwwwn ⟨denominator⟩ ⟨numerator⟩,
responsible for estimating the inverse of the denominator.

27183 \cs_new:Npn __fp_ep_div:wwwwn #1,#2; #3,#4;
27184 {
27185 __fp_ep_to_ep:wwN #1,#2;
27186 __fp_fixed_continue:wn
27187 {
27188 __fp_ep_to_ep:wwN #3,#4;
27189 __fp_ep_div_esti:wwwwn
27190 }
27191 }

(End of definition for __fp_ep_div:wwwwn.)

__fp_ep_div_esti:wwwwn
__fp_ep_div_estii:wwnnwwn

__fp_ep_div_estiii:NNNNNwwwn

The esti function evaluates α = 109/(⟨d1⟩ + 1), which is used twice in the expression for
a, and combines the exponents #1 and #4 (with a shift by 1 because we later compute
⟨n⟩/(10⟨d⟩). Then the estii function evaluates 109 + a, and puts the exponent #2
after the continuation #7: from there on we can forget exponents and focus on the
mantissa. The estiii function multiplies the denominator #7 by 10−8a (obtained as a
split into the single digit #1 and two blocks of 4 digits, #2#3#4#5 and #6). The result
10−8a⟨d⟩ = (1 − ϵ), and a partially packed 10−9a (as a block of four digits, and five
individual digits, not packed by lack of available macro parameters here) are passed to
__fp_ep_div_epsi:wnNNNNn, which computes 10−9a/(1 − ϵ), that is, 1/(10⟨d⟩) and we
finally multiply this by the numerator #8.

27192 \cs_new:Npn __fp_ep_div_esti:wwwwn #1,#2#3; #4,
27193 {
27194 \exp_after:wN __fp_ep_div_estii:wwnnwwn
27195 \int_value:w __fp_int_eval:w 10 0000 0000 / (#2 + 1)
27196 \exp_after:wN ;
27197 \int_value:w __fp_int_eval:w #4 - #1 + 1 ,
27198 {#2} #3;
27199 }
27200 \cs_new:Npn __fp_ep_div_estii:wwnnwwn #1; #2,#3#4#5; #6; #7
27201 {

1163

27202 \exp_after:wN __fp_ep_div_estiii:NNNNNwwwn
27203 \int_value:w __fp_int_eval:w 10 0000 0000 - 1750
27204 + #1 000 + (10 0000 0000 / #3 - #1) * (1000 - #4 / 10) ;
27205 {#3}{#4}#5; #6; { #7 #2, }
27206 }
27207 \cs_new:Npn __fp_ep_div_estiii:NNNNNwwwn 1#1#2#3#4#5#6; #7;
27208 {
27209 __fp_fixed_mul_short:wwn #7; {#1}{#2#3#4#5}{#6};
27210 __fp_ep_div_epsi:wnNNNNNn {#1#2#3#4}#5#6
27211 __fp_fixed_mul:wwn
27212 }

(End of definition for __fp_ep_div_esti:wwwwn , __fp_ep_div_estii:wwnnwwn , and __fp_ep_div_-
estiii:NNNNNwwwn.)

__fp_ep_div_epsi:wnNNNNNn
__fp_ep_div_eps_pack:NNNNNw
__fp_ep_div_epsii:wwnNNNNNn

The bounds shown above imply that the epsi function’s first operand is (1 − ϵ) with
ϵ ∈ [0, 1.755 · 10−5]. The epsi function computes ϵ as 1 − (1 − ϵ). Since ϵ < 10−4, its
first block vanishes and there is no need to explicitly use #1 (which is 9999). Then epsii
evaluates 10−9a/(1 − ϵ) as (1 + ϵ2)(1 + ϵ)(10−9aϵ) + 10−9a. Importantly, we compute
10−9aϵ before multiplying it with the rest, rather than multiplying by ϵ and then 10−9a,
as this second option loses more precision. Also, the combination of short_mul and
div_myriad is both faster and more precise than a simple mul.

27213 \cs_new:Npn __fp_ep_div_epsi:wnNNNNNn #1#2#3#4#5#6;
27214 {
27215 \exp_after:wN __fp_ep_div_epsii:wwnNNNNNn
27216 \int_value:w __fp_int_eval:w 1 9998 - #2
27217 \exp_after:wN __fp_ep_div_eps_pack:NNNNNw
27218 \int_value:w __fp_int_eval:w 1 9999 9998 - #3#4
27219 \exp_after:wN __fp_ep_div_eps_pack:NNNNNw
27220 \int_value:w __fp_int_eval:w 2 0000 0000 - #5#6 ; ;
27221 }
27222 \cs_new:Npn __fp_ep_div_eps_pack:NNNNNw #1#2#3#4#5#6;
27223 { + #1 ; {#2#3#4#5} {#6} }
27224 \cs_new:Npn __fp_ep_div_epsii:wwnNNNNNn 1#1; #2; #3#4#5#6#7#8
27225 {
27226 __fp_fixed_mul:wwn {0000}{#1}#2; {0000}{#1}#2;
27227 __fp_fixed_add_one:wN
27228 __fp_fixed_mul:wwn {10000} {#1} #2 ;
27229 {
27230 __fp_fixed_mul_short:wwn {0000}{#1}#2; {#3}{#4#5#6#7}{#8000};
27231 __fp_fixed_div_myriad:wn
27232 __fp_fixed_mul:wwn
27233 }
27234 __fp_fixed_add:wwn {#3}{#4#5#6#7}{#8000}{0000}{0000}{0000};
27235 }

(End of definition for __fp_ep_div_epsi:wnNNNNNn , __fp_ep_div_eps_pack:NNNNNw , and __fp_ep_-
div_epsii:wwnNNNNNn.)

1164

75.10 Inverse square root of extended precision num-
bers

The idea here is similar to division. Normalize the input, multiplying by powers of 100
until we have x ∈ [0.01, 1). Then find an integer approximation r ∈ [101, 1003] of 102/

√
x,

as the fixed point of iterations of the Newton method: essentially r 7→ (r + 108/(x1r))/2,
starting from a guess that optimizes the number of steps before convergence. In fact, just
as there is a slight shift when computing divisions to ensure that some inequalities hold,
we replace 108 by a slightly larger number which ensures that r2x ≥ 104. This also causes
r ∈ [101, 1003]. Another correction to the above is that the input is actually normalized
to [0.1, 1), and we use either 108 or 109 in the Newton method, depending on the parity
of the exponent. Skipping those technical hurdles, once we have the approximation r,
we set y = 10−4r2x (or rather, the correct power of 10 to get y ≃ 1) and compute y−1/2

through another application of Newton’s method. This time, the starting value is z = 1,
each step maps z 7→ z(1.5 − 0.5yz2), and we perform a fixed number of steps. Our final
result combines r with y−1/2 as x−1/2 = 10−2ry−1/2.

__fp_ep_isqrt:wwn
__fp_ep_isqrt_aux:wwn

__fp_ep_isqrt_auxii:wwnnnwn

First normalize the input, then check the parity of the exponent #1. If it is even, the
result’s exponent will be −#1/2, otherwise it will be (#1 − 1)/2 (except in the case
where the input was an exact power of 100). The auxii function receives as #1 the
result’s exponent just computed, as #2 the starting value for the iteration giving r (the
values 168 and 535 lead to the least number of iterations before convergence, on average),
as #3 and #4 one empty argument and one 0, depending on the parity of the original
exponent, as #5 and #6 the normalized mantissa (#5 ∈ [1000, 9999]), and as #7 the
continuation. It sets up the iteration giving r: the esti function thus receives the initial
two guesses #2 and 0, an approximation #5 of 104x (its first block of digits), and the
empty/zero arguments #3 and #4, followed by the mantissa and an altered continuation
where we have stored the result’s exponent.

27236 \cs_new:Npn __fp_ep_isqrt:wwn #1,#2;
27237 {
27238 __fp_ep_to_ep:wwN #1,#2;
27239 __fp_ep_isqrt_auxi:wwn
27240 }
27241 \cs_new:Npn __fp_ep_isqrt_auxi:wwn #1,
27242 {
27243 \exp_after:wN __fp_ep_isqrt_auxii:wwnnnwn
27244 \int_value:w __fp_int_eval:w
27245 \int_if_odd:nTF {#1}
27246 { (1 - #1) / 2 , 535 , { 0 } { } }
27247 { 1 - #1 / 2 , 168 , { } { 0 } }
27248 }
27249 \cs_new:Npn __fp_ep_isqrt_auxii:wwnnnwn #1, #2, #3#4 #5#6; #7
27250 {
27251 __fp_ep_isqrt_esti:wwwnnwn #2, 0, #5, {#3} {#4}
27252 {#5} #6 ; { #7 #1 , }
27253 }

(End of definition for __fp_ep_isqrt:wwn , __fp_ep_isqrt_aux:wwn , and __fp_ep_isqrt_auxii:wwnnnwn.)

__fp_ep_isqrt_esti:wwwnnwn
__fp_ep_isqrt_estii:wwwnnwn

__fp_ep_isqrt_estiii:NNNNNwwwn

If the last two approximations gave the same result, we are done: call the estii function
to clean up. Otherwise, evaluate (⟨prev⟩ + 1.005 · 108 or 9/(⟨prev⟩ · x))/2, as the next
approximation: omitting the 1.005 factor, this would be Newton’s method. We can check

1165

by brute force that if #4 is empty (the original exponent was even), the process computes
an integer slightly larger than 100/

√
x, while if #4 is 0 (the original exponent was odd),

the result is an integer slightly larger than 100/
√

x/10. Once we are done, we evaluate
100r2/2 or 10r2/2 (when the exponent is even or odd, respectively) and feed that to
estiii. This third auxiliary finds yeven/2 = 10−4r2x/2 or yodd/2 = 10−5r2x/2 (again,
depending on earlier parity). A simple program shows that y ∈ [1, 1.0201]. The number
y/2 is fed to __fp_ep_isqrt_epsi:wN, which computes 1/

√
y, and we finally multiply

the result by r.
27254 \cs_new:Npn __fp_ep_isqrt_esti:wwwnnwn #1, #2, #3, #4
27255 {
27256 \if_int_compare:w #1 = #2 \exp_stop_f:
27257 \exp_after:wN __fp_ep_isqrt_estii:wwwnnwn
27258 \fi:
27259 \exp_after:wN __fp_ep_isqrt_esti:wwwnnwn
27260 \int_value:w __fp_int_eval:w
27261 (#1 + 1 0050 0000 #4 / (#1 * #3)) / 2 ,
27262 #1, #3, {#4}
27263 }
27264 \cs_new:Npn __fp_ep_isqrt_estii:wwwnnwn #1, #2, #3, #4#5
27265 {
27266 \exp_after:wN __fp_ep_isqrt_estiii:NNNNNwwwn
27267 \int_value:w __fp_int_eval:w 1000 0000 + #2 * #2 #5 * 5
27268 \exp_after:wN , \int_value:w __fp_int_eval:w 10000 + #2 ;
27269 }
27270 \cs_new:Npn __fp_ep_isqrt_estiii:NNNNNwwwn 1#1#2#3#4#5#6, 1#7#8; #9;
27271 {
27272 __fp_fixed_mul_short:wwn #9; {#1} {#2#3#4#5} {#600} ;
27273 __fp_ep_isqrt_epsi:wN
27274 __fp_fixed_mul_short:wwn {#7} {#80} {0000} ;
27275 }

(End of definition for __fp_ep_isqrt_esti:wwwnnwn , __fp_ep_isqrt_estii:wwwnnwn , and __fp_ep_-
isqrt_estiii:NNNNNwwwn.)

__fp_ep_isqrt_epsi:wN
__fp_ep_isqrt_epsii:wwN

Here, we receive a fixed point number y/2 with y ∈ [1, 1.0201]. Starting from z = 1 we
iterate z 7→ z(3/2 − z2y/2). In fact, we start from the first iteration z = 3/2 − y/2 to
avoid useless multiplications. The epsii auxiliary receives z as #1 and y as #2.

27276 \cs_new:Npn __fp_ep_isqrt_epsi:wN #1;
27277 {
27278 __fp_fixed_sub:wwn {15000}{0000}{0000}{0000}{0000}{0000}; #1;
27279 __fp_ep_isqrt_epsii:wwN #1;
27280 __fp_ep_isqrt_epsii:wwN #1;
27281 __fp_ep_isqrt_epsii:wwN #1;
27282 }
27283 \cs_new:Npn __fp_ep_isqrt_epsii:wwN #1; #2;
27284 {
27285 __fp_fixed_mul:wwn #1; #1;
27286 __fp_fixed_mul_sub_back:wwwn #2;
27287 {15000}{0000}{0000}{0000}{0000}{0000};
27288 __fp_fixed_mul:wwn #1;
27289 }

(End of definition for __fp_ep_isqrt_epsi:wN and __fp_ep_isqrt_epsii:wwN.)

1166

75.11 Converting from fixed point to floating point
After computing Taylor series, we wish to convert the result from extended precision
(with or without an exponent) to the public floating point format. The functions here
should be called within an integer expression for the overall exponent of the floating
point.

__fp_ep_to_float_o:wwN
__fp_ep_inv_to_float_o:wwN

An extended-precision number is simply a comma-delimited exponent followed by a fixed
point number. Leave the exponent in the current integer expression then convert the
fixed point number.

27290 \cs_new:Npn __fp_ep_to_float_o:wwN #1,
27291 { + __fp_int_eval:w #1 __fp_fixed_to_float_o:wN }
27292 \cs_new:Npn __fp_ep_inv_to_float_o:wwN #1,#2;
27293 {
27294 __fp_ep_div:wwwwn 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1,#2;
27295 __fp_ep_to_float_o:wwN
27296 }

(End of definition for __fp_ep_to_float_o:wwN and __fp_ep_inv_to_float_o:wwN.)

__fp_fixed_inv_to_float_o:wN Another function which reduces to converting an extended precision number to a float.
27297 \cs_new:Npn __fp_fixed_inv_to_float_o:wN
27298 { __fp_ep_inv_to_float_o:wwN 0, }

(End of definition for __fp_fixed_inv_to_float_o:wN.)

__fp_fixed_to_float_rad_o:wN Converts the fixed point number #1 from degrees to radians then to a floating point
number. This could perhaps remain in l3fp-trig.

27299 \cs_new:Npn __fp_fixed_to_float_rad_o:wN #1;
27300 {
27301 __fp_fixed_mul:wwn #1; {5729}{5779}{5130}{8232}{0876}{7981};
27302 { __fp_ep_to_float_o:wwN 2, }
27303 }

(End of definition for __fp_fixed_to_float_rad_o:wN.)

__fp_fixed_to_float_o:wN
__fp_fixed_to_float_o:Nw

... __fp_int_eval:w ⟨exponent⟩ __fp_fixed_to_float_o:wN {⟨a1⟩} {⟨a2⟩} {⟨a3⟩}
{⟨a4⟩} {⟨a5⟩} {⟨a6⟩} ; ⟨sign⟩

yields

⟨exponent’⟩ ; {⟨a’1⟩} {⟨a’2⟩} {⟨a’3⟩} {⟨a’4⟩} ;

And the to_fixed version gives six brace groups instead of 4, ensuring that 1000 ≤
⟨a’1⟩ ≤ 9999. At this stage, we know that ⟨a1⟩ is positive (otherwise, it is sign of an
error before), and we assume that it is less than 108.11

27304 \cs_new:Npn __fp_fixed_to_float_o:Nw #1#2;
27305 { __fp_fixed_to_float_o:wN #2; #1 }
27306 \cs_new:Npn __fp_fixed_to_float_o:wN #1#2#3#4#5#6; #7
27307 { % for the 8-digit-at-the-start thing
27308 + __fp_int_eval:w \c__fp_block_int
27309 \exp_after:wN \exp_after:wN
27310 \exp_after:wN __fp_fixed_to_loop:N

11Bruno: I must double check this assumption.

1167

27311 \exp_after:wN \use_none:n
27312 \int_value:w __fp_int_eval:w
27313 1 0000 0000 + #1 \exp_after:wN __fp_use_none_stop_f:n
27314 \int_value:w 1#2 \exp_after:wN __fp_use_none_stop_f:n
27315 \int_value:w 1#3#4 \exp_after:wN __fp_use_none_stop_f:n
27316 \int_value:w 1#5#6
27317 \exp_after:wN ;
27318 \exp_after:wN ;
27319 }
27320 \cs_new:Npn __fp_fixed_to_loop:N #1
27321 {
27322 \if_meaning:w 0 #1
27323 - 1
27324 \exp_after:wN __fp_fixed_to_loop:N
27325 \else:
27326 \exp_after:wN __fp_fixed_to_loop_end:w
27327 \exp_after:wN #1
27328 \fi:
27329 }
27330 \cs_new:Npn __fp_fixed_to_loop_end:w #1 #2 ;
27331 {
27332 \if_meaning:w ; #1
27333 \exp_after:wN __fp_fixed_to_float_zero:w
27334 \else:
27335 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
27336 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
27337 \exp_after:wN __fp_fixed_to_float_pack:ww
27338 \exp_after:wN ;
27339 \fi:
27340 #1 #2 0000 0000 0000 0000 ;
27341 }
27342 \cs_new:Npn __fp_fixed_to_float_zero:w ; 0000 0000 0000 0000 ;
27343 {
27344 - 2 * \c__fp_max_exponent_int ;
27345 {0000} {0000} {0000} {0000} ;
27346 }
27347 \cs_new:Npn __fp_fixed_to_float_pack:ww #1 ; #2#3 ; ;
27348 {
27349 \if_int_compare:w #2 > 4 \exp_stop_f:
27350 \exp_after:wN __fp_fixed_to_float_round_up:wnnnnw
27351 \fi:
27352 ; #1 ;
27353 }
27354 \cs_new:Npn __fp_fixed_to_float_round_up:wnnnnw ; #1#2#3#4 ;
27355 {
27356 \exp_after:wN __fp_basics_pack_high:NNNNNw
27357 \int_value:w __fp_int_eval:w 1 #1#2
27358 \exp_after:wN __fp_basics_pack_low:NNNNNw
27359 \int_value:w __fp_int_eval:w 1 #3#4 + 1 ;
27360 }

(End of definition for __fp_fixed_to_float_o:wN and __fp_fixed_to_float_o:Nw.)

27361 ⟨/package⟩

1168

Chapter 76

l3fp-expo implementation

27362 ⟨∗package⟩

27363 ⟨@@=fp⟩

__fp_parse_word_exp:N
__fp_parse_word_ln:N

__fp_parse_word_fact:N

Unary functions.
27364 \cs_new:Npn __fp_parse_word_exp:N
27365 { __fp_parse_unary_function:NNN __fp_exp_o:w ? }
27366 \cs_new:Npn __fp_parse_word_ln:N
27367 { __fp_parse_unary_function:NNN __fp_ln_o:w ? }
27368 \cs_new:Npn __fp_parse_word_fact:N
27369 { __fp_parse_unary_function:NNN __fp_fact_o:w ? }

(End of definition for __fp_parse_word_exp:N , __fp_parse_word_ln:N , and __fp_parse_word_-
fact:N.)

76.1 Logarithm
76.1.1 Work plan
As for many other functions, we filter out special cases in __fp_ln_o:w. Then __fp_-
ln_npos_o:w receives a positive normal number, which we write in the form a · 10b with
a ∈ [0.1, 1).

The rest of this section is actually not in sync with the code. Or is the code not in
sync with the section? In the current code, c ∈ [1, 10] is such that 0.7 ≤ ac < 1.4.

We are given a positive normal number, of the form a · 10b with a ∈ [0.1, 1). To
compute its logarithm, we find a small integer 5 ≤ c < 50 such that 0.91 ≤ ac/5 < 1.1,
and use the relation

ln(a · 10b) = b · ln(10) − ln(c/5) + ln(ac/5).

The logarithms ln(10) and ln(c/5) are looked up in a table. The last term is computed
using the following Taylor series of ln near 1:

ln
(ac

5

)
= ln

(
1 + t

1 − t

)
= 2t

(
1 + t2

(
1
3 + t2

(
1
5 + t2

(
1
7 + t2

(
1
9 + · · ·

)))))

1169

where t = 1 − 10/(ac + 5). We can now see one reason for the choice of ac ∼ 5: then
ac + 5 = 10(1 − ϵ) with −0.05 < ϵ ≤ 0.045, hence

t = ϵ

1 − ϵ
= ϵ(1 + ϵ)(1 + ϵ2)(1 + ϵ4) . . . ,

is not too difficult to compute.

76.1.2 Some constants
\c__fp_ln_i_fixed_tl

\c__fp_ln_ii_fixed_tl
\c__fp_ln_iii_fixed_tl
\c__fp_ln_iv_fixed_tl
\c__fp_ln_vi_fixed_tl
\c__fp_ln_vii_fixed_tl
\c__fp_ln_viii_fixed_tl
\c__fp_ln_ix_fixed_tl
\c__fp_ln_x_fixed_tl

A few values of the logarithm as extended fixed point numbers. Those are needed in the
implementation. It turns out that we don’t need the value of ln(5).

27370 \tl_const:Nn \c__fp_ln_i_fixed_tl { {0000}{0000}{0000}{0000}{0000}{0000};}
27371 \tl_const:Nn \c__fp_ln_ii_fixed_tl { {6931}{4718}{0559}{9453}{0941}{7232};}
27372 \tl_const:Nn \c__fp_ln_iii_fixed_tl {{10986}{1228}{8668}{1096}{9139}{5245};}
27373 \tl_const:Nn \c__fp_ln_iv_fixed_tl {{13862}{9436}{1119}{8906}{1883}{4464};}
27374 \tl_const:Nn \c__fp_ln_vi_fixed_tl {{17917}{5946}{9228}{0550}{0081}{2477};}
27375 \tl_const:Nn \c__fp_ln_vii_fixed_tl {{19459}{1014}{9055}{3133}{0510}{5353};}
27376 \tl_const:Nn \c__fp_ln_viii_fixed_tl{{20794}{4154}{1679}{8359}{2825}{1696};}
27377 \tl_const:Nn \c__fp_ln_ix_fixed_tl {{21972}{2457}{7336}{2193}{8279}{0490};}
27378 \tl_const:Nn \c__fp_ln_x_fixed_tl {{23025}{8509}{2994}{0456}{8401}{7991};}

(End of definition for \c__fp_ln_i_fixed_tl and others.)

76.1.3 Sign, exponent, and special numbers
__fp_ln_o:w The logarithm of negative numbers (including −∞ and −0) raises the “invalid” exception.

The logarithm of +0 is −∞, raising a division by zero exception. The logarithm of +∞
or a nan is itself. Positive normal numbers call __fp_ln_npos_o:w.

27379 \cs_new:Npn __fp_ln_o:w #1 \s__fp __fp_chk:w #2#3#4; @
27380 {
27381 \if_meaning:w 2 #3
27382 __fp_case_use:nw { __fp_invalid_operation_o:nw { ln } }
27383 \fi:
27384 \if_case:w #2 \exp_stop_f:
27385 __fp_case_use:nw
27386 { __fp_division_by_zero_o:Nnw \c_minus_inf_fp { ln } }
27387 \or:
27388 \else:
27389 __fp_case_return_same_o:w
27390 \fi:
27391 __fp_ln_npos_o:w \s__fp __fp_chk:w #2#3#4;
27392 }

(End of definition for __fp_ln_o:w.)

76.1.4 Absolute ln
__fp_ln_npos_o:w We catch the case of a significand very close to 0.1 or to 1. In all other cases, the final

result is at least 10−4, and then an error of 0.5 · 10−20 is acceptable.
27393 \cs_new:Npn __fp_ln_npos_o:w \s__fp __fp_chk:w 10#1#2#3;
27394 { %^^A todo: ln(1) should be "exact zero", not "underflow"
27395 \exp_after:wN __fp_sanitize:Nw

1170

27396 \int_value:w % for the overall sign
27397 \if_int_compare:w #1 < \c_one_int
27398 2
27399 \else:
27400 0
27401 \fi:
27402 \exp_after:wN \exp_stop_f:
27403 \int_value:w __fp_int_eval:w % for the exponent
27404 __fp_ln_significand:NNNNnnnN #2#3
27405 __fp_ln_exponent:wn {#1}
27406 }

(End of definition for __fp_ln_npos_o:w.)

__fp_ln_significand:NNNNnnnN __fp_ln_significand:NNNNnnnN ⟨X1⟩ {⟨X2⟩} {⟨X3⟩} {⟨X4⟩} ⟨continuation⟩
This function expands to

⟨continuation⟩ {⟨Y1⟩} {⟨Y2⟩} {⟨Y3⟩} {⟨Y4⟩} {⟨Y5⟩} {⟨Y6⟩} ;

where Y = − ln(X) as an extended fixed point.
27407 \cs_new:Npn __fp_ln_significand:NNNNnnnN #1#2#3#4
27408 {
27409 \exp_after:wN __fp_ln_x_ii:wnnnn
27410 \int_value:w
27411 \if_case:w #1 \exp_stop_f:
27412 \or:
27413 \if_int_compare:w #2 < 4 \exp_stop_f:
27414 __fp_int_eval:w 10 - #2
27415 \else:
27416 6
27417 \fi:
27418 \or: 4
27419 \or: 3
27420 \or: 2
27421 \or: 2
27422 \or: 2
27423 \else: 1
27424 \fi:
27425 ; { #1 #2 #3 #4 }
27426 }

(End of definition for __fp_ln_significand:NNNNnnnN.)

__fp_ln_x_ii:wnnnn We have thus found c ∈ [1, 10] such that 0.7 ≤ ac < 1.4 in all cases. Compute 1 + x =
1 + ac ∈ [1.7, 2.4).

27427 \cs_new:Npn __fp_ln_x_ii:wnnnn #1; #2#3#4#5
27428 {
27429 \exp_after:wN __fp_ln_div_after:Nw
27430 \cs:w c__fp_ln_ __fp_int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end:
27431 \int_value:w
27432 \exp_after:wN __fp_ln_x_iv:wnnnnnnnn
27433 \int_value:w __fp_int_eval:w
27434 \exp_after:wN __fp_ln_x_iii_var:NNNNNw
27435 \int_value:w __fp_int_eval:w 9999 9990 + #1*#2#3 +
27436 \exp_after:wN __fp_ln_x_iii:NNNNNNw

1171

27437 \int_value:w __fp_int_eval:w 10 0000 0000 + #1*#4#5 ;
27438 {20000} {0000} {0000} {0000}
27439 } %^^A todo: reoptimize (a generalization attempt failed).
27440 \cs_new:Npn __fp_ln_x_iii:NNNNNNw #1#2 #3#4#5#6 #7;
27441 { #1#2; {#3#4#5#6} {#7} }
27442 \cs_new:Npn __fp_ln_x_iii_var:NNNNNw #1 #2#3#4#5 #6;
27443 {
27444 #1#2#3#4#5 + 1 ;
27445 {#1#2#3#4#5} {#6}
27446 }

The Taylor series to be used is expressed in terms of t = (x − 1)/(x + 1) = 1 − 2/(x + 1).
We now compute the quotient with extended precision, reusing some code from __fp_-
/_o:ww. Note that 1 + x is known exactly.

To reuse notations from l3fp-basics, we want to compute A/Z with A = 2 and
Z = x + 1. In l3fp-basics, we considered the case where both A and Z are arbitrary, in
the range [0.1, 1), and we had to monitor the growth of the sequence of remainders A, B,
C, etc. to ensure that no overflow occurred during the computation of the next quotient.
The main source of risk was our choice to define the quotient as roughly 109 · A/105 · Z:
then A was bound to be below 2.147 · · · , and this limit was never far.

In our case, we can simply work with 108 · A and 104 · Z, because our reason to work
with higher powers has gone: we needed the integer y ≃ 105 · Z to be at least 104, and
now, the definition y ≃ 104 · Z suffices.

Let us thus define y =
⌊
104 · Z

⌋
+ 1 ∈ (1.7 · 104, 2.4 · 104], and

Q1 =
⌊⌊

108 · A
⌋

y
− 1

2

⌋
.

(The 1/2 comes from how ε-TEX rounds.) As for division, it is easy to see that Q1 ≤
104A/Z, i.e., Q1 is an underestimate.

Exactly as we did for division, we set B = 104A − Q1Z. Then

104B ≤ A1A2.A3A4 −
(

A1A2

y
− 3

2

)
104Z

≤ A1A2

(
1 − 104Z

y

)
+ 1 + 3

2y

≤ 108 A

y
+ 1 + 3

2y

1172

In the same way, and using 1.7 · 104 ≤ y ≤ 2.4 · 104, and convexity, we get

104A = 2 · 104

104B ≤ 108 A

y
+ 1.6y ≤ 4.7 · 104

104C ≤ 108 B

y
+ 1.6y ≤ 5.8 · 104

104D ≤ 108 C

y
+ 1.6y ≤ 6.3 · 104

104E ≤ 108 D

y
+ 1.6y ≤ 6.5 · 104

104F ≤ 108 E

y
+ 1.6y ≤ 6.6 · 104

Note that we compute more steps than for division: since t is not the end result, we need
to know it with more accuracy (on the other hand, the ending is much simpler, as we
don’t need an exact rounding for transcendental functions, but just a faithful rounding).

__fp_ln_x_iv:wnnnnnnnn ⟨1 or 2⟩ ⟨8d⟩ ; {⟨4d⟩} {⟨4d⟩} ⟨fixed-tl⟩

The number is x. Compute y by adding 1 to the five first digits.
27447 \cs_new:Npn __fp_ln_x_iv:wnnnnnnnn #1; #2#3#4#5 #6#7#8#9
27448 {
27449 \exp_after:wN __fp_div_significand_pack:NNN
27450 \int_value:w __fp_int_eval:w
27451 __fp_ln_div_i:w #1 ;
27452 #6 #7 ; {#8} {#9}
27453 {#2} {#3} {#4} {#5}
27454 { \exp_after:wN __fp_ln_div_ii:wwn \int_value:w #1 }
27455 { \exp_after:wN __fp_ln_div_ii:wwn \int_value:w #1 }
27456 { \exp_after:wN __fp_ln_div_ii:wwn \int_value:w #1 }
27457 { \exp_after:wN __fp_ln_div_ii:wwn \int_value:w #1 }
27458 { \exp_after:wN __fp_ln_div_vi:wwn \int_value:w #1 }
27459 }
27460 \cs_new:Npn __fp_ln_div_i:w #1;
27461 {
27462 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
27463 \int_value:w __fp_int_eval:w 999999 + 2 0000 0000 / #1 ; % Q1
27464 }
27465 \cs_new:Npn __fp_ln_div_ii:wwn #1; #2;#3 % y; B1;B2 <- for k=1
27466 {
27467 \exp_after:wN __fp_div_significand_pack:NNN
27468 \int_value:w __fp_int_eval:w
27469 \exp_after:wN __fp_div_significand_calc:wwnnnnnnn
27470 \int_value:w __fp_int_eval:w 999999 + #2 #3 / #1 ; % Q2
27471 #2 #3 ;
27472 }
27473 \cs_new:Npn __fp_ln_div_vi:wwn #1; #2;#3#4#5 #6#7#8#9 %y;F1;F2F3F4x1x2x3x4
27474 {
27475 \exp_after:wN __fp_div_significand_pack:NNN

1173

27476 \int_value:w __fp_int_eval:w 1000000 + #2 #3 / #1 ; % Q6
27477 }

We now have essentially

__fp_ln_div_after:Nw ⟨fixed tl⟩
__fp_div_significand_pack:NNN 106 + Q1
__fp_div_significand_pack:NNN 106 + Q2
__fp_div_significand_pack:NNN 106 + Q3
__fp_div_significand_pack:NNN 106 + Q4
__fp_div_significand_pack:NNN 106 + Q5
__fp_div_significand_pack:NNN 106 + Q6 ;
⟨exponent⟩ ; ⟨continuation⟩

where ⟨fixed tl⟩ holds the logarithm of a number in [1, 10], and ⟨exponent⟩ is the
exponent. Also, the expansion is done backwards. Then __fp_div_significand_-
pack:NNN puts things in the correct order to add the Qi together and put semicolons
between each piece. Once those have been expanded, we get

__fp_ln_div_after:Nw ⟨fixed-tl⟩ ⟨1d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ;
⟨4d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ; ⟨4d⟩ ; ⟨exponent⟩ ;

Just as with division, we know that the first two digits are 1 and 0 because of bounds on
the final result of the division 2/(x + 1), which is between roughly 0.8 and 1.2. We then
compute 1 − 2/(x + 1), after testing whether 2/(x + 1) is greater than or smaller than 1.

27478 \cs_new:Npn __fp_ln_div_after:Nw #1#2;
27479 {
27480 \if_meaning:w 0 #2
27481 \exp_after:wN __fp_ln_t_small:Nw
27482 \else:
27483 \exp_after:wN __fp_ln_t_large:NNw
27484 \exp_after:wN -
27485 \fi:
27486 #1
27487 }
27488 \cs_new:Npn __fp_ln_t_small:Nw #1 #2; #3; #4; #5; #6; #7;
27489 {
27490 \exp_after:wN __fp_ln_t_large:NNw
27491 \exp_after:wN + % <sign>
27492 \exp_after:wN #1
27493 \int_value:w __fp_int_eval:w 9999 - #2 \exp_after:wN ;
27494 \int_value:w __fp_int_eval:w 9999 - #3 \exp_after:wN ;
27495 \int_value:w __fp_int_eval:w 9999 - #4 \exp_after:wN ;
27496 \int_value:w __fp_int_eval:w 9999 - #5 \exp_after:wN ;
27497 \int_value:w __fp_int_eval:w 9999 - #6 \exp_after:wN ;
27498 \int_value:w __fp_int_eval:w 1 0000 - #7 ;
27499 }

__fp_ln_t_large:NNw ⟨sign⟩ ⟨fixed tl⟩
⟨t1⟩; ⟨t2⟩ ; ⟨t3⟩; ⟨t4⟩; ⟨t5⟩ ; ⟨t6⟩;
⟨exponent⟩ ; ⟨continuation⟩

Compute the square t2, and keep t at the end with its sign. We know that t < 0.1765,
so every piece has at most 4 digits. However, since we were not careful in __fp_ln_-
t_small:w, they can have less than 4 digits.

1174

27500 \cs_new:Npn __fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8;
27501 {
27502 \exp_after:wN __fp_ln_square_t_after:w
27503 \int_value:w __fp_int_eval:w 9999 0000 + #3*#3
27504 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
27505 \int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#4
27506 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
27507 \int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4
27508 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
27509 \int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5
27510 \exp_after:wN __fp_ln_square_t_pack:NNNNNw
27511 \int_value:w __fp_int_eval:w
27512 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5
27513 + (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000
27514 % ; ; ;
27515 \exp_after:wN __fp_ln_twice_t_after:w
27516 \int_value:w __fp_int_eval:w -1 + 2*#3
27517 \exp_after:wN __fp_ln_twice_t_pack:Nw
27518 \int_value:w __fp_int_eval:w 9999 + 2*#4
27519 \exp_after:wN __fp_ln_twice_t_pack:Nw
27520 \int_value:w __fp_int_eval:w 9999 + 2*#5
27521 \exp_after:wN __fp_ln_twice_t_pack:Nw
27522 \int_value:w __fp_int_eval:w 9999 + 2*#6
27523 \exp_after:wN __fp_ln_twice_t_pack:Nw
27524 \int_value:w __fp_int_eval:w 9999 + 2*#7
27525 \exp_after:wN __fp_ln_twice_t_pack:Nw
27526 \int_value:w __fp_int_eval:w 10000 + 2*#8 ; ;
27527 { __fp_ln_c:NwNw #1 }
27528 #2
27529 }
27530 \cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
27531 \cs_new:Npn __fp_ln_twice_t_after:w #1; { ;;; {#1} }
27532 \cs_new:Npn __fp_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6;
27533 { + #1#2#3#4#5 ; {#6} }
27534 \cs_new:Npn __fp_ln_square_t_after:w 1 0 #1#2#3 #4;
27535 { __fp_ln_Taylor:wwNw {0#1#2#3} {#4} }

(End of definition for __fp_ln_x_ii:wnnnn.)

__fp_ln_Taylor:wwNw Denoting T = t2, we get

__fp_ln_Taylor:wwNw
{⟨T1⟩} {⟨T2⟩} {⟨T3⟩} {⟨T4⟩} {⟨T5⟩} {⟨T6⟩} ; ;
{⟨(2t)1⟩} {⟨(2t)2⟩} {⟨(2t)3⟩} {⟨(2t)4⟩} {⟨(2t)5⟩} {⟨(2t)6⟩} ;
{ __fp_ln_c:NwNw ⟨sign⟩ }
⟨fixed tl⟩ ⟨exponent⟩ ; ⟨continuation⟩

And we want to compute

ln
(

1 + t

1 − t

)
= 2t

(
1 + T

(
1
3 + T

(
1
5 + T

(
1
7 + T

(
1
9 + · · ·

)))))
The process looks as follows

1175

\loop 5; A;
\div_int 5; 1.0; \add A; \mul T; {\loop \eval 5-2;}
\add 0.2; A; \mul T; {\loop \eval 5-2;}
\mul B; T; {\loop 3;}
\loop 3; C;

This uses the routine for dividing a number by a small integer (< 104).
27536 \cs_new:Npn __fp_ln_Taylor:wwNw
27537 { __fp_ln_Taylor_loop:www 21 ; {0000}{0000}{0000}{0000}{0000}{0000} ; }
27538 \cs_new:Npn __fp_ln_Taylor_loop:www #1; #2; #3;
27539 {
27540 \if_int_compare:w #1 = \c_one_int
27541 __fp_ln_Taylor_break:w
27542 \fi:
27543 \exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl #1;
27544 __fp_fixed_add:wwn #2;
27545 __fp_fixed_mul:wwn #3;
27546 {
27547 \exp_after:wN __fp_ln_Taylor_loop:www
27548 \int_value:w __fp_int_eval:w #1 - 2 ;
27549 }
27550 #3;
27551 }
27552 \cs_new:Npn __fp_ln_Taylor_break:w \fi: #1 __fp_fixed_add:wwn #2#3; #4 ;;
27553 {
27554 \fi:
27555 \exp_after:wN __fp_fixed_mul:wwn
27556 \exp_after:wN { \int_value:w __fp_int_eval:w 10000 + #2 } #3;
27557 }

(End of definition for __fp_ln_Taylor:wwNw.)

__fp_ln_c:NwNw
__fp_ln_c:NwNw ⟨sign⟩

{⟨r1⟩} {⟨r2⟩} {⟨r3⟩} {⟨r4⟩} {⟨r5⟩} {⟨r6⟩} ;
⟨fixed tl⟩ ⟨exponent⟩ ; ⟨continuation⟩

We are now reduced to finding ln(c) and ⟨exponent⟩ ln(10) in a table, and adding it
to the mixture. The first step is to get ln(c) − ln(x) = − ln(a), then we get b ln(10) and
add or subtract.

For now, ln(x) is given as ·100. Unless both the exponent is 1 and c = 1, we shift to
working in units of ·104, since the final result is at least ln(10/7) ≃ 0.35.

27558 \cs_new:Npn __fp_ln_c:NwNw #1 #2; #3
27559 {
27560 \if_meaning:w + #1
27561 \exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_sub:wwn
27562 \else:
27563 \exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_add:wwn
27564 \fi:
27565 #3 #2 ;
27566 }

(End of definition for __fp_ln_c:NwNw.)

1176

__fp_ln_exponent:wn
__fp_ln_exponent:wn
{⟨s1⟩} {⟨s2⟩} {⟨s3⟩} {⟨s4⟩} {⟨s5⟩} {⟨s6⟩} ;
{⟨exponent⟩}

Compute ⟨exponent⟩ times ln(10). Apart from the cases where ⟨exponent⟩ is 0 or
1, the result is necessarily at least ln(10) ≃ 2.3 in magnitude. We can thus drop the least
significant 4 digits. In the case of a very large (positive or negative) exponent, we can
(and we need to) drop 4 additional digits, since the result is of order 104. Naively, one
would think that in both cases we can drop 4 more digits than we do, but that would
be slightly too tight for rounding to happen correctly. Besides, we already have addition
and subtraction for 24 digits fixed point numbers.

27567 \cs_new:Npn __fp_ln_exponent:wn #1; #2
27568 {
27569 \if_case:w #2 \exp_stop_f:
27570 0 __fp_case_return:nw { __fp_fixed_to_float_o:Nw 2 }
27571 \or:
27572 \exp_after:wN __fp_ln_exponent_one:ww \int_value:w
27573 \else:
27574 \if_int_compare:w #2 > \c_zero_int
27575 \exp_after:wN __fp_ln_exponent_small:NNww
27576 \exp_after:wN 0
27577 \exp_after:wN __fp_fixed_sub:wwn \int_value:w
27578 \else:
27579 \exp_after:wN __fp_ln_exponent_small:NNww
27580 \exp_after:wN 2
27581 \exp_after:wN __fp_fixed_add:wwn \int_value:w -
27582 \fi:
27583 \fi:
27584 #2; #1;
27585 }

Now we painfully write all the cases.12 No overflow nor underflow can happen, except
when computing ln(1).

27586 \cs_new:Npn __fp_ln_exponent_one:ww 1; #1;
27587 {
27588 0
27589 \exp_after:wN __fp_fixed_sub:wwn \c__fp_ln_x_fixed_tl #1;
27590 __fp_fixed_to_float_o:wN 0
27591 }

For small exponents, we just drop one block of digits, and set the exponent of the log
to 4 (minus any shift coming from leading zeros in the conversion from fixed point to
floating point). Note that here the exponent has been made positive.

27592 \cs_new:Npn __fp_ln_exponent_small:NNww #1#2#3; #4#5#6#7#8#9;
27593 {
27594 4
27595 \exp_after:wN __fp_fixed_mul:wwn
27596 \c__fp_ln_x_fixed_tl
27597 {#3}{0000}{0000}{0000}{0000}{0000} ;
27598 #2
27599 {0000}{#4}{#5}{#6}{#7}{#8};
27600 __fp_fixed_to_float_o:wN #1
27601 }
12Bruno: do rounding.

1177

(End of definition for __fp_ln_exponent:wn.)

76.2 Exponential
76.2.1 Sign, exponent, and special numbers

__fp_exp_o:w

27602 \cs_new:Npn __fp_exp_o:w #1 \s__fp __fp_chk:w #2#3#4; @
27603 {
27604 \if_case:w #2 \exp_stop_f:
27605 __fp_case_return_o:Nw \c_one_fp
27606 \or:
27607 \exp_after:wN __fp_exp_normal_o:w
27608 \or:
27609 \if_meaning:w 0 #3
27610 \exp_after:wN __fp_case_return_o:Nw
27611 \exp_after:wN \c_inf_fp
27612 \else:
27613 \exp_after:wN __fp_case_return_o:Nw
27614 \exp_after:wN \c_zero_fp
27615 \fi:
27616 \or:
27617 __fp_case_return_same_o:w
27618 \fi:
27619 \s__fp __fp_chk:w #2#3#4;
27620 }

(End of definition for __fp_exp_o:w.)

__fp_exp_normal_o:w
__fp_exp_pos_o:Nnwnw
__fp_exp_overflow:NN

27621 \cs_new:Npn __fp_exp_normal_o:w \s__fp __fp_chk:w 1#1
27622 {
27623 \if_meaning:w 0 #1
27624 __fp_exp_pos_o:NNwnw + __fp_fixed_to_float_o:wN
27625 \else:
27626 __fp_exp_pos_o:NNwnw - __fp_fixed_inv_to_float_o:wN
27627 \fi:
27628 }
27629 \cs_new:Npn __fp_exp_pos_o:NNwnw #1#2#3 \fi: #4#5;
27630 {
27631 \fi:
27632 \if_int_compare:w #4 > \c__fp_max_exp_exponent_int
27633 \token_if_eq_charcode:NNTF + #1
27634 { __fp_exp_overflow:NN __fp_overflow:w \c_inf_fp }
27635 { __fp_exp_overflow:NN __fp_underflow:w \c_zero_fp }
27636 \exp:w
27637 \else:
27638 \exp_after:wN __fp_sanitize:Nw
27639 \exp_after:wN 0
27640 \int_value:w #1 __fp_int_eval:w
27641 \if_int_compare:w #4 < \c_zero_int
27642 \exp_after:wN \use_i:nn
27643 \else:

1178

27644 \exp_after:wN \use_ii:nn
27645 \fi:
27646 {
27647 0
27648 __fp_decimate:nNnnnn { - #4 }
27649 __fp_exp_Taylor:Nnnwn
27650 }
27651 {
27652 __fp_decimate:nNnnnn { \c__fp_prec_int - #4 }
27653 __fp_exp_pos_large:NnnNwn
27654 }
27655 #5
27656 {#4}
27657 #1 #2 0
27658 \exp:w
27659 \fi:
27660 \exp_after:wN \exp_end:
27661 }
27662 \cs_new:Npn __fp_exp_overflow:NN #1#2
27663 {
27664 \exp_after:wN \exp_after:wN
27665 \exp_after:wN #1
27666 \exp_after:wN #2
27667 }

(End of definition for __fp_exp_normal_o:w , __fp_exp_pos_o:Nnwnw , and __fp_exp_overflow:NN.)

__fp_exp_Taylor:Nnnwn
__fp_exp_Taylor_loop:www
__fp_exp_Taylor_break:Nww

This function is called for numbers in the range [10−9, 10−1). We compute 10 terms of
the Taylor series. The first argument is irrelevant (rounding digit used by some other
functions). The next three arguments, at least 16 digits, delimited by a semicolon, form
a fixed point number, so we pack it in blocks of 4 digits.

27668 \cs_new:Npn __fp_exp_Taylor:Nnnwn #1#2#3 #4; #5 #6
27669 {
27670 #6
27671 __fp_pack_twice_four:wNNNNNNNN
27672 __fp_pack_twice_four:wNNNNNNNN
27673 __fp_pack_twice_four:wNNNNNNNN
27674 __fp_exp_Taylor_ii:ww
27675 ; #2#3#4 0000 0000 ;
27676 }
27677 \cs_new:Npn __fp_exp_Taylor_ii:ww #1; #2;
27678 { __fp_exp_Taylor_loop:www 10 ; #1 ; #1 ; \s__fp_stop }
27679 \cs_new:Npn __fp_exp_Taylor_loop:www #1; #2; #3;
27680 {
27681 \if_int_compare:w #1 = \c_one_int
27682 \exp_after:wN __fp_exp_Taylor_break:Nww
27683 \fi:
27684 __fp_fixed_div_int:wwN #3 ; #1 ;
27685 __fp_fixed_add_one:wN
27686 __fp_fixed_mul:wwn #2 ;
27687 {
27688 \exp_after:wN __fp_exp_Taylor_loop:www
27689 \int_value:w __fp_int_eval:w #1 - 1 ;
27690 #2 ;

1179

27691 }
27692 }
27693 \cs_new:Npn __fp_exp_Taylor_break:Nww #1 #2; #3 \s__fp_stop
27694 { __fp_fixed_add_one:wN #2 ; }

(End of definition for __fp_exp_Taylor:Nnnwn , __fp_exp_Taylor_loop:www , and __fp_exp_Taylor_-
break:Nww.)

\c__fp_exp_intarray The integer array has 6 × 9 × 4 = 216 items encoding the values of exp(j × 10i) for
j = 1, . . . , 9 and i = −1, . . . , 4. Each value is expressed as ≃ 10p × 0.m1m2m3 with
three 8-digit blocks m1, m2, m3 and an integer exponent p (one more than the scientific
exponent), and these are stored in the integer array as four items: p, 108 + m1, 108 + m2,
108 + m3. The various exponentials are stored in increasing order of j × 10i.

Storing this data in an integer array makes it slightly harder to access (slower, too),
but uses 16 bytes of memory per exponential stored, while storing as tokens used around
40 tokens; tokens have an especially large footprint in Unicode-aware engines.

27695 \intarray_const_from_clist:Nn \c__fp_exp_intarray
27696 {
27697 1 , 1 1105 1709 , 1 1807 5647 , 1 6248 1171 ,
27698 1 , 1 1221 4027 , 1 5816 0169 , 1 8339 2107 ,
27699 1 , 1 1349 8588 , 1 0757 6003 , 1 1039 8374 ,
27700 1 , 1 1491 8246 , 1 9764 1270 , 1 3178 2485 ,
27701 1 , 1 1648 7212 , 1 7070 0128 , 1 1468 4865 ,
27702 1 , 1 1822 1188 , 1 0039 0508 , 1 9748 7537 ,
27703 1 , 1 2013 7527 , 1 0747 0476 , 1 5216 2455 ,
27704 1 , 1 2225 5409 , 1 2849 2467 , 1 6045 7954 ,
27705 1 , 1 2459 6031 , 1 1115 6949 , 1 6638 0013 ,
27706 1 , 1 2718 2818 , 1 2845 9045 , 1 2353 6029 ,
27707 1 , 1 7389 0560 , 1 9893 0650 , 1 2272 3043 ,
27708 2 , 1 2008 5536 , 1 9231 8766 , 1 7740 9285 ,
27709 2 , 1 5459 8150 , 1 0331 4423 , 1 9078 1103 ,
27710 3 , 1 1484 1315 , 1 9102 5766 , 1 0342 1116 ,
27711 3 , 1 4034 2879 , 1 3492 7351 , 1 2260 8387 ,
27712 4 , 1 1096 6331 , 1 5842 8458 , 1 5992 6372 ,
27713 4 , 1 2980 9579 , 1 8704 1728 , 1 2747 4359 ,
27714 4 , 1 8103 0839 , 1 2757 5384 , 1 0077 1000 ,
27715 5 , 1 2202 6465 , 1 7948 0671 , 1 6516 9579 ,
27716 9 , 1 4851 6519 , 1 5409 7902 , 1 7796 9107 ,
27717 14 , 1 1068 6474 , 1 5815 2446 , 1 2146 9905 ,
27718 18 , 1 2353 8526 , 1 6837 0199 , 1 8540 7900 ,
27719 22 , 1 5184 7055 , 1 2858 7072 , 1 4640 8745 ,
27720 27 , 1 1142 0073 , 1 8981 5684 , 1 2836 6296 ,
27721 31 , 1 2515 4386 , 1 7091 9167 , 1 0062 6578 ,
27722 35 , 1 5540 6223 , 1 8439 3510 , 1 0525 7117 ,
27723 40 , 1 1220 4032 , 1 9431 7840 , 1 8020 0271 ,
27724 44 , 1 2688 1171 , 1 4181 6135 , 1 4484 1263 ,
27725 87 , 1 7225 9737 , 1 6812 5749 , 1 2581 7748 ,
27726 131 , 1 1942 4263 , 1 9524 1255 , 1 9365 8421 ,
27727 174 , 1 5221 4696 , 1 8976 4143 , 1 9505 8876 ,
27728 218 , 1 1403 5922 , 1 1785 2837 , 1 4107 3977 ,
27729 261 , 1 3773 0203 , 1 0092 9939 , 1 8234 0143 ,
27730 305 , 1 1014 2320 , 1 5473 5004 , 1 5094 5533 ,
27731 348 , 1 2726 3745 , 1 7211 2566 , 1 5673 6478 ,
27732 391 , 1 7328 8142 , 1 2230 7421 , 1 7051 8866 ,

1180

27733 435 , 1 1970 0711 , 1 1401 7046 , 1 9938 8888 ,
27734 869 , 1 3881 1801 , 1 9428 4368 , 1 5764 8232 ,
27735 1303 , 1 7646 2009 , 1 8905 4704 , 1 8893 1073 ,
27736 1738 , 1 1506 3559 , 1 7005 0524 , 1 9009 7592 ,
27737 2172 , 1 2967 6283 , 1 8402 3667 , 1 0689 6630 ,
27738 2606 , 1 5846 4389 , 1 5650 2114 , 1 7278 5046 ,
27739 3041 , 1 1151 7900 , 1 5080 6878 , 1 2914 4154 ,
27740 3475 , 1 2269 1083 , 1 0850 6857 , 1 8724 4002 ,
27741 3909 , 1 4470 3047 , 1 3316 5442 , 1 6408 6591 ,
27742 4343 , 1 8806 8182 , 1 2566 2921 , 1 5872 6150 ,
27743 8686 , 1 7756 0047 , 1 2598 6861 , 1 0458 3204 ,
27744 13029 , 1 6830 5723 , 1 7791 4884 , 1 1932 7351 ,
27745 17372 , 1 6015 5609 , 1 3095 3052 , 1 3494 7574 ,
27746 21715 , 1 5297 7951 , 1 6443 0315 , 1 3251 3576 ,
27747 26058 , 1 4665 6719 , 1 0099 3379 , 1 5527 2929 ,
27748 30401 , 1 4108 9724 , 1 3326 3186 , 1 5271 5665 ,
27749 34744 , 1 3618 6973 , 1 3140 0875 , 1 3856 4102 ,
27750 39087 , 1 3186 9209 , 1 6113 3900 , 1 6705 9685 ,
27751 }

(End of definition for \c__fp_exp_intarray.)

__fp_exp_pos_large:NnnNwn
__fp_exp_large_after:wwn

__fp_exp_large:NwN
__fp_exp_intarray:w

__fp_exp_intarray_aux:w

The first two arguments are irrelevant (a rounding digit, and a brace group with 8 zeros).
The third argument is the integer part of our number, then we have the decimal part
delimited by a semicolon, and finally the exponent, in the range [0, 5]. Remove leading
zeros from the integer part: putting #4 in there too ensures that an integer part of 0 is also
removed. Then read digits one by one, looking up exp(⟨digit⟩ · 10⟨exponent⟩) in a table,
and multiplying that to the current total. The loop is done by __fp_exp_large:NwN,
whose #1 is the ⟨exponent⟩, #2 is the current mantissa, and #3 is the ⟨digit⟩. At the
end, __fp_exp_large_after:wwn moves on to the Taylor series, eventually multiplied
with the mantissa that we have just computed.

27752 \cs_new:Npn __fp_exp_pos_large:NnnNwn #1#2#3 #4#5; #6
27753 {
27754 \exp_after:wN \exp_after:wN \exp_after:wN __fp_exp_large:NwN
27755 \exp_after:wN \exp_after:wN \exp_after:wN #6
27756 \exp_after:wN \c__fp_one_fixed_tl
27757 \int_value:w #3 #4 \exp_stop_f:
27758 #5 00000 ;
27759 }
27760 \cs_new:Npn __fp_exp_large:NwN #1#2; #3
27761 {
27762 \if_case:w #3 ~
27763 \exp_after:wN __fp_fixed_continue:wn
27764 \else:
27765 \exp_after:wN __fp_exp_intarray:w
27766 \int_value:w __fp_int_eval:w 36 * #1 + 4 * #3 \exp_after:wN ;
27767 \fi:
27768 #2;
27769 {
27770 \if_meaning:w 0 #1
27771 \exp_after:wN __fp_exp_large_after:wwn
27772 \else:
27773 \exp_after:wN __fp_exp_large:NwN
27774 \int_value:w __fp_int_eval:w #1 - 1 \exp_after:wN \scan_stop:

1181

27775 \fi:
27776 }
27777 }
27778 \cs_new:Npn __fp_exp_intarray:w #1 ;
27779 {
27780 +
27781 __kernel_intarray_item:Nn \c__fp_exp_intarray
27782 { __fp_int_eval:w #1 - 3 \scan_stop: }
27783 \exp_after:wN \use_i:nnn
27784 \exp_after:wN __fp_fixed_mul:wwn
27785 \int_value:w 0
27786 \exp_after:wN __fp_exp_intarray_aux:w
27787 \int_value:w __kernel_intarray_item:Nn
27788 \c__fp_exp_intarray { __fp_int_eval:w #1 - 2 }
27789 \exp_after:wN __fp_exp_intarray_aux:w
27790 \int_value:w __kernel_intarray_item:Nn
27791 \c__fp_exp_intarray { __fp_int_eval:w #1 - 1 }
27792 \exp_after:wN __fp_exp_intarray_aux:w
27793 \int_value:w __kernel_intarray_item:Nn \c__fp_exp_intarray {#1} ; ;
27794 }
27795 \cs_new:Npn __fp_exp_intarray_aux:w 1 #1#2#3#4#5 ; { ; {#1#2#3#4} {#5} }
27796 \cs_new:Npn __fp_exp_large_after:wwn #1; #2; #3
27797 {
27798 __fp_exp_Taylor:Nnnwn ? { } { } 0 #2; {} #3
27799 __fp_fixed_mul:wwn #1;
27800 }

(End of definition for __fp_exp_pos_large:NnnNwn and others.)

76.3 Power
Raising a number a to a power b leads to many distinct situations.

ab −∞ (−∞, −0) −integer ±0 +integer (0, ∞) +∞ nan
+∞ +0 +0 +1 +∞ +∞ nan

(1, ∞) +0 +|a|b +1 +|a|b +∞ nan
+1 +1 +1 +1 +1 +1 +1

(0, 1) +∞ +|a|b +1 +|a|b +0 nan
+0 +∞ +∞ +1 +0 +0 nan
−0 +∞ nan (−1)b∞ +1 (−1)b0 +0 +0 nan

(−1, 0) +∞ nan (−1)b|a|b +1 (−1)b|a|b nan +0 nan
−1 +1 nan (−1)b +1 (−1)b nan +1 nan

(−∞, −1) +0 nan (−1)b|a|b +1 (−1)b|a|b nan +∞ nan
−∞ +0 +0 (−1)b0 +1 (−1)b∞ nan +∞ nan
nan nan nan nan +1 nan nan nan nan

We distinguished in this table the cases of finite (positive or negative) integer exponents,
as (−1)b is defined in that case. One peculiarity of this operation is that nan0 = 1nan = 1,
because this relation is obeyed for any number, even ±∞.

__fp_^_o:ww We cram most of the tests into a single function to save csnames. First treat the case
b = 0: a0 = 1 for any a, even nan. Then test the sign of a.

1182

• If it is positive, and a is a normal number, call __fp_pow_normal_o:ww followed
by the two fp a and b. For a = +0 or + inf, call __fp_pow_zero_or_inf:ww
instead, to return either +0 or +∞ as appropriate.

• If a is a nan, then skip to the next semicolon (which happens to be conveniently
the end of b) and return nan.

• Finally, if a is negative, compute ab (__fp_pow_normal_o:ww which ignores the
sign of its first operand), and keep an extra copy of a and b (the second brace group,
containing { b a }, is inserted between a and b). Then do some tests to find the
final sign of the result if it exists.

27801 \cs_new:cpn { __fp_ \iow_char:N \^ _o:ww }
27802 \s__fp __fp_chk:w #1#2#3; \s__fp __fp_chk:w #4#5#6;
27803 {
27804 \if_meaning:w 0 #4
27805 __fp_case_return_o:Nw \c_one_fp
27806 \fi:
27807 \if_case:w #2 \exp_stop_f:
27808 \exp_after:wN \use_i:nn
27809 \or:
27810 __fp_case_return_o:Nw \c_nan_fp
27811 \else:
27812 \exp_after:wN __fp_pow_neg:www
27813 \exp:w \exp_end_continue_f:w \exp_after:wN \use:nn
27814 \fi:
27815 {
27816 \if_meaning:w 1 #1
27817 \exp_after:wN __fp_pow_normal_o:ww
27818 \else:
27819 \exp_after:wN __fp_pow_zero_or_inf:ww
27820 \fi:
27821 \s__fp __fp_chk:w #1#2#3;
27822 }
27823 { \s__fp __fp_chk:w #4#5#6; \s__fp __fp_chk:w #1#2#3; }
27824 \s__fp __fp_chk:w #4#5#6;
27825 }

(End of definition for __fp_^_o:ww.)

__fp_pow_zero_or_inf:ww Raising −0 or −∞ to nan yields nan. For other powers, the result is +0 if 0 is raised to
a positive power or ∞ to a negative power, and +∞ otherwise. Thus, if the type of a
and the sign of b coincide, the result is 0, since those conveniently take the same possible
values, 0 and 2. Otherwise, either a = ±∞ and b > 0 and the result is +∞, or a = ±0
with b < 0 and we have a division by zero unless b = −∞.

27826 \cs_new:Npn __fp_pow_zero_or_inf:ww
27827 \s__fp __fp_chk:w #1#2; \s__fp __fp_chk:w #3#4
27828 {
27829 \if_meaning:w 1 #4
27830 __fp_case_return_same_o:w
27831 \fi:
27832 \if_meaning:w #1 #4
27833 __fp_case_return_o:Nw \c_zero_fp
27834 \fi:

1183

27835 \if_meaning:w 2 #1
27836 __fp_case_return_o:Nw \c_inf_fp
27837 \fi:
27838 \if_meaning:w 2 #3
27839 __fp_case_return_o:Nw \c_inf_fp
27840 \else:
27841 __fp_case_use:nw
27842 {
27843 __fp_division_by_zero_o:NNww \c_inf_fp ^
27844 \s__fp __fp_chk:w #1 #2 ;
27845 }
27846 \fi:
27847 \s__fp __fp_chk:w #3#4
27848 }

(End of definition for __fp_pow_zero_or_inf:ww.)

__fp_pow_normal_o:ww We have in front of us a, and b ̸= 0, we know that a is a normal number, and we wish to
compute |a|b. If |a| = 1, we return 1, unless a = −1 and b is nan. Indeed, returning 1 at
this point would wrongly raise “invalid” when the sign is considered. If |a| ≠ 1, test the
type of b:

0 Impossible, we already filtered b = ±0.

1 Call __fp_pow_npos_o:Nww.

2 Return +∞ or +0 depending on the sign of b and whether the exponent of a is
positive or not.

3 Return b.

27849 \cs_new:Npn __fp_pow_normal_o:ww
27850 \s__fp __fp_chk:w 1 #1#2#3; \s__fp __fp_chk:w #4#5
27851 {
27852 \if:w 0 __fp_str_if_eq:nn { #2 #3 } { 1 {1000} {0000} {0000} {0000} }
27853 \if_int_compare:w #4 #1 = 32 \exp_stop_f:
27854 \exp_after:wN __fp_case_return_ii_o:ww
27855 \fi:
27856 __fp_case_return_o:Nww \c_one_fp
27857 \fi:
27858 \if_case:w #4 \exp_stop_f:
27859 \or:
27860 \exp_after:wN __fp_pow_npos_o:Nww
27861 \exp_after:wN #5
27862 \or:
27863 \if_meaning:w 2 #5 \exp_after:wN \reverse_if:N \fi:
27864 \if_int_compare:w #2 > \c_zero_int
27865 \exp_after:wN __fp_case_return_o:Nww
27866 \exp_after:wN \c_inf_fp
27867 \else:
27868 \exp_after:wN __fp_case_return_o:Nww
27869 \exp_after:wN \c_zero_fp
27870 \fi:
27871 \or:
27872 __fp_case_return_ii_o:ww

1184

27873 \fi:
27874 \s__fp __fp_chk:w 1 #1 {#2} #3 ;
27875 \s__fp __fp_chk:w #4 #5
27876 }

(End of definition for __fp_pow_normal_o:ww.)

__fp_pow_npos_o:Nww We now know that a ̸= ±1 is a normal number, and b is a normal number too. We want
to compute |a|b = (|x| · 10n)y·10p = exp((ln|x| + n ln(10)) · y · 10p) = exp(z). To compute
the exponential accurately, we need to know the digits of z up to the 16-th position. Since
the exponential of 105 is infinite, we only need at most 21 digits, hence the fixed point
result of __fp_ln_o:w is precise enough for our needs. Start an integer expression for
the decimal exponent of e|z|. If z is negative, negate that decimal exponent, and prepare
to take the inverse when converting from the fixed point to the floating point result.

27877 \cs_new:Npn __fp_pow_npos_o:Nww #1 \s__fp __fp_chk:w 1#2#3
27878 {
27879 \exp_after:wN __fp_sanitize:Nw
27880 \exp_after:wN 0
27881 \int_value:w
27882 \if:w #1 \if_int_compare:w #3 > \c_zero_int 0 \else: 2 \fi:
27883 \exp_after:wN __fp_pow_npos_aux:NNnww
27884 \exp_after:wN +
27885 \exp_after:wN __fp_fixed_to_float_o:wN
27886 \else:
27887 \exp_after:wN __fp_pow_npos_aux:NNnww
27888 \exp_after:wN -
27889 \exp_after:wN __fp_fixed_inv_to_float_o:wN
27890 \fi:
27891 {#3}
27892 }

(End of definition for __fp_pow_npos_o:Nww.)

__fp_pow_npos_aux:NNnww The first argument is the conversion function from fixed point to float. Then comes an
exponent and the 4 brace groups of x, followed by b. Compute − ln(x).

27893 \cs_new:Npn __fp_pow_npos_aux:NNnww #1#2#3#4#5; \s__fp __fp_chk:w 1#6#7#8;
27894 {
27895 #1
27896 __fp_int_eval:w
27897 __fp_ln_significand:NNNNnnnN #4#5
27898 __fp_pow_exponent:wnN {#3}
27899 __fp_fixed_mul:wwn #8 {0000}{0000} ;
27900 __fp_pow_B:wwN #7;
27901 #1 #2 0 % fixed_to_float_o:wN
27902 }
27903 \cs_new:Npn __fp_pow_exponent:wnN #1; #2
27904 {
27905 \if_int_compare:w #2 > \c_zero_int
27906 \exp_after:wN __fp_pow_exponent:Nwnnnnnw % n\ln(10) - (-\ln(x))
27907 \exp_after:wN +
27908 \else:
27909 \exp_after:wN __fp_pow_exponent:Nwnnnnnw % -(|n|\ln(10) + (-\ln(x)))
27910 \exp_after:wN -
27911 \fi:

1185

27912 #2; #1;
27913 }
27914 \cs_new:Npn __fp_pow_exponent:Nwnnnnnw #1#2; #3#4#5#6#7#8;
27915 { %^^A todo: use that in ln.
27916 \exp_after:wN __fp_fixed_mul_after:wwn
27917 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
27918 \exp_after:wN __fp_pack:NNNNNw
27919 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27920 #1#2*23025 - #1 #3
27921 \exp_after:wN __fp_pack:NNNNNw
27922 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27923 #1 #2*8509 - #1 #4
27924 \exp_after:wN __fp_pack:NNNNNw
27925 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27926 #1 #2*2994 - #1 #5
27927 \exp_after:wN __fp_pack:NNNNNw
27928 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
27929 #1 #2*0456 - #1 #6
27930 \exp_after:wN __fp_pack:NNNNNw
27931 \int_value:w __fp_int_eval:w \c__fp_trailing_shift_int
27932 #1 #2*8401 - #1 #7
27933 #1 (#2*7991 - #8) / 1 0000 ; ;
27934 }
27935 \cs_new:Npn __fp_pow_B:wwN #1#2#3#4#5#6; #7;
27936 {
27937 \if_int_compare:w #7 < \c_zero_int
27938 \exp_after:wN __fp_pow_C_neg:w \int_value:w -
27939 \else:
27940 \if_int_compare:w #7 < 22 \exp_stop_f:
27941 \exp_after:wN __fp_pow_C_pos:w \int_value:w
27942 \else:
27943 \exp_after:wN __fp_pow_C_overflow:w \int_value:w
27944 \fi:
27945 \fi:
27946 #7 \exp_after:wN ;
27947 \int_value:w __fp_int_eval:w 10 0000 + #1 __fp_int_eval_end:
27948 #2#3#4#5#6 0000 0000 0000 0000 0000 0000 ; %^^A todo: how many 0?
27949 }
27950 \cs_new:Npn __fp_pow_C_overflow:w #1; #2; #3
27951 {
27952 + 2 * \c__fp_max_exponent_int
27953 \exp_after:wN __fp_fixed_continue:wn \c__fp_one_fixed_tl
27954 }
27955 \cs_new:Npn __fp_pow_C_neg:w #1 ; 1
27956 {
27957 \exp_after:wN \exp_after:wN \exp_after:wN __fp_pow_C_pack:w
27958 \prg_replicate:nn {#1} {0}
27959 }
27960 \cs_new:Npn __fp_pow_C_pos:w #1; 1
27961 { __fp_pow_C_pos_loop:wN #1; }
27962 \cs_new:Npn __fp_pow_C_pos_loop:wN #1; #2
27963 {
27964 \if_meaning:w 0 #1
27965 \exp_after:wN __fp_pow_C_pack:w

1186

27966 \exp_after:wN #2
27967 \else:
27968 \if_meaning:w 0 #2
27969 \exp_after:wN __fp_pow_C_pos_loop:wN \int_value:w
27970 \else:
27971 \exp_after:wN __fp_pow_C_overflow:w \int_value:w
27972 \fi:
27973 __fp_int_eval:w #1 - 1 \exp_after:wN ;
27974 \fi:
27975 }
27976 \cs_new:Npn __fp_pow_C_pack:w
27977 {
27978 \exp_after:wN __fp_exp_large:NwN
27979 \exp_after:wN 5
27980 \c__fp_one_fixed_tl
27981 }

(End of definition for __fp_pow_npos_aux:NNnww.)

__fp_pow_neg:www
__fp_pow_neg_aux:wNN

This function is followed by three floating point numbers: ab, a ∈ [−∞, −0], and b. If b is
an even integer (case −1), ab = ab. If b is an odd integer (case 0), ab = −ab, obtained by a
call to __fp_pow_neg_aux:wNN. Otherwise, the sign is undefined. This is invalid, unless
ab turns out to be +0 or nan, in which case we return that as ab. In particular, since the
underflow detection occurs before __fp_pow_neg:www is called, (-0.1)**(12345.67)
gives +0 rather than complaining that the sign is not defined.

27982 \cs_new:Npn __fp_pow_neg:www \s__fp __fp_chk:w #1#2; #3; #4;
27983 {
27984 \if_case:w __fp_pow_neg_case:w #4 ;
27985 \exp_after:wN __fp_pow_neg_aux:wNN
27986 \or:
27987 \if_int_compare:w __fp_int_eval:w #1 / 2 = \c_one_int
27988 __fp_invalid_operation_o:Nww ^ #3; #4;
27989 \exp:w \exp_end_continue_f:w
27990 \exp_after:wN \exp_after:wN
27991 \exp_after:wN __fp_use_none_until_s:w
27992 \fi:
27993 \fi:
27994 __fp_exp_after_o:w
27995 \s__fp __fp_chk:w #1#2;
27996 }
27997 \cs_new:Npn __fp_pow_neg_aux:wNN #1 \s__fp __fp_chk:w #2#3
27998 {
27999 \exp_after:wN __fp_exp_after_o:w
28000 \exp_after:wN \s__fp
28001 \exp_after:wN __fp_chk:w
28002 \exp_after:wN #2
28003 \int_value:w __fp_int_eval:w 2 - #3 __fp_int_eval_end:
28004 }

(End of definition for __fp_pow_neg:www and __fp_pow_neg_aux:wNN.)

__fp_pow_neg_case:w
__fp_pow_neg_case_aux:nnnnn
__fp_pow_neg_case_aux:Nnnw

This function expects a floating point number, and determines its “parity”. It should
be used after \if_case:w or in an integer expression. It gives −1 if the number is an
even integer, 0 if the number is an odd integer, and 1 otherwise. Zeros and ±∞ are even

1187

(because very large finite floating points are even), while nan is a non-integer. The sign
of normal numbers is irrelevant to parity. After __fp_decimate:nNnnnn the argument
#1 of __fp_pow_neg_case_aux:Nnnw is a rounding digit, 0 if and only if the number
was an integer, and #3 is the 8 least significant digits of that integer.

28005 \cs_new:Npn __fp_pow_neg_case:w \s__fp __fp_chk:w #1#2#3;
28006 {
28007 \if_case:w #1 \exp_stop_f:
28008 -1
28009 \or: __fp_pow_neg_case_aux:nnnnn #3
28010 \or: -1
28011 \else: 1
28012 \fi:
28013 \exp_stop_f:
28014 }
28015 \cs_new:Npn __fp_pow_neg_case_aux:nnnnn #1#2#3#4#5
28016 {
28017 \if_int_compare:w #1 > \c__fp_prec_int
28018 -1
28019 \else:
28020 __fp_decimate:nNnnnn { \c__fp_prec_int - #1 }
28021 __fp_pow_neg_case_aux:Nnnw
28022 {#2} {#3} {#4} {#5}
28023 \fi:
28024 }
28025 \cs_new:Npn __fp_pow_neg_case_aux:Nnnw #1#2#3#4 ;
28026 {
28027 \if_meaning:w 0 #1
28028 \if_int_odd:w #3 \exp_stop_f:
28029 0
28030 \else:
28031 -1
28032 \fi:
28033 \else:
28034 1
28035 \fi:
28036 }

(End of definition for __fp_pow_neg_case:w , __fp_pow_neg_case_aux:nnnnn , and __fp_pow_neg_-
case_aux:Nnnw.)

76.4 Factorial
\c__fp_fact_max_arg_int The maximum integer whose factorial fits in the exponent range is 3248, as 3249! ∼

1010000.8

28037 \int_const:Nn \c__fp_fact_max_arg_int { 3248 }

(End of definition for \c__fp_fact_max_arg_int.)

__fp_fact_o:w First detect ±0 and +∞ and nan. Then note that factorial of anything with a negative
sign (except −0) is undefined. Then call __fp_small_int:wTF to get an integer as the
argument, and start a loop. This is not the most efficient way of computing the factorial,
but it works all right. Of course we work with 24 digits instead of 16. It is easy to check
that computing factorials with this precision is enough.

1188

28038 \cs_new:Npn __fp_fact_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28039 {
28040 \if_case:w #2 \exp_stop_f:
28041 __fp_case_return_o:Nw \c_one_fp
28042 \or:
28043 \or:
28044 \if_meaning:w 0 #3
28045 \exp_after:wN __fp_case_return_same_o:w
28046 \fi:
28047 \or:
28048 __fp_case_return_same_o:w
28049 \fi:
28050 \if_meaning:w 2 #3
28051 __fp_case_use:nw { __fp_invalid_operation_o:fw { fact } }
28052 \fi:
28053 __fp_fact_pos_o:w
28054 \s__fp __fp_chk:w #2 #3 #4 ;
28055 }

(End of definition for __fp_fact_o:w.)

__fp_fact_pos_o:w
__fp_fact_int_o:w

Then check the input is an integer, and call __fp_facorial_int_o:n with that int as
an argument. If it’s too big the factorial overflows. Otherwise call __fp_sanitize:Nw
with a positive sign marker 0 and an integer expression that will mop up any exponent
in the calculation.

28056 \cs_new:Npn __fp_fact_pos_o:w #1;
28057 {
28058 __fp_small_int:wTF #1;
28059 { __fp_fact_int_o:n }
28060 { __fp_invalid_operation_o:fw { fact } #1; }
28061 }
28062 \cs_new:Npn __fp_fact_int_o:n #1
28063 {
28064 \if_int_compare:w #1 > \c__fp_fact_max_arg_int
28065 __fp_case_return:nw
28066 {
28067 \exp_after:wN \exp_after:wN \exp_after:wN __fp_overflow:w
28068 \exp_after:wN \c_inf_fp
28069 }
28070 \fi:
28071 \exp_after:wN __fp_sanitize:Nw
28072 \exp_after:wN 0
28073 \int_value:w __fp_int_eval:w
28074 __fp_fact_loop_o:w #1 . 4 , { 1 } { } { } { } { } { } ;
28075 }

(End of definition for __fp_fact_pos_o:w and __fp_fact_int_o:w.)

__fp_fact_loop_o:w The loop receives an integer #1 whose factorial we want to compute, which we progres-
sively decrement, and the result so far as an extended-precision number #2 in the form
⟨exponent⟩,⟨mantissa⟩;. The loop goes in steps of two because we compute #1*#1-1
as an integer expression (it must fit since #1 is at most 3248), then multiply with the
result so far. We don’t need to fill in most of the mantissa with zeros because __fp_-
ep_mul:wwwwn first normalizes the extended precision number to avoid loss of precision.

1189

When reaching a small enough number simply use a table of factorials less than 108. This
limit is chosen because the normalization step cannot deal with larger integers.

28076 \cs_new:Npn __fp_fact_loop_o:w #1 . #2 ;
28077 {
28078 \if_int_compare:w #1 < 12 \exp_stop_f:
28079 __fp_fact_small_o:w #1
28080 \fi:
28081 \exp_after:wN __fp_ep_mul:wwwwn
28082 \exp_after:wN 4 \exp_after:wN ,
28083 \exp_after:wN { \int_value:w __fp_int_eval:w #1 * (#1 - 1) }
28084 { } { } { } { } { } ;
28085 #2 ;
28086 {
28087 \exp_after:wN __fp_fact_loop_o:w
28088 \int_value:w __fp_int_eval:w #1 - 2 .
28089 }
28090 }
28091 \cs_new:Npn __fp_fact_small_o:w #1 \fi: #2 ; #3 ; #4
28092 {
28093 \fi:
28094 \exp_after:wN __fp_ep_mul:wwwwn
28095 \exp_after:wN 4 \exp_after:wN ,
28096 \exp_after:wN
28097 {
28098 \int_value:w
28099 \if_case:w #1 \exp_stop_f:
28100 1 \or: 1 \or: 2 \or: 6 \or: 24 \or: 120 \or: 720 \or: 5040
28101 \or: 40320 \or: 362880 \or: 3628800 \or: 39916800
28102 \fi:
28103 } { } { } { } { } { } ;
28104 #3 ;
28105 __fp_ep_to_float_o:wwN 0
28106 }

(End of definition for __fp_fact_loop_o:w.)

28107 ⟨/package⟩

1190

Chapter 77

l3fp-trig implementation

28108 ⟨∗package⟩

28109 ⟨@@=fp⟩

__fp_parse_word_acos:N
__fp_parse_word_acosd:N
__fp_parse_word_acsc:N

__fp_parse_word_acscd:N
__fp_parse_word_asec:N

__fp_parse_word_asecd:N
__fp_parse_word_asin:N

__fp_parse_word_asind:N
__fp_parse_word_cos:N
__fp_parse_word_cosd:N
__fp_parse_word_cot:N
__fp_parse_word_cotd:N
__fp_parse_word_csc:N
__fp_parse_word_cscd:N
__fp_parse_word_sec:N
__fp_parse_word_secd:N
__fp_parse_word_sin:N
__fp_parse_word_sind:N
__fp_parse_word_tan:N
__fp_parse_word_tand:N

Unary functions.
28110 \tl_map_inline:nn
28111 {
28112 {acos} {acsc} {asec} {asin}
28113 {cos} {cot} {csc} {sec} {sin} {tan}
28114 }
28115 {
28116 \cs_new:cpe { __fp_parse_word_#1:N }
28117 {
28118 \exp_not:N __fp_parse_unary_function:NNN
28119 \exp_not:c { __fp_#1_o:w }
28120 \exp_not:N \use_i:nn
28121 }
28122 \cs_new:cpe { __fp_parse_word_#1d:N }
28123 {
28124 \exp_not:N __fp_parse_unary_function:NNN
28125 \exp_not:c { __fp_#1_o:w }
28126 \exp_not:N \use_ii:nn
28127 }
28128 }

(End of definition for __fp_parse_word_acos:N and others.)

__fp_parse_word_acot:N
__fp_parse_word_acotd:N
__fp_parse_word_atan:N

__fp_parse_word_atand:N

Those functions may receive a variable number of arguments.
28129 \cs_new:Npn __fp_parse_word_acot:N
28130 { __fp_parse_function:NNN __fp_acot_o:Nw \use_i:nn }
28131 \cs_new:Npn __fp_parse_word_acotd:N
28132 { __fp_parse_function:NNN __fp_acot_o:Nw \use_ii:nn }
28133 \cs_new:Npn __fp_parse_word_atan:N
28134 { __fp_parse_function:NNN __fp_atan_o:Nw \use_i:nn }
28135 \cs_new:Npn __fp_parse_word_atand:N
28136 { __fp_parse_function:NNN __fp_atan_o:Nw \use_ii:nn }

(End of definition for __fp_parse_word_acot:N and others.)

1191

77.1 Direct trigonometric functions
The approach for all trigonometric functions (sine, cosine, tangent, cotangent, cosecant,
and secant), with arguments given in radians or in degrees, is the same.

• Filter out special cases (±0, ± inf and nan).

• Keep the sign for later, and work with the absolute value |x| of the argument.

• Small numbers (|x| < 1 in radians, |x| < 10 in degrees) are converted to fixed point
numbers (and to radians if |x| is in degrees).

• For larger numbers, we need argument reduction. Subtract a multiple of π/2 (in
degrees, 90) to bring the number to the range to [0, π/2) (in degrees, [0, 90)).

• Reduce further to [0, π/4] (in degrees, [0, 45]) using sin x = cos(π/2 − x), and when
working in degrees, convert to radians.

• Use the appropriate power series depending on the octant ⌊ x
π/4 ⌋ mod 8 (in degrees,

the same formula with π/4 → 45), the sign, and the function to compute.

77.1.1 Filtering special cases
__fp_sin_o:w This function, and its analogs for cos, csc, sec, tan, and cot instead of sin, are followed

either by \use_i:nn and a float in radians or by \use_ii:nn and a float in degrees.
The sine of ±0 or nan is the same float. The sine of ±∞ raises an invalid operation
exception with the appropriate function name. Otherwise, call the trig function to
perform argument reduction and if necessary convert the reduced argument to radians.
Then, __fp_sin_series_o:NNwwww is called to compute the Taylor series: this function
receives a sign #3, an initial octant of 0, and the function __fp_ep_to_float_o:wwN
which converts the result of the series to a floating point directly rather than taking its
inverse, since sin(x) = #3 sin|x|.

28137 \cs_new:Npn __fp_sin_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28138 {
28139 \if_case:w #2 \exp_stop_f:
28140 __fp_case_return_same_o:w
28141 \or: __fp_case_use:nw
28142 {
28143 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
28144 __fp_ep_to_float_o:wwN #3 0
28145 }
28146 \or: __fp_case_use:nw
28147 { __fp_invalid_operation_o:fw { #1 { sin } { sind } } }
28148 \else: __fp_case_return_same_o:w
28149 \fi:
28150 \s__fp __fp_chk:w #2 #3 #4;
28151 }

(End of definition for __fp_sin_o:w.)

__fp_cos_o:w The cosine of ±0 is 1. The cosine of ±∞ raises an invalid operation exception. The
cosine of nan is itself. Otherwise, the trig function reduces the argument to at most
half a right-angle and converts if necessary to radians. We then call the same series as

1192

for sine, but using a positive sign 0 regardless of the sign of x, and with an initial octant
of 2, because cos(x) = + sin(π/2 + |x|).

28152 \cs_new:Npn __fp_cos_o:w #1 \s__fp __fp_chk:w #2#3; @
28153 {
28154 \if_case:w #2 \exp_stop_f:
28155 __fp_case_return_o:Nw \c_one_fp
28156 \or: __fp_case_use:nw
28157 {
28158 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
28159 __fp_ep_to_float_o:wwN 0 2
28160 }
28161 \or: __fp_case_use:nw
28162 { __fp_invalid_operation_o:fw { #1 { cos } { cosd } } }
28163 \else: __fp_case_return_same_o:w
28164 \fi:
28165 \s__fp __fp_chk:w #2 #3;
28166 }

(End of definition for __fp_cos_o:w.)

__fp_csc_o:w The cosecant of ±0 is ±∞ with the same sign, with a division by zero exception (see
__fp_cot_zero_o:Nfw defined below), which requires the function name. The cosecant
of ±∞ raises an invalid operation exception. The cosecant of nan is itself. Otherwise,
the trig function performs the argument reduction, and converts if necessary to radians
before calling the same series as for sine, using the sign #3, a starting octant of 0, and
inverting during the conversion from the fixed point sine to the floating point result,
because csc(x) = #3

(
sin|x|

)−1.
28167 \cs_new:Npn __fp_csc_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28168 {
28169 \if_case:w #2 \exp_stop_f:
28170 __fp_cot_zero_o:Nfw #3 { #1 { csc } { cscd } }
28171 \or: __fp_case_use:nw
28172 {
28173 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
28174 __fp_ep_inv_to_float_o:wwN #3 0
28175 }
28176 \or: __fp_case_use:nw
28177 { __fp_invalid_operation_o:fw { #1 { csc } { cscd } } }
28178 \else: __fp_case_return_same_o:w
28179 \fi:
28180 \s__fp __fp_chk:w #2 #3 #4;
28181 }

(End of definition for __fp_csc_o:w.)

__fp_sec_o:w The secant of ±0 is 1. The secant of ±∞ raises an invalid operation exception. The
secant of nan is itself. Otherwise, the trig function reduces the argument and turns it
to radians before calling the same series as for sine, using a positive sign 0, a starting
octant of 2, and inverting upon conversion, because sec(x) = +1/ sin(π/2 + |x|).

28182 \cs_new:Npn __fp_sec_o:w #1 \s__fp __fp_chk:w #2#3; @
28183 {
28184 \if_case:w #2 \exp_stop_f:
28185 __fp_case_return_o:Nw \c_one_fp

1193

28186 \or: __fp_case_use:nw
28187 {
28188 __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww
28189 __fp_ep_inv_to_float_o:wwN 0 2
28190 }
28191 \or: __fp_case_use:nw
28192 { __fp_invalid_operation_o:fw { #1 { sec } { secd } } }
28193 \else: __fp_case_return_same_o:w
28194 \fi:
28195 \s__fp __fp_chk:w #2 #3;
28196 }

(End of definition for __fp_sec_o:w.)

__fp_tan_o:w The tangent of ±0 or nan is the same floating point number. The tangent of ±∞
raises an invalid operation exception. Once more, the trig function does the argument
reduction step and conversion to radians before calling __fp_tan_series_o:NNwwww,
with a sign #3 and an initial octant of 1 (this shift is somewhat arbitrary). See __fp_-
cot_o:w for an explanation of the 0 argument.

28197 \cs_new:Npn __fp_tan_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28198 {
28199 \if_case:w #2 \exp_stop_f:
28200 __fp_case_return_same_o:w
28201 \or: __fp_case_use:nw
28202 {
28203 __fp_trig:NNNNNwn #1
28204 __fp_tan_series_o:NNwwww 0 #3 1
28205 }
28206 \or: __fp_case_use:nw
28207 { __fp_invalid_operation_o:fw { #1 { tan } { tand } } }
28208 \else: __fp_case_return_same_o:w
28209 \fi:
28210 \s__fp __fp_chk:w #2 #3 #4;
28211 }

(End of definition for __fp_tan_o:w.)

__fp_cot_o:w
__fp_cot_zero_o:Nfw

The cotangent of ±0 is ±∞ with the same sign, with a division by zero exception (see
__fp_cot_zero_o:Nfw. The cotangent of ±∞ raises an invalid operation exception.
The cotangent of nan is itself. We use cot x = − tan(π/2 + x), and the initial octant
for the tangent was chosen to be 1, so the octant here starts at 3. The change in sign
is obtained by feeding __fp_tan_series_o:NNwwww two signs rather than just the sign
of the argument: the first of those indicates whether we compute tangent or cotangent.
Those signs are eventually combined.

28212 \cs_new:Npn __fp_cot_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28213 {
28214 \if_case:w #2 \exp_stop_f:
28215 __fp_cot_zero_o:Nfw #3 { #1 { cot } { cotd } }
28216 \or: __fp_case_use:nw
28217 {
28218 __fp_trig:NNNNNwn #1
28219 __fp_tan_series_o:NNwwww 2 #3 3
28220 }
28221 \or: __fp_case_use:nw

1194

28222 { __fp_invalid_operation_o:fw { #1 { cot } { cotd } } }
28223 \else: __fp_case_return_same_o:w
28224 \fi:
28225 \s__fp __fp_chk:w #2 #3 #4;
28226 }
28227 \cs_new:Npn __fp_cot_zero_o:Nfw #1#2#3 \fi:
28228 {
28229 \fi:
28230 \token_if_eq_meaning:NNTF 0 #1
28231 { \exp_args:NNf __fp_division_by_zero_o:Nnw \c_inf_fp }
28232 { \exp_args:NNf __fp_division_by_zero_o:Nnw \c_minus_inf_fp }
28233 {#2}
28234 }

(End of definition for __fp_cot_o:w and __fp_cot_zero_o:Nfw.)

77.1.2 Distinguishing small and large arguments
__fp_trig:NNNNNwn The first argument is \use_i:nn if the operand is in radians and \use_ii:nn if it is in

degrees. Arguments #2 to #5 control what trigonometric function we compute, and #6
to #8 are pieces of a normal floating point number. Call the _series function #2, with
arguments #3, either a conversion function (__fp_ep_to_float_o:wN or __fp_ep_-
inv_to_float_o:wN) or a sign 0 or 2 when computing tangent or cotangent; #4, a sign
0 or 2; the octant, computed in an integer expression starting with #5 and stopped by a
period; and a fixed point number obtained from the floating point number by argument
reduction (if necessary) and conversion to radians (if necessary). Any argument reduction
adjusts the octant accordingly by leaving a (positive) shift into its integer expression. Let
us explain the integer comparison. Two of the four \exp_after:wN are expanded, the
expansion hits the test, which is true if the float is at least 1 when working in radians,
and at least 10 when working in degrees. Then one of the remaining \exp_after:wN
hits #1, which picks the trig or trigd function in whichever branch of the conditional
was taken. The final \exp_after:wN closes the conditional. At the end of the day, a
number is large if it is ≥ 1 in radians or ≥ 10 in degrees, and small otherwise. All four
trig/trigd auxiliaries receive the operand as an extended-precision number.

28235 \cs_new:Npn __fp_trig:NNNNNwn #1#2#3#4#5 \s__fp __fp_chk:w 1#6#7#8;
28236 {
28237 \exp_after:wN #2
28238 \exp_after:wN #3
28239 \exp_after:wN #4
28240 \int_value:w __fp_int_eval:w #5
28241 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
28242 \if_int_compare:w #7 > #1 0 1 \exp_stop_f:
28243 #1 __fp_trig_large:ww __fp_trigd_large:ww
28244 \else:
28245 #1 __fp_trig_small:ww __fp_trigd_small:ww
28246 \fi:
28247 #7,#8{0000}{0000};
28248 }

(End of definition for __fp_trig:NNNNNwn.)

1195

77.1.3 Small arguments
__fp_trig_small:ww This receives a small extended-precision number in radians and converts it to a fixed

point number. Some trailing digits may be lost in the conversion, so we keep the original
floating point number around: when computing sine or tangent (or their inverses), the
last step is to multiply by the floating point number (as an extended-precision number)
rather than the fixed point number. The period serves to end the integer expression for
the octant.

28249 \cs_new:Npn __fp_trig_small:ww #1,#2;
28250 { __fp_ep_to_fixed:wwn #1,#2; . #1,#2; }

(End of definition for __fp_trig_small:ww.)

__fp_trigd_small:ww Convert the extended-precision number to radians, then call __fp_trig_small:ww to
massage it in the form appropriate for the _series auxiliary.

28251 \cs_new:Npn __fp_trigd_small:ww #1,#2;
28252 {
28253 __fp_ep_mul_raw:wwwwN
28254 -1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2;
28255 __fp_trig_small:ww
28256 }

(End of definition for __fp_trigd_small:ww.)

77.1.4 Argument reduction in degrees
__fp_trigd_large:ww

__fp_trigd_large_auxi:nnnnwNNNN
__fp_trigd_large_auxii:wNw
__fp_trigd_large_auxiii:www

Note that 25 × 360 = 9000, so 10k+1 ≡ 10k (mod 360) for k ≥ 3. When the exponent #1
is very large, we can thus safely replace it by 22 (or even 19). We turn the floating
point number into a fixed point number with two blocks of 8 digits followed by five
blocks of 4 digits. The original float is 100 × ⟨block1⟩ · · · ⟨block3⟩.⟨block4⟩ · · · ⟨block7⟩,
or is equal to it modulo 360 if the exponent #1 is very large. The first auxiliary finds
⟨block1⟩+⟨block2⟩ (mod 9), a single digit, and prepends it to the 4 digits of ⟨block3⟩. It
also unpacks ⟨block4⟩ and grabs the 4 digits of ⟨block7⟩. The second auxiliary grabs the
⟨block3⟩ plus any contribution from the first two blocks as #1, the first digit of ⟨block4⟩
(just after the decimal point in hundreds of degrees) as #2, and the three other digits
as #3. It finds the quotient and remainder of #1#2 modulo 9, adds twice the quotient to
the integer expression for the octant, and places the remainder (between 0 and 8) before
#3 to form a new ⟨block4⟩. The resulting fixed point number is x ∈ [0, 0.9]. If x ≥ 0.45,
we add 1 to the octant and feed 0.9 − x with an exponent of 2 (to compensate the fact
that we are working in units of hundreds of degrees rather than degrees) to __fp_-
trigd_small:ww. Otherwise, we feed it x with an exponent of 2. The third auxiliary
also discards digits which were not packed into the various ⟨blocks⟩. Since the original
exponent #1 is at least 2, those are all 0 and no precision is lost (#6 and #7 are four 0
each).

28257 \cs_new:Npn __fp_trigd_large:ww #1, #2#3#4#5#6#7;
28258 {
28259 \exp_after:wN __fp_pack_eight:wNNNNNNNN
28260 \exp_after:wN __fp_pack_eight:wNNNNNNNN
28261 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
28262 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
28263 \exp_after:wN __fp_trigd_large_auxi:nnnnwNNNN
28264 \exp_after:wN ;

1196

28265 \exp:w \exp_end_continue_f:w
28266 \prg_replicate:nn { \int_max:nn { 22 - #1 } { 0 } } { 0 }
28267 #2#3#4#5#6#7 0000 0000 0000 !
28268 }
28269 \cs_new:Npn __fp_trigd_large_auxi:nnnnwNNNN #1#2#3#4#5; #6#7#8#9
28270 {
28271 \exp_after:wN __fp_trigd_large_auxii:wNw
28272 \int_value:w __fp_int_eval:w #1 + #2
28273 - (#1 + #2 - 4) / 9 * 9 __fp_int_eval_end:
28274 #3;
28275 #4; #5{#6#7#8#9};
28276 }
28277 \cs_new:Npn __fp_trigd_large_auxii:wNw #1; #2#3;
28278 {
28279 + (#1#2 - 4) / 9 * 2
28280 \exp_after:wN __fp_trigd_large_auxiii:www
28281 \int_value:w __fp_int_eval:w #1#2
28282 - (#1#2 - 4) / 9 * 9 __fp_int_eval_end: #3 ;
28283 }
28284 \cs_new:Npn __fp_trigd_large_auxiii:www #1; #2; #3!
28285 {
28286 \if_int_compare:w #1 < 4500 \exp_stop_f:
28287 \exp_after:wN __fp_use_i_until_s:nw
28288 \exp_after:wN __fp_fixed_continue:wn
28289 \else:
28290 + 1
28291 \fi:
28292 __fp_fixed_sub:wwn {9000}{0000}{0000}{0000}{0000}{0000};
28293 {#1}#2{0000}{0000};
28294 { __fp_trigd_small:ww 2, }
28295 }

(End of definition for __fp_trigd_large:ww and others.)

77.1.5 Argument reduction in radians
Arguments greater or equal to 1 need to be reduced to a range where we only need a few
terms of the Taylor series. We reduce to the range [0, 2π] by subtracting multiples of 2π,
then to the smaller range [0, π/2] by subtracting multiples of π/2 (keeping track of how
many times π/2 is subtracted), then to [0, π/4] by mapping x → π/2 − x if appropriate.
When the argument is very large, say, 10100, an equally large multiple of 2π must be
subtracted, hence we must work with a very good approximation of 2π in order to get a
sensible remainder modulo 2π.

Specifically, we multiply the argument by an approximation of 1/(2π) with 10048 dig-
its, then discard the integer part of the result, keeping 52 digits of the fractional part.
From the fractional part of x/(2π) we deduce the octant (quotient of the first three dig-
its by 125). We then multiply by 8 or −8 (the latter when the octant is odd), ignore
any integer part (related to the octant), and convert the fractional part to an extended
precision number, before multiplying by π/4 to convert back to a value in radians in
[0, π/4].

It is possible to prove that given the precision of floating points and their range
of exponents, the 52 digits may start at most with 24 zeros. The 5 last digits are

1197

affected by carries from computations which are not done, hence we are left with at least
52 − 24 − 5 = 23 significant digits, enough to round correctly up to 0.6 · ulp in all cases.

\c__fp_trig_intarray This integer array stores blocks of 8 decimals of 10−16/(2π). Each entry is 108 plus an
8 digit number storing 8 decimals. In total we store 10112 decimals of 10−16/(2π). The
number of decimals we really need is the maximum exponent plus the number of digits
we later need, 52, plus 12 (4 − 1 groups of 4 digits). The memory footprint (1/2 byte per
digit) is the same as an earlier method of storing the data as a control sequence name,
but the major advantage is that we can unpack specific subsets of the digits without
unpacking the 10112 decimals.

28296 \intarray_const_from_clist:Nn \c__fp_trig_intarray
28297 {
28298 100000000, 100000000, 115915494, 130918953, 135768883, 176337251,
28299 143620344, 159645740, 145644874, 176673440, 158896797, 163422653,
28300 150901138, 102766253, 108595607, 128427267, 157958036, 189291184,
28301 161145786, 152877967, 141073169, 198392292, 139966937, 140907757,
28302 130777463, 196925307, 168871739, 128962173, 197661693, 136239024,
28303 117236290, 111832380, 111422269, 197557159, 140461890, 108690267,
28304 139561204, 189410936, 193784408, 155287230, 199946443, 140024867,
28305 123477394, 159610898, 132309678, 130749061, 166986462, 180469944,
28306 186521878, 181574786, 156696424, 110389958, 174139348, 160998386,
28307 180991999, 162442875, 158517117, 188584311, 117518767, 116054654,
28308 175369880, 109739460, 136475933, 137680593, 102494496, 163530532,
28309 171567755, 103220324, 177781639, 171660229, 146748119, 159816584,
28310 106060168, 103035998, 113391198, 174988327, 186654435, 127975507,
28311 100162406, 177564388, 184957131, 108801221, 199376147, 168137776,
28312 147378906, 133068046, 145797848, 117613124, 127314069, 196077502,
28313 145002977, 159857089, 105690279, 167851315, 125210016, 131774602,
28314 109248116, 106240561, 145620314, 164840892, 148459191, 143521157,
28315 154075562, 100871526, 160680221, 171591407, 157474582, 172259774,
28316 162853998, 175155329, 139081398, 117724093, 158254797, 107332871,
28317 190406999, 175907657, 170784934, 170393589, 182808717, 134256403,
28318 166895116, 162545705, 194332763, 112686500, 126122717, 197115321,
28319 112599504, 138667945, 103762556, 108363171, 116952597, 158128224,
28320 194162333, 143145106, 112353687, 185631136, 136692167, 114206974,
28321 169601292, 150578336, 105311960, 185945098, 139556718, 170995474,
28322 165104316, 123815517, 158083944, 129799709, 199505254, 138756612,
28323 194458833, 106846050, 178529151, 151410404, 189298850, 163881607,
28324 176196993, 107341038, 199957869, 118905980, 193737772, 106187543,
28325 122271893, 101366255, 126123878, 103875388, 181106814, 106765434,
28326 108282785, 126933426, 179955607, 107903860, 160352738, 199624512,
28327 159957492, 176297023, 159409558, 143011648, 129641185, 157771240,
28328 157544494, 157021789, 176979240, 194903272, 194770216, 164960356,
28329 153181535, 144003840, 168987471, 176915887, 163190966, 150696440,
28330 147769706, 187683656, 177810477, 197954503, 153395758, 130188183,
28331 186879377, 166124814, 195305996, 155802190, 183598751, 103512712,
28332 190432315, 180498719, 168687775, 194656634, 162210342, 104440855,
28333 149785037, 192738694, 129353661, 193778292, 187359378, 143470323,
28334 102371458, 137923557, 111863634, 119294601, 183182291, 196416500,
28335 187830793, 131353497, 179099745, 186492902, 167450609, 189368909,
28336 145883050, 133703053, 180547312, 132158094, 131976760, 132283131,
28337 141898097, 149822438, 133517435, 169898475, 101039500, 168388003,
28338 197867235, 199608024, 100273901, 108749548, 154787923, 156826113,

1198

28339 199489032, 168997427, 108349611, 149208289, 103776784, 174303550,
28340 145684560, 183671479, 130845672, 133270354, 185392556, 120208683,
28341 193240995, 162211753, 131839402, 109707935, 170774965, 149880868,
28342 160663609, 168661967, 103747454, 121028312, 119251846, 122483499,
28343 111611495, 166556037, 196967613, 199312829, 196077608, 127799010,
28344 107830360, 102338272, 198790854, 102387615, 157445430, 192601191,
28345 100543379, 198389046, 154921248, 129516070, 172853005, 122721023,
28346 160175233, 113173179, 175931105, 103281551, 109373913, 163964530,
28347 157926071, 180083617, 195487672, 146459804, 173977292, 144810920,
28348 109371257, 186918332, 189588628, 139904358, 168666639, 175673445,
28349 114095036, 137327191, 174311388, 106638307, 125923027, 159734506,
28350 105482127, 178037065, 133778303, 121709877, 134966568, 149080032,
28351 169885067, 141791464, 168350828, 116168533, 114336160, 173099514,
28352 198531198, 119733758, 144420984, 116559541, 152250643, 139431286,
28353 144403838, 183561508, 179771645, 101706470, 167518774, 156059160,
28354 187168578, 157939226, 123475633, 117111329, 198655941, 159689071,
28355 198506887, 144230057, 151919770, 156900382, 118392562, 120338742,
28356 135362568, 108354156, 151729710, 188117217, 195936832, 156488518,
28357 174997487, 108553116, 159830610, 113921445, 144601614, 188452770,
28358 125114110, 170248521, 173974510, 138667364, 103872860, 109967489,
28359 131735618, 112071174, 104788993, 168886556, 192307848, 150230570,
28360 157144063, 163863202, 136852010, 174100574, 185922811, 115721968,
28361 100397824, 175953001, 166958522, 112303464, 118773650, 143546764,
28362 164565659, 171901123, 108476709, 193097085, 191283646, 166919177,
28363 169387914, 133315566, 150669813, 121641521, 100895711, 172862384,
28364 126070678, 145176011, 113450800, 169947684, 122356989, 162488051,
28365 157759809, 153397080, 185475059, 175362656, 149034394, 145420581,
28366 178864356, 183042000, 131509559, 147434392, 152544850, 167491429,
28367 108647514, 142303321, 133245695, 111634945, 167753939, 142403609,
28368 105438335, 152829243, 142203494, 184366151, 146632286, 102477666,
28369 166049531, 140657343, 157553014, 109082798, 180914786, 169343492,
28370 127376026, 134997829, 195701816, 119643212, 133140475, 176289748,
28371 140828911, 174097478, 126378991, 181699939, 148749771, 151989818,
28372 172666294, 160183053, 195832752, 109236350, 168538892, 128468247,
28373 125997252, 183007668, 156937583, 165972291, 198244297, 147406163,
28374 181831139, 158306744, 134851692, 185973832, 137392662, 140243450,
28375 119978099, 140402189, 161348342, 173613676, 144991382, 171541660,
28376 163424829, 136374185, 106122610, 186132119, 198633462, 184709941,
28377 183994274, 129559156, 128333990, 148038211, 175011612, 111667205,
28378 119125793, 103552929, 124113440, 131161341, 112495318, 138592695,
28379 184904438, 146807849, 109739828, 108855297, 104515305, 139914009,
28380 188698840, 188365483, 166522246, 168624087, 125401404, 100911787,
28381 142122045, 123075334, 173972538, 114940388, 141905868, 142311594,
28382 163227443, 139066125, 116239310, 162831953, 123883392, 113153455,
28383 163815117, 152035108, 174595582, 101123754, 135976815, 153401874,
28384 107394340, 136339780, 138817210, 104531691, 182951948, 179591767,
28385 139541778, 179243527, 161740724, 160593916, 102732282, 187946819,
28386 136491289, 149714953, 143255272, 135916592, 198072479, 198580612,
28387 169007332, 118844526, 179433504, 155801952, 149256630, 162048766,
28388 116134365, 133992028, 175452085, 155344144, 109905129, 182727454,
28389 165911813, 122232840, 151166615, 165070983, 175574337, 129548631,
28390 120411217, 116380915, 160616116, 157320000, 183306114, 160618128,
28391 103262586, 195951602, 146321661, 138576614, 180471993, 127077713,
28392 116441201, 159496011, 106328305, 120759583, 148503050, 179095584,

1199

28393 198298218, 167402898, 138551383, 123957020, 180763975, 150429225,
28394 198476470, 171016426, 197438450, 143091658, 164528360, 132493360,
28395 143546572, 137557916, 113663241, 120457809, 196971566, 134022158,
28396 180545794, 131328278, 100552461, 132088901, 187421210, 192448910,
28397 141005215, 149680971, 113720754, 100571096, 134066431, 135745439,
28398 191597694, 135788920, 179342561, 177830222, 137011486, 142492523,
28399 192487287, 113132021, 176673607, 156645598, 127260957, 141566023,
28400 143787436, 129132109, 174858971, 150713073, 191040726, 143541417,
28401 197057222, 165479803, 181512759, 157912400, 125344680, 148220261,
28402 173422990, 101020483, 106246303, 137964746, 178190501, 181183037,
28403 151538028, 179523433, 141955021, 135689770, 191290561, 143178787,
28404 192086205, 174499925, 178975690, 118492103, 124206471, 138519113,
28405 188147564, 102097605, 154895793, 178514140, 141453051, 151583964,
28406 128232654, 106020603, 131189158, 165702720, 186250269, 191639375,
28407 115278873, 160608114, 155694842, 110322407, 177272742, 116513642,
28408 134366992, 171634030, 194053074, 180652685, 109301658, 192136921,
28409 141431293, 171341061, 157153714, 106203978, 147618426, 150297807,
28410 186062669, 169960809, 118422347, 163350477, 146719017, 145045144,
28411 161663828, 146208240, 186735951, 102371302, 190444377, 194085350,
28412 134454426, 133413062, 163074595, 113830310, 122931469, 134466832,
28413 185176632, 182415152, 110179422, 164439571, 181217170, 121756492,
28414 119644493, 196532222, 118765848, 182445119, 109401340, 150443213,
28415 198586286, 121083179, 139396084, 143898019, 114787389, 177233102,
28416 186310131, 148695521, 126205182, 178063494, 157118662, 177825659,
28417 188310053, 151552316, 165984394, 109022180, 163144545, 121212978,
28418 197344714, 188741258, 126822386, 102360271, 109981191, 152056882,
28419 134723983, 158013366, 106837863, 128867928, 161973236, 172536066,
28420 185216856, 132011948, 197807339, 158419190, 166595838, 167852941,
28421 124187182, 117279875, 106103946, 106481958, 157456200, 160892122,
28422 184163943, 173846549, 158993202, 184812364, 133466119, 170732430,
28423 195458590, 173361878, 162906318, 150165106, 126757685, 112163575,
28424 188696307, 145199922, 100107766, 176830946, 198149756, 122682434,
28425 179367131, 108412102, 119520899, 148191244, 140487511, 171059184,
28426 141399078, 189455775, 118462161, 190415309, 134543802, 180893862,
28427 180732375, 178615267, 179711433, 123241969, 185780563, 176301808,
28428 184386640, 160717536, 183213626, 129671224, 126094285, 140110963,
28429 121826276, 151201170, 122552929, 128965559, 146082049, 138409069,
28430 107606920, 103954646, 119164002, 115673360, 117909631, 187289199,
28431 186343410, 186903200, 157966371, 103128612, 135698881, 176403642,
28432 152540837, 109810814, 183519031, 121318624, 172281810, 150845123,
28433 169019064, 166322359, 138872454, 163073727, 128087898, 130041018,
28434 194859136, 173742589, 141812405, 167291912, 138003306, 134499821,
28435 196315803, 186381054, 124578934, 150084553, 128031351, 118843410,
28436 107373060, 159565443, 173624887, 171292628, 198074235, 139074061,
28437 178690578, 144431052, 174262641, 176783005, 182214864, 162289361,
28438 192966929, 192033046, 169332843, 181580535, 164864073, 118444059,
28439 195496893, 153773183, 167266131, 130108623, 158802128, 180432893,
28440 144562140, 147978945, 142337360, 158506327, 104399819, 132635916,
28441 168734194, 136567839, 101281912, 120281622, 195003330, 112236091,
28442 185875592, 101959081, 122415367, 194990954, 148881099, 175891989,
28443 108115811, 163538891, 163394029, 123722049, 184837522, 142362091,
28444 100834097, 156679171, 100841679, 157022331, 178971071, 102928884,
28445 189701309, 195339954, 124415335, 106062584, 139214524, 133864640,
28446 134324406, 157317477, 155340540, 144810061, 177612569, 108474646,

1200

28447 114329765, 143900008, 138265211, 145210162, 136643111, 197987319,
28448 102751191, 144121361, 169620456, 193602633, 161023559, 162140467,
28449 102901215, 167964187, 135746835, 187317233, 110047459, 163339773,
28450 124770449, 118885134, 141536376, 100915375, 164267438, 145016622,
28451 113937193, 106748706, 128815954, 164819775, 119220771, 102367432,
28452 189062690, 170911791, 194127762, 112245117, 123546771, 115640433,
28453 135772061, 166615646, 174474627, 130562291, 133320309, 153340551,
28454 138417181, 194605321, 150142632, 180008795, 151813296, 175497284,
28455 167018836, 157425342, 150169942, 131069156, 134310662, 160434122,
28456 105213831, 158797111, 150754540, 163290657, 102484886, 148697402,
28457 187203725, 198692811, 149360627, 140384233, 128749423, 132178578,
28458 177507355, 171857043, 178737969, 134023369, 102911446, 196144864,
28459 197697194, 134527467, 144296030, 189437192, 154052665, 188907106,
28460 162062575, 150993037, 199766583, 167936112, 181374511, 104971506,
28461 115378374, 135795558, 167972129, 135876446, 130937572, 103221320,
28462 124605656, 161129971, 131027586, 191128460, 143251843, 143269155,
28463 129284585, 173495971, 150425653, 199302112, 118494723, 121323805,
28464 116549802, 190991967, 168151180, 122483192, 151273721, 199792134,
28465 133106764, 121874844, 126215985, 112167639, 167793529, 182985195,
28466 185453921, 106957880, 158685312, 132775454, 133229161, 198905318,
28467 190537253, 191582222, 192325972, 178133427, 181825606, 148823337,
28468 160719681, 101448145, 131983362, 137910767, 112550175, 128826351,
28469 183649210, 135725874, 110356573, 189469487, 154446940, 118175923,
28470 106093708, 128146501, 185742532, 149692127, 164624247, 183221076,
28471 154737505, 168198834, 156410354, 158027261, 125228550, 131543250,
28472 139591848, 191898263, 104987591, 115406321, 103542638, 190012837,
28473 142615518, 178773183, 175862355, 117537850, 169565995, 170028011,
28474 158412588, 170150030, 117025916, 174630208, 142412449, 112839238,
28475 105257725, 114737141, 123102301, 172563968, 130555358, 132628403,
28476 183638157, 168682846, 143304568, 105994018, 170010719, 152092970,
28477 117799058, 132164175, 179868116, 158654714, 177489647, 116547948,
28478 183121404, 131836079, 184431405, 157311793, 149677763, 173989893,
28479 102277656, 107058530, 140837477, 152640947, 143507039, 152145247,
28480 101683884, 107090870, 161471944, 137225650, 128231458, 172995869,
28481 173831689, 171268519, 139042297, 111072135, 107569780, 137262545,
28482 181410950, 138270388, 198736451, 162848201, 180468288, 120582913,
28483 153390138, 135649144, 130040157, 106509887, 192671541, 174507066,
28484 186888783, 143805558, 135011967, 145862340, 180595327, 124727843,
28485 182925939, 157715840, 136885940, 198993925, 152416883, 178793572,
28486 179679516, 154076673, 192703125, 164187609, 162190243, 104699348,
28487 159891990, 160012977, 174692145, 132970421, 167781726, 115178506,
28488 153008552, 155999794, 102099694, 155431545, 127458567, 104403686,
28489 168042864, 184045128, 181182309, 179349696, 127218364, 192935516,
28490 120298724, 169583299, 148193297, 183358034, 159023227, 105261254,
28491 121144370, 184359584, 194433836, 138388317, 175184116, 108817112,
28492 151279233, 137457721, 193398208, 119005406, 132929377, 175306906,
28493 160741530, 149976826, 147124407, 176881724, 186734216, 185881509,
28494 191334220, 175930947, 117385515, 193408089, 157124410, 163472089,
28495 131949128, 180783576, 131158294, 100549708, 191802336, 165960770,
28496 170927599, 101052702, 181508688, 197828549, 143403726, 142729262,
28497 110348701, 139928688, 153550062, 106151434, 130786653, 196085995,
28498 100587149, 139141652, 106530207, 100852656, 124074703, 166073660,
28499 153338052, 163766757, 120188394, 197277047, 122215363, 138511354,
28500 183463624, 161985542, 159938719, 133367482, 104220974, 149956672,

1201

28501 170250544, 164232439, 157506869, 159133019, 137469191, 142980999,
28502 134242305, 150172665, 121209241, 145596259, 160554427, 159095199,
28503 168243130, 184279693, 171132070, 121049823, 123819574, 171759855,
28504 119501864, 163094029, 175943631, 194450091, 191506160, 149228764,
28505 132319212, 197034460, 193584259, 126727638, 168143633, 109856853,
28506 127860243, 132141052, 133076065, 188414958, 158718197, 107124299,
28507 159592267, 181172796, 144388537, 196763139, 127431422, 179531145,
28508 100064922, 112650013, 132686230, 121550837,
28509 }

(End of definition for \c__fp_trig_intarray.)

__fp_trig_large:ww
__fp_trig_large_auxi:w

__fp_trig_large_auxii:w
__fp_trig_large_auxiii:w

The exponent #1 is between 1 and 10000. We wish to look up decimals 10#1−16/(2π)
starting from the digit #1 + 1. Since they are stored in batches of 8, compute ⌊#1/8⌋
and fetch blocks of 8 digits starting there. The numbering of items in \c__fp_trig_-
intarray starts at 1, so the block ⌊#1/8⌋ + 1 contains the digit we want, at one of the
eight positions. Each call to \int_value:w __kernel_intarray_item:Nn expands the
next, until being stopped by __fp_trig_large_auxiii:w using \exp_stop_f:. Once
all these blocks are unpacked, the \exp_stop_f: and 0 to 7 digits are removed by \use_-
none:n...n. Finally, __fp_trig_large_auxii:w packs 64 digits (there are between 65
and 72 at this point) into groups of 4 and the auxv auxiliary is called.

28510 \cs_new:Npn __fp_trig_large:ww #1, #2#3#4#5#6;
28511 {
28512 \exp_after:wN __fp_trig_large_auxi:w
28513 \int_value:w __fp_int_eval:w (#1 - 4) / 8 \exp_after:wN ,
28514 \int_value:w #1 , ;
28515 {#2}{#3}{#4}{#5} ;
28516 }
28517 \cs_new:Npn __fp_trig_large_auxi:w #1, #2,
28518 {
28519 \exp_after:wN \exp_after:wN
28520 \exp_after:wN __fp_trig_large_auxii:w
28521 \cs:w
28522 use_none:n \prg_replicate:nn { #2 - #1 * 8 } { n }
28523 \exp_after:wN
28524 \cs_end:
28525 \int_value:w
28526 __kernel_intarray_item:Nn \c__fp_trig_intarray
28527 { __fp_int_eval:w #1 + 1 \scan_stop: }
28528 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28529 __kernel_intarray_item:Nn \c__fp_trig_intarray
28530 { __fp_int_eval:w #1 + 2 \scan_stop: }
28531 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28532 __kernel_intarray_item:Nn \c__fp_trig_intarray
28533 { __fp_int_eval:w #1 + 3 \scan_stop: }
28534 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28535 __kernel_intarray_item:Nn \c__fp_trig_intarray
28536 { __fp_int_eval:w #1 + 4 \scan_stop: }
28537 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28538 __kernel_intarray_item:Nn \c__fp_trig_intarray
28539 { __fp_int_eval:w #1 + 5 \scan_stop: }
28540 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28541 __kernel_intarray_item:Nn \c__fp_trig_intarray
28542 { __fp_int_eval:w #1 + 6 \scan_stop: }

1202

28543 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28544 __kernel_intarray_item:Nn \c__fp_trig_intarray
28545 { __fp_int_eval:w #1 + 7 \scan_stop: }
28546 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28547 __kernel_intarray_item:Nn \c__fp_trig_intarray
28548 { __fp_int_eval:w #1 + 8 \scan_stop: }
28549 \exp_after:wN __fp_trig_large_auxiii:w \int_value:w
28550 __kernel_intarray_item:Nn \c__fp_trig_intarray
28551 { __fp_int_eval:w #1 + 9 \scan_stop: }
28552 \exp_stop_f:
28553 }
28554 \cs_new:Npn __fp_trig_large_auxii:w
28555 {
28556 __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN
28557 __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN
28558 __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN
28559 __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN
28560 __fp_trig_large_auxv:www ;
28561 }
28562 \cs_new:Npn __fp_trig_large_auxiii:w 1 { \exp_stop_f: }

(End of definition for __fp_trig_large:ww and others.)

__fp_trig_large_auxv:www
__fp_trig_large_auxvi:wnnnnnnnn

__fp_trig_large_pack:NNNNNw

First come the first 64 digits of the fractional part of 10#1−16/(2π), arranged in 16 blocks
of 4, and ending with a semicolon. Then a few more digits of the same fractional part,
ending with a semicolon, then 4 blocks of 4 digits holding the significand of the orig-
inal argument. Multiply the 16-digit significand with the 64-digit fractional part: the
auxvi auxiliary receives the significand as #2#3#4#5 and 16 digits of the fractional part
as #6#7#8#9, and computes one step of the usual ladder of pack functions we use for
multiplication (see e.g., __fp_fixed_mul:wwn), then discards one block of the fractional
part to set things up for the next step of the ladder. We perform 13 such steps, replacing
the last middle shift by the appropriate trailing shift, then discard the significand and
remaining 3 blocks from the fractional part, as there are not enough digits to compute
any more step in the ladder. The last semicolon closes the ladder, and we return control
to the auxvii auxiliary.

28563 \cs_new:Npn __fp_trig_large_auxv:www #1; #2; #3;
28564 {
28565 \exp_after:wN __fp_use_i_until_s:nw
28566 \exp_after:wN __fp_trig_large_auxvii:w
28567 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
28568 \prg_replicate:nn { 13 }
28569 { __fp_trig_large_auxvi:wnnnnnnnn }
28570 + \c__fp_trailing_shift_int - \c__fp_middle_shift_int
28571 __fp_use_i_until_s:nw
28572 ; #3 #1 ; ;
28573 }
28574 \cs_new:Npn __fp_trig_large_auxvi:wnnnnnnnn #1; #2#3#4#5#6#7#8#9
28575 {
28576 \exp_after:wN __fp_trig_large_pack:NNNNNw
28577 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
28578 + #2*#9 + #3*#8 + #4*#7 + #5*#6
28579 #1; {#2}{#3}{#4}{#5} {#7}{#8}{#9}
28580 }

1203

28581 \cs_new:Npn __fp_trig_large_pack:NNNNNw #1#2#3#4#5#6;
28582 { + #1#2#3#4#5 ; #6 }

(End of definition for __fp_trig_large_auxv:www , __fp_trig_large_auxvi:wnnnnnnnn , and __fp_-
trig_large_pack:NNNNNw.)

__fp_trig_large_auxvii:w
__fp_trig_large_auxviii:w
__fp_trig_large_auxix:Nw

__fp_trig_large_auxx:wNNNNN
__fp_trig_large_auxxi:w

The auxvii auxiliary is followed by 52 digits and a semicolon. We find the octant as the
integer part of 8 times what follows, or equivalently as the integer part of #1#2#3/125,
and add it to the surrounding integer expression for the octant. We then compute 8 times
the 52-digit number, with a minus sign if the octant is odd. Again, the last middle shift
is converted to a trailing shift. Any integer part (including negative values which come
up when the octant is odd) is discarded by __fp_use_i_until_s:nw. The resulting
fractional part should then be converted to radians by multiplying by 2π/8, but first, build
an extended precision number by abusing __fp_ep_to_ep_loop:N with the appropriate
trailing markers. Finally, __fp_trig_small:ww sets up the argument for the functions
which compute the Taylor series.

28583 \cs_new:Npn __fp_trig_large_auxvii:w #1#2#3
28584 {
28585 \exp_after:wN __fp_trig_large_auxviii:ww
28586 \int_value:w __fp_int_eval:w (#1#2#3 - 62) / 125 ;
28587 #1#2#3
28588 }
28589 \cs_new:Npn __fp_trig_large_auxviii:ww #1;
28590 {
28591 + #1
28592 \if_int_odd:w #1 \exp_stop_f:
28593 \exp_after:wN __fp_trig_large_auxix:Nw
28594 \exp_after:wN -
28595 \else:
28596 \exp_after:wN __fp_trig_large_auxix:Nw
28597 \exp_after:wN +
28598 \fi:
28599 }
28600 \cs_new:Npn __fp_trig_large_auxix:Nw
28601 {
28602 \exp_after:wN __fp_use_i_until_s:nw
28603 \exp_after:wN __fp_trig_large_auxxi:w
28604 \int_value:w __fp_int_eval:w \c__fp_leading_shift_int
28605 \prg_replicate:nn { 13 }
28606 { __fp_trig_large_auxx:wNNNNN }
28607 + \c__fp_trailing_shift_int - \c__fp_middle_shift_int
28608 ;
28609 }
28610 \cs_new:Npn __fp_trig_large_auxx:wNNNNN #1; #2 #3#4#5#6
28611 {
28612 \exp_after:wN __fp_trig_large_pack:NNNNNw
28613 \int_value:w __fp_int_eval:w \c__fp_middle_shift_int
28614 #2 8 * #3#4#5#6
28615 #1; #2
28616 }
28617 \cs_new:Npn __fp_trig_large_auxxi:w #1;
28618 {
28619 \exp_after:wN __fp_ep_mul_raw:wwwwN
28620 \int_value:w __fp_int_eval:w 0 __fp_ep_to_ep_loop:N #1 ; ; !

1204

28621 0,{7853}{9816}{3397}{4483}{0961}{5661};
28622 __fp_trig_small:ww
28623 }

(End of definition for __fp_trig_large_auxvii:w and others.)

77.1.6 Computing the power series
__fp_sin_series_o:NNwwww

__fp_sin_series_aux_o:NNnwww
Here we receive a conversion function __fp_ep_to_float_o:wwN or __fp_ep_inv_-
to_float_o:wwN, a ⟨sign⟩ (0 or 2), a (non-negative) ⟨octant⟩ delimited by a dot, a
⟨fixed point⟩ number delimited by a semicolon, and an extended-precision number.
The auxiliary receives:

• the conversion function #1;

• the final sign, which depends on the octant #3 and the sign #2;

• the octant #3, which controls the series we use;

• the square #4 * #4 of the argument as a fixed point number, computed with
__fp_fixed_mul:wwn;

• the number itself as an extended-precision number.

If the octant is in {1, 2, 5, 6, . . . }, we are near an extremum of the function and we use
the series

cos(x) = 1 − x2
(

1
2! − x2

(
1
4! − x2

(
· · ·
)))

.

Otherwise, the series

sin(x) = x

(
1 − x2

(
1
3! − x2

(
1
5! − x2

(
· · ·
))))

is used. Finally, the extended-precision number is converted to a floating point number
with the given sign, and __fp_sanitize:Nw checks for overflow and underflow.

28624 \cs_new:Npn __fp_sin_series_o:NNwwww #1#2#3. #4;
28625 {
28626 __fp_fixed_mul:wwn #4; #4;
28627 {
28628 \exp_after:wN __fp_sin_series_aux_o:NNnwww
28629 \exp_after:wN #1
28630 \int_value:w
28631 \if_int_odd:w __fp_int_eval:w (#3 + 2) / 4 __fp_int_eval_end:
28632 #2
28633 \else:
28634 \if_meaning:w #2 0 2 \else: 0 \fi:
28635 \fi:
28636 {#3}
28637 }
28638 }
28639 \cs_new:Npn __fp_sin_series_aux_o:NNnwww #1#2#3 #4; #5,#6;
28640 {
28641 \if_int_odd:w __fp_int_eval:w #3 / 2 __fp_int_eval_end:
28642 \exp_after:wN \use_i:nn

1205

28643 \else:
28644 \exp_after:wN \use_ii:nn
28645 \fi:
28646 { % 1/18!
28647 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0001}{5619}{2070};
28648 #4;{0000}{0000}{0000}{0477}{9477}{3324};
28649 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0011}{4707}{4559}{7730};
28650 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{2087}{6756}{9878}{6810};
28651 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0027}{5573}{1922}{3985}{8907};
28652 __fp_fixed_mul_sub_back:wwwn #4;{0000}{2480}{1587}{3015}{8730}{1587};
28653 __fp_fixed_mul_sub_back:wwwn #4;{0013}{8888}{8888}{8888}{8888}{8889};
28654 __fp_fixed_mul_sub_back:wwwn #4;{0416}{6666}{6666}{6666}{6666}{6667};
28655 __fp_fixed_mul_sub_back:wwwn #4;{5000}{0000}{0000}{0000}{0000}{0000};
28656 __fp_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
28657 { __fp_fixed_continue:wn 0, }
28658 }
28659 { % 1/17!
28660 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0028}{1145}{7254};
28661 #4;{0000}{0000}{0000}{7647}{1637}{3182};
28662 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0160}{5904}{3836}{8216};
28663 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0002}{5052}{1083}{8544}{1719};
28664 __fp_fixed_mul_sub_back:wwwn #4;{0000}{0275}{5731}{9223}{9858}{9065};
28665 __fp_fixed_mul_sub_back:wwwn #4;{0001}{9841}{2698}{4126}{9841}{2698};
28666 __fp_fixed_mul_sub_back:wwwn #4;{0083}{3333}{3333}{3333}{3333}{3333};
28667 __fp_fixed_mul_sub_back:wwwn #4;{1666}{6666}{6666}{6666}{6666}{6667};
28668 __fp_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
28669 { __fp_ep_mul:wwwwn 0, } #5,#6;
28670 }
28671 {
28672 \exp_after:wN __fp_sanitize:Nw
28673 \exp_after:wN #2
28674 \int_value:w __fp_int_eval:w #1
28675 }
28676 #2
28677 }

(End of definition for __fp_sin_series_o:NNwwww and __fp_sin_series_aux_o:NNnwww.)

__fp_tan_series_o:NNwwww
__fp_tan_series_aux_o:Nnwww

Contrarily to __fp_sin_series_o:NNwwww which received a conversion auxiliary as #1,
here, #1 is 0 for tangent and 2 for cotangent. Consider first the case of the tangent.
The octant #3 starts at 1, which means that it is 1 or 2 for |x| ∈ [0, π/2], it is 3 or 4
for |x| ∈ [π/2, π], and so on: the intervals on which tan|x| ≥ 0 coincide with those for
which ⌊(#3 + 1)/2⌋ is odd. We also have to take into account the original sign of x to
get the sign of the final result; it is straightforward to check that the first \int_value:w
expansion produces 0 for a positive final result, and 2 otherwise. A similar story holds
for cot(x).

The auxiliary receives the sign, the octant, the square of the (reduced) input, and
the (reduced) input (an extended-precision number) as arguments. It then computes the
numerator and denominator of

tan(x) ≃ x(1 − x2(a1 − x2(a2 − x2(a3 − x2(a4 − x2a5)))))
1 − x2(b1 − x2(b2 − x2(b3 − x2(b4 − x2b5)))) .

The ratio is computed by __fp_ep_div:wwwwn, then converted to a floating point num-
ber. For octants #3 (really, quadrants) next to a pole of the functions, the fixed point

1206

numerator and denominator are exchanged before computing the ratio. Note that this
\if_int_odd:w test relies on the fact that the octant is at least 1.

28678 \cs_new:Npn __fp_tan_series_o:NNwwww #1#2#3. #4;
28679 {
28680 __fp_fixed_mul:wwn #4; #4;
28681 {
28682 \exp_after:wN __fp_tan_series_aux_o:Nnwww
28683 \int_value:w
28684 \if_int_odd:w __fp_int_eval:w #3 / 2 __fp_int_eval_end:
28685 \exp_after:wN \reverse_if:N
28686 \fi:
28687 \if_meaning:w #1#2 2 \else: 0 \fi:
28688 {#3}
28689 }
28690 }
28691 \cs_new:Npn __fp_tan_series_aux_o:Nnwww #1 #2 #3; #4,#5;
28692 {
28693 __fp_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059};
28694 #3; {0000}{0159}{6080}{0274}{5257}{6472};
28695 __fp_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481};
28696 __fp_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147};
28697 __fp_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982};
28698 __fp_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000};
28699 { __fp_ep_mul:wwwwn 0, } #4,#5;
28700 {
28701 __fp_fixed_mul_sub_back:wwwn {0000}{0007}{0258}{0681}{9408}{4706};
28702 #3;{0000}{2343}{7175}{1399}{6151}{7670};
28703 __fp_fixed_mul_sub_back:wwwn #3;{0019}{2638}{4588}{9232}{8861}{3691};
28704 __fp_fixed_mul_sub_back:wwwn #3;{0536}{6357}{0691}{4344}{6852}{4252};
28705 __fp_fixed_mul_sub_back:wwwn #3;{5263}{1578}{9473}{6842}{1052}{6315};
28706 __fp_fixed_mul_sub_back:wwwn#3;{10000}{0000}{0000}{0000}{0000}{0000};
28707 {
28708 \reverse_if:N \if_int_odd:w
28709 __fp_int_eval:w (#2 - 1) / 2 __fp_int_eval_end:
28710 \exp_after:wN __fp_reverse_args:Nww
28711 \fi:
28712 __fp_ep_div:wwwwn 0,
28713 }
28714 }
28715 {
28716 \exp_after:wN __fp_sanitize:Nw
28717 \exp_after:wN #1
28718 \int_value:w __fp_int_eval:w __fp_ep_to_float_o:wwN
28719 }
28720 #1
28721 }

(End of definition for __fp_tan_series_o:NNwwww and __fp_tan_series_aux_o:Nnwww.)

77.2 Inverse trigonometric functions
All inverse trigonometric functions (arcsine, arccosine, arctangent, arccotangent, arc-
cosecant, and arcsecant) are based on a function often denoted atan2. This func-

1207

tion is accessed directly by feeding two arguments to arctangent, and is defined by
atan(y, x) = atan(y/x) for generic y and x. Its advantages over the conventional arc-
tangent is that it takes values in [−π, π] rather than [−π/2, π/2], and that it is better
behaved in boundary cases. Other inverse trigonometric functions are expressed in terms
of atan as

acos x = atan(
√

1 − x2, x) (5)

asin x = atan(x,
√

1 − x2) (6)

asec x = atan(
√

x2 − 1, 1) (7)

acsc x = atan(1,
√

x2 − 1) (8)
atan x = atan(x, 1) (9)
acot x = atan(1, x). (10)

Rather than introducing a new function, atan2, the arctangent function atan is over-
loaded: it can take one or two arguments. In the comments below, following many texts,
we call the first argument y and the second x, because atan(y, x) = atan(y/x) is the
angular coordinate of the point (x, y).

As for direct trigonometric functions, the first step in computing atan(y, x) is ar-
gument reduction. The sign of y gives that of the result. We distinguish eight regions
where the point (x, |y|) can lie, of angular size roughly π/8, characterized by their “oc-
tant”, between 0 and 7 included. In each region, we compute an arctangent as a Taylor
series, then shift this arctangent by the appropriate multiple of π/4 and sign to get the
result. Here is a list of octants, and how we compute the arctangent (we assume y > 0:
otherwise replace y by −y below):

0 0 < |y| < 0.41421x, then atan |y|
x is given by a nicely convergent Taylor series;

1 0 < 0.41421x < |y| < x, then atan |y|
x = π

4 − atan x−|y|
x+|y| ;

2 0 < 0.41421|y| < x < |y|, then atan |y|
x = π

4 + atan −x+|y|
x+|y| ;

3 0 < x < 0.41421|y|, then atan |y|
x = π

2 − atan x
|y| ;

4 0 < −x < 0.41421|y|, then atan |y|
x = π

2 + atan −x
|y| ;

5 0 < 0.41421|y| < −x < |y|, then atan |y|
x = 3π

4 − atan x+|y|
−x+|y| ;

6 0 < −0.41421x < |y| < −x, then atan |y|
x = 3π

4 + atan −x−|y|
−x+|y| ;

7 0 < |y| < −0.41421x, then atan |y|
x = π − atan |y|

−x .

In the following, we denote by z the ratio among | y
x |, | x

y |, | x+y
x−y |, | x−y

x+y | which appears in
the right-hand side above.

77.2.1 Arctangent and arccotangent
__fp_atan_o:Nw
__fp_acot_o:Nw

__fp_atan_default:w

The parsing step manipulates atan and acot like min and max, reading in an array of
operands, but also leaves \use_i:nn or \use_ii:nn depending on whether the result

1208

should be given in radians or in degrees. The helper __fp_parse_function_one_-
two:nnw checks that the operand is one or two floating point numbers (not tuples) and
leaves its second argument or its tail accordingly (its first argument is used for error
messages). More precisely if we are given a single floating point number __fp_atan_-
default:w places \c_one_fp (expanded) after it; otherwise __fp_atan_default:w is
omitted by __fp_parse_function_one_two:nnw.

28722 \cs_new:Npn __fp_atan_o:Nw #1
28723 {
28724 __fp_parse_function_one_two:nnw
28725 { #1 { atan } { atand } }
28726 { __fp_atan_default:w __fp_atanii_o:Nww #1 }
28727 }
28728 \cs_new:Npn __fp_acot_o:Nw #1
28729 {
28730 __fp_parse_function_one_two:nnw
28731 { #1 { acot } { acotd } }
28732 { __fp_atan_default:w __fp_acotii_o:Nww #1 }
28733 }
28734 \cs_new:Npe __fp_atan_default:w #1#2#3 @ { #1 #2 #3 \c_one_fp @ }

(End of definition for __fp_atan_o:Nw , __fp_acot_o:Nw , and __fp_atan_default:w.)

__fp_atanii_o:Nww
__fp_acotii_o:Nww

If either operand is nan, we return it. If both are normal, we call __fp_atan_normal_-
o:NNnwNnw. If both are zero or both infinity, we call __fp_atan_inf_o:NNNw with
argument 2, leading to a result among {±π/4, ±3π/4} (in degrees, {±45, ±135}). Oth-
erwise, one is much bigger than the other, and we call __fp_atan_inf_o:NNNw with
either an argument of 4, leading to the values ±π/2 (in degrees, ±90), or 0, leading to
{±0, ±π} (in degrees, {±0, ±180}). Since acot(x, y) = atan(y, x), __fp_acotii_o:ww
simply reverses its two arguments.

28735 \cs_new:Npn __fp_atanii_o:Nww
28736 #1 \s__fp __fp_chk:w #2#3#4; \s__fp __fp_chk:w #5 #6 @
28737 {
28738 \if_meaning:w 3 #2 __fp_case_return_i_o:ww \fi:
28739 \if_meaning:w 3 #5 __fp_case_return_ii_o:ww \fi:
28740 \if_case:w
28741 \if_meaning:w #2 #5
28742 \if_meaning:w 1 #2 10 \else: 0 \fi:
28743 \else:
28744 \if_int_compare:w #2 > #5 \exp_stop_f: 1 \else: 2 \fi:
28745 \fi:
28746 \exp_stop_f:
28747 __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 2 }
28748 \or: __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 4 }
28749 \or: __fp_case_return:nw { __fp_atan_inf_o:NNNw #1 #3 0 }
28750 \fi:
28751 __fp_atan_normal_o:NNnwNnw #1
28752 \s__fp __fp_chk:w #2#3#4;
28753 \s__fp __fp_chk:w #5 #6
28754 }
28755 \cs_new:Npn __fp_acotii_o:Nww #1#2; #3;
28756 { __fp_atanii_o:Nww #1#3; #2; }

(End of definition for __fp_atanii_o:Nww and __fp_acotii_o:Nww.)

1209

__fp_atan_inf_o:NNNw This auxiliary is called whenever one number is ±0 or ±∞ (and neither is nan). Then
the result only depends on the signs, and its value is a multiple of π/4. We use the same
auxiliary as for normal numbers, __fp_atan_combine_o:NwwwwwN, with arguments the
final sign #2; the octant #3; atan z/z = 1 as a fixed point number; z = 0 as a fixed
point number; and z = 0 as an extended-precision number. Given the values we provide,
atan z is computed to be 0, and the result is [#3/2] · π/4 if the sign #5 of x is positive,
and [(7 − #3)/2] · π/4 for negative x, where the divisions are rounded up.

28757 \cs_new:Npn __fp_atan_inf_o:NNNw #1#2#3 \s__fp __fp_chk:w #4#5#6;
28758 {
28759 \exp_after:wN __fp_atan_combine_o:NwwwwwN
28760 \exp_after:wN #2
28761 \int_value:w __fp_int_eval:w
28762 \if_meaning:w 2 #5 7 - \fi: #3 \exp_after:wN ;
28763 \c__fp_one_fixed_tl
28764 {0000}{0000}{0000}{0000}{0000}{0000};
28765 0,{0000}{0000}{0000}{0000}{0000}{0000}; #1
28766 }

(End of definition for __fp_atan_inf_o:NNNw.)

__fp_atan_normal_o:NNnwNnw Here we simply reorder the floating point data into a pair of signed extended-precision
numbers, that is, a sign, an exponent ending with a comma, and a six-block mantissa
ending with a semi-colon. This extended precision is required by other inverse trigono-
metric functions, to compute things like atan(x,

√
1 − x2) without intermediate rounding

errors.
28767 \cs_new_protected:Npn __fp_atan_normal_o:NNnwNnw
28768 #1 \s__fp __fp_chk:w 1#2#3#4; \s__fp __fp_chk:w 1#5#6#7;
28769 {
28770 __fp_atan_test_o:NwwNwwN
28771 #2 #3, #4{0000}{0000};
28772 #5 #6, #7{0000}{0000}; #1
28773 }

(End of definition for __fp_atan_normal_o:NNnwNnw.)

__fp_atan_test_o:NwwNwwN This receives: the sign #1 of y, its exponent #2, its 24 digits #3 in groups of 4, and
similarly for x. We prepare to call __fp_atan_combine_o:NwwwwwN which expects the
sign #1, the octant, the ratio (atan z)/z = 1 − · · · , and the value of z, both as a fixed
point number and as an extended-precision floating point number with a mantissa in
[0.01, 1). For now, we place #1 as a first argument, and start an integer expression for
the octant. The sign of x does not affect z, so we simply leave a contribution to the
octant: ⟨octant⟩ → 7 − ⟨octant⟩ for negative x. Then we order |y| and |x| in a non-
decreasing order: if |y| > |x|, insert 3− in the expression for the octant, and swap the
two numbers. The finer test with 0.41421 is done by __fp_atan_div:wnwwnw after the
operands have been ordered.

28774 \cs_new:Npn __fp_atan_test_o:NwwNwwN #1#2,#3; #4#5,#6;
28775 {
28776 \exp_after:wN __fp_atan_combine_o:NwwwwwN
28777 \exp_after:wN #1
28778 \int_value:w __fp_int_eval:w
28779 \if_meaning:w 2 #4
28780 7 - __fp_int_eval:w
28781 \fi:

1210

28782 \if_int_compare:w
28783 __fp_ep_compare:wwww #2,#3; #5,#6; > \c_zero_int
28784 3 -
28785 \exp_after:wN __fp_reverse_args:Nww
28786 \fi:
28787 __fp_atan_div:wnwwnw #2,#3; #5,#6;
28788 }

(End of definition for __fp_atan_test_o:NwwNwwN.)

__fp_atan_div:wnwwnw
__fp_atan_near:wwwn

__fp_atan_near_aux:wwn

This receives two positive numbers a and b (equal to |x| and |y| in some order), each as
an exponent and 6 blocks of 4 digits, such that 0 < a < b. If 0.41421b < a, the two
numbers are “near”, hence the point (y, x) that we started with is closer to the diagonals
{|y| = |x|} than to the axes {xy = 0}. In that case, the octant is 1 (possibly combined
with the 7− and 3− inserted earlier) and we wish to compute atan b−a

a+b . Otherwise, the
octant is 0 (again, combined with earlier terms) and we wish to compute atan a

b . In
any case, call __fp_atan_auxi:ww followed by z, as a comma-delimited exponent and
a fixed point number.

28789 \cs_new:Npn __fp_atan_div:wnwwnw #1,#2#3; #4,#5#6;
28790 {
28791 \if_int_compare:w
28792 __fp_int_eval:w 41421 * #5 < #2 000
28793 \if_case:w __fp_int_eval:w #4 - #1 __fp_int_eval_end:
28794 00 \or: 0 \fi:
28795 \exp_stop_f:
28796 \exp_after:wN __fp_atan_near:wwwn
28797 \fi:
28798 0
28799 __fp_ep_div:wwwwn #1,{#2}#3; #4,{#5}#6;
28800 __fp_atan_auxi:ww
28801 }
28802 \cs_new:Npn __fp_atan_near:wwwn
28803 0 __fp_ep_div:wwwwn #1,#2; #3,
28804 {
28805 1
28806 __fp_ep_to_fixed:wwn #1 - #3, #2;
28807 __fp_atan_near_aux:wwn
28808 }
28809 \cs_new:Npn __fp_atan_near_aux:wwn #1; #2;
28810 {
28811 __fp_fixed_add:wwn #1; #2;
28812 { __fp_fixed_sub:wwn #2; #1; { __fp_ep_div:wwwwn 0, } 0, }
28813 }

(End of definition for __fp_atan_div:wnwwnw , __fp_atan_near:wwwn , and __fp_atan_near_aux:wwn.)

__fp_atan_auxi:ww
__fp_atan_auxii:w

Convert z from a representation as an exponent and a fixed point number in [0.01, 1) to a
fixed point number only, then set up the call to __fp_atan_Taylor_loop:www, followed
by the fixed point representation of z and the old representation.

28814 \cs_new:Npn __fp_atan_auxi:ww #1,#2;
28815 { __fp_ep_to_fixed:wwn #1,#2; __fp_atan_auxii:w #1,#2; }
28816 \cs_new:Npn __fp_atan_auxii:w #1;
28817 {
28818 __fp_fixed_mul:wwn #1; #1;

1211

28819 {
28820 __fp_atan_Taylor_loop:www 39 ;
28821 {0000}{0000}{0000}{0000}{0000}{0000} ;
28822 }
28823 ! #1;
28824 }

(End of definition for __fp_atan_auxi:ww and __fp_atan_auxii:w.)

__fp_atan_Taylor_loop:www
__fp_atan_Taylor_break:w

We compute the series of (atan z)/z. A typical intermediate stage has #1 = 2k − 1,
#2 = 1

2k+1 − z2(1
2k+3 − z2(· · · − z2 1

39)), and #3 = z2. To go to the next step k → k − 1,
we compute 1

2k−1 , then subtract from it z2 times #2. The loop stops when k = 0: then
#2 is (atan z)/z, and there is a need to clean up all the unnecessary data, end the integer
expression computing the octant with a semicolon, and leave the result #2 afterwards.

28825 \cs_new:Npn __fp_atan_Taylor_loop:www #1; #2; #3;
28826 {
28827 \if_int_compare:w #1 = - \c_one_int
28828 __fp_atan_Taylor_break:w
28829 \fi:
28830 \exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl #1;
28831 __fp_rrot:www __fp_fixed_mul_sub_back:wwwn #2; #3;
28832 {
28833 \exp_after:wN __fp_atan_Taylor_loop:www
28834 \int_value:w __fp_int_eval:w #1 - 2 ;
28835 }
28836 #3;
28837 }
28838 \cs_new:Npn __fp_atan_Taylor_break:w
28839 \fi: #1 __fp_fixed_mul_sub_back:wwwn #2; #3 !
28840 { \fi: ; #2 ; }

(End of definition for __fp_atan_Taylor_loop:www and __fp_atan_Taylor_break:w.)

__fp_atan_combine_o:NwwwwwN
__fp_atan_combine_aux:ww

This receives a ⟨sign⟩, an ⟨octant⟩, a fixed point value of (atan z)/z, a fixed point
number z, and another representation of z, as an ⟨exponent⟩ and the fixed point number
10−⟨exponent⟩z, followed by either \use_i:nn (when working in radians) or \use_ii:nn
(when working in degrees). The function computes the floating point result

⟨sign⟩
(⌈

⟨octant⟩
2

⌉
π

4 + (−1)⟨octant⟩ atan z

z
· z

)
, (11)

multiplied by 180/π if working in degrees, and using in any case the most appropriate
representation of z. The floating point result is passed to __fp_sanitize:Nw, which
checks for overflow or underflow. If the octant is 0, leave the exponent #5 for __fp_-
sanitize:Nw, and multiply #3 = atan z

z with #6, the adjusted z. Otherwise, multiply
#3 = atan z

z with #4 = z, then compute the appropriate multiple of π
4 and add or subtract

the product #3 · #4. In both cases, convert to a floating point with __fp_fixed_to_-
float_o:wN.

28841 \cs_new:Npn __fp_atan_combine_o:NwwwwwN #1 #2; #3; #4; #5,#6; #7
28842 {
28843 \exp_after:wN __fp_sanitize:Nw
28844 \exp_after:wN #1
28845 \int_value:w __fp_int_eval:w

1212

28846 \if_meaning:w 0 #2
28847 \exp_after:wN \use_i:nn
28848 \else:
28849 \exp_after:wN \use_ii:nn
28850 \fi:
28851 { #5 __fp_fixed_mul:wwn #3; #6; }
28852 {
28853 __fp_fixed_mul:wwn #3; #4;
28854 {
28855 \exp_after:wN __fp_atan_combine_aux:ww
28856 \int_value:w __fp_int_eval:w #2 / 2 ; #2;
28857 }
28858 }
28859 { #7 __fp_fixed_to_float_o:wN __fp_fixed_to_float_rad_o:wN }
28860 #1
28861 }
28862 \cs_new:Npn __fp_atan_combine_aux:ww #1; #2;
28863 {
28864 __fp_fixed_mul_short:wwn
28865 {7853}{9816}{3397}{4483}{0961}{5661};
28866 {#1}{0000}{0000};
28867 {
28868 \if_int_odd:w #2 \exp_stop_f:
28869 \exp_after:wN __fp_fixed_sub:wwn
28870 \else:
28871 \exp_after:wN __fp_fixed_add:wwn
28872 \fi:
28873 }
28874 }

(End of definition for __fp_atan_combine_o:NwwwwwN and __fp_atan_combine_aux:ww.)

77.2.2 Arcsine and arccosine
__fp_asin_o:w Again, the first argument provided by l3fp-parse is \use_i:nn if we are to work in radians

and \use_ii:nn for degrees. Then comes a floating point number. The arcsine of ±0
or nan is the same floating point number. The arcsine of ±∞ raises an invalid opera-
tion exception. Otherwise, call an auxiliary common with __fp_acos_o:w, feeding it
information about what function is being performed (for “invalid operation” exceptions).

28875 \cs_new:Npn __fp_asin_o:w #1 \s__fp __fp_chk:w #2#3; @
28876 {
28877 \if_case:w #2 \exp_stop_f:
28878 __fp_case_return_same_o:w
28879 \or:
28880 __fp_case_use:nw
28881 { __fp_asin_normal_o:NfwNnnnnw #1 { #1 { asin } { asind } } }
28882 \or:
28883 __fp_case_use:nw
28884 { __fp_invalid_operation_o:fw { #1 { asin } { asind } } }
28885 \else:
28886 __fp_case_return_same_o:w
28887 \fi:
28888 \s__fp __fp_chk:w #2 #3;
28889 }

1213

(End of definition for __fp_asin_o:w.)

__fp_acos_o:w The arccosine of ±0 is π/2 (in degrees, 90). The arccosine of ±∞ raises an invalid
operation exception. The arccosine of nan is itself. Otherwise, call an auxiliary common
with __fp_sin_o:w, informing it that it was called by acos or acosd, and preparing to
swap some arguments down the line.

28890 \cs_new:Npn __fp_acos_o:w #1 \s__fp __fp_chk:w #2#3; @
28891 {
28892 \if_case:w #2 \exp_stop_f:
28893 __fp_case_use:nw { __fp_atan_inf_o:NNNw #1 0 4 }
28894 \or:
28895 __fp_case_use:nw
28896 {
28897 __fp_asin_normal_o:NfwNnnnnw #1 { #1 { acos } { acosd } }
28898 __fp_reverse_args:Nww
28899 }
28900 \or:
28901 __fp_case_use:nw
28902 { __fp_invalid_operation_o:fw { #1 { acos } { acosd } } }
28903 \else:
28904 __fp_case_return_same_o:w
28905 \fi:
28906 \s__fp __fp_chk:w #2 #3;
28907 }

(End of definition for __fp_acos_o:w.)

__fp_asin_normal_o:NfwNnnnnw If the exponent #5 is at most 0, the operand lies within (−1, 1) and the operation is per-
mitted: call __fp_asin_auxi_o:NnNww with the appropriate arguments. If the number
is exactly ±1 (the test works because we know that #5 ≥ 1, #6#7 ≥ 10000000, #8#9 ≥ 0,
with equality only for ±1), we also call __fp_asin_auxi_o:NnNww. Otherwise, __fp_-
use_i:ww gets rid of the asin auxiliary, and raises instead an invalid operation, because
the operand is outside the domain of arcsine or arccosine.

28908 \cs_new:Npn __fp_asin_normal_o:NfwNnnnnw
28909 #1#2#3 \s__fp __fp_chk:w 1#4#5#6#7#8#9;
28910 {
28911 \if_int_compare:w #5 < \c_one_int
28912 \exp_after:wN __fp_use_none_until_s:w
28913 \fi:
28914 \if_int_compare:w __fp_int_eval:w #5 + #6#7 + #8#9 = 1000 0001 ~
28915 \exp_after:wN __fp_use_none_until_s:w
28916 \fi:
28917 __fp_use_i:ww
28918 __fp_invalid_operation_o:fw {#2}
28919 \s__fp __fp_chk:w 1#4{#5}{#6}{#7}{#8}{#9};
28920 __fp_asin_auxi_o:NnNww
28921 #1 {#3} #4 #5,{#6}{#7}{#8}{#9}{0000}{0000};
28922 }

(End of definition for __fp_asin_normal_o:NfwNnnnnw.)

__fp_asin_auxi_o:NnNww
__fp_asin_isqrt:wn

We compute x/
√

1 − x2. This function is used by asin and acos, but also by acsc and
asec after inverting the operand, thus it must manipulate extended-precision numbers.
First evaluate 1 − x2 as (1 + x)(1 − x): this behaves better near x = 1. We do the

1214

addition/subtraction with fixed point numbers (they are not implemented for extended-
precision floats), but go back to extended-precision floats to multiply and compute the
inverse square root 1/

√
1 − x2. Finally, multiply by the (positive) extended-precision float

|x|, and feed the (signed) result, and the number +1, as arguments to the arctangent
function. When computing the arccosine, the arguments x/

√
1 − x2 and +1 are swapped

by #2 (__fp_reverse_args:Nww in that case) before __fp_atan_test_o:NwwNwwN is
evaluated. Note that the arctangent function requires normalized arguments, hence the
need for ep_to_ep and continue after ep_mul.

28923 \cs_new:Npn __fp_asin_auxi_o:NnNww #1#2#3#4,#5;
28924 {
28925 __fp_ep_to_fixed:wwn #4,#5;
28926 __fp_asin_isqrt:wn
28927 __fp_ep_mul:wwwwn #4,#5;
28928 __fp_ep_to_ep:wwN
28929 __fp_fixed_continue:wn
28930 { #2 __fp_atan_test_o:NwwNwwN #3 }
28931 0 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1
28932 }
28933 \cs_new:Npn __fp_asin_isqrt:wn #1;
28934 {
28935 \exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl #1;
28936 {
28937 __fp_fixed_add_one:wN #1;
28938 __fp_fixed_continue:wn { __fp_ep_mul:wwwwn 0, } 0,
28939 }
28940 __fp_ep_isqrt:wwn
28941 }

(End of definition for __fp_asin_auxi_o:NnNww and __fp_asin_isqrt:wn.)

77.2.3 Arccosecant and arcsecant
__fp_acsc_o:w Cases are mostly labelled by #2, except when #2 is 2: then we use #3#2, which is 02 = 2

when the number is +∞ and 22 when the number is −∞. The arccosecant of ±0 raises
an invalid operation exception. The arccosecant of ±∞ is ±0 with the same sign. The
arcosecant of nan is itself. Otherwise, __fp_acsc_normal_o:NfwNnw does some more
tests, keeping the function name (acsc or acscd) as an argument for invalid operation
exceptions.

28942 \cs_new:Npn __fp_acsc_o:w #1 \s__fp __fp_chk:w #2#3#4; @
28943 {
28944 \if_case:w \if_meaning:w 2 #2 #3 \fi: #2 \exp_stop_f:
28945 __fp_case_use:nw
28946 { __fp_invalid_operation_o:fw { #1 { acsc } { acscd } } }
28947 \or: __fp_case_use:nw
28948 { __fp_acsc_normal_o:NfwNnw #1 { #1 { acsc } { acscd } } }
28949 \or: __fp_case_return_o:Nw \c_zero_fp
28950 \or: __fp_case_return_same_o:w
28951 \else: __fp_case_return_o:Nw \c_minus_zero_fp
28952 \fi:
28953 \s__fp __fp_chk:w #2 #3 #4;
28954 }

(End of definition for __fp_acsc_o:w.)

1215

__fp_asec_o:w The arcsecant of ±0 raises an invalid operation exception. The arcsecant of ±∞ is π/2
(in degrees, 90). The arcosecant of nan is itself. Otherwise, do some more tests, keeping
the function name asec (or asecd) as an argument for invalid operation exceptions, and
a __fp_reverse_args:Nww following precisely that appearing in __fp_acos_o:w.

28955 \cs_new:Npn __fp_asec_o:w #1 \s__fp __fp_chk:w #2#3; @
28956 {
28957 \if_case:w #2 \exp_stop_f:
28958 __fp_case_use:nw
28959 { __fp_invalid_operation_o:fw { #1 { asec } { asecd } } }
28960 \or:
28961 __fp_case_use:nw
28962 {
28963 __fp_acsc_normal_o:NfwNnw #1 { #1 { asec } { asecd } }
28964 __fp_reverse_args:Nww
28965 }
28966 \or: __fp_case_use:nw { __fp_atan_inf_o:NNNw #1 0 4 }
28967 \else: __fp_case_return_same_o:w
28968 \fi:
28969 \s__fp __fp_chk:w #2 #3;
28970 }

(End of definition for __fp_asec_o:w.)

__fp_acsc_normal_o:NfwNnw If the exponent is non-positive, the operand is less than 1 in absolute value, which is
always an invalid operation: complain. Otherwise, compute the inverse of the operand,
and feed it to __fp_asin_auxi_o:NnNww (with all the appropriate arguments). This
computes what we want thanks to acsc(x) = asin(1/x) and asec(x) = acos(1/x).

28971 \cs_new:Npn __fp_acsc_normal_o:NfwNnw #1#2#3 \s__fp __fp_chk:w 1#4#5#6;
28972 {
28973 \int_compare:nNnTF {#5} < 1
28974 {
28975 __fp_invalid_operation_o:fw {#2}
28976 \s__fp __fp_chk:w 1#4{#5}#6;
28977 }
28978 {
28979 __fp_ep_div:wwwwn
28980 1,{1000}{0000}{0000}{0000}{0000}{0000};
28981 #5,#6{0000}{0000};
28982 { __fp_asin_auxi_o:NnNww #1 {#3} #4 }
28983 }
28984 }

(End of definition for __fp_acsc_normal_o:NfwNnw.)

28985 ⟨/package⟩

1216

Chapter 78

l3fp-convert implementation

28986 ⟨∗package⟩
28987 ⟨@@=fp⟩

78.1 Dealing with tuples
__fp_tuple_convert:Nw

__fp_tuple_convert_loop:nNw
__fp_tuple_convert_end:w

The first argument is for instance __fp_to_tl_dispatch:w, which converts any floating
point object to the appropriate representation. We loop through all items, putting ,~
between all of them and making sure to remove the leading ,~.

28988 \cs_new:Npn __fp_tuple_convert:Nw #1 \s__fp_tuple __fp_tuple_chk:w #2 ;
28989 {
28990 \int_case:nnF { __fp_array_count:n {#2} }
28991 {
28992 { 0 } { () }
28993 { 1 } { __fp_tuple_convert_end:w @ { #1 #2 , } }
28994 }
28995 {
28996 __fp_tuple_convert_loop:nNw { } #1
28997 #2 { ? __fp_tuple_convert_end:w } ;
28998 @ { \use_none:nn }
28999 }
29000 }
29001 \cs_new:Npn __fp_tuple_convert_loop:nNw #1#2#3#4; #5 @ #6
29002 {
29003 \use_none:n #3
29004 \exp_args:Nf __fp_tuple_convert_loop:nNw { #2 #3#4 ; } #2 #5
29005 @ { #6 , ~ #1 }
29006 }
29007 \cs_new:Npn __fp_tuple_convert_end:w #1 @ #2
29008 { \exp_after:wN (\exp:w \exp_end_continue_f:w #2) }

(End of definition for __fp_tuple_convert:Nw , __fp_tuple_convert_loop:nNw , and __fp_tuple_-
convert_end:w.)

78.2 Trimming trailing zeros
__fp_trim_zeros:w

__fp_trim_zeros_loop:w
__fp_trim_zeros_dot:w
__fp_trim_zeros_end:w

If #1 ends with a 0, the loop auxiliary takes that zero as an end-delimiter for its first
argument, and the second argument is the same loop auxiliary. Once the last trailing

1217

zero is reached, the second argument is the dot auxiliary, which removes a trailing dot if
any. We then clean-up with the end auxiliary, keeping only the number.

29009 \cs_new:Npn __fp_trim_zeros:w #1 ;
29010 {
29011 __fp_trim_zeros_loop:w #1
29012 ; __fp_trim_zeros_loop:w 0; __fp_trim_zeros_dot:w .; \s__fp_stop
29013 }
29014 \cs_new:Npn __fp_trim_zeros_loop:w #1 0; #2 { #2 #1 ; #2 }
29015 \cs_new:Npn __fp_trim_zeros_dot:w #1 .; { __fp_trim_zeros_end:w #1 ; }
29016 \cs_new:Npn __fp_trim_zeros_end:w #1 ; #2 \s__fp_stop { #1 }

(End of definition for __fp_trim_zeros:w and others.)

78.3 Scientific notation
\fp_to_scientific:N
\fp_to_scientific:c
\fp_to_scientific:n

The three public functions evaluate their argument, then pass it to __fp_to_-
scientific_dispatch:w.

29017 \cs_new:Npn \fp_to_scientific:N #1
29018 { \exp_after:wN __fp_to_scientific_dispatch:w #1 }
29019 \cs_generate_variant:Nn \fp_to_scientific:N { c }
29020 \cs_new:Npn \fp_to_scientific:n
29021 {
29022 \exp_after:wN __fp_to_scientific_dispatch:w
29023 \exp:w \exp_end_continue_f:w __fp_parse:n
29024 }

(End of definition for \fp_to_scientific:N and \fp_to_scientific:n. These functions are documented
on page 267.)

__fp_to_scientific_dispatch:w
__fp_to_scientific_recover:w

__fp_tuple_to_scientific:w

We allow tuples.
29025 \cs_new:Npn __fp_to_scientific_dispatch:w #1
29026 {
29027 __fp_change_func_type:NNN
29028 #1 __fp_to_scientific:w __fp_to_scientific_recover:w
29029 #1
29030 }
29031 \cs_new:Npn __fp_to_scientific_recover:w #1 #2 ;
29032 {
29033 __fp_error:nffn { unknown-type } { \tl_to_str:n { #2 ; } } { } { }
29034 nan
29035 }
29036 \cs_new:Npn __fp_tuple_to_scientific:w
29037 { __fp_tuple_convert:Nw __fp_to_scientific_dispatch:w }

(End of definition for __fp_to_scientific_dispatch:w , __fp_to_scientific_recover:w , and __-
fp_tuple_to_scientific:w.)

__fp_to_scientific:w
__fp_to_scientific_normal:wnnnnn

__fp_to_scientific_normal:wNw

Expressing an internal floating point number in scientific notation is quite easy: no
rounding, and the format is very well defined. First cater for the sign: negative numbers
(#2 = 2) start with -; we then only need to care about positive numbers and nan. Then
filter the special cases: ±0 are represented as 0; infinities are converted to a number
slightly larger than the largest after an “invalid_operation” exception; nan is represented
as 0 after an “invalid_operation” exception. In the normal case, decrement the exponent

1218

and unbrace the 4 brace groups, then in a second step grab the first digit (previously
hidden in braces) to order the various parts correctly.

29038 \cs_new:Npn __fp_to_scientific:w \s__fp __fp_chk:w #1#2
29039 {
29040 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
29041 \if_case:w #1 \exp_stop_f:
29042 __fp_case_return:nw { 0.000000000000000e0 }
29043 \or: \exp_after:wN __fp_to_scientific_normal:wnnnnn
29044 \or:
29045 __fp_case_use:nw
29046 {
29047 __fp_invalid_operation:nnw
29048 { \fp_to_scientific:N \c__fp_overflowing_fp }
29049 { fp_to_scientific }
29050 }
29051 \or:
29052 __fp_case_use:nw
29053 {
29054 __fp_invalid_operation:nnw
29055 { \fp_to_scientific:N \c_zero_fp }
29056 { fp_to_scientific }
29057 }
29058 \fi:
29059 \s__fp __fp_chk:w #1 #2
29060 }
29061 \cs_new:Npn __fp_to_scientific_normal:wnnnnn
29062 \s__fp __fp_chk:w 1 #1 #2 #3#4#5#6 ;
29063 {
29064 \exp_after:wN __fp_to_scientific_normal:wNw
29065 \exp_after:wN e
29066 \int_value:w __fp_int_eval:w #2 - 1
29067 ; #3 #4 #5 #6 ;
29068 }
29069 \cs_new:Npn __fp_to_scientific_normal:wNw #1 ; #2#3;
29070 { #2.#3 #1 }

(End of definition for __fp_to_scientific:w , __fp_to_scientific_normal:wnnnnn , and __fp_to_-
scientific_normal:wNw.)

78.4 Decimal representation
\fp_to_decimal:N
\fp_to_decimal:c
\fp_to_decimal:n

All three public variants are based on the same __fp_to_decimal_dispatch:w after
evaluating their argument to an internal floating point.

29071 \cs_new:Npn \fp_to_decimal:N #1
29072 { \exp_after:wN __fp_to_decimal_dispatch:w #1 }
29073 \cs_generate_variant:Nn \fp_to_decimal:N { c }
29074 \cs_new:Npn \fp_to_decimal:n
29075 {
29076 \exp_after:wN __fp_to_decimal_dispatch:w
29077 \exp:w \exp_end_continue_f:w __fp_parse:n
29078 }

(End of definition for \fp_to_decimal:N and \fp_to_decimal:n. These functions are documented on
page 266.)

1219

__fp_to_decimal_dispatch:w
__fp_to_decimal_recover:w
__fp_tuple_to_decimal:w

We allow tuples.
29079 \cs_new:Npn __fp_to_decimal_dispatch:w #1
29080 {
29081 __fp_change_func_type:NNN
29082 #1 __fp_to_decimal:w __fp_to_decimal_recover:w
29083 #1
29084 }
29085 \cs_new:Npn __fp_to_decimal_recover:w #1 #2 ;
29086 {
29087 __fp_error:nffn { unknown-type } { \tl_to_str:n { #2 ; } } { } { }
29088 nan
29089 }
29090 \cs_new:Npn __fp_tuple_to_decimal:w
29091 { __fp_tuple_convert:Nw __fp_to_decimal_dispatch:w }

(End of definition for __fp_to_decimal_dispatch:w , __fp_to_decimal_recover:w , and __fp_-
tuple_to_decimal:w.)

__fp_to_decimal:w
__fp_to_decimal_normal:wnnnnn

__fp_to_decimal_large:Nnnw
__fp_to_decimal_huge:wnnnn

The structure is similar to __fp_to_scientific:w. Insert - for negative numbers. Zero
gives 0, ±∞ and nan yield an “invalid operation” exception; note that ±∞ produces a
very large output, which we don’t expand now since it most likely won’t be needed.
Normal numbers with an exponent in the range [1, 15] have that number of digits before
the decimal separator: “decimate” them, and remove leading zeros with \int_value:w,
then trim trailing zeros and dot. Normal numbers with an exponent 16 or larger have no
decimal separator, we only need to add trailing zeros. When the exponent is non-positive,
the result should be 0.⟨zeros⟩⟨digits⟩, trimmed.

29092 \cs_new:Npn __fp_to_decimal:w \s__fp __fp_chk:w #1#2
29093 {
29094 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
29095 \if_case:w #1 \exp_stop_f:
29096 __fp_case_return:nw { 0 }
29097 \or: \exp_after:wN __fp_to_decimal_normal:wnnnnn
29098 \or:
29099 __fp_case_use:nw
29100 {
29101 __fp_invalid_operation:nnw
29102 { \fp_to_decimal:N \c__fp_overflowing_fp }
29103 { fp_to_decimal }
29104 }
29105 \or:
29106 __fp_case_use:nw
29107 {
29108 __fp_invalid_operation:nnw
29109 { 0 }
29110 { fp_to_decimal }
29111 }
29112 \fi:
29113 \s__fp __fp_chk:w #1 #2
29114 }
29115 \cs_new:Npn __fp_to_decimal_normal:wnnnnn
29116 \s__fp __fp_chk:w 1 #1 #2 #3#4#5#6 ;
29117 {
29118 \int_compare:nNnTF {#2} > 0
29119 {

1220

29120 \int_compare:nNnTF {#2} < \c__fp_prec_int
29121 {
29122 __fp_decimate:nNnnnn { \c__fp_prec_int - #2 }
29123 __fp_to_decimal_large:Nnnw
29124 }
29125 {
29126 \exp_after:wN \exp_after:wN
29127 \exp_after:wN __fp_to_decimal_huge:wnnnn
29128 \prg_replicate:nn { #2 - \c__fp_prec_int } { 0 } ;
29129 }
29130 {#3} {#4} {#5} {#6}
29131 }
29132 {
29133 \exp_after:wN __fp_trim_zeros:w
29134 \exp_after:wN 0
29135 \exp_after:wN .
29136 \exp:w \exp_end_continue_f:w \prg_replicate:nn { - #2 } { 0 }
29137 #3#4#5#6 ;
29138 }
29139 }
29140 \cs_new:Npn __fp_to_decimal_large:Nnnw #1#2#3#4;
29141 {
29142 \exp_after:wN __fp_trim_zeros:w \int_value:w
29143 \if_int_compare:w #2 > \c_zero_int
29144 #2
29145 \fi:
29146 \exp_stop_f:
29147 #3.#4 ;
29148 }
29149 \cs_new:Npn __fp_to_decimal_huge:wnnnn #1; #2#3#4#5 { #2#3#4#5 #1 }

(End of definition for __fp_to_decimal:w and others.)

78.5 Token list representation
\fp_to_tl:N
\fp_to_tl:c
\fp_to_tl:n

These three public functions evaluate their argument, then pass it to __fp_to_tl_-
dispatch:w.

29150 \cs_new:Npn \fp_to_tl:N #1 { \exp_after:wN __fp_to_tl_dispatch:w #1 }
29151 \cs_generate_variant:Nn \fp_to_tl:N { c }
29152 \cs_new:Npn \fp_to_tl:n
29153 {
29154 \exp_after:wN __fp_to_tl_dispatch:w
29155 \exp:w \exp_end_continue_f:w __fp_parse:n
29156 }

(End of definition for \fp_to_tl:N and \fp_to_tl:n. These functions are documented on page 267.)

__fp_to_tl_dispatch:w
__fp_to_tl_recover:w

__fp_tuple_to_tl:w

We allow tuples.
29157 \cs_new:Npn __fp_to_tl_dispatch:w #1
29158 { __fp_change_func_type:NNN #1 __fp_to_tl:w __fp_to_tl_recover:w #1 }
29159 \cs_new:Npn __fp_to_tl_recover:w #1 #2 ;
29160 {
29161 __fp_error:nffn { unknown-type } { \tl_to_str:n { #2 ; } } { } { }

1221

29162 nan
29163 }
29164 \cs_new:Npn __fp_tuple_to_tl:w
29165 { __fp_tuple_convert:Nw __fp_to_tl_dispatch:w }

(End of definition for __fp_to_tl_dispatch:w , __fp_to_tl_recover:w , and __fp_tuple_to_tl:w.)

__fp_to_tl:w
__fp_to_tl_normal:nnnnn

__fp_to_tl_scientific:wnnnnn
__fp_to_tl_scientific:wNw

A structure similar to __fp_to_scientific_dispatch:w and __fp_to_decimal_-
dispatch:w, but without the “invalid operation” exception. First filter special cases.
We express normal numbers in decimal notation if the exponent is in the range [−2, 16],
and otherwise use scientific notation.

29166 \cs_new:Npn __fp_to_tl:w \s__fp __fp_chk:w #1#2
29167 {
29168 \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
29169 \if_case:w #1 \exp_stop_f:
29170 __fp_case_return:nw { 0 }
29171 \or: \exp_after:wN __fp_to_tl_normal:nnnnn
29172 \or: __fp_case_return:nw { inf }
29173 \else: __fp_case_return:nw { nan }
29174 \fi:
29175 }
29176 \cs_new:Npn __fp_to_tl_normal:nnnnn #1
29177 {
29178 \int_compare:nTF
29179 { -2 <= #1 <= \c__fp_prec_int }
29180 { __fp_to_decimal_normal:wnnnnn }
29181 { __fp_to_tl_scientific:wnnnnn }
29182 \s__fp __fp_chk:w 1 0 {#1}
29183 }
29184 \cs_new:Npn __fp_to_tl_scientific:wnnnnn
29185 \s__fp __fp_chk:w 1 #1 #2 #3#4#5#6 ;
29186 {
29187 \exp_after:wN __fp_to_tl_scientific:wNw
29188 \exp_after:wN e
29189 \int_value:w __fp_int_eval:w #2 - 1
29190 ; #3 #4 #5 #6 ;
29191 }
29192 \cs_new:Npn __fp_to_tl_scientific:wNw #1 ; #2#3;
29193 { __fp_trim_zeros:w #2.#3 ; #1 }

(End of definition for __fp_to_tl:w and others.)

78.6 Formatting
This is not implemented yet, as it is not yet clear what a correct interface would be, for
this kind of structured conversion from a floating point (or other types of variables) to a
string. Ideas welcome.

78.7 Convert to dimension or integer
\fp_to_dim:N
\fp_to_dim:c
\fp_to_dim:n

__fp_to_dim_dispatch:w
__fp_to_dim_recover:w

__fp_to_dim:w

All three public variants are based on the same __fp_to_dim_dispatch:w after evalu-
ating their argument to an internal floating point. We only allow floating point numbers,

1222

not tuples.
29194 \cs_new:Npn \fp_to_dim:N #1
29195 { \exp_after:wN __fp_to_dim_dispatch:w #1 }
29196 \cs_generate_variant:Nn \fp_to_dim:N { c }
29197 \cs_new:Npn \fp_to_dim:n
29198 {
29199 \exp_after:wN __fp_to_dim_dispatch:w
29200 \exp:w \exp_end_continue_f:w __fp_parse:n
29201 }
29202 \cs_new:Npn __fp_to_dim_dispatch:w #1#2 ;
29203 {
29204 __fp_change_func_type:NNN #1 __fp_to_dim:w __fp_to_dim_recover:w
29205 #1 #2 ;
29206 }
29207 \cs_new:Npn __fp_to_dim_recover:w #1
29208 { __fp_invalid_operation:nnw { 0pt } { fp_to_dim } }
29209 \cs_new:Npn __fp_to_dim:w #1 ; { __fp_to_decimal:w #1 ; pt }

(End of definition for \fp_to_dim:N and others. These functions are documented on page 266.)

\fp_to_int:N
\fp_to_int:c
\fp_to_int:n

__fp_to_int_dispatch:w
__fp_to_int_recover:w

For the most part identical to \fp_to_dim:N but without pt, and where __fp_to_int:w
does more work. To convert to an integer, first round to 0 places (to the nearest integer),
then express the result as a decimal number: the definition of __fp_to_decimal_-
dispatch:w is such that there are no trailing dot nor zero.

29210 \cs_new:Npn \fp_to_int:N #1 { \exp_after:wN __fp_to_int_dispatch:w #1 }
29211 \cs_generate_variant:Nn \fp_to_int:N { c }
29212 \cs_new:Npn \fp_to_int:n
29213 {
29214 \exp_after:wN __fp_to_int_dispatch:w
29215 \exp:w \exp_end_continue_f:w __fp_parse:n
29216 }
29217 \cs_new:Npn __fp_to_int_dispatch:w #1#2 ;
29218 {
29219 __fp_change_func_type:NNN #1 __fp_to_int:w __fp_to_int_recover:w
29220 #1 #2 ;
29221 }
29222 \cs_new:Npn __fp_to_int_recover:w #1
29223 { __fp_invalid_operation:nnw { 0 } { fp_to_int } }
29224 \cs_new:Npn __fp_to_int:w #1;
29225 {
29226 \exp_after:wN __fp_to_decimal:w \exp:w \exp_end_continue_f:w
29227 __fp_round:Nwn __fp_round_to_nearest:NNN #1; { 0 }
29228 }

(End of definition for \fp_to_int:N and others. These functions are documented on page 266.)

78.8 Convert from a dimension
\dim_to_fp:n

__fp_from_dim_test:ww
__fp_from_dim:wNw

__fp_from_dim:wNNnnnnnn
__fp_from_dim:wnnnnwNw

The dimension expression (which can in fact be a glue expression) is evaluated, con-
verted to a number (i.e., expressed in scaled points), then multiplied by 2−16 =
0.0000152587890625 to give a value expressed in points. The auxiliary __fp_mul_-
npos_o:Nww expects the desired ⟨final sign⟩ and two floating point operands (of the
form \s__fp . . . ;) as arguments. This set of functions is also used to convert dimension

1223

registers to floating points while parsing expressions: in this context there is an additional
exponent, which is the first argument of __fp_from_dim_test:ww, and is combined with
the exponent −4 of 2−16. There is also a need to expand afterwards: this is performed
by __fp_mul_npos_o:Nww, and cancelled by \prg_do_nothing: here.

29229 \cs_new:Npn \dim_to_fp:n #1
29230 {
29231 \exp_after:wN __fp_from_dim_test:ww
29232 \exp_after:wN 0
29233 \exp_after:wN ,
29234 \int_value:w \tex_glueexpr:D #1 ;
29235 }
29236 \cs_new:Npn __fp_from_dim_test:ww #1, #2
29237 {
29238 \if_meaning:w 0 #2
29239 __fp_case_return:nw { \exp_after:wN \c_zero_fp }
29240 \else:
29241 \exp_after:wN __fp_from_dim:wNw
29242 \int_value:w __fp_int_eval:w #1 - 4
29243 \if_meaning:w - #2
29244 \exp_after:wN , \exp_after:wN 2 \int_value:w
29245 \else:
29246 \exp_after:wN , \exp_after:wN 0 \int_value:w #2
29247 \fi:
29248 \fi:
29249 }
29250 \cs_new:Npn __fp_from_dim:wNw #1,#2#3;
29251 {
29252 __fp_pack_twice_four:wNNNNNNNN __fp_from_dim:wNNnnnnnn ;
29253 #3 000 0000 00 {10}987654321; #2 {#1}
29254 }
29255 \cs_new:Npn __fp_from_dim:wNNnnnnnn #1; #2#3#4#5#6#7#8#9
29256 { __fp_from_dim:wnnnnwNn #1 {#2#300} {0000} ; }
29257 \cs_new:Npn __fp_from_dim:wnnnnwNn #1; #2#3#4#5#6; #7#8
29258 {
29259 __fp_mul_npos_o:Nww #7
29260 \s__fp __fp_chk:w 1 #7 {#5} #1 ;
29261 \s__fp __fp_chk:w 1 0 {#8} {1525} {8789} {0625} {0000} ;
29262 \prg_do_nothing:
29263 }

(End of definition for \dim_to_fp:n and others. This function is documented on page 236.)

78.9 Use and eval
\fp_use:N
\fp_use:c
\fp_eval:n

Those public functions are simple copies of the decimal conversions.
29264 \cs_new_eq:NN \fp_use:N \fp_to_decimal:N
29265 \cs_generate_variant:Nn \fp_use:N { c }
29266 \cs_new_eq:NN \fp_eval:n \fp_to_decimal:n

(End of definition for \fp_use:N and \fp_eval:n. These functions are documented on page 267.)

\fp_sign:n Trivial but useful. See the implementation of \fp_add:Nn for an explanation of why to
use __fp_parse:n, namely, for better error reporting.

1224

29267 \cs_new:Npn \fp_sign:n #1
29268 { \fp_to_decimal:n { sign __fp_parse:n {#1} } }

(End of definition for \fp_sign:n. This function is documented on page 266.)

\fp_abs:n Trivial but useful. See the implementation of \fp_add:Nn for an explanation of why to
use __fp_parse:n, namely, for better error reporting.

29269 \cs_new:Npn \fp_abs:n #1
29270 { \fp_to_decimal:n { abs __fp_parse:n {#1} } }

(End of definition for \fp_abs:n. This function is documented on page 285.)

\fp_max:nn
\fp_min:nn

Similar to \fp_abs:n, for consistency with \int_max:nn, etc.
29271 \cs_new:Npn \fp_max:nn #1#2
29272 { \fp_to_decimal:n { max (__fp_parse:n {#1} , __fp_parse:n {#2}) } }
29273 \cs_new:Npn \fp_min:nn #1#2
29274 { \fp_to_decimal:n { min (__fp_parse:n {#1} , __fp_parse:n {#2}) } }

(End of definition for \fp_max:nn and \fp_min:nn. These functions are documented on page 285.)

78.10 Convert an array of floating points to a comma
list

__fp_array_to_clist:n
__fp_array_to_clist_loop:Nw

Converts an array of floating point numbers to a comma-list. If speed here ends up
irrelevant, we can simplify the code for the auxiliary to become

\cs_new:Npn __fp_array_to_clist_loop:Nw #1#2;
{
\use_none:n #1
{ , ~ } \fp_to_tl:n { #1 #2 ; }
__fp_array_to_clist_loop:Nw

}

The \use_ii:nn function is expanded after __fp_expand:n is done, and it removes ,~
from the start of the representation.

29275 \cs_new:Npn __fp_array_to_clist:n #1
29276 {
29277 \tl_if_empty:nF {#1}
29278 {
29279 \exp_last_unbraced:Ne \use_ii:nn
29280 {
29281 __fp_array_to_clist_loop:Nw #1 { ? \prg_break: } ;
29282 \prg_break_point:
29283 }
29284 }
29285 }
29286 \cs_new:Npn __fp_array_to_clist_loop:Nw #1#2;
29287 {
29288 \use_none:n #1
29289 , ~
29290 \exp_not:f { __fp_to_tl_dispatch:w #1 #2 ; }
29291 __fp_array_to_clist_loop:Nw
29292 }

1225

(End of definition for __fp_array_to_clist:n and __fp_array_to_clist_loop:Nw.)

29293 ⟨/package⟩

1226

Chapter 79

l3fp-random implementation

29294 ⟨∗package⟩

29295 ⟨@@=fp⟩

__fp_parse_word_rand:N
__fp_parse_word_randint:N

Those functions may receive a variable number of arguments. We won’t use the argu-
ment ?.

29296 \cs_new:Npn __fp_parse_word_rand:N
29297 { __fp_parse_function:NNN __fp_rand_o:Nw ? }
29298 \cs_new:Npn __fp_parse_word_randint:N
29299 { __fp_parse_function:NNN __fp_randint_o:Nw ? }

(End of definition for __fp_parse_word_rand:N and __fp_parse_word_randint:N.)

79.1 Engine support
Obviously, every word “random” below means “pseudo-random”, as we have no access to
entropy (except a very unreliable source of entropy: the time it takes to run some code).

The primitive random number generator (RNG) is provided as \tex_uniformdeviate:D.
Under the hood, it maintains an array of 55 28-bit numbers, updated with a linear recur-
sion relation (similar to Fibonacci numbers) modulo 228. When \tex_uniformdeviate:D
⟨integer⟩ is called (for brevity denote by N the ⟨integer⟩), the next 28-bit number is
read from the array, scaled by N/228, and rounded. To prevent 0 and N from appearing
half as often as other numbers, they are both mapped to the result 0.

This process means that \tex_uniformdeviate:D only gives a uniform distribution
from 0 to N −1 if N is a divisor of 228, so we will mostly call the RNG with such power of 2
arguments. If N does not divide 228, then the relative non-uniformity (difference between
probabilities of getting different numbers) is about N/228. This implies that detecting
deviation from 1/N of the probability of a fixed value X requires about 256/N random
trials. But collective patterns can reduce this to about 256/N2. For instance with N =
3×2k, the modulo 3 repartition of such random numbers is biased with a non-uniformity
about 2k/228 (which is much worse than the circa 3/228 non-uniformity from taking
directly N = 3). This is detectable after about 256/22k = 9 · 256/N2 random numbers.
For k = 15, N = 98304, this means roughly 226 calls to the RNG (experimentally this
takes at the very least 16 seconds on a 2 giga-hertz processor). While this bias is not
quite problematic, it is uncomfortably close to being so, and it becomes worse as N is
increased. In our code, we shall thus combine several results from the RNG.

1227

The RNG has three types of unexpected correlations. First, everything is linear
modulo 228, hence the lowest k bits of the random numbers only depend on the lowest
k bits of the seed (and of course the number of times the RNG was called since setting
the seed). The recommended way to get a number from 0 to N − 1 is thus to scale the
raw 28-bit integer, as the engine’s RNG does. We will go further and in fact typically we
discard some of the lowest bits.

Second, suppose that we call the RNG with the same argument N to get a set
of K integers in [0, N − 1] (throwing away repeats), and suppose that N > K3 and
K > 55. The recursion used to construct more 28-bit numbers from previous ones is
linear: xn = xn−55 − xn−24 or xn = xn−55 − xn−24 + 228. After rescaling and rounding
we find that the result Nn ∈ [0, N −1] is among Nn−55 −Nn−24 +{−1, 0, 1} modulo N (a
more detailed analysis shows that 0 appears with frequency close to 3/4). The resulting
set thus has more triplets (a, b, c) than expected obeying a = b + c modulo N . Namely it
will have of order (K − 55) × 3/4 such triplets, when one would expect K3/(6N). This
starts to be detectable around N = 218 > 553 (earlier if one keeps track of positions too,
but this is more subtle than it looks because the array of 28-bit integers is read backwards
by the engine). Hopefully the correlation is subtle enough to not affect realistic documents
so we do not specifically mitigate against this. Since we typically use two calls to the
RNG per \int_rand:nn we would need to investigate linear relations between the x2n

on the one hand and between the x2n+1 on the other hand. Such relations will have more
complicated coefficients than ±1, which alleviates the issue.

Third, consider successive batches of 165 calls to the RNG (with argument 228 or with
argument 2 for instance), then most batches have more odd than even numbers. Note
that this does not mean that there are more odd than even numbers overall. Similar
issues are discussed in Knuth’s TAOCP volume 2 near exercise 3.3.2-31. We do not have
any mitigation strategy for this.

Ideally, our algorithm should be:

• Uniform. The result should be as uniform as possible assuming that the RNG’s
underlying 28-bit integers are uniform.

• Uncorrelated. The result should not have detectable correlations between different
seeds, similar to the lowest-bit ones mentioned earlier.

• Quick. The algorithm should be fast in TEX, so no “bit twiddling”, but “digit
twiddling” is ok.

• Simple. The behaviour must be documentable precisely.

• Predictable. The number of calls to the RNG should be the same for any \int_-
rand:nn, because then the algorithm can be modified later without changing the
result of other uses of the RNG.

• Robust. It should work even for \int_rand:nn { - \c_max_int } { \c_max_int }
where the range is not representable as an integer. In fact, we also provide later a
floating-point randint whose range can go all the way up to 2 × 1016 − 1 possible
values.

Some of these requirements conflict. For instance, uniformity cannot be achieved with a
fixed number of calls to the RNG.

Denote by random(N) one call to \tex_uniformdeviate:D with argument N , and
by ediv(p, q) the ε-TEX rounding division giving ⌊p/q + 1/2⌋. Denote by ⟨min⟩, ⟨max⟩

1228

and R = ⟨max⟩ − ⟨min⟩ + 1 the arguments of \int_min:nn and the number of possible
outcomes. Note that R ∈ [1, 232 − 1] cannot necessarily be represented as an integer
(however, R − 231 can). Our strategy is to get two 28-bit integers X and Y from the
RNG, split each into 14-bit integers, as X = X1 × 214 + X0 and Y = Y1 × 214 + Y0 then
return essentially ⟨min⟩ + ⌊R(X1 × 2−14 + Y1 × 2−28 + Y0 × 2−42 + X0 × 2−56)⌋. For
small R the X0 term has a tiny effect so we ignore it and we can compute R × Y/228

much more directly by random(R).

• If R ≤ 217 −1 then return ediv(R random(214)+random(R)+213, 214)−1+ ⟨min⟩.
The shifts by 213 and −1 convert ε-TEX division to truncated division. The bound
on R ensures that the number obtained after the shift is less than \c_max_int. The
non-uniformity is at most of order 217/242 = 2−25.

• Split R = R2 ×228 +R1 ×214 +R0, where R2 ∈ [0, 15]. Compute ⟨min⟩+R2X1214 +
(R2Y1 + R1X1) + ediv(R2Y0 + R1Y1 + R0X1 + ediv(R2X0 + R0Y1 + ediv((214R1 +
R0)(214Y0 + X0), 228), 214), 214) then map a result of ⟨max⟩ + 1 to ⟨min⟩. Writing
each ediv in terms of truncated division with a shift, and using ⌊(p + ⌊r/s⌋)/q⌋ =
⌊(ps + r)/(sq)⌋, what we compute is equal to ⌊⟨exact⟩ + 2−29 + 2−15 + 2−1⌋ with
⟨exact⟩ = ⟨min⟩ + R × 0.X1Y1Y0X0. Given we map ⟨max⟩ + 1 to ⟨min⟩, the shift
has no effect on uniformity. The non-uniformity is bounded by R/256 < 2−24. It
may be possible to speed up the code by dropping tiny terms such as R0X0, but
the analysis of non-uniformity proves too difficult.
To avoid the overflow when the computation yields ⟨max⟩ + 1 with ⟨max⟩ = 231 − 1
(note that R is then arbitrary), we compute the result in two pieces. Compute
⟨first⟩ = ⟨min⟩ + R2X1214 if R2 < 8 or ⟨min⟩ + 8X1214 + (R2 − 8)X1214 if
R2 ≥ 8, the expressions being chosen to avoid overflow. Compute ⟨second⟩ =
R2Y1 + R1X1 + ediv(. . .), at most R2214 + R1214 + R0 ≤ 228 + 15 × 214 − 1, not at
risk of overflowing. We have ⟨first⟩+⟨second⟩ = ⟨max⟩+1 = ⟨min⟩+R if and only
if ⟨second⟩ = R1214 + R0 + R2214 and 214R2X1 = 228R2 − 214R2 (namely R2 = 0
or X1 = 214 − 1). In that case, return ⟨min⟩, otherwise return ⟨first⟩ + ⟨second⟩,
which is safe because it is at most ⟨max⟩. Note that the decision of what to return
does not need ⟨first⟩ explicitly so we don’t actually compute it, just put it in an
integer expression in which ⟨second⟩ is eventually added (or not).

• To get a floating point number in [0, 1) just call the R = 10000 ≤ 217 − 1 procedure
above to produce four blocks of four digits.

• To get an integer floating point number in a range (whose size can be up to 2 ×
1016 − 1), work with fixed-point numbers: get six times four digits to build a fixed
point number, multiply by R and add ⟨min⟩. This requires some care because
l3fp-extended only supports non-negative numbers.

\c__kernel_randint_max_int Constant equal to 217 − 1, the maximal size of a range that \int_range:nn can do with
its “simple” algorithm.

29300 \int_const:Nn \c__kernel_randint_max_int { 131071 }

(End of definition for \c__kernel_randint_max_int.)

__kernel_randint:n Used in an integer expression, __kernel_randint:n {R} gives a random number 1 +
⌊(R random(214) + random(R))/214⌋ that is in [1, R]. Previous code was computing
⌊p/214⌋ as ediv(p − 213, 214) but that wrongly gives −1 for p = 0.

1229

29301 \cs_new:Npn __kernel_randint:n #1
29302 {
29303 (#1 * \tex_uniformdeviate:D 16384
29304 + \tex_uniformdeviate:D #1 + 8192) / 16384
29305 }

(End of definition for __kernel_randint:n.)

__fp_rand_myriads:n
__fp_rand_myriads_loop:w
__fp_rand_myriads_get:w

Used as __fp_rand_myriads:n {XXX} with one letter X (specifically) per block of four
digit we want; it expands to ; followed by the requested number of brace groups, each
containing four (pseudo-random) digits. Digits are produced as a random number in
[10000, 19999] for the usual reason of preserving leading zeros.

29306 \cs_new:Npn __fp_rand_myriads:n #1
29307 { __fp_rand_myriads_loop:w #1 \prg_break: X \prg_break_point: ; }
29308 \cs_new:Npn __fp_rand_myriads_loop:w #1 X
29309 {
29310 #1
29311 \exp_after:wN __fp_rand_myriads_get:w
29312 \int_value:w __fp_int_eval:w 9999 +
29313 __kernel_randint:n { 10000 }
29314 __fp_rand_myriads_loop:w
29315 }
29316 \cs_new:Npn __fp_rand_myriads_get:w 1 #1 ; { ; {#1} }

(End of definition for __fp_rand_myriads:n , __fp_rand_myriads_loop:w , and __fp_rand_myriads_-
get:w.)

79.2 Random floating point
__fp_rand_o:Nw
__fp_rand_o:w

First we check that random was called without argument. Then get four blocks of four
digits and convert that fixed point number to a floating point number (this correctly sets
the exponent). This has a minor bug: if all of the random numbers are zero then the
result is correctly 0 but it raises the underflow flag; it should not do that.

29317 \cs_new:Npn __fp_rand_o:Nw ? #1 @
29318 {
29319 \tl_if_empty:nTF {#1}
29320 {
29321 \exp_after:wN __fp_rand_o:w
29322 \exp:w \exp_end_continue_f:w
29323 __fp_rand_myriads:n { XXXX } { 0000 } { 0000 } ; 0
29324 }
29325 {
29326 \msg_expandable_error:nnnnn
29327 { fp } { num-args } { rand() } { 0 } { 0 }
29328 \exp_after:wN \c_nan_fp
29329 }
29330 }
29331 \cs_new:Npn __fp_rand_o:w ;
29332 {
29333 \exp_after:wN __fp_sanitize:Nw
29334 \exp_after:wN 0
29335 \int_value:w __fp_int_eval:w \c_zero_int
29336 __fp_fixed_to_float_o:wN
29337 }

1230

(End of definition for __fp_rand_o:Nw and __fp_rand_o:w.)

79.3 Random integer
__fp_randint_o:Nw

__fp_randint_default:w
__fp_randint_badarg:w

__fp_randint_o:w
__fp_randint_auxi_o:ww
__fp_randint_auxii:wn

__fp_randint_auxiii_o:ww
__fp_randint_auxiv_o:ww

__fp_randint_auxv_o:w

Enforce that there is one argument (then add first argument 1) or two arguments. Call
__fp_randint_badarg:w on each; this function inserts 1 \exp_stop_f: to end the
\if_case:w statement if either the argument is not an integer or if its absolute value is
≥ 1016. Also bail out if __fp_compare_back:ww yields 1, meaning that the bounds are
not in the right order. Otherwise an auxiliary converts each argument times 10−16 (hence
the shift in exponent) to a 24-digit fixed point number (see l3fp-extended). Then compute
the number of choices, ⟨max⟩ + 1 − ⟨min⟩. Create a random 24-digit fixed-point number
with __fp_rand_myriads:n, then use a fused multiply-add instruction to multiply the
number of choices to that random number and add it to ⟨min⟩. Then truncate to 16
digits (namely select the integer part of 1016 times the result) before converting back to
a floating point number (__fp_sanitize:Nw takes care of zero). To avoid issues with
negative numbers, add 1 to all fixed point numbers (namely 1016 to the integers they
represent), except of course when it is time to convert back to a float.

29338 \cs_new:Npn __fp_randint_o:Nw ?
29339 {
29340 __fp_parse_function_one_two:nnw
29341 { randint }
29342 { __fp_randint_default:w __fp_randint_o:w }
29343 }
29344 \cs_new:Npn __fp_randint_default:w #1 { \exp_after:wN #1 \c_one_fp }
29345 \cs_new:Npn __fp_randint_badarg:w \s__fp __fp_chk:w #1#2#3;
29346 {
29347 __fp_int:wTF \s__fp __fp_chk:w #1#2#3;
29348 {
29349 \if_meaning:w 1 #1
29350 \if_int_compare:w
29351 __fp_use_i_until_s:nw #3 ; > \c__fp_prec_int
29352 \c_one_int
29353 \fi:
29354 \fi:
29355 }
29356 { \c_one_int }
29357 }
29358 \cs_new:Npn __fp_randint_o:w #1; #2; @
29359 {
29360 \if_case:w
29361 __fp_randint_badarg:w #1;
29362 __fp_randint_badarg:w #2;
29363 \if:w 1 __fp_compare_back:ww #2; #1; \c_one_int \fi:
29364 \c_zero_int
29365 __fp_randint_auxi_o:ww #1; #2;
29366 \or:
29367 __fp_invalid_operation_tl_o:ff
29368 { randint } { __fp_array_to_clist:n { #1; #2; } }
29369 \exp:w
29370 \fi:
29371 \exp_after:wN \exp_end:
29372 }

1231

29373 \cs_new:Npn __fp_randint_auxi_o:ww #1 ; #2 ; #3 \exp_end:
29374 {
29375 \fi:
29376 __fp_randint_auxii:wn #2 ;
29377 { __fp_randint_auxii:wn #1 ; __fp_randint_auxiii_o:ww }
29378 }
29379 \cs_new:Npn __fp_randint_auxii:wn \s__fp __fp_chk:w #1#2#3#4 ;
29380 {
29381 \if_meaning:w 0 #1
29382 \exp_after:wN \use_i:nn
29383 \else:
29384 \exp_after:wN \use_ii:nn
29385 \fi:
29386 { \exp_after:wN __fp_fixed_continue:wn \c__fp_one_fixed_tl }
29387 {
29388 \exp_after:wN __fp_ep_to_fixed:wwn
29389 \int_value:w __fp_int_eval:w
29390 #3 - \c__fp_prec_int , #4 {0000} {0000} ;
29391 {
29392 \if_meaning:w 0 #2
29393 \exp_after:wN \use_i:nnnn
29394 \exp_after:wN __fp_fixed_add_one:wN
29395 \fi:
29396 \exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl
29397 }
29398 __fp_fixed_continue:wn
29399 }
29400 }
29401 \cs_new:Npn __fp_randint_auxiii_o:ww #1 ; #2 ;
29402 {
29403 __fp_fixed_add:wwn #2 ;
29404 {0000} {0000} {0000} {0001} {0000} {0000} ;
29405 __fp_fixed_sub:wwn #1 ;
29406 {
29407 \exp_after:wN \use_i:nn
29408 \exp_after:wN __fp_fixed_mul_add:wwwn
29409 \exp:w \exp_end_continue_f:w __fp_rand_myriads:n { XXXXXX } ;
29410 }
29411 #1 ;
29412 __fp_randint_auxiv_o:ww
29413 #2 ;
29414 __fp_randint_auxv_o:w #1 ; @
29415 }
29416 \cs_new:Npn __fp_randint_auxiv_o:ww #1#2#3#4#5 ; #6#7#8#9
29417 {
29418 \if_int_compare:w
29419 \if_int_compare:w #1#2 > #6#7 \exp_stop_f: 1 \else:
29420 \if_int_compare:w #1#2 < #6#7 \exp_stop_f: - \fi: \fi:
29421 #3#4 > #8#9 \exp_stop_f:
29422 __fp_use_i_until_s:nw
29423 \fi:
29424 __fp_randint_auxv_o:w {#1}{#2}{#3}{#4}#5
29425 }
29426 \cs_new:Npn __fp_randint_auxv_o:w #1#2#3#4#5 ; #6 @

1232

29427 {
29428 \exp_after:wN __fp_sanitize:Nw
29429 \int_value:w
29430 \if_int_compare:w #1 < 10000 \exp_stop_f:
29431 2
29432 \else:
29433 0
29434 \exp_after:wN \exp_after:wN
29435 \exp_after:wN __fp_reverse_args:Nww
29436 \fi:
29437 \exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl
29438 {#1} {#2} {#3} {#4} {0000} {0000} ;
29439 {
29440 \exp_after:wN \exp_stop_f:
29441 \int_value:w __fp_int_eval:w \c__fp_prec_int
29442 __fp_fixed_to_float_o:wN
29443 }
29444 0
29445 \exp:w \exp_after:wN \exp_end:
29446 }

(End of definition for __fp_randint_o:Nw and others.)

\int_rand:nn
__fp_randint:ww

Evaluate the argument and filter out the case where the lower bound #1 is more than
the upper bound #2. Then determine whether the range is narrower than \c__kernel_-
randint_max_int; #2-#1 may overflow for very large positive #2 and negative #1. If the
range is narrow, call __kernel_randint:n {⟨choices⟩} where ⟨choices⟩ is the number
of possible outcomes. If the range is wide, use somewhat slower code.

29447 \cs_new:Npn \int_rand:nn #1#2
29448 {
29449 \int_eval:n
29450 {
29451 \exp_after:wN __fp_randint:ww
29452 \int_value:w \int_eval:n {#1} \exp_after:wN ;
29453 \int_value:w \int_eval:n {#2} ;
29454 }
29455 }
29456 \cs_new:Npn __fp_randint:ww #1; #2;
29457 {
29458 \if_int_compare:w #1 > #2 \exp_stop_f:
29459 \msg_expandable_error:nnnn
29460 { kernel } { randint-backward-range } {#1} {#2}
29461 __fp_randint:ww #2; #1;
29462 \else:
29463 \if_int_compare:w __fp_int_eval:w #2
29464 \if_int_compare:w #1 > \c_zero_int
29465 - #1 < __fp_int_eval:w
29466 \else:
29467 < __fp_int_eval:w #1 +
29468 \fi:
29469 \c__kernel_randint_max_int
29470 __fp_int_eval_end:
29471 __kernel_randint:n
29472 { __fp_int_eval:w #2 - #1 + 1 __fp_int_eval_end: }

1233

29473 - 1 + #1
29474 \else:
29475 __kernel_randint:nn {#1} {#2}
29476 \fi:
29477 \fi:
29478 }

(End of definition for \int_rand:nn and __fp_randint:ww. This function is documented on page 182.)

__kernel_randint:nn
__fp_randint_split_o:Nw
__fp_randint_split_aux:w
__fp_randinat_wide_aux:w

__fp_randinat_wide_auxii:w

Any n ∈ [−231 +1, 231 −1] is uniquely written as 214n1 +n2 with n1 ∈ [−217, 217 −1] and
n2 ∈ [0, 214 − 1]. Calling __fp_randint_split_o:Nw n ; gives n1; n2; and expands
the next token once. We do this for two random numbers and apply __fp_randint_-
split_o:Nw twice to fully decompose the range R. One subtlety is that we compute
R − 231 = ⟨max⟩ − ⟨min⟩ − (231 − 1) ∈ [−231 + 1, 231 − 1] rather than R to avoid overflow.

Then we have __fp_randint_wide_aux:w ⟨X1⟩;⟨X0⟩; ⟨Y1⟩;⟨Y0⟩; ⟨R2⟩;⟨R1⟩;⟨R0⟩;.
and we apply the algorithm described earlier.

29479 \cs_new:Npn __kernel_randint:nn #1#2
29480 {
29481 #1
29482 \exp_after:wN __fp_randint_wide_aux:w
29483 \int_value:w
29484 \exp_after:wN __fp_randint_split_o:Nw
29485 \tex_uniformdeviate:D 268435456 ;
29486 \int_value:w
29487 \exp_after:wN __fp_randint_split_o:Nw
29488 \tex_uniformdeviate:D 268435456 ;
29489 \int_value:w
29490 \exp_after:wN __fp_randint_split_o:Nw
29491 \int_value:w __fp_int_eval:w 131072 +
29492 \exp_after:wN __fp_randint_split_o:Nw
29493 \int_value:w
29494 __kernel_int_add:nnn {#2} { -#1 } { -\c_max_int } ;
29495 .
29496 }
29497 \cs_new:Npn __fp_randint_split_o:Nw #1#2 ;
29498 {
29499 \if_meaning:w 0 #1
29500 0 \exp_after:wN ; \int_value:w 0
29501 \else:
29502 \exp_after:wN __fp_randint_split_aux:w
29503 \int_value:w __fp_int_eval:w (#1#2 - 8192) / 16384 ;
29504 + #1#2
29505 \fi:
29506 \exp_after:wN ;
29507 }
29508 \cs_new:Npn __fp_randint_split_aux:w #1 ;
29509 {
29510 #1 \exp_after:wN ;
29511 \int_value:w __fp_int_eval:w - #1 * 16384
29512 }
29513 \cs_new:Npn __fp_randint_wide_aux:w #1;#2; #3;#4; #5;#6;#7; .
29514 {
29515 \exp_after:wN __fp_randint_wide_auxii:w
29516 \int_value:w __fp_int_eval:w #5 * #3 + #6 * #1 +

1234

29517 (#5 * #4 + #6 * #3 + #7 * #1 +
29518 (#5 * #2 + #7 * #3 +
29519 (16384 * #6 + #7) * (16384 * #4 + #2) / 268435456) / 16384
29520) / 16384 \exp_after:wN ;
29521 \int_value:w __fp_int_eval:w (#5 + #6) * 16384 + #7 ;
29522 #1 ; #5 ;
29523 }
29524 \cs_new:Npn __fp_randint_wide_auxii:w #1; #2; #3; #4;
29525 {
29526 \if_int_odd:w 0
29527 \if_int_compare:w #1 = #2 \else: \exp_stop_f: \fi:
29528 \if_int_compare:w #4 = \c_zero_int 1 \fi:
29529 \if_int_compare:w #3 = 16383 ~ 1 \fi:
29530 \exp_stop_f:
29531 \exp_after:wN \prg_break:
29532 \fi:
29533 \if_int_compare:w #4 < 8 \exp_stop_f:
29534 + #4 * #3 * 16384
29535 \else:
29536 + 8 * #3 * 16384 + (#4 - 8) * #3 * 16384
29537 \fi:
29538 + #1
29539 \prg_break_point:
29540 }

(End of definition for __kernel_randint:nn and others.)

\int_rand:n
__fp_randint:n

Similar to \int_rand:nn, but needs fewer checks.
29541 \cs_new:Npn \int_rand:n #1
29542 {
29543 \int_eval:n
29544 { \exp_args:Nf __fp_randint:n { \int_eval:n {#1} } }
29545 }
29546 \cs_new:Npn __fp_randint:n #1
29547 {
29548 \if_int_compare:w #1 < \c_one_int
29549 \msg_expandable_error:nnnn
29550 { kernel } { randint-backward-range } { 1 } {#1}
29551 __fp_randint:ww #1; 1;
29552 \else:
29553 \if_int_compare:w #1 > \c__kernel_randint_max_int
29554 __kernel_randint:nn { 1 } {#1}
29555 \else:
29556 __kernel_randint:n {#1}
29557 \fi:
29558 \fi:
29559 }

(End of definition for \int_rand:n and __fp_randint:n. This function is documented on page 182.)

29560 ⟨/package⟩

1235

Chapter 80

l3fp-types implementation

29561 ⟨∗package⟩

29562 ⟨@@=fp⟩

80.1 Support for types
Despite lack of documentation, the l3fp internals support types. Each additional type
must define

• \s__fp_⟨type⟩ and __fp_⟨type⟩_chk:w;

• __fp_exp_after_⟨type⟩_f:nw;

• __fp_⟨type⟩_to_⟨out⟩:w for ⟨out⟩ among decimal, scientific, tl;

and may define

• __fp_⟨type⟩_to_int:w and __fp_⟨type⟩_to_dim:w;

• __fp_⟨op⟩_⟨type⟩_o:w for any of the ⟨op⟩ that the type implements, among acos,
acsc, asec, asin, cos, cot, csc, exp, ln, not, sec, set_sign, sin, tan;

• __fp_⟨type1⟩_⟨op⟩_⟨type2⟩_o:ww for ⟨op⟩ among ^*/-+&| and for every pair of
types;

• __fp_⟨type1⟩_bcmp_⟨type2⟩:ww for every pair of types.

The latter is set up in l3fp-logic.

80.2 Dispatch according to the type
__fp_types_cs_to_op:N

__fp_types_cs_to_op_auxi:wwwn
From __fp_⟨op⟩_o:w produce ⟨op⟩, otherwise ?.

29563 \cs_new:Npe __fp_types_cs_to_op:N #1
29564 {
29565 \exp_not:N \exp_after:wN \exp_not:N __fp_types_cs_to_op_auxi:wwwn
29566 \exp_not:N \token_to_str:N #1 \s__fp_mark
29567 \exp_not:N __fp_use_i_delimit_by_s_stop:nw
29568 \tl_to_str:n { __fp_ _o:w } \s__fp_mark
29569 { \exp_not:N __fp_use_i_delimit_by_s_stop:nw ? }

1236

29570 \s__fp_stop
29571 }
29572 \use:e
29573 {
29574 \cs_new:Npn \exp_not:N __fp_types_cs_to_op_auxi:wwwn
29575 #1 \tl_to_str:n { __fp_ } #2
29576 \tl_to_str:n { _o:w } #3 \s__fp_mark #4 { #4 {#2} }
29577 }

(End of definition for __fp_types_cs_to_op:N and __fp_types_cs_to_op_auxi:wwwn.)

__fp_types_unary:NNw
__fp_types_unary_auxi:nNw

__fp_types_unary_auxii:NnNw

__fp_types_unary:NNw __fp_⟨function⟩_o:w
⟨token⟩ ⟨operand⟩ @

29578 \cs_new:Npn __fp_types_unary:NNw #1
29579 {
29580 \exp_args:Nf __fp_types_unary_auxi:nNw
29581 { __fp_types_cs_to_op:N #1 }
29582 }
29583 \cs_new:Npn __fp_types_unary_auxi:nNw #1#2#3
29584 {
29585 \exp_after:wN __fp_types_unary_auxii:NnNw
29586 \cs:w __fp_#1 __fp_type_from_scan:N #3 _o:w \cs_end:
29587 {#1}
29588 #2#3
29589 }
29590 \cs_new:Npn __fp_types_unary_auxii:NnNw #1#2#3
29591 {
29592 \token_if_eq_meaning:NNTF \scan_stop: #1
29593 { __fp_invalid_operation_o:nw {#2} }
29594 { #1 #3 }
29595 }

(End of definition for __fp_types_unary:NNw , __fp_types_unary_auxi:nNw , and __fp_types_-
unary_auxii:NnNw.)

__fp_types_binary:Nww
__fp_types_binary_auxi:Nww

__fp_types_binary_auxii:NNww

__fp_types_binary:Nww __fp_⟨binop⟩_o:ww
⟨operand1⟩ ⟨operand2⟩ @

29596 \cs_new:Npn __fp_types_binary:Nww #1
29597 {
29598 \exp_last_unbraced:Nf __fp_types_binary_auxi:Nww
29599 { __fp_types_cs_to_op:N #1 }
29600 }
29601 \cs_new:Npn __fp_types_binary_auxi:Nww #1#2#3; #4#5; @
29602 {
29603 \exp_after:wN __fp_types_binary_auxii:NNww
29604 \cs:w
29605 __fp
29606 __fp_type_from_scan:N #2
29607 _#1
29608 __fp_type_from_scan:N #4
29609 _o:ww
29610 \cs_end:
29611 #1 #2#3; #4#5;
29612 }

1237

29613 \cs_new:Npn __fp_types_binary_auxii:NNww #1#2
29614 {
29615 \token_if_eq_meaning:NNTF \scan_stop: #1
29616 { __fp_invalid_operation_o:Nww #2 }
29617 {#1}
29618 }

(End of definition for __fp_types_binary:Nww , __fp_types_binary_auxi:Nww , and __fp_types_-
binary_auxii:NNww.)

29619 ⟨/package⟩

1238

Chapter 81

l3fp-symbolic implementation

29620 ⟨∗package⟩

29621 ⟨@@=fp⟩

81.1 Misc
\l__fp_symbolic_fp Scratch floating point.

29622 \fp_new:N \l__fp_symbolic_fp

(End of definition for \l__fp_symbolic_fp.)

81.2 Building blocks for expressions
Every symbolic expression has the form \s__fp_symbolic __fp_symbolic_chk:w
⟨operation⟩ , {⟨operands⟩} ⟨junk⟩ ; where the ⟨operation⟩ is a list of N-type tokens,
the ⟨operands⟩ is an array of floating point objects, and the ⟨junk⟩ is to be discarded.
If the outermost operator (last to be evaluated) is unary, the expression has the form

\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_unary:NNw __fp_⟨op⟩_o:w ⟨token⟩ ,
{ ⟨operand⟩ } ⟨junk⟩ ;

where the ⟨op⟩ is a unary operation (set_sign, cos, . . .), and the ⟨token⟩ and ⟨operand⟩
are used as arguments for __fp_⟨op⟩_o:w (or the type-specific analog of this function).
If the outermost operator is binary, the expression has the form

\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_binary:Nww __fp_⟨op⟩_o:ww ,
{ ⟨operand1⟩ ⟨operand2⟩ } ⟨junk⟩ ;

where the ⟨op⟩ is an operation (+, &, . . .), and __fp_⟨op⟩_o:ww receives the ⟨operands⟩
as arguments. If the expression consists of a single variable, it is stored as

\s__fp_symbolic __fp_symbolic_chk:w
__fp_variable_o:w ⟨identifier⟩ ,
{ } ⟨junk⟩ ;

1239

Symbolic expressions are stored in a prefix form. When encountering a symbolic
expression in a floating point computation, we attempt to evaluate the operands as much
as possible, and if that yields floating point numbers rather than expressions, we apply
the operator which follows (if the function is known).

For instance, the expression a + b * sin(c) is stored as

\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_binary:Nww __fp_+_o:ww ,
{
\s__fp_symbolic __fp_symbolic_chk:w
__fp_variable_o:w a , { } ;

\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_binary:Nww __fp_*_o:ww ,
{
\s__fp_symbolic __fp_symbolic_chk:w
__fp_variable_o:w b , { } ;

\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_unary:NNw __fp_sin_o:w \use_i:nn ,
{
\s__fp_symbolic __fp_symbolic_chk:w
__fp_variable_o:w c , { } ;

} ;
} ;

} ;

\s__fp_symbolic Scan mark indicating the start of a symbolic expression.
29623 \scan_new:N \s__fp_symbolic

(End of definition for \s__fp_symbolic.)

__fp_symbolic_chk:w Analog of __fp_chk:w for symbolic expressions.
29624 \cs_new_protected:Npn __fp_symbolic_chk:w #1,#2#3;
29625 {
29626 \msg_error:nne { fp } { misused-fp }
29627 {
29628 __fp_to_tl_dispatch:w
29629 \s__fp_symbolic __fp_symbolic_chk:w #1,{#2};
29630 }
29631 }

(End of definition for __fp_symbolic_chk:w.)

81.3 Expanding after a symbolic expression
__fp_if_has_symbolic:nTF

__fp_if_has_symbolic_aux:w
Tests if #1 contains \s__fp_symbolic at top-level. This test should be precise enough
to determine if a given array contains a symbolic expression or only consists of floating
points. Used in __fp_exp_after_symbolic_f:nw.

29632 \cs_new:Npn __fp_if_has_symbolic:nTF #1
29633 {
29634 __fp_if_has_symbolic_aux:w
29635 #1 \s__fp_mark \use_i:nn

1240

29636 \s__fp_symbolic \s__fp_mark \use_ii:nn
29637 \s__fp_stop
29638 }
29639 \cs_new:Npn __fp_if_has_symbolic_aux:w
29640 #1 \s__fp_symbolic #2 \s__fp_mark #3#4 \s__fp_stop { #3 }

(End of definition for __fp_if_has_symbolic:nTF and __fp_if_has_symbolic_aux:w.)

__fp_exp_after_symbolic_f:nw
__fp_exp_after_symbolic_aux:w
__fp_exp_after_symbolic_loop:N

This function does two things: trigger an f-expansion of the argument #1 after the
following symbolic expression, and evaluate all pieces of the expression which can be
evaluated.

29641 \cs_new:Npn __fp_exp_after_symbolic_f:nw
29642 #1 \s__fp_symbolic __fp_symbolic_chk:w #2, #3#4;
29643 {
29644 \exp_after:wN __fp_exp_after_symbolic_aux:w
29645 \exp:w
29646 __fp_exp_after_symbolic_loop:N #2
29647 { , \exp:w \use_none:nn }
29648 \exp_after:wN \exp_end: \exp_after:wN
29649 {
29650 \exp:w \exp_end_continue_f:w
29651 __fp_exp_after_array_f:w #3 \s__fp_expr_stop
29652 \exp_after:wN
29653 }
29654 \exp_after:wN ;
29655 \exp:w \exp_end_continue_f:w #1
29656 }
29657 \cs_new:Npn __fp_exp_after_symbolic_aux:w #1, #2;
29658 {
29659 __fp_if_has_symbolic:nTF {#2}
29660 { \s__fp_symbolic __fp_symbolic_chk:w #1, {#2} ; }
29661 { #1 #2 @ \prg_do_nothing: }
29662 }
29663 \cs_new:Npn __fp_exp_after_symbolic_loop:N #1
29664 {
29665 \exp_after:wN \exp_end:
29666 \exp_after:wN #1
29667 \exp:w
29668 __fp_exp_after_symbolic_loop:N
29669 }

(End of definition for __fp_exp_after_symbolic_f:nw , __fp_exp_after_symbolic_aux:w , and __-
fp_exp_after_symbolic_loop:N.)

81.4 Applying infix operators to expressions
__fp_symbolic_binary_o:Nww Used when applying infix operators to expressions.

29670 \cs_new:Npn __fp_symbolic_binary_o:Nww #1 #2; #3;
29671 {
29672 __fp_exp_after_symbolic_f:nw { \exp_after:wN \exp_stop_f: }
29673 \s__fp_symbolic __fp_symbolic_chk:w
29674 __fp_types_binary:Nww #1 , { #2; #3; } ;
29675 }

1241

(End of definition for __fp_symbolic_binary_o:Nww.)
^^A Hack! ^^A Hack! ^^A Hack!

__fp_symbolic_+_symbolic_o:ww
__fp_symbolic_+_o:ww
__fp_+_symbolic_o:ww
__fp_symbolic_-_symbolic_o:ww
__fp_symbolic_-_o:ww
__fp_-_symbolic_o:ww
__fp_symbolic_*_symbolic_o:ww
__fp_symbolic_*_o:ww
__fp_*_symbolic_o:ww
__fp_symbolic_/_symbolic_o:ww
__fp_symbolic_/_o:ww
__fp_/_symbolic_o:ww
__fp_symbolic_^_symbolic_o:ww
__fp_symbolic_^_o:ww
__fp_^_symbolic_o:ww
__fp_symbolic_|_symbolic_o:ww
__fp_symbolic_|_o:ww
__fp_|_symbolic_o:ww
__fp_symbolic_&_symbolic_o:ww
__fp_symbolic_&_o:ww
__fp_&_symbolic_o:ww

29676 \cs_set_protected:Npn __fp_tmp:w #1#2
29677 {
29678 \cs_new:cpn
29679 { __fp_symbolic_#2_symbolic_o:ww }
29680 { __fp_symbolic_binary_o:Nww #1 }
29681 \cs_new_eq:cc
29682 { __fp_symbolic_#2 _o:ww }
29683 { __fp_symbolic_#2_symbolic_o:ww }
29684 \cs_new_eq:cc
29685 { __fp _#2_symbolic_o:ww }
29686 { __fp_symbolic_#2_symbolic_o:ww }
29687 }
29688 \tl_map_inline:nn { + - * / ^ & | }
29689 { \exp_args:Nc __fp_tmp:w { __fp_#1_o:ww } {#1} }

(End of definition for __fp_symbolic_+_symbolic_o:ww and others.)

81.5 Applying prefix functions to expressions
__fp_symbolic_unary_o:NNw Used when applying infix operators to expressions.

29690 \cs_new:Npn __fp_symbolic_unary_o:NNw #1#2#3; @
29691 {
29692 __fp_exp_after_symbolic_f:nw { \exp_after:wN \exp_stop_f: }
29693 \s__fp_symbolic __fp_symbolic_chk:w
29694 __fp_types_unary:NNw #1#2 , { #3; } ;
29695 }

(End of definition for __fp_symbolic_unary_o:NNw.)

__fp_symbolic_acos_o:w
__fp_symbolic_acsc_o:w
__fp_symbolic_asec_o:w
__fp_symbolic_asin_o:w
__fp_symbolic_cos_o:w
__fp_symbolic_cot_o:w
__fp_symbolic_csc_o:w
__fp_symbolic_exp_o:w
__fp_symbolic_ln_o:w
__fp_symbolic_not_o:w
__fp_symbolic_sec_o:w

__fp_symbolic_set_sign_o:w
__fp_symbolic_sin_o:w
__fp_symbolic_tan_o:w

29696 \tl_map_inline:nn
29697 {
29698 {acos} {acsc} {asec} {asin} {cos} {cot} {csc} {exp} {ln}
29699 {not} {sec} {set_sign} {sin} {sqrt} {tan}
29700 }
29701 {
29702 \cs_new:cpe { __fp_symbolic_#1_o:w }
29703 {
29704 \exp_not:N __fp_symbolic_unary_o:NNw
29705 \exp_not:c { __fp_#1_o:w }
29706 }
29707 }

(End of definition for __fp_symbolic_acos_o:w and others.)

1242

81.6 Conversions
__fp_symbolic_to_decimal:w

__fp_symbolic_to_int:w
__fp_symbolic_to_scientific:w

__fp_symbolic_convert:wnnN

Symbolic expressions cannot be converted to decimal, integer, or scientific notation unless
they can be reduced to

29708 \cs_set_protected:Npn __fp_tmp:w #1#2#3
29709 {
29710 \cs_new:cpn { __fp_symbolic_to_#1:w }
29711 {
29712 \exp_after:wN __fp_symbolic_convert:wnnN
29713 \exp:w \exp_end_continue_f:w
29714 __fp_exp_after_symbolic_f:nw { { #2 } { fp_to_#1 } #3 }
29715 }
29716 }
29717 __fp_tmp:w { decimal } { 0 } __fp_to_decimal_dispatch:w
29718 __fp_tmp:w { int } { 0 } __fp_to_int_dispatch:w
29719 __fp_tmp:w { scientific } { nan } __fp_to_scientific_dispatch:w
29720 \cs_new:Npn __fp_symbolic_convert:wnnN #1#2; #3#4#5
29721 {
29722 \str_if_eq:nnTF {#1} { \s__fp_symbolic }
29723 { __fp_invalid_operation:nnw {#3} {#4} #1#2; }
29724 { #5 #1#2; }
29725 }

(End of definition for __fp_symbolic_to_decimal:w and others.)

__fp_symbolic_cs_arg_to_fn:NN
__fp_symbolic_op_arg_to_fn:nN 29726 \cs_new:Npn __fp_symbolic_cs_arg_to_fn:NN #1

29727 {
29728 \exp_args:Nf __fp_symbolic_op_arg_to_fn:nN
29729 { __fp_types_cs_to_op:N #1 }
29730 }
29731 \cs_new:Npn __fp_symbolic_op_arg_to_fn:nN #1#2
29732 {
29733 \str_case:nnF { #1 #2 }
29734 {
29735 { not ? } { ! }
29736 { set_sign 0 } { abs }
29737 { set_sign 2 } { - }
29738 }
29739 {
29740 \token_if_eq_meaning:NNTF #2 \use_ii:nn
29741 { #1 d } {#1}
29742 }
29743 }

(End of definition for __fp_symbolic_cs_arg_to_fn:NN and __fp_symbolic_op_arg_to_fn:nN.)

__fp_symbolic_to_tl:w
__fp_symbolic_unary_to_tl:NNw

__fp_symbolic_binary_to_tl:Nww
__fp_symbolic_function_to_tl:Nw

Converting a symbolic expression to a token list is possible.
29744 \cs_new:Npn __fp_symbolic_to_tl:w
29745 \s__fp_symbolic __fp_symbolic_chk:w #1#2, #3#4;
29746 {
29747 \str_case:nnTF {#1}
29748 {
29749 { __fp_types_unary:NNw } { __fp_symbolic_unary_to_tl:NNw }

1243

29750 { __fp_types_binary:Nww } { __fp_symbolic_binary_to_tl:Nww }
29751 { __fp_function_o:w } { __fp_symbolic_function_to_tl:Nw }
29752 }
29753 { #2, #3 @ }
29754 { \tl_to_str:n {#2} }
29755 }
29756 \cs_new:Npn __fp_symbolic_unary_to_tl:NNw #1#2 , #3 @
29757 {
29758 \use:e
29759 {
29760 __fp_symbolic_cs_arg_to_fn:NN #1#2
29761 (__fp_to_tl_dispatch:w #3)
29762 }
29763 }
29764 \cs_new:Npn __fp_symbolic_binary_to_tl:Nww #1, #2; #3; @
29765 {
29766 \use:e
29767 {
29768 (__fp_to_tl_dispatch:w #2;)
29769 __fp_types_cs_to_op:N #1
29770 (__fp_to_tl_dispatch:w #3;)
29771 }
29772 }
29773 \cs_new:Npn __fp_symbolic_function_to_tl:Nw #1, #2@
29774 {
29775 \use:e
29776 {
29777 __fp_types_cs_to_op:N #1
29778 (__fp_array_to_clist:n {#2})
29779 }
29780 }

(End of definition for __fp_symbolic_to_tl:w and others.)

81.7 Identifiers
Functions defined here are not necessarily tied to symbolic expressions.

__fp_id_if_invalid:nTF
__fp_id_if_invalid_aux:N

If #1 contains a space, it is not a valid identifier. Otherwise, loop through letters in #1:
if it is not a letter, break the loop and return true. If the end of the loop is reached
without finding any non-letter, return false. Note #1 must be a str (i.e., resulted from
\tl_to_str:n).

29781 \prg_new_protected_conditional:Npnn
29782 __fp_id_if_invalid:n #1 { T , F , TF }
29783 {
29784 \tl_if_empty:nTF {#1}
29785 { \prg_return_true: }
29786 {
29787 \tl_if_in:nnTF { #1 } { ~ }
29788 { \prg_return_true: }
29789 {
29790 __fp_id_if_invalid_aux:N #1
29791 { ? \prg_break:n \prg_return_false: }

1244

29792 \prg_break_point:
29793 }
29794 }
29795 }
29796 \cs_new:Npn __fp_id_if_invalid_aux:N #1
29797 {
29798 \use_none:n #1
29799 \int_compare:nF { ‘a <= ‘#1 <= ‘z }
29800 {
29801 \int_compare:nF { ‘A <= ‘#1 <= ‘Z }
29802 { \prg_break:n \prg_return_true: }
29803 }
29804 __fp_id_if_invalid_aux:N
29805 }

(End of definition for __fp_id_if_invalid:nTF and __fp_id_if_invalid_aux:N.)

81.8 Declaring variables and assigning values
__fp_variable_o:w We do not use \exp_last_unbraced:Nv to extract the value of \l__fp_variable_#1_fp

because in \fp_set_variable:nn we define this fp variable to be something which f-
expands to an actual floating point, rather than a genuine floating point.

29806 \cs_new:Npn __fp_variable_o:w #1 @ #2
29807 {
29808 \fp_if_exist:cTF { l__fp_variable_#1_fp }
29809 {
29810 \exp_last_unbraced:Nf __fp_exp_after_array_f:w
29811 { \use:c { l__fp_variable_#1_fp } } \s__fp_expr_stop
29812 \exp_after:wN \exp_stop_f: #2
29813 }
29814 {
29815 \token_if_eq_meaning:NNTF #2 \prg_do_nothing:
29816 {
29817 \s__fp_symbolic __fp_symbolic_chk:w
29818 __fp_variable_o:w #1 , { } ;
29819 }
29820 {
29821 \exp_after:wN \s__fp_symbolic
29822 \exp_after:wN __fp_symbolic_chk:w
29823 \exp_after:wN __fp_variable_o:w
29824 \exp:w
29825 __fp_exp_after_symbolic_loop:N #1
29826 { , \exp:w \use_none:nn }
29827 \exp_after:wN \exp_end:
29828 \exp_after:wN { \exp_after:wN } \exp_after:wN ;
29829 #2
29830 }
29831 }
29832 }

(End of definition for __fp_variable_o:w.)

__fp_variable_set_parsing:Nn
__fp_variable_set_parsing_aux:NNn

1245

29833 \cs_new_protected:Npn __fp_variable_set_parsing:Nn #1#2
29834 {
29835 \cs_set:Npn __fp_tmp:w
29836 {
29837 __fp_exp_after_symbolic_f:nw { __fp_parse_infix:NN }
29838 \s__fp_symbolic __fp_symbolic_chk:w
29839 __fp_variable_o:w #2 , { } ;
29840 }
29841 \exp_args:NNc __fp_variable_set_parsing_aux:NNn #1
29842 { __fp_parse_word_#2:N } {#2}
29843 }
29844 \cs_new_protected:Npn __fp_variable_set_parsing_aux:NNn #1#2#3
29845 {
29846 \cs_if_eq:NNF #2 __fp_tmp:w
29847 {
29848 \cs_if_exist:NTF #2
29849 {
29850 \msg_warning:nnnn
29851 { fp } { id-used-elsewhere } {#3} { variable }
29852 #1 #2 __fp_tmp:w
29853 }
29854 {
29855 \cs_new_eq:NN #2 \scan_stop: % to declare the function
29856 #1 #2 __fp_tmp:w
29857 }
29858 }
29859 }

(End of definition for __fp_variable_set_parsing:Nn and __fp_variable_set_parsing_aux:NNn.)

\fp_clear_variable:n
__fp_clear_variable:n

__fp_clear_variable_aux:n

We need local undefining, so have to do it low-level. __fp_clear_variable_aux:n is
needed by __fp_set_function:Nnnn to skip __fp_id_if_invalid:nTF.

29860 \cs_new_protected:Npn \fp_clear_variable:n #1
29861 {
29862 \exp_args:No __fp_clear_variable:n { \tl_to_str:n {#1} }
29863 }
29864 \cs_new_protected:Npn __fp_clear_variable:n #1
29865 {
29866 __fp_id_if_invalid:nTF {#1}
29867 { \msg_error:nnn { fp } { id-invalid } {#1} }
29868 { __fp_clear_variable_aux:n {#1} }
29869 }
29870 \cs_new_protected:Npn __fp_clear_variable_aux:n #1
29871 {
29872 \cs_set_eq:cN { l__fp_variable_#1_fp } \tex_undefined:D
29873 __fp_variable_set_parsing:Nn \cs_set_eq:NN {#1}
29874 }

(End of definition for \fp_clear_variable:n , __fp_clear_variable:n , and __fp_clear_variable_-
aux:n. This function is documented on page 273.)

\fp_new_variable:n
__fp_new_variable:n

Check that #1 is a valid identifier. If the identifier is already in use, complain. Then set
__fp_parse_word_#1:N to use __fp_variable_o:w.

29875 \cs_new_protected:Npn \fp_new_variable:n #1

1246

29876 {
29877 \exp_args:No __fp_new_variable:n { \tl_to_str:n {#1} }
29878 }
29879 \cs_new_protected:Npn __fp_new_variable:n #1
29880 {
29881 __fp_id_if_invalid:nTF {#1}
29882 { \msg_error:nnn { fp } { id-invalid } {#1} }
29883 {
29884 \cs_if_exist:cT { __fp_parse_word_#1:N }
29885 {
29886 \msg_error:nnn
29887 { fp } { id-already-defined } {#1}
29888 \cs_undefine:c { __fp_parse_word_#1:N }
29889 \cs_set_eq:cN { l__fp_variable_#1_fp } \tex_undefined:D
29890 }
29891 __fp_variable_set_parsing:Nn \cs_gset_eq:NN {#1}
29892 }
29893 }

(End of definition for \fp_new_variable:n and __fp_new_variable:n. This function is documented on
page 272.)

\l__fp_symbolic_flag
\fp_set_variable:nn

__fp_set_variable:nn

Refuse invalid identifiers. If the variable does not exist yet, define it just as in \fp_new_-
variable:n (but without unnecessary checks). Then evaluate #2. If the result contains
the identifier #1, we would later get a loop in cases such as

\fp_set_variable:nn {A} {A}
\fp_show:n {A}

To detect this, define \l__fp_variable_#1_fp to raise an internal flag and evaluate to
nan. Then re-evaluate \l__fp_symbolic_fp, and store the result in #1. If the flag is
raised, #1 was present in \l__fp_symbolic_fp. In all cases, the #1-free result ends up
in \l__fp_variable_#1_fp.

29894 \flag_new:N \l__fp_symbolic_flag
29895 \cs_new_protected:Npn \fp_set_variable:nn #1
29896 {
29897 \exp_args:No __fp_set_variable:nn { \tl_to_str:n {#1} }
29898 }
29899 \cs_new_protected:Npn __fp_set_variable:nn #1#2
29900 {
29901 __fp_id_if_invalid:nTF {#1}
29902 { \msg_error:nnn { fp } { id-invalid } {#1} }
29903 {
29904 __fp_variable_set_parsing:Nn \cs_set_eq:NN {#1}
29905 \fp_set:Nn \l__fp_symbolic_fp {#2}
29906 \cs_set_nopar:cpn { l__fp_variable_#1_fp }
29907 { \flag_ensure_raised:N \l__fp_symbolic_flag \c_nan_fp }
29908 \flag_clear:N \l__fp_symbolic_flag
29909 \fp_set:cn { l__fp_variable_#1_fp } { \l__fp_symbolic_fp }
29910 \flag_if_raised:NT \l__fp_symbolic_flag
29911 {
29912 \msg_error:nneee { fp } { id-loop }
29913 { #1 }
29914 { \tl_to_str:n {#2} }

1247

29915 { \fp_to_tl:N \l__fp_symbolic_fp }
29916 }
29917 }
29918 }

(End of definition for \l__fp_symbolic_flag , \fp_set_variable:nn , and __fp_set_variable:nn. This
variable is documented on page 272.)

81.9 Messages
29919 \msg_new:nnnn { fp } { id-invalid }
29920 { Floating~point~identifier~’#1’~invalid. }
29921 {
29922 LaTeX~has~been~asked~to~create~a~new~floating~point~identifier~’#1’~
29923 but~this~may~only~contain~ASCII~letters.
29924 }
29925 \msg_new:nnnn { fp } { id-already-defined }
29926 { Floating~point~identifier~’#1’~already~defined. }
29927 {
29928 LaTeX~has~been~asked~to~create~a~new~floating~point~identifier~’#1’~
29929 but~this~name~has~already~been~used~elsewhere.
29930 }
29931 \msg_new:nnnn { fp } { id-used-elsewhere }
29932 { Floating~point~identifier~’#1’~already~used~for~something~else. }
29933 {
29934 LaTeX~has~been~asked~to~create~a~new~floating~point~identifier~’#1’~
29935 but~this~name~is~used,~and~is~not~a~user-defined~#2.
29936 }
29937 \msg_new:nnnn { fp } { id-loop }
29938 { Variable~’#1’~used~in~the~definition~of~’#1’. }
29939 {
29940 LaTeX~has~been~asked~to~set~the~floating~point~identifier~’#1’~
29941 to~the~expression~’#2’.~Evaluating~this~expression~yields~’#3’,~
29942 which~contains~’#1’~itself.
29943 }

81.10 Road-map
The following functions are not implemented: min, max, ?:, comparisons, round, atan,
acot.

29944 ⟨/package⟩

1248

Chapter 82

l3fp-functions implementation

29945 ⟨∗package⟩

29946 ⟨@@=fp⟩

82.1 Declaring functions
\fp_new_function:n

__fp_new_function:n 29947 \cs_new_protected:Npn \fp_new_function:n #1
29948 { \exp_args:No __fp_new_function:n { \tl_to_str:n {#1} } }
29949 \cs_new_protected:Npn __fp_new_function:n #1
29950 {
29951 __fp_id_if_invalid:nTF {#1}
29952 { \msg_error:nnn { fp } { id-invalid } {#1} }
29953 {
29954 \cs_if_exist:cT { __fp_parse_word_#1:N }
29955 {
29956 \msg_error:nnn
29957 { fp } { id-already-defined } {#1}
29958 \cs_undefine:c { __fp_parse_word_#1:N }
29959 \cs_undefine:c { __fp_#1_o:w }
29960 }
29961 __fp_function_set_parsing:Nn \cs_gset_eq:NN {#1}
29962 }
29963 }

(End of definition for \fp_new_function:n and __fp_new_function:n. This function is documented on
page 273.)

__fp_function_set_parsing:Nn
__fp_function_set_parsing_aux:NNn 29964 \cs_new_protected:Npn __fp_function_set_parsing:Nn #1#2

29965 {
29966 \exp_args:NNc __fp_function_set_parsing_aux:NNn #1
29967 { __fp_parse_word_#2:N } {#2}
29968 }
29969 \cs_new_protected:Npn __fp_function_set_parsing_aux:NNn #1#2#3
29970 {
29971 \cs_set:Npe __fp_tmp:w
29972 {
29973 \exp_not:N __fp_parse_function:NNN

1249

29974 \exp_not:N __fp_function_o:w
29975 \exp_not:c { __fp_#3_o:w }
29976 }
29977 \cs_if_eq:NNF #2 __fp_tmp:w
29978 {
29979 \cs_if_exist:NTF #2
29980 {
29981 \msg_warning:nnnn
29982 { fp } { id-used-elsewhere } {#3} { function }
29983 #1 #2 __fp_tmp:w
29984 }
29985 {
29986 \cs_new_eq:NN #2 \scan_stop: % to declare the function
29987 #1 #2 __fp_tmp:w
29988 }
29989 }
29990 }

(End of definition for __fp_function_set_parsing:Nn and __fp_function_set_parsing_aux:NNn.)

__fp_function_o:w

29991 \cs_new:Npn __fp_function_o:w #1#2 @
29992 {
29993 \cs_if_exist:NTF #1
29994 { #1 #2 @ }
29995 {
29996 \exp_after:wN \s__fp_symbolic
29997 \exp_after:wN __fp_symbolic_chk:w
29998 \exp_after:wN __fp_function_o:w
29999 \exp_after:wN #1
30000 \exp_after:wN ,
30001 \exp_after:wN {
30002 \exp:w \exp_end_continue_f:w
30003 __fp_exp_after_array_f:w #2 \s__fp_expr_stop
30004 \exp_after:wN
30005 }
30006 \exp_after:wN ;
30007 }
30008 }

(End of definition for __fp_function_o:w.)

82.2 Defining functions by their expression
\l__fp_function_arg_int Labels the arguments of a function being defined.

30009 \int_new:N \l__fp_function_arg_int

(End of definition for \l__fp_function_arg_int.)

\fp_set_function:nnn
__fp_set_function:Nnnn

\fp_set_function:nnn {⟨identifier⟩}
{⟨comma-list of variables⟩} {⟨expression⟩}

Defines the ⟨identifier⟩ to stand for a function which expects some arguments
defined by the ⟨comma-list of variables⟩, and evaluates to the ⟨expression⟩.

1250

30010 \cs_new_protected:Npn \fp_set_function:nnn #1
30011 {
30012 \exp_args:NNo __fp_set_function:Nnnn \cs_set_eq:cN
30013 { \tl_to_str:n {#1} }
30014 }
30015 \cs_new_protected:Npn __fp_set_function:Nnnn #1#2#3#4
30016 {
30017 __fp_id_if_invalid:nTF {#2}
30018 { \msg_error:nnn { fp } { id-invalid } {#2} }
30019 {
30020 \cs_if_exist:cF { __fp_parse_word_#2:N }
30021 { __fp_function_set_parsing:Nn \cs_set_eq:NN {#2} }
30022 \group_begin:
30023 \int_zero:N \l__fp_function_arg_int
30024 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#3} }
30025 {
30026 \int_incr:N \l__fp_function_arg_int
30027 \exp_args:Ne __fp_clear_variable_aux:n
30028 {
30029 \c_underscore_str \tex_romannumeral:D \l__fp_function_arg_int
30030 }
30031 \fp_clear_variable:n {##1}
30032 \cs_set_nopar:cpe { l__fp_variable_##1_fp }
30033 {
30034 \exp_not:N \s__fp_symbolic
30035 \exp_not:N __fp_symbolic_chk:w
30036 \exp_not:N __fp_function_arg_o:w
30037 \int_use:N \l__fp_function_arg_int
30038 ########1 , { } ;
30039 }
30040 }
30041 \cs_set:Npn __fp_function_arg_o:w ##1 @
30042 {
30043 \exp_after:wN \s__fp_symbolic
30044 \exp_after:wN __fp_symbolic_chk:w
30045 \exp_after:wN __fp_function_arg_o:w
30046 \tex_romannumeral:D
30047 __fp_exp_after_symbolic_loop:N ##1
30048 { , \tex_romannumeral:D \use_none:nn }
30049 \exp_after:wN \c_zero_int
30050 \exp_after:wN { \exp_after:wN } \exp_after:wN ;
30051 }
30052 \fp_set:Nn \l__fp_symbolic_fp {#4}
30053 \use:e
30054 {
30055 \exp_not:n { \cs_gset:Npn __fp_tmp:w ##1 }
30056 { \exp_not:o { \l__fp_symbolic_fp } }
30057 }
30058 \use:e
30059 {
30060 \exp_not:n { \cs_gset:Npn __fp_tmp:w ##1 @ }
30061 {
30062 \exp_not:N __fp_exp_after_symbolic_f:nw
30063 \exp_not:n { { \exp_after:wN \exp_stop_f: } }

1251

30064 \exp_not:o { __fp_tmp:w { . , {##1} } }
30065 }
30066 }
30067 \group_end:
30068 #1 { __fp_#2_o:w } __fp_tmp:w
30069 }
30070 }

__fp_function_arg_o:w
__fp_function_arg_few:w
__fp_function_arg_get:w

30071 \cs_new:Npn __fp_function_arg_o:w #1. #2
30072 {
30073 \if_meaning:w @ #2
30074 \exp_after:wN __fp_function_arg_few:w
30075 \fi:
30076 \if_int_compare:w #1 = \c_one_int
30077 \exp_after:wN __fp_function_arg_get:w
30078 \fi:
30079 __fp_use_i_until_s:nw
30080 {
30081 \exp_after:wN __fp_function_arg_o:w
30082 \int_value:w \int_eval:n { #1 - 1 } .
30083 }
30084 #2
30085 }
30086 \cs_new:Npn __fp_function_arg_few:w #1 @ { \exp_after:wN \c_nan_fp }
30087 \cs_new:Npn __fp_function_arg_get:w #1#2#3; #4 @
30088 {
30089 __fp_exp_after_array_f:w #3; \s__fp_expr_stop
30090 \exp_after:wN \exp_stop_f:
30091 }

(End of definition for \fp_set_function:nnn and others. This function is documented on page 273.)

\fp_clear_function:n
__fp_clear_function:n 30092 \cs_new_protected:Npn \fp_clear_function:n #1

30093 { \exp_args:No __fp_clear_function:n { \tl_to_str:n {#1} } }
30094 \cs_new_protected:Npn __fp_clear_function:n #1
30095 {
30096 __fp_id_if_invalid:nTF {#1}
30097 { \msg_error:nnn { fp } { id-invalid } {#1} }
30098 {
30099 \cs_set_eq:cN { __fp_#1_o:w } \tex_undefine:D
30100 __fp_function_set_parsing:Nn \cs_set_eq:NN {#1}
30101 }
30102 }

(End of definition for \fp_clear_function:n and __fp_clear_function:n. This function is docu-
mented on page 273.)

30103 ⟨/package⟩

1252

Chapter 83

l3fparray implementation

30104 ⟨∗package⟩

30105 ⟨@@=fp⟩

In analogy to l3intarray it would make sense to have <@@=fparray>, but we need
direct access to __fp_parse:n from l3fp-parse, and a few other (less crucial) internals
of the l3fp family.

83.1 Allocating arrays
There are somewhat more than (231 −1)2 floating point numbers so we store each floating
point number as three entries in integer arrays. To avoid having to multiply indices by
three or to add 1 etc, a floating point array is just a token list consisting of three tokens:
integer arrays of the same size.

\g__fp_array_int Used to generate unique names for the three integer arrays.
30106 \int_new:N \g__fp_array_int

(End of definition for \g__fp_array_int.)

\l__fp_array_loop_int Used to loop in __fp_array_gzero:N.
30107 \int_new:N \l__fp_array_loop_int

(End of definition for \l__fp_array_loop_int.)

\fparray_new:Nn
\fparray_new:cn

__fp_array_new:nNNN

Build a three-token token list, then define all three tokens to be integer arrays of the
same size. No need to initialize the data: the integer arrays start with zeros, and three
zeros denote precisely \c_zero_fp, as we want.

30108 \cs_new_protected:Npn \fparray_new:Nn #1#2
30109 {
30110 \tl_new:N #1
30111 \prg_replicate:nn { 3 }
30112 {
30113 \int_gincr:N \g__fp_array_int
30114 \exp_args:NNc \tl_gput_right:Nn #1
30115 { g__fp_array_ __fp_int_to_roman:w \g__fp_array_int _intarray }
30116 }
30117 \exp_last_unbraced:Nfo __fp_array_new:nNNNN
30118 { \int_eval:n {#2} } #1 #1

1253

30119 }
30120 \cs_generate_variant:Nn \fparray_new:Nn { c }
30121 \cs_new_protected:Npn __fp_array_new:nNNNN #1#2#3#4#5
30122 {
30123 \int_compare:nNnTF {#1} < 0
30124 {
30125 \msg_error:nnn { kernel } { negative-array-size } {#1}
30126 \cs_undefine:N #1
30127 \int_gsub:Nn \g__fp_array_int { 3 }
30128 }
30129 {
30130 \intarray_new:Nn #2 {#1}
30131 \intarray_new:Nn #3 {#1}
30132 \intarray_new:Nn #4 {#1}
30133 }
30134 }

(End of definition for \fparray_new:Nn and __fp_array_new:nNNN. This function is documented on
page 288.)

\fparray_count:N
\fparray_count:c

Size of any of the intarrays, here we pick the third.
30135 \cs_new:Npn \fparray_count:N #1
30136 {
30137 \exp_after:wN \use_i:nnn
30138 \exp_after:wN \intarray_count:N #1
30139 }
30140 \cs_generate_variant:Nn \fparray_count:N { c }

(End of definition for \fparray_count:N. This function is documented on page 289.)

83.2 Array items
__fp_array_bounds:NNnTF

__fp_array_bounds_error:NNn
See the l3intarray analogue: only names change. The functions \fparray_gset:Nnn and
\fparray_item:Nn share bounds checking. The T branch is used if #3 is within bounds
of the array #2.

30141 \cs_new:Npn __fp_array_bounds:NNnTF #1#2#3#4#5
30142 {
30143 \if_int_compare:w 1 > #3 \exp_stop_f:
30144 __fp_array_bounds_error:NNn #1 #2 {#3}
30145 #5
30146 \else:
30147 \if_int_compare:w #3 > \fparray_count:N #2 \exp_stop_f:
30148 __fp_array_bounds_error:NNn #1 #2 {#3}
30149 #5
30150 \else:
30151 #4
30152 \fi:
30153 \fi:
30154 }
30155 \cs_new:Npn __fp_array_bounds_error:NNn #1#2#3
30156 {
30157 #1 { kernel } { out-of-bounds }
30158 { \token_to_str:N #2 } {#3} { \fparray_count:N #2 }
30159 }

1254

(End of definition for __fp_array_bounds:NNnTF and __fp_array_bounds_error:NNn.)

\fparray_gset:Nnn
\fparray_gset:cnn

__fp_array_gset:NNNNww
__fp_array_gset:w

__fp_array_gset_recover:Nw
__fp_array_gset_special:nnNNN

__fp_array_gset_normal:w

Evaluate, then store exponent in one intarray, sign and 8 digits of mantissa in the next,
and 8 trailing digits in the last.

30160 \cs_new_protected:Npn \fparray_gset:Nnn #1#2#3
30161 {
30162 \exp_after:wN \exp_after:wN
30163 \exp_after:wN __fp_array_gset:NNNNww
30164 \exp_after:wN #1
30165 \exp_after:wN #1
30166 \int_value:w \int_eval:n {#2} \exp_after:wN ;
30167 \exp:w \exp_end_continue_f:w __fp_parse:n {#3}
30168 }
30169 \cs_generate_variant:Nn \fparray_gset:Nnn { c }
30170 \cs_new_protected:Npn __fp_array_gset:NNNNww #1#2#3#4#5 ; #6 ;
30171 {
30172 __fp_array_bounds:NNnTF \msg_error:nneee #4 {#5}
30173 {
30174 \exp_after:wN __fp_change_func_type:NNN
30175 __fp_use_i_until_s:nw #6 ;
30176 __fp_array_gset:w
30177 __fp_array_gset_recover:Nw
30178 #6 ; {#5} #1 #2 #3
30179 }
30180 { }
30181 }
30182 \cs_new_protected:Npn __fp_array_gset_recover:Nw #1#2 ;
30183 {
30184 __fp_error:nffn { unknown-type } { \tl_to_str:n { #2 ; } } { } { }
30185 \exp_after:wN #1 \c_nan_fp
30186 }
30187 \cs_new_protected:Npn __fp_array_gset:w \s__fp __fp_chk:w #1#2
30188 {
30189 \if_case:w #1 \exp_stop_f:
30190 __fp_case_return:nw { __fp_array_gset_special:nnNNN {#2} }
30191 \or: \exp_after:wN __fp_array_gset_normal:w
30192 \or: __fp_case_return:nw { __fp_array_gset_special:nnNNN { #2 3 } }
30193 \or: __fp_case_return:nw { __fp_array_gset_special:nnNNN { 1 } }
30194 \fi:
30195 \s__fp __fp_chk:w #1 #2
30196 }
30197 \cs_new_protected:Npn __fp_array_gset_normal:w
30198 \s__fp __fp_chk:w 1 #1 #2 #3#4#5 ; #6#7#8#9
30199 {
30200 __kernel_intarray_gset:Nnn #7 {#6} {#2}
30201 __kernel_intarray_gset:Nnn #8 {#6}
30202 { \if_meaning:w 2 #1 3 \else: 1 \fi: #3#4 }
30203 __kernel_intarray_gset:Nnn #9 {#6} { 1 \use:nn #5 }
30204 }
30205 \cs_new_protected:Npn __fp_array_gset_special:nnNNN #1#2#3#4#5
30206 {
30207 __kernel_intarray_gset:Nnn #3 {#2} {#1}
30208 __kernel_intarray_gset:Nnn #4 {#2} {0}
30209 __kernel_intarray_gset:Nnn #5 {#2} {0}

1255

30210 }

(End of definition for \fparray_gset:Nnn and others. This function is documented on page 288.)

\fparray_gzero:N
\fparray_gzero:c 30211 \cs_new_protected:Npn \fparray_gzero:N #1

30212 {
30213 \int_zero:N \l__fp_array_loop_int
30214 \prg_replicate:nn { \fparray_count:N #1 }
30215 {
30216 \int_incr:N \l__fp_array_loop_int
30217 \exp_after:wN __fp_array_gset_special:nnNNN
30218 \exp_after:wN 0
30219 \exp_after:wN \l__fp_array_loop_int
30220 #1
30221 }
30222 }
30223 \cs_generate_variant:Nn \fparray_gzero:N { c }

(End of definition for \fparray_gzero:N. This function is documented on page 288.)

\fparray_item:Nn
\fparray_item:cn

\fparray_item_to_tl:Nn
\fparray_item_to_tl:cn

__fp_array_item:NwN
__fp_array_item:NNNnN

__fp_array_item:N
__fp_array_item:w

__fp_array_item_special:w
__fp_array_item_normal:w

30224 \cs_new:Npn \fparray_item:Nn #1#2
30225 {
30226 \exp_after:wN __fp_array_item:NwN
30227 \exp_after:wN #1
30228 \int_value:w \int_eval:n {#2} ;
30229 __fp_to_decimal:w
30230 }
30231 \cs_generate_variant:Nn \fparray_item:Nn { c }
30232 \cs_new:Npn \fparray_item_to_tl:Nn #1#2
30233 {
30234 \exp_after:wN __fp_array_item:NwN
30235 \exp_after:wN #1
30236 \int_value:w \int_eval:n {#2} ;
30237 __fp_to_tl:w
30238 }
30239 \cs_generate_variant:Nn \fparray_item_to_tl:Nn { c }
30240 \cs_new:Npn __fp_array_item:NwN #1#2 ; #3
30241 {
30242 __fp_array_bounds:NNnTF \msg_expandable_error:nnfff #1 {#2}
30243 { \exp_after:wN __fp_array_item:NNNnN #1 {#2} #3 }
30244 { \exp_after:wN #3 \c_nan_fp }
30245 }
30246 \cs_new:Npn __fp_array_item:NNNnN #1#2#3#4
30247 {
30248 \exp_after:wN __fp_array_item:N
30249 \int_value:w __kernel_intarray_item:Nn #2 {#4} \exp_after:wN ;
30250 \int_value:w __kernel_intarray_item:Nn #3 {#4} \exp_after:wN ;
30251 \int_value:w __kernel_intarray_item:Nn #1 {#4} ;
30252 }
30253 \cs_new:Npn __fp_array_item:N #1
30254 {
30255 \if_meaning:w 0 #1 \exp_after:wN __fp_array_item_special:w \fi:
30256 __fp_array_item:w #1

1256

30257 }
30258 \cs_new:Npn __fp_array_item:w #1 #2#3#4#5 #6 ; 1 #7 ;
30259 {
30260 \exp_after:wN __fp_array_item_normal:w
30261 \int_value:w \if_meaning:w #1 1 0 \else: 2 \fi: \exp_stop_f:
30262 #7 ; {#2#3#4#5} {#6} ;
30263 }
30264 \cs_new:Npn __fp_array_item_special:w #1 ; #2 ; #3 ; #4
30265 {
30266 \exp_after:wN #4
30267 \exp:w \exp_end_continue_f:w
30268 \if_case:w #3 \exp_stop_f:
30269 \exp_after:wN \c_zero_fp
30270 \or: \exp_after:wN \c_nan_fp
30271 \or: \exp_after:wN \c_minus_zero_fp
30272 \or: \exp_after:wN \c_inf_fp
30273 \else: \exp_after:wN \c_minus_inf_fp
30274 \fi:
30275 }
30276 \cs_new:Npn __fp_array_item_normal:w #1 #2#3#4#5 #6 ; #7 ; #8 ; #9
30277 { #9 \s__fp __fp_chk:w 1 #1 {#8} #7 {#2#3#4#5} {#6} ; }

(End of definition for \fparray_item:Nn and others. These functions are documented on page 289.)

\fparray_if_exist_p:N
\fparray_if_exist_p:c
\fparray_if_exist:NTF
\fparray_if_exist:cTF

Copies of the cs functions defined in l3basics.
30278 \prg_new_eq_conditional:NNn \fparray_if_exist:N \cs_if_exist:N
30279 { TF , T , F , p }
30280 \prg_new_eq_conditional:NNn \fparray_if_exist:c \cs_if_exist:c
30281 { TF , T , F , p }

(End of definition for \fparray_if_exist:NTF. This function is documented on page 289.)

30282 ⟨/package⟩

1257

Chapter 84

l3bitset implementation

30283 ⟨∗package⟩

30284 ⟨@@=bitset⟩

Transitional support.
30285 \cs_if_exist:NT \@expl@finalise@setup@@
30286 {
30287 \tl_gput_right:Nn \@expl@finalise@setup@@
30288 { \declare@file@substitution { l3bitset.sty } { null.tex } }
30289 }

A bitset is a string variable.
\bitset_new:N
\bitset_new:c
\bitset_new:Nn
\bitset_new:cn

30290 \cs_new_protected:Npn \bitset_new:N #1
30291 {
30292 __kernel_chk_if_free_cs:N #1
30293 \cs_gset_eq:NN #1 \c_zero_str
30294 \prop_new:c { g__bitset_ \cs_to_str:N #1 _name_prop }
30295 }
30296 \cs_new_protected:Npn \bitset_new:Nn #1 #2
30297 {
30298 __kernel_chk_if_free_cs:N #1
30299 \cs_gset_eq:NN #1 \c_zero_str
30300 \prop_new:c { g__bitset_ \cs_to_str:N #1 _name_prop }
30301 \prop_gset_from_keyval:cn
30302 { g__bitset_ \cs_to_str:N #1 _name_prop }
30303 {#2}
30304 }
30305 \cs_generate_variant:Nn \bitset_new:N { c }
30306 \cs_generate_variant:Nn \bitset_new:Nn { c }

(End of definition for \bitset_new:N and \bitset_new:Nn. These functions are documented on page
291.)

\bitset_addto_named_index:Nn

30307 \cs_new_protected:Npn \bitset_addto_named_index:Nn #1#2
30308 {
30309 \prop_gput_from_keyval:cn
30310 { g__bitset_ \cs_to_str:N #1 _name_prop } { #2 }
30311 }

1258

(End of definition for \bitset_addto_named_index:Nn. This function is documented on page 291.)

\bitset_if_exist_p:N
\bitset_if_exist_p:c
\bitset_if_exist:NTF
\bitset_if_exist:cTF

Existence tests.
30312 \prg_new_eq_conditional:NNn
30313 \bitset_if_exist:N \str_if_exist:N { p , T , F , TF }
30314 \prg_new_eq_conditional:NNn
30315 \bitset_if_exist:c \str_if_exist:c { p , T , F , TF }

(End of definition for \bitset_if_exist:NTF. This function is documented on page 292.)

__bitset_set_true:Nn
__bitset_gset_true:Nn
__bitset_set_false:Nn
__bitset_gset_false:Nn

__bitset_set:NNnN

The internal command uses only numbers (integer expressions) for the position. A bit
is set by either extending the string or by splitting it and then inserting an 1. It is not
checked if the value was already 1.

30316 \cs_new_protected:Npn __bitset_set_true:Nn #1#2
30317 { __bitset_set:NNnN \str_set:Ne #1 {#2} 1 }
30318 \cs_new_protected:Npn __bitset_gset_true:Nn #1#2
30319 { __bitset_set:NNnN \str_gset:Ne #1 {#2} 1 }
30320 \cs_new_protected:Npn __bitset_set_false:Nn #1#2
30321 { __bitset_set:NNnN \str_set:Ne #1 {#2} 0 }
30322 \cs_new_protected:Npn __bitset_gset_false:Nn #1#2
30323 { __bitset_set:NNnN \str_gset:Ne #1 {#2} 0 }
30324 \cs_new_protected:Npn __bitset_set:NNnN #1#2#3#4
30325 {
30326 \int_compare:nNnT {#3} > { 0 }
30327 {
30328 \int_compare:nNnTF { \str_count:N #2 } < {#3}
30329 {
30330 #1 #2
30331 {
30332 #4
30333 \prg_replicate:nn { #3 - \str_count:N #2 - 1 } { 0 }
30334 #2
30335 }
30336 }
30337 {
30338 #1 #2
30339 {
30340 \str_range:Nnn #2 { 1 } { -1 - (#3) }
30341 #4
30342 \str_range:Nnn #2 { 1 - (#3) } { -1 }
30343 }
30344 }
30345 }
30346 }

(End of definition for __bitset_set_true:Nn and others.)

\l__bitset_internal_int

30347 \int_new:N \l__bitset_internal_int

(End of definition for \l__bitset_internal_int.)

1259

__bitset_test_digits:nTF
__bitset_test_digits_end:n

__bitset_test_digits:w

https://chat.stackexchange.com/transcript/message/56878159#56878159
30348 \prg_new_protected_conditional:Npnn __bitset_test_digits:n #1 { TF }
30349 {
30350 \tex_afterassignment:D __bitset_test_digits:w
30351 \l__bitset_internal_int = 0 \tl_trim_spaces_apply:nN {#1} \tl_to_str:n
30352 __bitset_test_digits_end:
30353 \use_i:nnn \if_false:
30354 __bitset_test_digits_end:
30355 \if_int_compare:w \c_zero_int < \l__bitset_internal_int
30356 \prg_return_true:
30357 \else:
30358 \prg_return_false:
30359 \fi:
30360 }
30361 \cs_new_eq:NN __bitset_test_digits_end: \exp_stop_f:
30362 \cs_new_protected:Npn __bitset_test_digits:w #1 __bitset_test_digits_end: { }

(End of definition for __bitset_test_digits:nTF , __bitset_test_digits_end:n , and __bitset_-
test_digits:w.)

\bitset_set_true:Nn
\bitset_set_true:cn
\bitset_gset_true:Nn
\bitset_gset_true:cn
\bitset_set_false:Nn
\bitset_set_false:cn

\bitset_gset_false:Nn
\bitset_gset_false:cn
__bitset_set_aux:NNn

The user commands must first translate the argument to an index number.
30363 \cs_new_protected:Npn \bitset_set_true:Nn #1#2
30364 { __bitset_set:NNn __bitset_set_true:Nn #1 {#2} }
30365 \cs_new_protected:Npn \bitset_gset_true:Nn #1#2
30366 { __bitset_set:NNn __bitset_gset_true:Nn #1 {#2} }
30367 \cs_new_protected:Npn \bitset_set_false:Nn #1#2
30368 { __bitset_set:NNn __bitset_set_false:Nn #1 {#2} }
30369 \cs_new_protected:Npn \bitset_gset_false:Nn #1#2
30370 { __bitset_set:NNn __bitset_gset_false:Nn #1 {#2} }
30371 \cs_new_protected:Npn __bitset_set:NNn #1#2#3
30372 {
30373 \prop_if_in:cnTF { g__bitset_ \cs_to_str:N #2 _name_prop } {#3}
30374 {
30375 #1 #2
30376 {
30377 \prop_item:cn { g__bitset_ \cs_to_str:N #2 _name_prop } {#3}
30378 }
30379 }
30380 {
30381 __bitset_test_digits:nTF {#3}
30382 {
30383 #1 #2 {#3}
30384 \prop_gput:cnn { g__bitset_ \cs_to_str:N #2 _name_prop } {#3} {#3}
30385 }
30386 {
30387 \msg_warning:nnee { bitset } { unknown-name }
30388 { \token_to_str:N #2 }
30389 { \tl_to_str:n {#3} }
30390 }
30391 }
30392 }
30393 \cs_generate_variant:Nn \bitset_set_true:Nn { c }
30394 \cs_generate_variant:Nn \bitset_gset_true:Nn { c }
30395 \cs_generate_variant:Nn \bitset_set_false:Nn { c }
30396 \cs_generate_variant:Nn \bitset_gset_false:Nn { c }

1260

https://chat.stackexchange.com/transcript/message/56878159#56878159

(End of definition for \bitset_set_true:Nn and others. These functions are documented on page 292.)

\bitset_clear:N
\bitset_clear:c

\bitset_gclear:N
\bitset_gclear:c

30397 \cs_new_protected:Npn \bitset_clear:N #1
30398 {
30399 \str_set_eq:NN #1 \c_zero_str
30400 }
30401 \cs_new_protected:Npn \bitset_gclear:N #1
30402 {
30403 \str_gset_eq:NN #1 \c_zero_str
30404 }
30405 \cs_generate_variant:Nn \bitset_clear:N { c }
30406 \cs_generate_variant:Nn \bitset_gclear:N { c }

(End of definition for \bitset_clear:N and \bitset_gclear:N. These functions are documented on
page 292.)

\bitset_to_arabic:N
\bitset_to_arabic:c

\bitset_to_bin:N
\bitset_to_bin:c

__bitset_to_int:nN

The naming of the commands follow the names in the int module. \bitset_to_-
arabic:N uses \int_from_bin:n if the string is shorter than 32 and the slower \fp_-
eval:n for larger bitsets.

30407 \cs_new:Npn \bitset_to_arabic:N #1
30408 {
30409 \int_compare:nNnTF { \str_count:N #1 } < { 32 }
30410 { \exp_args:No \int_from_bin:n {#1} }
30411 {
30412 \exp_after:wN __bitset_to_int:nN \exp_after:wN 0
30413 #1 \q_recursion_tail \q_recursion_stop
30414 }
30415 }
30416 \cs_new:Npn __bitset_to_int:nN #1#2
30417 {
30418 \quark_if_recursion_tail_stop_do:Nn #2 {#1}
30419 \exp_args:Nf __bitset_to_int:nN { \fp_eval:n { #1 * 2 + #2 } }
30420 }
30421 \cs_new:Npn \bitset_to_bin:N #1
30422 {
30423 #1
30424 }
30425 \cs_generate_variant:Nn \bitset_to_arabic:N { c }
30426 \cs_generate_variant:Nn \bitset_to_bin:N { c }

(End of definition for \bitset_to_arabic:N , \bitset_to_bin:N , and __bitset_to_int:nN. These func-
tions are documented on page 293.)

\bitset_use:N
\bitset_use:c 30427 \cs_new_eq:NN \bitset_use:N \tl_use:N

30428 \cs_generate_variant:Nn \bitset_use:N { c }

(End of definition for \bitset_use:N. This function is documented on page 293.)

\bitset_item:Nn
\bitset_item:cn

All bits that have been set at anytime have an entry in the prop, so we can take everything
else as 0.

30429 \cs_new:Npn \bitset_item:Nn #1#2
30430 {
30431 \prop_if_in:cnTF { g__bitset_ \cs_to_str:N #1 _name_prop } {#2}

1261

30432 {
30433 \int_eval:n
30434 {
30435 \str_item:Nn #1
30436 { 0 - (\prop_item:cn { g__bitset_ \cs_to_str:N #1 _name_prop } {#2}) }
30437 +0
30438 }
30439 }
30440 {
30441 0
30442 }
30443 }
30444 \cs_generate_variant:Nn \bitset_item:Nn { c }

(End of definition for \bitset_item:Nn. This function is documented on page 292.)

\bitset_show:N
\bitset_show:c
\bitset_log:N
\bitset_log:c

30445 \cs_new_protected:Npn \bitset_show:N { __bitset_show:NN \msg_show:nneeee }
30446 \cs_generate_variant:Nn \bitset_show:N { c }
30447 \cs_new_protected:Npn \bitset_log:N { __bitset_show:NN \msg_log:nneeee }
30448 \cs_generate_variant:Nn \bitset_log:N { c }
30449 \cs_new_protected:Npn __bitset_show:NN #1#2
30450 {
30451 __kernel_chk_defined:NT #2
30452 {
30453 #1 { bitset } { show }
30454 { \token_to_str:N #2 }
30455 { \bitset_to_bin:N #2 }
30456 { \bitset_to_arabic:N #2 }
30457 { }
30458 }
30459 }

(End of definition for \bitset_show:N and \bitset_log:N. These functions are documented on page
293.)

\bitset_show_named_index:N
\bitset_show_named_index:c
\bitset_log_named_index:N
\bitset_log_named_index:c

30460 \cs_new_protected:Npn \bitset_show_named_index:N
30461 { __bitset_show_named_index:NN \msg_show:nneeee }
30462 \cs_generate_variant:Nn \bitset_show_named_index:N { c }
30463 \cs_new_protected:Npn \bitset_log_named_index:N
30464 { __bitset_show_named_index:NN \msg_log:nneeee }
30465 \cs_generate_variant:Nn \bitset_log_named_index:N { c }
30466 \cs_new_protected:Npn __bitset_show_named_index:NN #1#2
30467 {
30468 __kernel_chk_defined:NT #2
30469 {
30470 #1 { bitset } { show-names }
30471 { \token_to_str:N #2 }
30472 { \prop_map_function:cN { g__bitset_ \cs_to_str:N #2 _name_prop } \msg_show_item:nn }
30473 { } { }
30474 }
30475 }

(End of definition for \bitset_show_named_index:N and \bitset_log_named_index:N. These functions
are documented on page 293.)

1262

84.1 Messages
30476 \msg_new:nnn { bitset } { show }
30477 {
30478 The~bitset~#1~has~the~representation: \\
30479 >~binary:~#2 \\
30480 >~arabic:~#3 .
30481 }
30482 \msg_new:nnn { bitset } { show-names }
30483 {
30484 The~bitset~#1~
30485 \tl_if_empty:nTF {#2}
30486 { knows~no~names~yet \\>~ . }
30487 { knows~the~name/index~pairs~(without~outer~braces): #2 . }
30488 }
30489 \msg_new:nnn { bitset } { unknown-name }
30490 { The~name~’#2’~is~unknown~for~bitset~\tl_to_str:n {#1} }
30491 \prop_gput:Nnn \g_msg_module_name_prop { bitset } { LaTeX }
30492 \prop_gput:Nnn \g_msg_module_type_prop { bitset } { }

30493 ⟨/package⟩

1263

Chapter 85

l3cctab implementation

30494 ⟨∗package⟩

30495 ⟨@@=cctab⟩

As LuaTEX offers engine support for category code tables, and this is entirely lacking
from the other engines, we need two complementary approaches. (Some future X ETEX
may add support, at which point the conditionals below would be different.)

85.1 Variables
\g__cctab_stack_seq
\g__cctab_unused_seq

List of catcode tables saved by nested \cctab_begin:N, to restore catcodes at the match-
ing \cctab_end:. When popped from the \g__cctab_stack_seq the table numbers are
stored in \g__cctab_unused_seq for later reuse.

30496 \seq_new:N \g__cctab_stack_seq
30497 \seq_new:N \g__cctab_unused_seq

(End of definition for \g__cctab_stack_seq and \g__cctab_unused_seq.)

\g__cctab_group_seq A stack to store the group level when a catcode table started.
30498 \seq_new:N \g__cctab_group_seq

(End of definition for \g__cctab_group_seq.)

\g__cctab_allocate_int Integer to keep track of what category code table to allocate. In LuaTEX it is only used
in format mode to implement \cctab_new:N. In other engines it is used to make csnames
for dynamic tables.

30499 \int_new:N \g__cctab_allocate_int

(End of definition for \g__cctab_allocate_int.)

\l__cctab_internal_a_tl
\l__cctab_internal_b_tl

Scratch space. For instance, when popping \g__cctab_stack_seq/\g__cctab_unused_-
seq, consists of the catcodetable number (integer denotation) in LuaTEX, or of an intarray
variable (as a single token) in other engines.

30500 \tl_new:N \l__cctab_internal_a_tl
30501 \tl_new:N \l__cctab_internal_b_tl

(End of definition for \l__cctab_internal_a_tl and \l__cctab_internal_b_tl.)

1264

\g__cctab_endlinechar_prop In LuaTEX we store the \endlinechar associated to each \catcodetable in a property
list, unless it is the default value 13.

30502 \prop_new:N \g__cctab_endlinechar_prop

(End of definition for \g__cctab_endlinechar_prop.)

85.2 Allocating category code tables
\cctab_new:N
\cctab_new:c

__cctab_new:N
__cctab_gstore:Nnn

The __cctab_new:N auxiliary allocates a new catcode table but does not attempt to set
its value consistently across engines. It is used both in \cctab_new:N, which sets catcodes
to iniTEX values, and in \cctab_begin:N/\cctab_end: for dynamically allocated tables.

First, the LuaTEX case. Creating a new category code table is done like other
registers. In ConTEXt, \newcatcodetable does not include the initialisation, so that is
added explicitly.

30503 \sys_if_engine_luatex:TF
30504 {
30505 \cs_new_protected:Npn \cctab_new:N #1
30506 {
30507 __kernel_chk_if_free_cs:N #1
30508 __cctab_new:N #1
30509 }
30510 \cs_new_protected:Npn __cctab_new:N #1
30511 {
30512 \newcatcodetable #1
30513 \tex_initcatcodetable:D #1
30514 }
30515 }

Now the case for other engines. Here, each table is an integer array. Following the
LuaTEX pattern, a new table starts with iniTEX codes. The \debug_suspend: and
\debug_resume: functions prevent errors and logging from debug commands which are
either duplicate or false when __cctab_new:N is used by \cctab_new:N or \cctab_-
const:Nn. The index base is out-by-one, so we have an internal function to handle that.
The iniTEX \endlinechar is 13.

30516 {
30517 \cs_new_protected:Npn __cctab_new:N #1
30518 {
30519 \debug_suspend:
30520 \intarray_new:Nn #1 { 257 }
30521 \debug_resume:
30522 }
30523 \cs_new_protected:Npn __cctab_gstore:Nnn #1#2#3
30524 { \intarray_gset:Nnn #1 { #2 + 1 } {#3} }
30525 \cs_new_protected:Npn \cctab_new:N #1
30526 {
30527 __kernel_chk_if_free_cs:N #1
30528 __cctab_new:N #1
30529 \int_step_inline:nn { 256 }
30530 { __kernel_intarray_gset:Nnn #1 {##1} { 12 } }
30531 __kernel_intarray_gset:Nnn #1 { 257 } { 13 }
30532 __cctab_gstore:Nnn #1 { 0 } { 9 }
30533 __cctab_gstore:Nnn #1 { 13 } { 5 }

1265

30534 __cctab_gstore:Nnn #1 { 32 } { 10 }
30535 __cctab_gstore:Nnn #1 { 37 } { 14 }
30536 \int_step_inline:nnn { 65 } { 90 }
30537 { __cctab_gstore:Nnn #1 {##1} { 11 } }
30538 __cctab_gstore:Nnn #1 { 92 } { 0 }
30539 \int_step_inline:nnn { 97 } { 122 }
30540 { __cctab_gstore:Nnn #1 {##1} { 11 } }
30541 __cctab_gstore:Nnn #1 { 127 } { 15 }
30542 }
30543 }
30544 \cs_generate_variant:Nn \cctab_new:N { c }

(End of definition for \cctab_new:N , __cctab_new:N , and __cctab_gstore:Nnn. This function is
documented on page 294.)

85.3 Saving category code tables
__cctab_gset:n

__cctab_gset_aux:n
In various functions we need to save the current catcodes (globally) in a table. In LuaTEX,
saving the catcodes is a primitives, but the \endlinechar needs more work: to avoid
filling \g__cctab_endlinechar_prop with many entries we special-case the default value
13. In other engines we store 256 current catcodes and the \endlinechar in an intarray
variable.

30545 \sys_if_engine_luatex:TF
30546 {
30547 \cs_new_protected:Npn __cctab_gset:n #1
30548 { \exp_args:Nf __cctab_gset_aux:n { \int_eval:n {#1} } }
30549 \cs_new_protected:Npn __cctab_gset_aux:n #1
30550 {
30551 \tex_savecatcodetable:D #1 \scan_stop:
30552 \int_compare:nNnTF { \tex_endlinechar:D } = { 13 }
30553 { \prop_gremove:Nn \g__cctab_endlinechar_prop {#1} }
30554 {
30555 \prop_gput:NnV \g__cctab_endlinechar_prop {#1}
30556 \tex_endlinechar:D
30557 }
30558 }
30559 }
30560 {
30561 \cs_new_protected:Npn __cctab_gset:n #1
30562 {
30563 \int_step_inline:nn { 256 }
30564 {
30565 __kernel_intarray_gset:Nnn #1 {##1}
30566 { \char_value_catcode:n { ##1 - 1 } }
30567 }
30568 __kernel_intarray_gset:Nnn #1 { 257 }
30569 { \tex_endlinechar:D }
30570 }
30571 }

(End of definition for __cctab_gset:n and __cctab_gset_aux:n.)

1266

\cctab_gset:Nn
\cctab_gset:cn

Category code tables are always global, so only one version of assignments is needed.
Simply run the setup in a group and save the result in a category code table #1, provided
it is valid. The internal function is defined above depending on the engine.

30572 \cs_new_protected:Npn \cctab_gset:Nn #1#2
30573 {
30574 __cctab_chk_if_valid:NT #1
30575 {
30576 \group_begin:
30577 \cctab_select:N \c_initex_cctab
30578 #2 \scan_stop:
30579 __cctab_gset:n {#1}
30580 \group_end:
30581 }
30582 }
30583 \cs_generate_variant:Nn \cctab_gset:Nn { c }

(End of definition for \cctab_gset:Nn. This function is documented on page 294.)

\cctab_gsave_current:N
\cctab_gsave_current:c

Very simple.
30584 \cs_new_protected:Npn \cctab_gsave_current:N #1
30585 {
30586 __cctab_chk_if_valid:NT #1
30587 { __cctab_gset:n {#1} }
30588 }
30589 \cs_generate_variant:Nn \cctab_gsave_current:N { c }

(End of definition for \cctab_gsave_current:N. This function is documented on page 294.)

85.4 Using category code tables
\g__cctab_internal_cctab

__cctab_internal_cctab_name:
In LuaTEX, we must ensure that the saved tables are read-only. This is done by applying
the saved table, then switching immediately to a scratch table. Any later catcode assign-
ment will affect that scratch table rather than the saved one. If we simply switched to
the saved tables, then \char_set_catcode_other:N in the example below would change
\c_document_cctab and a later use of that table would give the wrong category code to
_.

\use:n
{
\cctab_begin:N \c_document_cctab
\char_set_catcode_other:N _

\cctab_end:
\cctab_begin:N \c_document_cctab
\int_compare:nTF { \char_value_catcode:n { ‘_ } = 8 }
{ \TRUE } { \ERROR }

\cctab_end:
}

We must also make sure that a scratch table is never reused in a nested group: in the
following example, the scratch table used by the first \cctab_begin:N would be changed
globally by the second one issuing \savecatcodetable, and after \group_end: the wrong

1267

category codes (those of \c_str_cctab) would be imposed. Note that the inner \cctab_-
end: restores the correct catcodes only locally, so the problem really comes up because
of the different grouping level. The simplest is to use a scratch table labeled by the
\currentgrouplevel. We initialize one of them as an example.

\use:n
{
\cctab_begin:N \c_document_cctab
\group_begin:
\cctab_begin:N \c_str_cctab
\cctab_end:

\group_end:
\cctab_end:

}

30590 \sys_if_engine_luatex:T
30591 {
30592 __cctab_new:N \g__cctab_internal_cctab
30593 \cs_new:Npn __cctab_internal_cctab_name:
30594 {
30595 g__cctab_internal
30596 \tex_romannumeral:D \tex_currentgrouplevel:D
30597 _cctab
30598 }
30599 }

(End of definition for \g__cctab_internal_cctab and __cctab_internal_cctab_name:.)

\cctab_select:N
\cctab_select:c

__cctab_select:N

The public function simply checks the ⟨cctab var⟩ exists before using the engine-
dependent __cctab_select:N. Skipping these checks would result in low-level engine-
dependent errors. First, the LuaTEX case. In other engines, selecting a catcode table is
a matter of doing 256 catcode assignments and setting the \endlinechar.

30600 \cs_new_protected:Npn \cctab_select:N #1
30601 { __cctab_chk_if_valid:NT #1 { __cctab_select:N #1 } }
30602 \cs_generate_variant:Nn \cctab_select:N { c }
30603 \sys_if_engine_luatex:TF
30604 {
30605 \cs_new_protected:Npn __cctab_select:N #1
30606 {
30607 \tex_catcodetable:D #1
30608 \prop_get:NVNTF \g__cctab_endlinechar_prop #1 \l__cctab_internal_a_tl
30609 { \int_set:Nn \tex_endlinechar:D { \l__cctab_internal_a_tl } }
30610 { \int_set:Nn \tex_endlinechar:D { 13 } }
30611 \cs_if_exist:cF { __cctab_internal_cctab_name: }
30612 { \exp_args:Nc __cctab_new:N { __cctab_internal_cctab_name: } }
30613 \exp_args:Nc \tex_savecatcodetable:D { __cctab_internal_cctab_name: }
30614 \exp_args:Nc \tex_catcodetable:D { __cctab_internal_cctab_name: }
30615 }
30616 }
30617 {
30618 \cs_new_protected:Npn __cctab_select:N #1
30619 {
30620 \int_step_inline:nn { 256 }
30621 {

1268

30622 \char_set_catcode:nn { ##1 - 1 }
30623 { __kernel_intarray_item:Nn #1 {##1} }
30624 }
30625 \int_set:Nn \tex_endlinechar:D
30626 { __kernel_intarray_item:Nn #1 { 257 } }
30627 }
30628 }

(End of definition for \cctab_select:N and __cctab_select:N. This function is documented on page
295.)

\g__cctab_next_cctab
__cctab_begin_aux:

For \cctab_begin:N/\cctab_end: we will need to allocate dynamic tables. This is done
here by __cctab_begin_aux:, which puts a table number (in LuaTEX) or name (in other
engines) into \l__cctab_internal_a_tl. In LuaTEX this simply calls __cctab_new:N
and uses the resulting catcodetable number; in other engines we need to give a name to
the intarray variable and use that. In LuaTEX, to restore catcodes at \cctab_end: we
cannot just set \catcodetable to its value before \cctab_begin:N, because that table
may have been altered by other code in the mean time. So we must make sure to save
the catcodes in a table we control and restore them at \cctab_end:.

30629 \sys_if_engine_luatex:TF
30630 {
30631 \cs_new_protected:Npn __cctab_begin_aux:
30632 {
30633 __cctab_new:N \g__cctab_next_cctab
30634 \tl_set:NV \l__cctab_internal_a_tl \g__cctab_next_cctab
30635 \cs_undefine:N \g__cctab_next_cctab
30636 }
30637 }
30638 {
30639 \cs_new_protected:Npn __cctab_begin_aux:
30640 {
30641 \int_gincr:N \g__cctab_allocate_int
30642 \exp_args:Nc __cctab_new:N
30643 { g__cctab_ \int_use:N \g__cctab_allocate_int _cctab }
30644 \exp_args:NNc \tl_set:Nn \l__cctab_internal_a_tl
30645 { g__cctab_ \int_use:N \g__cctab_allocate_int _cctab }
30646 }
30647 }

(End of definition for \g__cctab_next_cctab and __cctab_begin_aux:.)

\cctab_begin:N
\cctab_begin:c

Check the ⟨cctab var⟩ exists, to avoid low-level errors. Get in \l__cctab_internal_-
a_tl the number/name of a dynamic table, either from \g__cctab_unused_seq where
we save tables that are not currently in use, or from __cctab_begin_aux: if none
are available. Then save the current catcodes into the table (pointed to by) \l__-
cctab_internal_a_tl and save that table number in a stack before selecting the desired
catcodes.

30648 \cs_new_protected:Npn \cctab_begin:N #1
30649 {
30650 __cctab_chk_if_valid:NT #1
30651 {
30652 \seq_gpop:NNF \g__cctab_unused_seq \l__cctab_internal_a_tl
30653 { __cctab_begin_aux: }
30654 __cctab_chk_group_begin:e

1269

30655 { __cctab_nesting_number:N \l__cctab_internal_a_tl }
30656 \seq_gpush:NV \g__cctab_stack_seq \l__cctab_internal_a_tl
30657 \exp_args:NV __cctab_gset:n \l__cctab_internal_a_tl
30658 __cctab_select:N #1
30659 }
30660 }
30661 \cs_generate_variant:Nn \cctab_begin:N { c }

(End of definition for \cctab_begin:N. This function is documented on page 295.)

\cctab_end: Make sure a \cctab_begin:N was used some time earlier, get in \l__cctab_internal_-
a_tl the catcode table number/name in which the prevailing catcodes were stored, then
restore these catcodes. The dynamic table is now unused hence stored in \g__cctab_-
unused_seq for recycling by later \cctab_begin:N.

30662 \cs_new_protected:Npn \cctab_end:
30663 {
30664 \seq_gpop:NNTF \g__cctab_stack_seq \l__cctab_internal_a_tl
30665 {
30666 \seq_gpush:NV \g__cctab_unused_seq \l__cctab_internal_a_tl
30667 \exp_args:Ne __cctab_chk_group_end:n
30668 { __cctab_nesting_number:N \l__cctab_internal_a_tl }
30669 __cctab_select:N \l__cctab_internal_a_tl
30670 }
30671 { \msg_error:nn { cctab } { extra-end } }
30672 }

(End of definition for \cctab_end:. This function is documented on page 295.)

__cctab_chk_group_begin:n
__cctab_chk_group_begin:e
__cctab_chk_group_end:n

Catcode tables are not allowed to be intermixed with groups, so here we check that they
are properly nested regarding TEX groups. __cctab_chk_group_begin:n stores the
current group level in a stack, and locally defines a dummy control sequence __cctab_-
group_⟨cctab-level⟩_chk:.

__cctab_chk_group_end:n pops the stack, and compares the returned value with
\tex_currentgrouplevel:D. If they differ, \cctab_end: is in a different grouping level
than the matching \cctab_begin:N. If they are the same, both happened at the same
level, however a group might have ended and another started between \cctab_begin:N
and \cctab_end::

\group_begin:
\cctab_begin:N \c_document_cctab

\group_end:
\group_begin:
\cctab_end:

\group_end:

In this case checking \tex_currentgrouplevel:D is not enough, so we locally define
__cctab_group_⟨cctab-level⟩_chk:, and then check if it exist in \cctab_end:. If it
doesn’t, we know there was a group end where it shouldn’t.

The ⟨cctab-level⟩ in the sentinel macro above cannot be replaced by the more
convenient \tex_currentgrouplevel:D because with the latter we might be tricked.
Suppose:

1270

\group_begin:
\cctab_begin:N \c_code_cctab % A

\group_end:
\group_begin:
\cctab_begin:N \c_code_cctab % B
\cctab_end: % C
\cctab_end: % D

\group_end:

The line marked with A would start a cctab with a sentinel token named __cctab_-
group_1_chk:, which would disappear at the \group_end: that follows. But B would
create the same sentinel token, since both are at the same group level. Line C would
end the cctab from line B correctly, but so would line D because line B created the same
sentinel token. Using ⟨cctab-level⟩ works correctly because it signals that certain
cctab level was activated somewhere, but if it doesn’t exist when the \cctab_end: is
reached, we had a problem.

Unfortunately these tests only flag the wrong usage at the \cctab_end:, which might
be far from the \cctab_begin:N. However it isn’t possible to signal the wrong usage at
the \group_end: without using \tex_aftergroup:D, which is unsafe in certain types of
groups.

The three cases checked here just raise an error, and no recovery is attempted:
usually interleaving groups and catcode tables will work predictably.

30673 \cs_new_protected:Npn __cctab_chk_group_begin:n #1
30674 {
30675 \seq_gpush:Ne \g__cctab_group_seq
30676 { \int_use:N \tex_currentgrouplevel:D }
30677 \cs_set_eq:cN { __cctab_group_ #1 _chk: } \prg_do_nothing:
30678 }
30679 \cs_generate_variant:Nn __cctab_chk_group_begin:n { e }
30680 \cs_new_protected:Npn __cctab_chk_group_end:n #1
30681 {
30682 \seq_gpop:NN \g__cctab_group_seq \l__cctab_internal_b_tl
30683 \bool_lazy_and:nnF
30684 {
30685 \int_compare_p:nNn
30686 { \tex_currentgrouplevel:D } = { \l__cctab_internal_b_tl }
30687 }
30688 { \cs_if_exist_p:c { __cctab_group_ #1 _chk: } }
30689 {
30690 \msg_error:nne { cctab } { group-mismatch }
30691 {
30692 \int_sign:n
30693 { \tex_currentgrouplevel:D - \l__cctab_internal_b_tl }
30694 }
30695 }
30696 \cs_undefine:c { __cctab_group_ #1 _chk: }
30697 }

(End of definition for __cctab_chk_group_begin:n and __cctab_chk_group_end:n.)

__cctab_nesting_number:N
__cctab_nesting_number:w

This macro returns the numeric index of the current catcode table. In LuaTEX this is just
the argument, which is a count reference to a \catcodetable register. In other engines,
the number is extracted from the cctab variable.

1271

30698 \sys_if_engine_luatex:TF
30699 { \cs_new:Npn __cctab_nesting_number:N #1 {#1} }
30700 {
30701 \cs_new:Npn __cctab_nesting_number:N #1
30702 {
30703 \exp_after:wN \exp_after:wN \exp_after:wN __cctab_nesting_number:w
30704 \exp_after:wN \token_to_str:N #1
30705 }
30706 \use:e
30707 {
30708 \cs_new:Npn \exp_not:N __cctab_nesting_number:w
30709 #1 \tl_to_str:n { g__cctab_ } #2 \tl_to_str:n { _cctab } {#2}
30710 }
30711 }

(End of definition for __cctab_nesting_number:N and __cctab_nesting_number:w.)
Finally, install some code at the end of the TEX run to check that all \cctab_begin:N

were ended by some \cctab_end:.
30712 \cs_if_exist:NT \hook_gput_code:nnn
30713 {
30714 \hook_gput_code:nnn { enddocument/end } { cctab }
30715 {
30716 \seq_if_empty:NF \g__cctab_stack_seq
30717 { \msg_error:nn { cctab } { missing-end } }
30718 }
30719 }

\cctab_item:Nn
\cctab_item:cn

Evaluate the integer argument only once. In most engines the cctab variable only has
256 entries so we only look up the catcode for these entries, otherwise we use the current
catcode. In particular, for out-of-range values we use whatever fall-back \char_value_-
catcode:n. In LuaTEX, we use the tex.getcatcode function.

30720 \cs_new:Npn \cctab_item:Nn #1#2
30721 { \exp_args:Nf __cctab_item:nN { \int_eval:n {#2} } #1 }
30722 \sys_if_engine_luatex:TF
30723 {
30724 \cs_new:Npn __cctab_item:nN #1#2
30725 { \lua_now:e { tex.print(-2, tex.getcatcode(\int_use:N #2, #1)) } }
30726 }
30727 {
30728 \cs_new:Npn __cctab_item:nN #1#2
30729 {
30730 \int_compare:nNnTF {#1} < { 256 }
30731 { \intarray_item:Nn #2 { #1 + 1 } }
30732 { \char_value_catcode:n {#1} }
30733 }
30734 }
30735 \cs_generate_variant:Nn \cctab_item:Nn { c }

(End of definition for \cctab_item:Nn. This function is documented on page 295.)

85.5 Category code table conditionals
\cctab_if_exist_p:N
\cctab_if_exist_p:c
\cctab_if_exist:NTF
\cctab_if_exist:cTF

Checks whether a ⟨cctab var⟩ is defined.

1272

30736 \prg_new_eq_conditional:NNn \cctab_if_exist:N \cs_if_exist:N
30737 { TF , T , F , p }
30738 \prg_new_eq_conditional:NNn \cctab_if_exist:c \cs_if_exist:c
30739 { TF , T , F , p }

(End of definition for \cctab_if_exist:NTF. This function is documented on page 295.)

__cctab_chk_if_valid:NTF
__cctab_chk_if_valid_aux:NTF

Checks whether the argument is defined and whether it is a valid ⟨cctab var⟩. In
LuaTEX the validity of the ⟨cctab var⟩ is checked by the engine, which complains if the
argument is not a \chardef’ed constant. In other engines, check if the given command
is an intarray variable (the underlying definition is a copy of the cmr10 font).

30740 \prg_new_protected_conditional:Npnn __cctab_chk_if_valid:N #1
30741 { TF , T , F }
30742 {
30743 \cctab_if_exist:NTF #1
30744 {
30745 __cctab_chk_if_valid_aux:NTF #1
30746 { \prg_return_true: }
30747 {
30748 \msg_error:nne { cctab } { invalid-cctab }
30749 { \token_to_str:N #1 }
30750 \prg_return_false:
30751 }
30752 }
30753 {
30754 \msg_error:nne { kernel } { command-not-defined }
30755 { \token_to_str:N #1 }
30756 \prg_return_false:
30757 }
30758 }
30759 \sys_if_engine_luatex:TF
30760 {
30761 \cs_new_protected:Npn __cctab_chk_if_valid_aux:NTF #1
30762 {
30763 \int_compare:nNnTF {#1-1} < { \e@alloc@ccodetable@count }
30764 }
30765 \cs_if_exist:NT \c_syst_catcodes_n
30766 {
30767 \cs_gset_protected:Npn __cctab_chk_if_valid_aux:NTF #1
30768 {
30769 \int_compare:nTF { #1 <= \c_syst_catcodes_n }
30770 }
30771 }
30772 }
30773 {
30774 \cs_new_protected:Npn __cctab_chk_if_valid_aux:NTF #1
30775 {
30776 \exp_args:Nf \str_if_in:nnTF
30777 { \cs_meaning:N #1 }
30778 { select~font~cmr10~at~ }
30779 }
30780 }

(End of definition for __cctab_chk_if_valid:NTF and __cctab_chk_if_valid_aux:NTF.)

1273

85.6 Constant category code tables
\cctab_const:Nn
\cctab_const:cn

Creates a new ⟨cctab var⟩ then sets it with the iniTEX and user-supplied codes. To
avoid false debug errors, we write out implementation of \cctab_new:N and \cctab_-
gset:Nn instead of directly using them here. The initialization part in \cctab_new:N in
non-LuaTEX is omitted as it’s covered by the iniTEX settings.

30781 \cs_new_protected:Npn \cctab_const:Nn #1#2
30782 {
30783 __kernel_chk_if_free_cs:N #1
30784 __cctab_new:N #1
30785 \group_begin:
30786 \cctab_select:N \c_initex_cctab
30787 #2 \scan_stop:
30788 __cctab_gset:n {#1}
30789 \group_end:
30790 }
30791 \cs_generate_variant:Nn \cctab_const:Nn { c }

(End of definition for \cctab_const:Nn. This function is documented on page 294.)

\c_initex_cctab
\c_other_cctab
\c_str_cctab

Creating category code tables means thinking starting from iniTEX. For all-other and
the standard “string” tables that’s easy.

30792 \cctab_new:N \c_initex_cctab
30793 \cctab_const:Nn \c_other_cctab
30794 {
30795 \cctab_select:N \c_initex_cctab
30796 \int_set:Nn \tex_endlinechar:D { -1 }
30797 \int_step_inline:nnn { 0 } { 127 }
30798 { \char_set_catcode_other:n {#1} }
30799 }
30800 \cctab_const:Nn \c_str_cctab
30801 {
30802 \cctab_select:N \c_other_cctab
30803 \char_set_catcode_space:n { 32 }
30804 }

(End of definition for \c_initex_cctab , \c_other_cctab , and \c_str_cctab. These variables are doc-
umented on page 296.)

\c_code_cctab
\c_document_cctab

To pick up document-level category codes, we need to delay set up to the end of the
format, where that’s possible. Also, as there are a lot of category codes to set, we avoid
using the official interface and store the document codes using internal code. Depending
on whether we are in the hook or not, the catcodes may be code or document, so we
explicitly set up both correctly.

30805 \cs_if_exist:NTF \@expl@finalise@setup@@
30806 { \tl_gput_right:Nn \@expl@finalise@setup@@ }
30807 { \use:n }
30808 {
30809 __cctab_new:N \c_code_cctab
30810 \group_begin:
30811 \int_set:Nn \tex_endlinechar:D { 32 }
30812 \char_set_catcode_invalid:n { 0 }
30813 \sys_if_engine_opentype:TF
30814 { \int_step_function:nN { 31 } \char_set_catcode_invalid:n }

1274

30815 { \int_step_function:nN { 31 } \char_set_catcode_active:n }
30816 \int_step_function:nnN { 33 } { 64 } \char_set_catcode_other:n
30817 \int_step_function:nnN { 65 } { 90 } \char_set_catcode_letter:n
30818 \int_step_function:nnN { 91 } { 96 } \char_set_catcode_other:n
30819 \int_step_function:nnN { 97 } { 122 } \char_set_catcode_letter:n
30820 \char_set_catcode_ignore:n { 9 } % tab
30821 \char_set_catcode_other:n { 10 } % lf
30822 \char_set_catcode_active:n { 12 } % ff
30823 \char_set_catcode_end_line:n { 13 } % cr
30824 \char_set_catcode_ignore:n { 32 } % space
30825 \char_set_catcode_parameter:n { 35 } % hash
30826 \char_set_catcode_math_toggle:n { 36 } % dollar
30827 \char_set_catcode_comment:n { 37 } % percent
30828 \char_set_catcode_alignment:n { 38 } % ampersand
30829 \char_set_catcode_letter:n { 58 } % colon
30830 \char_set_catcode_escape:n { 92 } % backslash
30831 \char_set_catcode_math_superscript:n { 94 } % circumflex
30832 \char_set_catcode_letter:n { 95 } % underscore
30833 \char_set_catcode_group_begin:n { 123 } % left brace
30834 \char_set_catcode_other:n { 124 } % pipe
30835 \char_set_catcode_group_end:n { 125 } % right brace
30836 \char_set_catcode_space:n { 126 } % tilde
30837 \char_set_catcode_invalid:n { 127 } % ^^?
30838 \sys_if_engine_opentype:F
30839 { \int_step_function:nnN { 128 } { 255 } \char_set_catcode_active:n }
30840 __cctab_gset:n { \c_code_cctab }
30841 \group_end:
30842 \cctab_const:Nn \c_document_cctab
30843 {
30844 \cctab_select:N \c_code_cctab
30845 \int_set:Nn \tex_endlinechar:D { 13 }
30846 \char_set_catcode_space:n { 9 }
30847 \char_set_catcode_space:n { 32 }
30848 \char_set_catcode_other:n { 58 }
30849 \char_set_catcode_math_subscript:n { 95 }
30850 \char_set_catcode_active:n { 126 }
30851 }
30852 }

(End of definition for \c_code_cctab and \c_document_cctab. These variables are documented on page
295.)

\g_tmpa_cctab
\g_tmpb_cctab 30853 \cctab_new:N \g_tmpa_cctab

30854 \cctab_new:N \g_tmpb_cctab

(End of definition for \g_tmpa_cctab and \g_tmpb_cctab. These variables are documented on page 296.)

85.7 Messages
30855 \msg_new:nnnn { cctab } { stack-full }
30856 { The~category~code~table~stack~is~exhausted. }
30857 {
30858 LaTeX~has~been~asked~to~switch~to~a~new~category~code~table,~

1275

30859 but~there~is~no~more~space~to~do~this!
30860 }
30861 \msg_new:nnnn { cctab } { extra-end }
30862 { Extra~\iow_char:N\\cctab_end:~ignored~\msg_line_context:. }
30863 {
30864 LaTeX~came~across~a~\iow_char:N\\cctab_end:~without~a~matching~
30865 \iow_char:N\\cctab_begin:N.~This~command~will~be~ignored.
30866 }
30867 \msg_new:nnnn { cctab } { missing-end }
30868 { Missing~\iow_char:N\\cctab_end:~before~end~of~TeX~run. }
30869 {
30870 LaTeX~came~across~more~\iow_char:N\\cctab_begin:N~than~
30871 \iow_char:N\\cctab_end:.
30872 }
30873 \msg_new:nnnn { cctab } { invalid-cctab }
30874 { Invalid~\iow_char:N\\catcode~table. }
30875 {
30876 You~can~only~switch~to~a~\iow_char:N\\catcode~table~that~is~
30877 initialized~using~\iow_char:N\\cctab_new:N~or~
30878 \iow_char:N\\cctab_const:Nn.
30879 }
30880 \msg_new:nnnn { cctab } { group-mismatch }
30881 {
30882 \iow_char:N\\cctab_end:~occurred~in~a~
30883 \int_case:nn {#1}
30884 {
30885 { 0 } { different~group }
30886 { 1 } { higher~group~level }
30887 { -1 } { lower~group~level }
30888 } ~than~
30889 the~matching~\iow_char:N\\cctab_begin:N.
30890 }
30891 {
30892 Catcode~tables~and~groups~must~be~properly~nested,~but~
30893 you~tried~to~interleave~them.~LaTeX~will~try~to~proceed,~
30894 but~results~may~be~unexpected.
30895 }
30896 \prop_gput:Nnn \g_msg_module_name_prop { cctab } { LaTeX }
30897 \prop_gput:Nnn \g_msg_module_type_prop { cctab } { }

30898 ⟨/package⟩

1276

Chapter 86

l3unicode implementation

30899 ⟨∗package⟩

30900 ⟨@@=codepoint⟩

86.1 User functions
\codepoint_str_generate:n

__codepoint_str_generate:nnnn
\codepoint_generate:nn

__codepoint_generate:nnnn
__codepoint_generate:n

Conversion of a codepoint to a character (Unicode engines) or to one or more bytes (8-bit
engines) is required. For loading the data, all that is needed is the form which creates
strings: these are outside the group as they will also be used when looking up data in the
hash table storage at point-of-use. Later, we will also need functions that can generate
character tokens for document use: those are defined below, in the data recovery setup.

30901 \sys_if_engine_opentype:TF
30902 {
30903 \cs_new:Npn \codepoint_str_generate:n #1
30904 {
30905 \int_compare:nNnTF {#1} = { ‘\ }
30906 { ~ }
30907 { \char_generate:nn {#1} { 12 } }
30908 }
30909 \cs_new:Npn \codepoint_generate:nn #1#2
30910 {
30911 \int_compare:nNnTF {#1} = { ‘\ }
30912 { ~ }
30913 {
30914 __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
30915 { \char_generate:nn {#1} {#2} }
30916 }
30917 }
30918 }
30919 {
30920 \cs_new:Npn \codepoint_str_generate:n #1
30921 {
30922 \int_compare:nNnTF {#1} = { ‘\ }
30923 { ~ }
30924 {
30925 \use:e
30926 {
30927 \exp_not:N __codepoint_str_generate:nnnn

1277

30928 __kernel_codepoint_to_bytes:n {#1}
30929 }
30930 }
30931 }
30932 \cs_new:Npn __codepoint_str_generate:nnnn #1#2#3#4
30933 {
30934 \char_generate:nn {#1} { 12 }
30935 \tl_if_blank:nF {#2}
30936 {
30937 \char_generate:nn {#2} { 12 }
30938 \tl_if_blank:nF {#3}
30939 {
30940 \char_generate:nn {#3} { 12 }
30941 \tl_if_blank:nF {#4}
30942 { \char_generate:nn {#4} { 12 } }
30943 }
30944 }
30945 }
30946 \cs_new:Npn \codepoint_generate:nn #1#2
30947 {
30948 \int_compare:nNnTF {#1} = { ‘\ }
30949 { ~ }
30950 {
30951 \int_compare:nNnTF {#1} < { "80 }
30952 {
30953 __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
30954 { \char_generate:nn {#1} {#2} }
30955 }
30956 {
30957 \use:e
30958 {
30959 \exp_not:N __codepoint_generate:nnnn
30960 __kernel_codepoint_to_bytes:n {#1}
30961 }
30962 }
30963 }
30964 }
30965 \cs_new:Npn __codepoint_generate:nnnn #1#2#3#4
30966 {
30967 __kernel_exp_not:w \exp_after:wN
30968 {
30969 \tex_expanded:D
30970 {
30971 __codepoint_generate:n {#1}
30972 __codepoint_generate:n {#2}
30973 \tl_if_blank:nF {#3}
30974 {
30975 __codepoint_generate:n {#3}
30976 \tl_if_blank:nF {#4}
30977 { __codepoint_generate:n {#4} }
30978 }
30979 }
30980 }
30981 }

1278

30982 \cs_new:Npn __codepoint_generate:n #1
30983 {
30984 __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
30985 { \char_generate:nn {#1} { 13 } }
30986 }
30987 }

(End of definition for \codepoint_str_generate:n and others. These functions are documented on page
299.)

__kernel_codepoint_to_bytes:n
__codepoint_to_bytes_auxi:n

__codepoint_to_bytes_auxii:Nnn
__codepoint_to_bytes_auxiii:n

__codepoint_to_bytes_outputi:nw
__codepoint_to_bytes_outputii:nw
__codepoint_to_bytes_outputiii:nw
__codepoint_to_bytes_outputiv:nw
__codepoint_to_bytes_output:nnn
__codepoint_to_bytes_output:fnn

__codepoint_to_bytes_end:

This code converts a codepoint into the correct UTF-8 representation. In terms of the
algorithm itself, see https://en.wikipedia.org/wiki/UTF-8 for the octet pattern.

30988 \cs_new:Npn __kernel_codepoint_to_bytes:n #1
30989 {
30990 \exp_args:Nf __codepoint_to_bytes_auxi:n
30991 { \int_eval:n {#1} }
30992 }
30993 \cs_new:Npn __codepoint_to_bytes_auxi:n #1
30994 {
30995 \if_int_compare:w #1 > "80 \exp_stop_f:
30996 \if_int_compare:w #1 < "800 \exp_stop_f:
30997 __codepoint_to_bytes_outputi:nw
30998 { __codepoint_to_bytes_auxii:Nnn C {#1} { 64 } }
30999 __codepoint_to_bytes_outputii:nw
31000 { __codepoint_to_bytes_auxiii:n {#1} }
31001 \else:
31002 \if_int_compare:w #1 < "10000 \exp_stop_f:
31003 __codepoint_to_bytes_outputi:nw
31004 { __codepoint_to_bytes_auxii:Nnn E {#1} { 64 * 64 } }
31005 __codepoint_to_bytes_outputii:nw
31006 {
31007 __codepoint_to_bytes_auxiii:n
31008 { \int_div_truncate:nn {#1} { 64 } }
31009 }
31010 __codepoint_to_bytes_outputiii:nw
31011 { __codepoint_to_bytes_auxiii:n {#1} }
31012 \else:
31013 __codepoint_to_bytes_outputi:nw
31014 {
31015 __codepoint_to_bytes_auxii:Nnn F
31016 {#1} { 64 * 64 * 64 }
31017 }
31018 __codepoint_to_bytes_outputii:nw
31019 {
31020 __codepoint_to_bytes_auxiii:n
31021 { \int_div_truncate:nn {#1} { 64 * 64 } }
31022 }
31023 __codepoint_to_bytes_outputiii:nw
31024 {
31025 __codepoint_to_bytes_auxiii:n
31026 { \int_div_truncate:nn {#1} { 64 } }
31027 }
31028 __codepoint_to_bytes_outputiv:nw
31029 { __codepoint_to_bytes_auxiii:n {#1} }

1279

https://en.wikipedia.org/wiki/UTF-8

31030 \fi:
31031 \fi:
31032 \else:
31033 __codepoint_to_bytes_outputi:nw {#1}
31034 \fi:
31035 __codepoint_to_bytes_end: { } { } { } { }
31036 }
31037 \cs_new:Npn __codepoint_to_bytes_auxii:Nnn #1#2#3
31038 { "#10 + \int_div_truncate:nn {#2} {#3} }
31039 \cs_new:Npn __codepoint_to_bytes_auxiii:n #1
31040 { \int_mod:nn {#1} { 64 } + 128 }
31041 \cs_new:Npn __codepoint_to_bytes_outputi:nw
31042 #1 #2 __codepoint_to_bytes_end: #3
31043 { __codepoint_to_bytes_output:fnn { \int_eval:n {#1} } { } {#2} }
31044 \cs_new:Npn __codepoint_to_bytes_outputii:nw
31045 #1 #2 __codepoint_to_bytes_end: #3#4
31046 { __codepoint_to_bytes_output:fnn { \int_eval:n {#1} } { {#3} } {#2} }
31047 \cs_new:Npn __codepoint_to_bytes_outputiii:nw
31048 #1 #2 __codepoint_to_bytes_end: #3#4#5
31049 {
31050 __codepoint_to_bytes_output:fnn
31051 { \int_eval:n {#1} } { {#3} {#4} } {#2}
31052 }
31053 \cs_new:Npn __codepoint_to_bytes_outputiv:nw
31054 #1 #2 __codepoint_to_bytes_end: #3#4#5#6
31055 {
31056 __codepoint_to_bytes_output:fnn
31057 { \int_eval:n {#1} } { {#3} {#4} {#5} } {#2}
31058 }
31059 \cs_new:Npn __codepoint_to_bytes_output:nnn #1#2#3
31060 {
31061 #3
31062 __codepoint_to_bytes_end: #2 {#1}
31063 }
31064 \cs_generate_variant:Nn __codepoint_to_bytes_output:nnn { f }
31065 \cs_new:Npn __codepoint_to_bytes_end: { }

(End of definition for __kernel_codepoint_to_bytes:n and others.)

\codepoint_to_category:n Get the value and convert back to the string.
31066 \cs_new:Npn \codepoint_to_category:n #1
31067 {
31068 \cs:w
31069 c__codepoint_category_
31070 \tex_romannumeral:D
31071 __kernel_codepoint_data:nn { category } {#1}
31072 _str
31073 \cs_end:
31074 }

(End of definition for \codepoint_to_category:n. This function is documented on page 300.)

\codepoint_to_nfd:n
__codepoint_to_nfd:n
__codepoint_to_nfd:nn
__codepoint_to_nfd:nnn

__codepoint_to_nfd:nnnn

Converted to NFD is a potentially-recursive process: the key is to check if we get the
input codepoint back again. As far as possible, we use the same path for all engines.

1280

31075 \cs_new:Npn \codepoint_to_nfd:n #1
31076 { \exp_args:Ne __codepoint_to_nfd:n { \int_eval:n {#1} } }
31077 \cs_new:Npn __codepoint_to_nfd:n #1
31078 { __codepoint_to_nfd:nn {#1} { \char_value_catcode:n {#1} } }
31079 \sys_if_engine_opentype:F
31080 {
31081 \cs_gset:Npn __codepoint_to_nfd:n #1
31082 {
31083 \int_compare:nNnTF {#1} > { "80 }
31084 { __codepoint_to_nfd:nn {#1} { 12 } }
31085 { __codepoint_to_nfd:nn {#1} { \char_value_catcode:n {#1} } }
31086 }
31087 }
31088 \cs_new:Npn __codepoint_to_nfd:nn #1#2
31089 {
31090 \exp_args:Ne __codepoint_to_nfd:nnn
31091 { __codepoint_nfd:n {#1} } {#1} {#2}
31092 }
31093 \cs_new:Npn __codepoint_to_nfd:nnn #1#2#3 { __codepoint_to_nfd:nnnn #1 {#2} {#3} }
31094 \cs_new:Npn __codepoint_to_nfd:nnnn #1#2#3#4
31095 {
31096 \int_compare:nNnTF {#1} = {#3}
31097 { \codepoint_generate:nn {#1} {#4} }
31098 {
31099 __codepoint_to_nfd:nn {#1} {#4}
31100 \tl_if_blank:nF {#2}
31101 { __codepoint_to_nfd:nn {#2} {#4} }
31102 }
31103 }

(End of definition for \codepoint_to_nfd:n and others. This function is documented on page 300.)

86.2 Data loader
Text operations requires data from the Unicode Consortium. Data read into Unicode
engine formats is at best a small part of what we need, so there is a loader here to set
up the appropriate data structures.

Where we need data for most or all of the Unicode range, we use the two-stage
table approach recommended by the Unicode Consortium and demonstrated in a model
implementation in Python in https://www.strchr.com/multi-stage_tables. This ap-
proach uses the intarray (fontdimen-based) data type as it is fast for random access
and avoids significant hash table usage. In contrast, where only a small subset of code-
points are required, storage as macros is preferable. There is also some consideration
of the effort needed to load data: see for example the grapheme breaking information,
which would be problematic to convert into a two-stage table but which can be used with
reasonable performance in a small number of comma lists (at the cost that breaking at
higher codepoint Hangul characters will be slightly slow).

\c__codepoint_block_size_int Choosing the block size for the blocks in the two-stage approach is non-trivial: depending
on the data stored, the optimal size for memory usage will vary. At the same time, for
us there is also the question of load-time: larger blocks require longer comma lists as

1281

https://www.strchr.com/multi-stage_tables

intermediates, so are slower. As this is going to be needed to use the data, we set it up
outside of the group for clarity.

31104 \int_const:Nn \c__codepoint_block_size_int { 64 }

(End of definition for \c__codepoint_block_size_int.)
Parsing the data files can be the same way for all engines, but where they are stored

as character tokens, the construction method depends on whether they are Unicode or
8-bit internally. Parsing is therefore done by common functions, with some data storage
using engine-specific auxiliaries.

As only the data needs to remain at the end of this process, everything is set up
inside a group. The only thing that is outside is creating a stream: they are global
anyway and it is best to force a stream for all engines.

\g__codepoint_data_ior

31105 \ior_new:N \g__codepoint_data_ior

(End of definition for \g__codepoint_data_ior.)
We need some setup for the two-part table approach. The number of blocks we

need will be variable, but the resulting size of the stage one table is predictable. For
performance reasons, we therefore create the stage one tables now so they can be used
immediately, and will later rename them as a constant tables. For each two-stage table
construction, we need a comma list to hold the partial block and a couple of integers to
track where we are up to. To avoid burning registers, the latter are stored in macros and
are “fake” integers. We also avoid any new functions, keeping as much as possible local.

As we need both positive and negative values, case data requires one two-stage table
for each transformation. In contrasts, general Unicode properties could be stored in one
table with appropriate combination rules: that is not done at present but is likely to be
added over time. Here, all that is needed is additional entries into the comma-list to
create the structures.

Notice that in the standard expl3 way we are indexes position not offset: that does
mean a little work later.

31106 \group_begin:
31107 \clist_map_inline:nn
31108 { category , uppercase , lowercase }
31109 {
31110 \cs_set_nopar:cpn { l__codepoint_ #1 _block_clist } { }
31111 \cs_set_nopar:cpn { l__codepoint_ #1 _block_tl } { 1 }
31112 \cs_set_nopar:cpn { l__codepoint_ #1 _pos_tl } { 0 }
31113 \intarray_new:cn { g__codepoint_ #1 _index_intarray }
31114 { \int_div_truncate:nn { "110000 } \c__codepoint_block_size_int }
31115 }

We need an integer value when matching the current block to those we have already seen,
and a way to track codepoints for handling ranges. Again, we avoid using up registers or
creating global names.

31116 \cs_set_nopar:Npn \l__codepoint_next_codepoint_fint_tl { 0 }
31117 \cs_set_nopar:Npn \l__codepoint_matched_block_tl { 0 }

For Unicode general category, there needs to be numerical representation of each possible
value. As we need to go from string to number here, but the other way elsewhere, we set
up fast mappings both ways, but one set local and the other as constants.

31118 \cs_set_protected:Npn __codepoint_data_auxi:w #1#2

1282

31119 {
31120 \quark_if_recursion_tail_stop:n {#2}
31121 \cs_set_nopar:cpn { l__codepoint_category_ #2 _tl } {#1}
31122 \str_const:cn { c__codepoint_category_ \tex_romannumeral:D #1 _str } {#2}
31123 \exp_args:Ne __codepoint_data_auxi:w { \int_eval:n { #1 + 1 } }
31124 }
31125 __codepoint_data_auxi:w { 1 }
31126 { Lu } { Ll } { Lt } { Lm } { Lo }
31127 { Mn } { Me } { Mc }
31128 { Nd } { Nl } { No }
31129 { Zs } { Zl } { Zp }
31130 { Cc } { Cf } { Co } { Cs } { Cn }
31131 { Pd } { Ps } { Pe } { Pc } { Po } { Pi } { Pf }
31132 { Sm } { Sc } { Sk } { So }
31133 \q_recursion_tail
31134 \q_recursion_stop

Parse the main Unicode data file and pull out the NFD and case changing data. The
NFD data is stored on using the hash table approach and can yield a predictable number
of codepoints: one or two. We also need the case data, which will be modified further
below. To allow for finding ranges, the description of the codepoint needs to be carried
forward.

31135 \cs_set_protected:Npn __codepoint_data_auxi:w
31136 #1 ; #2 ; #3 ; #4 ; #5 ; #6 ; #7 ; #8 ; #9 ;
31137 {
31138 \tl_if_blank:nF {#6}
31139 {
31140 \tl_if_head_eq_charcode:nNF {#6} < % >
31141 { __codepoint_data_auxii:w #1 ; #6 ~ \q_stop }
31142 }
31143 __codepoint_data_auxiii:w #1 ; #2 ; #3 ;
31144 }
31145 \cs_set_protected:Npn __codepoint_data_auxii:w #1 ; #2 ~ #3 \q_stop
31146 {
31147 \tl_const:ce
31148 { c__codepoint_nfd_ \codepoint_str_generate:n {"#1} _tl }
31149 {
31150 {"#2}
31151 { \tl_if_blank:nF {#3} {"#3} }
31152 }
31153 }

The category data needs to be converted from a string to the numerical equivalent: a
simple operation. The case data is going to be stored as an offset from the parent
character, rather than an absolute value. We therefore deal with that plus the situation
where a codepoint has no mapping data in one shot.

31154 \cs_set_protected:Npn __codepoint_data_auxiii:w
31155 #1 ; #2 ; #3 ; #4 ; #5 ; #6 ; #7 ; #8 ; #9 ~ \q_stop
31156 {
31157 \use:e
31158 {
31159 __codepoint_data_auxiv:w
31160 #1 ; #2 ;
31161 __codepoint_data_category:n {#3} ;

1283

31162 __codepoint_data_offset:nn {#1} {#7} ;
31163 __codepoint_data_offset:nn {#1} {#8} ;
31164 #9;
31165 }
31166 }
31167 \cs_set:Npn __codepoint_data_category:n #1
31168 { \use:c { l__codepoint_category_ #1 _tl } }
31169 \cs_set:Npn __codepoint_data_offset:nn #1#2
31170 {
31171 \tl_if_blank:nTF {#2}
31172 { 0 }
31173 { \int_eval:n { "#2 - "#1 } }
31174 }

To deal with ranges, we track the position of the next codepoint expected. If there is a
gap, we deal with that separately: it could be a range or an unused part of the Unicode
space. As such, we deal with the current codepoint here whether or not there is range to
fill in. Upper- and lowercase data go into the two-stage table, any titlecase exception is
just stored in a macro. The data for the codepoint is added to the current block, and if
that is now complete we move on to save the block. The case exceptions are all stored as
codepoints, with a fixed number of balanced text as we know that there are never more
than three.

31175 \cs_set_protected:Npn __codepoint_data_auxiv:w #1 ; #2 ; #3 ; #4 ; #5 ; #6 ;
31176 {
31177 \int_compare:nNnT {"#1} > \l__codepoint_next_codepoint_fint_tl
31178 {
31179 __codepoint_data_auxv:nnnnw {#1} {#3} {#4} {#5}
31180 #2 Last> \q_stop
31181 }
31182 __codepoint_add:nn { category } {#3}
31183 __codepoint_add:nn { uppercase } {#4}
31184 __codepoint_add:nn { lowercase } {#5}
31185 \int_compare:nNnF {#4} = { __codepoint_data_offset:nn {#1} {#6} }
31186 {
31187 \tl_const:ce
31188 { c__codepoint_titlecase_ \codepoint_str_generate:n {"#1} _tl }
31189 { {"#6} { } { } }
31190 }
31191 \tl_set:Ne \l__codepoint_next_codepoint_fint_tl
31192 { \int_eval:n { "#1 + 1 } }
31193 }
31194 \cs_set_protected:Npn __codepoint_add:nn #1#2
31195 {
31196 \clist_put_right:cn { l__codepoint_ #1 _block_clist } {#2}
31197 \int_compare:nNnT { \clist_count:c { l__codepoint_ #1 _block_clist } }
31198 = \c__codepoint_block_size_int
31199 { __codepoint_save_blocks:nn {#1} { 1 } }
31200 }

Distinguish between a range and a gap, and pass on the appropriate value(s). The general
category for unassigned characters is Cn, so we find the correct value once and then use
that.

31201 \cs_set_protected:Npe __codepoint_data_auxv:nnnnw #1#2#3#4#5 Last> #6 \q_stop
31202 {

1284

31203 \exp_not:N \tl_if_blank:nTF {#6}
31204 {
31205 \exp_not:N __codepoint_range:nnn {#1} { category }
31206 { \exp_not:V \l__codepoint_category_Cn_tl }
31207 \exp_not:N __codepoint_range:nnn {#1} { uppercase } { 0 }
31208 \exp_not:N __codepoint_range:nnn {#1} { lowercase } { 0 }
31209 }
31210 {
31211 \exp_not:N __codepoint_range:nnn {#1} { category } {#2}
31212 \exp_not:N __codepoint_range:nnn {#1} { uppercase } {#3}
31213 \exp_not:N __codepoint_range:nnn {#1} { lowercase } {#4}
31214 }
31215 }

Calculated the length of the range and the space remaining in the current block.
31216 \cs_set_protected:Npn __codepoint_range:nnn #1
31217 {
31218 \exp_args:Nf __codepoint_range_aux:nnn
31219 { \int_eval:n { "#1 - \l__codepoint_next_codepoint_fint_tl } }
31220 }
31221 \cs_set_protected:Npn __codepoint_range_aux:nnn #1#2
31222 {
31223 \exp_args:Nf __codepoint_range:nnnn
31224 {
31225 \int_min:nn
31226 {#1}
31227 {
31228 \c__codepoint_block_size_int
31229 - \clist_count:c { l__codepoint_ #2 _block_clist }
31230 }
31231 }
31232 {#1} {#2}
31233 }

Here we want to do three things: add to and possibly complete the current block, add
complete blocks quickly, then finish up the range in a final open block. We need to
avoid as far as possible avoid dealing with every single codepoint, so the middle step is
optimised.

31234 \cs_set_protected:Npn __codepoint_range:nnnn #1#2#3#4
31235 {
31236 \prg_replicate:nn {#1}
31237 { \clist_put_right:cn { l__codepoint_ #3 _block_clist } {#4} }
31238 \int_compare:nNnT { \clist_count:c { l__codepoint_ #3 _block_clist } }
31239 = \c__codepoint_block_size_int
31240 { __codepoint_save_blocks:nn {#3} { 1 } }
31241 \int_compare:nNnF
31242 { \int_div_truncate:nn { #2 - #1 } \c__codepoint_block_size_int } = 0
31243 {
31244 \tl_set:ce { l__codepoint_ #3 _block_clist }
31245 {
31246 \exp_args:NNe \use:nn \use_none:n
31247 { \prg_replicate:nn { \c__codepoint_block_size_int } { , #4 } }
31248 }
31249 __codepoint_save_blocks:nn {#3}
31250 { \int_div_truncate:nn { (#2 - #1) } \c__codepoint_block_size_int }

1285

31251 }
31252 \prg_replicate:nn
31253 { \int_mod:nn { #2 - #1 } \c__codepoint_block_size_int }
31254 { \clist_put_right:ce { l__codepoint_ #3 _block_clist } {#4} }
31255 }

To allow rapid comparison, each completed block is stored locally as a comma list: once
all of the blocks have been created, they are converted into an intarray in one step.
The aim here is to check the current block against those we’ve already used, and either
match to an existing block or save a new block.

31256 \cs_set_protected:Npn __codepoint_save_blocks:nn #1#2
31257 {
31258 \tl_set_eq:Nc \l__codepoint_matched_block_tl { l__codepoint_ #1 _block_tl }
31259 \int_step_inline:nn { \tl_use:c { l__codepoint_ #1 _block_tl } - 1 }
31260 {
31261 \tl_if_eq:ccT { l__codepoint_ #1 _block_clist }
31262 { l__codepoint_ #1 _block_ ##1 _clist }
31263 { \tl_set:Nn \l__codepoint_matched_block_tl {##1} }
31264 }
31265 \int_compare:nNnT
31266 { \tl_use:c { l__codepoint_ #1 _block_tl } } = \l__codepoint_matched_block_tl
31267 {
31268 \clist_set_eq:cc
31269 {
31270 l__codepoint_ #1 _block_
31271 \tl_use:c { l__codepoint_ #1 _block_tl } _clist
31272 }
31273 { l__codepoint_ #1 _block_clist }
31274 \tl_set:ce { l__codepoint_ #1 _block_tl }
31275 { \int_eval:n { \tl_use:c { l__codepoint_ #1 _block_tl } + 1 } }
31276 }

Here, we avoid \prg_replicate:nn as the number of tokens generated would be high:
that shows in the format dump (although TEX recovers memory during the subsequent
runs).

31277 \int_step_inline:nnn
31278 { \tl_use:c { l__codepoint_ #1 _pos_tl } + 1 }
31279 { \tl_use:c { l__codepoint_ #1 _pos_tl } + #2 }
31280 {
31281 \exp_args:Nc __kernel_intarray_gset:Nnn
31282 { g__codepoint_ #1 _index_intarray }
31283 {##1}
31284 \l__codepoint_matched_block_tl
31285 }
31286 \tl_set:ce { l__codepoint_ #1 _pos_tl }
31287 { \int_eval:n { \tl_use:c { l__codepoint_ #1 _pos_tl } + #2 } }
31288 \clist_clear:c { l__codepoint_ #1 _block_clist }
31289 }

Close out the final block, rename the first stage table, then combine all of the block
comma-lists into one large second-stage table with offsets. As we use an index not an
offset, there is a little back-and-forward to do.

31290 \cs_set_protected:Npn __codepoint_finalise_blocks:
31291 {
31292 \clist_map_inline:nn { category , uppercase , lowercase }

1286

31293 {
31294 __codepoint_range:nnn { 110000 } {##1} { 0 }
31295 __codepoint_finalise_blocks:n {##1}
31296 }
31297 }
31298 \cs_set_protected:Npn __codepoint_finalise_blocks:n #1
31299 {
31300 \cs_gset_eq:cc { c__codepoint_ #1 _index_intarray } { g__codepoint_ #1 _index_intarray }
31301 \cs_undefine:c { g__codepoint_ #1 _index_intarray }
31302 \intarray_new:cn { g__codepoint_ #1 _blocks_intarray }
31303 { (\tl_use:c { l__codepoint_ #1 _block_tl } - 1) * \c__codepoint_block_size_int }
31304 \int_step_inline:nn { \tl_use:c { l__codepoint_ #1 _block_tl } - 1 }
31305 {
31306 \exp_args:Nv __codepoint_finalise_blocks:nnn
31307 { l__codepoint_ #1 _block_ ##1 _clist }
31308 {##1} {#1}
31309 }
31310 \cs_gset_eq:cc { c__codepoint_ #1 _blocks_intarray }
31311 { g__codepoint_ #1 _blocks_intarray }
31312 \cs_undefine:c { g__codepoint_ #1 _blocks_intarray }
31313 }
31314 \cs_set_protected:Npn __codepoint_finalise_blocks:nnn #1#2#3
31315 {
31316 \exp_args:Nnf __codepoint_finalise_blocks:nnnw { 1 }
31317 { \int_eval:n { (#2 - 1) * \c__codepoint_block_size_int } }
31318 {#3}
31319 #1 , \q_recursion_tail , \q_recursion_stop
31320 }
31321 \cs_set_protected:Npn __codepoint_finalise_blocks:nnnw #1#2#3#4 ,
31322 {
31323 \quark_if_recursion_tail_stop:n {#4}
31324 \intarray_gset:cnn { g__codepoint_ #3 _blocks_intarray }
31325 { #1 + #2 }
31326 {#4}
31327 \exp_args:Nf __codepoint_finalise_blocks:nnnw
31328 { \int_eval:n { #1 + 1 } } {#2} {#3}
31329 }

With the setup done, read the main data file: it’s easiest to do that as a token list with
spaces retained.

31330 \ior_open:Nn \g__codepoint_data_ior { UnicodeData.txt }
31331 \group_begin:
31332 \char_set_catcode_space:n { ‘\ }%
31333 \ior_map_variable:NNn \g__codepoint_data_ior \l__codepoint_tmpa_tl
31334 {%
31335 \if_meaning:w \l__codepoint_tmpa_tl \c_space_tl
31336 \exp_after:wN \ior_map_break:
31337 \fi:
31338 \exp_after:wN __codepoint_data_auxi:w \l__codepoint_tmpa_tl \q_stop
31339 }%
31340 __codepoint_finalise_blocks:
31341 \group_end:
31342 \group_end:

__kernel_codepoint_data:nn
__codepoint_data:nnn

Recover data from a two-stage table: entirely generic as this applies to all tables (as we

1287

use the same block size for all of them). Notice that as we use indices not offsets we have
to shuffle out-by-one issues. This function is needed before loading the special casing
data, as there we need to be able to check the standard case mappings.

31343 \cs_new:Npn __kernel_codepoint_data:nn #1#2
31344 {
31345 \exp_args:Nf __codepoint_data:nnn
31346 {
31347 \int_eval:n
31348 {
31349 \c__codepoint_block_size_int *
31350 (
31351 \intarray_item:cn { c__codepoint_ #1 _index_intarray }
31352 {
31353 \int_div_truncate:nn {#2}
31354 \c__codepoint_block_size_int
31355 + 1
31356 }
31357 - 1
31358)
31359 }
31360 }
31361 {#2} {#1}
31362 }
31363 \cs_new:Npn __codepoint_data:nnn #1#2#3
31364 {
31365 \intarray_item:cn { c__codepoint_ #3 _blocks_intarray }
31366 { #1 + \int_mod:nn {#2} \c__codepoint_block_size_int + 1 }
31367 }

(End of definition for __kernel_codepoint_data:nn and __codepoint_data:nnn.)
The other data files all use C-style comments so we have to worry about # tokens

(and reading as strings). The set up for case folding is in two parts. For the basic
(core) mappings, folding is the same as lower casing in most positions so only store the
differences. For the more complex foldings, always store the result, splitting up the two
or three code points in the input as required.

31368 \group_begin:
31369 \ior_open:Nn \g__codepoint_data_ior { CaseFolding.txt }
31370 \cs_set_protected:Npn __codepoint_data_auxi:w #1 ;~ #2 ;~ #3 ; #4 \q_stop
31371 {
31372 \if:w \tl_head:n { #2 ? } C
31373 \reverse_if:N \if_int_compare:w
31374 \int_eval:n { __kernel_codepoint_data:nn { lowercase } {"#1} + "#1 }
31375 = "#3 ~
31376 \tl_const:ce
31377 { c__codepoint_casefold_ \codepoint_str_generate:n {"#1} _tl }
31378 { {"#3} { } { } }
31379 \fi:
31380 \else:
31381 \if:w \tl_head:n { #2 ? } F
31382 __codepoint_data_auxii:w #1 ~ #3 ~ \q_stop
31383 \fi:
31384 \fi:
31385 }

1288

Here, #4 can have a trailing space, so we tidy up a bit at the cost of speed for these small
number of cases it applies to.

31386 \cs_set_protected:Npn __codepoint_data_auxii:w #1 ~ #2 ~ #3 ~ #4 \q_stop
31387 {
31388 \tl_const:ce { c__codepoint_casefold_ \codepoint_str_generate:n {"#1} _tl }
31389 {
31390 {"#2}
31391 {"#3}
31392 { \tl_if_blank:nF {#4} { " \int_to_Hex:n {"#4} } }
31393 }
31394 }
31395 \ior_str_map_inline:Nn \g__codepoint_data_ior
31396 {
31397 \reverse_if:N \if:w \c_hash_str \tl_head:w #1 \c_hash_str \q_stop
31398 __codepoint_data_auxi:w #1 \q_stop
31399 \fi:
31400 }
31401 \ior_close:N \g__codepoint_data_ior

For upper- and lowercasing special situations, there is a bit more to do as we also have
titlecasing to consider, plus we need to stop part-way through the file.

31402 \ior_open:Nn \g__codepoint_data_ior { SpecialCasing.txt }
31403 \cs_set_protected:Npn __codepoint_data_auxi:w
31404 #1 ;~ #2 ;~ #3 ;~ #4 ; #5 \q_stop
31405 {
31406 \use:n { __codepoint_data_auxii:w #1 ~ lower ~ #2 ~ } ~ \q_stop
31407 \use:n { __codepoint_data_auxii:w #1 ~ upper ~ #4 ~ } ~ \q_stop
31408 \str_if_eq:nnF {#3} {#4}
31409 { \use:n { __codepoint_data_auxii:w #1 ~ title ~ #3 ~ } ~ \q_stop }
31410 }
31411 \cs_set_protected:Npn __codepoint_data_auxii:w
31412 #1 ~ #2 ~ #3 ~ #4 ~ #5 \q_stop
31413 {
31414 \tl_if_empty:nF {#4}
31415 {
31416 \tl_const:ce { c__codepoint_ #2 case_ \codepoint_str_generate:n {"#1} _tl }
31417 {
31418 {"#3}
31419 {"#4}
31420 { \tl_if_blank:nF {#5} {"#5} }
31421 }
31422 }
31423 }
31424 \ior_str_map_inline:Nn \g__codepoint_data_ior
31425 {
31426 \str_if_eq:eeTF { \tl_head:w #1 \c_hash_str \q_stop } { \c_hash_str }
31427 {
31428 \str_if_eq:eeT
31429 {#1}
31430 { \c_hash_str \c_space_tl Conditional~Mappings }
31431 { \ior_map_break: }
31432 }
31433 { __codepoint_data_auxi:w #1 \q_stop }
31434 }

1289

31435 \ior_close:N \g__codepoint_data_ior
31436 \group_end:

__kernel_codepoint_case:nn
__codepoint_case:nnn

__codepoint_uppercase:n
__codepoint_lowercase:n
__codepoint_titlecase:n
__codepoint_casefold:n

__codepoint_case:nn

With the core data files loaded, there is now a need to provide access to this information
for other modules. That is done here such that case folding can also be covered. At this
level, all that needs to be returned is the

31437 \cs_new:Npn __kernel_codepoint_case:nn #1#2
31438 {
31439 \exp_args:Ne __codepoint_case:nnn
31440 { \codepoint_str_generate:n {#2} } {#1} {#2}
31441 }
31442 \cs_new:Npn __codepoint_case:nnn #1#2#3
31443 {
31444 \cs_if_exist:cTF { c__codepoint_ #2 _ #1 _tl }
31445 {
31446 \tl_use:c
31447 { c__codepoint_ #2 _ #1 _tl }
31448 }
31449 { \use:c { __codepoint_ #2 :n } {#3} }
31450 }
31451 \cs_new:Npn __codepoint_uppercase:n { __codepoint_case:nn { uppercase } }
31452 \cs_new:Npn __codepoint_lowercase:n { __codepoint_case:nn { lowercase } }
31453 \cs_new:Npn __codepoint_titlecase:n { __codepoint_case:nn { uppercase } }
31454 \cs_new:Npn __codepoint_casefold:n { __codepoint_case:nn { lowercase } }
31455 \cs_new:Npn __codepoint_case:nn #1#2
31456 {
31457 { \int_eval:n { __kernel_codepoint_data:nn {#1} {#2} + #2 } }
31458 { }
31459 { }
31460 }

(End of definition for __kernel_codepoint_case:nn and others.)

__codepoint_nfd:n
__codepoint_nfd:nn

A simple interface.
31461 \cs_new:Npn __codepoint_nfd:n #1
31462 { \exp_args:Ne __codepoint_nfd:nn { \codepoint_str_generate:n {#1} } {#1} }
31463 \cs_new:Npn __codepoint_nfd:nn #1#2
31464 {
31465 \tl_if_exist:cTF { c__codepoint_nfd_ #1 _tl }
31466 { \tl_use:c { c__codepoint_nfd_ #1 _tl } }
31467 { {#2} { } }
31468 }

(End of definition for __codepoint_nfd:n and __codepoint_nfd:nn.)

31469 ⟨@@=text⟩

Read the Unicode grapheme data. This is quite easy to handle and we only need
codepoints, not characters, so there is no need to worry about the engine in use. As
reading as a string is most convenient, we have to do some work to remove spaces: the
hardest part of the entire process!

31470 \ior_new:N \g__text_data_ior
31471 \group_begin:
31472 \ior_open:Nn \g__text_data_ior { GraphemeBreakProperty.txt }
31473 \cs_set_nopar:Npn \l__text_tmpa_str { }

1290

31474 \cs_set_nopar:Npn \l__text_tmpb_str { }
31475 \cs_set_protected:Npn __text_data_auxi:w #1 ;~ #2 ~ #3 \q_stop
31476 {
31477 \str_if_eq:VnF \l__text_tmpb_str {#2}
31478 {
31479 \str_if_empty:NF \l__text_tmpb_str
31480 {
31481 \clist_const:ce { c__text_grapheme_ \l__text_tmpb_str _clist }
31482 { \exp_after:wN \use_none:n \l__text_tmpa_str }
31483 \cs_set_nopar:Npn \l__text_tmpa_str { }
31484 }
31485 \cs_set_nopar:Npn \l__text_tmpb_str {#2}
31486 }
31487 __text_data_auxii:w #1 .. #1 .. #1 \q_stop
31488 }
31489 \cs_set_protected:Npn __text_data_auxii:w #1 .. #2 .. #3 \q_stop
31490 {
31491 \cs_set_nopar:Npe \l__text_tmpa_str
31492 {
31493 \l__text_tmpa_str ,
31494 \tl_trim_spaces:n {#1} .. \tl_trim_spaces:n {#2}
31495 }
31496 }
31497 \ior_str_map_inline:Nn \g__text_data_ior
31498 {
31499 \str_if_eq:eeF { \tl_head:w #1 \c_hash_str \q_stop } { \c_hash_str }
31500 {
31501 \tl_if_blank:nF {#1}
31502 { __text_data_auxi:w #1 \q_stop }
31503 }
31504 }
31505 \ior_close:N \g__text_data_ior
31506 \group_end:

31507 ⟨/package⟩

1291

Chapter 87

l3text implementation

31508 ⟨∗package⟩

31509 ⟨@@=text⟩

31510 \cs_generate_variant:Nn \tl_if_head_eq_meaning_p:nN { o }

87.1 Internal auxiliaries
\s__text_stop Internal scan marks.

31511 \scan_new:N \s__text_stop

(End of definition for \s__text_stop.)

\q__text_nil Internal quarks.
31512 \quark_new:N \q__text_nil

(End of definition for \q__text_nil.)

__text_quark_if_nil_p:n
__text_quark_if_nil:nTF

Branching quark conditional.
31513 __kernel_quark_new_conditional:Nn __text_quark_if_nil:n { TF }

(End of definition for __text_quark_if_nil:nTF.)

\q__text_recursion_tail
\q__text_recursion_stop

Internal recursion quarks.
31514 \quark_new:N \q__text_recursion_tail
31515 \quark_new:N \q__text_recursion_stop

(End of definition for \q__text_recursion_tail and \q__text_recursion_stop.)

__text_use_i_delimit_by_q_recursion_stop:nw Functions to gobble up to a quark.
31516 \cs_new:Npn __text_use_i_delimit_by_q_recursion_stop:nw
31517 #1 #2 \q__text_recursion_stop {#1}

(End of definition for __text_use_i_delimit_by_q_recursion_stop:nw.)

__text_if_q_recursion_tail_stop_do:Nn
__text_if_q_recursion_tail_stop_do:nn

Functions to query recursion quarks.
31518 __kernel_quark_new_test:N __text_if_q_recursion_tail_stop_do:Nn
31519 __kernel_quark_new_test:N __text_if_q_recursion_tail_stop_do:nn

1292

(End of definition for __text_if_q_recursion_tail_stop_do:Nn and __text_if_q_recursion_tail_-
stop_do:nn.)

\s__text_recursion_tail
\s__text_recursion_stop

Internal scan marks quarks.
31520 \scan_new:N \s__text_recursion_tail
31521 \scan_new:N \s__text_recursion_stop

(End of definition for \s__text_recursion_tail and \s__text_recursion_stop.)

__text_use_i_delimit_by_s_recursion_stop:nw Functions to gobble up to a scan mark.
31522 \cs_new:Npn __text_use_i_delimit_by_s_recursion_stop:nw
31523 #1 #2 \s__text_recursion_stop {#1}

(End of definition for __text_use_i_delimit_by_s_recursion_stop:nw.)

__text_if_s_recursion_tail_stop_do:Nn Functions to query recursion scan marks. Slower than a quark test but needed to avoid
issues in the outer expansion loop with unterminated \romannumeral primitives.

31524 \cs_new:Npn __text_if_s_recursion_tail_stop_do:Nn #1
31525 {
31526 \bool_lazy_and:nnTF
31527 { \cs_if_eq_p:NN \s__text_recursion_tail #1 }
31528 { \str_if_eq_p:nn { \s__text_recursion_tail } {#1} }
31529 { __text_use_i_delimit_by_s_recursion_stop:nw }
31530 { \use_none:n }
31531 }

(End of definition for __text_if_s_recursion_tail_stop_do:Nn.)

87.2 Utilities
__text_token_to_explicit:N

__text_token_to_explicit_char:N
__text_token_to_explicit_cs:N

__text_token_to_explicit_cs_aux:N
__text_token_to_explicit:n

__text_token_to_explicit_auxi:w
__text_token_to_explicit_auxii:w
__text_token_to_explicit_auxiii:w

The idea here is to take a token and ensure that if it’s an implicit char, we output the
explicit version. Otherwise, the token needs to be unchanged. First, we have to split
between control sequences and everything else.

31532 \group_begin:
31533 \char_set_catcode_active:n { 0 }
31534 \cs_new:Npn __text_token_to_explicit:N #1
31535 {
31536 \if_catcode:w \exp_not:N #1
31537 \if_catcode:w \scan_stop: \exp_not:N #1
31538 \scan_stop:
31539 \else:
31540 \exp_not:N ^^@
31541 \fi:
31542 \exp_after:wN __text_token_to_explicit_cs:N
31543 \else:
31544 \exp_after:wN __text_token_to_explicit_char:N
31545 \fi:
31546 #1
31547 }
31548 \group_end:

1293

For control sequences, we can check for macros versus other cases using \if_meaning:w,
then explicitly check for \chardef and \mathchardef.

31549 \cs_new:Npn __text_token_to_explicit_cs:N #1
31550 {
31551 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
31552 \exp_after:wN \use:nn \exp_after:wN
31553 __text_token_to_explicit_cs_aux:N
31554 \else:
31555 \exp_after:wN \exp_not:n
31556 \fi:
31557 {#1}
31558 }
31559 \cs_new:Npn __text_token_to_explicit_cs_aux:N #1
31560 {
31561 \bool_lazy_or:nnTF
31562 { \token_if_chardef_p:N #1 }
31563 { \token_if_mathchardef_p:N #1 }
31564 {
31565 \char_generate:nn {#1}
31566 {
31567 \if_int_compare:w \char_value_catcode:n {#1} = 10 \exp_stop_f:
31568 10
31569 \else:
31570 12
31571 \fi:
31572 }
31573 }
31574 {#1}
31575 }

For character tokens, we need to filter out the implicit characters from those that are
explicit. That’s done here, then if necessary we work out the category code and generate
the char. To avoid issues with alignment tabs, that one is done by elimination rather
than looking up the code explicitly. The trick with finding the charcode is that the TEX
messages are either the ⟨something⟩ character ⟨char⟩ or the ⟨type⟩ ⟨char⟩.

31576 \cs_new:Npn __text_token_to_explicit_char:N #1
31577 {
31578 \if:w
31579 \if_catcode:w ^ \exp_args:No \str_tail:n { \token_to_str:N #1 } ^
31580 \token_to_str:N #1 #1
31581 \else:
31582 AB
31583 \fi:
31584 \exp_after:wN \exp_not:n
31585 \else:
31586 \exp_after:wN __text_token_to_explicit:n
31587 \fi:
31588 {#1}
31589 }
31590 \cs_new:Npn __text_token_to_explicit:n #1
31591 {
31592 \exp_after:wN __text_token_to_explicit_auxi:w
31593 \int_value:w
31594 \if_catcode:w \c_group_begin_token #1 1 \else:

1294

31595 \if_catcode:w \c_group_end_token #1 2 \else:
31596 \if_catcode:w \c_math_toggle_token #1 3 \else:
31597 \if_catcode:w ## #1 6 \else:
31598 \if_catcode:w ^ #1 7 \else:
31599 \if_catcode:w \c_math_subscript_token #1 8 \else:
31600 \if_catcode:w \c_space_token #1 10 \else:
31601 \if_catcode:w A #1 11 \else:
31602 \if_catcode:w + #1 12 \else:
31603 4 \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi:
31604 \exp_after:wN ;
31605 \token_to_meaning:N #1 \s__text_stop
31606 }
31607 \cs_new:Npn __text_token_to_explicit_auxi:w #1 ; #2 \s__text_stop
31608 {
31609 \char_generate:nn
31610 {
31611 \if_int_compare:w #1 < 9 \exp_stop_f:
31612 \exp_after:wN __text_token_to_explicit_auxii:w
31613 \else:
31614 \exp_after:wN __text_token_to_explicit_auxiii:w
31615 \fi:
31616 #2
31617 }
31618 {#1}
31619 }
31620 \exp_last_unbraced:NNNNo \cs_new:Npn __text_token_to_explicit_auxii:w
31621 #1 { \tl_to_str:n { character ~ } } { ‘ }
31622 \cs_new:Npn __text_token_to_explicit_auxiii:w #1 ~ #2 ~ { ‘ }

(End of definition for __text_token_to_explicit:N and others.)

__text_char_catcode:N An idea from l3char: we need to get the category code of a specific token, not the general
case.

31623 \cs_new:Npn __text_char_catcode:N #1
31624 {
31625 \if_catcode:w \exp_not:N #1 \c_math_toggle_token
31626 3
31627 \else:
31628 \if_catcode:w \exp_not:N #1 \c_alignment_token
31629 4
31630 \else:
31631 \if_catcode:w \exp_not:N #1 \c_math_superscript_token
31632 7
31633 \else:
31634 \if_catcode:w \exp_not:N #1 \c_math_subscript_token
31635 8
31636 \else:
31637 \if_catcode:w \exp_not:N #1 \c_space_token
31638 10
31639 \else:
31640 \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
31641 11
31642 \else:
31643 \if_catcode:w \exp_not:N #1 \c_catcode_other_token

1295

31644 12
31645 \else:
31646 13
31647 \fi:
31648 \fi:
31649 \fi:
31650 \fi:
31651 \fi:
31652 \fi:
31653 \fi:
31654 }

(End of definition for __text_char_catcode:N.)

__text_if_expandable:NTF Test for tokens that make sense to expand here: that is more restrictive than the engine
view.

31655 \prg_new_conditional:Npnn __text_if_expandable:N #1 { T , F , TF }
31656 {
31657 \token_if_expandable:NTF #1
31658 {
31659 \bool_lazy_any:nTF
31660 {
31661 { \token_if_protected_macro_p:N #1 }
31662 { \token_if_protected_long_macro_p:N #1 }
31663 { \token_if_eq_meaning_p:NN \q__text_recursion_tail #1 }
31664 }
31665 { \prg_return_false: }
31666 { \prg_return_true: }
31667 }
31668 { \prg_return_false: }
31669 }

(End of definition for __text_if_expandable:NTF.)

87.3 Codepoint utilities
For working with codepoints in an engine-neutral way.

__text_codepoint_process:nN
__text_codepoint_process_aux:nN

__text_codepoint_process:nNN
__text_codepoint_process:nNNN

__text_codepoint_process:nNNNN

Grab a codepoint and apply some code to it: here #1 should expect one following balanced
text.

31670 \sys_if_engine_opentype:TF
31671 {
31672 \cs_new:Npn __text_codepoint_process:nN #1#2 { #1 {#2} }
31673 }
31674 {
31675 \cs_new:Npe __text_codepoint_process:nN #1#2
31676 {
31677 \exp_not:N \int_compare:nNnTF {‘#2} > { "80 }
31678 {
31679 \sys_if_engine_pdftex:TF
31680 { \exp_not:N __text_codepoint_process_aux:nN }
31681 {
31682 \exp_not:N \int_compare:nNnTF {‘#2} > { "FF }

1296

31683 { \exp_not:N \use:n }
31684 { \exp_not:N __text_codepoint_process_aux:nN }
31685 }
31686 }
31687 { \exp_not:N \use:n }
31688 {#1} #2
31689 }
31690 \cs_new:Npn __text_codepoint_process_aux:nN #1#2
31691 {
31692 \int_compare:nNnTF { ‘#2 } < { "E0 }
31693 { __text_codepoint_process:nNN }
31694 {
31695 \int_compare:nNnTF { ‘#2 } < { "F0 }
31696 { __text_codepoint_process:nNNN }
31697 { __text_codepoint_process:nNNNN }
31698 }
31699 {#1} #2
31700 }
31701 \cs_new:Npn __text_codepoint_process:nNN #1#2#3
31702 { #1 {#2#3} }
31703 \cs_new:Npn __text_codepoint_process:nNNN #1#2#3#4
31704 { #1 {#2#3#4} }
31705 \cs_new:Npn __text_codepoint_process:nNNNN #1#2#3#4#5
31706 { #1 {#2#3#4#5} }
31707 }

(End of definition for __text_codepoint_process:nN and others.)

__text_codepoint_compare_p:nNn
__text_codepoint_compare:nNnTF
__text_codepoint_from_chars:Nw

__text_codepoint_from_chars_aux:Nw
__text_codepoint_from_chars:N
__text_codepoint_from_chars:NN

__text_codepoint_from_chars:NNN
__text_codepoint_from_chars:NNNN

Allows comparison for all engines using a first “character” followed by a codepoint.
31708 \sys_if_engine_opentype:TF
31709 {
31710 \prg_new_conditional:Npnn
31711 __text_codepoint_compare:nNn #1#2#3 { TF , p }
31712 {
31713 \int_compare:nNnTF {‘#1} #2 {#3}
31714 \prg_return_true: \prg_return_false:
31715 }
31716 \cs_new:Npn __text_codepoint_from_chars:Nw #1 {‘#1}
31717 }
31718 {
31719 \prg_new_conditional:Npnn
31720 __text_codepoint_compare:nNn #1#2#3 { TF , p }
31721 {
31722 \int_compare:nNnTF { __text_codepoint_from_chars:Nw #1 }
31723 #2 {#3}
31724 \prg_return_true: \prg_return_false:
31725 }
31726 \cs_new:Npe __text_codepoint_from_chars:Nw #1
31727 {
31728 \exp_not:N \if_int_compare:w ‘#1 > "80 \exp_not:N \exp_stop_f:
31729 \sys_if_engine_pdftex:TF
31730 {
31731 \exp_not:N \exp_after:wN
31732 \exp_not:N __text_codepoint_from_chars_aux:Nw

1297

31733 }
31734 {
31735 \exp_not:N \if_int_compare:w ‘#1 > "FF \exp_not:N \exp_stop_f:
31736 \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN
31737 \exp_not:N \exp_after:wN
31738 \exp_not:N __text_codepoint_from_chars:N
31739 \exp_not:N \else:
31740 \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN
31741 \exp_not:N \exp_after:wN
31742 \exp_not:N __text_codepoint_from_chars_aux:Nw
31743 \exp_not:N \fi:
31744 }
31745 \exp_not:N \else:
31746 \exp_not:N \exp_after:wN \exp_not:N __text_codepoint_from_chars:N
31747 \exp_not:N \fi:
31748 #1
31749 }
31750 \cs_new:Npn __text_codepoint_from_chars_aux:Nw #1
31751 {
31752 \if_int_compare:w ‘#1 < "E0 \exp_stop_f:
31753 \exp_after:wN __text_codepoint_from_chars:NN
31754 \else:
31755 \if_int_compare:w ‘#1 < "F0 \exp_stop_f:
31756 \exp_after:wN \exp_after:wN \exp_after:wN
31757 __text_codepoint_from_chars:NNN
31758 \else:
31759 \exp_after:wN \exp_after:wN \exp_after:wN
31760 __text_codepoint_from_chars:NNNN
31761 \fi:
31762 \fi:
31763 #1
31764 }
31765 \cs_new:Npn __text_codepoint_from_chars:N #1 {‘#1}
31766 \cs_new:Npn __text_codepoint_from_chars:NN #1#2
31767 { (‘#1 - "C0) * "40 + ‘#2 - "80 }
31768 \cs_new:Npn __text_codepoint_from_chars:NNN #1#2#3
31769 { (‘#1 - "E0) * "1000 + (‘#2 - "80) * "40 + ‘#3 - "80 }
31770 \cs_new:Npn __text_codepoint_from_chars:NNNN #1#2#3#4
31771 {
31772 (‘#1 - "F0) * "40000
31773 + (‘#2 - "80) * "1000
31774 + (‘#3 - "80) * "40
31775 + ‘#4 - "80
31776 }
31777 }

(End of definition for __text_codepoint_compare:nNnTF and others.)

87.4 Configuration variables
\l_text_accents_tl

\l_text_letterlike_tl
Used to be used for excluding these ideas from expansion: now deprecated.

31778 \tl_new:N \l_text_accents_tl
31779 \tl_new:N \l_text_letterlike_tl

1298

(End of definition for \l_text_accents_tl and \l_text_letterlike_tl.)

\l_text_case_exclude_arg_tl Non-text arguments, including covering the case of \protected@edef applied to \cite.
31780 \tl_new:N \l_text_case_exclude_arg_tl
31781 \tl_set:Ne \l_text_case_exclude_arg_tl
31782 {
31783 \exp_not:n { \begin \cite \end \label \ref }
31784 \exp_not:c { cite ~ }
31785 \exp_not:n { \babelshorthand }
31786 }

(End of definition for \l_text_case_exclude_arg_tl. This variable is documented on page 304.)

\l_text_math_arg_tl Math mode as arguments.
31787 \tl_new:N \l_text_math_arg_tl
31788 \tl_set:Nn \l_text_math_arg_tl { \ensuremath }

(End of definition for \l_text_math_arg_tl. This variable is documented on page 304.)

\l_text_math_delims_tl Paired math mode delimiters.
31789 \tl_new:N \l_text_math_delims_tl
31790 \tl_set:Nn \l_text_math_delims_tl { $ $ \(\) }

(End of definition for \l_text_math_delims_tl. This variable is documented on page 304.)

\l_text_expand_exclude_tl Commands which need not to expand. We start with a somewhat historical list, and tidy
up if possible.

31791 \tl_new:N \l_text_expand_exclude_tl
31792 \tl_set:Nn \l_text_expand_exclude_tl
31793 { \begin \cite \end \label \ref }
31794 \bool_lazy_and:nnT
31795 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
31796 { \tl_if_exist_p:N \@expl@finalise@setup@@ }
31797 {
31798 \tl_gput_right:Nn \@expl@finalise@setup@@
31799 {
31800 \tl_gput_right:Nn \@kernel@after@begindocument
31801 {
31802 \group_begin:
31803 \cs_set_protected:Npn __text_tmp:w #1
31804 {
31805 \tl_clear:N \l_text_expand_exclude_tl
31806 \tl_map_inline:nn {#1}
31807 {
31808 \bool_lazy_any:nF
31809 {
31810 { \token_if_protected_macro_p:N ##1 }
31811 { \token_if_protected_long_macro_p:N ##1 }
31812 {
31813 \str_if_eq_p:ee
31814 { \cs_replacement_spec:N ##1 }
31815 { \exp_not:n { \protect ##1 } \c_space_tl }
31816 }
31817 }

1299

31818 { \tl_put_right:Nn \l_text_expand_exclude_tl {##1} }
31819 }
31820 }
31821 \exp_args:NV __text_tmp:w \l_text_expand_exclude_tl
31822 \exp_args:NNNV \group_end:
31823 \tl_set:Nn \l_text_expand_exclude_tl \l_text_expand_exclude_tl
31824 }
31825 }
31826 }

(End of definition for \l_text_expand_exclude_tl. This variable is documented on page 304.)

\l__text_math_mode_tl Used to control math mode output: internal as there is a dedicated setter.
31827 \tl_new:N \l__text_math_mode_tl

(End of definition for \l__text_math_mode_tl.)

87.5 Expansion to formatted text
\c__text_chardef_space_token

\c__text_mathchardef_space_token
\c__text_chardef_group_begin_token

\c__text_mathchardef_group_begin_token
\c__text_chardef_group_end_token

\c__text_mathchardef_group_end_token

Markers for implicit char handling.
31828 \tex_global:D \tex_chardef:D \c__text_chardef_space_token = ‘\ %
31829 \tex_global:D \tex_mathchardef:D \c__text_mathchardef_space_token = ‘\ %
31830 \tex_global:D \tex_chardef:D \c__text_chardef_group_begin_token = ‘\{ % ‘\}
31831 \tex_global:D \tex_mathchardef:D \c__text_mathchardef_group_begin_token = ‘\{ % ‘\} ‘\{
31832 \tex_global:D \tex_chardef:D \c__text_chardef_group_end_token = ‘\} % ‘\{
31833 \tex_global:D \tex_mathchardef:D \c__text_mathchardef_group_end_token = ‘\} %

(End of definition for \c__text_chardef_space_token and others.)

\text_expand:n
__text_expand:n

__text_expand_result:n
__text_expand_store:n
__text_expand_store:o
__text_expand_store:nw

__text_expand_end:w
__text_expand_loop:w
__text_expand_group:n
__text_expand_space:w
__text_expand_N_type:N

__text_expand_math_search:NNN
__text_expand_math_loop:Nw

__text_expand_math_N_type:NN
__text_expand_math_group:Nn
__text_expand_math_space:Nw

__text_expand_explicit:N
__text_expand_exclude:N
__text_expand_exclude_switch:Nnnnn

__text_expand_exclude:nN
__text_expand_exclude:NN
__text_expand_exclude:Nw
__text_expand_exclude:Nnn

__text_expand_accent:N
__text_expand_accent:NN

__text_expand_letterlike:N
__text_expand_letterlike:NN

__text_expand_cs:N
__text_expand_protect:w
__text_expand_protect:N
__text_expand_protect:nN
__text_expand_protect:Nw
__text_expand_testopt:N

__text_expand_testopt:NNn
__text_expand_encoding:N

__text_expand_encoding_escape:N
__text_expand_replace:N
__text_expand_replace:n

__text_expand_cs_expand:N
__text_expand_unexpanded:w

__text_expand_unexpanded_test:w
__text_expand_unexpanded:N
__text_expand_unexpanded:n

After precautions against & tokens, start a simple loop: that of course means that “text”
cannot contain the two recursion quarks. The loop here must be f-type expandable; we
have arbitrary user commands which might be protected and take arguments, and if the
expansion code is used in a typesetting context, that will otherwise explode. (The same
issue applies more clearly to case changing: see the example there.) The outer loop has
to use scan marks as delimiters to protect against unterminated \romannumeral usage
in the input.

31834 \cs_new:Npn \text_expand:n #1
31835 {
31836 __kernel_exp_not:w \exp_after:wN
31837 {
31838 \exp:w
31839 __text_expand:n {#1}
31840 }
31841 }
31842 \cs_new:Npn __text_expand:n #1
31843 {
31844 \group_align_safe_begin:
31845 __text_expand_loop:w #1
31846 \s__text_recursion_tail \s__text_recursion_stop
31847 __text_expand_result:n { }
31848 }

1300

The approach to making the code f-type expandable is to usee a marker result token and
to shuffle the collected tokens

31849 \cs_new:Npn __text_expand_store:n #1
31850 { __text_expand_store:nw {#1} }
31851 \cs_generate_variant:Nn __text_expand_store:n { o }
31852 \cs_new:Npn __text_expand_store:nw #1#2 __text_expand_result:n #3
31853 { #2 __text_expand_result:n { #3 #1 } }
31854 \cs_new:Npn __text_expand_end:w #1 __text_expand_result:n #2
31855 {
31856 \group_align_safe_end:
31857 \exp_end:
31858 #2
31859 }

The main loop is a standard “tl action”; groups are handled recursively, while spaces are
just passed through. Thus all of the action is in handling N-type tokens.

31860 \cs_new:Npn __text_expand_loop:w #1 \s__text_recursion_stop
31861 {
31862 \tl_if_head_is_N_type:nTF {#1}
31863 { __text_expand_N_type:N }
31864 {
31865 \tl_if_head_is_group:nTF {#1}
31866 { __text_expand_group:n }
31867 { __text_expand_space:w }
31868 }
31869 #1 \s__text_recursion_stop
31870 }
31871 \cs_new:Npn __text_expand_group:n #1
31872 {
31873 __text_expand_store:o
31874 {
31875 \exp_after:wN
31876 {
31877 \exp:w
31878 __text_expand:n {#1}
31879 }
31880 }
31881 __text_expand_loop:w
31882 }
31883 \exp_last_unbraced:NNo \cs_new:Npn __text_expand_space:w \c_space_tl
31884 {
31885 __text_expand_store:n { ~ }
31886 __text_expand_loop:w
31887 }

The first step in dealing with N-type tokens is to look for math mode material: that needs
to be left alone. The starting function has to be split into two as we need \quark_-
if_recursion_tail_stop:N first before we can trigger the search. We then look for
matching pairs of delimiters, allowing for the case where math mode starts but does not
end. Within math mode, we simply pass all the tokens through unchanged, just checking
the N-type ones against the end marker.

31888 \cs_new:Npn __text_expand_N_type:N #1
31889 {
31890 __text_if_s_recursion_tail_stop_do:Nn #1

1301

31891 { __text_expand_end:w }
31892 \exp_after:wN __text_expand_math_search:NNN
31893 \exp_after:wN #1 \l_text_math_delims_tl
31894 \q__text_recursion_tail \q__text_recursion_tail
31895 \q__text_recursion_stop
31896 }
31897 \cs_new:Npn __text_expand_math_search:NNN #1#2#3
31898 {
31899 __text_if_q_recursion_tail_stop_do:Nn #2
31900 { __text_expand_explicit:N #1 }
31901 \token_if_eq_meaning:NNTF #1 #2
31902 {
31903 __text_use_i_delimit_by_q_recursion_stop:nw
31904 {
31905 __text_expand_store:n {#1}
31906 __text_expand_math_loop:Nw #3
31907 }
31908 }
31909 { __text_expand_math_search:NNN #1 }
31910 }
31911 \cs_new:Npn __text_expand_math_loop:Nw #1#2 \s__text_recursion_stop
31912 {
31913 \tl_if_head_is_N_type:nTF {#2}
31914 { __text_expand_math_N_type:NN }
31915 {
31916 \tl_if_head_is_group:nTF {#2}
31917 { __text_expand_math_group:Nn }
31918 { __text_expand_math_space:Nw }
31919 }
31920 #1#2 \s__text_recursion_stop
31921 }
31922 \cs_new:Npn __text_expand_math_N_type:NN #1#2
31923 {
31924 __text_if_s_recursion_tail_stop_do:Nn #2
31925 { __text_expand_end:w }
31926 \token_if_eq_meaning:NNF #2 \exp_not:N
31927 { __text_expand_store:n {#2} }
31928 \token_if_eq_meaning:NNTF #2 #1
31929 { __text_expand_loop:w }
31930 { __text_expand_math_loop:Nw #1 }
31931 }
31932 \cs_new:Npn __text_expand_math_group:Nn #1#2
31933 {
31934 __text_expand_store:n { {#2} }
31935 __text_expand_math_loop:Nw #1
31936 }
31937 \exp_after:wN \cs_new:Npn \exp_after:wN __text_expand_math_space:Nw
31938 \exp_after:wN # \exp_after:wN 1 \c_space_tl
31939 {
31940 __text_expand_store:n { ~ }
31941 __text_expand_math_loop:Nw #1
31942 }

At this stage, either we have a control sequence or a simple character: split and handle.
The need to check for non-protected actives arises from handling of legacy input encod-

1302

ings: they need to end up in a representation we can deal with in further processing.
The tests for explicit parts of the LATEX 2ε UTF-8 mechanism cover the case of book-
marks, where definitions change and are no longer protected. The same is true for babel
shorthands.

31943 \cs_new:Npn __text_expand_explicit:N #1
31944 {
31945 \token_if_cs:NTF #1
31946 { __text_expand_exclude:N #1 }
31947 {
31948 \bool_lazy_and:nnTF
31949 { \token_if_active_p:N #1 }
31950 {
31951 ! \bool_lazy_any_p:n
31952 {
31953 { \token_if_protected_macro_p:N #1 }
31954 { \token_if_protected_long_macro_p:N #1 }
31955 { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@two@octets }
31956 { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@three@octets }
31957 { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@four@octets }
31958 { \tl_if_head_eq_meaning_p:oN {#1} \active@prefix }
31959 }
31960 }
31961 { \exp_after:wN __text_expand_loop:w #1 }
31962 {
31963 __text_expand_store:n {#1}
31964 __text_expand_loop:w
31965 }
31966 }
31967 }

Next we exclude math commands: this is mainly as there might be an \ensuremath. The
switching command for case needs special handling as it has to work by meaning.

31968 \cs_new:Npn __text_expand_exclude:N #1
31969 {
31970 \cs_if_eq:NNTF #1 \text_case_switch:nnnn
31971 { __text_expand_exclude_switch:Nnnnn #1 }
31972 {
31973 \exp_args:Ne __text_expand_exclude:nN
31974 {
31975 \exp_not:V \l_text_math_arg_tl
31976 \exp_not:V \l_text_expand_exclude_tl
31977 \exp_not:V \l_text_case_exclude_arg_tl
31978 }
31979 #1
31980 }
31981 }
31982 \cs_new:Npn __text_expand_exclude_switch:Nnnnn #1#2#3#4#5
31983 {
31984 __text_expand_store:n { #1 {#2} {#3} {#4} {#5} }
31985 __text_expand_loop:w
31986 }
31987 \cs_new:Npn __text_expand_exclude:nN #1#2
31988 {
31989 __text_expand_exclude:NN #2 #1

1303

31990 \q__text_recursion_tail \q__text_recursion_stop
31991 }
31992 \cs_new:Npn __text_expand_exclude:NN #1#2
31993 {
31994 __text_if_q_recursion_tail_stop_do:Nn #2
31995 { __text_expand_accent:N #1 }
31996 \str_if_eq:nnTF {#1} {#2}
31997 {
31998 __text_use_i_delimit_by_q_recursion_stop:nw
31999 { __text_expand_exclude:Nw #1 }
32000 }
32001 { __text_expand_exclude:NN #1 }
32002 }
32003 \cs_new:Npn __text_expand_exclude:Nw #1#2#
32004 { __text_expand_exclude:Nnn #1 {#2} }
32005 \cs_new:Npn __text_expand_exclude:Nnn #1#2#3
32006 {
32007 __text_expand_store:n { #1#2 {#3} }
32008 __text_expand_loop:w
32009 }

Accents.
32010 \cs_new:Npn __text_expand_accent:N #1
32011 {
32012 \exp_after:wN __text_expand_accent:NN \exp_after:wN
32013 #1 \l_text_accents_tl
32014 \q__text_recursion_tail \q__text_recursion_stop
32015 }
32016 \cs_new:Npn __text_expand_accent:NN #1#2
32017 {
32018 __text_if_q_recursion_tail_stop_do:Nn #2
32019 { __text_expand_letterlike:N #1 }
32020 \cs_if_eq:NNTF #2 #1
32021 {
32022 __text_use_i_delimit_by_q_recursion_stop:nw
32023 {
32024 __text_expand_store:n {#1}
32025 __text_expand_loop:w
32026 }
32027 }
32028 { __text_expand_accent:NN #1 }
32029 }

Another list of exceptions: these ones take no arguments so are easier to handle.
32030 \cs_new:Npn __text_expand_letterlike:N #1
32031 {
32032 \exp_after:wN __text_expand_letterlike:NN \exp_after:wN
32033 #1 \l_text_letterlike_tl
32034 \q__text_recursion_tail \q__text_recursion_stop
32035 }
32036 \cs_new:Npn __text_expand_letterlike:NN #1#2
32037 {
32038 __text_if_q_recursion_tail_stop_do:Nn #2
32039 { __text_expand_cs:N #1 }
32040 \cs_if_eq:NNTF #2 #1

1304

32041 {
32042 __text_use_i_delimit_by_q_recursion_stop:nw
32043 {
32044 __text_expand_store:n {#1}
32045 __text_expand_loop:w
32046 }
32047 }
32048 { __text_expand_letterlike:NN #1 }
32049 }

LATEX 2ε’s \protect makes life interesting. Where possible, we simply remove it and
replace with the “parent” command; of course, the \protect might be explicit, in which
case we need to leave it alone. That includes the case where it’s not even followed by an
N-type token. There is also the case of a straight \@protected@testopt to cover.

32050 \cs_new:Npe __text_expand_cs:N #1
32051 {
32052 \exp_not:N \str_if_eq:nnTF {#1} { \exp_not:N \protect }
32053 { \exp_not:N __text_expand_protect:w }
32054 {
32055 \bool_lazy_and:nnTF
32056 { \cs_if_exist_p:N \fmtname }
32057 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
32058 { \exp_not:N __text_expand_testopt:N #1 }
32059 { \exp_not:N __text_expand_replace:N #1 }
32060 }
32061 }
32062 \cs_new:Npn __text_expand_protect:w #1 \s__text_recursion_stop
32063 {
32064 \tl_if_head_is_N_type:nTF {#1}
32065 { __text_expand_protect:N }
32066 {
32067 __text_expand_store:n { \protect }
32068 __text_expand_loop:w
32069 }
32070 #1 \s__text_recursion_stop
32071 }
32072 \cs_new:Npn __text_expand_protect:N #1
32073 {
32074 __text_if_s_recursion_tail_stop_do:Nn #1
32075 {
32076 __text_expand_store:n { \protect }
32077 __text_expand_end:w
32078 }
32079 \exp_args:Ne __text_expand_protect:nN
32080 { \cs_to_str:N #1 } #1
32081 }
32082 \cs_new:Npn __text_expand_protect:nN #1#2
32083 { __text_expand_protect:Nw #2 #1 \q__text_nil #1 ~ \q__text_nil \q__text_nil \s__text_stop }
32084 \cs_new:Npn __text_expand_protect:Nw #1 #2 ~ \q__text_nil #3 \q__text_nil #4 \s__text_stop
32085 {
32086 __text_quark_if_nil:nTF {#4}
32087 {
32088 \cs_if_exist:cTF {#2}
32089 { \exp_args:Ne __text_expand_store:n { \exp_not:c {#2} } }

1305

32090 { __text_expand_store:n { \protect #1 } }
32091 }
32092 { __text_expand_store:n { \protect #1 } }
32093 __text_expand_loop:w
32094 }
32095 \cs_new:Npn __text_expand_testopt:N #1
32096 {
32097 \token_if_eq_meaning:NNTF #1 \@protected@testopt
32098 { __text_expand_testopt:NNn }
32099 { __text_expand_encoding:N #1 }
32100 }
32101 \cs_new:Npn __text_expand_testopt:NNn #1#2#3
32102 {
32103 __text_expand_store:n {#1}
32104 __text_expand_loop:w
32105 }

Deal with encoding-specific commands
32106 \cs_new:Npn __text_expand_encoding:N #1
32107 {
32108 \bool_lazy_or:nnTF
32109 { \cs_if_eq_p:NN #1 \@current@cmd }
32110 { \cs_if_eq_p:NN #1 \@changed@cmd }
32111 { \exp_after:wN __text_expand_loop:w __text_expand_encoding_escape:NN }
32112 { __text_expand_replace:N #1 }
32113 }
32114 \cs_new:Npn __text_expand_encoding_escape:NN #1#2 { \exp_not:n {#1} }

See if there is a dedicated replacement, and if there is, insert it.
32115 \cs_new:Npn __text_expand_replace:N #1
32116 {
32117 \bool_lazy_and:nnTF
32118 { \cs_if_exist_p:c { l__text_expand_ \token_to_str:N #1 _tl } }
32119 {
32120 \bool_lazy_or_p:nn
32121 { \token_if_cs_p:N #1 }
32122 { \token_if_active_p:N #1 }
32123 }
32124 {
32125 \exp_args:Nv __text_expand_replace:n
32126 { l__text_expand_ \token_to_str:N #1 _tl }
32127 }
32128 { __text_expand_cs_expand:N #1 }
32129 }
32130 \cs_new:Npn __text_expand_replace:n #1 { __text_expand_loop:w #1 }

Finally, expand any macros which can be: this then loops back around to deal with what
they produce. The only issue is if the token is \exp_not:n, as that must apply to the
following balanced text.

32131 \cs_new:Npn __text_expand_cs_expand:N #1
32132 {
32133 __text_if_expandable:NTF #1
32134 {
32135 \token_if_eq_meaning:NNTF #1 \exp_not:n
32136 { __text_expand_unexpanded:w }

1306

32137 { \exp_after:wN __text_expand_loop:w #1 }
32138 }
32139 {
32140 __text_expand_store:n {#1}
32141 __text_expand_loop:w
32142 }
32143 }

Since \exp_not:n is actually a primitive, it allows a strange syntax and it particular
the primitive expands what follows and discards spaces and \scan_stop: until finding
a braced argument (the opening brace can be implicit but we will not support this
here). Here, we repeatedly f-expand after such an \exp_not:n, and test what follows.
If it is a brace group, then we found the intended argument of \exp_not:n. If it is a
space, then the next f-expansion will eliminate it. If it is an N-type token then __text_-
expand_unexpanded:N leaves the token to be expanded if it is expandable, and otherwise
removes it, assuming that it is \scan_stop:. This silently hides errors when \exp_not:n
is incorrectly followed by some non-expandable token other than \scan_stop:, but this
should be pretty rare, and there is no good error recovery anyways.

32144 \cs_new:Npn __text_expand_unexpanded:w
32145 {
32146 \exp_after:wN __text_expand_unexpanded_test:w
32147 \exp:w \exp_end_continue_f:w
32148 }
32149 \cs_new:Npn __text_expand_unexpanded_test:w #1 \s__text_recursion_stop
32150 {
32151 \tl_if_head_is_group:nTF {#1}
32152 { __text_expand_unexpanded:n }
32153 {
32154 __text_expand_unexpanded:w
32155 \tl_if_head_is_N_type:nT {#1} { __text_expand_unexpanded:N }
32156 }
32157 #1 \s__text_recursion_stop
32158 }
32159 \cs_new:Npn __text_expand_unexpanded:N #1
32160 {
32161 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
32162 \else:
32163 \exp_after:wN #1
32164 \fi:
32165 }
32166 \cs_new:Npn __text_expand_unexpanded:n #1
32167 {
32168 __text_expand_store:n {#1}
32169 __text_expand_loop:w
32170 }

(End of definition for \text_expand:n and others. This function is documented on page 301.)

\text_declare_expand_equivalent:Nn
\text_declare_expand_equivalent:cn

Create equivalents to allow replacement.
32171 \cs_new_protected:Npn \text_declare_expand_equivalent:Nn #1#2
32172 {
32173 \tl_clear_new:c { l__text_expand_ \token_to_str:N #1 _tl }
32174 \tl_set:cn { l__text_expand_ \token_to_str:N #1 _tl } {#2}
32175 }

1307

32176 \cs_generate_variant:Nn \text_declare_expand_equivalent:Nn { c }

(End of definition for \text_declare_expand_equivalent:Nn. This function is documented on page 301.)
Prevent expansion of various standard values.

32177 \tl_map_inline:nn
32178 { \‘ \’ \^ \~ \= \u \. \" \r \H \v \d \c \k \b \t }
32179 { \text_declare_expand_equivalent:Nn #1 { \exp_not:n {#1} } }
32180 \tl_map_inline:nn
32181 {
32182 \AA \aa
32183 \AE \ae
32184 \DH \dh
32185 \DJ \dj
32186 \IJ \ij
32187 \L \l
32188 \NG \ng
32189 \O \o
32190 \OE \oe
32191 \SS \ss
32192 \TH \th
32193 }
32194 { \text_declare_expand_equivalent:Nn #1 { \exp_not:n {#1} } }

32195 ⟨/package⟩

1308

Chapter 88

l3text-case implementation

32196 ⟨∗package⟩

32197 ⟨@@=text⟩

88.1 Case changing
\l_text_titlecase_check_letter_bool Needed to determine the route used in titlecasing.

32198 \bool_new:N \l_text_titlecase_check_letter_bool
32199 \bool_set_true:N \l_text_titlecase_check_letter_bool

(End of definition for \l_text_titlecase_check_letter_bool. This variable is documented on page
304.)

\text_lowercase:n
\text_uppercase:n

\text_titlecase_all:n
\text_titlecase_first:n

\text_lowercase:nn
\text_uppercase:nn

\text_titlecase_all:nn
\text_titlecase_first:nn
__text_change_case:nnn

The user level functions here are all wrappers around the internal functions for case
changing.

32200 \cs_new:Npn \text_lowercase:n #1
32201 { __text_change_case:nnn { lower } { } {#1} }
32202 \cs_new:Npn \text_uppercase:n #1
32203 { __text_change_case:nnn { upper } { } {#1} }
32204 \cs_new:Npn \text_titlecase_all:n #1
32205 { __text_change_case:nnn { title } { } {#1} }
32206 \cs_new:Npn \text_titlecase_first:n #1
32207 { __text_change_case:nnnn { title } { break } { } {#1} }
32208 \cs_new:Npn \text_lowercase:nn #1#2
32209 { __text_change_case:nnn { lower } {#1} {#2} }
32210 \cs_new:Npn \text_uppercase:nn #1#2
32211 { __text_change_case:nnn { upper } {#1} {#2} }
32212 \cs_new:Npn \text_titlecase_all:nn #1#2
32213 { __text_change_case:nnn { title } {#1} {#2} }
32214 \cs_new:Npn \text_titlecase_first:nn #1#2
32215 { __text_change_case:nnnn { title } { break } {#1} {#2} }
32216 \cs_new:Npn __text_change_case:nnn #1#2#3
32217 { __text_change_case:nnnn {#1} {#1} {#2} {#3} }

(End of definition for \text_lowercase:n and others. These functions are documented on page 302.)

__text_change_case:nnnn
__text_change_case_auxi:nnnn
__text_change_case_auxii:nnnn

__text_change_case_BCP:nnnn
__text_change_case_BCP:nnnw

__text_change_case_BCP:nnnnnw
__text_change_case_store:n
__text_change_case_store:o
__text_change_case_store:V
__text_change_case_store:v
__text_change_case_store:e
__text_change_case_store:nw
__text_change_case_result:n

__text_change_case_end:w
__text_change_case_loop:nnnw

__text_change_case_break:w
__text_change_case_break_aux:w

__text_change_case_group_lower:nnnn
__text_change_case_group_upper:nnnn
__text_change_case_group_title:nnnn

__text_change_case_space:nnnw
__text_change_case_space_break:nnnw

__text_change_case_N_type:nnnN
__text_change_case_N_type_aux:nnnN

__text_change_case_N_type:nnnnN
__text_change_case_math_search:nnnNNN

__text_change_case_math_loop:nnnNw
__text_change_case_math_N_type:nnnNN
__text_change_case_math_group:nnnNn
__text_change_case_math_space:nnnNw

__text_change_case_cs_check:nnnN
__text_change_case_exclude:nnnN
__text_change_case_exclude:nnnnN
__text_change_case_exclude:nnnNN
__text_change_case_exclude:nnnNw
__text_change_case_exclude:nnnNnn

__text_change_case_replace:nnnN
__text_change_case_replace:nnnn
__text_change_case_replace:vnnn
__text_change_case_switch:nnnN

__text_change_case_switch_lower:nnnNnnnn
__text_change_case_switch_upper:nnnNnnnn
__text_change_case_switch_title:nnnNnnnn
__text_change_case_skip:nnw

__text_change_case_skip_N_type:nnN
__text_change_case_skip_group:nnn
__text_change_case_skip_space:nnw

__text_change_case_letterlike_lower:nnnN
__text_change_case_letterlike_upper:nnnN
__text_change_case_letterlike_title:nnnN

__text_change_case_letterlike:nnnnnN
__text_change_case_custom_lower:nnnn
__text_change_case_custom_title:nnnn
__text_change_case_custom_upper:nnnn

__text_change_case_custom:nnnnn
__text_change_case_codepoint_lower:nnnn
__text_change_case_codepoint_upper:nnnn
__text_change_case_codepoint_title:nnnn

__text_change_case_lower_sigma:nnnnn
__text_change_case_lower_sigma:nnnnw
__text_change_case_lower_sigma:nnnnN

__text_change_case_codepoint_title_auxi:nnnn
__text_change_case_codepoint_title_auxii:nnnn

__text_change_case_codepoint_title:nnn
__text_change_case_codepoint:nnnnn

__text_change_case_codepoint:nn
__text_change_case_codepoint:nnn
__text_change_case_codepoint:fnn

__text_change_case_codepoint_aux:nnn
__text_change_case_codepoint_aux:nnn
__text_change_case_codepoint_aux:nn

__text_change_case_catcode:nn
__text_change_case_next_lower:nnn
__text_change_case_next_upper:nnn
__text_change_case_next_title:nnn

__text_change_case_next_end:nnn

As for the expansion code, the business end of case changing is the handling of N-type
tokens. First, we expand the input fully (so the loops here don’t need to worry about
awkward look-aheads and the like). Then we split into the different paths.

1309

The code here needs to be f-type expandable to deal with the situation where case
changing is applied in running text. There, we might have case changing as a document
command and the text containing other non-expandable document commands.

\cs_set_eq:NN \MakeLowercase \text_lowercase
...
\MakeLowercase{\enquote*{A} text}

If we use an e-type expansion and wrap each token in \exp_not:n, that would explode:
the document command grabs \exp_not:n as an argument, and things go badly wrong.
So we have to wrap the entire result in exactly one \exp_not:n, or rather in the kernel
version.

32218 \cs_new:Npn __text_change_case:nnnn #1#2#3#4
32219 {
32220 __kernel_exp_not:w \exp_after:wN
32221 {
32222 \exp:w
32223 \exp_args:Ne __text_change_case_auxi:nnnn
32224 { \text_expand:n {#4} }
32225 {#1} {#2} {#3}
32226 }
32227 }
32228 \cs_new:Npn __text_change_case_auxi:nnnn #1#2#3#4
32229 {
32230 \exp_args:No __text_change_case_BCP:nnnn
32231 { \tl_to_str:n {#4} } {#1} {#2} {#3}
32232 }
32233 \cs_new:Npe __text_change_case_BCP:nnnn #1#2#3#4
32234 {
32235 \exp_not:N __text_change_case_BCP:nnnw
32236 {#2} {#3} {#4} #1 \tl_to_str:n { -x- -x- } \exp_not:N \q__text_stop
32237 }
32238 \use:e
32239 {
32240 \cs_new:Npn \exp_not:N __text_change_case_BCP:nnnw
32241 #1#2#3#4 \tl_to_str:n { -x- } #5 \tl_to_str:n { -x- } #6
32242 \exp_not:N \q__text_stop
32243 }
32244 { __text_change_case_BCP:nnnnnw {#1} {#2} {#3} {#5} {#4} #4 - \q__text_stop }
32245 \cs_new:Npn __text_change_case_BCP:nnnnnw #1#2#3#4#5#6 - #7 \q__text_stop
32246 {
32247 \bool_lazy_or:nnTF
32248 { \cs_if_exist_p:c { __text_change_case_ #2 _ #6 -x- #4 :nnnnn } }
32249 { \tl_if_exist_p:c { l__text_ #2 case_special_ #6 -x- #4 _tl } }
32250 { __text_change_case_auxii:nnnn {#1} {#2} {#3} { #6 -x- #4 } }
32251 {
32252 \cs_if_exist:cTF { __text_change_case_ #2 _ #6 :nnnnn }
32253 { __text_change_case_auxii:nnnn {#1} {#2} {#3} {#6} }
32254 { __text_change_case_auxii:nnnn {#1} {#2} {#3} {#5} }
32255 }
32256 }
32257 \cs_new:Npn __text_change_case_auxii:nnnn #1#2#3#4
32258 {
32259 \group_align_safe_begin:

1310

32260 \cs_if_exist_use:c { __text_change_case_boundary_ #2 _ #4 :Nnnnw }
32261 __text_change_case_loop:nnnw {#2} {#3} {#4} #1
32262 \q__text_recursion_tail \q__text_recursion_stop
32263 __text_change_case_result:n { }
32264 }

As for expansion, collect up the tokens for future use.
32265 \cs_new:Npn __text_change_case_store:n #1
32266 { __text_change_case_store:nw {#1} }
32267 \cs_generate_variant:Nn __text_change_case_store:n { o , e , V , v }
32268 \cs_new:Npn __text_change_case_store:nw #1#2 __text_change_case_result:n #3
32269 { #2 __text_change_case_result:n { #3 #1 } }
32270 \cs_new:Npn __text_change_case_end:w #1 __text_change_case_result:n #2
32271 {
32272 \group_align_safe_end:
32273 \exp_end:
32274 #2
32275 }

The main loop is the standard tl action type.
32276 \cs_new:Npn __text_change_case_loop:nnnw #1#2#3#4 \q__text_recursion_stop
32277 {
32278 \tl_if_head_is_N_type:nTF {#4}
32279 { __text_change_case_N_type:nnnN }
32280 {
32281 \tl_if_head_is_group:nTF {#4}
32282 { \use:c { __text_change_case_group_ #1 :nnnn } }
32283 { __text_change_case_space:nnnw }
32284 }
32285 {#1} {#2} {#3} #4 \q__text_recursion_stop
32286 }
32287 \cs_new:Npn __text_change_case_break:w
32288 { __text_change_case_break_aux:w \prg_do_nothing: }
32289 \cs_new:Npn __text_change_case_break_aux:w
32290 #1 \q__text_recursion_tail \q__text_recursion_stop
32291 {
32292 __text_change_case_store:o {#1}
32293 __text_change_case_end:w
32294 }

For a group, we could worry about whether this contains a character or not. However,
that would make life very complex for little gain: exactly what a first character is is
rather weakly-defined anyway. So if there is a group, we simply assume that a character
has been seen, and for title case we switch to the “rest of the tokens” situation. To avoid
having too much testing, we use a two-step process here to allow the titlecase functions
to be separate.

32295 \cs_new:Npn __text_change_case_group_lower:nnnn #1#2#3#4
32296 {
32297 __text_change_case_store:o
32298 {
32299 \exp_after:wN
32300 {
32301 \exp:w
32302 __text_change_case_auxii:nnnn {#4} {#1} {#2} {#3}
32303 }

1311

32304 }
32305 __text_change_case_loop:nnnw {#1} {#2} {#3}
32306 }
32307 \cs_new_eq:NN __text_change_case_group_upper:nnnn
32308 __text_change_case_group_lower:nnnn
32309 \cs_new:Npn __text_change_case_group_title:nnnn #1#2#3#4
32310 {
32311 __text_change_case_store:o
32312 {
32313 \exp_after:wN
32314 {
32315 \exp:w
32316 __text_change_case_auxii:nnnn {#4} {#1} {#2} {#3}
32317 }
32318 }
32319 __text_change_case_skip:nnw {#2} {#3}
32320 }
32321 \use:e
32322 {
32323 \cs_new:Npn \exp_not:N __text_change_case_space:nnnw #1#2#3 \c_space_tl
32324 }
32325 {
32326 __text_change_case_store:n { ~ }
32327 \cs_if_exist_use:cF { __text_change_case_space_ #2 :nnn }
32328 {
32329 \cs_if_exist_use:c { __text_change_case_boundary_ #1 _ #3 :Nnnnw }
32330 __text_change_case_loop:nnnw
32331 }
32332 {#2} {#2} {#3}
32333 }
32334 \cs_new:Npn __text_change_case_space_break:nnn #1#2#3
32335 { __text_change_case_break:w }

The first step of handling N-type tokens is to filter out the end-of-loop. That has to be
done separately from the first real step as otherwise we pick up the wrong delimiter. The
loop here is the same as the expand one, just passing the additional data long. If no
close-math token is found then the final clean-up is forced (i.e. there is no assumption of
“well-behaved” input in terms of math mode).

32336 \cs_new:Npn __text_change_case_N_type:nnnN #1#2#3#4
32337 {
32338 __text_if_q_recursion_tail_stop_do:Nn #4
32339 { __text_change_case_end:w }
32340 __text_change_case_N_type_aux:nnnN {#1} {#2} {#3} #4
32341 }
32342 \cs_new:Npn __text_change_case_N_type_aux:nnnN #1#2#3#4
32343 {
32344 \exp_args:NV __text_change_case_N_type:nnnnN
32345 \l_text_math_delims_tl {#1} {#2} {#3} #4
32346 }
32347 \cs_new:Npn __text_change_case_N_type:nnnnN #1#2#3#4#5
32348 {
32349 __text_change_case_math_search:nnnNNN {#2} {#3} {#4} #5 #1
32350 \q__text_recursion_tail \q__text_recursion_tail
32351 \q__text_recursion_stop

1312

32352 }
32353 \cs_new:Npn __text_change_case_math_search:nnnNNN #1#2#3#4#5#6
32354 {
32355 __text_if_q_recursion_tail_stop_do:Nn #5
32356 { __text_change_case_cs_check:nnnN {#1} {#2} {#3} #4 }
32357 \token_if_eq_meaning:NNTF #4 #5
32358 {
32359 __text_use_i_delimit_by_q_recursion_stop:nw
32360 {
32361 __text_change_case_store:n {#4}
32362 __text_change_case_math_loop:nnnNw {#1} {#2} {#3} #6
32363 }
32364 }
32365 { __text_change_case_math_search:nnnNNN {#1} {#2} {#3} #4 }
32366 }
32367 \cs_new:Npn __text_change_case_math_loop:nnnNw #1#2#3#4#5 \q__text_recursion_stop
32368 {
32369 \tl_if_head_is_N_type:nTF {#5}
32370 { __text_change_case_math_N_type:nnnNN }
32371 {
32372 \tl_if_head_is_group:nTF {#5}
32373 { __text_change_case_math_group:nnnNn }
32374 { __text_change_case_math_space:nnnNw }
32375 }
32376 {#1} {#2} {#3} #4 #5 \q__text_recursion_stop
32377 }
32378 \cs_new:Npn __text_change_case_math_N_type:nnnNN #1#2#3#4#5
32379 {
32380 __text_if_q_recursion_tail_stop_do:Nn #5
32381 { __text_change_case_end:w }
32382 __text_change_case_store:n {#5}
32383 \token_if_eq_meaning:NNTF #5 #4
32384 { __text_change_case_loop:nnnw {#1} {#2} {#3} }
32385 { __text_change_case_math_loop:nnnNw {#1} {#2} {#3} #4 }
32386 }
32387 \cs_new:Npn __text_change_case_math_group:nnnNn #1#2#3#4#5
32388 {
32389 __text_change_case_store:n { {#5} }
32390 __text_change_case_math_loop:nnnNw {#1} {#2} {#3} #4
32391 }
32392 \use:e
32393 {
32394 \cs_new:Npn \exp_not:N __text_change_case_math_space:nnnNw #1#2#3#4
32395 \c_space_tl
32396 }
32397 {
32398 __text_change_case_store:n { ~ }
32399 __text_change_case_math_loop:nnnNw {#1} {#2} {#3} #4
32400 }

Once potential math-mode cases are filtered out the next stage is to test if the token
grabbed is a control sequence: the two routes the code may take are then very different.

32401 \cs_new:Npn __text_change_case_cs_check:nnnN #1#2#3#4
32402 {

1313

32403 \token_if_cs:NTF #4
32404 { __text_change_case_exclude:nnnN {#1} {#2} {#3} }
32405 {
32406 __text_codepoint_process:nN
32407 { \use:c { __text_change_case_custom_ #1 :nnnn } {#1} {#2} {#3} }
32408 }
32409 #4
32410 }

To deal with a control sequence there is first a need to test if it is on the list which
indicate that case changing should be skipped. That’s done using a loop as for the other
special cases. If a hit is found then the argument is grabbed and passed through as-is.

32411 \cs_new:Npn __text_change_case_exclude:nnnN #1#2#3#4
32412 {
32413 \exp_args:Ne __text_change_case_exclude:nnnnN
32414 {
32415 \exp_not:V \l_text_math_arg_tl
32416 \exp_not:V \l_text_case_exclude_arg_tl
32417 }
32418 {#1} {#2} {#3} #4
32419 }
32420 \cs_new:Npn __text_change_case_exclude:nnnnN #1#2#3#4#5
32421 {
32422 __text_change_case_exclude:nnnNN {#2} {#3} {#4} #5 #1
32423 \q__text_recursion_tail \q__text_recursion_stop
32424 }
32425 \cs_new:Npn __text_change_case_exclude:nnnNN #1#2#3#4#5
32426 {
32427 __text_if_q_recursion_tail_stop_do:Nn #5
32428 { __text_change_case_replace:nnnN {#1} {#2} {#3} #4 }
32429 \str_if_eq:nnTF {#4} {#5}
32430 {
32431 __text_use_i_delimit_by_q_recursion_stop:nw
32432 { __text_change_case_exclude:nnnNw {#1} {#2} {#3} #4 }
32433 }
32434 { __text_change_case_exclude:nnnNN {#1} {#2} {#3} #4 }
32435 }
32436 \cs_new:Npn __text_change_case_exclude:nnnNw #1#2#3#4#5#
32437 { __text_change_case_exclude:nnnNnn {#1} {#2} {#3} {#4} {#5} }
32438 \cs_new:Npn __text_change_case_exclude:nnnNnn #1#2#3#4#5#6
32439 {
32440 \tl_if_blank:nTF {#5}
32441 { __text_change_case_store:n { #4 {#6} } }
32442 {
32443 __text_change_case_store:o
32444 {
32445 \exp_after:wN #4
32446 \exp:w __text_change_case_auxii:nnnn {#5} {#1} {#2} {#3}
32447 {#6}
32448 }
32449 }
32450 __text_change_case_loop:nnnw {#1} {#2} {#3}
32451 }

Deal with any specialist replacement for case changing.

1314

32452 \cs_new:Npn __text_change_case_replace:nnnN #1#2#3#4
32453 {
32454 \cs_if_exist:cTF { l__text_case_ \token_to_str:N #4 _tl }
32455 {
32456 __text_change_case_replace:vnnn
32457 { l__text_case_ \token_to_str:N #4 _tl } {#1} {#2} {#3}
32458 }
32459 { __text_change_case_switch:nnnN {#1} {#2} {#3} #4 }
32460 }
32461 \cs_new:Npn __text_change_case_replace:nnnn #1#2#3#4
32462 { __text_change_case_loop:nnnw {#2} {#3} {#4} #1 }
32463 \cs_generate_variant:Nn __text_change_case_replace:nnnn { v }

Allow for manually-controlled case switching.
32464 \cs_new:Npn __text_change_case_switch:nnnN #1#2#3#4
32465 {
32466 \cs_if_eq:NNTF #4 \text_case_switch:nnnn
32467 { \use:c { __text_change_case_switch_ #1 :nnnNnnnn } }
32468 { \use:c { __text_change_case_letterlike_ #1 :nnnN } }
32469 {#1} {#2} {#3} #4
32470 }
32471 \cs_new:Npn __text_change_case_switch_lower:nnnNnnnn #1#2#3#4#5#6#7#8
32472 {
32473 __text_change_case_store:n {#7}
32474 __text_change_case_loop:nnnw {#1} {#2} {#3}
32475 }
32476 \cs_new:Npn __text_change_case_switch_upper:nnnNnnnn #1#2#3#4#5#6#7#8
32477 {
32478 __text_change_case_store:n {#6}
32479 __text_change_case_loop:nnnw {#1} {#2} {#3}
32480 }
32481 \cs_new:Npn __text_change_case_switch_title:nnnNnnnn #1#2#3#4#5#6#7#8
32482 {
32483 __text_change_case_store:n {#8}
32484 __text_change_case_skip:nnw {#2} {#3}
32485 }

Skip over material quickly after titlecase-first-only initials
32486 \cs_new:Npn __text_change_case_skip:nnw #1#2#3 \q__text_recursion_stop
32487 {
32488 \tl_if_head_is_N_type:nTF {#3}
32489 { __text_change_case_skip_N_type:nnN }
32490 {
32491 \tl_if_head_is_group:nTF {#3}
32492 { __text_change_case_skip_group:nnn }
32493 { __text_change_case_skip_space:nnw }
32494 }
32495 {#1} {#2} #3 \q__text_recursion_stop
32496 }
32497 \cs_new:Npn __text_change_case_skip_N_type:nnN #1#2#3
32498 {
32499 __text_if_q_recursion_tail_stop_do:Nn #3
32500 { __text_change_case_end:w }
32501 __text_change_case_store:n {#3}
32502 __text_change_case_skip:nnw {#1} {#2}

1315

32503 }
32504 \cs_new:Npn __text_change_case_skip_group:nnn #1#2#3
32505 {
32506 __text_change_case_store:n { {#3} }
32507 __text_change_case_skip:nnw {#1} {#2}
32508 }
32509 \cs_new:Npn __text_change_case_skip_space:nnw #1#2
32510 { __text_change_case_space:nnnw {#1} {#1} {#2} }

Letter-like commands may still be present: they are set up using a simple lookup ap-
proach, so can easily be handled with no loop. If there is no hit, we are at the end of the
process: we loop around. Letter-like chars are all available only in upper- and lowercase,
so titlecasing maps to the uppercase version.

32511 \cs_new:Npn __text_change_case_letterlike_lower:nnnN #1#2#3#4
32512 { __text_change_case_letterlike:nnnnnN {#1} {#1} {#1} {#2} {#3} #4 }
32513 \cs_new_eq:NN __text_change_case_letterlike_upper:nnnN
32514 __text_change_case_letterlike_lower:nnnN
32515 \cs_new:Npn __text_change_case_letterlike_title:nnnN #1#2#3#4
32516 { __text_change_case_letterlike:nnnnnN { upper } { end } {#1} {#2} {#3} #4 }
32517 \cs_new:Npn __text_change_case_letterlike:nnnnnN #1#2#3#4#5#6
32518 {
32519 \cs_if_exist:cTF { c__text_ #1 case_ \token_to_str:N #6 _tl }
32520 {
32521 __text_change_case_store:v
32522 { c__text_ #1 case_ \token_to_str:N #6 _tl }
32523 \use:c { __text_change_case_next_ #2 :nnn } {#2} {#4} {#5}
32524 }
32525 {
32526 __text_change_case_store:n {#6}
32527 \cs_if_exist:cTF
32528 {
32529 c__text_
32530 \str_if_eq:nnTF {#1} { lower } { upper } { lower }
32531 case_ \token_to_str:N #6 _tl
32532 }
32533 { \use:c { __text_change_case_next_ #2 :nnn } {#2} {#4} {#5} }
32534 { __text_change_case_loop:nnnw {#3} {#4} {#5} }
32535 }
32536 }

Check for a customised codepoint result.
32537 \cs_new:Npn __text_change_case_custom_lower:nnnn #1#2#3#4
32538 {
32539 __text_change_case_custom:nnnnnn {#1} {#1} {#2} {#3} {#4}
32540 { \use:c { __text_change_case_codepoint_ #1 :nnnn } {#1} {#2} {#3} {#4} }
32541 }
32542 \cs_new_eq:NN __text_change_case_custom_upper:nnnn
32543 __text_change_case_custom_lower:nnnn
32544 \cs_new:Npn __text_change_case_custom_title:nnnn #1#2#3#4
32545 {
32546 __text_change_case_custom:nnnnnn { title } {#1} {#2} {#3} {#4}
32547 {
32548 __text_change_case_custom:nnnnnn { upper } {#1} {#2} {#3} {#4}
32549 { \use:c { __text_change_case_codepoint_ #1 :nnnn } {#1} {#2} {#3} {#4} }
32550 }

1316

32551 }
32552 \cs_new:Npn __text_change_case_custom:nnnnnn #1#2#3#4#5#6
32553 {
32554 \tl_if_exist:cTF { l__text_ #1 case _ \tl_to_str:n {#5} _ #4 _tl }
32555 {
32556 __text_change_case_replace:vnnn
32557 { l__text_ #1 case _ \tl_to_str:n {#5} _ #4 _tl } {#2} {#3} {#4}
32558 }
32559 {
32560 \tl_if_exist:cTF { l__text_ #1 case _ \tl_to_str:n {#5} _tl }
32561 {
32562 __text_change_case_replace:vnnn
32563 { l__text_ #1 case _ \tl_to_str:n {#5} _tl } {#2} {#3} {#4}
32564 }
32565 {#6}
32566 }
32567 }

For upper- and lowercase changes, once we get to this stage there are only a couple of
questions remaining: is there a language-specific mapping and is there the special case
of a terminal sigma. If not, then we pass to a simple codepoint mapping.

32568 \cs_new:Npn __text_change_case_codepoint_lower:nnnn #1#2#3#4
32569 {
32570 \cs_if_exist_use:cF { __text_change_case_lower_ #3 :nnnnn }
32571 { __text_change_case_lower_sigma:nnnnn }
32572 {#1} {#1} {#2} {#3} {#4}
32573 }
32574 \cs_new:Npn __text_change_case_codepoint_upper:nnnn #1#2#3#4
32575 {
32576 \cs_if_exist_use:cF { __text_change_case_upper_ #3 :nnnnn }
32577 { __text_change_case_codepoint:nnnnn }
32578 {#1} {#1} {#2} {#3} {#4}
32579 }

If the current character is an uppercase sigma, the a check is made on the next item in
the input. If it is N-type and not a control sequence then there is a look-ahead phase:
the logic here is simply based on letters or actives (to cover 8-bit engines).

32580 \cs_new:Npn __text_change_case_lower_sigma:nnnnn #1#2#3#4#5
32581 {
32582 __text_codepoint_compare:nNnTF {#5} = { "03A3 }
32583 { __text_change_case_lower_sigma:nnnnw {#2} }
32584 { __text_change_case_codepoint:nnnnn {#1} {#2} }
32585 {#3} {#4} {#5}
32586 }
32587 \cs_new:Npn __text_change_case_lower_sigma:nnnnw #1#2#3#4#5 \q__text_recursion_stop
32588 {
32589 \tl_if_head_is_N_type:nTF {#5}
32590 { __text_change_case_lower_sigma:nnnnN {#4} }
32591 {
32592 __text_change_case_store:e
32593 { \codepoint_generate:nn { "03C2 } { __text_char_catcode:N #4 } }
32594 __text_change_case_loop:nnnw
32595 }
32596 {#1} {#2} {#3} #5 \q__text_recursion_stop
32597 }

1317

32598 \cs_new:Npn __text_change_case_lower_sigma:nnnnN #1#2#3#4#5
32599 {
32600 __text_change_case_store:e
32601 {
32602 \bool_lazy_or:nnTF
32603 { \token_if_letter_p:N #5 }
32604 {
32605 \bool_lazy_and_p:nn
32606 { \token_if_active_p:N #5 }
32607 { \int_compare_p:nNn {‘#5} > { "80 } }
32608 }
32609 { \codepoint_generate:nn { "03C3 } { __text_char_catcode:N #1 } }
32610 { \codepoint_generate:nn { "03C2 } { __text_char_catcode:N #1 } }
32611 }
32612 __text_change_case_loop:nnnw {#2} {#3} {#4} #5
32613 }

For titlecasing, we need to obtain the general category of the current codepoint.
32614 \cs_new:Npn __text_change_case_codepoint_title:nnnn #1#2#3#4
32615 {
32616 \bool_if:NTF \l_text_titlecase_check_letter_bool
32617 {
32618 \exp_args:Ne __text_change_case_codepoint_title_auxi:nnnn
32619 {
32620 \codepoint_to_category:n
32621 { __text_codepoint_from_chars:Nw #4 }
32622 }
32623 }
32624 { __text_change_case_codepoint_title:nnn }
32625 {#2} {#3} {#4}
32626 }
32627 \cs_new:Npn __text_change_case_codepoint_title_auxi:nnnn #1#2#3#4
32628 {
32629 \tl_if_head_eq_charcode:nNTF {#1} { L }
32630 { __text_change_case_codepoint_title:nnn }
32631 { __text_change_case_codepoint_title_auxii:nnnn { title } }
32632 {#2} {#3} {#4}
32633 }
32634 \cs_new:Npn __text_change_case_codepoint_title:nnn #1#2#3
32635 { __text_change_case_codepoint_title_auxii:nnnn { end } {#1} {#2} {#3} }
32636 \cs_new:Npn __text_change_case_codepoint_title_auxii:nnnn #1#2#3#4
32637 {
32638 \cs_if_exist_use:cF { __text_change_case_title_ #3 :nnnnn }
32639 {
32640 \cs_if_exist_use:cF { __text_change_case_upper_ #3 :nnnnn }
32641 { __text_change_case_codepoint:nnnnn }
32642 }
32643 { title } {#1} {#2} {#3} {#4}
32644 }
32645 \cs_new:Npn __text_change_case_codepoint:nnnnn #1#2#3#4#5
32646 {
32647 \bool_lazy_and:nnTF
32648 { \tl_if_single_p:n {#5} }
32649 { \token_if_active_p:N #5 }
32650 { __text_change_case_store:n {#5} }

1318

32651 {
32652 __text_change_case_store:e
32653 { __text_change_case_codepoint:nn {#1} {#5} }
32654 }
32655 \use:c { __text_change_case_next_ #2 :nnn } {#2} {#3} {#4}
32656 }
32657 \cs_new:Npn __text_change_case_codepoint:nn #1#2
32658 {
32659 __text_change_case_codepoint:fnn
32660 { \int_eval:n { __text_codepoint_from_chars:Nw #2 } } {#1} {#2}
32661 }
32662 \cs_new:Npn __text_change_case_codepoint:nnn #1#2#3
32663 {
32664 \exp_args:Ne __text_change_case_codepoint_aux:nn
32665 { __kernel_codepoint_case:nn { #2 case } {#1} } {#3}
32666 }
32667 \cs_generate_variant:Nn __text_change_case_codepoint:nnn { f }

Avoid high chars with pTEX.
32668 \sys_if_engine_ptex:T
32669 {
32670 \cs_new_eq:NN __text_change_case_codepoint_aux:nnn
32671 __text_change_case_codepoint:nnn
32672 \cs_gset:Npn __text_change_case_codepoint:nnn #1#2#3
32673 {
32674 \int_compare:nNnTF {#1} = { -1 }
32675 { \exp_not:n {#3} }
32676 { __text_change_case_codepoint_aux:nnn {#1} {#2} {#3} }
32677 }
32678 }
32679 \cs_new:Npn __text_change_case_codepoint_aux:nn #1#2
32680 {
32681 \use:e { __text_change_case_codepoint_aux:nnnn #1 {#2} }
32682 }
32683 \cs_new:Npn __text_change_case_codepoint_aux:nnnn #1#2#3#4
32684 {
32685 __text_codepoint_compare:nNnTF {#4} = {#1}
32686 { \exp_not:n {#4} }
32687 {
32688 \codepoint_generate:nn {#1}
32689 { __text_change_case_catcode:nn {#4} {#1} }
32690 \tl_if_blank:nF {#2}
32691 {
32692 \codepoint_generate:nn {#2}
32693 { \char_value_catcode:n {#2} }
32694 \tl_if_blank:nF {#3}
32695 {
32696 \codepoint_generate:nn {#3}
32697 { \char_value_catcode:n {#3} }
32698 }
32699 }
32700 }
32701 }

We need to ensure that only valid catcode-extraction is attempted. That’s fine with

1319

Unicode engines but needs a bit of work with 8-bit ones. The logic is that if the original
codepoint was in the ASCII range, we keep the catcode. Otherwise, if the target is in
the ASCII range, we use the standard catcode. If neither are true, we set as 13 on the
grounds that this will be what is used anyway!

32702 \sys_if_engine_opentype:TF
32703 {
32704 \cs_new:Npn __text_change_case_catcode:nn #1#2
32705 { __text_char_catcode:N #1 }
32706 }
32707 {
32708 \cs_new:Npn __text_change_case_catcode:nn #1#2
32709 {
32710 __text_codepoint_compare:nNnTF {#1} < { "80 }
32711 { __text_char_catcode:N #1 }
32712 {
32713 \int_compare:nNnTF {#2} < { "80 }
32714 { \char_value_catcode:n {#2} }
32715 { 13 }
32716 }
32717 }
32718 }
32719 \cs_new:Npn __text_change_case_next_lower:nnn #1#2#3
32720 { __text_change_case_loop:nnnw {#1} {#2} {#3} }
32721 \cs_new_eq:NN __text_change_case_next_upper:nnn
32722 __text_change_case_next_lower:nnn
32723 \cs_new_eq:NN __text_change_case_next_title:nnn
32724 __text_change_case_next_lower:nnn
32725 \cs_new:Npn __text_change_case_next_end:nnn #1#2#3
32726 { __text_change_case_skip:nnw {#2} {#3} }

(End of definition for __text_change_case:nnnn and others.)

\text_declare_case_equivalent:Nn Create equivalents to allow replacement.
32727 \cs_new_protected:Npn \text_declare_case_equivalent:Nn #1#2
32728 {
32729 \tl_clear_new:c { l__text_case_ \token_to_str:N #1 _tl }
32730 \tl_set:cn { l__text_case_ \token_to_str:N #1 _tl } {#2}
32731 }

(End of definition for \text_declare_case_equivalent:Nn. This function is documented on page 303.)

\text_declare_lowercase_mapping:nn
\text_declare_titlecase_mapping:nn
\text_declare_uppercase_mapping:nn

__text_declare_case_mapping:nnn
__text_declare_case_mapping_aux:nnn
\text_declare_lowercase_mapping:nnn
\text_declare_titlecase_mapping:nnn
\text_declare_uppercase_mapping:nnn

__text_declare_case_mapping:nnnn
__text_declare_case_mapping_aux:nnnn

Codepoint customisation.
32732 \cs_new_protected:Npn \text_declare_lowercase_mapping:nn #1#2
32733 { __text_declare_case_mapping:nnn { lower } {#1} {#2} }
32734 \cs_new_protected:Npn \text_declare_titlecase_mapping:nn #1#2
32735 { __text_declare_case_mapping:nnn { title } {#1} {#2} }
32736 \cs_new_protected:Npn \text_declare_uppercase_mapping:nn #1#2
32737 { __text_declare_case_mapping:nnn { upper } {#1} {#2} }
32738 \cs_new_protected:Npn __text_declare_case_mapping:nnn #1#2#3
32739 {
32740 \exp_args:Ne __text_declare_case_mapping_aux:nnn
32741 { \codepoint_str_generate:n {#2} } {#1} {#3}
32742 }
32743 \cs_new_protected:Npn __text_declare_case_mapping_aux:nnn #1#2#3

1320

32744 {
32745 \tl_clear_new:c { l__text_ #2 case _ #1 _tl }
32746 \tl_set:cn { l__text_ #2 case _ #1 _ tl } {#3}
32747 }
32748 \cs_new_protected:Npn \text_declare_lowercase_mapping:nnn #1#2#3
32749 { __text_declare_case_mapping:nnnn { lower } {#1} {#2} {#3} }
32750 \cs_new_protected:Npn \text_declare_titlecase_mapping:nnn #1#2#3
32751 { __text_declare_case_mapping:nnnn { title } {#1} {#2} {#3} }
32752 \cs_new_protected:Npn \text_declare_uppercase_mapping:nnn #1#2#3
32753 { __text_declare_case_mapping:nnnn { upper } {#1} {#2} {#3} }
32754 \cs_new_protected:Npn __text_declare_case_mapping:nnnn #1#2#3#4
32755 {
32756 \exp_args:Ne __text_declare_case_mapping_aux:nnnn
32757 { \codepoint_str_generate:n {#3} } {#1} {#2} {#4}
32758 }
32759 \cs_new_protected:Npn __text_declare_case_mapping_aux:nnnn #1#2#3#4
32760 {
32761 \tl_clear_new:c { l__text_ #2 case _ #1 _ #3 _tl }
32762 \tl_set:cn { l__text_ #2 case _ #1 _ #3 _ tl } {#4}
32763 \tl_clear_new:c { l__text_ #2 case_special_ #3 _tl }
32764 }

(End of definition for \text_declare_lowercase_mapping:nn and others. These functions are docu-
mented on page 303.)

\text_case_switch:nnnn
__text_case_switch_marker:

Set up the mechanism for manual case switching.
32765 \cs_new:Npn \text_case_switch:nnnn #1#2#3#4
32766 {
32767 __text_case_switch_marker:
32768 #1
32769 }
32770 \cs_new:Npn __text_case_switch_marker: { }

(End of definition for \text_case_switch:nnnn and __text_case_switch_marker:. This function is
documented on page 303.)

__text_change_case_generate:n A utility.
32771 \cs_new:Npn __text_change_case_generate:n #1
32772 { \codepoint_generate:nn {#1} { \char_value_catcode:n {#1} } }

(End of definition for __text_change_case_generate:n.)

__text_change_case_upper_de-x-eszett:nnnnn
__text_change_case_upper_de-alt:nnnnn

A simple alternative version for German.
32773 \cs_new:cpn { __text_change_case_upper_de-x-eszett:nnnnn } #1#2#3#4#5
32774 {
32775 __text_codepoint_compare:nNnTF {#5} = { "00DF }
32776 {
32777 __text_change_case_store:e
32778 {
32779 \codepoint_generate:nn { "1E9E }
32780 { __text_change_case_catcode:nn {#5} { "1E9E } }
32781 }
32782 \use:c { __text_change_case_next_ #2 :nnn }
32783 {#2} {#3} {#4}
32784 }

1321

32785 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
32786 }
32787 \cs_new_eq:cc { __text_change_case_upper_de-alt:nnnnn }
32788 { __text_change_case_upper_de-x-eszett:nnnnn }

(End of definition for __text_change_case_upper_de-x-eszett:nnnnn and __text_change_case_-
upper_de-alt:nnnnn.)

__text_change_case_upper_el:nnnnn
__text_change_case_upper_el-x-iota:nnnnn

__text_change_case_upper_el_aux:nnnnn
__text_change_case_upper_el:nnnn
__text_change_case_upper_el:nnnnw
__text_change_case_upper_el:nnnnN

__text_change_case_upper_el_aux:nnnnN
__text_change_case_upper_el_ypogegrammeni:nnnnnnw
__text_change_case_upper_el_ypogegrammeni:nnnnnnN
__text_change_case_upper_el_ypogegrammeni:nnnnnnn

__text_change_case_upper_el_dialytika:nnnn
__text_change_case_upper_el_dialytika:n

__text_change_case_upper_el_hiatus:nnnnw
__text_change_case_upper_el_hiatus:nnnnN
__text_change_case_upper_el_hiatus:nnnnn

__text_change_case_upper_el_ypogegrammeni:n
__text_change_case_upper_el-x-iota_ypogegrammeni:n

__text_change_case_upper_el_stress:nn
__text_change_case_upper_el_gobble:nnnw
__text_change_case_upper_el_gobble:nnnN
__text_change_case_upper_el_gobble:nnnn

__text_change_case_if_greek:n
__text_change_case_if_greek:nTF

__text_change_case_if_greek_spacing_diacritic:n
__text_change_case_if_greek_spacing_diacritic:nTF

__text_change_case_if_greek_accent:n
__text_change_case_if_greek_accent:nTF
__text_change_case_if_greek_breathing:n

__text_change_case_if_greek_breathing:nTF
__text_change_case_if_greek_stress:n

__text_change_case_if_greek_stress:nTF
__text_change_case_if_takes_dialytika:n

__text_change_case_if_takes_dialytika:nTF
__text_change_case_if_takes_ypogegrammeni:n

__text_change_case_if_takes_ypogegrammeni:nTF

For Greek uppercasing, we need to know if characters in the Greek range have accents.
That means doing a nfd conversion first, then starting a search. As described by the
Unicode cldr, Greek accents need to be found after any U+0308 (diaeresis) and are done
in two groups to allow for the canonical ordering. The implementation here follows the
data and examples from icu (https://icu.unicode.org/design/case/greek-upper),
although necessarily the implementation is somewhat different. The ypogegrammeni is
filtered out here as it is not actually in the Greek range, so gets lost if we leave until later.
The one Greek codepoint we skip is the numeral sign and question mark: the first has an
awkward NFD for pdfTEX so is best left unchanged, and the latter has issues concerning
how LGR outputs the input and output (differently!).

32789 \cs_new:Npn __text_change_case_upper_el:nnnnn #1#2#3#4#5
32790 {
32791 \bool_lazy_and:nnTF
32792 { __text_change_case_if_greek_p:n {#5} }
32793 {
32794 ! \bool_lazy_or_p:nn
32795 { __text_codepoint_compare_p:nNn {#5} = { "0374 } }
32796 { __text_codepoint_compare_p:nNn {#5} = { "037E } }
32797 }
32798 {
32799 __text_change_case_if_greek_spacing_diacritic:nTF {#5}
32800 {
32801 __text_change_case_store:n {#5}
32802 __text_change_case_loop:nnnw
32803 }
32804 {
32805 \exp_args:Ne __text_change_case_upper_el:nnnn
32806 {
32807 \codepoint_to_nfd:n
32808 { __text_codepoint_from_chars:Nw #5 }
32809 }
32810 }
32811 {#2} {#3} {#4}
32812 }
32813 {
32814 __text_codepoint_compare:nNnTF {#5} = { "0345 }
32815 {
32816 __text_change_case_store:e
32817 {
32818 \codepoint_generate:nn { "0399 }
32819 { \char_value_catcode:n { "0399 } }
32820 }
32821 __text_change_case_loop:nnnw {#2} {#3} {#4}
32822 }
32823 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
32824 }

1322

https://icu.unicode.org/design/case/greek-upper

32825 }
32826 \cs_new_eq:cN { __text_change_case_upper_el-x-iota:nnnnn }
32827 __text_change_case_upper_el:nnnnn
32828 \cs_new:Npn __text_change_case_upper_el:nnnn #1#2#3#4
32829 {
32830 __text_codepoint_process:nN
32831 { __text_change_case_upper_el:nnnnw {#2} {#3} {#4} } #1
32832 }

At this stage we have the first NFD codepoint as #3. What we need to know is whether
after that we have another character, either from the NFD or directly in the input. If
not, we store the changed character at this stage.

32833 \cs_new:Npn __text_change_case_upper_el:nnnnw #1#2#3#4#5 \q__text_recursion_stop
32834 {
32835 \tl_if_head_is_N_type:nTF {#5}
32836 { __text_change_case_upper_el:nnnnN {#4} }
32837 {
32838 __text_change_case_store:e
32839 { __text_change_case_codepoint:nn { upper } {#4} }
32840 __text_change_case_loop:nnnw
32841 }
32842 {#1} {#2} {#3} #5 \q__text_recursion_stop
32843 }

Now, we check the detail of the next codepoint: again we filter out the not-a-char cases,
before checking if it’s an dialytika, accent or diacritic. (The latter do not have the
same hiatus behavior as accents.) There is additional work if the codepoint can take a
ypogegrammeni: there, we need to move any ypogegrammeni to after accents (in case
the input is not normalised). The ypogegrammeni itself is handled separately.

32844 \cs_new:Npn __text_change_case_upper_el:nnnnN #1#2#3#4#5
32845 {
32846 \token_if_cs:NTF #5
32847 {
32848 __text_change_case_store:e
32849 { __text_change_case_codepoint:nn { upper } {#1} }
32850 __text_change_case_loop:nnnw {#2} {#3} {#4} #5
32851 }
32852 {
32853 __text_change_case_if_takes_ypogegrammeni:nTF {#1}
32854 {
32855 __text_change_case_upper_el_ypogegrammeni:nnnnnnw
32856 {#1} {#2} {#3} {#4} { } { } #5
32857 }
32858 { __text_change_case_upper_el_aux:nnnnN {#1} {#2} {#3} {#4} #5 }
32859 }
32860 }
32861 \cs_new:Npn __text_change_case_upper_el_ypogegrammeni:nnnnnnw
32862 #1#2#3#4#5#6#7 \q__text_recursion_stop
32863 {
32864 \tl_if_head_is_N_type:nTF {#7}
32865 {
32866 __text_change_case_upper_el_ypogegrammeni:nnnnnnN
32867 {#1} {#2} {#3} {#4} {#5} {#6}
32868 }

1323

32869 { __text_change_case_upper_el_aux:nnnnN {#1} {#2} {#3} {#4} #5#6 }
32870 #7 \q__text_recursion_stop
32871 }
32872 \cs_new:Npn __text_change_case_upper_el_ypogegrammeni:nnnnnnN #1#2#3#4#5#6#7
32873 {
32874 \token_if_cs:NTF #7
32875 { __text_change_case_upper_el_aux:nnnnN {#1} {#2} {#3} {#4} #5#6 }
32876 {
32877 __text_codepoint_process:nN
32878 {
32879 __text_change_case_upper_el_ypogegrammeni:nnnnnnn
32880 {#1} {#2} {#3} {#4} {#5} {#6}
32881 }
32882 }
32883 #7
32884 }
32885 \cs_new:Npn __text_change_case_upper_el_ypogegrammeni:nnnnnnn #1#2#3#4#5#6#7
32886 {
32887 __text_codepoint_compare:nNnTF {#7} = { "0345 }
32888 {
32889 __text_change_case_upper_el_ypogegrammeni:nnnnnnw
32890 {#1} {#2} {#3} {#4} {#5} {#7}
32891 }
32892 {
32893 \bool_lazy_or:nnTF
32894 { __text_change_case_if_greek_accent_p:n {#7} }
32895 { __text_change_case_if_greek_breathing_p:n {#7} }
32896 {
32897 __text_change_case_upper_el_ypogegrammeni:nnnnnnw
32898 {#1} {#2} {#3} {#4} {#5#7} {#6}
32899 }
32900 { __text_change_case_upper_el_aux:nnnnN {#1} {#2} {#3} {#4} #5#6 #7 }
32901 }
32902 }
32903 \cs_new:Npn __text_change_case_upper_el_aux:nnnnN #1#2#3#4#5
32904 {
32905 __text_codepoint_process:nN
32906 { __text_change_case_upper_el_aux:nnnnn {#1} {#2} {#3} {#4} } #5
32907 }
32908 \cs_new:Npn __text_change_case_upper_el_aux:nnnnn #1#2#3#4#5
32909 {
32910 __text_codepoint_compare:nNnTF {#5} = { "0308 }
32911 { __text_change_case_upper_el_dialytika:nnnn {#2} {#3} {#4} {#1} }
32912 {
32913 __text_change_case_if_greek_accent:nTF {#5}
32914 { __text_change_case_upper_el_hiatus:nnnnw {#2} {#3} {#4} {#1} }
32915 {
32916 __text_change_case_if_greek_breathing:nTF {#5}
32917 { __text_change_case_upper_el:nnnn {#1} {#2} {#3} {#4} }
32918 {
32919 __text_codepoint_compare:nNnTF {#5} = { "0345 }
32920 {
32921 __text_change_case_store:e
32922 { \use:c { __text_change_case_upper_ #4 _ypogegrammeni:n } {#1} }

1324

32923 __text_change_case_loop:nnnw {#2} {#3} {#4}
32924 }
32925 {
32926 __text_change_case_if_greek_stress:nTF {#5}
32927 {
32928 __text_change_case_store:e
32929 { __text_change_case_upper_el_stress:nn {#1} {#5} }
32930 __text_change_case_loop:nnnw {#2} {#3} {#4}
32931

32932 }
32933 {
32934 __text_change_case_store:e
32935 { __text_change_case_codepoint:nn { upper } {#1} }
32936 __text_change_case_loop:nnnw {#2} {#3} {#4} #5
32937 }
32938 }
32939 }
32940 }
32941 }
32942 }

We handle dialytika in parts as it’s also needed for the hiatus. We know only two letters
take it, so we can shortcut here on the second part of the tests.

32943 \cs_new:Npn __text_change_case_upper_el_dialytika:nnnn #1#2#3#4
32944 {
32945 __text_change_case_if_takes_dialytika:nTF {#4}
32946 { __text_change_case_upper_el_dialytika:n {#4} }
32947 {
32948 __text_change_case_store:e
32949 { __text_change_case_codepoint:nn { upper } {#4} }
32950 }
32951 __text_change_case_upper_el_gobble:nnnw {#1} {#2} {#3}
32952 }
32953 \cs_new:Npn __text_change_case_upper_el_dialytika:n #1
32954 {
32955 __text_change_case_store:e
32956 {
32957 \bool_lazy_or:nnTF
32958 { __text_codepoint_compare_p:nNn {#1} = { "0399 } }
32959 { __text_codepoint_compare_p:nNn {#1} = { "03B9 } }
32960 {
32961 \codepoint_generate:nn { "03AA }
32962 { __text_change_case_catcode:nn {#1} { "03AA } }
32963 }
32964 {
32965 \codepoint_generate:nn { "03AB }
32966 { __text_change_case_catcode:nn {#1} { "03AB } }
32967 }
32968 }
32969 }

Adding a hiatus needs some of the same ideas, but if there is not one we skip this code
point, hence needing a separate function.

32970 \cs_new:Npn __text_change_case_upper_el_hiatus:nnnnw
32971 #1#2#3#4#5 \q__text_recursion_stop

1325

32972 {
32973 \tl_if_head_is_N_type:nTF {#5}
32974 { __text_change_case_upper_el_hiatus:nnnnN {#4} }
32975 {
32976 __text_change_case_store:e
32977 { __text_change_case_codepoint:nn { upper } {#4} }
32978 __text_change_case_loop:nnnw
32979 }
32980 {#1} {#2} {#3} #5 \q__text_recursion_stop
32981 }
32982 \cs_new:Npn __text_change_case_upper_el_hiatus:nnnnN #1#2#3#4#5
32983 {
32984 \token_if_cs:NTF #5
32985 {
32986 __text_change_case_store:e
32987 { __text_change_case_codepoint:nn { upper } {#1} }
32988 __text_change_case_loop:nnnw {#2} {#3} {#4} #5
32989 }
32990 {
32991 __text_codepoint_process:nN
32992 { __text_change_case_upper_el_hiatus:nnnnn {#1} {#2} {#3} {#4} } #5
32993 }
32994 }
32995 \cs_new:Npn __text_change_case_upper_el_hiatus:nnnnn #1#2#3#4#5
32996 {
32997 __text_change_case_if_takes_dialytika:nTF {#5}
32998 {
32999 __text_change_case_store:e
33000 { __text_change_case_codepoint:nn { upper } {#1} }
33001 __text_change_case_upper_el_dialytika:n {#5}
33002 __text_change_case_upper_el_gobble:nnnw {#2} {#3} {#4}
33003 }
33004 { __text_change_case_upper_el:nnnn {#1} {#2} {#3} {#4} #5 }
33005 }

Handling the ypogegrammeni output depends on the selected approach
33006 \cs_new:Npn __text_change_case_upper_el_ypogegrammeni:n #1
33007 {
33008 \exp_args:Ne __text_change_case_generate:n
33009 {
33010 \int_case:nn
33011 { __text_codepoint_from_chars:Nw #1 }
33012 {
33013 { "0391 } { "1FBC }
33014 { "03B1 } { "1FBC }
33015 { "0397 } { "1FCC }
33016 { "03B7 } { "1FCC }
33017 { "03A9 } { "1FFC }
33018 { "03C9 } { "1FFC }
33019 }
33020 }
33021 }
33022 \cs_new:cpn { __text_change_case_upper_el-x-iota_ypogegrammeni:n } #1
33023 {
33024 __text_change_case_codepoint:nn { upper } {#1}

1326

33025 \codepoint_generate:nn { "0399 }
33026 { \char_value_catcode:n { "0399 } }
33027 }

We choose to retain stress diacritics, but we also need to recombine them for pdfTEX.
That is handled here.

33028 \cs_new:Npn __text_change_case_upper_el_stress:nn #1#2
33029 {
33030 \exp_args:Ne __text_change_case_generate:n
33031 {
33032 \int_case:nn
33033 { __text_codepoint_from_chars:Nw #2 }
33034 {
33035 { "0304 }
33036 {
33037 \int_case:nn { __text_codepoint_from_chars:Nw #1 }
33038 {
33039 { "0391 } { "1FB9 }
33040 { "03B1 } { "1FB9 }
33041 { "0399 } { "1FD9 }
33042 { "03B9 } { "1FD9 }
33043 { "03A5 } { "1FE9 }
33044 { "03C5 } { "1FE9 }
33045 }
33046 }
33047 { "0306 }
33048 {
33049 \int_case:nn { __text_codepoint_from_chars:Nw #1 }
33050 {
33051 { "0391 } { "1FB8 }
33052 { "03B1 } { "1FB8 }
33053 { "0399 } { "1FD8 }
33054 { "03B9 } { "1FD8 }
33055 { "03A5 } { "1FE8 }
33056 { "03C5 } { "1FE8 }
33057 }
33058 }
33059 }
33060 }
33061 }

For clearing out trailing combining marks after we have dealt with the first one.
33062 \cs_new:Npn __text_change_case_upper_el_gobble:nnnw
33063 #1#2#3#4 \q__text_recursion_stop
33064 {
33065 \tl_if_head_is_N_type:nTF {#4}
33066 { __text_change_case_upper_el_gobble:nnnN }
33067 { __text_change_case_loop:nnnw }
33068 {#1} {#2} {#3} #4 \q__text_recursion_stop
33069 }
33070 \cs_new:Npn __text_change_case_upper_el_gobble:nnnN #1#2#3#4
33071 {
33072 \token_if_cs:NTF #4
33073 { __text_change_case_loop:nnnw {#1} {#2} {#3} }
33074 {

1327

33075 __text_codepoint_process:nN
33076 { __text_change_case_upper_el_gobble:nnnn {#1} {#2} {#3} }
33077 }
33078 #4
33079 }
33080 \cs_new:Npn __text_change_case_upper_el_gobble:nnnn #1#2#3#4
33081 {
33082 \bool_lazy_or:nnTF
33083 { __text_change_case_if_greek_accent_p:n {#4} }
33084 { __text_change_case_if_greek_breathing_p:n {#4} }
33085 { __text_change_case_upper_el_gobble:nnnw {#1} {#2} {#3} }
33086 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33087 }

Luckily the Greek range is limited and clear.
33088 \prg_new_conditional:Npnn __text_change_case_if_greek:n #1 { p , TF }
33089 {
33090 \exp_args:Nf __text_change_case_if_greek:n
33091 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33092 }
33093 \cs_new:Npn __text_change_case_if_greek:n #1
33094 {
33095 \if_int_compare:w #1 < "0370 \exp_stop_f:
33096 \prg_return_false:
33097 \else:
33098 \if_int_compare:w #1 > "03FF \exp_stop_f:
33099 \if_int_compare:w #1 < "1F00 \exp_stop_f:
33100 \prg_return_false:
33101 \else:
33102 \if_int_compare:w #1 > "1FFF \exp_stop_f:
33103 \if_int_compare:w #1 = "2126 \exp_stop_f:
33104 \prg_return_true:
33105 \else:
33106 \prg_return_false:
33107 \fi:
33108 \else:
33109 \prg_return_true:
33110 \fi:
33111 \fi:
33112 \else:
33113 \prg_return_true:
33114 \fi:
33115 \fi:
33116 }

We follow ICU in adding a few extras to the accent list here.
33117 \prg_new_conditional:Npnn __text_change_case_if_greek_accent:n #1 { TF , p }
33118 {
33119 \exp_args:Nf __text_change_case_if_greek_accent:n
33120 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33121 }
33122 \cs_new:Npn __text_change_case_if_greek_accent:n #1
33123 {
33124 \if_int_compare:w #1 = "0300 \exp_stop_f:
33125 \prg_return_true:

1328

33126 \else:
33127 \if_int_compare:w #1 = "0301 \exp_stop_f:
33128 \prg_return_true:
33129 \else:
33130 \if_int_compare:w #1 = "0342 \exp_stop_f:
33131 \prg_return_true:
33132 \else:
33133 \if_int_compare:w #1 = "0302 \exp_stop_f:
33134 \prg_return_true:
33135 \else:
33136 \if_int_compare:w #1 = "0303 \exp_stop_f:
33137 \prg_return_true:
33138 \else:
33139 \if_int_compare:w #1 = "0311 \exp_stop_f:
33140 \prg_return_true:
33141 \else:
33142 \prg_return_false:
33143 \fi:
33144 \fi:
33145 \fi:
33146 \fi:
33147 \fi:
33148 \fi:
33149 }
33150 \prg_new_conditional:Npnn __text_change_case_if_greek_spacing_diacritic:n
33151 #1 { TF }
33152 {
33153 \exp_args:Nf __text_change_case_if_greek_spacing_diacritic:n
33154 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33155 }
33156 \cs_new:Npn __text_change_case_if_greek_spacing_diacritic:n #1
33157 {
33158 \if_int_compare:w #1 < "1FBD \exp_stop_f:
33159 \if_int_compare:w #1 = "037A \exp_stop_f:
33160 \prg_return_true:
33161 \else:
33162 \prg_return_false:
33163 \fi:
33164 \else:
33165 \if_int_compare:w #1 = "1FBD \exp_stop_f:
33166 \prg_return_true:
33167 \else:
33168 \if_int_compare:w #1 = "1FBF \exp_stop_f:
33169 \prg_return_true:
33170 \else:
33171 \if_int_compare:w #1 = "1FC0 \exp_stop_f:
33172 \prg_return_true:
33173 \else:
33174 \if_int_compare:w #1 = "1FC1 \exp_stop_f:
33175 \prg_return_true:
33176 \else:
33177 \if_int_compare:w #1 = "1FCD \exp_stop_f:
33178 \prg_return_true:
33179 \else:

1329

33180 \if_int_compare:w #1 = "1FCE \exp_stop_f:
33181 \prg_return_true:
33182 \else:
33183 \if_int_compare:w #1 = "1FCF \exp_stop_f:
33184 \prg_return_true:
33185 \else:
33186 \if_int_compare:w #1 = "1FDD \exp_stop_f:
33187 \prg_return_true:
33188 \else:
33189 \if_int_compare:w #1 = "1FDE \exp_stop_f:
33190 \prg_return_true:
33191 \else:
33192 \if_int_compare:w #1 = "1FDF \exp_stop_f:
33193 \prg_return_true:
33194 \else:
33195 \if_int_compare:w #1 = "1FED \exp_stop_f:
33196 \prg_return_true:
33197 \else:
33198 \if_int_compare:w #1 = "1FEE \exp_stop_f:
33199 \prg_return_true:
33200 \else:
33201 \if_int_compare:w #1 = "1FEF \exp_stop_f:
33202 \prg_return_true:
33203 \else:
33204 \if_int_compare:w #1 = "1FFD \exp_stop_f:
33205 \prg_return_true:
33206 \else:
33207 \if_int_compare:w #1 = "1FFE \exp_stop_f:
33208 \prg_return_true:
33209 \else:
33210 \prg_return_false:
33211 \fi:
33212 \fi:
33213 \fi:
33214 \fi:
33215 \fi:
33216 \fi:
33217 \fi:
33218 \fi:
33219 \fi:
33220 \fi:
33221 \fi:
33222 \fi:
33223 \fi:
33224 \fi:
33225 \fi:
33226 \fi:
33227 }
33228 \prg_new_conditional:Npnn __text_change_case_if_greek_breathing:n
33229 #1 { TF , p }
33230 {
33231 \exp_args:Nf __text_change_case_if_greek_breathing:n
33232 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33233 }

1330

33234 \cs_new:Npn __text_change_case_if_greek_breathing:n #1
33235 {
33236 \if_int_compare:w #1 = "0313 \exp_stop_f:
33237 \prg_return_true:
33238 \else:
33239 \if_int_compare:w #1 = "0314 \exp_stop_f:
33240 \prg_return_true:
33241 \else:
33242 \prg_return_false:
33243 \fi:
33244 \fi:
33245 }
33246 \prg_new_conditional:Npnn __text_change_case_if_greek_stress:n
33247 #1 { TF , p }
33248 {
33249 \exp_args:Nf __text_change_case_if_greek_stress:n
33250 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33251 }
33252 \cs_new:Npn __text_change_case_if_greek_stress:n #1
33253 {
33254 \if_int_compare:w #1 = "0304 \exp_stop_f:
33255 \prg_return_true:
33256 \else:
33257 \if_int_compare:w #1 = "0306 \exp_stop_f:
33258 \prg_return_true:
33259 \else:
33260 \prg_return_false:
33261 \fi:
33262 \fi:
33263 }
33264 \prg_new_conditional:Npnn __text_change_case_if_takes_dialytika:n #1 { TF }
33265 {
33266 \exp_args:Nf __text_change_case_if_takes_dialytika:n
33267 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33268 }
33269 \cs_new:Npn __text_change_case_if_takes_dialytika:n #1
33270 {
33271 \if_int_compare:w #1 = "0399 \exp_stop_f:
33272 \prg_return_true:
33273 \else:
33274 \if_int_compare:w #1 = "03B9 \exp_stop_f:
33275 \prg_return_true:
33276 \else:
33277 \if_int_compare:w #1 = "03A5 \exp_stop_f:
33278 \prg_return_true:
33279 \else:
33280 \if_int_compare:w #1 = "03C5 \exp_stop_f:
33281 \prg_return_true:
33282 \else:
33283 \prg_return_false:
33284 \fi:
33285 \fi:
33286 \fi:
33287 \fi:

1331

33288 }
33289 \prg_new_conditional:Npnn __text_change_case_if_takes_ypogegrammeni:n #1 { TF }
33290 {
33291 \exp_args:Nf __text_change_case_if_takes_ypogegrammeni:n
33292 { \int_eval:n { __text_codepoint_from_chars:Nw #1 } }
33293 }
33294 \cs_new:Npn __text_change_case_if_takes_ypogegrammeni:n #1
33295 {
33296 \if_int_compare:w #1 = "03B1 \exp_stop_f:
33297 \prg_return_true:
33298 \else:
33299 \if_int_compare:w #1 = "03B7 \exp_stop_f:
33300 \prg_return_true:
33301 \else:
33302 \if_int_compare:w #1 = "03C9 \exp_stop_f:
33303 \prg_return_true:
33304 \else:
33305 \prg_return_false:
33306 \fi:
33307 \fi:
33308 \fi:
33309 }

(End of definition for __text_change_case_upper_el:nnnnn and others.)

__text_change_case_boundary_upper_el:Nnnnw
__text_change_case_boundary_upper_el-x-iota:Nnnnw

__text_change_case_boundary_upper_el:nnnN
__text_change_case_boundary_upper_el:nnnn
__text_change_case_boundary_upper_el:nnnnw

There is one things that need special treatment at the start of words in Greek. For an
isolated accent eta, which is handled by seeing if we have exactly one of the affected
codepoints followed by a space or brace group.

33310 \cs_new:Npn __text_change_case_boundary_upper_el:Nnnnw
33311 #1#2#3#4#5 \q__text_recursion_stop
33312 {
33313 \tl_if_head_is_N_type:nTF {#5}
33314 { __text_change_case_boundary_upper_el:nnnN }
33315 { __text_change_case_loop:nnnw }
33316 {#2} {#3} {#4} #5 \q__text_recursion_stop
33317 }
33318 \cs_new_eq:cN { __text_change_case_boundary_upper_el-x-iota:Nnnnw }
33319 __text_change_case_boundary_upper_el:Nnnnw
33320 \cs_new:Npn __text_change_case_boundary_upper_el:nnnN #1#2#3#4
33321 {
33322 \token_if_cs:NTF #4
33323 { __text_change_case_loop:nnnw {#1} {#2} {#3} }
33324 {
33325 __text_codepoint_process:nN
33326 { __text_change_case_boundary_upper_el:nnnn {#1} {#2} {#3} }
33327 }
33328 #4
33329 }
33330 \cs_new:Npn __text_change_case_boundary_upper_el:nnnn #1#2#3#4
33331 {
33332 \bool_lazy_any:nTF
33333 {
33334 { __text_codepoint_compare_p:nNn {#4} = { "0389 } }
33335 { __text_codepoint_compare_p:nNn {#4} = { "03AE } }

1332

33336 { __text_codepoint_compare_p:nNn {#4} = { "1F22 } }
33337 { __text_codepoint_compare_p:nNn {#4} = { "1F2A } }
33338 }
33339 { __text_change_case_boundary_upper_el:nnnnw {#1} {#2} {#3} {#4} }
33340 { __text_change_case_breathing:nnnn {#1} {#2} {#3} {#4} }
33341 }
33342 \cs_new:Npn __text_change_case_boundary_upper_el:nnnnw
33343 #1#2#3#4#5 \q__text_recursion_stop
33344 {
33345 \tl_if_head_is_N_type:nTF {#5}
33346 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33347 {
33348 __text_change_case_store:e
33349 {
33350 \codepoint_generate:nn { "0389 }
33351 { __text_change_case_catcode:nn {#4} { "0389 } }
33352 }
33353 __text_change_case_loop:nnnw {#1} {#2} {#3}
33354 }
33355 #5 \q__text_recursion_stop
33356 }

(End of definition for __text_change_case_boundary_upper_el:Nnnnw and others.)

__text_change_case_breathing:nnnn
__text_change_case_breathing:nnnnn

__text_change_case_breathing:nnnnnw
__text_change_case_breathing:nnnnnnw

__text_change_case_breathing_aux:nnnnnn
__text_change_case_breathing_aux:nnnnw
__text_change_case_breathing_aux:nnnN

__text_change_case_breathing_dialytika:nnnn

In Greek, breathing diacritics are normally dropped when uppercasing: see the code for
the general case. However, for the first character of a word, if there is a breather and
the next character takes a dialytika, it needs to be added. We start by checking if the
current codepoint is in the Greek range, then decomposing.

33357 \cs_new:Npn __text_change_case_breathing:nnnn #1#2#3#4
33358 {
33359 __text_change_case_if_greek:nTF {#4}
33360 {
33361 \exp_args:Ne __text_change_case_breathing:nnnnn
33362 {
33363 \codepoint_to_nfd:n
33364 { __text_codepoint_from_chars:Nw #4 }
33365 }
33366 {#1} {#2} {#3} {#4}
33367 }
33368 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33369 }
33370 \cs_new:Npn __text_change_case_breathing:nnnnn #1#2#3#4#5
33371 {
33372 __text_codepoint_process:nN
33373 { __text_change_case_breathing:nnnnnw {#2} {#3} {#4} {#5} }
33374 #1 \q_mark
33375 }

Normal form decomposition will always give between one and three codepoints. Luckily,
the two breathing marks (psili and dasia) will be in a predictable position: last. So we
can quickly establish first that there was a change on decomposition, and second if the
final resulting codepoint is one of the two we care about.

33376 \cs_new:Npn __text_change_case_breathing:nnnnnw #1#2#3#4#5#6 \q_mark
33377 {

1333

33378 \tl_if_blank:nTF {#6}
33379 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33380 {
33381 __text_codepoint_process:nN
33382 { __text_change_case_breathing:nnnnnnw {#1} {#2} {#3} {#4} {#5} }
33383 #6 \q_mark
33384 }
33385 }
33386 \cs_new:Npn __text_change_case_breathing:nnnnnnw #1#2#3#4#5#6#7 \q_mark
33387 {
33388 \tl_if_blank:nTF {#7}
33389 {
33390 __text_change_case_breathing_aux:nnnnnn
33391 {#1} {#2} {#3} {#4} {#5} {#6}
33392 }
33393 {
33394 __text_codepoint_process:nN
33395 { __text_change_case_breathing:nnnnnnw {#1} {#2} {#3} {#4} {#5} }
33396 #7 \q_mark
33397 }
33398 }
33399 \cs_new:Npn __text_change_case_breathing_aux:nnnnnn #1#2#3#4#5#6
33400 {
33401 \bool_lazy_or:nnTF
33402 { __text_codepoint_compare_p:nNn {#6} = { "0313 } }
33403 { __text_codepoint_compare_p:nNn {#6} = { "0314 } }
33404 { __text_change_case_breathing_aux:nnnnw {#1} {#2} {#3} {#5} }
33405 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33406 }

Now the lookahead can be fired: check the next codepoint and assess whether it takes a
dialytika. Drop the breathing mark or generate the dialytika: the latter is code shared
with the general mechanism.

33407 \cs_new:Npn __text_change_case_breathing_aux:nnnnw #1#2#3#4#5
33408 \q__text_recursion_stop
33409 {
33410 __text_change_case_store:e
33411 { __text_change_case_codepoint:nn { upper } {#4} }
33412 \tl_if_head_is_N_type:nTF {#5}
33413 { __text_change_case_breathing_aux:nnnN }
33414 { __text_change_case_loop:nnnw }
33415 {#1} {#2} {#3} #5 \q__text_recursion_stop
33416 }
33417 \cs_new:Npn __text_change_case_breathing_aux:nnnN #1#2#3#4
33418 {
33419 __text_codepoint_process:nN
33420 { __text_change_case_breathing_dialytika:nnnn {#1} {#2} {#3} } #4
33421 }
33422 \cs_new:Npn __text_change_case_breathing_dialytika:nnnn #1#2#3#4
33423 {
33424 __text_change_case_if_takes_dialytika:nTF {#4}
33425 {
33426 __text_change_case_upper_el_dialytika:n {#4}
33427 __text_change_case_loop:nnnw {#1} {#2} {#3}

1334

33428 }
33429 { __text_change_case_loop:nnnw {#1} {#2} {#3} #4 }
33430 }

(End of definition for __text_change_case_breathing:nnnn and others.)

__text_change_case_title_el:nnnnn Titlecasing retains accents, but to prevent the uppercasing code from kicking in, there
has to be an explicit function here.

33431 \cs_new:Npn __text_change_case_title_el:nnnnn #1#2#3#4#5
33432 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }

(End of definition for __text_change_case_title_el:nnnnn.)

__text_change_case_upper_hy:nnnnn
__text_change_case_title_hy:nnnnn

__text_change_case_upper_hy-x-yiwn:nnnnn
__text_change_case_title_hy-x-yiwn:nnnnn

See https://www.unicode.org/L2/L2020/20143-armenian-ech-yiwn.pdf.
33433 \cs_new:Npn __text_change_case_upper_hy:nnnnn #1#2#3#4#5
33434 {
33435 __text_codepoint_compare:nNnTF {#5} = { "0587 }
33436 {
33437 __text_change_case_store:e
33438 {
33439 \codepoint_generate:nn { "0535 }
33440 { __text_change_case_catcode:nn {#5} { "0535 } }
33441 \codepoint_generate:nn { "054E }
33442 { __text_change_case_catcode:nn {#5} { "054E } }
33443 }
33444 \use:c { __text_change_case_next_ #2 :nnn }
33445 {#2} {#3} {#4}
33446 }
33447 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33448 }
33449 \cs_new:Npn __text_change_case_title_hy:nnnnn #1#2#3#4#5
33450 {
33451 __text_codepoint_compare:nNnTF {#5} = { "0587 }
33452 {
33453 __text_change_case_store:e
33454 {
33455 \codepoint_generate:nn { "0535 }
33456 { __text_change_case_catcode:nn {#5} { "0535 } }
33457 \codepoint_generate:nn { "057E }
33458 { __text_change_case_catcode:nn {#5} { "057E } }
33459 }
33460 \use:c { __text_change_case_next_ #2 :nnn }
33461 {#2} {#3} {#4}
33462 }
33463 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33464 }
33465 \cs_new:cpn { __text_change_case_upper_hy-x-yiwn:nnnnn } #1#2#3#4#5
33466 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33467 \cs_new_eq:cc { __text_change_case_title_hy-x-yiwn:nnnnn }
33468 { __text_change_case_upper_hy-x-yiwn:nnnnn }

(End of definition for __text_change_case_upper_hy:nnnnn and others.)

1335

https://www.unicode.org/L2/L2020/20143-armenian-ech-yiwn.pdf

__text_change_case_lower_la-x-medieval:nnnnn
__text_change_case_upper_la-x-medieval:nnnnn

Simply swaps of characters.
33469 \cs_new:cpn { __text_change_case_lower_la-x-medieval:nnnnn } #1#2#3#4#5
33470 {
33471 __text_codepoint_compare:nNnTF {#5} = { "0056 }
33472 {
33473 __text_change_case_store:e
33474 { \char_generate:nn { "0075 } { __text_char_catcode:N #5 } }
33475 \use:c { __text_change_case_next_ #2 :nnn }
33476 {#2} {#3} {#4}
33477 }
33478 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33479 }
33480 \cs_new:cpn { __text_change_case_upper_la-x-medieval:nnnnn } #1#2#3#4#5
33481 {
33482 __text_codepoint_compare:nNnTF {#5} = { "0075 }
33483 {
33484 __text_change_case_store:e
33485 { \char_generate:nn { "0056 } { __text_char_catcode:N #5 } }
33486 \use:c { __text_change_case_next_ #2 :nnn }
33487 {#2} {#3} {#4}
33488 }
33489 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33490 }

(End of definition for __text_change_case_lower_la-x-medieval:nnnnn and __text_change_case_-
upper_la-x-medieval:nnnnn.)

__text_change_cases_lower_lt:nnnnn
__text_change_cases_lower_lt_auxi:nnnnn
__text_change_cases_lower_lt_auxii:nnnnn

__text_change_case_lower_lt:nnnw
__text_change_case_lower_lt:nnnN
__text_change_case_lower_lt:nnnn

For Lithuanian, the issue to be dealt with is dots over lower case letters: these should be
present if there is another accent. The first step is a simple match attempt: look for the
three uppercase accented letters which should gain a dot-above char in their lowercase
form.

33491 \cs_new:Npn __text_change_case_lower_lt:nnnnn #1#2#3#4#5
33492 {
33493 \exp_args:Ne __text_change_case_lower_lt_auxi:nnnnn
33494 {
33495 \int_case:nn { __text_codepoint_from_chars:Nw #5 }
33496 {
33497 { "00CC } { "0300 }
33498 { "00CD } { "0301 }
33499 { "0128 } { "0303 }
33500 }
33501 }
33502 {#2} {#3} {#4} {#5}
33503 }

If there was a hit, output the result with the dot-above and move on. Otherwise, look
for one of the three letters that can take a combining accent: I, J, and I-ogonek.

33504 \cs_new:Npn __text_change_case_lower_lt_auxi:nnnnn #1#2#3#4#5
33505 {
33506 \tl_if_blank:nTF {#1}
33507 {
33508 \exp_args:Ne __text_change_case_lower_lt_auxii:nnnnn
33509 {
33510 \int_case:nn { __text_codepoint_from_chars:Nw #5 }

1336

33511 {
33512 { "0049 } { "0069 }
33513 { "004A } { "006A }
33514 { "012E } { "012F }
33515 }
33516 }
33517 {#2} {#3} {#4} {#5}
33518 }
33519 {
33520 __text_change_case_store:e
33521 {
33522 \codepoint_generate:nn { "0069 }
33523 { __text_change_case_catcode:nn {#5} { "0069 } }
33524 \codepoint_generate:nn { "0307 }
33525 { __text_change_case_catcode:nn {#5} { "0307 } }
33526 \codepoint_generate:nn {#1}
33527 { __text_change_case_catcode:nn {#5} {#1} }
33528 }
33529 __text_change_case_loop:nnnw {#2} {#3} {#4}
33530 }
33531 }

Again, branch depending on a hit. If there is one, we output the character then need to
look for a combining accent: as usual, we need to be aware of the loop situation.

33532 \cs_new:Npn __text_change_case_lower_lt_auxii:nnnnn #1#2#3#4#5
33533 {
33534 \tl_if_blank:nTF {#1}
33535 { __text_change_case_codepoint:nnnnn {#2} {#2} {#3} {#4} {#5} }
33536 {
33537 __text_change_case_store:e
33538 {
33539 \codepoint_generate:nn {#1}
33540 { __text_change_case_catcode:nn {#5} {#1} }
33541 }
33542 __text_change_case_lower_lt:nnnw {#2} {#3} {#4}
33543 }
33544 }
33545 \cs_new:Npn __text_change_case_lower_lt:nnnw #1#2#3#4 \q__text_recursion_stop
33546 {
33547 \tl_if_head_is_N_type:nTF {#4}
33548 { __text_change_case_lower_lt:nnnN }
33549 { __text_change_case_loop:nnnw }
33550 {#1} {#2} {#3} #4 \q__text_recursion_stop
33551 }
33552 \cs_new:Npn __text_change_case_lower_lt:nnnN #1#2#3#4
33553 {
33554 __text_codepoint_process:nN
33555 { __text_change_case_lower_lt:nnnn {#1} {#2} {#3} } #4
33556 }
33557 \cs_new:Npn __text_change_case_lower_lt:nnnn #1#2#3#4
33558 {
33559 \bool_lazy_and:nnT
33560 {
33561 \bool_lazy_or_p:nn

1337

33562 { ! \tl_if_single_p:n {#4} }
33563 { ! \token_if_cs_p:N #4 }
33564 }
33565 {
33566 \bool_lazy_any_p:n
33567 {
33568 { __text_codepoint_compare_p:nNn {#4} = { "0300 } }
33569 { __text_codepoint_compare_p:nNn {#4} = { "0301 } }
33570 { __text_codepoint_compare_p:nNn {#4} = { "0303 } }
33571 }
33572 }
33573 {
33574 __text_change_case_store:e
33575 {
33576 \codepoint_generate:nn { "0307 }
33577 { __text_change_case_catcode:nn {#4} { "0307 } }
33578 }
33579 }
33580 __text_change_case_loop:nnnw {#1} {#2} {#3} #4
33581 }

(End of definition for __text_change_cases_lower_lt:nnnnn and others.)

__text_change_cases_upper_lt:nnnnn
__text_change_cases_upper_lt_aux:nnnnn

__text_change_case_upper_lt:nnnw
__text_change_case_upper_lt:nnnN
__text_change_case_upper_lt:nnnn

The uppercasing version: first find i/j/i-ogonek, then look for the combining char: drop
it if present.

33582 \cs_new:Npn __text_change_case_upper_lt:nnnnn #1#2#3#4#5
33583 {
33584 \exp_args:Ne __text_change_case_upper_lt_aux:nnnnn
33585 {
33586 \int_case:nn { __text_codepoint_from_chars:Nw #5 }
33587 {
33588 { "0069 } { "0049 }
33589 { "006A } { "004A }
33590 { "012F } { "012E }
33591 }
33592 }
33593 {#2} {#3} {#4} {#5}
33594 }
33595 \cs_new:Npn __text_change_case_upper_lt_aux:nnnnn #1#2#3#4#5
33596 {
33597 \tl_if_blank:nTF {#1}
33598 { __text_change_case_codepoint:nnnnn { upper } {#2} {#3} {#4} {#5} }
33599 {
33600 __text_change_case_store:e
33601 {
33602 \codepoint_generate:nn {#1}
33603 { __text_change_case_catcode:nn {#5} {#1} }
33604 }
33605 __text_change_case_upper_lt:nnnw {#2} {#3} {#4}
33606 }
33607 }
33608 \cs_new:Npn __text_change_case_upper_lt:nnnw #1#2#3#4 \q__text_recursion_stop
33609 {
33610 \tl_if_head_is_N_type:nTF {#4}

1338

33611 { __text_change_case_upper_lt:nnnN }
33612 { \use:c { __text_change_case_next_ #1 :nnn } }
33613 {#1} {#2} {#3} #4 \q__text_recursion_stop
33614 }
33615 \cs_new:Npn __text_change_case_upper_lt:nnnN #1#2#3#4
33616 {
33617 __text_codepoint_process:nN
33618 { __text_change_case_upper_lt:nnnn {#1} {#2} {#3} } #4
33619 }
33620 \cs_new:Npn __text_change_case_upper_lt:nnnn #1#2#3#4
33621 {
33622 \bool_lazy_and:nnTF
33623 {
33624 \bool_lazy_or_p:nn
33625 { ! \tl_if_single_p:n {#4} }
33626 { ! \token_if_cs_p:N #4 }
33627 }
33628 { __text_codepoint_compare_p:nNn {#4} = { "0307 } }
33629 { \use:c { __text_change_case_next_ #1 :nnn } {#1} {#2} {#3} }
33630 { \use:c { __text_change_case_next_ #1 :nnn } {#1} {#2} {#3} #4 }
33631 }

(End of definition for __text_change_cases_upper_lt:nnnnn and others.)

__text_change_case_title_nl:nnnnn
__text_change_case_title_nl_aux:nnnnn

__text_change_case_title_nl:nnnw
__text_change_case_title_nl:nnnN

For Dutch, there is a single look-ahead test for ij when title casing. If the appropriate
letters are found, produce IJ and gobble the j/J.

33632 \cs_new:Npn __text_change_case_title_nl:nnnnn #1#2#3#4#5
33633 {
33634 \tl_if_single:nTF {#5}
33635 { __text_change_case_title_nl_aux:nnnnn }
33636 { __text_change_case_codepoint:nnnnn }
33637 {#1} {#2} {#3} {#4} {#5}
33638 }
33639 \cs_new:Npn __text_change_case_title_nl_aux:nnnnn #1#2#3#4#5
33640 {
33641 \bool_lazy_or:nnTF
33642 { \int_compare_p:nNn {‘#5} = { "0049 } }
33643 { \int_compare_p:nNn {‘#5} = { "0069 } }
33644 {
33645 __text_change_case_store:e
33646 { \char_generate:nn { "0049 } { __text_char_catcode:N #5 } }
33647 __text_change_case_title_nl:nnnw {#2} {#3} {#4}
33648 }
33649 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33650 }
33651 \cs_new:Npn __text_change_case_title_nl:nnnw #1#2#3#4 \q__text_recursion_stop
33652 {
33653 \tl_if_head_is_N_type:nTF {#4}
33654 { __text_change_case_title_nl:nnnN }
33655 { \use:c { __text_change_case_next_ #1 :nnn } }
33656 {#1} {#2} {#3} #4 \q__text_recursion_stop
33657 }
33658 \cs_new:Npn __text_change_case_title_nl:nnnN #1#2#3#4
33659 {

1339

33660 \bool_lazy_and:nnTF
33661 { ! \token_if_cs_p:N #4 }
33662 {
33663 \bool_lazy_or_p:nn
33664 { \int_compare_p:nNn {‘#4} = { "004A } }
33665 { \int_compare_p:nNn {‘#4} = { "006A } }
33666 }
33667 {
33668 __text_change_case_store:e
33669 { \char_generate:nn { "004A } { __text_char_catcode:N #4 } }
33670 \use:c { __text_change_case_next_ #1 :nnn } {#1} {#2} {#3}
33671 }
33672 { \use:c { __text_change_case_next_ #1 :nnn } {#1} {#2} {#3} #4 }
33673 }

(End of definition for __text_change_case_title_nl:nnnnn and others.)

__text_change_case_lower_tr:nnnnn
__text_change_case_lower_tr:nnnNw
__text_change_case_lower_tr:NnnnN
__text_change_case_lower_tr:Nnnnn

The Turkic languages need special treatment for dotted-i and dotless-i. The lower casing
rule can be expressed in terms of searching first for either a dotless-I or a dotted-I. In
the latter case the mapping is easy, but in the former there is a second stage search.

33674 \cs_new:Npn __text_change_case_lower_tr:nnnnn #1#2#3#4#5
33675 {
33676 __text_codepoint_compare:nNnTF {#5} = { "0049 }
33677 { __text_change_case_lower_tr:nnnNw {#1} {#3} {#4} #5 }
33678 {
33679 __text_codepoint_compare:nNnTF {#5} = { "0130 }
33680 {
33681 __text_change_case_store:e
33682 {
33683 \codepoint_generate:nn { "0069 }
33684 { __text_change_case_catcode:nn {#5} { "0069 } }
33685 }
33686 __text_change_case_loop:nnnw {#1} {#3} {#4}
33687 }
33688 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33689 }
33690 }

After a dotless-I there may be a dot-above character. If there is then a dotted-i should be
produced, otherwise output a dotless-i. When the combination is found both the dotless-I
and the dot-above char have to be removed from the input.

33691 \cs_new:Npn __text_change_case_lower_tr:nnnNw #1#2#3#4#5 \q__text_recursion_stop
33692 {
33693 \tl_if_head_is_N_type:nTF {#5}
33694 { __text_change_case_lower_tr:NnnnN #4 {#1} {#2} {#3} }
33695 {
33696 __text_change_case_store:e
33697 {
33698 \codepoint_generate:nn { "0131 }
33699 { __text_change_case_catcode:nn {#4} { "0131 } }
33700 }
33701 __text_change_case_loop:nnnw {#1} {#2} {#3}
33702 }
33703 #5 \q__text_recursion_stop

1340

33704 }
33705 \cs_new:Npn __text_change_case_lower_tr:NnnnN #1#2#3#4#5
33706 {
33707 __text_codepoint_process:nN
33708 { __text_change_case_lower_tr:Nnnnn #1 {#2} {#3} {#4} } #5
33709 }
33710 \cs_new:Npn __text_change_case_lower_tr:Nnnnn #1#2#3#4#5
33711 {
33712 \bool_lazy_or:nnTF
33713 {
33714 \bool_lazy_and_p:nn
33715 { \tl_if_single_p:n {#5} }
33716 { \token_if_cs_p:N #5 }
33717 }
33718 { ! __text_codepoint_compare_p:nNn {#5} = { "0307 } }
33719 {
33720 __text_change_case_store:e
33721 {
33722 \codepoint_generate:nn { "0131 }
33723 { __text_change_case_catcode:nn {#1} { "0131 } }
33724 }
33725 __text_change_case_loop:nnnw {#2} {#3} {#4} #5
33726 }
33727 {
33728 __text_change_case_store:e
33729 {
33730 \codepoint_generate:nn { "0069 }
33731 { __text_change_case_catcode:nn {#1} { "0069 } }
33732 }
33733 __text_change_case_loop:nnnw {#2} {#3} {#4}
33734 }
33735 }

(End of definition for __text_change_case_lower_tr:nnnnn and others.)

__text_change_case_upper_tr:nnnnn Uppercasing is easier: just one exception with no context.
33736 \cs_new:Npn __text_change_case_upper_tr:nnnnn #1#2#3#4#5
33737 {
33738 __text_codepoint_compare:nNnTF {#5} = { "0069 }
33739 {
33740 __text_change_case_store:e
33741 {
33742 \codepoint_generate:nn { "0130 }
33743 { __text_change_case_catcode:nn {#5} { "0130 } }
33744 }
33745 \use:c { __text_change_case_next_ #2 :nnn } {#2} {#3} {#4}
33746 }
33747 { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }
33748 }

(End of definition for __text_change_case_upper_tr:nnnnn.)

__text_change_case_lower_az:nnnnn
__text_change_case_upper_az:nnnnn

Straight copies.
33749 \cs_new_eq:NN __text_change_case_lower_az:nnnnn
33750 __text_change_case_lower_tr:nnnnn

1341

33751 \cs_new_eq:NN __text_change_case_upper_az:nnnnn
33752 __text_change_case_upper_tr:nnnnn

(End of definition for __text_change_case_lower_az:nnnnn and __text_change_case_upper_az:nnnnn.)
The (fixed) look-up mappings for letter-like control sequences.

33753 \group_begin:
33754 \cs_set_protected:Npn __text_change_case_setup:NN #1#2
33755 {
33756 \quark_if_recursion_tail_stop:N #1
33757 \tl_const:cn { c__text_lowercase_ \token_to_str:N #1 _tl }
33758 { #2 }
33759 \tl_const:cn { c__text_uppercase_ \token_to_str:N #2 _tl }
33760 { #1 }
33761 __text_change_case_setup:NN
33762 }
33763 __text_change_case_setup:NN
33764 \AA \aa
33765 \AE \ae
33766 \DH \dh
33767 \DJ \dj
33768 \IJ \ij
33769 \L \l
33770 \NG \ng
33771 \O \o
33772 \OE \oe
33773 \SS \ss
33774 \TH \th
33775 \q_recursion_tail ?
33776 \q_recursion_stop
33777 \tl_const:cn { c__text_uppercase_ \token_to_str:N \i _tl } { I }
33778 \tl_const:cn { c__text_uppercase_ \token_to_str:N \j _tl } { J }
33779 \group_end:

To deal with possible encoding-specific extensions to \@uclclist, we check at the
end of the preamble. This will therefore only apply to LATEX 2ε package mode.

33780 \tl_if_exist:NT \@expl@finalise@setup@@
33781 {
33782 \tl_gput_right:Nn \@expl@finalise@setup@@
33783 {
33784 \tl_gput_right:Nn \@kernel@after@begindocument
33785 {
33786 \group_begin:
33787 \cs_set_protected:Npn __text_change_case_setup:Nn #1#2
33788 {
33789 \quark_if_recursion_tail_stop:N #1
33790 \tl_if_single_token:nT {#2}
33791 {
33792 \cs_if_exist:cF
33793 { c__text_uppercase_ \token_to_str:N #1 _tl }
33794 {
33795 \tl_const:cn
33796 { c__text_uppercase_ \token_to_str:N #1 _tl }
33797 { #2 }
33798 }

1342

33799 \cs_if_exist:cF
33800 { c__text_lowercase_ \token_to_str:N #2 _tl }
33801 {
33802 \tl_const:cn
33803 { c__text_lowercase_ \token_to_str:N #2 _tl }
33804 { #1 }
33805 }
33806 }
33807 __text_change_case_setup:Nn
33808 }
33809 \exp_after:wN __text_change_case_setup:Nn \@uclclist
33810 \q_recursion_tail ?
33811 \q_recursion_stop
33812 \group_end:
33813 }
33814 }
33815 }

A few adjustments to case mapping for combining chars: these are not needed for
the Unicode engines

33816 \sys_if_engine_opentype:F
33817 {
33818 \text_declare_uppercase_mapping:nn { "01F0 } { \v { J } }
33819 }

33820 ⟨/package⟩

1343

Chapter 89

l3text-map implementation

33821 ⟨∗package⟩

33822 ⟨@@=text⟩

89.1 Mapping to text
\text_map_function:nN

__text_map_function:nN
__text_map_loop:Nnw

__text_map_group:Nnn
__text_map_space:Nnw
__text_map_N_type:NnN

__text_map_codepoint:Nnn
__text_map_CR:Nnw
__text_map_CR:NnN

__text_map_class:Nnnn
__text_map_class:nNnnn

__text_map_class_loop:Nnnnw
__text_map_class_end:nw
__text_map_Control:Nnn
__text_map_Extend:Nnn

__text_map_SpacingMark:Nnn
__text_map_Prepend:Nnn

__text_map_Prepend_aux:Nnn
__text_map_Prepend:nNnn

__text_map_Prepend_loop:Nnnw
__text_map_not_Control:Nnn
__text_map_not_Extend:Nnn

__text_map_not_SpacingMark:Nnn
__text_map_not_Prepend:Nnn

__text_map_not_L:Nnn
__text_map_not_LV:Nnn
__text_map_not_V:Nnn

__text_map_not_LVT:Nnn
__text_map_not_T:Nnn

__text_map_L:Nnn
__text_map_LV:Nnn
__text_map_V:Nnn

__text_map_LVT:Nnn
__text_map_T:Nnn

__text_map_hangul:Nnnw
__text_map_hangul:NnnN
__text_map_hangul:Nnnn

__text_map_hangul_aux:Nnnnw
__text_map_hangul:nNnnnw

__text_map_hangul_loop:Nnnnnw
__text_map_hangul_next:Nnnn

__text_map_hangul_end:nw
__text_map_hangul_L:Nnn
__text_map_hangul_LV:Nnn
__text_map_hangul_V:Nnn

__text_map_hangul_LVT:Nnn
__text_map_hangul_T:Nnn

__text_map_Regional_Indicator:Nnn
__text_map_Regional_Indicator_aux:Nnn
__text_map_lookahead:NnNw
__text_map_lookahead:NnNN

__text_map_output:Nn
\text_map_break:
\text_map_break:n

The standard lead-off for an action loop.
33823 \cs_new:Npn \text_map_function:nN #1#2
33824 { \exp_args:Ne __text_map_function:nN { \text_expand:n {#1} } #2 }
33825 \cs_new:Npn __text_map_function:nN #1#2
33826 {
33827 __text_map_loop:Nnw #2 { } #1
33828 \q__text_recursion_tail \q__text_recursion_stop
33829 \prg_break_point:Nn \text_map_break: { }
33830 }

The standard set up for an “action” loop. Groups are handled by recursion, spaces are
treated similarly: both count as grapheme boundaries. For N-type tokens, we filter out
control sequences (again a boundary), then move on to further analysis.

33831 \cs_new:Npn __text_map_loop:Nnw #1#2#3 \q__text_recursion_stop
33832 {
33833 \tl_if_head_is_N_type:nTF {#3}
33834 { __text_map_N_type:NnN }
33835 {
33836 \tl_if_head_is_group:nTF {#3}
33837 { __text_map_group:Nnn }
33838 { __text_map_space:Nnw }
33839 }
33840 #1 {#2} #3 \q__text_recursion_stop
33841 }
33842 \cs_new:Npn __text_map_group:Nnn #1#2#3
33843 {
33844 __text_map_output:Nn #1 {#2}
33845 {
33846 __text_map_loop:Nnw #1 { } #2
33847 \q__text_recursion_tail \q__text_recursion_stop
33848 \prg_break_point:Nn \text_map_break: { }
33849 }

1344

33850 __text_map_loop:Nnw #1 { }
33851 }
33852 \use:e
33853 { \cs_new:Npn \exp_not:N __text_map_space:Nnw #1#2 \c_space_tl }
33854 {
33855 __text_map_output:Nn #1 {#2}
33856 #1 { ~ }
33857 __text_map_loop:Nnw #1 { }
33858 }
33859 \cs_new:Npn __text_map_N_type:NnN #1#2#3
33860 {
33861 __text_if_q_recursion_tail_stop_do:Nn #3
33862 {
33863 __text_map_output:Nn #1 {#2}
33864 \text_map_break:
33865 }
33866 \token_if_cs:NTF #3
33867 {
33868 __text_map_output:Nn #1 {#2}
33869 #1 {#3}
33870 __text_map_loop:Nnw #1 { }
33871 }
33872 {
33873 __text_codepoint_process:nN
33874 { __text_map_codepoint:Nnn #1 {#2} } #3
33875 }
33876 }

We pull out a few special cases here. Carriage returns case needs a bit of context handling
so has an auxiliary. Codepoint U+200D is the zero-width joiner, which has no context
to concern us: just don’t break.

33877 \cs_new:Npn __text_map_codepoint:Nnn #1#2#3
33878 {
33879 __text_codepoint_compare:nNnTF {#3} = { "0D }
33880 {
33881 __text_map_output:Nn #1 {#2}
33882 __text_map_CR:Nnw #1 {#3}
33883 }
33884 {
33885 __text_codepoint_compare:nNnTF {#3} = { "200D }
33886 { __text_map_loop:Nnw #1 {#2#3} }
33887 { __text_map_class:Nnnn #1 {#2} {#3} { Control } }
33888 }
33889 }

A carriage return is a boundary unless it is immediately followed by a line feed, in which
case that pair is a boundary.

33890 \cs_new:Npn __text_map_CR:Nnw #1#2#3 \q__text_recursion_stop
33891 {
33892 \tl_if_head_is_N_type:nTF {#3}
33893 { __text_map_CR:NnN #1 {#2} }
33894 {
33895 #1 {#2}
33896 __text_map_loop:Nnw #1 { }
33897 }

1345

33898 #3 \q__text_recursion_stop
33899 }
33900 \cs_new:Npn __text_map_CR:NnN #1#2#3
33901 {
33902 __text_if_q_recursion_tail_stop_do:Nn #3
33903 {
33904 #1 {#2}
33905 \text_map_break:
33906 }
33907 \bool_lazy_and:nnTF
33908 { ! \token_if_cs_p:N #3 }
33909 { \int_compare_p:nNn { ‘#3 } = { "0A } }
33910 {
33911 __text_map_output:Nn #1 {#2#3}
33912 __text_map_loop:Nnw #1 { }
33913 }
33914 { __text_map_loop:Nnw #1 { } #3 }
33915 }

There are various classes of character, and we deal with them all in the same general way.
We need to example the relevant list of codepoints: if we get a hit, then we do whatever
the relevant action is. Otherwise we loop, but only if the current codepoint could still
match: the loop stops early otherwise and we move forward.

33916 \cs_new:Npn __text_map_class:Nnnn #1#2#3#4
33917 {
33918 \exp_args:Nv __text_map_class:nNnnn { c__text_grapheme_ #4 _clist }
33919 #1 {#2} {#3} {#4}
33920 }
33921 \cs_new:Npn __text_map_class:nNnnn #1#2#3#4#5
33922 {
33923 __text_map_class_loop:Nnnnw #2 {#3} {#4} {#5}
33924 #1 , \q__text_recursion_tail .. , \q__text_recursion_stop
33925 }
33926 \cs_new:Npn __text_map_class_loop:Nnnnw #1#2#3#4 #5 .. #6 ,
33927 {
33928 __text_if_q_recursion_tail_stop_do:nn {#5}
33929 { \use:c { __text_map_not_ #4 :Nnn } #1 {#2} {#3} }
33930 __text_codepoint_compare:nNnTF {#3} < { "#5 }
33931 {
33932 __text_map_class_end:nw
33933 { \use:c { __text_map_not_ #4 :Nnn } #1 {#2} {#3} }
33934 }
33935 {
33936 __text_codepoint_compare:nNnTF {#3} > { "#6 }
33937 { __text_map_class_loop:Nnnnw #1 {#2} {#3} {#4} }
33938 {
33939 __text_map_class_end:nw
33940 { \use:c { __text_map_ #4 :Nnn } #1 {#2} {#3} }
33941 }
33942 }
33943 }
33944 \cs_new:Npn __text_map_class_end:nw #1#2 \q__text_recursion_stop {#1}

Break before and after.
33945 \cs_new:Npn __text_map_Control:Nnn #1#2#3

1346

33946 {
33947 __text_map_output:Nn #1 {#2}
33948 __text_map_output:Nn #1 {#3}
33949 __text_map_loop:Nnw #1 { }
33950 }

Keep collecting.
33951 \cs_new:Npn __text_map_Extend:Nnn #1#2#3
33952 { __text_map_loop:Nnw #1 {#2#3} }
33953 \cs_new_eq:NN __text_map_SpacingMark:Nnn __text_map_Extend:Nnn

Outputting anything earlier, the combine with what follows. The only exclusions are
control characters.

33954 \cs_new:Npn __text_map_Prepend:Nnn #1#2#3
33955 {
33956 __text_map_output:Nn #1 {#2}
33957 __text_map_lookahead:NnNw #1 {#3} __text_map_Prepend_aux:Nnn
33958 }
33959 \cs_new:Npn __text_map_Prepend_aux:Nnn #1#2#3
33960 {
33961 \bool_lazy_or:nnTF
33962 { __text_codepoint_compare_p:nNn {#3} = { "0A } }
33963 { __text_codepoint_compare_p:nNn {#3} = { "0D } }
33964 {
33965 #1 {#2}
33966 __text_map_loop:Nnw #1 {#3}
33967 }
33968 {
33969 \exp_args:NV __text_map_Prepend:nNnn
33970 \c__text_grapheme_Control_clist
33971 #1 {#2} {#3}
33972 }
33973 }
33974 \cs_new:Npn __text_map_Prepend:nNnn #1#2#3#4
33975 {
33976 __text_map_Prepend_loop:Nnnw #2 {#3} {#4}
33977 #1 , \q__text_recursion_tail .. , \q__text_recursion_stop
33978 }
33979 \cs_new:Npn __text_map_Prepend_loop:Nnnw #1#2#3 #4 .. #5 ,
33980 {
33981 __text_if_q_recursion_tail_stop_do:nn {#4}
33982 { __text_map_loop:Nnw #1 {#2#3} }
33983 __text_codepoint_compare:nNnTF {#3} < { "#4 }
33984 {
33985 __text_map_class_end:nw
33986 { __text_map_loop:Nnw #1 {#2#3} }
33987 }
33988 {
33989 __text_codepoint_compare:nNnTF {#3} > { "#5 }
33990 { __text_map_Prepend_loop:Nnnw #1 {#2} {#3} }
33991 {
33992 __text_map_class_end:nw
33993 { __text_map_loop:Nnw #1 {#2} #3 }
33994 }
33995 }

1347

33996 }

Dealing with end-of-class is done such that we can be flexible.
33997 \cs_new:Npn __text_map_not_Control:Nnn #1#2#3
33998 { __text_map_class:Nnnn #1 {#2} {#3} { Extend } }
33999 \cs_new:Npn __text_map_not_Extend:Nnn #1#2#3
34000 { __text_map_class:Nnnn #1 {#2} {#3} { SpacingMark } }
34001 \cs_new:Npn __text_map_not_SpacingMark:Nnn #1#2#3
34002 { __text_map_class:Nnnn #1 {#2} {#3} { Prepend } }
34003 \cs_new:Npn __text_map_not_Prepend:Nnn #1#2#3
34004 { __text_map_class:Nnnn #1 {#2} {#3} { L } }
34005 \cs_new:Npn __text_map_not_L:Nnn #1#2#3
34006 { __text_map_class:Nnnn #1 {#2} {#3} { LV } }
34007 \cs_new:Npn __text_map_not_LV:Nnn #1#2#3
34008 { __text_map_class:Nnnn #1 {#2} {#3} { V } }
34009 \cs_new:Npn __text_map_not_V:Nnn #1#2#3
34010 { __text_map_class:Nnnn #1 {#2} {#3} { LVT } }
34011 \cs_new:Npn __text_map_not_LVT:Nnn #1#2#3
34012 { __text_map_class:Nnnn #1 {#2} {#3} { T } }
34013 \cs_new:Npn __text_map_not_T:Nnn #1#2#3
34014 { __text_map_class:Nnnn #1 {#2} {#3} { Regional_Indicator } }
34015 \cs_new:Npn __text_map_not_Regional_Indicator:Nnn #1#2#3
34016 {
34017 __text_map_output:Nn #1 {#2}
34018 __text_map_loop:Nnw #1 {#3}
34019 }

Hangul needs additional treatment. First we have to deal with the start-of-Hangul posi-
tion: output what we had up to now, then move the specialist handler. The idea here is
to pick off the different codepoint types one at a time, tracking what else can be consid-
ered at each stage until we hit the end of the viable types. Other than that, we just keep
building up the Hangul codepoints using a dedicated version of the loop from above.

34020 \cs_new:Npn __text_map_L:Nnn #1#2#3
34021 {
34022 __text_map_output:Nn #1 {#2}
34023 __text_map_hangul:Nnnw
34024 #1 {#3} { L ; V ; LV ; LVT }
34025 }
34026 \cs_new:Npn __text_map_LV:Nnn #1#2#3
34027 {
34028 __text_map_output:Nn #1 {#2}
34029 __text_map_hangul:Nnnw
34030 #1 {#3} { V ; T }
34031 }
34032 \cs_new_eq:NN __text_map_V:Nnn __text_map_LV:Nnn
34033 \cs_new:Npn __text_map_LVT:Nnn #1#2#3
34034 {
34035 __text_map_output:Nn #1 {#2}
34036 __text_map_hangul:Nnnw
34037 #1 {#3} { T }
34038 }
34039 \cs_new_eq:NN __text_map_T:Nnn __text_map_LVT:Nnn
34040 \cs_new:Npn __text_map_hangul:Nnnw #1#2#3#4 \q__text_recursion_stop
34041 {
34042 \tl_if_head_is_N_type:nTF {#4}

1348

34043 { __text_map_hangul:NnnN #1 {#2} {#3} }
34044 {
34045 #1 {#2}
34046 __text_map_loop:Nnw #1 { }
34047 }
34048 #4 \q__text_recursion_stop
34049 }
34050 \cs_new:Npn __text_map_hangul:NnnN #1#2#3#4
34051 {
34052 __text_if_q_recursion_tail_stop_do:Nn #4
34053 {
34054 #1 {#2}
34055 \text_map_break:
34056 }
34057 \token_if_cs:NTF #4
34058 {
34059 #1 {#2}
34060 __text_map_loop:Nnw #1 { }
34061 }
34062 {
34063 __text_codepoint_process:nN
34064 { __text_map_hangul:Nnnn #1 {#2} {#3} } #4
34065 }
34066 }
34067 \cs_new:Npn __text_map_hangul:Nnnn #1#2#3#4
34068 {
34069 __text_map_hangul_aux:Nnnw #1 {#2} {#4}
34070 #3 ; \q_recursion_tail ; \q_recursion_stop
34071 }
34072 \cs_new:Npn __text_map_hangul_aux:Nnnw #1#2#3#4 ;
34073 {
34074 \quark_if_recursion_tail_stop_do:nn {#4}
34075 { __text_map_loop:Nnw #1 {#2} #3 }
34076 \exp_args:Nv __text_map_hangul:nNnnnw { c__text_grapheme_ #4 _clist }
34077 #1 {#2} {#3} {#4}
34078 }
34079 \cs_new:Npn __text_map_hangul:nNnnnw #1#2#3#4#5#6 \q_recursion_stop
34080 {
34081 __text_map_hangul_loop:Nnnnnw #2 {#3} {#4} {#5} {#6}
34082 #1 , \q__text_recursion_tail .. , \q__text_recursion_stop
34083 }
34084 \cs_new:Npn __text_map_hangul_loop:Nnnnnw #1#2#3#4#5 #6 .. #7 ,
34085 {
34086 __text_if_q_recursion_tail_stop_do:nn {#6}
34087 { __text_map_hangul_next:Nnnn #1 {#2} {#3} {#5} }
34088 __text_codepoint_compare:nNnTF {#3} < { "#6 }
34089 {
34090 __text_map_hangul_end:nw
34091 { __text_map_hangul_next:Nnnn #1 {#2} {#3} {#5} }
34092 }
34093 {
34094 __text_codepoint_compare:nNnTF {#3} > { "#7 }
34095 { __text_map_hangul_loop:Nnnnnw #1 {#2} {#3} {#4} {#5} }
34096 {

1349

34097 __text_map_hangul_end:nw
34098 { \use:c { __text_map_hangul_ #4 :Nnn } #1 {#2} {#3} }
34099 }
34100 }
34101 }
34102 \cs_new:Npn __text_map_hangul_next:Nnnn #1#2#3#4
34103 { __text_map_hangul_aux:Nnnw #1 {#2} {#3} #4 \q_recursion_stop }
34104 \cs_new:Npn __text_map_hangul_end:nw #1#2 \q__text_recursion_stop {#1}
34105 \cs_new:Npn __text_map_hangul_L:Nnn #1#2#3
34106 {
34107 __text_map_hangul:Nnnw
34108 #1 {#2#3} { L V { LV } { LVT } }
34109 }
34110 \cs_new:Npn __text_map_hangul_LV:Nnn #1#2#3
34111 {
34112 __text_map_hangul:Nnnw
34113 #1 {#2#3} { VT }
34114 }
34115 \cs_new_eq:NN __text_map_hangul_V:Nnn __text_map_hangul_LV:Nnn
34116 \cs_new:Npn __text_map_hangul_LVT:Nnn #1#2#3
34117 {
34118 __text_map_hangul:Nnnw
34119 #1 {#2#3} { T }
34120 }
34121 \cs_new_eq:NN __text_map_hangul_T:Nnn __text_map_hangul_LVT:Nnn

The Regional Indicator rule means looking ahead and dealing with the case where there
are two in a row. So we use a look ahead to pick them off. As there is only one range
the values are hard-coded.

34122 \cs_new:Npn __text_map_Regional_Indicator:Nnn #1#2#3
34123 {
34124 __text_map_output:Nn #1 {#2}
34125 __text_map_lookahead:NnNw #1 {#3} __text_map_Regional_Indicator_aux:Nnn
34126 }
34127 \cs_new:Npn __text_map_Regional_Indicator_aux:Nnn #1#2#3
34128 {
34129 \bool_lazy_or:nnTF
34130 { __text_codepoint_compare_p:nNn {#3} < { "1F1E6 } }
34131 { __text_codepoint_compare_p:nNn {#3} > { "1F1FF } }
34132 {
34133 __text_map_loop:Nnw #1 {#2} #3
34134 }
34135 { __text_map_loop:Nnw #1 {#2#3} }
34136 }

A generic loop-ahead setup.
34137 \cs_new:Npn __text_map_lookahead:NnNw #1#2#3#4 \q__text_recursion_stop
34138 {
34139 \tl_if_head_is_N_type:nTF {#4}
34140 { __text_map_lookahead:NnNN #1 {#2} #3 }
34141 { __text_map_loop:Nnw #1 {#2} }
34142 #4 \q__text_recursion_stop
34143 }
34144 \cs_new:Npn __text_map_lookahead:NnNN #1#2#3#4
34145 {

1350

34146 __text_if_q_recursion_tail_stop_do:Nn #4 { #1 {#2} }
34147 \token_if_cs:NTF #4
34148 {
34149 #1 {#2}
34150 __text_map_loop:Nnw #1 { }
34151 }
34152 { __text_codepoint_process:nN { #3 #1 {#2} } }
34153 #4
34154 }

For the end of the process.
34155 \cs_new:Npn __text_map_output:Nn #1#2
34156 { \tl_if_blank:nF {#2} { #1 {#2} } }
34157 \cs_new:Npn \text_map_break:
34158 { \prg_map_break:Nn \text_map_break: { } }
34159 \cs_new:Npn \text_map_break:n
34160 { \prg_map_break:Nn \text_map_break: }

(End of definition for \text_map_function:nN and others. These functions are documented on page
305.)

\text_map_inline:nn The standard non-expandable inline version.
34161 \cs_new_protected:Npn \text_map_inline:nn #1#2
34162 {
34163 \int_gincr:N \g__kernel_prg_map_int
34164 \cs_gset_protected:cpn
34165 { __text_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
34166 \exp_args:Nnc \text_map_function:nN {#1}
34167 { __text_map_ \int_use:N \g__kernel_prg_map_int :w }
34168 \prg_break_point:Nn \text_map_break:
34169 { \int_gdecr:N \g__kernel_prg_map_int }
34170 }

(End of definition for \text_map_inline:nn. This function is documented on page 305.)

34171 ⟨/package⟩

1351

Chapter 90

l3text-purify implementation

34172 ⟨∗package⟩

34173 ⟨@@=text⟩

90.1 Purifying text
__text_if_recursion_tail_stop:N Functions to query recursion quarks.

34174 __kernel_quark_new_test:N __text_if_recursion_tail_stop:N

(End of definition for __text_if_recursion_tail_stop:N.)

\text_purify:n
__text_purify:n

__text_purify_store:n
__text_purify_store:nw

__text_purify_end:w
__text_purify_loop:w
__text_purify_group:n
__text_purify_space:w
__text_purify_N_type:N

__text_purify_N_type_aux:N
__text_purify_math_search:NNN
__text_purify_math_start:NNw

__text_purify_math_store:n
__text_purify_math_store:nw

__text_purify_math_end:w
__text_purify_math_loop:NNw

__text_purify_math_N_type:NNN
__text_purify_math_group:NNn
__text_purify_math_space:NNw

__text_purify_math_cmd:N
__text_purify_math_cmd:NN
__text_purify_math_cmd:Nn
__text_purify_replace:N

__text_purify_replace_auxi:n
__text_purify_replace_auxii:n

__text_purify_expand:N
__text_purify_protect:N
__text_purify_encoding:N

__text_purify_encoding_escape:NN

As in the other parts of the module, we start off with a standard “action” loop, with
expansion applied up-front.

34175 \cs_new:Npn \text_purify:n #1
34176 {
34177 __kernel_exp_not:w \exp_after:wN
34178 {
34179 \exp:w
34180 \exp_args:Ne __text_purify:n
34181 { \text_expand:n {#1} }
34182 }
34183 }
34184 \cs_new:Npn __text_purify:n #1
34185 {
34186 \group_align_safe_begin:
34187 __text_purify_loop:w #1
34188 \q__text_recursion_tail \q__text_recursion_stop
34189 __text_purify_result:n { }
34190 }

As for expansion, collect up the tokens for future use.
34191 \cs_new:Npn __text_purify_store:n #1
34192 { __text_purify_store:nw {#1} }
34193 \cs_new:Npn __text_purify_store:nw #1#2 __text_purify_result:n #3
34194 { #2 __text_purify_result:n { #3 #1 } }
34195 \cs_new:Npn __text_purify_end:w #1 __text_purify_result:n #2
34196 {
34197 \group_align_safe_end:
34198 \exp_end:

1352

34199 #2
34200 }

The main loop is a standard “tl action”. Unlike the expansion or case changing, here any
groups have to be run inline. Most of the business end is as before in the N-type token
processing.

34201 \cs_new:Npn __text_purify_loop:w #1 \q__text_recursion_stop
34202 {
34203 \tl_if_head_is_N_type:nTF {#1}
34204 { __text_purify_N_type:N }
34205 {
34206 \tl_if_head_is_group:nTF {#1}
34207 { __text_purify_group:n }
34208 { __text_purify_space:w }
34209 }
34210 #1 \q__text_recursion_stop
34211 }
34212 \cs_new:Npn __text_purify_group:n #1 { __text_purify_loop:w #1 }
34213 \exp_last_unbraced:NNo \cs_new:Npn __text_purify_space:w \c_space_tl
34214 {
34215 __text_purify_store:n { ~ }
34216 __text_purify_loop:w
34217 }

The first part of handling math mode is exactly the same as in the other functions: look
for a start-of-math mode token and if found start a new loop tracking the closing token.

34218 \cs_new:Npn __text_purify_N_type:N #1
34219 {
34220 __text_if_q_recursion_tail_stop_do:Nn #1 { __text_purify_end:w }
34221 __text_purify_N_type_aux:N #1
34222 }
34223 \cs_new:Npn __text_purify_N_type_aux:N #1
34224 {
34225 \exp_after:wN __text_purify_math_search:NNN
34226 \exp_after:wN #1 \l_text_math_delims_tl
34227 \q__text_recursion_tail ?
34228 \q__text_recursion_stop
34229 }
34230 \cs_new:Npn __text_purify_math_search:NNN #1#2#3
34231 {
34232 __text_if_q_recursion_tail_stop_do:Nn #2
34233 { __text_purify_math_cmd:N #1 }
34234 \token_if_eq_meaning:NNTF #1 #2
34235 {
34236 __text_use_i_delimit_by_q_recursion_stop:nw
34237 { __text_purify_math_start:NNw #2 #3 }
34238 }
34239 { __text_purify_math_search:NNN #1 }
34240 }
34241 \cs_new:Npn __text_purify_math_start:NNw #1#2#3 \q__text_recursion_stop
34242 {
34243 __text_purify_math_loop:NNw #1#2#3 \q__text_recursion_stop
34244 __text_purify_math_result:n { }
34245 }
34246 \cs_new:Npn __text_purify_math_store:n #1

1353

34247 { __text_purify_math_store:nw {#1} }
34248 \cs_new:Npn __text_purify_math_store:nw #1#2 __text_purify_math_result:n #3
34249 { #2 __text_purify_math_result:n { #3 #1 } }
34250 \cs_new:Npn __text_purify_math_end:w #1 __text_purify_math_result:n #2
34251 {
34252 __text_purify_store:n { $ #2 $ }
34253 __text_purify_loop:w #1
34254 }
34255 \cs_new:Npn __text_purify_math_stop:Nw #1 __text_purify_math_result:n #2
34256 {
34257 __text_purify_store:n {#1#2}
34258 __text_purify_end:w
34259 }
34260 \cs_new:Npn __text_purify_math_loop:NNw #1#2#3 \q__text_recursion_stop
34261 {
34262 \tl_if_head_is_N_type:nTF {#3}
34263 { __text_purify_math_N_type:NNN }
34264 {
34265 \tl_if_head_is_group:nTF {#3}
34266 { __text_purify_math_group:NNn }
34267 { __text_purify_math_space:NNw }
34268 }
34269 #1#2#3 \q__text_recursion_stop
34270 }
34271 \cs_new:Npn __text_purify_math_N_type:NNN #1#2#3
34272 {
34273 __text_if_q_recursion_tail_stop_do:Nn #3
34274 { __text_purify_math_stop:Nw #1 }
34275 \token_if_eq_meaning:NNTF #3 #2
34276 { __text_purify_math_end:w }
34277 {
34278 __text_purify_math_store:n {#3}
34279 __text_purify_math_loop:NNw #1#2
34280 }
34281 }
34282 \cs_new:Npn __text_purify_math_group:NNn #1#2#3
34283 {
34284 __text_purify_math_store:n { {#3} }
34285 __text_purify_math_loop:NNw #1#2
34286 }
34287 \exp_after:wN \cs_new:Npn \exp_after:wN __text_purify_math_space:NNw
34288 \exp_after:wN # \exp_after:wN 1
34289 \exp_after:wN # \exp_after:wN 2 \c_space_tl
34290 {
34291 __text_purify_math_store:n { ~ }
34292 __text_purify_math_loop:NNw #1#2
34293 }

Then handle math mode as an argument: same outcomes, different input syntax.
34294 \cs_new:Npn __text_purify_math_cmd:N #1
34295 {
34296 \exp_after:wN __text_purify_math_cmd:NN \exp_after:wN #1
34297 \l_text_math_arg_tl \q__text_recursion_tail \q__text_recursion_stop
34298 }
34299 \cs_new:Npn __text_purify_math_cmd:NN #1#2

1354

34300 {
34301 __text_if_q_recursion_tail_stop_do:Nn #2
34302 { __text_purify_replace:N #1 }
34303 \cs_if_eq:NNTF #2 #1
34304 {
34305 __text_use_i_delimit_by_q_recursion_stop:nw
34306 { __text_purify_math_cmd:n }
34307 }
34308 { __text_purify_math_cmd:NN #1 }
34309 }
34310 \cs_new:Npn __text_purify_math_cmd:n #1
34311 { __text_purify_math_end:w __text_purify_math_result:n {#1} }

For N-type tokens, we first look for a string-context replacement before anything else:
this can therefore cover anything. Assuming we don’t find one, check to see if we can
expand control sequences: if not, they have to be dropped. We also allow for LATEX 2ε
\protect: there’s an assumption that we don’t have \protect { \oops } or similar,
but that’s also in the expansion code and seems like a reasonable balance.

34312 \cs_new:Npn __text_purify_replace:N #1
34313 {
34314 \bool_lazy_and:nnTF
34315 { \cs_if_exist_p:c { l__text_purify_ \token_to_str:N #1 _tl } }
34316 {
34317 \bool_lazy_or_p:nn
34318 { \token_if_cs_p:N #1 }
34319 { \token_if_active_p:N #1 }
34320 }
34321 {
34322 \exp_args:Nv __text_purify_replace_auxi:n
34323 { l__text_purify_ \token_to_str:N #1 _tl }
34324 }
34325 {
34326 \exp_args:Ne __text_purify_replace_auxii:n
34327 { __text_token_to_explicit:N #1 }
34328 }
34329 }
34330 \cs_new:Npn __text_purify_replace_auxi:n #1 { __text_purify_loop:w #1 }
34331 \cs_new:Npn __text_purify_replace_auxii:n #1
34332 {
34333 \token_if_cs:NTF #1
34334 { __text_purify_expand:N #1 }
34335 {
34336 __text_purify_store:n {#1}
34337 __text_purify_loop:w
34338 }
34339 }
34340 \cs_new:Npn __text_purify_expand:N #1
34341 {
34342 \str_if_eq:nnTF {#1} { \protect }
34343 { __text_purify_protect:N }
34344 { __text_purify_encoding:N #1 }
34345 }
34346 \cs_new:Npn __text_purify_protect:N #1
34347 {

1355

34348 __text_if_q_recursion_tail_stop_do:Nn #1 { __text_purify_end:w }
34349 __text_purify_loop:w
34350 }

Handle encoding commands, as detailed for expansion.
34351 \cs_new:Npn __text_purify_encoding:N #1
34352 {
34353 \bool_lazy_or:nnTF
34354 { \cs_if_eq_p:NN #1 \@current@cmd }
34355 { \cs_if_eq_p:NN #1 \@changed@cmd }
34356 { __text_purify_encoding_escape:NN }
34357 {
34358 __text_if_expandable:NTF #1
34359 { \exp_after:wN __text_purify_loop:w #1 }
34360 { __text_purify_loop:w }
34361 }
34362 }
34363 \cs_new:Npn __text_purify_encoding_escape:NN #1#2
34364 {
34365 __text_purify_store:n {#1}
34366 __text_purify_loop:w
34367 }

(End of definition for \text_purify:n and others. This function is documented on page 304.)

\text_declare_purify_equivalent:Nn
\text_declare_purify_equivalent:Ne 34368 \cs_new_protected:Npn \text_declare_purify_equivalent:Nn #1#2

34369 {
34370 \tl_clear_new:c { l__text_purify_ \token_to_str:N #1 _tl }
34371 \tl_set:cn { l__text_purify_ \token_to_str:N #1 _tl } {#2}
34372 }
34373 \cs_generate_variant:Nn \text_declare_purify_equivalent:Nn { Ne }

(End of definition for \text_declare_purify_equivalent:Nn. This function is documented on page 304.)
Now pre-define a range of standard commands that need dedicated definitions in

purified text. First handle font-related stuff: all of this needs to be disabled.
34374 \tl_map_inline:nn
34375 {
34376 \fontencoding
34377 \fontfamily
34378 \fontseries
34379 \fontshape
34380 }
34381 { \text_declare_purify_equivalent:Nn #1 { \use_none:n } }
34382 \text_declare_purify_equivalent:Nn \fontsize { \use_none:nn }
34383 \text_declare_purify_equivalent:Nn \selectfont { }
34384 \text_declare_purify_equivalent:Nn \usefont { \use_none:nnnn }
34385 \tl_map_inline:nn
34386 {
34387 \emph
34388 \text
34389 \textnormal
34390 \textrm
34391 \textsf
34392 \texttt

1356

34393 \textbf
34394 \textmd
34395 \textit
34396 \textsl
34397 \textup
34398 \textsc
34399 \textulc
34400 }
34401 { \text_declare_purify_equivalent:Nn #1 { \use:n } }
34402 \tl_map_inline:nn
34403 {
34404 \normalfont
34405 \rmfamily
34406 \sffamily
34407 \ttfamily
34408 \bfseries
34409 \mdseries
34410 \itshape
34411 \scshape
34412 \slshape
34413 \upshape
34414 \em
34415 \Huge
34416 \LARGE
34417 \Large
34418 \footnotesize
34419 \huge
34420 \large
34421 \normalsize
34422 \scriptsize
34423 \small
34424 \tiny
34425 }
34426 { \text_declare_purify_equivalent:Nn #1 { } }
34427 \exp_args:Nc \text_declare_purify_equivalent:Nn
34428 { @protected@testopt } { \use_none:nnn }

Environments have to be handled by pure expansion.

__text_end_env:n

34429 \text_declare_purify_equivalent:Nn \begin { \use:c }
34430 \text_declare_purify_equivalent:Nn \end { __text_end_env:n }
34431 \cs_new:Npn __text_end_env:n #1 { \cs:w end #1 \cs_end: }

(End of definition for __text_end_env:n.)
Some common symbols and similar ideas.

34432 \text_declare_purify_equivalent:Nn \\ { }
34433 \tl_map_inline:nn
34434 { \{ \} \# \$ \% _ }
34435 { \text_declare_purify_equivalent:Ne #1 { \cs_to_str:N #1 } }

Cross-referencing.
34436 \text_declare_purify_equivalent:Nn \label { \use_none:n }

1357

Spaces.
34437 \group_begin:
34438 \char_set_catcode_active:N \~
34439 \use:n
34440 {
34441 \group_end:
34442 \text_declare_purify_equivalent:Ne ~ { \c_space_tl }
34443 }
34444 \text_declare_purify_equivalent:Nn \nobreakspace { ~ }
34445 \text_declare_purify_equivalent:Nn \ { ~ }
34446 \text_declare_purify_equivalent:Nn \, { ~ }

90.2 Accent and letter-like data for purifying text
In contrast to case changing, both 8-bit and Unicode engines need information for text
purification to handle accents and letter-like functions: these all need to be removed.
However, the results are of course engine-dependent.

For the letter-like commands, life is relatively easy: they are all simply added as
standard exceptions. The only oddity is \SS, which gets converted to two letters. (At
some stage an alternative version can presumably be added to babel or similar.)

34447 \cs_set_protected:Npn __text_loop:Nn #1#2
34448 {
34449 \quark_if_recursion_tail_stop:N #1
34450 \text_declare_purify_equivalent:Ne #1
34451 {
34452 \codepoint_generate:nn {"#2}
34453 { \char_value_catcode:n {"#2} }
34454 }
34455 __text_loop:Nn
34456 }
34457 __text_loop:Nn
34458 \AA { 00C5 }
34459 \AE { 00C6 }
34460 \DH { 00D0 }
34461 \DJ { 0110 }
34462 \IJ { 0132 }
34463 \L { 0141 }
34464 \NG { 014A }
34465 \O { 00D8 }
34466 \OE { 0152 }
34467 \TH { 00DE }
34468 \aa { 00E5 }
34469 \ae { 00E6 }
34470 \dh { 00F0 }
34471 \dj { 0111 }
34472 \i { 0131 }
34473 \j { 0237 }
34474 \ij { 0132 }
34475 \l { 0142 }
34476 \ng { 014B }
34477 \o { 00F8 }
34478 \oe { 0153 }

1358

34479 \ss { 00DF }
34480 \th { 00FE }
34481 \q_recursion_tail ?
34482 \q_recursion_stop
34483 \text_declare_purify_equivalent:Nn \SS { SS }

__text_purify_accent:NN Accent licr handling is a little more complex. Accents may exist as pre-composed
codepoints or as independent glyphs. The former are all saved as single token lists, whilst
for the latter the combining accent needs to be re-ordered compared to the character it
applies to.

34484 \cs_new:Npn __text_purify_accent:NN #1#2
34485 {
34486 \cs_if_exist:cTF
34487 { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }
34488 {
34489 \exp_not:v
34490 { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }
34491 }
34492 {
34493 \exp_not:n {#2}
34494 \exp_not:v { c__text_purify_ \token_to_str:N #1 _tl }
34495 }
34496 }
34497 \tl_map_inline:nn { \‘ \’ \^ \~ \= \u \. \" \r \H \v \d \c \k \b \t }
34498 { \text_declare_purify_equivalent:Nn #1 { __text_purify_accent:NN #1 } }

First set up the combining accents.
34499 \group_begin:
34500 \cs_set_protected:Npn __text_loop:Nn #1#2
34501 {
34502 \quark_if_recursion_tail_stop:N #1
34503 \tl_const:ce { c__text_purify_ \token_to_str:N #1 _tl }
34504 { \codepoint_generate:nn {"#2} { \char_value_catcode:n { "#2 } } }
34505 __text_loop:Nn
34506 }
34507 __text_loop:Nn
34508 \‘ { 0300 }
34509 \’ { 0301 }
34510 \^ { 0302 }
34511 \~ { 0303 }
34512 \= { 0304 }
34513 \u { 0306 }
34514 \. { 0307 }
34515 \" { 0308 }
34516 \r { 030A }
34517 \H { 030B }
34518 \v { 030C }
34519 \d { 0323 }
34520 \c { 0327 }
34521 \k { 0328 }
34522 \b { 0331 }
34523 \t { 0361 }
34524 \q_recursion_tail { }
34525 \q_recursion_stop

1359

Now we handle the pre-composed accents: the list here is taken from puenc.def. All of
the precomposed cases take a single letter as their second argument. We do not try to
cover the case where an accent is added to a “real” dotless-i or -j, or a æ/Æ. Rather, we
assume that if the utf-8 character is used, it will have the real accent character too.

34526 \cs_set_protected:Npn __text_loop:NNn #1#2#3
34527 {
34528 \quark_if_recursion_tail_stop:N #1
34529 \tl_const:ce
34530 { c__text_purify_ \token_to_str:N #1 _ \token_to_str:N #2 _tl }
34531 { \codepoint_generate:nn {"#3} { \char_value_catcode:n { "#3 } } }
34532 __text_loop:NNn
34533 }
34534 __text_loop:NNn
34535 \‘ A { 00C0 }
34536 \’ A { 00C1 }
34537 \^ A { 00C2 }
34538 \~ A { 00C3 }
34539 \" A { 00C4 }
34540 \r A { 00C5 }
34541 \c C { 00C7 }
34542 \‘ E { 00C8 }
34543 \’ E { 00C9 }
34544 \^ E { 00CA }
34545 \" E { 00CB }
34546 \‘ I { 00CC }
34547 \’ I { 00CD }
34548 \^ I { 00CE }
34549 \" I { 00CF }
34550 \~ N { 00D1 }
34551 \‘ O { 00D2 }
34552 \’ O { 00D3 }
34553 \^ O { 00D4 }
34554 \~ O { 00D5 }
34555 \" O { 00D6 }
34556 \‘ U { 00D9 }
34557 \’ U { 00DA }
34558 \^ U { 00DB }
34559 \" U { 00DC }
34560 \’ Y { 00DD }
34561 \‘ a { 00E0 }
34562 \’ a { 00E1 }
34563 \^ a { 00E2 }
34564 \~ a { 00E3 }
34565 \" a { 00E4 }
34566 \r a { 00E5 }
34567 \c c { 00E7 }
34568 \‘ e { 00E8 }
34569 \’ e { 00E9 }
34570 \^ e { 00EA }
34571 \" e { 00EB }
34572 \‘ i { 00EC }
34573 \‘ \i { 00EC }
34574 \’ i { 00ED }
34575 \’ \i { 00ED }

1360

34576 \^ i { 00EE }
34577 \^ \i { 00EE }
34578 \" i { 00EF }
34579 \" \i { 00EF }
34580 \~ n { 00F1 }
34581 \‘ o { 00F2 }
34582 \’ o { 00F3 }
34583 \^ o { 00F4 }
34584 \~ o { 00F5 }
34585 \" o { 00F6 }
34586 \‘ u { 00F9 }
34587 \’ u { 00FA }
34588 \^ u { 00FB }
34589 \" u { 00FC }
34590 \’ y { 00FD }
34591 \" y { 00FF }
34592 \= A { 0100 }
34593 \= a { 0101 }
34594 \u A { 0102 }
34595 \u a { 0103 }
34596 \k A { 0104 }
34597 \k a { 0105 }
34598 \’ C { 0106 }
34599 \’ c { 0107 }
34600 \^ C { 0108 }
34601 \^ c { 0109 }
34602 \. C { 010A }
34603 \. c { 010B }
34604 \v C { 010C }
34605 \v c { 010D }
34606 \v D { 010E }
34607 \v d { 010F }
34608 \= E { 0112 }
34609 \= e { 0113 }
34610 \u E { 0114 }
34611 \u e { 0115 }
34612 \. E { 0116 }
34613 \. e { 0117 }
34614 \k E { 0118 }
34615 \k e { 0119 }
34616 \v E { 011A }
34617 \v e { 011B }
34618 \^ G { 011C }
34619 \^ g { 011D }
34620 \u G { 011E }
34621 \u g { 011F }
34622 \. G { 0120 }
34623 \. g { 0121 }
34624 \c G { 0122 }
34625 \c g { 0123 }
34626 \^ H { 0124 }
34627 \^ h { 0125 }
34628 \~ I { 0128 }
34629 \~ i { 0129 }

1361

34630 \~ \i { 0129 }
34631 \= I { 012A }
34632 \= i { 012B }
34633 \= \i { 012B }
34634 \u I { 012C }
34635 \u i { 012D }
34636 \u \i { 012D }
34637 \k I { 012E }
34638 \k i { 012F }
34639 \k \i { 012F }
34640 \. I { 0130 }
34641 \^ J { 0134 }
34642 \^ j { 0135 }
34643 \^ \j { 0135 }
34644 \c K { 0136 }
34645 \c k { 0137 }
34646 \’ L { 0139 }
34647 \’ l { 013A }
34648 \c L { 013B }
34649 \c l { 013C }
34650 \v L { 013D }
34651 \v l { 013E }
34652 \. L { 013F }
34653 \. l { 0140 }
34654 \’ N { 0143 }
34655 \’ n { 0144 }
34656 \c N { 0145 }
34657 \c n { 0146 }
34658 \v N { 0147 }
34659 \v n { 0148 }
34660 \= O { 014C }
34661 \= o { 014D }
34662 \u O { 014E }
34663 \u o { 014F }
34664 \H O { 0150 }
34665 \H o { 0151 }
34666 \’ R { 0154 }
34667 \’ r { 0155 }
34668 \c R { 0156 }
34669 \c r { 0157 }
34670 \v R { 0158 }
34671 \v r { 0159 }
34672 \’ S { 015A }
34673 \’ s { 015B }
34674 \^ S { 015C }
34675 \^ s { 015D }
34676 \c S { 015E }
34677 \c s { 015F }
34678 \v S { 0160 }
34679 \v s { 0161 }
34680 \c T { 0162 }
34681 \c t { 0163 }
34682 \v T { 0164 }
34683 \v t { 0165 }

1362

34684 \~ U { 0168 }
34685 \~ u { 0169 }
34686 \= U { 016A }
34687 \= u { 016B }
34688 \u U { 016C }
34689 \u u { 016D }
34690 \r U { 016E }
34691 \r u { 016F }
34692 \H U { 0170 }
34693 \H u { 0171 }
34694 \k U { 0172 }
34695 \k u { 0173 }
34696 \^ W { 0174 }
34697 \^ w { 0175 }
34698 \^ Y { 0176 }
34699 \^ y { 0177 }
34700 \" Y { 0178 }
34701 \’ Z { 0179 }
34702 \’ z { 017A }
34703 \. Z { 017B }
34704 \. z { 017C }
34705 \v Z { 017D }
34706 \v z { 017E }
34707 \v A { 01CD }
34708 \v a { 01CE }
34709 \v I { 01CF }
34710 \v \i { 01D0 }
34711 \v i { 01D0 }
34712 \v O { 01D1 }
34713 \v o { 01D2 }
34714 \v U { 01D3 }
34715 \v u { 01D4 }
34716 \v G { 01E6 }
34717 \v g { 01E7 }
34718 \v K { 01E8 }
34719 \v k { 01E9 }
34720 \k O { 01EA }
34721 \k o { 01EB }
34722 \v \j { 01F0 }
34723 \v j { 01F0 }
34724 \’ G { 01F4 }
34725 \’ g { 01F5 }
34726 \‘ N { 01F8 }
34727 \‘ n { 01F9 }
34728 \’ \AE { 01FC }
34729 \’ \ae { 01FD }
34730 \’ \O { 01FE }
34731 \’ \o { 01FF }
34732 \v H { 021E }
34733 \v h { 021F }
34734 \. A { 0226 }
34735 \. a { 0227 }
34736 \c E { 0228 }
34737 \c e { 0229 }

1363

34738 \. O { 022E }
34739 \. o { 022F }
34740 \= Y { 0232 }
34741 \= y { 0233 }
34742 \q_recursion_tail ? { }
34743 \q_recursion_stop
34744 \group_end:

(End of definition for __text_purify_accent:NN.)

34745 ⟨/package⟩

1364

Chapter 91

l3box implementation

34746 ⟨∗package⟩

34747 ⟨@@=box⟩

91.1 Support code
__box_dim_eval:w
__box_dim_eval:n

Evaluating a dimension expression expandably. The only difference with \dim_eval:n
is the lack of \dim_use:N, to produce an internal dimension rather than expand it into
characters.

34748 \cs_new_eq:NN __box_dim_eval:w \tex_dimexpr:D
34749 \cs_new:Npn __box_dim_eval:n #1
34750 { __box_dim_eval:w #1 \scan_stop: }

(End of definition for __box_dim_eval:w and __box_dim_eval:n.)

__kernel_kern:n We need kerns in a few places. At present, we don’t have a module for this concept, so
it goes in at first use: here. The idea is to avoid repeated use of the bare primitive.

34751 \cs_new_protected:Npn __kernel_kern:n #1
34752 { \tex_kern:D __box_dim_eval:n {#1} }

(End of definition for __kernel_kern:n.)

91.2 Creating and initialising boxes
The following test files are used for this code: m3box001.lvt.

\box_new:N
\box_new:c

Defining a new ⟨box⟩ register: remember that box 255 is not generally available.
34753 \cs_new_protected:Npn \box_new:N #1
34754 {
34755 __kernel_chk_if_free_cs:N #1
34756 \cs:w newbox \cs_end: #1
34757 }
34758 \cs_generate_variant:Nn \box_new:N { c }

1365

\box_clear:N
\box_clear:c

\box_gclear:N
\box_gclear:c

Clear a ⟨box⟩ register.
34759 \cs_new_protected:Npn \box_clear:N #1
34760 { \box_set_eq:NN #1 \c_empty_box }
34761 \cs_new_protected:Npn \box_gclear:N #1
34762 { \box_gset_eq:NN #1 \c_empty_box }
34763 \cs_generate_variant:Nn \box_clear:N { c }
34764 \cs_generate_variant:Nn \box_gclear:N { c }

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

Clear or new.
34765 \cs_new_protected:Npn \box_clear_new:N #1
34766 { \box_if_exist:NTF #1 { \box_clear:N #1 } { \box_new:N #1 } }
34767 \cs_new_protected:Npn \box_gclear_new:N #1
34768 { \box_if_exist:NTF #1 { \box_gclear:N #1 } { \box_new:N #1 } }
34769 \cs_generate_variant:Nn \box_clear_new:N { c }
34770 \cs_generate_variant:Nn \box_gclear_new:N { c }

\box_set_eq:NN
\box_set_eq:cN
\box_set_eq:Nc
\box_set_eq:cc

\box_gset_eq:NN
\box_gset_eq:cN
\box_gset_eq:Nc
\box_gset_eq:cc

Assigning the contents of a box to be another box.
34771 \cs_new_protected:Npn \box_set_eq:NN #1#2
34772 { \tex_setbox:D #1 \tex_copy:D #2 }
34773 \cs_new_protected:Npn \box_gset_eq:NN #1#2
34774 { \tex_global:D \tex_setbox:D #1 \tex_copy:D #2 }
34775 \cs_generate_variant:Nn \box_set_eq:NN { c , Nc , cc }
34776 \cs_generate_variant:Nn \box_gset_eq:NN { c , Nc , cc }

\box_set_eq_drop:NN
\box_set_eq_drop:cN
\box_set_eq_drop:Nc
\box_set_eq_drop:cc
\box_gset_eq_drop:NN
\box_gset_eq_drop:cN
\box_gset_eq_drop:Nc
\box_gset_eq_drop:cc

Assigning the contents of a box to be another box, then drops the original box.
34777 \cs_new_protected:Npn \box_set_eq_drop:NN #1#2
34778 { \tex_setbox:D #1 \tex_box:D #2 }
34779 \cs_new_protected:Npn \box_gset_eq_drop:NN #1#2
34780 { \tex_global:D \tex_setbox:D #1 \tex_box:D #2 }
34781 \cs_generate_variant:Nn \box_set_eq_drop:NN { c , Nc , cc }
34782 \cs_generate_variant:Nn \box_gset_eq_drop:NN { c , Nc , cc }

\box_if_exist_p:N
\box_if_exist_p:c
\box_if_exist:NTF
\box_if_exist:cTF

Copies of the cs functions defined in l3basics.
34783 \prg_new_eq_conditional:NNn \box_if_exist:N \cs_if_exist:N
34784 { TF , T , F , p }
34785 \prg_new_eq_conditional:NNn \box_if_exist:c \cs_if_exist:c
34786 { TF , T , F , p }

91.3 Measuring and setting box dimensions

\box_ht:N
\box_ht:c
\box_dp:N
\box_dp:c
\box_wd:N
\box_wd:c

Accessing the height, depth, and width of a ⟨box⟩ register.
34787 \cs_new_eq:NN \box_ht:N \tex_ht:D
34788 \cs_new_eq:NN \box_dp:N \tex_dp:D
34789 \cs_new_eq:NN \box_wd:N \tex_wd:D
34790 \cs_generate_variant:Nn \box_ht:N { c }
34791 \cs_generate_variant:Nn \box_dp:N { c }
34792 \cs_generate_variant:Nn \box_wd:N { c }

\box_ht_plus_dp:N

The \box_ht:N and \box_dp:N primitives do not expand but rather are suitable for
use after \the or inside dimension expressions. Here we obtain the same behaviour
by using __box_dim_eval:n (basically \dimexpr) rather than \dim_eval:n (basically
\the \dimexpr).

1366

34793 \cs_new_protected:Npn \box_ht_plus_dp:N #1
34794 { __box_dim_eval:n { \box_ht:N #1 + \box_dp:N #1 } }
34795 \cs_generate_variant:Nn \box_ht_plus_dp:N { c }

\box_set_ht:Nn
\box_set_ht:cn
\box_gset_ht:Nn
\box_gset_ht:cn
\box_set_dp:Nn
\box_set_dp:cn
\box_gset_dp:Nn
\box_gset_dp:cn
\box_set_wd:Nn
\box_set_wd:cn
\box_gset_wd:Nn
\box_gset_wd:cn

Setting the size whilst respecting local scope requires copying; the same issue does not
come up when working globally. When debugging, the dimension expression #2 is sur-
rounded by parentheses to catch early termination.

34796 \cs_new_protected:Npn \box_set_dp:Nn #1#2
34797 {
34798 \tex_setbox:D #1 = \tex_copy:D #1
34799 \box_dp:N #1 __box_dim_eval:n {#2}
34800 }
34801 \cs_generate_variant:Nn \box_set_dp:Nn { c }
34802 \cs_new_protected:Npn \box_gset_dp:Nn #1#2
34803 { \box_dp:N #1 __box_dim_eval:n {#2} }
34804 \cs_generate_variant:Nn \box_gset_dp:Nn { c }
34805 \cs_new_protected:Npn \box_set_ht:Nn #1#2
34806 {
34807 \tex_setbox:D #1 = \tex_copy:D #1
34808 \box_ht:N #1 __box_dim_eval:n {#2}
34809 }
34810 \cs_generate_variant:Nn \box_set_ht:Nn { c }
34811 \cs_new_protected:Npn \box_gset_ht:Nn #1#2
34812 { \box_ht:N #1 __box_dim_eval:n {#2} }
34813 \cs_generate_variant:Nn \box_gset_ht:Nn { c }
34814 \cs_new_protected:Npn \box_set_wd:Nn #1#2
34815 {
34816 \tex_setbox:D #1 = \tex_copy:D #1
34817 \box_wd:N #1 __box_dim_eval:n {#2}
34818 }
34819 \cs_generate_variant:Nn \box_set_wd:Nn { c }
34820 \cs_new_protected:Npn \box_gset_wd:Nn #1#2
34821 { \box_wd:N #1 __box_dim_eval:n {#2} }
34822 \cs_generate_variant:Nn \box_gset_wd:Nn { c }

91.4 Using boxes

\box_use_drop:N
\box_use_drop:c

\box_use:N
\box_use:c

Using a ⟨box⟩. These are just TEX primitives with meaningful names.
34823 \cs_new_eq:NN \box_use_drop:N \tex_box:D
34824 \cs_new_eq:NN \box_use:N \tex_copy:D
34825 \cs_generate_variant:Nn \box_use_drop:N { c }
34826 \cs_generate_variant:Nn \box_use:N { c }

\box_move_left:nn
\box_move_right:nn

\box_move_up:nn
\box_move_down:nn

Move box material in different directions. When debugging, the dimension expression #1
is surrounded by parentheses to catch early termination.

34827 \cs_new_protected:Npn \box_move_left:nn #1#2
34828 { \tex_moveleft:D __box_dim_eval:n {#1} #2 }
34829 \cs_new_protected:Npn \box_move_right:nn #1#2
34830 { \tex_moveright:D __box_dim_eval:n {#1} #2 }
34831 \cs_new_protected:Npn \box_move_up:nn #1#2
34832 { \tex_raise:D __box_dim_eval:n {#1} #2 }
34833 \cs_new_protected:Npn \box_move_down:nn #1#2
34834 { \tex_lower:D __box_dim_eval:n {#1} #2 }

1367

91.5 Box conditionals

\if_hbox:N
\if_vbox:N

\if_box_empty:N

The primitives for testing if a ⟨box⟩ is empty/void or which type of box it is.
34835 \cs_new_eq:NN \if_hbox:N \tex_ifhbox:D
34836 \cs_new_eq:NN \if_vbox:N \tex_ifvbox:D
34837 \cs_new_eq:NN \if_box_empty:N \tex_ifvoid:D

\box_if_horizontal_p:N
\box_if_horizontal_p:c
\box_if_horizontal:NTF
\box_if_horizontal:cTF
\box_if_vertical_p:N
\box_if_vertical_p:c
\box_if_vertical:NTF
\box_if_vertical:cTF

34838 \prg_new_conditional:Npnn \box_if_horizontal:N #1 { p , T , F , TF }
34839 { \if_hbox:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
34840 \prg_new_conditional:Npnn \box_if_vertical:N #1 { p , T , F , TF }
34841 { \if_vbox:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
34842 \prg_generate_conditional_variant:Nnn \box_if_horizontal:N
34843 { c } { p , T , F , TF }
34844 \prg_generate_conditional_variant:Nnn \box_if_vertical:N
34845 { c } { p , T , F , TF }

\box_if_empty_p:N
\box_if_empty_p:c
\box_if_empty:NTF
\box_if_empty:cTF

Testing if a ⟨box⟩ is empty/void.
34846 \prg_new_conditional:Npnn \box_if_empty:N #1 { p , T , F , TF }
34847 { \if_box_empty:N #1 \prg_return_true: \else: \prg_return_false: \fi: }
34848 \prg_generate_conditional_variant:Nnn \box_if_empty:N
34849 { c } { p , T , F , TF }

(End of definition for \box_new:N and others. These functions are documented on page 307.)

91.6 The last box inserted
\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

Set a box to the previous box.
34850 \cs_new_protected:Npn \box_set_to_last:N #1
34851 { \tex_setbox:D #1 \tex_lastbox:D }
34852 \cs_new_protected:Npn \box_gset_to_last:N #1
34853 { \tex_global:D \tex_setbox:D #1 \tex_lastbox:D }
34854 \cs_generate_variant:Nn \box_set_to_last:N { c }
34855 \cs_generate_variant:Nn \box_gset_to_last:N { c }

(End of definition for \box_set_to_last:N and \box_gset_to_last:N. These functions are documented
on page 310.)

91.7 Constant boxes
\c_empty_box A box we never use.

34856 \box_new:N \c_empty_box

(End of definition for \c_empty_box. This variable is documented on page 310.)

1368

91.8 Scratch boxes
\l_tmpa_box
\l_tmpb_box
\g_tmpa_box
\g_tmpb_box

Scratch boxes.
34857 \box_new:N \l_tmpa_box
34858 \box_new:N \l_tmpb_box
34859 \box_new:N \g_tmpa_box
34860 \box_new:N \g_tmpb_box

(End of definition for \l_tmpa_box and others. These variables are documented on page 310.)

91.9 Viewing box contents
TEX’s \showbox is not really that helpful in many cases, and it is also inconsistent with
other LATEX3 show functions as it does not actually shows material in the terminal. So
we provide a richer set of functionality.

\box_show:N
\box_show:c

\box_show:Nnn
\box_show:cnn

Essentially a wrapper around the internal function, but evaluating the breadth and depth
arguments now outside the group.

34861 \cs_new_protected:Npn \box_show:N #1
34862 { \box_show:Nnn #1 \c_max_int \c_max_int }
34863 \cs_generate_variant:Nn \box_show:N { c }
34864 \cs_new_protected:Npn \box_show:Nnn #1#2#3
34865 { __box_show:NNff 1 #1 { \int_eval:n {#2} } { \int_eval:n {#3} } }
34866 \cs_generate_variant:Nn \box_show:Nnn { c }

(End of definition for \box_show:N and \box_show:Nnn. These functions are documented on page 311.)

\box_log:N
\box_log:c

\box_log:Nnn
\box_log:cnn

__box_log:nNnn

Getting TEX to write to the log without interruption the run is done by altering the
interaction mode. For that, the ε-TEX extensions are needed.

34867 \cs_new_protected:Npn \box_log:N #1
34868 { \box_log:Nnn #1 \c_max_int \c_max_int }
34869 \cs_generate_variant:Nn \box_log:N { c }
34870 \cs_new_protected:Npn \box_log:Nnn
34871 { \exp_args:No __box_log:nNnn { \tex_the:D \tex_interactionmode:D } }
34872 \cs_new_protected:Npn __box_log:nNnn #1#2#3#4
34873 {
34874 \int_gset:Nn \tex_interactionmode:D { 0 }
34875 __box_show:NNff 0 #2 { \int_eval:n {#3} } { \int_eval:n {#4} }
34876 \int_gset:Nn \tex_interactionmode:D {#1}
34877 }
34878 \cs_generate_variant:Nn \box_log:Nnn { c }

(End of definition for \box_log:N , \box_log:Nnn , and __box_log:nNnn. These functions are docu-
mented on page 311.)

__box_show:NNnn
__box_show:NNff

The internal auxiliary to actually do the output uses a group to deal with breadth and
depth values. The \use:n here gives better output appearance. Setting \tracingonline
and \errorcontextlines is used to control what appears in the terminal.

34879 \cs_new_protected:Npn __box_show:NNnn #1#2#3#4
34880 {
34881 \box_if_exist:NTF #2
34882 {
34883 \group_begin:

1369

34884 \int_set:Nn \tex_showboxbreadth:D {#3}
34885 \int_set:Nn \tex_showboxdepth:D {#4}
34886 \int_set:Nn \tex_tracingonline:D {#1}
34887 \int_set:Nn \tex_errorcontextlines:D { -1 }
34888 \tex_showbox:D \use:n {#2}
34889 \group_end:
34890 }
34891 {
34892 \msg_error:nne { kernel } { variable-not-defined }
34893 { \token_to_str:N #2 }
34894 }
34895 }
34896 \cs_generate_variant:Nn __box_show:NNnn { NNff }

(End of definition for __box_show:NNnn.)

91.10 Horizontal mode boxes
\hbox:n (The test suite for this command, and others in this file, is m3box002.lvt.)

Put a horizontal box directly into the input stream.
34897 \cs_new_protected:Npn \hbox:n #1
34898 { \tex_hbox:D \scan_stop: { \color_group_begin: #1 \color_group_end: } }

(End of definition for \hbox:n. This function is documented on page 311.)

\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

34899 \cs_new_protected:Npn \hbox_set:Nn #1#2
34900 {
34901 \tex_setbox:D #1 \tex_hbox:D
34902 { \color_group_begin: #2 \color_group_end: }
34903 }
34904 \cs_new_protected:Npn \hbox_gset:Nn #1#2
34905 {
34906 \tex_global:D \tex_setbox:D #1 \tex_hbox:D
34907 { \color_group_begin: #2 \color_group_end: }
34908 }
34909 \cs_generate_variant:Nn \hbox_set:Nn { c }
34910 \cs_generate_variant:Nn \hbox_gset:Nn { c }

(End of definition for \hbox_set:Nn and \hbox_gset:Nn. These functions are documented on page 311.)

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Storing material in a horizontal box with a specified width. Again, put the dimension
expression in parentheses when debugging.

34911 \cs_new_protected:Npn \hbox_set_to_wd:Nnn #1#2#3
34912 {
34913 \tex_setbox:D #1 \tex_hbox:D to __box_dim_eval:n {#2}
34914 { \color_group_begin: #3 \color_group_end: }
34915 }
34916 \cs_new_protected:Npn \hbox_gset_to_wd:Nnn #1#2#3
34917 {
34918 \tex_global:D \tex_setbox:D #1 \tex_hbox:D to __box_dim_eval:n {#2}
34919 { \color_group_begin: #3 \color_group_end: }
34920 }
34921 \cs_generate_variant:Nn \hbox_set_to_wd:Nnn { c }
34922 \cs_generate_variant:Nn \hbox_gset_to_wd:Nnn { c }

1370

(End of definition for \hbox_set_to_wd:Nnn and \hbox_gset_to_wd:Nnn. These functions are docu-
mented on page 312.)

\hbox_set:Nw
\hbox_set:cw

\hbox_gset:Nw
\hbox_gset:cw
\hbox_set_end:
\hbox_gset_end:

Storing material in a horizontal box. This type is useful in environment definitions.
34923 \cs_new_protected:Npn \hbox_set:Nw #1
34924 {
34925 \tex_setbox:D #1 \tex_hbox:D
34926 \c_group_begin_token
34927 \color_group_begin:
34928 }
34929 \cs_new_protected:Npn \hbox_gset:Nw #1
34930 {
34931 \tex_global:D \tex_setbox:D #1 \tex_hbox:D
34932 \c_group_begin_token
34933 \color_group_begin:
34934 }
34935 \cs_generate_variant:Nn \hbox_set:Nw { c }
34936 \cs_generate_variant:Nn \hbox_gset:Nw { c }
34937 \cs_new_protected:Npn \hbox_set_end:
34938 {
34939 \color_group_end:
34940 \c_group_end_token
34941 }
34942 \cs_new_eq:NN \hbox_gset_end: \hbox_set_end:

(End of definition for \hbox_set:Nw and others. These functions are documented on page 312.)

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

Combining the above ideas.
34943 \cs_new_protected:Npn \hbox_set_to_wd:Nnw #1#2
34944 {
34945 \tex_setbox:D #1 \tex_hbox:D to __box_dim_eval:n {#2}
34946 \c_group_begin_token
34947 \color_group_begin:
34948 }
34949 \cs_new_protected:Npn \hbox_gset_to_wd:Nnw #1#2
34950 {
34951 \tex_global:D \tex_setbox:D #1 \tex_hbox:D to __box_dim_eval:n {#2}
34952 \c_group_begin_token
34953 \color_group_begin:
34954 }
34955 \cs_generate_variant:Nn \hbox_set_to_wd:Nnw { c }
34956 \cs_generate_variant:Nn \hbox_gset_to_wd:Nnw { c }

(End of definition for \hbox_set_to_wd:Nnw and \hbox_gset_to_wd:Nnw. These functions are docu-
mented on page 312.)

\hbox_to_wd:nn
\hbox_to_zero:n

Put a horizontal box directly into the input stream.
34957 \cs_new_protected:Npn \hbox_to_wd:nn #1#2
34958 {
34959 \tex_hbox:D to __box_dim_eval:n {#1}
34960 { \color_group_begin: #2 \color_group_end: }
34961 }
34962 \cs_new_protected:Npn \hbox_to_zero:n #1
34963 {
34964 \tex_hbox:D to \c_zero_dim

1371

34965 { \color_group_begin: #1 \color_group_end: }
34966 }

(End of definition for \hbox_to_wd:nn and \hbox_to_zero:n. These functions are documented on page
311.)

\hbox_overlap_center:n
\hbox_overlap_left:n

\hbox_overlap_right:n

Put a zero-sized box with the contents pushed against one side (which makes it stick out
on the other) directly into the input stream.

34967 \cs_new_protected:Npn \hbox_overlap_center:n #1
34968 { \hbox_to_zero:n { \tex_hss:D #1 \tex_hss:D } }
34969 \cs_new_protected:Npn \hbox_overlap_left:n #1
34970 { \hbox_to_zero:n { \tex_hss:D #1 } }
34971 \cs_new_protected:Npn \hbox_overlap_right:n #1
34972 { \hbox_to_zero:n { #1 \tex_hss:D } }

(End of definition for \hbox_overlap_center:n , \hbox_overlap_left:n , and \hbox_overlap_right:n.
These functions are documented on page 312.)

\hbox_unpack:N
\hbox_unpack:c

\hbox_unpack_drop:N
\hbox_unpack_drop:c

Unpacking a box and if requested also clear it.
34973 \cs_new_eq:NN \hbox_unpack:N \tex_unhcopy:D
34974 \cs_new_eq:NN \hbox_unpack_drop:N \tex_unhbox:D
34975 \cs_generate_variant:Nn \hbox_unpack:N { c }
34976 \cs_generate_variant:Nn \hbox_unpack_drop:N { c }

(End of definition for \hbox_unpack:N and \hbox_unpack_drop:N. These functions are documented on
page 312.)

91.11 Vertical mode boxes
TEX ends these boxes directly with the internal end_graf routine. This means that there
is no \par at the end of vertical boxes unless we insert one. Thus all vertical boxes
include a \par just before closing the color group.

\vbox:n The following test files are used for this code: m3box003.lvt.

\vbox_top:n
The following test files are used for this code: m3box003.lvt.

Put a vertical box directly into the input stream.
34977 \cs_new_protected:Npn \vbox:n #1
34978 { \tex_vbox:D { \color_group_begin: #1 \par \color_group_end: } }
34979 \cs_new_protected:Npn \vbox_top:n #1
34980 { \tex_vtop:D { \color_group_begin: #1 \par \color_group_end: } }

(End of definition for \vbox:n and \vbox_top:n. These functions are documented on page 313.)

\vbox_to_ht:nn
\vbox_to_zero:n
\vbox_to_ht:nn

\vbox_to_zero:n

Put a vertical box directly into the input stream.
34981 \cs_new_protected:Npn \vbox_to_ht:nn #1#2
34982 {
34983 \tex_vbox:D to __box_dim_eval:n {#1}
34984 { \color_group_begin: #2 \par \color_group_end: }
34985 }
34986 \cs_new_protected:Npn \vbox_to_zero:n #1
34987 {
34988 \tex_vbox:D to \c_zero_dim
34989 { \color_group_begin: #1 \par \color_group_end: }
34990 }

1372

(End of definition for \vbox_to_ht:nn and others. These functions are documented on page 313.)

\vbox_set:Nn
\vbox_set:cn

\vbox_gset:Nn
\vbox_gset:cn

Storing material in a vertical box with a natural height.
34991 \cs_new_protected:Npn \vbox_set:Nn #1#2
34992 {
34993 \tex_setbox:D #1 \tex_vbox:D
34994 { \color_group_begin: #2 \par \color_group_end: }
34995 }
34996 \cs_new_protected:Npn \vbox_gset:Nn #1#2
34997 {
34998 \tex_global:D \tex_setbox:D #1 \tex_vbox:D
34999 { \color_group_begin: #2 \par \color_group_end: }
35000 }
35001 \cs_generate_variant:Nn \vbox_set:Nn { c }
35002 \cs_generate_variant:Nn \vbox_gset:Nn { c }

(End of definition for \vbox_set:Nn and \vbox_gset:Nn. These functions are documented on page 313.)

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Storing material in a vertical box with a natural height and reference point at the baseline
of the first object in the box.

35003 \cs_new_protected:Npn \vbox_set_top:Nn #1#2
35004 {
35005 \tex_setbox:D #1 \tex_vtop:D
35006 { \color_group_begin: #2 \par \color_group_end: }
35007 }
35008 \cs_new_protected:Npn \vbox_gset_top:Nn #1#2
35009 {
35010 \tex_global:D \tex_setbox:D #1 \tex_vtop:D
35011 { \color_group_begin: #2 \par \color_group_end: }
35012 }
35013 \cs_generate_variant:Nn \vbox_set_top:Nn { c }
35014 \cs_generate_variant:Nn \vbox_gset_top:Nn { c }

(End of definition for \vbox_set_top:Nn and \vbox_gset_top:Nn. These functions are documented on
page 313.)

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Storing material in a vertical box with a specified height.
35015 \cs_new_protected:Npn \vbox_set_to_ht:Nnn #1#2#3
35016 {
35017 \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n {#2}
35018 { \color_group_begin: #3 \par \color_group_end: }
35019 }
35020 \cs_new_protected:Npn \vbox_gset_to_ht:Nnn #1#2#3
35021 {
35022 \tex_global:D \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n {#2}
35023 { \color_group_begin: #3 \par \color_group_end: }
35024 }
35025 \cs_generate_variant:Nn \vbox_set_to_ht:Nnn { c }
35026 \cs_generate_variant:Nn \vbox_gset_to_ht:Nnn { c }

(End of definition for \vbox_set_to_ht:Nnn and \vbox_gset_to_ht:Nnn. These functions are docu-
mented on page 313.)

1373

\vbox_set:Nw
\vbox_set:cw

\vbox_gset:Nw
\vbox_gset:cw
\vbox_set_end:
\vbox_gset_end:

Storing material in a vertical box. This type is useful in environment definitions.
35027 \cs_new_protected:Npn \vbox_set:Nw #1
35028 {
35029 \tex_setbox:D #1 \tex_vbox:D
35030 \c_group_begin_token
35031 \color_group_begin:
35032 }
35033 \cs_new_protected:Npn \vbox_gset:Nw #1
35034 {
35035 \tex_global:D \tex_setbox:D #1 \tex_vbox:D
35036 \c_group_begin_token
35037 \color_group_begin:
35038 }
35039 \cs_generate_variant:Nn \vbox_set:Nw { c }
35040 \cs_generate_variant:Nn \vbox_gset:Nw { c }
35041 \cs_new_protected:Npn \vbox_set_end:
35042 {
35043 \par
35044 \color_group_end:
35045 \c_group_end_token
35046 }
35047 \cs_new_eq:NN \vbox_gset_end: \vbox_set_end:

(End of definition for \vbox_set:Nw and others. These functions are documented on page 313.)

\vbox_set_to_ht:Nnw
\vbox_set_to_ht:cnw
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:cnw

A combination of the above ideas.
35048 \cs_new_protected:Npn \vbox_set_to_ht:Nnw #1#2
35049 {
35050 \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n {#2}
35051 \c_group_begin_token
35052 \color_group_begin:
35053 }
35054 \cs_new_protected:Npn \vbox_gset_to_ht:Nnw #1#2
35055 {
35056 \tex_global:D \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n {#2}
35057 \c_group_begin_token
35058 \color_group_begin:
35059 }
35060 \cs_generate_variant:Nn \vbox_set_to_ht:Nnw { c }
35061 \cs_generate_variant:Nn \vbox_gset_to_ht:Nnw { c }

(End of definition for \vbox_set_to_ht:Nnw and \vbox_gset_to_ht:Nnw. These functions are docu-
mented on page 314.)

\vbox_unpack:N
\vbox_unpack:c

\vbox_unpack_drop:N
\vbox_unpack_drop:c

Unpacking a box and if requested also clear it.
35062 \cs_new_eq:NN \vbox_unpack:N \tex_unvcopy:D
35063 \cs_new_eq:NN \vbox_unpack_drop:N \tex_unvbox:D
35064 \cs_generate_variant:Nn \vbox_unpack:N { c }
35065 \cs_generate_variant:Nn \vbox_unpack_drop:N { c }

(End of definition for \vbox_unpack:N and \vbox_unpack_drop:N. These functions are documented on
page 314.)

1374

\vbox_set_split_to_ht:NNn
\vbox_set_split_to_ht:cNn
\vbox_set_split_to_ht:Ncn
\vbox_set_split_to_ht:ccn
\vbox_gset_split_to_ht:NNn
\vbox_gset_split_to_ht:cNn
\vbox_gset_split_to_ht:Ncn
\vbox_gset_split_to_ht:ccn

Splitting a vertical box in two.
35066 \cs_new_protected:Npn \vbox_set_split_to_ht:NNn #1#2#3
35067 { \tex_setbox:D #1 \tex_vsplit:D #2 to __box_dim_eval:n {#3} }
35068 \cs_generate_variant:Nn \vbox_set_split_to_ht:NNn { c , Nc , cc }
35069 \cs_new_protected:Npn \vbox_gset_split_to_ht:NNn #1#2#3
35070 {
35071 \tex_global:D \tex_setbox:D #1
35072 \tex_vsplit:D #2 to __box_dim_eval:n {#3}
35073 }
35074 \cs_generate_variant:Nn \vbox_gset_split_to_ht:NNn { c , Nc , cc }

(End of definition for \vbox_set_split_to_ht:NNn and \vbox_gset_split_to_ht:NNn. These functions
are documented on page 314.)

91.12 Affine transformations
\l__box_angle_fp When rotating boxes, the angle itself may be needed by the engine-dependent code. This

is done using the fp module so that the value is tidied up properly.
35075 \fp_new:N \l__box_angle_fp

(End of definition for \l__box_angle_fp.)

\l__box_cos_fp
\l__box_sin_fp

These are used to hold the calculated sine and cosine values while carrying out a rotation.
35076 \fp_new:N \l__box_cos_fp
35077 \fp_new:N \l__box_sin_fp

(End of definition for \l__box_cos_fp and \l__box_sin_fp.)

\l__box_top_dim
\l__box_bottom_dim

\l__box_left_dim
\l__box_right_dim

These are the positions of the four edges of a box before manipulation.
35078 \dim_new:N \l__box_top_dim
35079 \dim_new:N \l__box_bottom_dim
35080 \dim_new:N \l__box_left_dim
35081 \dim_new:N \l__box_right_dim

(End of definition for \l__box_top_dim and others.)

\l__box_top_new_dim
\l__box_bottom_new_dim
\l__box_left_new_dim

\l__box_right_new_dim

These are the positions of the four edges of a box after manipulation.
35082 \dim_new:N \l__box_top_new_dim
35083 \dim_new:N \l__box_bottom_new_dim
35084 \dim_new:N \l__box_left_new_dim
35085 \dim_new:N \l__box_right_new_dim

(End of definition for \l__box_top_new_dim and others.)

\l__box_internal_box Scratch space, but also needed by some parts of the driver.
35086 \box_new:N \l__box_internal_box

(End of definition for \l__box_internal_box.)

1375

A

BC

D E

O

Figure 1: Coordinates of a box prior to rotation.

\box_rotate:Nn
\box_rotate:cn
\box_grotate:Nn
\box_grotate:cn

__box_rotate:NnN
__box_rotate:N

__box_rotate_xdir:nnN
__box_rotate_ydir:nnN

__box_rotate_quadrant_one:
__box_rotate_quadrant_two:

__box_rotate_quadrant_three:
__box_rotate_quadrant_four:

Rotation of a box starts with working out the relevant sine and cosine. The actual
rotation is in an auxiliary to keep the flow slightly clearer

35087 \cs_new_protected:Npn \box_rotate:Nn #1#2
35088 { __box_rotate:NnN #1 {#2} \hbox_set:Nn }
35089 \cs_generate_variant:Nn \box_rotate:Nn { c }
35090 \cs_new_protected:Npn \box_grotate:Nn #1#2
35091 { __box_rotate:NnN #1 {#2} \hbox_gset:Nn }
35092 \cs_generate_variant:Nn \box_grotate:Nn { c }
35093 \cs_new_protected:Npn __box_rotate:NnN #1#2#3
35094 {
35095 #3 #1
35096 {
35097 \fp_set:Nn \l__box_angle_fp {#2}
35098 \fp_set:Nn \l__box_sin_fp { sind (\l__box_angle_fp) }
35099 \fp_set:Nn \l__box_cos_fp { cosd (\l__box_angle_fp) }
35100 __box_rotate:N #1
35101 }
35102 }

The edges of the box are then recorded: the left edge is always at zero. Rotation of the
four edges then takes place: this is most efficiently done on a quadrant by quadrant basis.

35103 \cs_new_protected:Npn __box_rotate:N #1
35104 {
35105 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
35106 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
35107 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
35108 \dim_zero:N \l__box_left_dim

The next step is to work out the x and y coordinates of vertices of the rotated box in
relation to its original coordinates. The box can be visualized with vertices B, C, D and
E is illustrated (Figure 1). The vertex O is the reference point on the baseline, and in
this implementation is also the centre of rotation. The formulae are, for a point P and
angle α:

P ′
x = Px − Ox

P ′
y = Py − Oy

P ′′
x = (P ′

x cos(α)) − (P ′
y sin(α))

P ′′
y = (P ′

x sin(α)) + (P ′
y cos(α))

P ′′′
x = P ′′

x + Ox + Lx

P ′′′
y = P ′′

y + Oy

1376

The “extra” horizontal translation Lx at the end is calculated so that the leftmost point
of the resulting box has x-coordinate 0. This is desirable as TEX boxes must have the
reference point at the left edge of the box. (As O is always (0, 0), this part of the
calculation is omitted here.)

35109 \fp_compare:nNnTF \l__box_sin_fp > \c_zero_fp
35110 {
35111 \fp_compare:nNnTF \l__box_cos_fp > \c_zero_fp
35112 { __box_rotate_quadrant_one: }
35113 { __box_rotate_quadrant_two: }
35114 }
35115 {
35116 \fp_compare:nNnTF \l__box_cos_fp < \c_zero_fp
35117 { __box_rotate_quadrant_three: }
35118 { __box_rotate_quadrant_four: }
35119 }

The position of the box edges are now known, but the box at this stage be misplaced
relative to the current TEX reference point. So the content of the box is moved such that
the reference point of the rotated box is in the same place as the original.

35120 \hbox_set:Nn \l__box_internal_box { \box_use:N #1 }
35121 \hbox_set:Nn \l__box_internal_box
35122 {
35123 __kernel_kern:n { -\l__box_left_new_dim }
35124 \hbox:n
35125 {
35126 __box_backend_rotate:Nn
35127 \l__box_internal_box
35128 \l__box_angle_fp
35129 }
35130 }

Tidy up the size of the box so that the material is actually inside the bounding box. The
result can then be used to reset the original box.

35131 \box_set_ht:Nn \l__box_internal_box { \l__box_top_new_dim }
35132 \box_set_dp:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
35133 \box_set_wd:Nn \l__box_internal_box
35134 { \l__box_right_new_dim - \l__box_left_new_dim }
35135 \box_use_drop:N \l__box_internal_box
35136 }

These functions take a general point (#1, #2) and rotate its location about the origin,
using the previously-set sine and cosine values. Each function gives only one component
of the location of the updated point. This is because for rotation of a box each step needs
only one value, and so performance is gained by avoiding working out both x′ and y′ at
the same time. Contrast this with the equivalent function in the l3coffins module, where
both parts are needed.

35137 \cs_new_protected:Npn __box_rotate_xdir:nnN #1#2#3
35138 {
35139 \dim_set:Nn #3
35140 {
35141 \fp_to_dim:n
35142 {
35143 \l__box_cos_fp * \dim_to_fp:n {#1}
35144 - \l__box_sin_fp * \dim_to_fp:n {#2}

1377

35145 }
35146 }
35147 }
35148 \cs_new_protected:Npn __box_rotate_ydir:nnN #1#2#3
35149 {
35150 \dim_set:Nn #3
35151 {
35152 \fp_to_dim:n
35153 {
35154 \l__box_sin_fp * \dim_to_fp:n {#1}
35155 + \l__box_cos_fp * \dim_to_fp:n {#2}
35156 }
35157 }
35158 }

Rotation of the edges is done using a different formula for each quadrant. In every case,
the top and bottom edges only need the resulting y-values, whereas the left and right
edges need the x-values. Each case is a question of picking out which corner ends up at
with the maximum top, bottom, left and right value. Doing this by hand means a lot
less calculating and avoids lots of comparisons.

35159 \cs_new_protected:Npn __box_rotate_quadrant_one:
35160 {
35161 __box_rotate_ydir:nnN \l__box_right_dim \l__box_top_dim
35162 \l__box_top_new_dim
35163 __box_rotate_ydir:nnN \l__box_left_dim \l__box_bottom_dim
35164 \l__box_bottom_new_dim
35165 __box_rotate_xdir:nnN \l__box_left_dim \l__box_top_dim
35166 \l__box_left_new_dim
35167 __box_rotate_xdir:nnN \l__box_right_dim \l__box_bottom_dim
35168 \l__box_right_new_dim
35169 }
35170 \cs_new_protected:Npn __box_rotate_quadrant_two:
35171 {
35172 __box_rotate_ydir:nnN \l__box_right_dim \l__box_bottom_dim
35173 \l__box_top_new_dim
35174 __box_rotate_ydir:nnN \l__box_left_dim \l__box_top_dim
35175 \l__box_bottom_new_dim
35176 __box_rotate_xdir:nnN \l__box_right_dim \l__box_top_dim
35177 \l__box_left_new_dim
35178 __box_rotate_xdir:nnN \l__box_left_dim \l__box_bottom_dim
35179 \l__box_right_new_dim
35180 }
35181 \cs_new_protected:Npn __box_rotate_quadrant_three:
35182 {
35183 __box_rotate_ydir:nnN \l__box_left_dim \l__box_bottom_dim
35184 \l__box_top_new_dim
35185 __box_rotate_ydir:nnN \l__box_right_dim \l__box_top_dim
35186 \l__box_bottom_new_dim
35187 __box_rotate_xdir:nnN \l__box_right_dim \l__box_bottom_dim
35188 \l__box_left_new_dim
35189 __box_rotate_xdir:nnN \l__box_left_dim \l__box_top_dim
35190 \l__box_right_new_dim
35191 }
35192 \cs_new_protected:Npn __box_rotate_quadrant_four:

1378

35193 {
35194 __box_rotate_ydir:nnN \l__box_left_dim \l__box_top_dim
35195 \l__box_top_new_dim
35196 __box_rotate_ydir:nnN \l__box_right_dim \l__box_bottom_dim
35197 \l__box_bottom_new_dim
35198 __box_rotate_xdir:nnN \l__box_left_dim \l__box_bottom_dim
35199 \l__box_left_new_dim
35200 __box_rotate_xdir:nnN \l__box_right_dim \l__box_top_dim
35201 \l__box_right_new_dim
35202 }

(End of definition for \box_rotate:Nn and others. These functions are documented on page 318.)

\l__box_scale_x_fp
\l__box_scale_y_fp

Scaling is potentially-different in the two axes.
35203 \fp_new:N \l__box_scale_x_fp
35204 \fp_new:N \l__box_scale_y_fp

(End of definition for \l__box_scale_x_fp and \l__box_scale_y_fp.)

\box_resize_to_wd_and_ht_plus_dp:Nnn
\box_resize_to_wd_and_ht_plus_dp:cnn
\box_gresize_to_wd_and_ht_plus_dp:Nnn
\box_gresize_to_wd_and_ht_plus_dp:cnn

__box_resize_to_wd_and_ht_plus_dp:NnnN
__box_resize_set_corners:N

__box_resize:N
__box_resize:NNN

Resizing a box starts by working out the various dimensions of the existing box.
35205 \cs_new_protected:Npn \box_resize_to_wd_and_ht_plus_dp:Nnn #1#2#3
35206 {
35207 __box_resize_to_wd_and_ht_plus_dp:NnnN #1 {#2} {#3}
35208 \hbox_set:Nn
35209 }
35210 \cs_generate_variant:Nn \box_resize_to_wd_and_ht_plus_dp:Nnn { c }
35211 \cs_new_protected:Npn \box_gresize_to_wd_and_ht_plus_dp:Nnn #1#2#3
35212 {
35213 __box_resize_to_wd_and_ht_plus_dp:NnnN #1 {#2} {#3}
35214 \hbox_gset:Nn
35215 }
35216 \cs_generate_variant:Nn \box_gresize_to_wd_and_ht_plus_dp:Nnn { c }
35217 \cs_new_protected:Npn __box_resize_to_wd_and_ht_plus_dp:NnnN #1#2#3#4
35218 {
35219 #4 #1
35220 {
35221 __box_resize_set_corners:N #1

The x-scaling and resulting box size is easy enough to work out: the dimension is that
given as #2, and the scale is simply the new width divided by the old one.

35222 \fp_set:Nn \l__box_scale_x_fp
35223 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }

The y-scaling needs both the height and the depth of the current box.
35224 \fp_set:Nn \l__box_scale_y_fp
35225 {
35226 \dim_to_fp:n {#3}
35227 / \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim }
35228 }

Hand off to the auxiliary which does the rest of the work.
35229 __box_resize:N #1
35230 }
35231 }
35232 \cs_new_protected:Npn __box_resize_set_corners:N #1
35233 {

1379

35234 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
35235 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
35236 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
35237 \dim_zero:N \l__box_left_dim
35238 }

With at least one real scaling to do, the next phase is to find the new edge coordinates.
In the x direction this is relatively easy: just scale the right edge. In the y direction,
both dimensions have to be scaled, and this again needs the absolute scale value. Once
that is all done, the common resize/rescale code can be employed.

35239 \cs_new_protected:Npn __box_resize:N #1
35240 {
35241 __box_resize:NNN \l__box_right_new_dim
35242 \l__box_scale_x_fp \l__box_right_dim
35243 __box_resize:NNN \l__box_bottom_new_dim
35244 \l__box_scale_y_fp \l__box_bottom_dim
35245 __box_resize:NNN \l__box_top_new_dim
35246 \l__box_scale_y_fp \l__box_top_dim
35247 __box_resize_common:N #1
35248 }
35249 \cs_new_protected:Npn __box_resize:NNN #1#2#3
35250 {
35251 \dim_set:Nn #1
35252 { \fp_to_dim:n { \fp_abs:n { #2 } * \dim_to_fp:n { #3 } } }
35253 }

(End of definition for \box_resize_to_wd_and_ht_plus_dp:Nnn and others. These functions are docu-
mented on page 317.)

\box_resize_to_ht:Nn
\box_resize_to_ht:cn

\box_gresize_to_ht:Nn
\box_gresize_to_ht:cn

__box_resize_to_ht:NnN
\box_resize_to_ht_plus_dp:Nn
\box_resize_to_ht_plus_dp:cn

\box_gresize_to_ht_plus_dp:Nn
\box_gresize_to_ht_plus_dp:cn

__box_resize_to_ht_plus_dp:NnN
\box_resize_to_wd:Nn
\box_resize_to_wd:cn

\box_gresize_to_wd:Nn
\box_gresize_to_wd:cn

__box_resize_to_wd:NnN
\box_resize_to_wd_and_ht:Nnn
\box_resize_to_wd_and_ht:cnn

\box_gresize_to_wd_and_ht:Nnn
\box_gresize_to_wd_and_ht:cnn

__box_resize_to_wd_ht:NnnN

Scaling to a (total) height or to a width is a simplified version of the main resizing
operation, with the scale simply copied between the two parts. The internal auxiliary is
called using the scaling value twice, as the sign for both parts is needed (as this allows
the same internal code to be used as for the general case).

35254 \cs_new_protected:Npn \box_resize_to_ht:Nn #1#2
35255 { __box_resize_to_ht:NnN #1 {#2} \hbox_set:Nn }
35256 \cs_generate_variant:Nn \box_resize_to_ht:Nn { c }
35257 \cs_new_protected:Npn \box_gresize_to_ht:Nn #1#2
35258 { __box_resize_to_ht:NnN #1 {#2} \hbox_gset:Nn }
35259 \cs_generate_variant:Nn \box_gresize_to_ht:Nn { c }
35260 \cs_new_protected:Npn __box_resize_to_ht:NnN #1#2#3
35261 {
35262 #3 #1
35263 {
35264 __box_resize_set_corners:N #1
35265 \fp_set:Nn \l__box_scale_y_fp
35266 {
35267 \dim_to_fp:n {#2}
35268 / \dim_to_fp:n { \l__box_top_dim }
35269 }
35270 \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
35271 __box_resize:N #1
35272 }
35273 }
35274 \cs_new_protected:Npn \box_resize_to_ht_plus_dp:Nn #1#2

1380

35275 { __box_resize_to_ht_plus_dp:NnN #1 {#2} \hbox_set:Nn }
35276 \cs_generate_variant:Nn \box_resize_to_ht_plus_dp:Nn { c }
35277 \cs_new_protected:Npn \box_gresize_to_ht_plus_dp:Nn #1#2
35278 { __box_resize_to_ht_plus_dp:NnN #1 {#2} \hbox_gset:Nn }
35279 \cs_generate_variant:Nn \box_gresize_to_ht_plus_dp:Nn { c }
35280 \cs_new_protected:Npn __box_resize_to_ht_plus_dp:NnN #1#2#3
35281 {
35282 #3 #1
35283 {
35284 __box_resize_set_corners:N #1
35285 \fp_set:Nn \l__box_scale_y_fp
35286 {
35287 \dim_to_fp:n {#2}
35288 / \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim }
35289 }
35290 \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp
35291 __box_resize:N #1
35292 }
35293 }
35294 \cs_new_protected:Npn \box_resize_to_wd:Nn #1#2
35295 { __box_resize_to_wd:NnN #1 {#2} \hbox_set:Nn }
35296 \cs_generate_variant:Nn \box_resize_to_wd:Nn { c }
35297 \cs_new_protected:Npn \box_gresize_to_wd:Nn #1#2
35298 { __box_resize_to_wd:NnN #1 {#2} \hbox_gset:Nn }
35299 \cs_generate_variant:Nn \box_gresize_to_wd:Nn { c }
35300 \cs_new_protected:Npn __box_resize_to_wd:NnN #1#2#3
35301 {
35302 #3 #1
35303 {
35304 __box_resize_set_corners:N #1
35305 \fp_set:Nn \l__box_scale_x_fp
35306 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }
35307 \fp_set_eq:NN \l__box_scale_y_fp \l__box_scale_x_fp
35308 __box_resize:N #1
35309 }
35310 }
35311 \cs_new_protected:Npn \box_resize_to_wd_and_ht:Nnn #1#2#3
35312 { __box_resize_to_wd_and_ht:NnnN #1 {#2} {#3} \hbox_set:Nn }
35313 \cs_generate_variant:Nn \box_resize_to_wd_and_ht:Nnn { c }
35314 \cs_new_protected:Npn \box_gresize_to_wd_and_ht:Nnn #1#2#3
35315 { __box_resize_to_wd_and_ht:NnnN #1 {#2} {#3} \hbox_gset:Nn }
35316 \cs_generate_variant:Nn \box_gresize_to_wd_and_ht:Nnn { c }
35317 \cs_new_protected:Npn __box_resize_to_wd_and_ht:NnnN #1#2#3#4
35318 {
35319 #4 #1
35320 {
35321 __box_resize_set_corners:N #1
35322 \fp_set:Nn \l__box_scale_x_fp
35323 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }
35324 \fp_set:Nn \l__box_scale_y_fp
35325 {
35326 \dim_to_fp:n {#3}
35327 / \dim_to_fp:n { \l__box_top_dim }
35328 }

1381

35329 __box_resize:N #1
35330 }
35331 }

(End of definition for \box_resize_to_ht:Nn and others. These functions are documented on page 316.)

\box_scale:Nnn
\box_scale:cnn
\box_gscale:Nnn
\box_gscale:cnn

__box_scale:NnnN
__box_scale:N

When scaling a box, setting the scaling itself is easy enough. The new dimensions are
also relatively easy to find, allowing only for the need to keep them positive in all cases.
Once that is done then after a check for the trivial scaling a hand-off can be made to the
common code. The code here is split into two as this allows sharing with the auto-resizing
functions.

35332 \cs_new_protected:Npn \box_scale:Nnn #1#2#3
35333 { __box_scale:NnnN #1 {#2} {#3} \hbox_set:Nn }
35334 \cs_generate_variant:Nn \box_scale:Nnn { c }
35335 \cs_new_protected:Npn \box_gscale:Nnn #1#2#3
35336 { __box_scale:NnnN #1 {#2} {#3} \hbox_gset:Nn }
35337 \cs_generate_variant:Nn \box_gscale:Nnn { c }
35338 \cs_new_protected:Npn __box_scale:NnnN #1#2#3#4
35339 {
35340 #4 #1
35341 {
35342 \fp_set:Nn \l__box_scale_x_fp {#2}
35343 \fp_set:Nn \l__box_scale_y_fp {#3}
35344 __box_scale:N #1
35345 }
35346 }
35347 \cs_new_protected:Npn __box_scale:N #1
35348 {
35349 \dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
35350 \dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
35351 \dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
35352 \dim_zero:N \l__box_left_dim
35353 \dim_set:Nn \l__box_top_new_dim
35354 { \fp_abs:n { \l__box_scale_y_fp } \l__box_top_dim }
35355 \dim_set:Nn \l__box_bottom_new_dim
35356 { \fp_abs:n { \l__box_scale_y_fp } \l__box_bottom_dim }
35357 \dim_set:Nn \l__box_right_new_dim
35358 { \fp_abs:n { \l__box_scale_x_fp } \l__box_right_dim }
35359 __box_resize_common:N #1
35360 }

(End of definition for \box_scale:Nnn and others. These functions are documented on page 318.)

\box_autosize_to_wd_and_ht:Nnn
\box_autosize_to_wd_and_ht:cnn

\box_gautosize_to_wd_and_ht:Nnn
\box_gautosize_to_wd_and_ht:cnn

\box_autosize_to_wd_and_ht_plus_dp:Nnn
\box_autosize_to_wd_and_ht_plus_dp:cnn
\box_gautosize_to_wd_and_ht_plus_dp:Nnn
\box_gautosize_to_wd_and_ht_plus_dp:cnn

__box_autosize:NnnnN

Although autosizing a box uses dimensions, it has more in common in implementation
with scaling. As such, most of the real work here is done elsewhere.

35361 \cs_new_protected:Npn \box_autosize_to_wd_and_ht:Nnn #1#2#3
35362 { __box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_set:Nn }
35363 \cs_generate_variant:Nn \box_autosize_to_wd_and_ht:Nnn { c }
35364 \cs_new_protected:Npn \box_gautosize_to_wd_and_ht:Nnn #1#2#3
35365 { __box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_gset:Nn }
35366 \cs_generate_variant:Nn \box_gautosize_to_wd_and_ht:Nnn { c }
35367 \cs_new_protected:Npn \box_autosize_to_wd_and_ht_plus_dp:Nnn #1#2#3
35368 {
35369 __box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 + \box_dp:N #1 }

1382

35370 \hbox_set:Nn
35371 }
35372 \cs_generate_variant:Nn \box_autosize_to_wd_and_ht_plus_dp:Nnn { c }
35373 \cs_new_protected:Npn \box_gautosize_to_wd_and_ht_plus_dp:Nnn #1#2#3
35374 {
35375 __box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 + \box_dp:N #1 }
35376 \hbox_gset:Nn
35377 }
35378 \cs_generate_variant:Nn \box_gautosize_to_wd_and_ht_plus_dp:Nnn { c }
35379 \cs_new_protected:Npn __box_autosize:NnnnN #1#2#3#4#5
35380 {
35381 #5 #1
35382 {
35383 \fp_set:Nn \l__box_scale_x_fp { (\dim_to_fp:n {#2}) / \box_wd:N #1 }
35384 \fp_set:Nn \l__box_scale_y_fp
35385 { (\dim_to_fp:n {#3}) / (\dim_to_fp:n {#4}) }
35386 \fp_compare:nNnTF \l__box_scale_x_fp > \l__box_scale_y_fp
35387 { \fp_set_eq:NN \l__box_scale_x_fp \l__box_scale_y_fp }
35388 { \fp_set_eq:NN \l__box_scale_y_fp \l__box_scale_x_fp }
35389 __box_scale:N #1
35390 }
35391 }

(End of definition for \box_autosize_to_wd_and_ht:Nnn and others. These functions are documented
on page 316.)

__box_resize_common:N The main resize function places its input into a box which start off with zero width, and
includes the handles for engine rescaling.

35392 \cs_new_protected:Npn __box_resize_common:N #1
35393 {
35394 \hbox_set:Nn \l__box_internal_box
35395 {
35396 __box_backend_scale:Nnn
35397 #1
35398 \l__box_scale_x_fp
35399 \l__box_scale_y_fp
35400 }

The new height and depth can be applied directly.
35401 \fp_compare:nNnTF \l__box_scale_y_fp > \c_zero_fp
35402 {
35403 \box_set_ht:Nn \l__box_internal_box { \l__box_top_new_dim }
35404 \box_set_dp:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
35405 }
35406 {
35407 \box_set_dp:Nn \l__box_internal_box { \l__box_top_new_dim }
35408 \box_set_ht:Nn \l__box_internal_box { -\l__box_bottom_new_dim }
35409 }

Things are not quite as obvious for the width, as the reference point needs to remain
unchanged. For positive scaling factors resizing the box is all that is needed. However,
for case of a negative scaling the material must be shifted such that the reference point
ends up in the right place.

35410 \fp_compare:nNnTF \l__box_scale_x_fp < \c_zero_fp
35411 {

1383

35412 \hbox_to_wd:nn { \l__box_right_new_dim }
35413 {
35414 __kernel_kern:n { \l__box_right_new_dim }
35415 \box_use_drop:N \l__box_internal_box
35416 \tex_hss:D
35417 }
35418 }
35419 {
35420 \box_set_wd:Nn \l__box_internal_box { \l__box_right_new_dim }
35421 \hbox:n
35422 {
35423 __kernel_kern:n { 0pt }
35424 \box_use_drop:N \l__box_internal_box
35425 \tex_hss:D
35426 }
35427 }
35428 }

(End of definition for __box_resize_common:N.)

91.13 Viewing part of a box
\box_set_clipped:N
\box_set_clipped:c
\box_gset_clipped:N
\box_gset_clipped:c

A wrapper around the driver-dependent code.
35429 \cs_new_protected:Npn \box_set_clipped:N #1
35430 { \hbox_set:Nn #1 { __box_backend_clip:N #1 } }
35431 \cs_generate_variant:Nn \box_set_clipped:N { c }
35432 \cs_new_protected:Npn \box_gset_clipped:N #1
35433 { \hbox_gset:Nn #1 { __box_backend_clip:N #1 } }
35434 \cs_generate_variant:Nn \box_gset_clipped:N { c }

(End of definition for \box_set_clipped:N and \box_gset_clipped:N. These functions are documented
on page 318.)

\box_set_trim:Nnnnn
\box_set_trim:cnnnn
\box_gset_trim:Nnnnn
\box_gset_trim:cnnnn

__box_set_trim:NnnnnN

Trimming from the left- and right-hand edges of the box is easy: kern the appropriate
parts off each side.

35435 \cs_new_protected:Npn \box_set_trim:Nnnnn #1#2#3#4#5
35436 { __box_set_trim:NnnnnN #1 {#2} {#3} {#4} {#5} \box_set_eq:NN }
35437 \cs_generate_variant:Nn \box_set_trim:Nnnnn { c }
35438 \cs_new_protected:Npn \box_gset_trim:Nnnnn #1#2#3#4#5
35439 { __box_set_trim:NnnnnN #1 {#2} {#3} {#4} {#5} \box_gset_eq:NN }
35440 \cs_generate_variant:Nn \box_gset_trim:Nnnnn { c }
35441 \cs_new_protected:Npn __box_set_trim:NnnnnN #1#2#3#4#5#6
35442 {
35443 \hbox_set:Nn \l__box_internal_box
35444 {
35445 __kernel_kern:n { -#2 }
35446 \box_use:N #1
35447 __kernel_kern:n { -#4 }
35448 }

For the height and depth, there is a need to watch the baseline is respected. Material
always has to stay on the correct side, so trimming has to check that there is enough
material to trim. First, the bottom edge. If there is enough depth, simply set the depth,
or if not move down so the result is zero depth. \box_move_down:nn is used in both

1384

cases so the resulting box always contains a \lower primitive. The internal box is used
here as it allows safe use of \box_set_dp:Nn.

35449 \dim_compare:nNnTF { \box_dp:N #1 } > {#3}
35450 {
35451 \hbox_set:Nn \l__box_internal_box
35452 {
35453 \box_move_down:nn \c_zero_dim
35454 { \box_use_drop:N \l__box_internal_box }
35455 }
35456 \box_set_dp:Nn \l__box_internal_box { \box_dp:N #1 - (#3) }
35457 }
35458 {
35459 \hbox_set:Nn \l__box_internal_box
35460 {
35461 \box_move_down:nn { (#3) - \box_dp:N #1 }
35462 { \box_use_drop:N \l__box_internal_box }
35463 }
35464 \box_set_dp:Nn \l__box_internal_box \c_zero_dim
35465 }

Same thing, this time from the top of the box.
35466 \dim_compare:nNnTF { \box_ht:N \l__box_internal_box } > {#5}
35467 {
35468 \hbox_set:Nn \l__box_internal_box
35469 {
35470 \box_move_up:nn \c_zero_dim
35471 { \box_use_drop:N \l__box_internal_box }
35472 }
35473 \box_set_ht:Nn \l__box_internal_box
35474 { \box_ht:N \l__box_internal_box - (#5) }
35475 }
35476 {
35477 \hbox_set:Nn \l__box_internal_box
35478 {
35479 \box_move_up:nn { (#5) - \box_ht:N \l__box_internal_box }
35480 { \box_use_drop:N \l__box_internal_box }
35481 }
35482 \box_set_ht:Nn \l__box_internal_box \c_zero_dim
35483 }
35484 #6 #1 \l__box_internal_box
35485 }

(End of definition for \box_set_trim:Nnnnn , \box_gset_trim:Nnnnn , and __box_set_trim:NnnnnN.
These functions are documented on page 318.)

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn

\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn

__box_viewport:NnnnnN

The same general logic as for the trim operation, but with absolute dimensions. As a
result, there are some things to watch out for in the vertical direction.

35486 \cs_new_protected:Npn \box_set_viewport:Nnnnn #1#2#3#4#5
35487 { __box_set_viewport:NnnnnN #1 {#2} {#3} {#4} {#5} \box_set_eq:NN }
35488 \cs_generate_variant:Nn \box_set_viewport:Nnnnn { c }
35489 \cs_new_protected:Npn \box_gset_viewport:Nnnnn #1#2#3#4#5
35490 { __box_set_viewport:NnnnnN #1 {#2} {#3} {#4} {#5} \box_gset_eq:NN }
35491 \cs_generate_variant:Nn \box_gset_viewport:Nnnnn { c }
35492 \cs_new_protected:Npn __box_set_viewport:NnnnnN #1#2#3#4#5#6

1385

35493 {
35494 \hbox_set:Nn \l__box_internal_box
35495 {
35496 __kernel_kern:n { -#2 }
35497 \box_use:N #1
35498 __kernel_kern:n { #4 - \box_wd:N #1 }
35499 }
35500 \dim_compare:nNnTF {#3} < \c_zero_dim
35501 {
35502 \hbox_set:Nn \l__box_internal_box
35503 {
35504 \box_move_down:nn \c_zero_dim
35505 { \box_use_drop:N \l__box_internal_box }
35506 }
35507 \box_set_dp:Nn \l__box_internal_box { - __box_dim_eval:n {#3} }
35508 }
35509 {
35510 \hbox_set:Nn \l__box_internal_box
35511 { \box_move_down:nn {#3} { \box_use_drop:N \l__box_internal_box } }
35512 \box_set_dp:Nn \l__box_internal_box \c_zero_dim
35513 }
35514 \dim_compare:nNnTF {#5} > \c_zero_dim
35515 {
35516 \hbox_set:Nn \l__box_internal_box
35517 {
35518 \box_move_up:nn \c_zero_dim
35519 { \box_use_drop:N \l__box_internal_box }
35520 }
35521 \box_set_ht:Nn \l__box_internal_box
35522 {
35523 (#5)
35524 \dim_compare:nNnT {#3} > \c_zero_dim
35525 { - (#3) }
35526 }
35527 }
35528 {
35529 \hbox_set:Nn \l__box_internal_box
35530 {
35531 \box_move_up:nn { - __box_dim_eval:n {#5} }
35532 { \box_use_drop:N \l__box_internal_box }
35533 }
35534 \box_set_ht:Nn \l__box_internal_box \c_zero_dim
35535 }
35536 #6 #1 \l__box_internal_box
35537 }

(End of definition for \box_set_viewport:Nnnnn , \box_gset_viewport:Nnnnn , and __box_viewport:NnnnnN.
These functions are documented on page 318.)

35538 ⟨/package⟩

1386

Chapter 92

l3coffins implementation

35539 ⟨∗package⟩

35540 ⟨@@=coffin⟩

92.1 Coffins: data structures and general variables
\l__coffin_internal_box
\l__coffin_internal_dim
\l__coffin_internal_tl

Scratch variables.
35541 \box_new:N \l__coffin_internal_box
35542 \dim_new:N \l__coffin_internal_dim
35543 \tl_new:N \l__coffin_internal_tl

(End of definition for \l__coffin_internal_box , \l__coffin_internal_dim , and \l__coffin_internal_-
tl.)

\c__coffin_corners_prop The “corners”; of a coffin define the real content, as opposed to the TEX bounding box.
They all start off in the same place, of course.

35544 \prop_const_from_keyval:Nn \c__coffin_corners_prop
35545 {
35546 tl = { 0pt } { 0pt } ,
35547 tr = { 0pt } { 0pt } ,
35548 bl = { 0pt } { 0pt } ,
35549 br = { 0pt } { 0pt } ,
35550 }

(End of definition for \c__coffin_corners_prop.)

\c__coffin_poles_prop Pole positions are given for horizontal, vertical and reference-point based values.
35551 \prop_const_from_keyval:Nn \c__coffin_poles_prop
35552 {
35553 l = { 0pt } { 0pt } { 0pt } { 1000pt } ,
35554 hc = { 0pt } { 0pt } { 0pt } { 1000pt } ,
35555 r = { 0pt } { 0pt } { 0pt } { 1000pt } ,
35556 b = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35557 vc = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35558 t = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35559 B = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35560 H = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35561 T = { 0pt } { 0pt } { 1000pt } { 0pt } ,
35562 }

1387

(End of definition for \c__coffin_poles_prop.)

\l__coffin_slope_A_fp
\l__coffin_slope_B_fp

Used for calculations of intersections.
35563 \fp_new:N \l__coffin_slope_A_fp
35564 \fp_new:N \l__coffin_slope_B_fp

(End of definition for \l__coffin_slope_A_fp and \l__coffin_slope_B_fp.)

\l__coffin_error_bool For propagating errors so that parts of the code can work around them.
35565 \bool_new:N \l__coffin_error_bool

(End of definition for \l__coffin_error_bool.)

\l__coffin_offset_x_dim
\l__coffin_offset_y_dim

The offset between two sets of coffin handles when typesetting. These values are corrected
from those requested in an alignment for the positions of the handles.

35566 \dim_new:N \l__coffin_offset_x_dim
35567 \dim_new:N \l__coffin_offset_y_dim

(End of definition for \l__coffin_offset_x_dim and \l__coffin_offset_y_dim.)

\l__coffin_pole_a_tl
\l__coffin_pole_b_tl

Needed for finding the intersection of two poles.
35568 \tl_new:N \l__coffin_pole_a_tl
35569 \tl_new:N \l__coffin_pole_b_tl

(End of definition for \l__coffin_pole_a_tl and \l__coffin_pole_b_tl.)

\l__coffin_x_dim
\l__coffin_y_dim

\l__coffin_x_prime_dim
\l__coffin_y_prime_dim

For calculating intersections and so forth.
35570 \dim_new:N \l__coffin_x_dim
35571 \dim_new:N \l__coffin_y_dim
35572 \dim_new:N \l__coffin_x_prime_dim
35573 \dim_new:N \l__coffin_y_prime_dim

(End of definition for \l__coffin_x_dim and others.)

92.2 Basic coffin functions
There are a number of basic functions needed for creating coffins and placing material in
them. This all relies on the following data structures.

__coffin_to_value:N Coffins are a two-part structure and we rely on the internal nature of box allocation
to make everything work. As such, we need an interface to turn coffin identifiers into
numbers. For the purposes here, the signature allowed is N despite the nature of the
underlying primitive.

35574 \cs_new_eq:NN __coffin_to_value:N \tex_number:D

(End of definition for __coffin_to_value:N.)

1388

\coffin_if_exist_p:N
\coffin_if_exist_p:c
\coffin_if_exist:NTF
\coffin_if_exist:cTF

Several of the higher-level coffin functions would give multiple errors if the coffin does
not exist. A cleaner way to handle this is provided here: both the box and the coffin
structure are checked.

35575 \prg_new_conditional:Npnn \coffin_if_exist:N #1 { p , T , F , TF }
35576 {
35577 \cs_if_exist:NTF #1
35578 {
35579 \cs_if_exist:cTF { coffin ~ __coffin_to_value:N #1 ~ poles }
35580 { \prg_return_true: }
35581 { \prg_return_false: }
35582 }
35583 { \prg_return_false: }
35584 }
35585 \prg_generate_conditional_variant:Nnn \coffin_if_exist:N
35586 { c } { p , T , F , TF }

(End of definition for \coffin_if_exist:NTF. This function is documented on page 320.)

__coffin_if_exist:NT Several of the higher-level coffin functions would give multiple errors if the coffin does not
exist. So a wrapper is provided to deal with this correctly, issuing an error on erroneous
use.

35587 \cs_new_protected:Npn __coffin_if_exist:NT #1#2
35588 {
35589 \coffin_if_exist:NTF #1
35590 { #2 }
35591 {
35592 \msg_error:nne { coffin } { unknown }
35593 { \token_to_str:N #1 }
35594 }
35595 }

(End of definition for __coffin_if_exist:NT.)

\coffin_clear:N
\coffin_clear:c
\coffin_gclear:N
\coffin_gclear:c

Clearing coffins means emptying the box and resetting all of the structures.
35596 \cs_new_protected:Npn \coffin_clear:N #1
35597 {
35598 __coffin_if_exist:NT #1
35599 {
35600 \box_clear:N #1
35601 __coffin_reset_structure:N #1
35602 }
35603 }
35604 \cs_generate_variant:Nn \coffin_clear:N { c }
35605 \cs_new_protected:Npn \coffin_gclear:N #1
35606 {
35607 __coffin_if_exist:NT #1
35608 {
35609 \box_gclear:N #1
35610 __coffin_greset_structure:N #1
35611 }
35612 }
35613 \cs_generate_variant:Nn \coffin_gclear:N { c }

(End of definition for \coffin_clear:N and \coffin_gclear:N. These functions are documented on
page 320.)

1389

\coffin_new:N
\coffin_new:c

Creating a new coffin means making the underlying box and adding the data struc-
tures. The \debug_suspend: and \debug_resume: functions prevent \prop_gclear_-
new:c from writing useless information to the log file.

35614 \cs_new_protected:Npn \coffin_new:N #1
35615 {
35616 \box_new:N #1
35617 \debug_suspend:
35618 \prop_gclear_new:c { coffin ~ __coffin_to_value:N #1 ~ corners }
35619 \prop_gclear_new:c { coffin ~ __coffin_to_value:N #1 ~ poles }
35620 \prop_gset_eq:cN { coffin ~ __coffin_to_value:N #1 ~ corners }
35621 \c__coffin_corners_prop
35622 \prop_gset_eq:cN { coffin ~ __coffin_to_value:N #1 ~ poles }
35623 \c__coffin_poles_prop
35624 \debug_resume:
35625 }
35626 \cs_generate_variant:Nn \coffin_new:N { c }

(End of definition for \coffin_new:N. This function is documented on page 320.)

\hcoffin_set:Nn
\hcoffin_set:cn
\hcoffin_gset:Nn
\hcoffin_gset:cn

Horizontal coffins are relatively easy: set the appropriate box, reset the structures then
update the handle positions.

35627 \cs_new_protected:Npn \hcoffin_set:Nn #1#2
35628 {
35629 __coffin_if_exist:NT #1
35630 {
35631 \hbox_set:Nn #1
35632 {
35633 \color_ensure_current:
35634 #2
35635 }
35636 \coffin_reset_poles:N #1
35637 }
35638 }
35639 \cs_generate_variant:Nn \hcoffin_set:Nn { c }
35640 \cs_new_protected:Npn \hcoffin_gset:Nn #1#2
35641 {
35642 __coffin_if_exist:NT #1
35643 {
35644 \hbox_gset:Nn #1
35645 {
35646 \color_ensure_current:
35647 #2
35648 }
35649 \coffin_greset_poles:N #1
35650 }
35651 }
35652 \cs_generate_variant:Nn \hcoffin_gset:Nn { c }

(End of definition for \hcoffin_set:Nn and \hcoffin_gset:Nn. These functions are documented on
page 321.)

\vcoffin_set:Nnn
\vcoffin_set:cnn
\vcoffin_gset:Nnn
\vcoffin_gset:cnn

__coffin_set_vertical:NnnNNN
__coffin_set_vertical_aux:

Setting vertical coffins is more complex. First, the material is typeset with a given width.
The default handles and poles are set as for a horizontal coffin, before finding the top
baseline using a temporary box. No \color_ensure_current: here as that would add a

1390

whatsit to the start of the vertical box and mess up the location of the T pole (see TEX
by Topic for discussion of the \vtop primitive, used to do the measuring).

35653 \cs_new_protected:Npn \vcoffin_set:Nnn #1#2#3
35654 {
35655 __coffin_set_vertical:NnnNNN #1 {#2} {#3}
35656 \vbox_set:Nn \coffin_reset_poles:N __coffin_set_pole:Nnn
35657 }
35658 \cs_generate_variant:Nn \vcoffin_set:Nnn { c }
35659 \cs_new_protected:Npn \vcoffin_gset:Nnn #1#2#3
35660 {
35661 __coffin_set_vertical:NnnNNN #1 {#2} {#3}
35662 \vbox_gset:Nn \coffin_greset_poles:N __coffin_gset_pole:Nnn
35663 }
35664 \cs_generate_variant:Nn \vcoffin_gset:Nnn { c }
35665 \cs_new_protected:Npn __coffin_set_vertical:NnnNNN #1#2#3#4#5#6
35666 {
35667 __coffin_if_exist:NT #1
35668 {
35669 #4 #1
35670 {
35671 \dim_set:Nn \tex_hsize:D {#2}
35672 __coffin_set_vertical_aux:
35673 #3
35674 }
35675 #5 #1
35676 \vbox_set_top:Nn \l__coffin_internal_box { \vbox_unpack:N #1 }
35677 #6 #1 { T }
35678 {
35679 { 0pt }
35680 {
35681 \dim_eval:n
35682 { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
35683 }
35684 { 1000pt }
35685 { 0pt }
35686 }
35687 \box_clear:N \l__coffin_internal_box
35688 }
35689 }
35690 \cs_new_protected:Npe __coffin_set_vertical_aux:
35691 {
35692 \bool_lazy_and:nnT
35693 { \cs_if_exist_p:N \fmtname }
35694 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
35695 {
35696 \dim_set_eq:NN \exp_not:N \linewidth \tex_hsize:D
35697 \dim_set_eq:NN \exp_not:N \columnwidth \tex_hsize:D
35698 }
35699 }

(End of definition for \vcoffin_set:Nnn and others. These functions are documented on page 321.)

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_set_end:

\hcoffin_gset_end:

These are the “begin”/“end” versions of the above: watch the grouping!
35700 \cs_new_protected:Npn \hcoffin_set:Nw #1

1391

35701 {
35702 __coffin_if_exist:NT #1
35703 {
35704 \hbox_set:Nw #1 \color_ensure_current:
35705 \cs_set_protected:Npn \hcoffin_set_end:
35706 {
35707 \hbox_set_end:
35708 \coffin_reset_poles:N #1
35709 }
35710 }
35711 }
35712 \cs_generate_variant:Nn \hcoffin_set:Nw { c }
35713 \cs_new_protected:Npn \hcoffin_gset:Nw #1
35714 {
35715 __coffin_if_exist:NT #1
35716 {
35717 \hbox_gset:Nw #1 \color_ensure_current:
35718 \cs_set_protected:Npn \hcoffin_gset_end:
35719 {
35720 \hbox_gset_end:
35721 \coffin_greset_poles:N #1
35722 }
35723 }
35724 }
35725 \cs_generate_variant:Nn \hcoffin_gset:Nw { c }
35726 \cs_new_protected:Npn \hcoffin_set_end: { }
35727 \cs_new_protected:Npn \hcoffin_gset_end: { }

(End of definition for \hcoffin_set:Nw and others. These functions are documented on page 321.)

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_gset:Nnw
\vcoffin_gset:cnw

__coffin_set_vertical:NnNNNNNw
\vcoffin_set_end:

\vcoffin_gset_end:

The same for vertical coffins.
35728 \cs_new_protected:Npn \vcoffin_set:Nnw #1#2
35729 {
35730 __coffin_set_vertical:NnNNNNNw #1 {#2} \vbox_set:Nw
35731 \vcoffin_set_end:
35732 \vbox_set_end: \coffin_reset_poles:N __coffin_set_pole:Nnn
35733 }
35734 \cs_generate_variant:Nn \vcoffin_set:Nnw { c }
35735 \cs_new_protected:Npn \vcoffin_gset:Nnw #1#2
35736 {
35737 __coffin_set_vertical:NnNNNNNw #1 {#2} \vbox_gset:Nw
35738 \vcoffin_gset_end:
35739 \vbox_gset_end: \coffin_greset_poles:N __coffin_gset_pole:Nnn
35740 }
35741 \cs_generate_variant:Nn \vcoffin_gset:Nnw { c }
35742 \cs_new_protected:Npn __coffin_set_vertical:NnNNNNNw #1#2#3#4#5#6#7
35743 {
35744 __coffin_if_exist:NT #1
35745 {
35746 #3 #1
35747 \dim_set:Nn \tex_hsize:D {#2}
35748 __coffin_set_vertical_aux:
35749 \cs_set_protected:Npn #4
35750 {

1392

35751 #5
35752 #6 #1
35753 \vbox_set_top:Nn \l__coffin_internal_box { \vbox_unpack:N #1 }
35754 #7 #1 { T }
35755 {
35756 { 0pt }
35757 {
35758 \dim_eval:n
35759 { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box }
35760 }
35761 { 1000pt }
35762 { 0pt }
35763 }
35764 \box_clear:N \l__coffin_internal_box
35765 }
35766 }
35767 }
35768 \cs_new_protected:Npn \vcoffin_set_end: { }
35769 \cs_new_protected:Npn \vcoffin_gset_end: { }

(End of definition for \vcoffin_set:Nnw and others. These functions are documented on page 321.)

\coffin_set_eq:NN
\coffin_set_eq:Nc
\coffin_set_eq:cN
\coffin_set_eq:cc

\coffin_gset_eq:NN
\coffin_gset_eq:Nc
\coffin_gset_eq:cN
\coffin_gset_eq:cc

Setting two coffins equal is just a wrapper around other functions.
35770 \cs_new_protected:Npn \coffin_set_eq:NN #1#2
35771 {
35772 __coffin_if_exist:NT #2
35773 {
35774 \box_set_eq:NN #1 #2
35775 \prop_set_eq:cc { coffin ~ __coffin_to_value:N #1 ~ corners }
35776 { coffin ~ __coffin_to_value:N #2 ~ corners }
35777 \prop_set_eq:cc { coffin ~ __coffin_to_value:N #1 ~ poles }
35778 { coffin ~ __coffin_to_value:N #2 ~ poles }
35779 }
35780 }
35781 \cs_generate_variant:Nn \coffin_set_eq:NN { c , Nc , cc }
35782 \cs_new_protected:Npn \coffin_gset_eq:NN #1#2
35783 {
35784 __coffin_if_exist:NT #2
35785 {
35786 \box_gset_eq:NN #1 #2
35787 \prop_gset_eq:cc { coffin ~ __coffin_to_value:N #1 ~ corners }
35788 { coffin ~ __coffin_to_value:N #2 ~ corners }
35789 \prop_gset_eq:cc { coffin ~ __coffin_to_value:N #1 ~ poles }
35790 { coffin ~ __coffin_to_value:N #2 ~ poles }
35791 }
35792 }
35793 \cs_generate_variant:Nn \coffin_gset_eq:NN { c , Nc , cc }

(End of definition for \coffin_set_eq:NN and \coffin_gset_eq:NN. These functions are documented
on page 320.)

\c_empty_coffin
\l__coffin_aligned_coffin

\l__coffin_aligned_internal_coffin

Special coffins: these cannot be set up earlier as they need \coffin_new:N. The empty
coffin is set as a box as the full coffin-setting system needs some material which is not yet
available. The empty coffin is created entirely by hand: not everything is in place yet.

1393

35794 \coffin_new:N \c_empty_coffin
35795 \coffin_new:N \l__coffin_aligned_coffin
35796 \coffin_new:N \l__coffin_aligned_internal_coffin

(End of definition for \c_empty_coffin , \l__coffin_aligned_coffin , and \l__coffin_aligned_-
internal_coffin. This variable is documented on page 325.)

\l_tmpa_coffin
\l_tmpb_coffin
\g_tmpa_coffin
\g_tmpb_coffin

The usual scratch space.
35797 \coffin_new:N \l_tmpa_coffin
35798 \coffin_new:N \l_tmpb_coffin
35799 \coffin_new:N \g_tmpa_coffin
35800 \coffin_new:N \g_tmpb_coffin

(End of definition for \l_tmpa_coffin and others. These variables are documented on page 325.)

92.3 Measuring coffins
\coffin_dp:N
\coffin_dp:c
\coffin_ht:N
\coffin_ht:c

\coffin_ht_plus_dp:N
\coffin_ht_plus_dp:c

\coffin_wd:N
\coffin_wd:c

Coffins are just boxes when it comes to measurement. However, semantically a separate
set of functions are required.

35801 \cs_new_eq:NN \coffin_dp:N \box_dp:N
35802 \cs_new_eq:NN \coffin_dp:c \box_dp:c
35803 \cs_new_eq:NN \coffin_ht:N \box_ht:N
35804 \cs_new_eq:NN \coffin_ht:c \box_ht:c
35805 \cs_new_eq:NN \coffin_ht_plus_dp:N \box_ht_plus_dp:N
35806 \cs_new_eq:NN \coffin_ht_plus_dp:c \box_ht_plus_dp:c
35807 \cs_new_eq:NN \coffin_wd:N \box_wd:N
35808 \cs_new_eq:NN \coffin_wd:c \box_wd:c

(End of definition for \coffin_dp:N and others. These functions are documented on page 323.)

92.4 Coffins: handle and pole management
__coffin_get_pole:NnN A simple wrapper around the recovery of a coffin pole, with some error checking and

recovery built-in.
35809 \cs_new_protected:Npn __coffin_get_pole:NnN #1#2#3
35810 {
35811 \prop_get:cnNF
35812 { coffin ~ __coffin_to_value:N #1 ~ poles } {#2} #3
35813 {
35814 \msg_error:nnee { coffin } { unknown-pole }
35815 { \exp_not:n {#2} } { \token_to_str:N #1 }
35816 \tl_set:Nn #3 { { 0pt } { 0pt } { 0pt } { 0pt } }
35817 }
35818 }

(End of definition for __coffin_get_pole:NnN.)

__coffin_reset_structure:N
__coffin_greset_structure:N

Resetting the structure is a simple copy job.
35819 \cs_new_protected:Npn __coffin_reset_structure:N #1
35820 {
35821 \prop_set_eq:cN { coffin ~ __coffin_to_value:N #1 ~ corners }
35822 \c__coffin_corners_prop
35823 \prop_set_eq:cN { coffin ~ __coffin_to_value:N #1 ~ poles }

1394

35824 \c__coffin_poles_prop
35825 }
35826 \cs_new_protected:Npn __coffin_greset_structure:N #1
35827 {
35828 \prop_gset_eq:cN { coffin ~ __coffin_to_value:N #1 ~ corners }
35829 \c__coffin_corners_prop
35830 \prop_gset_eq:cN { coffin ~ __coffin_to_value:N #1 ~ poles }
35831 \c__coffin_poles_prop
35832 }

(End of definition for __coffin_reset_structure:N and __coffin_greset_structure:N.)

\coffin_set_horizontal_pole:Nnn
\coffin_set_horizontal_pole:cnn

\coffin_gset_horizontal_pole:Nnn
\coffin_gset_horizontal_pole:cnn

__coffin_set_horizontal_pole:NnnN
\coffin_set_vertical_pole:Nnn
\coffin_set_vertical_pole:cnn
\coffin_gset_vertical_pole:Nnn
\coffin_gset_vertical_pole:cnn

__coffin_set_vertical_pole:NnnN
__coffin_set_pole:Nnn
__coffin_gset_pole:Nnn

Setting the pole of a coffin at the user/designer level requires a bit more care. The idea
here is to provide a reasonable interface to the system, then to do the setting with full
expansion. The three-argument version is used internally to do a direct setting.

35833 \cs_new_protected:Npn \coffin_set_horizontal_pole:Nnn #1#2#3
35834 { __coffin_set_horizontal_pole:NnnN #1 {#2} {#3} \prop_put:cne }
35835 \cs_generate_variant:Nn \coffin_set_horizontal_pole:Nnn { c }
35836 \cs_new_protected:Npn \coffin_gset_horizontal_pole:Nnn #1#2#3
35837 { __coffin_set_horizontal_pole:NnnN #1 {#2} {#3} \prop_gput:cne }
35838 \cs_generate_variant:Nn \coffin_gset_horizontal_pole:Nnn { c }
35839 \cs_new_protected:Npn __coffin_set_horizontal_pole:NnnN #1#2#3#4
35840 {
35841 __coffin_if_exist:NT #1
35842 {
35843 #4 { coffin ~ __coffin_to_value:N #1 ~ poles }
35844 {#2}
35845 {
35846 { 0pt } { \dim_eval:n {#3} }
35847 { 1000pt } { 0pt }
35848 }
35849 }
35850 }
35851 \cs_new_protected:Npn \coffin_set_vertical_pole:Nnn #1#2#3
35852 { __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_put:cne }
35853 \cs_generate_variant:Nn \coffin_set_vertical_pole:Nnn { c }
35854 \cs_new_protected:Npn \coffin_gset_vertical_pole:Nnn #1#2#3
35855 { __coffin_set_vertical_pole:NnnN #1 {#2} {#3} \prop_gput:cne }
35856 \cs_generate_variant:Nn \coffin_gset_vertical_pole:Nnn { c }
35857 \cs_new_protected:Npn __coffin_set_vertical_pole:NnnN #1#2#3#4
35858 {
35859 __coffin_if_exist:NT #1
35860 {
35861 #4 { coffin ~ __coffin_to_value:N #1 ~ poles }
35862 {#2}
35863 {
35864 { \dim_eval:n {#3} } { 0pt }
35865 { 0pt } { 1000pt }
35866 }
35867 }
35868 }
35869 \cs_new_protected:Npn __coffin_set_pole:Nnn #1#2#3
35870 {
35871 \prop_put:cne { coffin ~ __coffin_to_value:N #1 ~ poles }

1395

35872 {#2} {#3}
35873 }
35874 \cs_new_protected:Npn __coffin_gset_pole:Nnn #1#2#3
35875 {
35876 \prop_gput:cne { coffin ~ __coffin_to_value:N #1 ~ poles }
35877 {#2} {#3}
35878 }

(End of definition for \coffin_set_horizontal_pole:Nnn and others. These functions are documented
on page 321.)

\coffin_reset_poles:N
\coffin_greset_poles:N

Simple shortcuts.
35879 \cs_new_protected:Npn \coffin_reset_poles:N #1
35880 {
35881 __coffin_reset_structure:N #1
35882 __coffin_update_corners:N #1
35883 __coffin_update_poles:N #1
35884 }
35885 \cs_new_protected:Npn \coffin_greset_poles:N #1
35886 {
35887 __coffin_greset_structure:N #1
35888 __coffin_gupdate_corners:N #1
35889 __coffin_gupdate_poles:N #1
35890 }

(End of definition for \coffin_reset_poles:N and \coffin_greset_poles:N. These functions are doc-
umented on page 322.)

__coffin_update_corners:N
__coffin_gupdate_corners:N
__coffin_update_corners:NN
__coffin_update_corners:NNN

Updating the corners of a coffin is straight-forward as at this stage there can be no
rotation. So the corners of the content are just those of the underlying TEX box.

35891 \cs_new_protected:Npn __coffin_update_corners:N #1
35892 { __coffin_update_corners:NN #1 \prop_put:Nne }
35893 \cs_new_protected:Npn __coffin_gupdate_corners:N #1
35894 { __coffin_update_corners:NN #1 \prop_gput:Nne }
35895 \cs_new_protected:Npn __coffin_update_corners:NN #1#2
35896 {
35897 \exp_args:Nc __coffin_update_corners:NNN
35898 { coffin ~ __coffin_to_value:N #1 ~ corners }
35899 #1 #2
35900 }
35901 \cs_new_protected:Npn __coffin_update_corners:NNN #1#2#3
35902 {
35903 #3 #1
35904 { tl }
35905 { { 0pt } { \dim_eval:n { \box_ht:N #2 } } }
35906 #3 #1
35907 { tr }
35908 {
35909 { \dim_eval:n { \box_wd:N #2 } }
35910 { \dim_eval:n { \box_ht:N #2 } }
35911 }
35912 #3 #1
35913 { bl }
35914 { { 0pt } { \dim_eval:n { -\box_dp:N #2 } } }
35915 #3 #1

1396

35916 { br }
35917 {
35918 { \dim_eval:n { \box_wd:N #2 } }
35919 { \dim_eval:n { -\box_dp:N #2 } }
35920 }
35921 }

(End of definition for __coffin_update_corners:N and others.)

__coffin_update_poles:N
__coffin_gupdate_poles:N
__coffin_update_poles:NN
__coffin_update_poles:NNN

This function is called when a coffin is set, and updates the poles to reflect the nature
of size of the box. Thus this function only alters poles where the default position is
dependent on the size of the box. It also does not set poles which are relevant only to
vertical coffins.

35922 \cs_new_protected:Npn __coffin_update_poles:N #1
35923 { __coffin_update_poles:NN #1 \prop_put:Nne }
35924 \cs_new_protected:Npn __coffin_gupdate_poles:N #1
35925 { __coffin_update_poles:NN #1 \prop_gput:Nne }
35926 \cs_new_protected:Npn __coffin_update_poles:NN #1#2
35927 {
35928 \exp_args:Nc __coffin_update_poles:NNN
35929 { coffin ~ __coffin_to_value:N #1 ~ poles }
35930 #1 #2
35931 }
35932 \cs_new_protected:Npn __coffin_update_poles:NNN #1#2#3
35933 {
35934 #3 #1 { hc }
35935 {
35936 { \dim_eval:n { 0.5 \box_wd:N #2 } }
35937 { 0pt } { 0pt } { 1000pt }
35938 }
35939 #3 #1 { r }
35940 {
35941 { \dim_eval:n { \box_wd:N #2 } }
35942 { 0pt } { 0pt } { 1000pt }
35943 }
35944 #3 #1 { vc }
35945 {
35946 { 0pt }
35947 { \dim_eval:n { (\box_ht:N #2 - \box_dp:N #2) / 2 } }
35948 { 1000pt }
35949 { 0pt }
35950 }
35951 #3 #1 { t }
35952 {
35953 { 0pt }
35954 { \dim_eval:n { \box_ht:N #2 } }
35955 { 1000pt }
35956 { 0pt }
35957 }
35958 #3 #1 { b }
35959 {
35960 { 0pt }
35961 { \dim_eval:n { -\box_dp:N #2 } }
35962 { 1000pt }

1397

35963 { 0pt }
35964 }
35965 }

(End of definition for __coffin_update_poles:N and others.)

92.5 Coffins: calculation of pole intersections
__coffin_calculate_intersection:Nnn

__coffin_calculate_intersection:nnnnnnnn
__coffin_calculate_intersection:nnnnnn

The lead off in finding intersections is to recover the two poles and then hand off to the
auxiliary for the actual calculation. There may of course not be an intersection, for which
an error trap is needed.

35966 \cs_new_protected:Npn __coffin_calculate_intersection:Nnn #1#2#3
35967 {
35968 __coffin_get_pole:NnN #1 {#2} \l__coffin_pole_a_tl
35969 __coffin_get_pole:NnN #1 {#3} \l__coffin_pole_b_tl
35970 \bool_set_false:N \l__coffin_error_bool
35971 \exp_last_two_unbraced:Noo
35972 __coffin_calculate_intersection:nnnnnnnn
35973 \l__coffin_pole_a_tl \l__coffin_pole_b_tl
35974 \bool_if:NT \l__coffin_error_bool
35975 {
35976 \msg_error:nn { coffin } { no-pole-intersection }
35977 \dim_zero:N \l__coffin_x_dim
35978 \dim_zero:N \l__coffin_y_dim
35979 }
35980 }

The two poles passed here each have four values (as dimensions), (a, b, c, d) and (a′, b′,
c′, d′). These are arguments 1–4 and 5–8, respectively. In both cases a and b are the
coordinates of a point on the pole and c and d define the direction of the pole. Finding
the intersection depends on the directions of the poles, which are given by d/c and d′/c′.
However, if one of the poles is either horizontal or vertical then one or more of c, d, c′

and d′ are zero and a special case is needed.
35981 \cs_new_protected:Npn __coffin_calculate_intersection:nnnnnnnn
35982 #1#2#3#4#5#6#7#8
35983 {
35984 \dim_compare:nNnTF {#3} = \c_zero_dim

The case where the first pole is vertical. So the x-component of the interaction is at a.
There is then a test on the second pole: if it is also vertical then there is an error.

35985 {
35986 \dim_set:Nn \l__coffin_x_dim {#1}
35987 \dim_compare:nNnTF {#7} = \c_zero_dim
35988 { \bool_set_true:N \l__coffin_error_bool }

The second pole may still be horizontal, in which case the y-component of the intersection
is b′. If not,

y = d′

c′ (a − a′) + b′

with the x-component already known to be #1.
35989 {
35990 \dim_set:Nn \l__coffin_y_dim
35991 {

1398

35992 \dim_compare:nNnTF {#8} = \c_zero_dim
35993 {#6}
35994 {
35995 \fp_to_dim:n
35996 {
35997 (\dim_to_fp:n {#8} / \dim_to_fp:n {#7})
35998 * (\dim_to_fp:n {#1} - \dim_to_fp:n {#5})
35999 + \dim_to_fp:n {#6}
36000 }
36001 }
36002 }
36003 }
36004 }

If the first pole is not vertical then it may be horizontal. If so, then the procedure is
essentially the same as that already done but with the x- and y-components interchanged.

36005 {
36006 \dim_compare:nNnTF {#4} = \c_zero_dim
36007 {
36008 \dim_set:Nn \l__coffin_y_dim {#2}
36009 \dim_compare:nNnTF {#8} = { \c_zero_dim }
36010 { \bool_set_true:N \l__coffin_error_bool }
36011 {

Now we deal with the case where the second pole may be vertical, or if not we have

x = c′

d′ (b − b′) + a′

which is again handled by the same auxiliary.
36012 \dim_set:Nn \l__coffin_x_dim
36013 {
36014 \dim_compare:nNnTF {#7} = \c_zero_dim
36015 {#5}
36016 {
36017 \fp_to_dim:n
36018 {
36019 (\dim_to_fp:n {#7} / \dim_to_fp:n {#8})
36020 * (\dim_to_fp:n {#4} - \dim_to_fp:n {#6})
36021 + \dim_to_fp:n {#5}
36022 }
36023 }
36024 }
36025 }
36026 }

The first pole is neither horizontal nor vertical. To avoid even more complexity, we now
work out both slopes and pass to an auxiliary.

36027 {
36028 \use:e
36029 {
36030 __coffin_calculate_intersection:nnnnnn
36031 { \dim_to_fp:n {#4} / \dim_to_fp:n {#3} }
36032 { \dim_to_fp:n {#8} / \dim_to_fp:n {#7} }
36033 }
36034 {#1} {#2} {#5} {#6}

1399

36035 }
36036 }
36037 }

Assuming the two poles are not parallel, then the intersection point is found in two steps.
First we find the x-value with

x = sa − s′a′ − b + b′

s − s′

and then finding the y-value with

y = s(x − a) + b

36038 \cs_new_protected:Npn __coffin_calculate_intersection:nnnnnn #1#2#3#4#5#6
36039 {
36040 \fp_compare:nNnTF {#1} = {#2}
36041 { \bool_set_true:N \l__coffin_error_bool }
36042 {
36043 \dim_set:Nn \l__coffin_x_dim
36044 {
36045 \fp_to_dim:n
36046 {
36047 (
36048 #1 * \dim_to_fp:n {#3}
36049 - #2 * \dim_to_fp:n {#5}
36050 - \dim_to_fp:n {#4}
36051 + \dim_to_fp:n {#6}
36052)
36053 /
36054 (#1 - #2)
36055 }
36056 }
36057 \dim_set:Nn \l__coffin_y_dim
36058 {
36059 \fp_to_dim:n
36060 {
36061 #1 * (\l__coffin_x_dim - \dim_to_fp:n {#3})
36062 + \dim_to_fp:n {#4}
36063 }
36064 }
36065 }
36066 }

(End of definition for __coffin_calculate_intersection:Nnn , __coffin_calculate_intersection:nnnnnnnn ,
and __coffin_calculate_intersection:nnnnnn.)

92.6 Affine transformations
\l__coffin_sin_fp
\l__coffin_cos_fp

Used for rotations to get the sine and cosine values.
36067 \fp_new:N \l__coffin_sin_fp
36068 \fp_new:N \l__coffin_cos_fp

(End of definition for \l__coffin_sin_fp and \l__coffin_cos_fp.)

1400

\l__coffin_bounding_prop A property list for the bounding box of a coffin. This is only needed during the rotation,
so there is just the one.

36069 \prop_new:N \l__coffin_bounding_prop

(End of definition for \l__coffin_bounding_prop.)

\l__coffin_corners_prop
\l__coffin_poles_prop

Used to avoid needing to track scope for intermediate steps.
36070 \prop_new:N \l__coffin_corners_prop
36071 \prop_new:N \l__coffin_poles_prop

(End of definition for \l__coffin_corners_prop and \l__coffin_poles_prop.)

\l__coffin_bounding_shift_dim The shift of the bounding box of a coffin from the real content.
36072 \dim_new:N \l__coffin_bounding_shift_dim

(End of definition for \l__coffin_bounding_shift_dim.)

\l__coffin_left_corner_dim
\l__coffin_right_corner_dim
\l__coffin_bottom_corner_dim

\l__coffin_top_corner_dim

These are used to hold maxima for the various corner values: these thus define the
minimum size of the bounding box after rotation.

36073 \dim_new:N \l__coffin_left_corner_dim
36074 \dim_new:N \l__coffin_right_corner_dim
36075 \dim_new:N \l__coffin_bottom_corner_dim
36076 \dim_new:N \l__coffin_top_corner_dim

(End of definition for \l__coffin_left_corner_dim and others.)

\coffin_rotate:Nn
\coffin_rotate:cn

\coffin_grotate:Nn
\coffin_grotate:cn

__coffin_rotate:NnNNN

Rotating a coffin requires several steps which can be conveniently run together. The sine
and cosine of the angle in degrees are computed. This is then used to set \l__coffin_-
sin_fp and \l__coffin_cos_fp, which are carried through unchanged for the rest of
the procedure.

36077 \cs_new_protected:Npn \coffin_rotate:Nn #1#2
36078 { __coffin_rotate:NnNNN #1 {#2} \box_rotate:Nn \prop_set_eq:cN \hbox_set:Nn }
36079 \cs_generate_variant:Nn \coffin_rotate:Nn { c }
36080 \cs_new_protected:Npn \coffin_grotate:Nn #1#2
36081 { __coffin_rotate:NnNNN #1 {#2} \box_grotate:Nn \prop_gset_eq:cN \hbox_gset:Nn }
36082 \cs_generate_variant:Nn \coffin_grotate:Nn { c }
36083 \cs_new_protected:Npn __coffin_rotate:NnNNN #1#2#3#4#5
36084 {
36085 \fp_set:Nn \l__coffin_sin_fp { sind (#2) }
36086 \fp_set:Nn \l__coffin_cos_fp { cosd (#2) }

Use a local copy of the property lists to avoid needing to pass the name and scope around.
36087 \prop_set_eq:Nc \l__coffin_corners_prop
36088 { coffin ~ __coffin_to_value:N #1 ~ corners }
36089 \prop_set_eq:Nc \l__coffin_poles_prop
36090 { coffin ~ __coffin_to_value:N #1 ~ poles }

The corners and poles of the coffin can now be rotated around the origin. This is best
achieved using mapping functions.

36091 \prop_map_inline:Nn \l__coffin_corners_prop
36092 { __coffin_rotate_corner:Nnnn #1 {##1} ##2 }
36093 \prop_map_inline:Nn \l__coffin_poles_prop
36094 { __coffin_rotate_pole:Nnnnnn #1 {##1} ##2 }

1401

The bounding box of the coffin needs to be rotated, and to do this the corners have to be
found first. They are then rotated in the same way as the corners of the coffin material
itself.

36095 __coffin_set_bounding:N #1
36096 \prop_map_inline:Nn \l__coffin_bounding_prop
36097 { __coffin_rotate_bounding:nnn {##1} ##2 }

At this stage, there needs to be a calculation to find where the corners of the content
and the box itself will end up.

36098 __coffin_find_corner_maxima:N #1
36099 __coffin_find_bounding_shift:
36100 #3 #1 {#2}

The correction of the box position itself takes place here. The idea is that the bounding
box for a coffin is tight up to the content, and has the reference point at the bottom-left.
The x-direction is handled by moving the content by the difference in the positions of
the bounding box and the content left edge. The y-direction is dealt with by moving the
box down by any depth it has acquired. The internal box is used here to allow for the
next step.

36101 \hbox_set:Nn \l__coffin_internal_box
36102 {
36103 __kernel_kern:n
36104 { \l__coffin_bounding_shift_dim - \l__coffin_left_corner_dim }
36105 \box_move_down:nn { \l__coffin_bottom_corner_dim }
36106 { \box_use:N #1 }
36107 }

If there have been any previous rotations then the size of the bounding box will be bigger
than the contents. This can be corrected easily by setting the size of the box to the
height and width of the content. As this operation requires setting box dimensions and
these transcend grouping, the safe way to do this is to use the internal box and to reset
the result into the target box.

36108 \box_set_ht:Nn \l__coffin_internal_box
36109 { \l__coffin_top_corner_dim - \l__coffin_bottom_corner_dim }
36110 \box_set_dp:Nn \l__coffin_internal_box { 0pt }
36111 \box_set_wd:Nn \l__coffin_internal_box
36112 { \l__coffin_right_corner_dim - \l__coffin_left_corner_dim }
36113 #5 #1 { \box_use_drop:N \l__coffin_internal_box }

The final task is to move the poles and corners such that they are back in alignment with
the box reference point.

36114 \prop_map_inline:Nn \l__coffin_corners_prop
36115 { __coffin_shift_corner:Nnnn #1 {##1} ##2 }
36116 \prop_map_inline:Nn \l__coffin_poles_prop
36117 { __coffin_shift_pole:Nnnnnn #1 {##1} ##2 }

Update the coffin data.
36118 #4 { coffin ~ __coffin_to_value:N #1 ~ corners }
36119 \l__coffin_corners_prop
36120 #4 { coffin ~ __coffin_to_value:N #1 ~ poles }
36121 \l__coffin_poles_prop
36122 }

(End of definition for \coffin_rotate:Nn , \coffin_grotate:Nn , and __coffin_rotate:NnNNN. These
functions are documented on page 322.)

1402

__coffin_set_bounding:N The bounding box corners for a coffin are easy enough to find: this is the same code as
for the corners of the material itself, but using a dedicated property list.

36123 \cs_new_protected:Npn __coffin_set_bounding:N #1
36124 {
36125 \prop_put:Nne \l__coffin_bounding_prop { tl }
36126 { { 0pt } { \dim_eval:n { \box_ht:N #1 } } }
36127 \prop_put:Nne \l__coffin_bounding_prop { tr }
36128 {
36129 { \dim_eval:n { \box_wd:N #1 } }
36130 { \dim_eval:n { \box_ht:N #1 } }
36131 }
36132 \dim_set:Nn \l__coffin_internal_dim { -\box_dp:N #1 }
36133 \prop_put:Nne \l__coffin_bounding_prop { bl }
36134 { { 0pt } { \dim_use:N \l__coffin_internal_dim } }
36135 \prop_put:Nne \l__coffin_bounding_prop { br }
36136 {
36137 { \dim_eval:n { \box_wd:N #1 } }
36138 { \dim_use:N \l__coffin_internal_dim }
36139 }
36140 }

(End of definition for __coffin_set_bounding:N.)

__coffin_rotate_bounding:nnn
__coffin_rotate_corner:Nnnn

Rotating the position of the corner of the coffin is just a case of treating this as a vector
from the reference point. The same treatment is used for the corners of the material itself
and the bounding box.

36141 \cs_new_protected:Npn __coffin_rotate_bounding:nnn #1#2#3
36142 {
36143 __coffin_rotate_vector:nnNN {#2} {#3} \l__coffin_x_dim \l__coffin_y_dim
36144 \prop_put:Nne \l__coffin_bounding_prop {#1}
36145 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
36146 }
36147 \cs_new_protected:Npn __coffin_rotate_corner:Nnnn #1#2#3#4
36148 {
36149 __coffin_rotate_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
36150 \prop_put:Nne \l__coffin_corners_prop {#2}
36151 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
36152 }

(End of definition for __coffin_rotate_bounding:nnn and __coffin_rotate_corner:Nnnn.)

__coffin_rotate_pole:Nnnnnn Rotating a single pole simply means shifting the coordinate of the pole and its direction.
The rotation here is about the bottom-left corner of the coffin.

36153 \cs_new_protected:Npn __coffin_rotate_pole:Nnnnnn #1#2#3#4#5#6
36154 {
36155 __coffin_rotate_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
36156 __coffin_rotate_vector:nnNN {#5} {#6}
36157 \l__coffin_x_prime_dim \l__coffin_y_prime_dim
36158 \prop_put:Nne \l__coffin_poles_prop {#2}
36159 {
36160 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
36161 { \dim_use:N \l__coffin_x_prime_dim }
36162 { \dim_use:N \l__coffin_y_prime_dim }
36163 }
36164 }

1403

(End of definition for __coffin_rotate_pole:Nnnnnn.)

__coffin_rotate_vector:nnNN A rotation function, which needs only an input vector (as dimensions) and an output
space. The values \l__coffin_cos_fp and \l__coffin_sin_fp should previously have
been set up correctly. Working this way means that the floating point work is kept to a
minimum: for any given rotation the sin and cosine values do no change, after all.

36165 \cs_new_protected:Npn __coffin_rotate_vector:nnNN #1#2#3#4
36166 {
36167 \dim_set:Nn #3
36168 {
36169 \fp_to_dim:n
36170 {
36171 \dim_to_fp:n {#1} * \l__coffin_cos_fp
36172 - \dim_to_fp:n {#2} * \l__coffin_sin_fp
36173 }
36174 }
36175 \dim_set:Nn #4
36176 {
36177 \fp_to_dim:n
36178 {
36179 \dim_to_fp:n {#1} * \l__coffin_sin_fp
36180 + \dim_to_fp:n {#2} * \l__coffin_cos_fp
36181 }
36182 }
36183 }

(End of definition for __coffin_rotate_vector:nnNN.)

__coffin_find_corner_maxima:N
__coffin_find_corner_maxima_aux:nn

The idea here is to find the extremities of the content of the coffin. This is done by
looking for the smallest values for the bottom and left corners, and the largest values for
the top and right corners. The values start at the maximum dimensions so that the case
where all are positive or all are negative works out correctly.

36184 \cs_new_protected:Npn __coffin_find_corner_maxima:N #1
36185 {
36186 \dim_set:Nn \l__coffin_top_corner_dim { -\c_max_dim }
36187 \dim_set:Nn \l__coffin_right_corner_dim { -\c_max_dim }
36188 \dim_set:Nn \l__coffin_bottom_corner_dim { \c_max_dim }
36189 \dim_set:Nn \l__coffin_left_corner_dim { \c_max_dim }
36190 \prop_map_inline:Nn \l__coffin_corners_prop
36191 { __coffin_find_corner_maxima_aux:nn ##2 }
36192 }
36193 \cs_new_protected:Npn __coffin_find_corner_maxima_aux:nn #1#2
36194 {
36195 \dim_set:Nn \l__coffin_left_corner_dim
36196 { \dim_min:nn { \l__coffin_left_corner_dim } {#1} }
36197 \dim_set:Nn \l__coffin_right_corner_dim
36198 { \dim_max:nn { \l__coffin_right_corner_dim } {#1} }
36199 \dim_set:Nn \l__coffin_bottom_corner_dim
36200 { \dim_min:nn { \l__coffin_bottom_corner_dim } {#2} }
36201 \dim_set:Nn \l__coffin_top_corner_dim
36202 { \dim_max:nn { \l__coffin_top_corner_dim } {#2} }
36203 }

(End of definition for __coffin_find_corner_maxima:N and __coffin_find_corner_maxima_aux:nn.)

1404

__coffin_find_bounding_shift:
__coffin_find_bounding_shift_aux:nn

The approach to finding the shift for the bounding box is similar to that for the corners.
However, there is only one value needed here and a fixed input property list, so things
are a bit clearer.

36204 \cs_new_protected:Npn __coffin_find_bounding_shift:
36205 {
36206 \dim_set:Nn \l__coffin_bounding_shift_dim { \c_max_dim }
36207 \prop_map_inline:Nn \l__coffin_bounding_prop
36208 { __coffin_find_bounding_shift_aux:nn ##2 }
36209 }
36210 \cs_new_protected:Npn __coffin_find_bounding_shift_aux:nn #1#2
36211 {
36212 \dim_set:Nn \l__coffin_bounding_shift_dim
36213 { \dim_min:nn { \l__coffin_bounding_shift_dim } {#1} }
36214 }

(End of definition for __coffin_find_bounding_shift: and __coffin_find_bounding_shift_aux:nn.)

__coffin_shift_corner:Nnnn
__coffin_shift_pole:Nnnnnn

Shifting the corners and poles of a coffin means subtracting the appropriate values from
the x- and y-components. For the poles, this means that the direction vector is un-
changed.

36215 \cs_new_protected:Npn __coffin_shift_corner:Nnnn #1#2#3#4
36216 {
36217 \prop_put:Nne \l__coffin_corners_prop {#2}
36218 {
36219 { \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
36220 { \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
36221 }
36222 }
36223 \cs_new_protected:Npn __coffin_shift_pole:Nnnnnn #1#2#3#4#5#6
36224 {
36225 \prop_put:Nne \l__coffin_poles_prop {#2}
36226 {
36227 { \dim_eval:n { #3 - \l__coffin_left_corner_dim } }
36228 { \dim_eval:n { #4 - \l__coffin_bottom_corner_dim } }
36229 {#5} {#6}
36230 }
36231 }

(End of definition for __coffin_shift_corner:Nnnn and __coffin_shift_pole:Nnnnnn.)

\l__coffin_scale_x_fp
\l__coffin_scale_y_fp

Storage for the scaling factors in x and y, respectively.
36232 \fp_new:N \l__coffin_scale_x_fp
36233 \fp_new:N \l__coffin_scale_y_fp

(End of definition for \l__coffin_scale_x_fp and \l__coffin_scale_y_fp.)

\l__coffin_scaled_total_height_dim
\l__coffin_scaled_width_dim

When scaling, the values given have to be turned into absolute values.
36234 \dim_new:N \l__coffin_scaled_total_height_dim
36235 \dim_new:N \l__coffin_scaled_width_dim

(End of definition for \l__coffin_scaled_total_height_dim and \l__coffin_scaled_width_dim.)

1405

\coffin_resize:Nnn
\coffin_resize:cnn

\coffin_gresize:Nnn
\coffin_gresize:cnn

__coffin_resize:NnnNN

Resizing a coffin begins by setting up the user-friendly names for the dimensions of the
coffin box. The new sizes are then turned into scale factor. This is the same operation
as takes place for the underlying box, but that operation is grouped and so the same
calculation is done here.

36236 \cs_new_protected:Npn \coffin_resize:Nnn #1#2#3
36237 {
36238 __coffin_resize:NnnNN #1 {#2} {#3}
36239 \box_resize_to_wd_and_ht_plus_dp:Nnn
36240 \prop_set_eq:cN
36241 }
36242 \cs_generate_variant:Nn \coffin_resize:Nnn { c }
36243 \cs_new_protected:Npn \coffin_gresize:Nnn #1#2#3
36244 {
36245 __coffin_resize:NnnNN #1 {#2} {#3}
36246 \box_gresize_to_wd_and_ht_plus_dp:Nnn
36247 \prop_gset_eq:cN
36248 }
36249 \cs_generate_variant:Nn \coffin_gresize:Nnn { c }
36250 \cs_new_protected:Npn __coffin_resize:NnnNN #1#2#3#4#5
36251 {
36252 \fp_set:Nn \l__coffin_scale_x_fp
36253 { \dim_to_fp:n {#2} / \dim_to_fp:n { \coffin_wd:N #1 } }
36254 \fp_set:Nn \l__coffin_scale_y_fp
36255 {
36256 \dim_to_fp:n {#3}
36257 / \dim_to_fp:n { \coffin_ht:N #1 + \coffin_dp:N #1 }
36258 }
36259 #4 #1 {#2} {#3}
36260 __coffin_resize_common:NnnN #1 {#2} {#3} #5
36261 }

(End of definition for \coffin_resize:Nnn , \coffin_gresize:Nnn , and __coffin_resize:NnnNN. These
functions are documented on page 322.)

__coffin_resize_common:NnnN The poles and corners of the coffin are scaled to the appropriate places before actually
resizing the underlying box.

36262 \cs_new_protected:Npn __coffin_resize_common:NnnN #1#2#3#4
36263 {
36264 \prop_set_eq:Nc \l__coffin_corners_prop
36265 { coffin ~ __coffin_to_value:N #1 ~ corners }
36266 \prop_set_eq:Nc \l__coffin_poles_prop
36267 { coffin ~ __coffin_to_value:N #1 ~ poles }
36268 \prop_map_inline:Nn \l__coffin_corners_prop
36269 { __coffin_scale_corner:Nnnn #1 {##1} ##2 }
36270 \prop_map_inline:Nn \l__coffin_poles_prop
36271 { __coffin_scale_pole:Nnnnnn #1 {##1} ##2 }

Negative x-scaling values place the poles in the wrong location: this is corrected here.
36272 \fp_compare:nNnT \l__coffin_scale_x_fp < \c_zero_fp
36273 {
36274 \prop_map_inline:Nn \l__coffin_corners_prop
36275 { __coffin_x_shift_corner:Nnnn #1 {##1} ##2 }
36276 \prop_map_inline:Nn \l__coffin_poles_prop
36277 { __coffin_x_shift_pole:Nnnnnn #1 {##1} ##2 }

1406

36278 }
36279 #4 { coffin ~ __coffin_to_value:N #1 ~ corners }
36280 \l__coffin_corners_prop
36281 #4 { coffin ~ __coffin_to_value:N #1 ~ poles }
36282 \l__coffin_poles_prop
36283 }

(End of definition for __coffin_resize_common:NnnN.)

\coffin_scale:Nnn
\coffin_scale:cnn

\coffin_gscale:Nnn
\coffin_gscale:cnn

__coffin_scale:NnnNN

For scaling, the opposite calculation is done to find the new dimensions for the coffin.
Only the total height is needed, as this is the shift required for corners and poles. The
scaling is done the TEX way as this works properly with floating point values without
needing to use the fp module.

36284 \cs_new_protected:Npn \coffin_scale:Nnn #1#2#3
36285 { __coffin_scale:NnnNN #1 {#2} {#3} \box_scale:Nnn \prop_set_eq:cN }
36286 \cs_generate_variant:Nn \coffin_scale:Nnn { c }
36287 \cs_new_protected:Npn \coffin_gscale:Nnn #1#2#3
36288 { __coffin_scale:NnnNN #1 {#2} {#3} \box_gscale:Nnn \prop_gset_eq:cN }
36289 \cs_generate_variant:Nn \coffin_gscale:Nnn { c }
36290 \cs_new_protected:Npn __coffin_scale:NnnNN #1#2#3#4#5
36291 {
36292 \fp_set:Nn \l__coffin_scale_x_fp {#2}
36293 \fp_set:Nn \l__coffin_scale_y_fp {#3}
36294 #4 #1 { \l__coffin_scale_x_fp } { \l__coffin_scale_y_fp }
36295 \dim_set:Nn \l__coffin_internal_dim
36296 { \coffin_ht:N #1 + \coffin_dp:N #1 }
36297 \dim_set:Nn \l__coffin_scaled_total_height_dim
36298 { \fp_abs:n { \l__coffin_scale_y_fp } \l__coffin_internal_dim }
36299 \dim_set:Nn \l__coffin_scaled_width_dim
36300 { -\fp_abs:n { \l__coffin_scale_x_fp } \coffin_wd:N #1 }
36301 __coffin_resize_common:NnnN #1
36302 { \l__coffin_scaled_width_dim } { \l__coffin_scaled_total_height_dim }
36303 #5
36304 }

(End of definition for \coffin_scale:Nnn , \coffin_gscale:Nnn , and __coffin_scale:NnnNN. These
functions are documented on page 322.)

__coffin_scale_vector:nnNN This functions scales a vector from the origin using the pre-set scale factors in x and y.
This is a much less complex operation than rotation, and as a result the code is a lot
clearer.

36305 \cs_new_protected:Npn __coffin_scale_vector:nnNN #1#2#3#4
36306 {
36307 \dim_set:Nn #3
36308 { \fp_to_dim:n { \dim_to_fp:n {#1} * \l__coffin_scale_x_fp } }
36309 \dim_set:Nn #4
36310 { \fp_to_dim:n { \dim_to_fp:n {#2} * \l__coffin_scale_y_fp } }
36311 }

(End of definition for __coffin_scale_vector:nnNN.)

__coffin_scale_corner:Nnnn
__coffin_scale_pole:Nnnnnn

Scaling both corners and poles is a simple calculation using the preceding vector scaling.
36312 \cs_new_protected:Npn __coffin_scale_corner:Nnnn #1#2#3#4
36313 {

1407

36314 __coffin_scale_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
36315 \prop_put:Nne \l__coffin_corners_prop {#2}
36316 { { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim } }
36317 }
36318 \cs_new_protected:Npn __coffin_scale_pole:Nnnnnn #1#2#3#4#5#6
36319 {
36320 __coffin_scale_vector:nnNN {#3} {#4} \l__coffin_x_dim \l__coffin_y_dim
36321 \prop_put:Nne \l__coffin_poles_prop {#2}
36322 {
36323 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
36324 {#5} {#6}
36325 }
36326 }

(End of definition for __coffin_scale_corner:Nnnn and __coffin_scale_pole:Nnnnnn.)

__coffin_x_shift_corner:Nnnn
__coffin_x_shift_pole:Nnnnnn

These functions correct for the x displacement that takes place with a negative horizontal
scaling.

36327 \cs_new_protected:Npn __coffin_x_shift_corner:Nnnn #1#2#3#4
36328 {
36329 \prop_put:Nne \l__coffin_corners_prop {#2}
36330 {
36331 { \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
36332 }
36333 }
36334 \cs_new_protected:Npn __coffin_x_shift_pole:Nnnnnn #1#2#3#4#5#6
36335 {
36336 \prop_put:Nne \l__coffin_poles_prop {#2}
36337 {
36338 { \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
36339 {#5} {#6}
36340 }
36341 }

(End of definition for __coffin_x_shift_corner:Nnnn and __coffin_x_shift_pole:Nnnnnn.)

92.7 Aligning and typesetting of coffins
\coffin_join:NnnNnnnn
\coffin_join:cnnNnnnn
\coffin_join:Nnncnnnn
\coffin_join:cnncnnnn
\coffin_gjoin:NnnNnnnn
\coffin_gjoin:cnnNnnnn
\coffin_gjoin:Nnncnnnn
\coffin_gjoin:cnncnnnn

__coffin_join:NnnNnnnnN

This command joins two coffins, using a horizontal and vertical pole from each coffin and
making an offset between the two. The result is stored as the as a third coffin, which
has all of its handles reset to standard values. First, the more basic alignment function
is used to get things started.

36342 \cs_new_protected:Npn \coffin_join:NnnNnnnn #1#2#3#4#5#6#7#8
36343 {
36344 __coffin_join:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8}
36345 \coffin_set_eq:NN
36346 }
36347 \cs_generate_variant:Nn \coffin_join:NnnNnnnn { c , Nnnc , cnnc }
36348 \cs_new_protected:Npn \coffin_gjoin:NnnNnnnn #1#2#3#4#5#6#7#8
36349 {
36350 __coffin_join:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8}
36351 \coffin_gset_eq:NN
36352 }

1408

36353 \cs_generate_variant:Nn \coffin_gjoin:NnnNnnnn { c , Nnnc , cnnc }
36354 \cs_new_protected:Npn __coffin_join:NnnNnnnnN #1#2#3#4#5#6#7#8#9
36355 {
36356 __coffin_align:NnnNnnnnN
36357 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin

Correct the placement of the reference point. If the x-offset is negative then the reference
point of the second box is to the left of that of the first, which is corrected using a kern.
On the right side the first box might stick out, which would show up if it is wider than
the sum of the x-offset and the width of the second box. So a second kern may be needed.

36358 \hbox_set:Nn \l__coffin_aligned_coffin
36359 {
36360 \dim_compare:nNnT { \l__coffin_offset_x_dim } < \c_zero_dim
36361 { __kernel_kern:n { -\l__coffin_offset_x_dim } }
36362 \hbox_unpack:N \l__coffin_aligned_coffin
36363 \dim_set:Nn \l__coffin_internal_dim
36364 { \l__coffin_offset_x_dim - \box_wd:N #1 + \box_wd:N #4 }
36365 \dim_compare:nNnT \l__coffin_internal_dim < \c_zero_dim
36366 { __kernel_kern:n { -\l__coffin_internal_dim } }
36367 }

The coffin structure is reset, and the corners are cleared: only those from the two parent
coffins are needed.

36368 __coffin_reset_structure:N \l__coffin_aligned_coffin
36369 \prop_clear:c
36370 {
36371 coffin ~ __coffin_to_value:N \l__coffin_aligned_coffin
36372 \c_space_tl corners
36373 }
36374 __coffin_update_poles:N \l__coffin_aligned_coffin

The structures of the parent coffins are now transferred to the new coffin, which requires
that the appropriate offsets are applied. That then depends on whether any shift was
needed.

36375 \dim_compare:nNnTF \l__coffin_offset_x_dim < \c_zero_dim
36376 {
36377 __coffin_offset_poles:Nnn #1 { -\l__coffin_offset_x_dim } { 0pt }
36378 __coffin_offset_poles:Nnn #4 { 0pt } { \l__coffin_offset_y_dim }
36379 __coffin_offset_corners:Nnn #1 { -\l__coffin_offset_x_dim } { 0pt }
36380 __coffin_offset_corners:Nnn #4 { 0pt } { \l__coffin_offset_y_dim }
36381 }
36382 {
36383 __coffin_offset_poles:Nnn #1 { 0pt } { 0pt }
36384 __coffin_offset_poles:Nnn #4
36385 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }
36386 __coffin_offset_corners:Nnn #1 { 0pt } { 0pt }
36387 __coffin_offset_corners:Nnn #4
36388 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }
36389 }
36390 __coffin_update_vertical_poles:NNN #1 #4 \l__coffin_aligned_coffin
36391 #9 #1 \l__coffin_aligned_coffin
36392 }

(End of definition for \coffin_join:NnnNnnnn , \coffin_gjoin:NnnNnnnn , and __coffin_join:NnnNnnnnN.
These functions are documented on page 323.)

1409

\coffin_attach:NnnNnnnn
\coffin_attach:cnnNnnnn
\coffin_attach:Nnncnnnn
\coffin_attach:cnncnnnn

\coffin_gattach:NnnNnnnn
\coffin_gattach:cnnNnnnn
\coffin_gattach:Nnncnnnn
\coffin_gattach:cnncnnnn

__coffin_attach:NnnNnnnnN
__coffin_attach_mark:NnnNnnnn

A more simple version of the above, as it simply uses the size of the first coffin for the
new one. This means that the work here is rather simplified compared to the above code.
The function used when marking a position is hear also as it is similar but without the
structure updates.

36393 \cs_new_protected:Npn \coffin_attach:NnnNnnnn #1#2#3#4#5#6#7#8
36394 {
36395 __coffin_attach:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8}
36396 \coffin_set_eq:NN
36397 }
36398 \cs_generate_variant:Nn \coffin_attach:NnnNnnnn { c , Nnnc , cnnc }
36399 \cs_new_protected:Npn \coffin_gattach:NnnNnnnn #1#2#3#4#5#6#7#8
36400 {
36401 __coffin_attach:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8}
36402 \coffin_gset_eq:NN
36403 }
36404 \cs_generate_variant:Nn \coffin_gattach:NnnNnnnn { c , Nnnc , cnnc }
36405 \cs_new_protected:Npn __coffin_attach:NnnNnnnnN #1#2#3#4#5#6#7#8#9
36406 {
36407 __coffin_align:NnnNnnnnN
36408 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin
36409 \box_set_ht:Nn \l__coffin_aligned_coffin { \box_ht:N #1 }
36410 \box_set_dp:Nn \l__coffin_aligned_coffin { \box_dp:N #1 }
36411 \box_set_wd:Nn \l__coffin_aligned_coffin { \box_wd:N #1 }
36412 __coffin_reset_structure:N \l__coffin_aligned_coffin
36413 \prop_set_eq:cc
36414 {
36415 coffin ~ __coffin_to_value:N \l__coffin_aligned_coffin
36416 \c_space_tl corners
36417 }
36418 { coffin ~ __coffin_to_value:N #1 ~ corners }
36419 __coffin_update_poles:N \l__coffin_aligned_coffin
36420 __coffin_offset_poles:Nnn #1 { 0pt } { 0pt }
36421 __coffin_offset_poles:Nnn #4
36422 { \l__coffin_offset_x_dim } { \l__coffin_offset_y_dim }
36423 __coffin_update_vertical_poles:NNN #1 #4 \l__coffin_aligned_coffin
36424 #9 #1 \l__coffin_aligned_coffin
36425 }
36426 \cs_new_protected:Npn __coffin_attach_mark:NnnNnnnn #1#2#3#4#5#6#7#8
36427 {
36428 __coffin_align:NnnNnnnnN
36429 #1 {#2} {#3} #4 {#5} {#6} {#7} {#8} \l__coffin_aligned_coffin
36430 \box_set_ht:Nn \l__coffin_aligned_coffin { \box_ht:N #1 }
36431 \box_set_dp:Nn \l__coffin_aligned_coffin { \box_dp:N #1 }
36432 \box_set_wd:Nn \l__coffin_aligned_coffin { \box_wd:N #1 }
36433 \box_set_eq:NN #1 \l__coffin_aligned_coffin
36434 }

(End of definition for \coffin_attach:NnnNnnnn and others. These functions are documented on page
323.)

__coffin_align:NnnNnnnnN The internal function aligns the two coffins into a third one, but performs no corrections
on the resulting coffin poles. The process begins by finding the points of intersection for
the poles for each of the input coffins. Those for the first coffin are worked out after
those for the second coffin, as this allows the ‘primed’ storage area to be used for the

1410

second coffin. The ‘real’ box offsets are then calculated, before using these to re-box the
input coffins. The default poles are then set up, but the final result depends on how the
bounding box is being handled.

36435 \cs_new_protected:Npn __coffin_align:NnnNnnnnN #1#2#3#4#5#6#7#8#9
36436 {
36437 __coffin_calculate_intersection:Nnn #4 {#5} {#6}
36438 \dim_set:Nn \l__coffin_x_prime_dim { \l__coffin_x_dim }
36439 \dim_set:Nn \l__coffin_y_prime_dim { \l__coffin_y_dim }
36440 __coffin_calculate_intersection:Nnn #1 {#2} {#3}
36441 \dim_set:Nn \l__coffin_offset_x_dim
36442 { \l__coffin_x_dim - \l__coffin_x_prime_dim + #7 }
36443 \dim_set:Nn \l__coffin_offset_y_dim
36444 { \l__coffin_y_dim - \l__coffin_y_prime_dim + #8 }
36445 \hbox_set:Nn \l__coffin_aligned_internal_coffin
36446 {
36447 \box_use:N #1
36448 __kernel_kern:n { -\box_wd:N #1 }
36449 __kernel_kern:n { \l__coffin_offset_x_dim }
36450 \box_move_up:nn { \l__coffin_offset_y_dim } { \box_use:N #4 }
36451 }
36452 \coffin_set_eq:NN #9 \l__coffin_aligned_internal_coffin
36453 }

(End of definition for __coffin_align:NnnNnnnnN.)

__coffin_offset_poles:Nnn
__coffin_offset_pole:Nnnnnnn

Transferring structures from one coffin to another requires that the positions are updated
by the offset between the two coffins. This is done by mapping over the property list of
the source coffins, moving as appropriate and saving to the new coffin data structures.
The test for a - means that the structures from the parent coffins are uniquely labelled
and do not depend on the order of alignment. The pay off for this is that - should not
be used in coffin pole or handle names, and that multiple alignments do not result in a
whole set of values.

36454 \cs_new_protected:Npn __coffin_offset_poles:Nnn #1#2#3
36455 {
36456 \prop_map_inline:cn { coffin ~ __coffin_to_value:N #1 ~ poles }
36457 { __coffin_offset_pole:Nnnnnnn #1 {##1} ##2 {#2} {#3} }
36458 }
36459 \cs_new_protected:Npn __coffin_offset_pole:Nnnnnnn #1#2#3#4#5#6#7#8
36460 {
36461 \dim_set:Nn \l__coffin_x_dim { #3 + #7 }
36462 \dim_set:Nn \l__coffin_y_dim { #4 + #8 }
36463 \tl_if_in:nnTF {#2} { - }
36464 { \tl_set:Nn \l__coffin_internal_tl { {#2} } }
36465 { \tl_set:Nn \l__coffin_internal_tl { { #1 - #2 } } }
36466 \exp_last_unbraced:NNo __coffin_set_pole:Nnn \l__coffin_aligned_coffin
36467 { \l__coffin_internal_tl }
36468 {
36469 { \dim_use:N \l__coffin_x_dim } { \dim_use:N \l__coffin_y_dim }
36470 {#5} {#6}
36471 }
36472 }

(End of definition for __coffin_offset_poles:Nnn and __coffin_offset_pole:Nnnnnnn.)

1411

__coffin_offset_corners:Nnn
__coffin_offset_corner:Nnnnn

Saving the offset corners of a coffin is very similar, except that there is no need to worry
about naming: every corner can be saved here as order is unimportant.

36473 \cs_new_protected:Npn __coffin_offset_corners:Nnn #1#2#3
36474 {
36475 \prop_map_inline:cn { coffin ~ __coffin_to_value:N #1 ~ corners }
36476 { __coffin_offset_corner:Nnnnn #1 {##1} ##2 {#2} {#3} }
36477 }
36478 \cs_new_protected:Npn __coffin_offset_corner:Nnnnn #1#2#3#4#5#6
36479 {
36480 \prop_put:cne
36481 {
36482 coffin ~ __coffin_to_value:N \l__coffin_aligned_coffin
36483 \c_space_tl corners
36484 }
36485 { #1 - #2 }
36486 {
36487 { \dim_eval:n { #3 + #5 } }
36488 { \dim_eval:n { #4 + #6 } }
36489 }
36490 }

(End of definition for __coffin_offset_corners:Nnn and __coffin_offset_corner:Nnnnn.)

__coffin_update_vertical_poles:NNN
__coffin_update_T:nnnnnnnnN
__coffin_update_B:nnnnnnnnN

The T and B poles need to be recalculated after alignment. These functions find the
larger absolute value for the poles, but this is of course only logical when the poles are
horizontal.

36491 \cs_new_protected:Npn __coffin_update_vertical_poles:NNN #1#2#3
36492 {
36493 __coffin_get_pole:NnN #3 { #1 -T } \l__coffin_pole_a_tl
36494 __coffin_get_pole:NnN #3 { #2 -T } \l__coffin_pole_b_tl
36495 \exp_last_two_unbraced:Noo __coffin_update_T:nnnnnnnnN
36496 \l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
36497 __coffin_get_pole:NnN #3 { #1 -B } \l__coffin_pole_a_tl
36498 __coffin_get_pole:NnN #3 { #2 -B } \l__coffin_pole_b_tl
36499 \exp_last_two_unbraced:Noo __coffin_update_B:nnnnnnnnN
36500 \l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
36501 }
36502 \cs_new_protected:Npn __coffin_update_T:nnnnnnnnN #1#2#3#4#5#6#7#8#9
36503 {
36504 \dim_compare:nNnTF {#2} < {#6}
36505 {
36506 __coffin_set_pole:Nnn #9 { T }
36507 { { 0pt } {#6} { 1000pt } { 0pt } }
36508 }
36509 {
36510 __coffin_set_pole:Nnn #9 { T }
36511 { { 0pt } {#2} { 1000pt } { 0pt } }
36512 }
36513 }
36514 \cs_new_protected:Npn __coffin_update_B:nnnnnnnnN #1#2#3#4#5#6#7#8#9
36515 {
36516 \dim_compare:nNnTF {#2} < {#6}
36517 {
36518 __coffin_set_pole:Nnn #9 { B }

1412

36519 { { 0pt } {#2} { 1000pt } { 0pt } }
36520 }
36521 {
36522 __coffin_set_pole:Nnn #9 { B }
36523 { { 0pt } {#6} { 1000pt } { 0pt } }
36524 }
36525 }

(End of definition for __coffin_update_vertical_poles:NNN , __coffin_update_T:nnnnnnnnN , and
__coffin_update_B:nnnnnnnnN.)

\c__coffin_empty_coffin An empty-but-horizontal coffin.
36526 \coffin_new:N \c__coffin_empty_coffin
36527 \tex_setbox:D \c__coffin_empty_coffin = \tex_hbox:D { }

(End of definition for \c__coffin_empty_coffin.)

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Typesetting a coffin means aligning it with the current position, which is done using a
coffin with no content at all. As well as aligning to the empty coffin, there is also a need
to leave vertical mode, if necessary.

36528 \cs_new_protected:Npn \coffin_typeset:Nnnnn #1#2#3#4#5
36529 {
36530 \mode_leave_vertical:
36531 __coffin_align:NnnNnnnnN \c__coffin_empty_coffin { H } { l }
36532 #1 {#2} {#3} {#4} {#5} \l__coffin_aligned_coffin
36533 \box_use_drop:N \l__coffin_aligned_coffin
36534 }
36535 \cs_generate_variant:Nn \coffin_typeset:Nnnnn { c }

(End of definition for \coffin_typeset:Nnnnn. This function is documented on page 323.)

92.8 Coffin diagnostics
\l__coffin_display_coffin

\l__coffin_display_coord_coffin
\l__coffin_display_pole_coffin

Used for printing coffins with data structures attached.
36536 \coffin_new:N \l__coffin_display_coffin
36537 \coffin_new:N \l__coffin_display_coord_coffin
36538 \coffin_new:N \l__coffin_display_pole_coffin

(End of definition for \l__coffin_display_coffin , \l__coffin_display_coord_coffin , and \l__-
coffin_display_pole_coffin.)

\l__coffin_display_handles_prop This property list is used to print coffin handles at suitable positions. The offsets are
expressed as multiples of the basic offset value, which therefore acts as a scale-factor.

36539 \prop_new:N \l__coffin_display_handles_prop
36540 \prop_put:Nnn \l__coffin_display_handles_prop { tl }
36541 { { b } { r } { -1 } { 1 } }
36542 \prop_put:Nnn \l__coffin_display_handles_prop { thc }
36543 { { b } { hc } { 0 } { 1 } }
36544 \prop_put:Nnn \l__coffin_display_handles_prop { tr }
36545 { { b } { l } { 1 } { 1 } }
36546 \prop_put:Nnn \l__coffin_display_handles_prop { vcl }
36547 { { vc } { r } { -1 } { 0 } }
36548 \prop_put:Nnn \l__coffin_display_handles_prop { vchc }
36549 { { vc } { hc } { 0 } { 0 } }

1413

36550 \prop_put:Nnn \l__coffin_display_handles_prop { vcr }
36551 { { vc } { l } { 1 } { 0 } }
36552 \prop_put:Nnn \l__coffin_display_handles_prop { bl }
36553 { { t } { r } { -1 } { -1 } }
36554 \prop_put:Nnn \l__coffin_display_handles_prop { bhc }
36555 { { t } { hc } { 0 } { -1 } }
36556 \prop_put:Nnn \l__coffin_display_handles_prop { br }
36557 { { t } { l } { 1 } { -1 } }
36558 \prop_put:Nnn \l__coffin_display_handles_prop { Tl }
36559 { { t } { r } { -1 } { -1 } }
36560 \prop_put:Nnn \l__coffin_display_handles_prop { Thc }
36561 { { t } { hc } { 0 } { -1 } }
36562 \prop_put:Nnn \l__coffin_display_handles_prop { Tr }
36563 { { t } { l } { 1 } { -1 } }
36564 \prop_put:Nnn \l__coffin_display_handles_prop { Hl }
36565 { { vc } { r } { -1 } { 1 } }
36566 \prop_put:Nnn \l__coffin_display_handles_prop { Hhc }
36567 { { vc } { hc } { 0 } { 1 } }
36568 \prop_put:Nnn \l__coffin_display_handles_prop { Hr }
36569 { { vc } { l } { 1 } { 1 } }
36570 \prop_put:Nnn \l__coffin_display_handles_prop { Bl }
36571 { { b } { r } { -1 } { -1 } }
36572 \prop_put:Nnn \l__coffin_display_handles_prop { Bhc }
36573 { { b } { hc } { 0 } { -1 } }
36574 \prop_put:Nnn \l__coffin_display_handles_prop { Br }
36575 { { b } { l } { 1 } { -1 } }

(End of definition for \l__coffin_display_handles_prop.)

\l__coffin_display_offset_dim The standard offset for the label from the handle position when displaying handles.
36576 \dim_new:N \l__coffin_display_offset_dim
36577 \dim_set:Nn \l__coffin_display_offset_dim { 2pt }

(End of definition for \l__coffin_display_offset_dim.)

\l__coffin_display_x_dim
\l__coffin_display_y_dim

As the intersections of poles have to be calculated to find which ones to print, there is
a need to avoid repetition. This is done by saving the intersection into two dedicated
values.

36578 \dim_new:N \l__coffin_display_x_dim
36579 \dim_new:N \l__coffin_display_y_dim

(End of definition for \l__coffin_display_x_dim and \l__coffin_display_y_dim.)

\l__coffin_display_poles_prop A property list for printing poles: various things need to be deleted from this to get a
“nice” output.

36580 \prop_new:N \l__coffin_display_poles_prop

(End of definition for \l__coffin_display_poles_prop.)

\l__coffin_display_font_tl Stores the settings used to print coffin data: this keeps things flexible.
36581 \tl_new:N \l__coffin_display_font_tl
36582 \bool_lazy_and:nnT
36583 { \cs_if_exist_p:N \fmtname }
36584 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
36585 {

1414

36586 \tl_set:Nn \l__coffin_display_font_tl
36587 { \sffamily \tiny }
36588 }

(End of definition for \l__coffin_display_font_tl.)

__coffin_rule:nn Abstract out creation of rules here until there is a higher-level interface.
36589 \cs_new_protected:Npn __coffin_rule:nn #1#2
36590 {
36591 \mode_leave_vertical:
36592 \hbox:n { \tex_vrule:D width #1 height #2 \scan_stop: }
36593 }

(End of definition for __coffin_rule:nn.)

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

__coffin_mark_handle_aux:nnnnNnn

Marking a single handle is relatively easy. The standard attachment function is used,
meaning that there are two calculations for the location. However, this is likely to be
okay given the load expected. Contrast with the more optimised version for showing all
handles which comes next.

36594 \cs_new_protected:Npn \coffin_mark_handle:Nnnn #1#2#3#4
36595 {
36596 \hcoffin_set:Nn \l__coffin_display_pole_coffin
36597 {
36598 \color_select:n {#4}
36599 __coffin_rule:nn { 1pt } { 1pt }
36600 }
36601 __coffin_attach_mark:NnnNnnnn #1 {#2} {#3}
36602 \l__coffin_display_pole_coffin { hc } { vc } { 0pt } { 0pt }
36603 \hcoffin_set:Nn \l__coffin_display_coord_coffin
36604 {
36605 \color_select:n {#4}
36606 \l__coffin_display_font_tl
36607 (\tl_to_str:n { #2 , #3 })
36608 }
36609 \prop_get:NnN \l__coffin_display_handles_prop
36610 { #2 #3 } \l__coffin_internal_tl
36611 \quark_if_no_value:NTF \l__coffin_internal_tl
36612 {
36613 \prop_get:NnN \l__coffin_display_handles_prop
36614 { #3 #2 } \l__coffin_internal_tl
36615 \quark_if_no_value:NTF \l__coffin_internal_tl
36616 {
36617 __coffin_attach_mark:NnnNnnnn #1 {#2} {#3}
36618 \l__coffin_display_coord_coffin { l } { vc }
36619 { 1pt } { 0pt }
36620 }
36621 {
36622 \exp_last_unbraced:No __coffin_mark_handle_aux:nnnnNnn
36623 \l__coffin_internal_tl #1 {#2} {#3}
36624 }
36625 }
36626 {
36627 \exp_last_unbraced:No __coffin_mark_handle_aux:nnnnNnn
36628 \l__coffin_internal_tl #1 {#2} {#3}

1415

36629 }
36630 }
36631 \cs_new_protected:Npn __coffin_mark_handle_aux:nnnnNnn #1#2#3#4#5#6#7
36632 {
36633 __coffin_attach_mark:NnnNnnnn #5 {#6} {#7}
36634 \l__coffin_display_coord_coffin {#1} {#2}
36635 { #3 \l__coffin_display_offset_dim }
36636 { #4 \l__coffin_display_offset_dim }
36637 }
36638 \cs_generate_variant:Nn \coffin_mark_handle:Nnnn { c }

(End of definition for \coffin_mark_handle:Nnnn and __coffin_mark_handle_aux:nnnnNnn. This func-
tion is documented on page 324.)

\coffin_display_handles:Nn
\coffin_display_handles:cn

__coffin_display_handles_aux:nnnnnn
__coffin_display_handles_aux:nnnn

__coffin_display_attach:Nnnnn

Printing the poles starts by removing any duplicates, for which the H poles is used as
the definitive version for the baseline and bottom. Two loops are then used to find the
combinations of handles for all of these poles. This is done such that poles are removed
during the loops to avoid duplication.

36639 \cs_new_protected:Npn \coffin_display_handles:Nn #1#2
36640 {
36641 \hcoffin_set:Nn \l__coffin_display_pole_coffin
36642 {
36643 \color_select:n {#2}
36644 __coffin_rule:nn { 1pt } { 1pt }
36645 }
36646 \prop_set_eq:Nc \l__coffin_display_poles_prop
36647 { coffin ~ __coffin_to_value:N #1 ~ poles }
36648 __coffin_get_pole:NnN #1 { H } \l__coffin_pole_a_tl
36649 __coffin_get_pole:NnN #1 { T } \l__coffin_pole_b_tl
36650 \tl_if_eq:NNT \l__coffin_pole_a_tl \l__coffin_pole_b_tl
36651 { \prop_remove:Nn \l__coffin_display_poles_prop { T } }
36652 __coffin_get_pole:NnN #1 { B } \l__coffin_pole_b_tl
36653 \tl_if_eq:NNT \l__coffin_pole_a_tl \l__coffin_pole_b_tl
36654 { \prop_remove:Nn \l__coffin_display_poles_prop { B } }
36655 \coffin_set_eq:NN \l__coffin_display_coffin #1
36656 \prop_map_inline:Nn \l__coffin_display_poles_prop
36657 {
36658 \prop_remove:Nn \l__coffin_display_poles_prop {##1}
36659 __coffin_display_handles_aux:nnnnnn {##1} ##2 {#2}
36660 }
36661 \box_use_drop:N \l__coffin_display_coffin
36662 }

For each pole there is a check for an intersection, which here does not give an error if
none is found. The successful values are stored and used to align the pole coffin with the
main coffin for output. The positions are recovered from the preset list if available.

36663 \cs_new_protected:Npn __coffin_display_handles_aux:nnnnnn #1#2#3#4#5#6
36664 {
36665 \prop_map_inline:Nn \l__coffin_display_poles_prop
36666 {
36667 \bool_set_false:N \l__coffin_error_bool
36668 __coffin_calculate_intersection:nnnnnnnn {#2} {#3} {#4} {#5} ##2
36669 \bool_if:NF \l__coffin_error_bool
36670 {

1416

36671 \dim_set:Nn \l__coffin_display_x_dim { \l__coffin_x_dim }
36672 \dim_set:Nn \l__coffin_display_y_dim { \l__coffin_y_dim }
36673 __coffin_display_attach:Nnnnn
36674 \l__coffin_display_pole_coffin { hc } { vc }
36675 { 0pt } { 0pt }
36676 \hcoffin_set:Nn \l__coffin_display_coord_coffin
36677 {
36678 \color_select:n {#6}
36679 \l__coffin_display_font_tl
36680 (\tl_to_str:n { #1 , ##1 })
36681 }
36682 \prop_get:NnN \l__coffin_display_handles_prop
36683 { #1 ##1 } \l__coffin_internal_tl
36684 \quark_if_no_value:NTF \l__coffin_internal_tl
36685 {
36686 \prop_get:NnN \l__coffin_display_handles_prop
36687 { ##1 #1 } \l__coffin_internal_tl
36688 \quark_if_no_value:NTF \l__coffin_internal_tl
36689 {
36690 __coffin_display_attach:Nnnnn
36691 \l__coffin_display_coord_coffin { l } { vc }
36692 { 1pt } { 0pt }
36693 }
36694 {
36695 \exp_last_unbraced:No
36696 __coffin_display_handles_aux:nnnn
36697 \l__coffin_internal_tl
36698 }
36699 }
36700 {
36701 \exp_last_unbraced:No __coffin_display_handles_aux:nnnn
36702 \l__coffin_internal_tl
36703 }
36704 }
36705 }
36706 }
36707 \cs_new_protected:Npn __coffin_display_handles_aux:nnnn #1#2#3#4
36708 {
36709 __coffin_display_attach:Nnnnn
36710 \l__coffin_display_coord_coffin {#1} {#2}
36711 { #3 \l__coffin_display_offset_dim }
36712 { #4 \l__coffin_display_offset_dim }
36713 }
36714 \cs_generate_variant:Nn \coffin_display_handles:Nn { c }

This is a dedicated version of \coffin_attach:NnnNnnnn with a hard-wired first coffin.
As the intersection is already known and stored for the display coffin the code simply
uses it directly, with no calculation.

36715 \cs_new_protected:Npn __coffin_display_attach:Nnnnn #1#2#3#4#5
36716 {
36717 __coffin_calculate_intersection:Nnn #1 {#2} {#3}
36718 \dim_set:Nn \l__coffin_x_prime_dim { \l__coffin_x_dim }
36719 \dim_set:Nn \l__coffin_y_prime_dim { \l__coffin_y_dim }
36720 \dim_set:Nn \l__coffin_offset_x_dim

1417

36721 { \l__coffin_display_x_dim - \l__coffin_x_prime_dim + #4 }
36722 \dim_set:Nn \l__coffin_offset_y_dim
36723 { \l__coffin_display_y_dim - \l__coffin_y_prime_dim + #5 }
36724 \hbox_set:Nn \l__coffin_aligned_coffin
36725 {
36726 \box_use:N \l__coffin_display_coffin
36727 __kernel_kern:n { -\box_wd:N \l__coffin_display_coffin }
36728 __kernel_kern:n { \l__coffin_offset_x_dim }
36729 \box_move_up:nn { \l__coffin_offset_y_dim } { \box_use:N #1 }
36730 }
36731 \box_set_ht:Nn \l__coffin_aligned_coffin
36732 { \box_ht:N \l__coffin_display_coffin }
36733 \box_set_dp:Nn \l__coffin_aligned_coffin
36734 { \box_dp:N \l__coffin_display_coffin }
36735 \box_set_wd:Nn \l__coffin_aligned_coffin
36736 { \box_wd:N \l__coffin_display_coffin }
36737 \box_set_eq:NN \l__coffin_display_coffin \l__coffin_aligned_coffin
36738 }

(End of definition for \coffin_display_handles:Nn and others. This function is documented on page
324.)

\coffin_show_structure:N
\coffin_show_structure:c
\coffin_log_structure:N
\coffin_log_structure:c

__coffin_show_structure:NN

For showing the various internal structures attached to a coffin in a way that keeps things
relatively readable. If there is no apparent structure then the code complains.

36739 \cs_new_protected:Npn \coffin_show_structure:N
36740 { __coffin_show_structure:NN \msg_show:nneeee }
36741 \cs_generate_variant:Nn \coffin_show_structure:N { c }
36742 \cs_new_protected:Npn \coffin_log_structure:N
36743 { __coffin_show_structure:NN \msg_log:nneeee }
36744 \cs_generate_variant:Nn \coffin_log_structure:N { c }
36745 \cs_new_protected:Npn __coffin_show_structure:NN #1#2
36746 {
36747 __coffin_if_exist:NT #2
36748 {
36749 #1 { coffin } { show }
36750 { \token_to_str:N #2 }
36751 {
36752 \iow_newline: >~ ht ~=~ \dim_eval:n { \coffin_ht:N #2 }
36753 \iow_newline: >~ dp ~=~ \dim_eval:n { \coffin_dp:N #2 }
36754 \iow_newline: >~ wd ~=~ \dim_eval:n { \coffin_wd:N #2 }
36755 }
36756 {
36757 \prop_map_function:cN
36758 { coffin ~ __coffin_to_value:N #2 ~ poles }
36759 \msg_show_item_unbraced:nn
36760 }
36761 { }
36762 }
36763 }

(End of definition for \coffin_show_structure:N , \coffin_log_structure:N , and __coffin_show_-
structure:NN. These functions are documented on page 324.)

\coffin_show:N
\coffin_show:c
\coffin_log:N
\coffin_log:c

\coffin_show:Nnn
\coffin_show:cnn
\coffin_log:Nnn
\coffin_log:cnn

__coffin_show:NNNnn

Essentially a combination of \coffin_show_structure:N and \box_show:Nnn, but we
need to avoid having two prompts, so we use \msg_term:nneeee instead of \msg_-
show:nneeee in the show case.

1418

36764 \cs_new_protected:Npn \coffin_show:N #1
36765 { \coffin_show:Nnn #1 \c_max_int \c_max_int }
36766 \cs_generate_variant:Nn \coffin_show:N { c }
36767 \cs_new_protected:Npn \coffin_log:N #1
36768 { \coffin_log:Nnn #1 \c_max_int \c_max_int }
36769 \cs_generate_variant:Nn \coffin_log:N { c }
36770 \cs_new_protected:Npn \coffin_show:Nnn
36771 { __coffin_show:NNNnn \msg_term:nneeee \box_show:Nnn }
36772 \cs_generate_variant:Nn \coffin_show:Nnn { c }
36773 \cs_new_protected:Npn \coffin_log:Nnn
36774 { __coffin_show:NNNnn \msg_log:nneeee \box_show:Nnn }
36775 \cs_generate_variant:Nn \coffin_log:Nnn { c }
36776 \cs_new_protected:Npn __coffin_show:NNNnn #1#2#3#4#5
36777 {
36778 __coffin_if_exist:NT #3
36779 {
36780 __coffin_show_structure:NN #1 #3
36781 #2 #3 {#4} {#5}
36782 }
36783 }

(End of definition for \coffin_show:N and others. These functions are documented on page 324.)

92.9 Messages
36784 \msg_new:nnnn { coffin } { no-pole-intersection }
36785 { No~intersection~between~coffin~poles. }
36786 {
36787 LaTeX~was~asked~to~find~the~intersection~between~two~poles,~
36788 but~they~do~not~have~a~unique~meeting~point:~
36789 the~value~(0pt,~0pt)~will~be~used.
36790 }
36791 \msg_new:nnnn { coffin } { unknown }
36792 { Unknown~coffin~’#1’. }
36793 { The~coffin~’#1’~was~never~defined. }
36794 \msg_new:nnnn { coffin } { unknown-pole }
36795 { Pole~’#1’~unknown~for~coffin~’#2’. }
36796 {
36797 LaTeX~was~asked~to~find~a~typesetting~pole~for~a~coffin,~
36798 but~either~the~coffin~does~not~exist~or~the~pole~name~is~wrong.
36799 }
36800 \msg_new:nnn { coffin } { show }
36801 {
36802 Size~of~coffin~#1 : #2 \\
36803 Poles~of~coffin~#1 : #3 .
36804 }

36805 ⟨/package⟩

1419

Chapter 93

l3color implementation

36806 ⟨∗package⟩

36807 ⟨@@=color⟩

93.1 Basics
\l__color_current_tl The color currently active for foreground (text, etc.) material. This is stored in the form

of a color model followed by one or more values. There are four pre-defined models, three
of which take numerical values in the range [0, 1]:

• gray ⟨gray⟩ Grayscale color with the ⟨gray⟩ value running from 0 (fully black) to
1 (fully white)

• cmyk ⟨cyan⟩ ⟨magenta⟩ ⟨yellow⟩ ⟨black⟩

• rgb ⟨red⟩ ⟨green⟩ ⟨blue⟩

Notice that the value are separated by spaces. There is a fourth pre-defined model using
a string value and a numerical one:

• spot ⟨name⟩ ⟨tint⟩ A pre-defined spot color, where the ⟨name⟩ should be a pre-
defined string color name and the ⟨tint⟩ should be in the range [0, 1].

Additional models may be created to allow mixing of spot colors. The number of
data entries these require will depend on the number of colors to be mixed.

TEXhackers note: The content of \l__color_current_tl comprises two brace groups,
the first containing the color model and the second containing the value(s) applicable in that
model.

(End of definition for \l__color_current_tl.)

\color_group_begin:
\color_group_end:

Grouping for color is the same as using the basic \group_begin: and \group_end:
functions. However, for semantic reasons, they are renamed here.

36808 \cs_new_eq:NN \color_group_begin: \group_begin:
36809 \cs_new_eq:NN \color_group_end: \group_end:

(End of definition for \color_group_begin: and \color_group_end:. These functions are documented
on page 326.)

1420

\color_ensure_current: A driver-independent wrapper for setting the foreground color to the current color “now”.
36810 \cs_new_protected:Npn \color_ensure_current:
36811 { __color_select:N \l__color_current_tl }

(End of definition for \color_ensure_current:. This function is documented on page 326.)

\s__color_stop Internal scan marks.
36812 \scan_new:N \s__color_stop

(End of definition for \s__color_stop.)

__color_select:N
__color_select_math:N

__color_select:nn

Take an internal color specification and pass it to the driver. This code is needed to
ensure the current color but will also be used by the higher-level material.

36813 \cs_new_protected:Npn __color_select:N #1
36814 {
36815 \exp_after:wN __color_select:nn #1
36816 \group_insert_after:N __color_backend_reset:
36817 }
36818 \cs_new_protected:Npn __color_select_math:N #1
36819 { \exp_after:wN __color_select:nn #1 }
36820 \cs_new_protected:Npn __color_select:nn #1#2
36821 { \use:c { __color_backend_select_ #1 :n } {#2} }

(End of definition for __color_select:N , __color_select_math:N , and __color_select:nn.)

\l__color_current_tl The current color, with the model and
36822 \tl_new:N \l__color_current_tl
36823 \tl_set:Nn \l__color_current_tl { { gray } { 0 } }

(End of definition for \l__color_current_tl.)

93.2 Predefined color names
The ability to predefine colors with a name is a key part of this module and means there
has to be a method for storing the results. At first sight, it seems natural to follow the
usual expl3 model and create a color variable type for the process. That would then
allow both local and global colors, constant colors and the like. However, these names
need to be accessible in some form at the user level, for selection of colors either simply
by name or as part of a more complex expression. This does not require that the full
name is exposed but does require that they can be looked up in a predictable way. As
such, it is more useful to expose just the color names as part of the interface, with the
result that only local color names can be created. (This is also seen for example in key
creation in l3keys.) As a result, color names are declarative (no new functions).

Since there is no need to manipulate colors en masse, each is stored in a two-part
structure: a prop for the colors themselves, and a tl for the default model for each color.

1421

93.3 Setup
\l__color_internal_int
\l__color_internal_tl 36824 \int_new:N \l__color_internal_int

36825 \tl_new:N \l__color_internal_tl

(End of definition for \l__color_internal_int and \l__color_internal_tl.)

\s__color_mark Internal scan marks. \s__color_stop is already defined in l3color-base.
36826 \scan_new:N \s__color_mark

(End of definition for \s__color_mark.)

\l__color_ignore_error_bool Used to avoid issuing multiple errors if there is a change-of-model with input container
an error.

36827 \bool_new:N \l__color_ignore_error_bool

(End of definition for \l__color_ignore_error_bool.)

93.4 Utility functions
\color_if_exist_p:n
\color_if_exist:nTF

A simple wrapper to avoid needing to have the lookup repeated in too many places.To
guard against a color created in a group, we need to test for entries in the prop.

36828 \prg_new_conditional:Npnn \color_if_exist:n #1 { p , T, F, TF }
36829 {
36830 \prop_if_exist:cTF { l__color_named_ #1 _prop }
36831 {
36832 \prop_if_empty:cTF { l__color_named_ #1 _prop }
36833 \prg_return_false:
36834 \prg_return_true:
36835 }
36836 \prg_return_false:
36837 }

(End of definition for \color_if_exist:nTF. This function is documented on page 329.)

__color_model:N
__color_values:N

Simple abstractions.
36838 \cs_new:Npn __color_model:N #1 { \exp_after:wN \use_i:nn #1 }
36839 \cs_new:Npn __color_values:N #1 { \exp_after:wN \use_ii:nn #1 }

(End of definition for __color_model:N and __color_values:N.)

__color_extract:nNN
__color_extract:VNN

Recover the values for the standard model for a color.
36840 \cs_new_protected:Npn __color_extract:nNN #1#2#3
36841 {
36842 \tl_set_eq:Nc #2 { l__color_named_ #1 _tl }
36843 \prop_get:cVN { l__color_named_ #1 _prop } #2 #3
36844 }
36845 \cs_generate_variant:Nn __color_extract:nNN { V }

(End of definition for __color_extract:nNN.)

1422

93.5 Model conversion
__color_convert:nnN
__color_convert:VVN
__color_convert:nnnN
__color_convert:nVnN
__color_convert:nnVN

__color_convert_gray_gray:w
__color_convert_gray_rgb:w
__color_convert_gray_cmyk:w
__color_convert_cmyk_gray:w
__color_convert_cmyk_rgb:w
__color_convert_cmyk_cmyk:w
__color_convert_rgb_gray:w
__color_convert_rgb_rgb:w

__color_convert_rgb_cmyk:w
__color_convert_rgb_cmyk:nnn
__color_convert_rgb_cmyk:nnnn

Model conversion is carried out using standard formulae for base models, as described in
the manual for xcolor (see also the PostScript Language Reference Manual). For other
models direct conversion might not be defined, so we go through the fallback models if
necessary.

36846 \cs_new_protected:Npn __color_convert:nnN #1#2#3
36847 { __color_convert:nnVN {#1} {#2} #3 #3 }
36848 \cs_generate_variant:Nn __color_convert:nnN { VV }
36849 \cs_generate_variant:Nn \exp_last_unbraced:Nf { c }
36850 \cs_new_protected:Npn __color_convert:nnnN #1#2#3#4
36851 {
36852 \tl_set:Ne #4
36853 {
36854 \cs_if_exist_use:cTF { __color_convert_ #1 _ #2 :w }
36855 { #3 \s__color_stop }
36856 {
36857 \cs_if_exist:cTF { __color_convert_ \use:c { c__color_fallback_ #1 _tl } _ #2 :w }
36858 {
36859 \exp_last_unbraced:cf
36860 { __color_convert_ \use:c { c__color_fallback_ #1 _tl } _ #2 :w }
36861 { \use:c { __color_convert_ #1 _ \use:c { c__color_fallback_ #1 _tl } :w } #3 \s__color_stop }
36862 \s__color_stop
36863 }
36864 {
36865 \exp_last_unbraced:cf
36866 { __color_convert_ \use:c { c__color_fallback_ #2 _tl } _ #2 :w }
36867 {
36868 \cs_if_exist_use:cTF { __color_convert_ #1 _ \use:c { c__color_fallback_ #2 _tl } :w }
36869 { #3 \s__color_stop }
36870 {
36871 \exp_last_unbraced:cf
36872 { __color_convert_ \use:c { c__color_fallback_ #1 _tl } _ \use:c { c__color_fallback_ #2 _tl } :w }
36873 { \use:c { __color_convert_ #1 _ \use:c { c__color_fallback_ #1 _tl } :w } #3 \s__color_stop }
36874 \s__color_stop
36875 }
36876 }
36877 \s__color_stop
36878 }
36879 }
36880 }
36881 }
36882 \cs_generate_variant:Nn __color_convert:nnnN { nV , nnV }
36883 \cs_new:Npn __color_convert_gray_gray:w #1 \s__color_stop
36884 { #1 }
36885 \cs_new:Npn __color_convert_gray_rgb:w #1 \s__color_stop
36886 { #1 ~ #1 ~ #1 }
36887 \cs_new:Npn __color_convert_gray_cmyk:w #1 \s__color_stop
36888 { 0 ~ 0 ~ 0 ~ \fp_eval:n { 1 - #1 } }

These rather odd values are based on ntsc television: the set are used for the cmyk
conversion.

36889 \cs_new:Npn __color_convert_rgb_gray:w #1 ~ #2 ~ #3 \s__color_stop
36890 { \fp_eval:n { 0.3 * #1 + 0.59 * #2 + 0.11 * #3 } }

1423

36891 \cs_new:Npn __color_convert_rgb_rgb:w #1 \s__color_stop
36892 { #1 }

The conversion from rgb to cmyk is the most complex: a two-step procedure which
requires black generation and undercolor removal functions. The PostScript reference
describes them as device-dependent, but following xcolor we assume they are linear.
Moreover, as the likelihood of anyone using a non-unitary matrix here is tiny, we simplify
and treat those two concepts as no-ops. To allow code sharing with parsing of cmy
values, we have an intermediate function here (__color_convert_rgb_cmyk:nnn) which
actually takes cmy values as input.

36893 \cs_new:Npn __color_convert_rgb_cmyk:w #1 ~ #2 ~ #3 \s__color_stop
36894 {
36895 \exp_args:Neee __color_convert_rgb_cmyk:nnn
36896 { \fp_eval:n { 1 - #1 } }
36897 { \fp_eval:n { 1 - #2 } }
36898 { \fp_eval:n { 1 - #3 } }
36899 }
36900 \cs_new:Npn __color_convert_rgb_cmyk:nnn #1#2#3
36901 {
36902 \exp_args:Ne __color_convert_rgb_cmyk:nnnn
36903 { \fp_eval:n { min(#1, #2 , #3) } } {#1} {#2} {#3}
36904 }
36905 \cs_new:Npn __color_convert_rgb_cmyk:nnnn #1#2#3#4
36906 {
36907 \fp_eval:n { min (1 , max (0 , #2 - #1)) } \c_space_tl
36908 \fp_eval:n { min (1 , max (0 , #3 - #1)) } \c_space_tl
36909 \fp_eval:n { min (1 , max (0 , #4 - #1)) } \c_space_tl
36910 #1
36911 }
36912 \cs_new:Npn __color_convert_cmyk_gray:w #1 ~ #2 ~ #3 ~ #4 \s__color_stop
36913 { \fp_eval:n { 1 - min (1 , 0.3 * #1 + 0.59 * #2 + 0.11 * #3 + #4) } }
36914 \cs_new:Npn __color_convert_cmyk_rgb:w #1 ~ #2 ~ #3 ~ #4 \s__color_stop
36915 {
36916 \fp_eval:n { 1 - min (1 , #1 + #4) } \c_space_tl
36917 \fp_eval:n { 1 - min (1 , #2 + #4) } \c_space_tl
36918 \fp_eval:n { 1 - min (1 , #3 + #4) }
36919 }
36920 \cs_new:Npn __color_convert_cmyk_cmyk:w #1 \s__color_stop
36921 { #1 }

(End of definition for __color_convert:nnN and others.)

93.6 Color expressions
\l__color_model_tl
\l__color_value_tl

\l__color_next_model_tl
\l__color_next_value_tl

Working space to store the color data whilst doing calculations: keeping it on the stack
is attractive but gets tricky (return is non-trivial).

36922 \tl_new:N \l__color_model_tl
36923 \tl_new:N \l__color_value_tl
36924 \tl_new:N \l__color_next_model_tl
36925 \tl_new:N \l__color_next_value_tl

(End of definition for \l__color_model_tl and others.)

1424

__color_parse:nN
__color_parse_aux:nN
__color_parse_eq:Nn
__color_parse_eq:nNn

__color_parse:Nw
__color_parse_loop_init:Nnn

__color_parse_loop:w
__color_parse_loop_check:nn

__color_parse_loop:nn
__color_parse_gray:n
__color_parse_std:n

__color_parse_break:w
__color_parse_end:

__color_parse_mix:Nnnn
__color_parse_mix:NVVn
__color_parse_mix:nNnn

__color_parse_mix_gray:nw
__color_parse_mix_rgb:nw
__color_parse_mix_cmyk:nw

The main function for parsing color expressions removes actives but otherwise expands,
then starts working through the expression itself. At the end, we apply the payload.

36926 \cs_new_protected:Npe __color_parse:nN #1#2
36927 {
36928 \tl_set:Ne \exp_not:c { l__color_named_ . _tl }
36929 { \exp_not:N __color_model:N \exp_not:N \l__color_current_tl }
36930 \prop_put:NVe \exp_not:c { l__color_named_ . _prop }
36931 \exp_not:c { l__color_named_ . _tl }
36932 { \exp_not:N __color_values:N \exp_not:N \l__color_current_tl }
36933 \exp_not:N \exp_args:Ne \exp_not:N __color_parse_aux:nN
36934 { \exp_not:N \tl_to_str:n {#1} } #2
36935 }

Before going to all of the effort of parsing an expression, these two precursor functions
look for a pre-defined name, either on its own or with a trailing ! (which is the same
thing).

36936 \cs_new_protected:Npn __color_parse_aux:nN #1#2
36937 {
36938 \color_if_exist:nTF {#1}
36939 { __color_parse_set_eq:Nn #2 {#1} }
36940 { __color_parse:Nw #2#1 ! \s__color_stop }
36941 __color_check_model:N #2
36942 }
36943 \cs_new_protected:Npn __color_parse_set_eq:Nn #1#2
36944 {
36945 \tl_if_empty:NTF \l_color_fixed_model_tl
36946 { \exp_args:Nv __color_parse_set_eq:nNn { l__color_named_ #2 _tl } }
36947 { \exp_args:NV __color_parse_set_eq:nNn \l_color_fixed_model_tl }
36948 #1 {#2}
36949 }

Here, we have to allow for the case where there is a fixed model: that can’t be swept up
by generic conversion as we are dealing with a named color.

36950 \cs_new_protected:Npn __color_parse_set_eq:nNn #1#2#3
36951 {
36952 \prop_get:cnNTF
36953 { l__color_named_ #3 _prop } {#1}
36954 \l__color_value_tl
36955 { \tl_set:Ne #2 { {#1} { \l__color_value_tl } } }
36956 {
36957 \tl_set_eq:Nc \l__color_model_tl { l__color_named_ #3 _tl }
36958 \prop_get:cVN { l__color_named_ #3 _prop } \l__color_model_tl
36959 \l__color_value_tl
36960 __color_convert:nnN
36961 \l__color_model_tl {#1} \l__color_value_tl
36962 \tl_set:Ne #2
36963 {
36964 {#1}
36965 { \l__color_value_tl }
36966 }
36967 }
36968 }
36969 \cs_new_protected:Npn __color_parse:Nw #1#2 ! #3 \s__color_stop
36970 {

1425

36971 \color_if_exist:nTF {#2}
36972 {
36973 \tl_if_blank:nTF {#3}
36974 { __color_parse_set_eq:Nn #1 {#2} }
36975 { __color_parse_loop_init:Nnn #1 {#2} {#3} }
36976 }
36977 {
36978 \msg_error:nnn { color } { unknown-color } {#2}
36979 \tl_set:Nn \l__color_current_tl { { gray } { 0 } }
36980 }
36981 }

Once we establish that a full parse is needed, the next job is to get the detail of the first
color. That will determine the model we use for the calculation: splitting here makes
checking that a bit easier.

36982 \cs_new_protected:Npn __color_parse_loop_init:Nnn #1#2#3
36983 {
36984 \group_begin:
36985 __color_extract:nNN {#2} \l__color_model_tl \l__color_value_tl
36986 __color_parse_loop:w #3 ! ! ! ! \s__color_stop
36987 \tl_set:Ne \l__color_internal_tl
36988 { { \l__color_model_tl } { \l__color_value_tl } }
36989 \exp_args:NNNV \group_end:
36990 \tl_set:Nn #1 \l__color_internal_tl
36991 }

This is the loop proper: there can be an open-ended set of colors to parse, separated by
! tokens. There are a few cases to look out for. At the end of the expression and with
we find a mix of 100 then we simply skip the next color entirely (we can’t stop the loop
as there might be a further valid color to mix in). On the other hand, if we get a mix of
0 then drop everything so far and start again. There is also a trailing white to “read in”
if the final explicit data is a mix. Those conditions are separate from actually looping,
which is therefore sorted out by checking if we have further data to process: in contrast
to xcolor, we don’t allow !! so the test can be simplified.

36992 \cs_new_protected:Npn __color_parse_loop:w #1 ! #2 ! #3 ! #4 ! #5 \s__color_stop
36993 {
36994 \tl_if_blank:nF {#1}
36995 {
36996 \bool_lazy_and:nnTF
36997 { \fp_compare_p:nNn {#1} > { 0 } }
36998 { \fp_compare_p:nNn {#1} < { 100 } }
36999 {
37000 \use:e
37001 {
37002 __color_parse_loop:nn {#1}
37003 { \tl_if_blank:nTF {#2} { white } {#2} }
37004 }
37005 }
37006 { __color_parse_loop_check:nn {#1} {#2} }
37007 }
37008 \tl_if_blank:nF {#3}
37009 { __color_parse_loop:w #3 ! #4 ! #5 \s__color_stop }
37010 __color_parse_end:
37011 }

1426

As these are unusual cases, we accept slower performance here for clearer code: check for
the error conditions, handle the boundary cases after that.

37012 \cs_new_protected:Npn __color_parse_loop_check:nn #1#2
37013 {
37014 \bool_if:NF \l__color_ignore_error_bool
37015 {
37016 \bool_lazy_or:nnT
37017 { \fp_compare_p:nNn {#1} < { 0 } }
37018 { \fp_compare_p:nNn {#1} > { 100 } }
37019 { \msg_error:nnnnn { color } { out-of-range } {#1} { 0 } { 100 } }
37020 }
37021 \fp_compare:nNnF {#1} > \c_zero_fp
37022 {
37023 \tl_if_blank:nTF {#2}
37024 { __color_extract:nNN { white } }
37025 { __color_extract:nNN {#2} }
37026 \l__color_model_tl \l__color_value_tl
37027 }
37028 }

The “payload” of calculation in the loop first. If the model for the upcoming color is
different from that of the existing (partial) color, convert the model. For gray the two
are flipped round so that the outcome is something with “real” color. We are then in
a position to do the actual calculation itself. The two auxiliaries here give us a way to
break the loop should an invalid name be found.

37029 \cs_new_protected:Npn __color_parse_loop:nn #1#2
37030 {
37031 \color_if_exist:nTF {#2}
37032 {
37033 __color_extract:nNN {#2} \l__color_next_model_tl \l__color_next_value_tl
37034 \tl_if_eq:NNF \l__color_model_tl \l__color_next_model_tl
37035 {
37036 \str_if_eq:VnTF \l__color_model_tl { gray }
37037 { __color_parse_gray:n {#2} }
37038 { __color_parse_std:n {#2} }
37039 }
37040 \tl_set:Ne \l__color_value_tl
37041 {
37042 __color_parse_mix:NVVn
37043 \l__color_model_tl \l__color_value_tl \l__color_next_value_tl {#1}
37044 }
37045 }
37046 {
37047 \msg_error:nnn { color } { unknown-color } {#2}
37048 __color_extract:nNN { black } \l__color_model_tl \l__color_value_tl
37049 __color_parse_break:w
37050 }
37051 }

The gray model needs special handling: the models need to be swapped: we do that
using a dedicated function.

37052 \cs_new_protected:Npn __color_parse_gray:n #1
37053 {
37054 \tl_set_eq:NN \l__color_model_tl \l__color_next_model_tl

1427

37055 \tl_set:Nn \l__color_next_model_tl { gray }
37056 \exp_args:NnV __color_convert:nnN { gray } \l__color_model_tl
37057 \l__color_value_tl
37058 \prop_get:cVN { l__color_named_ #1 _prop } \l__color_model_tl
37059 \l__color_next_value_tl
37060 }
37061 \cs_new_protected:Npn __color_parse_std:n #1
37062 {
37063 \prop_get:cVNF { l__color_named_ #1 _prop }
37064 \l__color_model_tl
37065 \l__color_next_value_tl
37066 {
37067 __color_convert:VVN
37068 \l__color_next_model_tl
37069 \l__color_model_tl
37070 \l__color_next_value_tl
37071 }
37072 }
37073 \cs_new_protected:Npn __color_parse_break:w #1 __color_parse_end: { }
37074 \cs_new_protected:Npn __color_parse_end: { }

Do the vector arithmetic: mainly a question of shuffling input, along with one pre-
calculation to keep down the use of division.

37075 \cs_new:Npn __color_parse_mix:Nnnn #1#2#3#4
37076 {
37077 \exp_args:Nf __color_parse_mix:nNnn
37078 { \fp_eval:n { #4 / 100 } }
37079 #1 {#2} {#3}
37080 }
37081 \cs_generate_variant:Nn __color_parse_mix:Nnnn { NVV }
37082 \cs_new:Npn __color_parse_mix:nNnn #1#2#3#4
37083 {
37084 \use:c { __color_parse_mix_ #2 :nw } {#1}
37085 #3 \s__color_mark #4 \s__color_stop
37086 }
37087 \cs_new:Npn __color_parse_mix_gray:nw #1#2 \s__color_mark #3 \s__color_stop
37088 { \fp_eval:n { #2 * #1 + #3 * (1 - #1) } }
37089 \cs_new:Npn __color_parse_mix_rgb:nw
37090 #1#2 ~ #3 ~ #4 \s__color_mark #5 ~ #6 ~ #7 \s__color_stop
37091 {
37092 \fp_eval:n { #2 * #1 + #5 * (1 - #1) } \c_space_tl
37093 \fp_eval:n { #3 * #1 + #6 * (1 - #1) } \c_space_tl
37094 \fp_eval:n { #4 * #1 + #7 * (1 - #1) }
37095 }
37096 \cs_new:Npn __color_parse_mix_cmyk:nw
37097 #1#2 ~ #3 ~ #4 ~ #5 \s__color_mark #6 ~ #7 ~ #8 ~ #9 \s__color_stop
37098 {
37099 \fp_eval:n { #2 * #1 + #6 * (1 - #1) } \c_space_tl
37100 \fp_eval:n { #3 * #1 + #7 * (1 - #1) } \c_space_tl
37101 \fp_eval:n { #4 * #1 + #8 * (1 - #1) } \c_space_tl
37102 \fp_eval:n { #5 * #1 + #9 * (1 - #1) }
37103 }

(End of definition for __color_parse:nN and others.)

1428

__color_parse_model_gray:w
__color_parse_model_rgb:w

__color_parse_model_cmyk:w
__color_parse_number:n
__color_parse_number:w

Turn the input into internal form, also tidying up the number quickly.
37104 \cs_new:Npn __color_parse_model_gray:w #1 , #2 \s__color_stop
37105 { { gray } { __color_parse_number:n {#1} } }
37106 \cs_new:Npn __color_parse_model_rgb:w #1 , #2 , #3 , #4 \s__color_stop
37107 {
37108 { rgb }
37109 {
37110 __color_parse_number:n {#1} ~
37111 __color_parse_number:n {#2} ~
37112 __color_parse_number:n {#3}
37113 }
37114 }
37115 \cs_new:Npn __color_parse_model_cmyk:w #1 , #2 , #3 , #4 , #5 \s__color_stop
37116 {
37117 { cmyk }
37118 {
37119 __color_parse_number:n {#1} ~
37120 __color_parse_number:n {#2} ~
37121 __color_parse_number:n {#3} ~
37122 __color_parse_number:n {#4}
37123 }
37124 }
37125 \cs_new:Npn __color_parse_number:n #1
37126 { __color_parse_number:w #1 . 0 . \s__color_stop }
37127 \cs_new:Npn __color_parse_number:w #1 . #2 . #3 \s__color_stop
37128 { \tl_if_blank:nTF {#1} { 0 } {#1} . #2 }

(End of definition for __color_parse_model_gray:w and others.)

__color_parse_model_Gray:w
__color_parse_model_hsb:w
__color_parse_model_Hsb:w
__color_parse_model_HSB:w

__color_parse_model_HTML:w
__color_parse_model_RGB:w

__color_parse_model_hsb:nnn
__color_parse_model_hsb_aux:nnn

__color_parse_model_hsb:nnnn
__color_parse_model_hsb:nnnnn

__color_parse_model_hsb_0:nnnn
__color_parse_model_hsb_1:nnnn
__color_parse_model_hsb_2:nnnn
__color_parse_model_hsb_3:nnnn
__color_parse_model_hsb_4:nnnn
__color_parse_model_hsb_5:nnnn

__color_parse_model_wave:w
__color_parse_model_wave_auxi:nn
__color_parse_model_wave_auxii:nn

__color_parse_model_wave_rho:n

37129 \cs_new:Npn __color_parse_model_Gray:w #1 , #2 \s__color_stop
37130 { { gray } { \fp_eval:n { #1 / 15 } } }
37131 \cs_new:Npn __color_parse_model_hsb:w #1 , #2 , #3 , #4 \s__color_stop
37132 { __color_parse_model_hsb:nnn {#1} {#2} {#3} }
37133 \cs_new:Npn __color_parse_model_Hsb:w #1 , #2 , #3 , #4 \s__color_stop
37134 {
37135 \exp_args:Ne __color_parse_model_hsb:nnn { \fp_eval:n { #1 / 360 } }
37136 {#2} {#3}
37137 }

The conversion here is non-trivial but is described at length in the xcolor manual. For
ease, we calculate the integer and fractional parts of the hue first, then use them to work
out the possible values for r, g and b before putting them in the correct places.

37138 \cs_new:Npn __color_parse_model_hsb:nnn #1#2#3
37139 {
37140 { rgb }
37141 {
37142 \exp_args:Ne __color_parse_model_hsb_aux:nnn
37143 { \fp_eval:n { 6 * (#1) } } {#2} {#3}
37144 }
37145 }
37146 \cs_new:Npn __color_parse_model_hsb_aux:nnn #1#2#3
37147 {
37148 \exp_args:Nee __color_parse_model_hsb_aux:nnnn

1429

37149 { \fp_eval:n { floor(#1) } } { \fp_eval:n { #1 - floor(#1) } }
37150 {#2} {#3}
37151 }
37152 \cs_new:Npn __color_parse_model_hsb_aux:nnnn #1#2#3#4
37153 {
37154 \use:e
37155 {
37156 \exp_not:N __color_parse_model_hsb_aux:nnnnn
37157 { __color_parse_number:n {#4} }
37158 { \fp_eval:n { round(#4 * (1 - #3) ,5) } }
37159 { \fp_eval:n { round(#4 * (1 - #3 * #2) ,5) } }
37160 { \fp_eval:n { round(#4 * (1 - #3 * (1 - #2)) ,5) } }
37161 {#1}
37162 }
37163 }
37164 \cs_new:Npn __color_parse_model_hsb_aux:nnnnn #1#2#3#4#5
37165 { \use:c { __color_parse_model_hsb_ #5 :nnnn } {#1} {#2} {#3} {#4} }
37166 \cs_new:cpn { __color_parse_model_hsb_0:nnnn } #1#2#3#4 { #1 ~ #4 ~ #2 }
37167 \cs_new:cpn { __color_parse_model_hsb_1:nnnn } #1#2#3#4 { #3 ~ #1 ~ #2 }
37168 \cs_new:cpn { __color_parse_model_hsb_2:nnnn } #1#2#3#4 { #2 ~ #1 ~ #4 }
37169 \cs_new:cpn { __color_parse_model_hsb_3:nnnn } #1#2#3#4 { #2 ~ #3 ~ #1 }
37170 \cs_new:cpn { __color_parse_model_hsb_4:nnnn } #1#2#3#4 { #4 ~ #2 ~ #1 }
37171 \cs_new:cpn { __color_parse_model_hsb_5:nnnn } #1#2#3#4 { #1 ~ #2 ~ #3 }
37172 \cs_new:cpn { __color_parse_model_hsb_6:nnnn } #1#2#3#4 { #1 ~ #2 ~ #2 }
37173 \cs_new:Npn __color_parse_model_HSB:w #1 , #2 , #3 , #4 \s__color_stop
37174 {
37175 \exp_args:Neee __color_parse_model_hsb:nnn
37176 { \fp_eval:n { round((#1) / 240,5) } }
37177 { \fp_eval:n { round((#2) / 240,5) } }
37178 { \fp_eval:n { round((#3) / 240,5) } }
37179 }
37180 \cs_new:Npn __color_parse_model_HTML:w #1 , #2 \s__color_stop
37181 { __color_parse_model_HTML_aux:w #1 0 0 0 0 0 0 \s__color_stop }
37182 \cs_new:Npn __color_parse_model_HTML_aux:w #1#2#3#4#5#6#7 \s__color_stop
37183 {
37184 { rgb }
37185 {
37186 \fp_eval:n { round(\int_from_hex:n {#1#2} / 255,5) } ~
37187 \fp_eval:n { round(\int_from_hex:n {#3#4} / 255,5) } ~
37188 \fp_eval:n { round(\int_from_hex:n {#5#6} / 255,5) }
37189 }
37190 }
37191 \cs_new:Npn __color_parse_model_RGB:w #1 , #2 , #3 , #4 \s__color_stop
37192 {
37193 { rgb }
37194 {
37195 \fp_eval:n { round((#1) / 255,5) } ~
37196 \fp_eval:n { round((#2) / 255,5) } ~
37197 \fp_eval:n { round((#3) / 255,5) }
37198 }
37199 }

Following the description in the xcolor manual. As we always use rgb, there is no need to
find the sixth, we just pas the information straight to the hsb auxiliary defined earlier.

1430

37200 \cs_new:Npn __color_parse_model_wave:w #1 , #2 \s__color_stop
37201 {
37202 { rgb }
37203 {
37204 \fp_compare:nNnTF {#1} < { 420 }
37205 { __color_parse_model_wave_auxi:nn {#1} { 0.3 + 0.7 * (#1 - 380) / 40 }
37206 }
37207 {
37208 \fp_compare:nNnTF {#1} > { 700 }
37209 { __color_parse_model_wave_auxi:nn {#1} { 0.3 + 0.7 * (#1 - 780) / -80 } }
37210 { __color_parse_model_wave_auxi:nn {#1} { 1 } }
37211 }
37212 }
37213 }
37214 \cs_new:Npn __color_parse_model_wave_auxi:nn #1#2
37215 {
37216 \fp_compare:nNnTF {#1} < { 440 }
37217 {
37218 __color_parse_model_wave_auxii:nn
37219 { 4 + __color_parse_model_wave_rho:n { (#1 - 440) / -60 } }
37220 {#2}
37221 }
37222 {
37223 \fp_compare:nNnTF {#1} < { 490 }
37224 {
37225 __color_parse_model_wave_auxii:nn
37226 { 4 - __color_parse_model_wave_rho:n { (#1 - 440) / 50 } }
37227 {#2}
37228 }
37229 {
37230 \fp_compare:nNnTF {#1} < { 510 }
37231 {
37232 __color_parse_model_wave_auxii:nn
37233 { 2 + __color_parse_model_wave_rho:n { (#1 - 510) / -20 } }
37234 {#2}
37235 }
37236 {
37237 \fp_compare:nNnTF {#1} < { 580 }
37238 {
37239 __color_parse_model_wave_auxii:nn
37240 { 2 - __color_parse_model_wave_rho:n { (#1 - 510) / 70 } }
37241 {#2}
37242 }
37243 {
37244 \fp_compare:nNnTF {#1} < { 645 }
37245 {
37246 __color_parse_model_wave_auxii:nn
37247 { __color_parse_model_wave_rho:n { (#1 - 645) / -65 } }
37248 {#2}
37249 }
37250 { __color_parse_model_wave_auxii:nn { 0 } {#2} }
37251 }
37252 }
37253 }

1431

37254 }
37255 }
37256 \cs_new:Npn __color_parse_model_wave_auxii:nn #1#2
37257 {
37258 \exp_args:Neee __color_parse_model_hsb_aux:nnn
37259 { \fp_eval:n {#1} }
37260 { 1 }
37261 { __color_parse_model_wave_rho:n {#2} }
37262 }
37263 \cs_new:Npn __color_parse_model_wave_rho:n #1
37264 { \fp_eval:n { min(1, max(0,#1)) } }

(End of definition for __color_parse_model_Gray:w and others.)

__color_parse_model_cmy:w Simply pass data to the conversion functions.
37265 \cs_new:Npn __color_parse_model_cmy:w #1 , #2 , #3 , #4 \s__color_stop
37266 {
37267 { cmyk }
37268 { __color_convert_rgb_cmyk:nnn {#1} {#2} {#3} }
37269 }

(End of definition for __color_parse_model_cmy:w.)

__color_parse_model_tHsb:w
__color_parse_model_tHsb:n
__color_parse_model_tHsb:nw

There are three stages to the process here: bring the tH argument into the normal range,
divide through to get to hsb and finally convert that to rgb. The final stage can be
delegated to the parsing function for hsb, and the conversion from Hsb to hsb is trivial,
so the main focus here is the first stage. We use a simple expandable loop to do the work,
and we implement the equation given in the xcolor manual (number 85 there) as a simple
expression.

37270 \cs_new:Npn __color_parse_model_tHsb:w #1 , #2 , #3 , #4 \s__color_stop
37271 {
37272 \exp_args:Ne __color_parse_model_hsb:nnn
37273 { __color_parse_model_tHsb:n {#1} } {#2} {#3}
37274 }
37275 \cs_new:Npn __color_parse_model_tHsb:n #1
37276 {
37277 __color_parse_model_tHsb:nw {#1}
37278 0 , 0 ;
37279 60 , 30 ;
37280 120 , 60 ;
37281 180 , 120 ;
37282 210 , 180 ;
37283 240 , 240 ;
37284 360 , 360 ;
37285 \q_recursion_tail , ;
37286 \q_recursion_stop
37287 }
37288 \cs_new:Npn __color_parse_model_tHsb:nw #1 #2 , #3 ; #4 , #5 ;
37289 {
37290 \quark_if_recursion_tail_stop_do:nn {#4} { 0 }
37291 \fp_compare:nNnTF {#1} > {#4}
37292 { __color_parse_model_tHsb:nw {#1} #4 , #5 ; }
37293 {
37294 \use_i_delimit_by_q_recursion_stop:nw

1432

37295 { \fp_eval:n { ((#1 - #2) / (#4 - #2) * (#5 - #3) + #3) / 360 } }
37296 }
37297 }

(End of definition for __color_parse_model_tHsb:w , __color_parse_model_tHsb:n , and __color_-
parse_model_tHsb:nw.)

__color_parse_model_&spot:w We cannot extract data here from that passed by xcolor, so we fall back on a black tint.
37298 \cs_new:cpn { __color_parse_model_&spot:w } #1 , #2 \s__color_stop
37299 { { gray } { #1 } }

(End of definition for __color_parse_model_&spot:w.)

93.7 Selecting colors (and color models)
\l_color_fixed_model_tl For selecting a single fixed model.

37300 \tl_new:N \l_color_fixed_model_tl

(End of definition for \l_color_fixed_model_tl. This variable is documented on page 329.)

__color_check_model:N
__color_check_model:nn

Check that the model in use is the one required.
37301 \cs_new_protected:Npn __color_check_model:N #1
37302 {
37303 \tl_if_empty:NF \l_color_fixed_model_tl
37304 {
37305 \exp_after:wN __color_check_model:nn #1
37306 \tl_if_eq:NNF \l__color_model_tl \l_color_fixed_model_tl
37307 {
37308 __color_convert:VVN \l__color_model_tl \l_color_fixed_model_tl
37309 \l__color_value_tl
37310 }
37311 \tl_set:Ne #1
37312 { { \l_color_fixed_model_tl } { \l__color_value_tl } }
37313 }
37314 }
37315 \cs_new_protected:Npn __color_check_model:nn #1#2
37316 {
37317 \tl_set:Nn \l__color_model_tl {#1}
37318 \tl_set:Nn \l__color_value_tl {#2}
37319 }

(End of definition for __color_check_model:N and __color_check_model:nn.)

__color_finalise_current: A backend-neutral location for “last minute” manipulations before handing off to the
backend code. We set the special . syntax here: this will therefore always be available.
The finalisation is separate from the main function so it can also be applied to e.g. page
color.

37320 \cs_new_protected:Npe __color_finalise_current:
37321 {
37322 \tl_set:Ne \exp_not:c { l__color_named_ . _tl }
37323 { \exp_not:N __color_model:N \exp_not:N \l__color_current_tl }
37324 \prop_clear:N \exp_not:c { l__color_named_ . _prop }
37325 \prop_put:NVe \exp_not:c { l__color_named_ . _prop }
37326 \exp_not:c { l__color_named_ . _tl }

1433

37327 { \exp_not:N __color_values:N \exp_not:N \l__color_current_tl }
37328 }

(End of definition for __color_finalise_current:.)

\color_select:n
\color_select:nn

__color_select_main:Nw
__color_select_loop:Nw

__color_select:nnN
__color_select_swap:Nnn

Parse the input expressions then get the backend to actually activate them. The main
complexity here is the need to check through multiple models. That is done “locally”
here as the approach is subtly different to when different models are being stored.

37329 \cs_new_protected:Npn \color_select:n #1
37330 {
37331 __color_parse:nN {#1} \l__color_current_tl
37332 __color_finalise_current:
37333 __color_select:N \l__color_current_tl
37334 }
37335 \cs_new_protected:Npn \color_select:nn #1#2
37336 {
37337 __color_select_main:Nw \l__color_current_tl
37338 #1 / / \s__color_mark #2 / / \s__color_stop
37339 __color_finalise_current:
37340 __color_select:N \l__color_current_tl
37341 }

If the first color model is the fixed one, or if there is no fixed model, we don’t need most
of the data: just set up and apply the backend function.

37342 \cs_new_protected:Npn __color_select_main:Nw
37343 #1 #2 / #3 / #4 \s__color_mark #5 / #6 / #7 \s__color_stop
37344 {
37345 __color_select:nnN {#2} {#5} #1
37346 \bool_lazy_or:nnF
37347 { \tl_if_empty_p:N \l_color_fixed_model_tl }
37348 { \str_if_eq_p:nV {#2} \l_color_fixed_model_tl }
37349 { __color_select_loop:Nw #1 #3 / #4 \s__color_mark #6 / #7 \s__color_stop }
37350 }

If a fixed model applies, we need to check each possible value in order. If there is no hit
at all, fall back on the generic formula-based interchange.

37351 \cs_new_protected:Npn __color_select_loop:Nw
37352 #1 #2 / #3 \s__color_mark #4 / #5 \s__color_stop
37353 {
37354 \str_if_eq:nVTF {#2} \l_color_fixed_model_tl
37355 { __color_select:nnN {#2} {#4} #1 }
37356 {
37357 \tl_if_blank:nTF {#2}
37358 { \exp_after:wN __color_select_swap:Nnn \exp_after:wN #1 #1 }
37359 { __color_select_loop:Nw #1 #3 \s__color_mark #5 \s__color_stop }
37360 }
37361 }
37362 \cs_new_protected:Npn __color_select:nnN #1#2#3
37363 {
37364 \cs_if_exist:cTF { __color_parse_model_ #1 :w }
37365 {
37366 \tl_set:Ne #3
37367 { \use:c { __color_parse_model_ #1 :w } #2 , 0 , 0 , 0 , 0 \s__color_stop }
37368 }
37369 { \msg_error:nnn { color } { unknown-model } {#1} }

1434

37370 }
37371 \cs_new_protected:Npn __color_select_swap:Nnn #1#2#3
37372 {
37373 __color_convert:nVnN {#2} \l_color_fixed_model_tl {#3} \l__color_value_tl
37374 \tl_set:Ne #1
37375 { { \l_color_fixed_model_tl } { \l__color_value_tl } }
37376 }

(End of definition for \color_select:n and others. These functions are documented on page 329.)

93.8 Math color
The approach here is the same as for the LATEX 2ε \mathcolor command, but as we are
working at the expl3 level we can make some minor changes.

\l_color_math_active_tl Tokens representing active sub/superscripts.
37377 \tl_new:N \l_color_math_active_tl
37378 \tl_set:Nn \l_color_math_active_tl { ’ }

(End of definition for \l_color_math_active_tl. This function is documented on page 330.)

\g__color_math_seq Not all engines have multiple color stacks, and at the same time we are not expecting
breaking within a colored math fragment. So we track the color stack ourselves.

37379 \seq_new:N \g__color_math_seq

(End of definition for \g__color_math_seq.)

\color_math:nn
\color_math:nnn
__color_math:nn

The basic set up here is relatively simple: store the current color, parse the new color
as-normal, then switch color before inserting the tokens we are asked to change. The
tricky part is right at the end, handling the reset.

37380 \cs_new_protected:Npn \color_math:nn #1#2
37381 {
37382 __color_math:nn {#2}
37383 { __color_parse:nN {#1} \l__color_current_tl }
37384 }
37385 \cs_new_protected:Npn \color_math:nnn #1#2#3
37386 {
37387 __color_math:nn {#3}
37388 {
37389 __color_select_main:Nw \l__color_current_tl
37390 #1 / / \s__color_mark #2 / / \s__color_stop
37391 }
37392 }
37393 \cs_new_protected:Npn __color_math:nn #1#2
37394 {
37395 \seq_gpush:NV \g__color_math_seq \l__color_current_tl
37396 #2
37397 __color_select_math:N \l__color_current_tl
37398 #1
37399 __color_math_scan:w
37400 }

(End of definition for \color_math:nn , \color_math:nnn , and __color_math:nn. These functions are
documented on page 330.)

1435

__color_math_scan:w
__color_math_scan_auxi:
__color_math_scan_auxii:

__color_math_scan_end:

The complication when changing the color back is due to the fact that the \color_-
math:nn(n) may be followed by ^ or _ or the hidden superscript (for example ’) and its
argument may end in a \mathop in which case the sub- and superscripts may be attached
as \limits instead of after the material. All cases need separate treatment. To avoid
repeatedly collecting the same token, we first check for an alignment tab: assuming we
don’t have one of those, we can “recycle” \l_peek_token safely. As we have an explicit
\c_alignment_token, there needs to be an align-safe group present.

37401 \cs_new_protected:Npn __color_math_scan:w
37402 {
37403 \peek_remove_filler:n
37404 {
37405 \group_align_safe_begin:
37406 \peek_catcode:NTF \c_alignment_token
37407 {
37408 \group_align_safe_end:
37409 __color_math_scan_end:
37410 }
37411 {
37412 \group_align_safe_end:
37413 __color_math_scan_auxi:
37414 }
37415 }
37416 }

Dealing with literal _ and ^ is easy, and as we have exactly two cases, we can hard-code
this. We use a hard-coded list for limits: these are all primitives. The \use_none:n here
also removes the test token so it is left just in the right place.

37417 \cs_new_protected:Npn __color_math_scan_auxi:
37418 {
37419 \token_case_catcode:NnTF \l_peek_token
37420 {
37421 \c_math_subscript_token { }
37422 \c_math_superscript_token { }
37423 }
37424 { __color_math_scripts:Nw }
37425 {
37426 \token_case_meaning:NnTF \l_peek_token
37427 {
37428 \tex_limits:D { \tex_limits:D }
37429 \tex_nolimits:D { \tex_nolimits:D }
37430 \tex_displaylimits:D { \tex_displaylimits:D }
37431 }
37432 { __color_math_scan:w \use_none:n }
37433 { __color_math_scan_auxii: }
37434 }
37435 }

The one final case to handle is math-active tokens, most obviously ’, as these won’t be
covered earlier.

37436 \cs_new_protected:Npn __color_math_scan_auxii:
37437 {
37438 \tl_map_inline:Nn \l_color_math_active_tl
37439 {
37440 \token_if_eq_meaning:NNT \l_peek_token ##1

1436

37441 {
37442 \tl_map_break:n
37443 {
37444 \use_i:nn
37445 { __color_math_scan_auxiii:N ##1 }
37446 }
37447 }
37448 __color_math_scan_end:
37449 }
37450 }
37451 \cs_new_protected:Npn __color_math_scan_auxiii:N #1
37452 {
37453 \exp_after:wN \exp_after:wN \exp_after:wN __color_math_scan:w
37454 \char_generate:nn { ‘#1 } { 13 }
37455 }
37456 \cs_new_protected:Npn __color_math_scan_end:
37457 {
37458 __color_backend_reset:
37459 \seq_gpop:NN \g__color_math_seq \l__color_current_tl
37460 }

(End of definition for __color_math_scan:w and others.)

__color_math_scripts:Nw
__color_math_script_aux:N

The tricky part of handling sub and superscripts is that we have to reset color to the one
that is on the stack but reset it back to what it was before to allow for cases like

\[\color_math:n { red } { a + \sum } _ { i = 1 } ^ { n } \]

Here, TEX constructs a \vbox stacking subscript, summation sign, and superscript. So
technically the superscript comes first and the \sum that should get colored red is the
middle.

The approach here is to set up a brace group immediately after the script token,
then to set the color appropriately in that argument. We need an extra group to keep
the color contained, and as we need to allow for an explicit closing brace in the source,
the inner group also is a brace one rather than \group_begin:-based. At the end of the
outer group we need to insert __color_math_scan:w to continue the search for a second
script token.

Notice that here we don’t need to use the math-specific color selector as we can allow
the \group_insert_after:N \@@_backend_reset: to operate normally.

37461 \cs_new_protected:Npn __color_math_scripts:Nw #1
37462 {
37463 #1
37464 \c_group_begin_token
37465 \c_group_begin_token
37466 \seq_get:NN \g__color_math_seq \l__color_current_tl
37467 __color_select:N \l__color_current_tl
37468 \group_insert_after:N \c_group_end_token
37469 \group_insert_after:N __color_math_scan:w
37470 \peek_remove_filler:n
37471 {
37472 \peek_catcode_remove:NF \c_group_begin_token
37473 { __color_math_script_aux:N }
37474 }
37475 }

1437

Deal with the case where we do not have an explicit brace pair in the source.
37476 \cs_new_protected:Npn __color_math_script_aux:N #1 { #1 \c_group_end_token }

(End of definition for __color_math_scripts:Nw and __color_math_script_aux:N.)

93.9 Fill and stroke color
\color_fill:n

\color_stroke:n
\color_fill:nn

\color_stroke:nn
__color_draw:nnn

37477 \cs_new_protected:Npn \color_fill:n #1
37478 {
37479 __color_parse:nN {#1} \l__color_current_tl
37480 \exp_after:wN __color_draw:nnn \l__color_current_tl { fill }
37481 }
37482 \cs_new_protected:Npn \color_stroke:n #1
37483 {
37484 __color_parse:nN {#1} \l__color_current_tl
37485 \exp_after:wN __color_draw:nnn \l__color_current_tl { stroke }
37486 }
37487 \cs_new_protected:Npn \color_fill:nn #1#2
37488 {
37489 __color_select_main:Nw \l__color_current_tl
37490 #1 / / \s__color_mark #2 / / \s__color_stop
37491 \exp_after:wN __color_draw:nnn \l__color_current_tl { fill }
37492 }
37493 \cs_new_protected:Npn \color_stroke:nn #1#2
37494 {
37495 __color_select_main:Nw \l__color_current_tl
37496 #1 / / \s__color_mark #2 / / \s__color_stop
37497 \exp_after:wN __color_draw:nnn \l__color_current_tl { stroke }
37498 }
37499 \cs_new_protected:Npn __color_draw:nnn #1#2#3
37500 {
37501 \use:c { __color_backend_ #3 _ #1 :n } {#2}
37502 \exp_args:Nc \group_insert_after:N { __color_backend_ #3 _ reset: }
37503 }

(End of definition for \color_fill:n and others. These functions are documented on page 330.)

93.10 Defining named colors
\l__color_named_tl Space to store the detail of the named color.

37504 \tl_new:N \l__color_named_tl

(End of definition for \l__color_named_tl.)

\color_set:nn
__color_set:nnn
__color_set:nn
__color_set:nnw

\color_set:nnn
__color_set_aux:nnn

__color_set_colon:nnw
__color_set_loop:nw

\color_set_eq:nn

Defining named colors means working through the model list and saving both the “main”
color and any equivalents in other models. Even if there is only one model, we store a
prop as well as a tl, as there could be grouping weirdness, etc. When setting using an
expression, we need to avoid any fixed model issues, which is done without a group as in
l3keys.

37505 \cs_new_protected:Npn \color_set:nn #1#2
37506 {

1438

37507 \exp_args:NV __color_set:nnn
37508 \l_color_fixed_model_tl {#1} {#2}
37509 }
37510 \cs_new_protected:Npn __color_set:nnn #1#2#3
37511 {
37512 \tl_clear:N \l_color_fixed_model_tl
37513 __color_set:nn {#2} {#3}
37514 \tl_set:Nn \l_color_fixed_model_tl {#1}
37515 }
37516 \cs_new_protected:Npn __color_set:nn #1#2
37517 {
37518 \str_if_eq:nnF {#1} { . }
37519 {
37520 __color_parse:nN {#2} \l__color_named_tl
37521 \tl_clear_new:c { l__color_named_ #1 _tl }
37522 \tl_set:ce { l__color_named_ #1 _tl }
37523 { __color_model:N \l__color_named_tl }
37524 \prop_clear_new:c { l__color_named_ #1 _prop }
37525 \prop_put:cve { l__color_named_ #1 _prop } { l__color_named_ #1 _tl }
37526 { __color_values:N \l__color_named_tl }
37527 __color_set:nnw {#1} {#2} #2 ! \s__color_stop
37528 }
37529 }

When setting an expression-based color, there could be multiple model data available
for one or more of the input colors. Where that is true for the first named color in an
expression, we re-parse the expression when they are also parameter-based: only cmyk,
gray and rgb make any sense here. There is a bit of a performance hit but this should
be rare and taking place during set-up.

37530 \cs_new_protected:Npn __color_set:nnw #1#2#3 ! #4 \s__color_stop
37531 {
37532 \clist_map_inline:nn { cmyk , gray , rgb }
37533 {
37534 \prop_get:cnNT { l__color_named_ #3 _prop } {##1} \l__color_internal_tl
37535 {
37536 \prop_if_in:cnF { l__color_named_ #1 _prop } {##1}
37537 {
37538 \group_begin:
37539 \bool_set_true:N \l__color_ignore_error_bool
37540 \tl_set:cn { l__color_named_ #3 _tl } {##1}
37541 __color_parse:nN {#2} \l__color_internal_tl
37542 \exp_args:NNNV \group_end:
37543 \tl_set:Nn \l__color_internal_tl \l__color_internal_tl
37544 \prop_put:cee { l__color_named_ #1 _prop }
37545 { __color_model:N \l__color_internal_tl }
37546 { __color_values:N \l__color_internal_tl }
37547 }
37548 }
37549 }
37550 }
37551 \cs_new_protected:Npn \color_set:nnn #1#2#3
37552 {
37553 \str_if_eq:nnF {#1} { . }
37554 {

1439

37555 \tl_clear_new:c { l__color_named_ #1 _tl }
37556 \prop_clear_new:c { l__color_named_ #1 _prop }
37557 \exp_args:Ne __color_set_aux:nnn { \tl_to_str:n {#2} }
37558 {#1} {#3}
37559 }
37560 }
37561 \cs_new_protected:Npe __color_set_aux:nnn #1#2#3
37562 {
37563 \exp_not:N __color_set_colon:nnw {#2} {#3}
37564 #1 \c_colon_str \c_colon_str \exp_not:N \s__color_stop
37565 }
37566 \use:e
37567 {
37568 \cs_new_protected:Npn \exp_not:N __color_set_colon:nnw
37569 #1#2 #3 \c_colon_str #4 \c_colon_str
37570 #5 \exp_not:N \s__color_stop
37571 }
37572 {
37573 \tl_if_blank:nTF {#4}
37574 { __color_set_loop:nw {#1} #3 }
37575 { __color_set_loop:nw {#1} #4 }
37576 / / \s__color_mark #2 / / \s__color_stop
37577 }
37578 \cs_new_protected:Npn __color_set_loop:nw
37579 #1#2 / #3 \s__color_mark #4 / #5 \s__color_stop
37580 {
37581 \tl_if_blank:nF {#2}
37582 {
37583 __color_select:nnN {#2} {#4} \l__color_named_tl
37584 \tl_set:Ne \l__color_internal_tl { __color_model:N \l__color_named_tl }
37585 \tl_if_empty:cT { l__color_named_ #1 _tl }
37586 { \tl_set_eq:cN { l__color_named_ #1 _tl } \l__color_internal_tl }
37587 \prop_put:cVe { l__color_named_ #1 _prop } \l__color_internal_tl
37588 { __color_values:N \l__color_named_tl }
37589 __color_set_loop:nw {#1} #3 \s__color_mark #5 \s__color_stop
37590 }
37591 }
37592 \cs_new_protected:Npn \color_set_eq:nn #1#2
37593 {
37594 \color_if_exist:nTF {#2}
37595 {
37596 \tl_clear_new:c { l__color_named_ #1 _tl }
37597 \prop_clear_new:c { l__color_named_ #1 _prop }
37598 \str_if_eq:nnTF {#2} { . }
37599 {
37600 \tl_set:ce { l__color_named_ #1 _tl }
37601 { __color_model:N \l__color_current_tl }
37602 \prop_put:cve { l__color_named_ #1 _prop } { l__color_named_ #1 _tl }
37603 { __color_values:N \l__color_current_tl }
37604 }
37605 {
37606 \tl_set_eq:cc { l__color_named_ #1 _tl } { l__color_named_ #2 _tl }
37607 \prop_set_eq:cc { l__color_named_ #1 _prop } { l__color_named_ #2 _prop }
37608 }

1440

37609 }
37610 {
37611 \msg_error:nnn { color } { unknown-color } {#2}
37612 }
37613 }

(End of definition for \color_set:nn and others. These functions are documented on page 329.)
A small set of colors are always defined.

37614 \color_set:nnn { black } { gray } { 0 }
37615 \color_set:nnn { white } { gray } { 1 }
37616 \color_set:nnn { cyan } { cmyk } { 1 , 0 , 0 , 0 }
37617 \color_set:nnn { magenta } { cmyk } { 0 , 1 , 0 , 0 }
37618 \color_set:nnn { yellow } { cmyk } { 0 , 0 , 1 , 0 }
37619 \color_set:nnn { red } { rgb } { 1 , 0 , 0 }
37620 \color_set:nnn { green } { rgb } { 0 , 1 , 0 }
37621 \color_set:nnn { blue } { rgb } { 0 , 0 , 1 }

\l__color_named_._prop
\l__color_named_._tl

A special named color: this is always defined though not fixed in definition.
37622 \prop_new:c { l__color_named_._prop }
37623 \tl_new:c { l__color_named_._tl }
37624 \tl_set:ce { l__color_named_._tl } { __color_model:N \l__color_current_tl }

(End of definition for \l__color_named_._prop and \l__color_named_._tl.)

93.11 Exporting colors
\color_export:nnN

\color_export:nnnN
__color_export:nN

__color_export:nnnN

37625 \cs_new_protected:Npn \color_export:nnN #1#2#3
37626 {
37627 \group_begin:
37628 \tl_if_exist:cT { c__color_export_ #2 _tl }
37629 { \tl_set_eq:Nc \l_color_fixed_model_tl { c__color_export_ #2 _tl } }
37630 __color_parse:nN {#1} #3
37631 __color_export:nN {#2} #3
37632 \exp_args:NNNV \group_end:
37633 \tl_set:Nn #3 #3
37634 }
37635 \cs_new_protected:Npn \color_export:nnnN #1#2#3#4
37636 {
37637 __color_select_main:Nw #4
37638 #1 / / \s__color_mark #2 / / \s__color_stop
37639 __color_export:nN {#3} #4
37640 }
37641 \cs_new_protected:Npn __color_export:nN #1#2
37642 { \exp_after:wN __color_export:nnnN #2 {#1} #2 }
37643 \cs_new:Npn __color_export:nnnN #1#2#3#4
37644 {
37645 \cs_if_exist_use:cF { __color_export_format_ #3 :nnN }
37646 {
37647 \msg_error:nnn { color } { unknown-export-format } {#3}
37648 \use_none:nnn
37649 }
37650 {#1} {#2} #4
37651 }

1441

(End of definition for \color_export:nnN and others. These functions are documented on page 331.)

__color_export_format_backend:nnN Simple.
37652 \cs_new_protected:Npn __color_export_format_backend:nnN #1#2#3
37653 { \tl_set:Nn #3 { {#1} {#2} } }

(End of definition for __color_export_format_backend:nnN.)

__color_export:nnnNN A generic auxiliary for cases where only one model is appropriate.
37654 \cs_new_protected:Npn __color_export:nnnNN #1#2#3#4#5
37655 {
37656 \str_if_eq:nnTF {#2} {#1}
37657 { #5 #4 #3 \s__color_stop }
37658 {
37659 __color_convert:nnnN {#2} {#1} {#3} #4
37660 \exp_after:wN #5 \exp_after:wN #4
37661 #4 \s__color_stop
37662 }
37663 }

(End of definition for __color_export:nnnNN.)

\c__color_export_comma-sep-cmyk_tl
\c__color_export_comma-sep-rgb_tl

\c__color_export_HTML_tl
\c__color_export_space-sep-cmyk_tl
\c__color_export_space-sep-rgb_tl

37664 \tl_const:cn { c__color_export_comma-sep-cmyk_tl } { cmyk }
37665 \tl_const:cn { c__color_export_comma-sep-rgb_tl } { rgb }
37666 \tl_const:Nn \c__color_export_HTML_tl { rgb }
37667 \tl_const:cn { c__color_export_space-sep-cmyk_tl } { cmyk }
37668 \tl_const:cn { c__color_export_space-sep-rgb_tl } { rgb }

(End of definition for \c__color_export_comma-sep-cmyk_tl and others.)

__color_export_format_comma-sep-cmyk:nnN
__color_export_format_comma-sep-rgb:nnN
__color_export_format_space-sep-cmyk:nnN
__color_export_format_space-sep-rgb:nnN

37669 \group_begin:
37670 \cs_set_protected:Npn __color_tmp:w #1#2
37671 {
37672 \cs_new_protected:cpe { __color_export_format_ #1 :nnN } ##1##2##3
37673 {
37674 \exp_not:N __color_export:nnnNN {#2} {##1} {##2} ##3
37675 \exp_not:c { __color_export_ #1 :Nw }
37676 }
37677 }
37678 __color_tmp:w { comma-sep-cmyk } { cmyk }
37679 __color_tmp:w { comma-sep-rgb } { rgb }
37680 __color_tmp:w { HTML } { rgb }
37681 __color_tmp:w { space-sep-cmyk } { cmyk }
37682 __color_tmp:w { space-sep-rgb } { rgb }
37683

37684 \group_end:

(End of definition for __color_export_format_comma-sep-cmyk:nnN and others.)

1442

__color_export_space-sep-cmyk:Nw
__color_export_comma-sep-cmyk:Nw 37685 \cs_new_protected:cpn { __color_export_comma-sep-cmyk:Nw }

37686 #1#2 ~ #3 ~ #4 ~ #5 \s__color_stop
37687 { \tl_set:Nn #1 { #2 , #3 , #4 , #5 } }
37688 \cs_new_protected:cpn { __color_export_space-sep-cmyk:Nw } #1#2 \s__color_stop
37689 { \tl_set:Nn #1 {#2} }

(End of definition for __color_export_space-sep-cmyk:Nw and __color_export_comma-sep-cmyk:Nw.)

__color_export_comma-sep-rgb:Nw
__color_export_HTML:Nw

__color_export_space-sep-rgb:Nw
__color_export_HTML:n

html values must be given in rgb: we force conversion if required, then do some simple
maths.

37690 \cs_new_protected:cpn { __color_export_comma-sep-rgb:Nw } #1#2 ~ #3 ~ #4 \s__color_stop
37691 { \tl_set:Ne #1 { #2 , #3 , #4 } }
37692 \cs_new_protected:Npn __color_export_HTML:Nw #1#2 ~ #3 ~ #4 \s__color_stop
37693 {
37694 \tl_set:Ne #1
37695 {
37696 __color_export_HTML:n {#2}
37697 __color_export_HTML:n {#3}
37698 __color_export_HTML:n {#4}
37699 }
37700 }
37701 \cs_new:Npn __color_export_HTML:n #1
37702 {
37703 \fp_compare:nNnTF {#1} = { 0 }
37704 { 00 }
37705 {
37706 \fp_compare:nNnT { #1 * 255 } < { 16 } { 0 }
37707 \int_to_Hex:n { \fp_to_int:n { #1 * 255 } }
37708 }
37709 }
37710 \cs_new_protected:cpn { __color_export_space-sep-rgb:Nw } #1#2 \s__color_stop
37711 { \tl_set:Nn #1 {#2} }

(End of definition for __color_export_comma-sep-rgb:Nw and others.)

93.12 Additional color models
\l__color_internal_prop

37712 \prop_new:N \l__color_internal_prop

(End of definition for \l__color_internal_prop.)

\g__color_model_int A tracker for the total number of new models.
37713 \int_new:N \g__color_model_int

(End of definition for \g__color_model_int.)

\c__color_fallback_cmyk_tl
\c__color_fallback_gray_tl
\c__color_fallback_rgb_tl

For every colorspace, we define one of the base colorspaces as a fallback. The base
colorspaces themselves are their own fallback.

37714 \tl_const:Nn \c__color_fallback_cmyk_tl { cmyk }
37715 \tl_const:Nn \c__color_fallback_gray_tl { gray }
37716 \tl_const:Nn \c__color_fallback_rgb_tl { rgb }

1443

(End of definition for \c__color_fallback_cmyk_tl , \c__color_fallback_gray_tl , and \c__color_-
fallback_rgb_tl.)

\g__color_colorants_prop Mapping from names to colorants.
37717 \prop_new:N \g__color_colorants_prop
37718 \prop_gput:Nnn \g__color_colorants_prop { black } { Black }
37719 \prop_gput:Nnn \g__color_colorants_prop { blue } { Blue }
37720 \prop_gput:Nnn \g__color_colorants_prop { cyan } { Cyan }
37721 \prop_gput:Nnn \g__color_colorants_prop { green } { Green }
37722 \prop_gput:Nnn \g__color_colorants_prop { magenta } { Magenta }
37723 \prop_gput:Nnn \g__color_colorants_prop { none } { None }
37724 \prop_gput:Nnn \g__color_colorants_prop { red } { Red }
37725 \prop_gput:Nnn \g__color_colorants_prop { yellow } { Yellow }

(End of definition for \g__color_colorants_prop.)

\c__color_model_whitepoint_CIELAB_a_tl
\c__color_model_whitepoint_CIELAB_b_tl
\c__color_model_whitepoint_CIELAB_e_tl

\c__color_model_whitepoint_CIELAB_d50_tl
\c__color_model_whitepoint_CIELAB_d55_tl
\c__color_model_whitepoint_CIELAB_d65_tl
\c__color_model_whitepoint_CIELAB_d75_tl

Whitepoint data for the CIELAB profiles.
37726 \tl_const:Nn \c__color_model_whitepoint_CIELAB_a_tl { 1.0985 ~ 1 ~ 0.3558 }
37727 \tl_const:Nn \c__color_model_whitepoint_CIELAB_b_tl { 0.9807 ~ 1 ~ 1.1822 }
37728 \tl_const:Nn \c__color_model_whitepoint_CIELAB_e_tl { 1 ~ 1 ~ 1 }
37729 \tl_const:cn { c__color_model_whitepoint_CIELAB_d50_tl } { 0.9642 ~ 1 ~ 0.8251 }
37730 \tl_const:cn { c__color_model_whitepoint_CIELAB_d55_tl } { 0.9568 ~ 1 ~ 0.9214 }
37731 \tl_const:cn { c__color_model_whitepoint_CIELAB_d65_tl } { 0.9504 ~ 1 ~ 1.0888 }
37732 \tl_const:cn { c__color_model_whitepoint_CIELAB_d75_tl } { 0.9497 ~ 1 ~ 1.2261 }

(End of definition for \c__color_model_whitepoint_CIELAB_a_tl and others.)

\c__color_model_range_CIELAB_tl The range for CIELAB color spaces.
37733 \tl_const:Nn \c__color_model_range_CIELAB_tl { 0 ~ 100 ~ -128 ~ 127 ~ -128 ~ 127 }

(End of definition for \c__color_model_range_CIELAB_tl.)

\g__color_alternative_model_prop For tracking the alternative model set up for separations, etc.
37734 \prop_new:N \g__color_alternative_model_prop
37735 \clist_map_inline:nn { cyan , magenta , yellow , black }
37736 { \prop_gput:Nnn \g__color_alternative_model_prop {#1} { cmyk } }
37737 \clist_map_inline:nn { red , green , blue }
37738 { \prop_gput:Nnn \g__color_alternative_model_prop {#1} { rgb } }

(End of definition for \g__color_alternative_model_prop.)

\g__color_alternative_values_prop Same for the values: a bit more involved.
37739 \prop_new:N \g__color_alternative_values_prop
37740 \prop_gput:Nnn \g__color_alternative_values_prop { cyan } { 1 , 0 , 0 , 0 }
37741 \prop_gput:Nnn \g__color_alternative_values_prop { magenta } { 0 , 1 , 0 , 0 }
37742 \prop_gput:Nnn \g__color_alternative_values_prop { yellow } { 0 , 0 , 1 , 0 }
37743 \prop_gput:Nnn \g__color_alternative_values_prop { black } { 0 , 0 , 0 , 1 }
37744 \prop_gput:Nnn \g__color_alternative_values_prop { red } { 1 , 0 , 0 }
37745 \prop_gput:Nnn \g__color_alternative_values_prop { green } { 0 , 1 , 0 }
37746 \prop_gput:Nnn \g__color_alternative_values_prop { blue } { 0 , 0 , 1 }

(End of definition for \g__color_alternative_values_prop.)

1444

\color_model_new:nnn
__color_model_new:nnn

Set up a new model: in general this has to be handled by a family-dependent function.
To avoid some “interesting” questions with casing, we fold the case of the family name.
The key–value list should always be present, so we convert it up-front to a prop, then
deal with the detail on a per-family basis.

37747 \cs_new_protected:Npn \color_model_new:nnn #1#2#3
37748 {
37749 \exp_args:Nee __color_model_new:nnn
37750 { \tl_to_str:n {#1} }
37751 { \str_casefold:n {#2} } {#3}
37752 }
37753 \cs_new_protected:Npn __color_model_new:nnn #1#2#3
37754 {
37755 \cs_if_exist:cTF { __color_parse_model_ #1 :w }
37756 {
37757 \msg_error:nnn { color } { model-already-defined } {#1}
37758 }
37759 {
37760 \cs_if_exist:cTF { __color_model_ #2 :n }
37761 {
37762 \prop_set_from_keyval:Nn \l__color_internal_prop {#3}
37763 \use:c { __color_model_ #2 :n } {#1}
37764 }
37765 {
37766 \msg_error:nnn { color } { unknown-model-type } {#2}
37767 }
37768 }
37769 }

(End of definition for \color_model_new:nnn and __color_model_new:nnn. This function is docu-
mented on page 332.)

__color_model_init:nnn
__color_model_init:nne

A shared auxiliary to do the basics of setting up a new model: reserve a number, create
a white-equivalent, set up links to the backend.

37770 \cs_new_protected:Npn __color_model_init:nnn #1#2#3
37771 {
37772 \int_gincr:N \g__color_model_int
37773 \clist_map_inline:nn { fill , stroke , select }
37774 {
37775 \cs_new_protected:cpe { __color_backend_ ##1 _ #1 :n } ####1
37776 {
37777 \exp_not:c { __color_backend_ ##1 _ #2 :nn }
37778 { color \int_use:N \g__color_model_int } {####1}
37779 }
37780 }
37781 \cs_new_protected:cpe { __color_model_ #1 _white: }
37782 {
37783 \prop_put:Nnn \exp_not:N \l__color_named_white_prop {#1}
37784 { \exp_not:n {#3} }
37785 \exp_not:N \int_compare:nNnF { \tex_currentgrouplevel:D } = 0
37786 { \group_insert_after:N \exp_not:c { __color_model_ #1 _ white: } }
37787 }
37788 \use:c { __color_model_ #1 _white: }
37789 }
37790 \cs_generate_variant:Nn __color_model_init:nnn { nne }

1445

(End of definition for __color_model_init:nnn.)

__color_model_separation:n
__color_model_separation:nn

__color_model_separation:nnn
__color_model_separation:w

__color_model_separation_cmyk:nnnnnn
__color_model_separation_gray:nnnnnn
__color_model_separation_rgb:nnnnnn

__color_model_convert:nnn
__color_model_separation_CIELAB:nnnnnn
__color_model_separation_CIELAB:nnnnnnn

Separations must have a “real” name, which is pretty easy to find.
37791 \cs_new_protected:Npn __color_model_separation:n #1
37792 {
37793 \prop_get:NnNTF \l__color_internal_prop { name }
37794 \l__color_internal_tl
37795 {
37796 \exp_args:NV __color_model_separation:nn
37797 \l__color_internal_tl {#1}
37798 }
37799 {
37800 \msg_error:nnn { color }
37801 { separation-requires-name } {#1}
37802 }
37803 }

We have two keys to find at this stage: the alternative space model and linked values.
37804 \cs_new_protected:Npn __color_model_separation:nn #1#2
37805 {
37806 \prop_get:NnNTF \l__color_internal_prop { alternative-model }
37807 \l__color_internal_tl
37808 {
37809 \exp_args:NV __color_model_separation:nnn
37810 \l__color_internal_tl {#2} {#1}
37811 }
37812 {
37813 \msg_error:nnn { color }
37814 { separation-alternative-model } {#2}
37815 }
37816 }
37817 \cs_new_protected:Npn __color_model_separation:nnn #1#2#3
37818 {
37819 \cs_if_exist:cTF { __color_model_separation_ #1 :nnnnnn }
37820 {
37821 \prop_get:NnNTF \l__color_internal_prop { alternative-values }
37822 \l__color_internal_tl
37823 {
37824 \exp_after:wN __color_model_separation:w \l__color_internal_tl
37825 , 0 , 0 , 0 , 0 \s__color_stop {#2} {#3} {#1}
37826 }
37827 {
37828 \msg_error:nnn { color }
37829 { separation-alternative-values } {#2}
37830 }
37831 }
37832 {
37833 \msg_error:nnn { color }
37834 { unknown-alternative-model } {#1}
37835 }
37836 }

As each alternative space leads to a different requirement for conversion, and as there
are only a small number of choices, we manually split the data and then set up. Notice
that mixing tints is really just the same as mixing gray. The white color is special, as it

1446

allows tints to be adjusted without an additional color space. To make sure the data is
set for that at all group levels, we need to work on a per-level basis. Within the output,
only the set-up needs the “real” name of the colorspace: we use a simple tracking number
for general usage as this is a clear namespace without issues of escaping chars.

37837 \cs_new_protected:Npn __color_model_separation:w
37838 #1 , #2 , #3 , #4 , #5 \s__color_stop #6#7#8
37839 {
37840 __color_model_init:nnn {#6} { separation } { 0 }
37841 \cs_new_eq:cN { __color_parse_mix_ #6 :nw } __color_parse_mix_gray:nw
37842 \cs_new:cpn { __color_parse_model_ #6 :w } ##1 , ##2 \s__color_stop
37843 { {#6} { __color_parse_number:n {##1} } }
37844 \use:c { __color_model_separation_ #8 :nnnnnn }
37845 {#6} {#7} {#1} {#2} {#3} {#4}
37846 \prop_gput:Nnn \g__color_alternative_model_prop {#6} {#8}
37847 \prop_gput:Nne \g__color_colorants_prop {#6}
37848 { \str_convert_pdfname:n {#7} }
37849 }
37850 \cs_new_protected:Npn __color_model_separation_cmyk:nnnnnn #1#2#3#4#5#6
37851 {
37852 \tl_const:cn { c__color_fallback_ #1 _tl } { cmyk }
37853 \cs_new:cpn { __color_convert_ #1 _cmyk:w } ##1 \s__color_stop
37854 {
37855 \fp_eval:n {##1 * #3} ~
37856 \fp_eval:n {##1 * #4} ~
37857 \fp_eval:n {##1 * #5} ~
37858 \fp_eval:n {##1 * #6}
37859 }
37860 \cs_new:cpn { __color_convert_cmyk_ #1 :w } ##1 \s__color_stop { 1 }
37861 \prop_gput:Nnn \g__color_alternative_values_prop {#1} { #3 , #4 , #5 , #6 }
37862 __color_backend_separation_init:nnnnn {#2} { /DeviceCMYK } { }
37863 { 0 ~ 0 ~ 0 ~ 0 } { #3 ~ #4 ~ #5 ~ #6 }
37864 }
37865 \cs_new_protected:Npn __color_model_separation_rgb:nnnnnn #1#2#3#4#5#6
37866 {
37867 \tl_const:cn { c__color_fallback_ #1 _tl } { rgb }
37868 \cs_new:cpn { __color_convert_ #1 _rgb:w } ##1 \s__color_stop
37869 {
37870 \fp_eval:n {##1 * #3} ~
37871 \fp_eval:n {##1 * #4} ~
37872 \fp_eval:n {##1 * #5}
37873 }
37874 \cs_new:cpn { __color_convert_rgb_ #1 :w } ##1 \s__color_stop { 1 }
37875 \prop_gput:Nnn \g__color_alternative_values_prop {#1} { #3 , #4 , #5 }
37876 __color_backend_separation_init:nnnnn {#2} { /DeviceRGB } { }
37877 { 0 ~ 0 ~ 0 } { #3 ~ #4 ~ #5 }
37878 }
37879 \cs_new_protected:Npn __color_model_separation_gray:nnnnnn #1#2#3#4#5#6
37880 {
37881 \tl_const:cn { c__color_fallback_ #1 _tl } { gray }
37882 \cs_new:cpn { __color_convert_ #1 _gray:w } ##1 \s__color_stop
37883 { \fp_eval:n {##1 * #3} }
37884 \cs_new:cpn { __color_convert_gray_ #1 :w } ##1 \s__color_stop { 1 }
37885 \prop_gput:Nnn \g__color_alternative_values_prop {#1} {#3}
37886 __color_backend_separation_init:nnnnn {#2} { /DeviceGray } { } { 0 } {#3}

1447

37887 }

Generic model conversion via an alternative intermediate.
37888 \cs_new_protected:Npn __color_model_convert:nnn #1#2#3
37889 {
37890 \cs_new:cpe { __color_convert_ #1 _ #3 :w } ##1 \s__color_stop
37891 {
37892 \exp_not:N \exp_args:NNe \exp_not:N \use:nn
37893 \exp_not:c { __color_convert_ #2 _ #3 :w }
37894 { \exp_not:c { __color_convert_ #1 _ #2 :w } ##1 \s__color_stop }
37895 \c_space_tl \exp_not:N \s__color_stop
37896 }
37897 }

Setting up for CIELAB needs a bit more work: there is the illuminant and the need for
an appropriate object.

37898 \cs_new_protected:Npn __color_model_separation_CIELAB:nnnnnn #1#2#3#4#5#6
37899 {
37900 \prop_get:NnNF \l__color_internal_prop { illuminant }
37901 \l__color_internal_tl
37902 {
37903 \msg_error:nnn { color }
37904 { CIELAB-requires-illuminant } {#1}
37905 \tl_set:Nn \l__color_internal_tl { d50 }
37906 }
37907 \exp_args:NV __color_model_separation_CIELAB:nnnnnnn
37908 \l__color_internal_tl {#1} {#2} {#3} {#4} {#5} {#6}
37909 }

If a CIELAB space is being set up, we need the illuminant, then create the appropriate
set up. At present, this doesn’t include BlackPoint or Range data, but that may be
added later. As CIELAB colors cannot be converted to anything else, we fallback to
producing black in the gray colorspace: the user should set up a second model for colors
set up this way.

37910 \cs_new_protected:Npn __color_model_separation_CIELAB:nnnnnnn #1#2#3#4#5#6#7
37911 {
37912 \tl_if_exist:cTF { c__color_model_whitepoint_CIELAB_ #1 _tl }
37913 {
37914 __color_backend_separation_init_CIELAB:nnn {#1} {#3} { #4 ~ #5 ~ #6 }
37915 \tl_const:cn { c__color_fallback_ #2 _tl } { gray }
37916 \cs_new:cpn { __color_convert_ #2 _gray:w } ##1 \s__color_stop
37917 { 0 }
37918 \cs_new:cpn { __color_convert_gray_ #2 :w } ##1 \s__color_stop
37919 { 1 }
37920 }
37921 {
37922 \msg_error:nnn { color }
37923 { unknown-CIELAB-illuminant } {#1}
37924 }
37925 }

(End of definition for __color_model_separation:n and others.)

__color_model_devicen:n
__color_model_devicen:nn
__color_model_devicen:nnn

__color_model_devicen:nnnn
__color_model_devicen_parse_1:nn
__color_model_devicen_parse_2:nn
__color_model_devicen_parse_3:nn
__color_model_devicen_parse_4:nn

__color_model_devicen_parse_generic:nn
__color_model_devicen_parse:nw

__color_model_devicen_mix:nw
__color_model_devicen_init:nnn
__color_model_devicen_init:nnnn
__color_model_devicen_tranform:w

__color_model_devicen_tranform_1:nnnnn
__color_model_devicen_tranform_3:nnnnn
__color_model_devicen_tranform_4:nnnnn

__color_model_devicen_tranform:nnn
__color_model_devicen_colorant:n
__color_model_devicen_convert:nnn

__color_model_devicen_convert_cmyk:n
__color_model_devicen_convert_gray:n
__color_model_devicen_convert_rgb:n
__color_model_devicen_convert:nnnn

__color_model_devicen_convert:n
__color_model_devicen_convert_aux:n

__color_model_devicen_convert:w
__color_convert_devicen_cmyk:nnnnw

__color_convert_devicen_cmyk:nnnnnnnnn
__color_convert_devicen_cmyk_aux:nnnnw

__color_convert_devicen_gray:nw
__color_convert_devicen_gray:nnn

__color_convert_devicen_gray_aux:nw
__color_convert_devicen_rgb:nnnw

__color_convert_devicen_rgb:nnnnnnn
__color_convert_devicen_rgb_aux:nnnw

We require a list of component names here: one might call them colorants, but it’s
convenient to use TEX names instead so we slightly adjust the terminology.

1448

37926 \cs_new_protected:Npn __color_model_devicen:n #1
37927 {
37928 \prop_get:NnNTF \l__color_internal_prop { names }
37929 \l__color_internal_tl
37930 {
37931 \exp_args:NV __color_model_devicen:nn
37932 \l__color_internal_tl {#1}
37933 }
37934 {
37935 \msg_error:nnn { color }
37936 { DeviceN-requires-names } {#1}
37937 }
37938 }

All valid models will have an alternative listed, either hard-coded for the core device
ones, or dynamically added for Separations, etc.

37939 \cs_new_protected:Npn __color_model_devicen:nn #1#2
37940 {
37941 \tl_clear:N \l__color_model_tl
37942 \clist_map_inline:nn {#1}
37943 {
37944 \prop_get:NnNTF \g__color_alternative_model_prop {##1}
37945 \l__color_internal_tl
37946 {
37947 \tl_if_empty:NTF \l__color_model_tl
37948 { \tl_set_eq:NN \l__color_model_tl \l__color_internal_tl }
37949 {
37950 \str_if_eq:VVF \l__color_model_tl \l__color_internal_tl
37951 {
37952 \msg_error:nnn { color }
37953 { DeviceN-inconsistent-alternative }
37954 {#2}
37955 \clist_map_break:n { \use_none:nnnn }
37956 }
37957 }
37958 }
37959 {
37960 \str_if_eq:nnF {##1} { none }
37961 {
37962 \msg_error:nnn { color }
37963 { DeviceN-no-alternative }
37964 {#2}
37965 }
37966 }
37967 }
37968 \tl_if_empty:NTF \l__color_model_tl
37969 {
37970 \msg_error:nnn { color }
37971 { DeviceN-no-alternative } {#2}
37972 }
37973 { \exp_args:NV __color_model_devicen:nnn \l__color_model_tl {#1} {#2} }
37974 }

We now complete the data we require by first finding out how many colorants there are,
then moving on to begin constructing the function required to map to the alternative

1449

color space.
37975 \cs_new_protected:Npn __color_model_devicen:nnn #1#2#3
37976 {
37977 \exp_args:Ne __color_model_devicen:nnnn
37978 { \clist_count:n {#2} } {#1} {#2} {#3}
37979 }

At this stage, we have checked everything is in place, so we can set up the TEX and
backend data structures. As for separations, it’s not really possible in general to have a
fallback, so we simply provide “black” for each element.

37980 \cs_new_protected:Npn __color_model_devicen:nnnn #1#2#3#4
37981 {
37982 __color_model_init:nne {#4} { devicen }
37983 {
37984 0 \prg_replicate:nn { #1 - 1 } { ~ 0 }
37985 }
37986 \cs_if_exist_use:cF { __color_model_devicen_parse_ #1 :nn }
37987 { __color_model_devicen_parse_generic:nn }
37988 {#4} {#1}
37989 __color_model_devicen_init:nnn {#1} {#2} {#3}
37990 __color_model_devicen_convert:nnne {#4} {#2} {#3}
37991 {
37992 1 \prg_replicate:nn { #1 - 1 } { ~ 1 }
37993 }
37994 }

For short lists of DeviceN colors, we can use hand-tuned parsing. This lines up with
other models, where we allow for up to four components. For larger spaces, rather than
limit artificially, we use a somewhat slow approach based on open-ended commas-lists.

37995 \cs_new_protected:cpn { __color_model_devicen_parse_1:nn } #1#2
37996 {
37997 \cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 \s__color_stop
37998 { {#1} { __color_parse_number:n {##1} } }
37999 \cs_new_eq:cN { __color_parse_mix_ #1 :nw } __color_parse_mix_gray:nw
38000 }
38001 \cs_new_protected:cpn { __color_model_devicen_parse_2:nn } #1#2
38002 {
38003 \cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 , ##3 \s__color_stop
38004 { {#1} { __color_parse_number:n {##1} ~ __color_parse_number:n {##2} } }
38005 \cs_new:cpn { __color_parse_mix_ #1 :nw }
38006 ##1##2 ~ ##3 \s__color_mark ##4 ~ ##5 \s__color_stop
38007 {
38008 \fp_eval:n { ##2 * ##1 + ##4 * (1 - ##1) } \c_space_tl
38009 \fp_eval:n { ##3 * ##1 + ##5 * (1 - ##1) }
38010 }
38011 }
38012 \cs_new_protected:cpn { __color_model_devicen_parse_3:nn } #1#2
38013 {
38014 \cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 , ##3 , ##4 \s__color_stop
38015 {
38016 {#1}
38017 {
38018 __color_parse_number:n {##1} ~
38019 __color_parse_number:n {##2} ~

1450

38020 __color_parse_number:n {##3}
38021 }
38022 }
38023 \cs_new_eq:cN { __color_parse_mix_ #1 :nw } __color_parse_mix_rgb:nw
38024 }
38025 \cs_new_protected:cpn { __color_model_devicen_parse_4:nn } #1#2
38026 {
38027 \cs_new:cpn { __color_parse_model_ #1 :w }
38028 ##1 , ##2 , ##3 , ##4 , ##5 \s__color_stop
38029 {
38030 {#1}
38031 {
38032 __color_parse_number:n {##1} ~
38033 __color_parse_number:n {##2} ~
38034 __color_parse_number:n {##3} ~
38035 __color_parse_number:n {##4}
38036 }
38037 }
38038 \cs_new_eq:cN { __color_parse_mix_ #1 :nw } __color_parse_mix_cmyk:nw
38039 }
38040 \cs_new_protected:Npn __color_model_devicen_parse_generic:nn #1#2
38041 {
38042 \cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 \s__color_stop
38043 {
38044 {#1}
38045 { __color_model_devicen_parse:nw {#2} ##1 , ##2 , \q_nil , \s__color_stop }
38046 }
38047 \cs_new:cpe { __color_parse_mix_ #1 :nw }
38048 ##1 ##2 \s__color_mark ##3 \s__color_stop
38049 {
38050 \exp_not:N __color_model_devicen_mix:nw {##1}
38051 ##2 \c_space_tl \exp_not:N \q_nil \c_space_tl \exp_not:N \s__color_mark
38052 ##3 \c_space_tl \exp_not:N \q_nil \c_space_tl \exp_not:N \s__color_stop
38053 }
38054 }
38055 \cs_new:Npn __color_model_devicen_parse:nw #1#2 , #3 \s__color_stop
38056 {
38057 \int_compare:nNnT {#1} > 0
38058 {
38059 \quark_if_nil:nTF {#2}
38060 { \prg_replicate:nn {#1} { 0 ~ } }
38061 {
38062 __color_parse_number:n {#2}
38063 \int_compare:nNnT {#1} > 1 { ~ }
38064 \exp_args:Nf __color_model_devicen_parse:nw
38065 { \int_eval:n { #1 - 1 } } #3 \s__color_stop
38066 }
38067 }
38068 }
38069 \cs_new:Npn __color_model_devicen_mix:nw #1#2 ~ #3 \s__color_mark #4 ~ #5 \s__color_stop
38070 {
38071 \fp_eval:n { #2 * #1 + #4 * (1 - #1) }
38072 \quark_if_nil:oF { \tl_head:w #3 \q_stop }
38073 {

1451

38074 \c_space_tl
38075 __color_model_devicen_mix:nw {#1} #3 \s__color_mark #5 \s__color_stop
38076 }
38077 }

To construct the tint transformation, we have to use PostScript. The aim is to have the
final tint for each device colorant as

1 −
∏
n

(1 − XnDXn)

where X is a DeviceN colorant and D is the amount of device colorant that the DeviceN
colorant maps to. At the start of the process, the PostScript stack will contain the
Xn values, whilst we have the D values on a per-DeviceN colorant basis. The more
convenient approach for us is therefore to take each DeviceN colorant in turn and find
the value 1 − XnDXn , multiplying as we go, and finalise with the subtraction. That
contrasts to colorspace: it splits the process up by process color, which works better
when you have a fixed list of colorants. (colorspace only supports up to 4 DeviceN colors,
and only cmyk as the alternative space.) To set this up, we first need to know the number
of values in the target color space: this is easily handled as there are a very small range
of possibles. Once we have that information, it’s relatively easy to build the required
PostScript using some generic code.

38078 \cs_new_protected:Npn __color_model_devicen_init:nnn #1#2#3
38079 {
38080 \exp_args:Ne __color_model_devicen_init:nnnn
38081 {
38082 \str_case:nn {#2}
38083 {
38084 { cmyk } { 4 }
38085 { gray } { 1 }
38086 { rgb } { 3 }
38087 }
38088 }
38089 {#1} {#2} {#3}
38090 }

As we always need to split the alternative values into parts, we use a shared auxiliary and
only use a minimal difference between code paths. Construction of the tint transformation
is as far as possible done using loops, which means there are some inefficiencies for device
colors in the DeviceN space: we roll the stack one-at-a-time even if there is a potential
shortcut. However, that way there is nothing to special-case. Once this is sorted, we can
write the tint transform object, which will remain as the last object until we sort out the
final step: the colorant list.

38091 \cs_new_protected:Npn __color_model_devicen_init:nnnn #1#2#3#4
38092 {
38093 \tl_set:Ne \l__color_internal_tl
38094 { \prg_replicate:nn {#1} { 1.0 ~ } }
38095 \int_zero:N \l__color_internal_int
38096 \clist_map_inline:nn {#4}
38097 {
38098 \int_incr:N \l__color_internal_int
38099 \prop_get:NnN \g__color_alternative_values_prop {##1}
38100 \l__color_value_tl
38101 \exp_after:wN __color_model_devicen_transform:w

1452

38102 \l__color_value_tl , 0 , 0 , 0 , \s__color_stop {#1} {#2}
38103 }
38104 \tl_put_right:Ne \l__color_internal_tl
38105 {
38106 \prg_replicate:nn {#1}
38107 { neg ~ 1.0 ~ add ~ #1 ~ -1 ~ roll ~ }
38108 \int_eval:n { #2 + #1 } ~ #1 ~ roll
38109 \prg_replicate:nn {#2} { ~ pop } ~
38110 #1 ~ 1 ~ roll
38111 }
38112 \use:e
38113 {
38114 __color_backend_devicen_init:nnn
38115 {
38116 \clist_map_function:nN {#4}
38117 __color_model_devicen_colorant:n
38118 }
38119 {
38120 \str_case:nn {#3}
38121 {
38122 { cmyk } { /DeviceCMYK }
38123 { gray } { /DeviceGray }
38124 { rgb } { /DeviceRGB }
38125 }
38126 }
38127 { \exp_not:V \l__color_internal_tl }
38128 }
38129 }
38130 \cs_new_protected:Npn __color_model_devicen_transform:w
38131 #1 , #2 , #3 , #4 , #5 \s__color_stop #6#7
38132 {
38133 \use:c { __color_model_devicen_transform_ #6 :nnnnn }
38134 {#1} {#2} {#3} {#4} {#7}
38135 }
38136 \cs_new_protected:cpn { __color_model_devicen_transform_1:nnnnn } #1#2#3#4#5
38137 { __color_model_devicen_transform:nnn {#5} { 1 } {#1} }
38138 \cs_new_protected:cpn { __color_model_devicen_transform_3:nnnnn } #1#2#3#4#5
38139 {
38140 \clist_map_inline:nn { #1 , #2 , #3 }
38141 { __color_model_devicen_transform:nnn {#5} { 3 } {##1} }
38142 }
38143 \cs_new_protected:cpn { __color_model_devicen_transform_4:nnnnn } #1#2#3#4#5
38144 {
38145 \clist_map_inline:nn { #1 , #2 , #3 , #4 }
38146 { __color_model_devicen_transform:nnn {#5} { 4 } {##1} }
38147 }
38148 \cs_new_protected:Npn __color_model_devicen_transform:nnn #1#2#3
38149 {
38150 \tl_put_right:Ne \l__color_internal_tl
38151 {
38152 \fp_compare:nNnF {#3} = \c_zero_fp
38153 {
38154 \int_eval:n { #1 - \l__color_internal_int + #2 } ~ index ~
38155 -#3 ~ mul ~ 1.0 ~ add ~ mul ~

1453

38156 }
38157 #2 ~ -1 ~ roll ~
38158 }
38159 }
38160 \cs_new:Npn __color_model_devicen_colorant:n #1
38161 {
38162 / \prop_item:Nn \g__color_colorants_prop {#1} ~
38163 }

Here we need to set up conversion from the DeviceN space to the alternative at the TEX
level. This also means supplying methods for inter-converting to other parameter-based
spaces. Essentially the approach is exactly the same as the PostScript, just expressed in
TEX terms.

38164 \cs_new_protected:Npn __color_model_devicen_convert:nnnn #1#2#3
38165 {
38166 \use:c { __color_model_devicen_convert_ #2 :nnn } {#1} {#3}
38167 }
38168 \cs_generate_variant:Nn __color_model_devicen_convert:nnnn { nnne }
38169 \cs_new_protected:Npn __color_model_devicen_convert_cmyk:nnn #1#2
38170 {
38171 \tl_const:cn { c__color_fallback_ #1 _tl } { cmyk }
38172 __color_model_devicen_convert:nnnnn {#1} { cmyk } { 4 } {#2}
38173 }
38174 \cs_new_protected:Npn __color_model_devicen_convert_gray:nnn #1#2
38175 {
38176 \tl_const:cn { c__color_fallback_ #1 _tl } { gray }
38177 __color_model_devicen_convert:nnnnn {#1} { gray } { 1 } {#2}
38178 }
38179 \cs_new_protected:Npn __color_model_devicen_convert_rgb:nnn #1#2
38180 {
38181 \tl_const:cn { c__color_fallback_ #1 _tl } { rgb }
38182 __color_model_devicen_convert:nnnnn {#1} { rgb } { 3 } {#2}
38183 }
38184 \cs_new_protected:Npn __color_model_devicen_convert:nnnnn #1#2#3#4#5
38185 {
38186 \cs_new:cpn { __color_convert_ #2 _ #1 :w } ##1 \s__color_stop {#5}
38187 \cs_new:cpe { __color_convert_ #1 _ #2 :w } ##1 \s__color_stop
38188 {
38189 \exp_not:c { __color_convert_devicen_ #2 : \prg_replicate:nn {#3} { n } w }
38190 \prg_replicate:nn {#3} { { 1 } }
38191 ##1 ~ \exp_not:N \s__color_mark
38192 \clist_map_function:nN {#4} __color_model_devicen_convert:n
38193 {}
38194 \exp_not:N \s__color_stop
38195 }
38196 }
38197 \cs_new:Npn __color_model_devicen_convert:n #1
38198 {
38199 {
38200 \exp_args:Ne __color_model_devicen_convert_aux:n
38201 { \prop_item:Nn \g__color_alternative_values_prop {#1} }
38202 }
38203 }
38204 \cs_new:Npn __color_model_devicen_convert_aux:n #1

1454

38205 { __color_model_devicen_convert_aux:w #1 , , , , \s__color_stop }
38206 \cs_new:Npn __color_model_devicen_convert_aux:w #1 , #2 , #3 , #4 , #5 \s__color_stop
38207 {
38208 {#1}
38209 \tl_if_blank:nF {#2}
38210 {
38211 {#2}
38212 \tl_if_blank:nF {#3}
38213 {
38214 {#3}
38215 \tl_if_blank:nF {#4} { {#4} }
38216 }
38217 }
38218 }
38219 \cs_new:Npn __color_convert_devicen_cmyk:nnnnw
38220 #1#2#3#4#5 ~ #6 \s__color_mark #7#8 \s__color_stop
38221 {
38222 __color_convert_devicen_cmyk:nnnnnnnnn {#5} {#1} {#2} {#3} {#4} #7
38223 #6 \s__color_mark #8 \s__color_stop
38224 }
38225 \cs_new:Npn __color_convert_devicen_cmyk:nnnnnnnnn #1#2#3#4#5#6#7#8#9
38226 {
38227 \use:e
38228 {
38229 \exp_not:N __color_convert_devicen_cmyk_aux:nnnnw
38230 { \fp_eval:n { #2 * (1 - (#1 * #6)) } }
38231 { \fp_eval:n { #3 * (1 - (#1 * #7)) } }
38232 { \fp_eval:n { #4 * (1 - (#1 * #8)) } }
38233 { \fp_eval:n { #5 * (1 - (#1 * #9)) } }
38234 }
38235 }
38236 \cs_new:Npn __color_convert_devicen_cmyk_aux:nnnnw
38237 #1#2#3#4 #5 \s__color_mark #6 \s__color_stop
38238 {
38239 \tl_if_blank:nTF {#5}
38240 {
38241 \fp_eval:n { 1 - #1 } ~
38242 \fp_eval:n { 1 - #2 } ~
38243 \fp_eval:n { 1 - #3 } ~
38244 \fp_eval:n { 1 - #4 }
38245 }
38246 {
38247 __color_convert_devicen_cmyk:nnnnw {#1} {#2} {#3} {#4}
38248 #5 \s__color_mark #6 \s__color_stop
38249 }
38250 }
38251 \cs_new:Npn __color_convert_devicen_gray:nw
38252 #1#2 ~ #3 \s__color_mark #4#5 \s__color_stop
38253 {
38254 __color_convert_devicen_gray:nnn {#2} {#1} #4
38255 #3 \s__color_mark #5 \s__color_stop
38256 }
38257 \cs_new:Npn __color_convert_devicen_gray:nnn #1#2#3
38258 {

1455

38259 \exp_arsgs:Ne __color_convert_devicen_gray_aux:nw
38260 { \fp_eval:n { #2 * (1 - (#1 * #3)) } }
38261 }
38262 \cs_new:Npn __color_convert_devicen_gray_aux:nw
38263 #1 #2 \s__color_mark #3 \s__color_stop
38264 {
38265 \tl_if_blank:nTF {#2}
38266 { \fp_eval:n { 1 - #1 } }
38267 {
38268 __color_convert_devicen_gray:nw {#1}
38269 #2 \s__color_mark #3 \s__color_stop
38270 }
38271 }
38272 \cs_new:Npn __color_convert_devicen_rgb:nnnw
38273 #1#2#3#4 ~ #5 \s__color_mark #6#7 \s__color_stop
38274 {
38275 __color_convert_devicen_rgb:nnnnnnn {#4} {#1} {#2} {#3} #6
38276 #5 \s__color_mark #7 \s__color_stop
38277 }
38278 \cs_new:Npn __color_convert_devicen_rgb:nnnnnnn #1#2#3#4#5#6#7
38279 {
38280 \use:e
38281 {
38282 \exp_not:N __color_convert_devicen_rgb_aux:nnnw
38283 { \fp_eval:n { #2 * (1 - (#1 * #5)) } }
38284 { \fp_eval:n { #3 * (1 - (#1 * #6)) } }
38285 { \fp_eval:n { #4 * (1 - (#1 * #7)) } }
38286 }
38287 }
38288 \cs_new:Npn __color_convert_devicen_rgb_aux:nnnw
38289 #1#2#3 #4 \s__color_mark #5 \s__color_stop
38290 {
38291 \tl_if_blank:nTF {#4}
38292 {
38293 \fp_eval:n { 1 - #1 } ~
38294 \fp_eval:n { 1 - #2 } ~
38295 \fp_eval:n { 1 - #3 }
38296 }
38297 {
38298 __color_convert_devicen_rgb:nnnw {#1} {#2} {#3}
38299 #4 \s__color_mark #5 \s__color_stop
38300 }
38301 }

(End of definition for __color_model_devicen:n and others.)

\c__color_icc_colorspace_signatures_prop The signatures in the ICC file header indicating the underlying colorspace. We map it
to three values: The number of components, the values corresponding to white, and the
range.

38302 \prop_const_from_keyval:Nn \c__color_icc_colorspace_signatures_prop
38303 {
38304 % Gray
38305 47524159 = {1} {1} {0} {},
38306 % RGB

1456

38307 52474220 = {3} {0~0~0} {1~1~1} {},
38308 % CMYK
38309 434D594B = {4} {0~0~0~1} {0~0~0~0} {},
38310 % Lab
38311 4C616220 = {3} {0~0~0} {100~0~0} {0~100~-128~127~-128~127}
38312 }

(End of definition for \c__color_icc_colorspace_signatures_prop.)

__color_model_iccbased:n
__color_model_iccbased:nn

__color_model_iccbased:nnn
__color_model_iccbased_aux:nnn

For an ICC profile, we need a file name and a number of components. The file name is
processed here so the backend can treat it as a string.

38313 \cs_new_protected:Npn __color_model_iccbased:n #1
38314 {
38315 \prop_get:NnNTF \l__color_internal_prop { file }
38316 \l__color_internal_tl
38317 {
38318 \exp_args:NV __color_model_iccbased:nn
38319 \l__color_internal_tl {#1}
38320 }
38321 {
38322 \msg_error:nnn { color }
38323 { ICCBased-requires-file } {#1}
38324 }
38325 }
38326 \cs_new_protected:Npn __color_model_iccbased:nn #1#2
38327 {
38328 \prop_get:NeNTF \c__color_icc_colorspace_signatures_prop
38329 { \file_hex_dump:nnn { #1 } { 17 } { 20 } } \l__color_internal_tl
38330 {
38331 \exp_last_unbraced:NV __color_model_iccbased_aux:nnnnnn
38332 \l__color_internal_tl { #2 } { #1 }
38333 }
38334 {
38335 \msg_error:nnn { color }
38336 { ICCBased-unsupported-colorspace } {#2}
38337 }
38338 }

Here, we can use the same internals as for DeviceN approach as we know the number of
components. No conversion is possible, so there is no need to worry about that at all.

38339 \cs_new_protected:Npn __color_model_iccbased_aux:nnnnnn #1#2#3#4#5#6
38340 {
38341 __color_model_init:nnn {#5} { iccbased } {#3}
38342 \tl_const:cn { c__color_fallback_ #5 _tl } { gray }
38343 \cs_new:cpn { __color_convert_ #5 _gray:w } ##1 \s__color_stop { 0 }
38344 \cs_new:cpn { __color_convert_gray_ #5 :w } ##1 \s__color_stop { #2 }
38345 \use:c { __color_model_devicen_parse_ #1 :nn } {#5} {#1}
38346 \exp_args:Ne __color_backend_iccbased_init:nnn
38347 { \file_full_name:n {#6} } {#1} {#4}
38348 }

(End of definition for __color_model_iccbased:n and others.)

1457

93.13 Applying profiles
\color_profile_apply:nn

__color_profile_apply:nn
__color_profile_apply_gray:n

__color_profile_apply_rgb:n
__color_profile_apply_cmyk:n

With a limited range of outcomes, this is largely about getting data to the backend.
38349 \cs_new_protected:Npn \color_profile_apply:nn #1#2
38350 {
38351 \exp_args:Ne __color_profile_apply:nn
38352 { \file_full_name:n {#1} } {#2}
38353 }
38354 \cs_new_protected:Npn __color_profile_apply:nn #1#2
38355 {
38356 \cs_if_exist_use:cF { __color_profile_apply_ \tl_to_str:n {#2} :n }
38357 {
38358 \msg_error:nnn { color } { ICC-Device-unknown } {#2}
38359 \use_none:n
38360 }
38361 {#1}
38362 }
38363 \cs_new_protected:Npn __color_profile_apply_gray:n #1
38364 {
38365 \int_gincr:N \g__color_model_int
38366 __color_backend_iccbased_device:nnn {#1} { Gray } { 1 }
38367 }
38368 \cs_new_protected:Npn __color_profile_apply_rgb:n #1
38369 {
38370 \int_gincr:N \g__color_model_int
38371 __color_backend_iccbased_device:nnn {#1} { RGB } { 3 }
38372 }
38373 \cs_new_protected:Npn __color_profile_apply_cmyk:n #1
38374 {
38375 \int_gincr:N \g__color_model_int
38376 __color_backend_iccbased_device:nnn {#1} { CMYK } { 4 }
38377 }

(End of definition for \color_profile_apply:nn and others. This function is documented on page 333.)

93.14 Diagnostics
\color_show:n
\color_log:n

__color_show:Nn
__color_show:n

Extract the information about a color and format for the user: the approach is similar
to the keys module here.

38378 \cs_new_protected:Npn \color_show:n
38379 { __color_show:Nn \msg_show:nneeee }
38380 \cs_new_protected:Npn \color_log:n
38381 { __color_show:Nn \msg_log:nneeee }
38382 \cs_new_protected:Npn __color_show:Nn #1#2
38383 {
38384 #1 { color } { show }
38385 {#2}
38386 {
38387 \color_if_exist:nT {#2}
38388 {
38389 \exp_args:Nv __color_show:n { l__color_named_ #2 _tl }
38390 \prop_map_function:cN
38391 { l__color_named_ #2 _prop }

1458

38392 \msg_show_item_unbraced:nn
38393 }
38394 }
38395 { }
38396 { }
38397 }
38398 \cs_new:Npn __color_show:n #1
38399 {
38400 \msg_show_item_unbraced:nn { model } {#1}
38401 }

(End of definition for \color_show:n and others. These functions are documented on page 329.)

93.15 Messages
38402 \msg_new:nnnn { color } { CIELAB-requires-illuminant }
38403 { CIELAB~color~space~’#1’~require~an~illuminant. }
38404 {
38405 LaTeX~has~been~asked~to~create~a~separation~color~space~using~
38406 CIELAB~specifications,~but~no~\\ \\
38407 \iow_indent:n { illuminant~=~<basis> }
38408 \\ \\
38409 key~was~given~with~the~correct~information.~LaTeX~will~use~illuminant~
38410 ’d50’~for~recovery.
38411 }
38412 \msg_new:nnnn { color } { conversion-not-available }
38413 { No~model~conversion~available~from~’#1’~to~’#2’. }
38414 {
38415 LaTeX~has~been~asked~to~convert~a~color~from~model~’#1’~
38416 to~model’#2’,~but~there~is~no~method~available~to~do~that.
38417 }
38418 \msg_new:nnnn { color } { DeviceN-inconsistent-alternative }
38419 { DeviceN~color~spaces~require~a~single~alternative~space. }
38420 {
38421 LaTeX~has~been~asked~to~create~a~DeviceN~color~space~’#1’,~
38422 but~the~constituent~colors~do~not~have~a~common~alternative~
38423 color.
38424 }
38425 \msg_new:nnnn { color } { DeviceN-no-alternative }
38426 { DeviceN~color~spaces~require~an~alternative~space. }
38427 {
38428 LaTeX~has~been~asked~to~create~a~DeviceN~color~space~’#1’,~
38429 but~the~constituent~colors~do~not~all~have~a~device-based~alternative.
38430 }
38431 \msg_new:nnnn { color } { DeviceN-requires-names }
38432 { DeviceN~color~space~’#1’~require~a~list~of~names. }
38433 {
38434 LaTeX~has~been~asked~to~create~a~DeviceN~color~space,~
38435 but~no~\\ \\
38436 \iow_indent:n { names~=~<names> }
38437 \\ \\
38438 key~was~given~with~the~correct~information.
38439 }
38440 \msg_new:nnnn { color } { ICC-Device-unknown }

1459

38441 { Unknown~device~color~space~’#1’. }
38442 {
38443 LaTeX~has~been~asked~to~apply~an~ICC~profile~but~the~device~color~space~
38444 ’#1’~is~unknown.
38445 }
38446 \msg_new:nnnn { color } { ICCBased-unsupported-colorspace }
38447 { ICCBased~color~space~’#1’~uses~an~unsupported~data~color~space. }
38448 {
38449 LaTeX~has~been~asked~to~create~a~ICCBased~colorspace,~but~the~
38450 used~data~colorspace~is~not~supported.~ICC~profiles~used~for~
38451 defining~a~ICCBased~colorspace~should~use~a~Lab,~RGB,~or~
38452 CMYK~data~colorspace.~LaTeX~will~ignore~this~request.
38453 }
38454 \msg_new:nnnn { color } { ICCBased-requires-file }
38455 { ICCBased~color~space~’#1’~require~an~file. }
38456 {
38457 LaTeX~has~been~asked~to~create~an~ICCBased~color~space,~but~no~\\ \\
38458 \iow_indent:n { file~=~<name> }
38459 \\ \\
38460 key~was~given~with~the~correct~information.~LaTeX~will~ignore~this~
38461 request.
38462 }
38463 \msg_new:nnnn { color } { model-already-defined }
38464 { Color~model~’#1’~already~defined. }
38465 {
38466 LaTeX~was~asked~to~define~a~new~color~model~called~’#1’,~but~
38467 this~color~model~already~exists.
38468 }
38469 \msg_new:nnnn { color } { out-of-range }
38470 { Input~value~#1~out~of~range~[#2,~#3]. }
38471 {
38472 LaTeX~was~expecting~a~value~in~the~range~[#2,~#3]~as~part~of~a~color,~
38473 but~you~gave~#1.~LaTeX~will~assume~you~meant~the~limit~of~the~range~
38474 and~continue.
38475 }
38476 \msg_new:nnnn { color } { separation-alternative-model }
38477 { Separation~color~space~’#1’~require~an~alternative~model. }
38478 {
38479 LaTeX~has~been~asked~to~create~a~separation~color~space,~
38480 but~no~\\ \\
38481 \iow_indent:n { alternative-model~=~<model> }
38482 \\ \\
38483 key~was~given~with~the~correct~information.
38484 }
38485 \msg_new:nnnn { color } { separation-alternative-values }
38486 { Separation~color~space~’#1’~require~values~for~the~alternative~space. }
38487 {
38488 LaTeX~has~been~asked~to~create~a~separation~color~space,~
38489 but~no~\\ \\
38490 \iow_indent:n { alternative-values~=~<model> }
38491 \\ \\
38492 key~was~given~with~the~correct~information.
38493 }
38494 \msg_new:nnnn { color } { separation-requires-name }

1460

38495 { Separation~color~space~’#1’~require~a~formal~name. }
38496 {
38497 LaTeX~has~been~asked~to~create~a~separation~color~space,~
38498 but~no~\\ \\
38499 \iow_indent:n { name~=~<formal~name> }
38500 \\ \\
38501 key~was~given~with~the~correct~information.
38502 }
38503 \msg_new:nnn { color } { unhandled-model }
38504 {
38505 Unhandled~color~model~in~LaTeX2e~value~"#1":
38506 \\ \\
38507 falling~back~on~grayscale.
38508 }
38509 \msg_new:nnnn { color } { unknown-color }
38510 { Unknown~color~’#1’. }
38511 {
38512 LaTeX~has~been~asked~to~use~a~color~named~’#1’,~
38513 but~this~has~never~been~defined.
38514 }
38515 \msg_new:nnnn { color } { unknown-alternative-model }
38516 { Separation~color~space~’#1’~require~an~valid~alternative~space. }
38517 {
38518 LaTeX~has~been~asked~to~create~a~separation~color~space,~
38519 but~the~model~given~as\\ \\
38520 \iow_indent:n { alternative-model~=~<model> }
38521 \\ \\
38522 is~unknown.
38523 }
38524 \msg_new:nnnn { color } { unknown-export-format }
38525 { Unknown~export~format~’#1’. }
38526 {
38527 LaTeX~has~been~asked~to~export~a~color~in~format~’#1’,~
38528 but~this~has~never~been~defined.
38529 }
38530 \msg_new:nnnn { color } { unknown-CIELAB-illuminant }
38531 { Unknown~illuminant~model~’#1’. }
38532 {
38533 LaTeX~has~been~asked~to~use~create~a~color~space~using~CIELAB~
38534 illuminant~’#1’,~but~this~does~not~exist.
38535 }
38536 \msg_new:nnnn { color } { unknown-model }
38537 { Unknown~color~model~’#1’. }
38538 {
38539 LaTeX~has~been~asked~to~use~a~color~model~called~’#1’,~
38540 but~this~model~is~not~set~up.
38541 }
38542 \msg_new:nnnn { color } { unknown-model-type }
38543 { Unknown~color~model~type~’#1’. }
38544 {
38545 LaTeX~has~been~asked~to~create~a~new~color~model~called~’#1’,~
38546 but~this~type~of~model~was~never~set~up.
38547 }
38548 \prop_gput:Nnn \g_msg_module_name_prop { color } { LaTeX }

1461

38549 \prop_gput:Nnn \g_msg_module_type_prop { color } { }

38550 \msg_new:nnn { color } { show }
38551 {
38552 The~color~#1~
38553 \tl_if_empty:nTF {#2}
38554 { is~undefined. }
38555 { has~the~properties: #2 }
38556 }

38557 ⟨/package⟩

1462

Chapter 94

l3pdf implementation

38558 ⟨∗package⟩
38559 ⟨@@=pdf⟩
38560 ⟨∗tex⟩

\s__pdf_stop Internal scan marks.
38561 \scan_new:N \s__pdf_stop

(End of definition for \s__pdf_stop.)

\g__pdf_init_bool A boolean so we have some chance of avoiding setting things we are not allowed to. As
we are potentially early in the format, we have to work a bit harder than ideal.

38562 \bool_new:N \g__pdf_init_bool
38563 \bool_lazy_and:nnT
38564 { \str_if_eq_p:Vn \fmtname { LaTeX2e } }
38565 { \tl_if_exist_p:N \@expl@finalise@setup@@ }
38566 {
38567 \tl_gput_right:Nn \@expl@finalise@setup@@
38568 {
38569 \tl_gput_right:Nn \@kernel@after@begindocument
38570 { \bool_gset_true:N \g__pdf_init_bool }
38571 }
38572 }

(End of definition for \g__pdf_init_bool.)

94.1 Compression
\pdf_uncompress: Simple to do.

38573 \cs_new_protected:Npn \pdf_uncompress:
38574 {
38575 \bool_if:NF \g__pdf_init_bool
38576 {
38577 __pdf_backend_compresslevel:n { 0 }
38578 __pdf_backend_compress_objects:n { \c_false_bool }
38579 }
38580 }

(End of definition for \pdf_uncompress:. This function is documented on page 336.)

1463

94.2 Objects
\g__pdf_backend_object_int For returning object numbers.

38581 \int_new:N \g__pdf_backend_object_int

(End of definition for \g__pdf_backend_object_int.)

\pdf_object_new:n
\pdf_object_write:nnn
\pdf_object_write:nne
\pdf_object_write:nnx

\pdf_object_ref:n
__kernel_pdf_object_id:n

Simple to do: all objects create a constant int so it is not a backend-specific name.
38582 \cs_new_protected:Npn \pdf_object_new:n #1
38583 {
38584 __pdf_backend_object_new:
38585 __pdf_object_record:nN {#1} \g__pdf_backend_object_int
38586 }
38587 \cs_new_protected:Npn \pdf_object_write:nnn #1#2#3
38588 {
38589 \exp_args:Ne __pdf_backend_object_write:nnn
38590 { __pdf_object_retrieve:n {#1} } {#2} {#3}
38591 \bool_gset_true:N \g__pdf_init_bool
38592 }
38593 \cs_generate_variant:Nn \pdf_object_write:nnn { nne , nnx }
38594 \cs_new:Npn \pdf_object_ref:n #1
38595 {
38596 \exp_args:Ne __pdf_backend_object_ref:n
38597 { __pdf_object_retrieve:n {#1} }
38598 }
38599 \cs_new:Npn __kernel_pdf_object_id:n #1
38600 {
38601 \exp_args:Ne __pdf_backend_object_id:n
38602 { __pdf_object_retrieve:n {#1} }
38603 }
38604 ⟨/tex⟩

(End of definition for \pdf_object_new:n and others. These functions are documented on page 334.)

__pdf_object_record:nN
__pdf_object_retrieve:n

ltx.pdf.object_id

Object mappings are tracked in Lua for LuaTEX as this makes retrieving them much
easier; as a result, there is a split in approaches. In Lua we store values in a table
indexed by name. The Lua function here is set up to deal with both named and indexed
objects: fits the Lua idiom well.

38605 ⟨∗lua⟩
38606

38607 local scan_int = token.scan_int
38608 local scan_string = token.scan_string
38609 local cprint = tex.cprint
38610

38611 local __pdf_objects_named = {}
38612 local __pdf_objects_indexed = {}
38613

38614 luacmd(’__pdf_object_record:nN’, function()
38615 local name = scan_string()
38616 local n = scan_int()
38617 __pdf_objects_named[name] = n
38618 end,’protected’,’global’)
38619

38620 local function object_id(name,index)

1464

38621 if index then
38622 return __pdf_objects_indexed[name][index] or 0
38623 else
38624 return __pdf_objects_named[name] or 0
38625 end
38626 end
38627

38628 luacmd(’__pdf_object_retrieve:n’, function()
38629 local name = scan_string()
38630 return cprint(12,tostring(object_id(name)))
38631 end,’global’)
38632

38633 ltx.pdf = ltx.pdf or {}
38634 ltx.pdf.object_id = object_id
38635

38636 ⟨/lua⟩
Whereas in TEX we use integer constants.

38637 ⟨∗tex⟩
38638 \sys_if_engine_luatex:F
38639 {
38640 \cs_new_protected:Npn __pdf_object_record:nN #1#2
38641 {
38642 \int_const:cn
38643 { c__pdf_object_ #1 _int } {#2}
38644 }
38645 \cs_new:Npn __pdf_object_retrieve:n #1
38646 {
38647 \int_if_exist:cTF { c__pdf_object_ #1 _int }
38648 {
38649 \int_use:c
38650 { c__pdf_object_ #1 _int }
38651 }
38652 { 0 }
38653 }
38654 }

(End of definition for __pdf_object_record:nN , __pdf_object_retrieve:n , and ltx.pdf.object_id.
This function is documented on page ??.)

\pdf_object_if_exist_p:n
\pdf_object_if_exist:nTF 38655 \prg_new_conditional:Npnn \pdf_object_if_exist:n #1 { p , T , F , TF }

38656 {
38657 \int_compare:nNnTF { __pdf_object_retrieve:n {#1} } = 0
38658 \prg_return_false:
38659 \prg_return_true:
38660 }

(End of definition for \pdf_object_if_exist:nTF. This function is documented on page 334.)

\pdf_object_new_indexed:nn
\pdf_object_write_indexed:nnnn
\pdf_object_write_indexed:nnne

\pdf_object_ref_indexed:nn
__kernel_pdf_object_id_indexed:nn

Again we split between the common code and the macro- or Lua-based implementation.
To make life easier for the Lua route, all of the potential expressions are expanded to
braced numbers.

38661 \cs_new_protected:Npn \pdf_object_new_indexed:nn #1#2
38662 {

1465

38663 __pdf_backend_object_new:
38664 __pdf_object_record:neN {#1}
38665 { \int_eval:n {#2} } \g__pdf_backend_object_int
38666 }
38667 \cs_new_protected:Npn \pdf_object_write_indexed:nnnn #1#2#3#4
38668 {
38669 \exp_args:Ne __pdf_backend_object_write:nnn
38670 { __pdf_object_retrieve:ne {#1} { \int_eval:n {#2} } } {#3} {#4}
38671 \bool_gset_true:N \g__pdf_init_bool
38672 }
38673 \cs_generate_variant:Nn \pdf_object_write_indexed:nnnn { nnne }
38674 \cs_new:Npn \pdf_object_ref_indexed:nn #1#2
38675 {
38676 \exp_args:Ne __pdf_backend_object_ref:n
38677 { __pdf_object_retrieve:ne {#1} { \int_eval:n {#2} } }
38678 }
38679 \cs_new:Npn __kernel_pdf_object_id_indexed:nn #1#2
38680 {
38681 \exp_args:Ne __pdf_backend_object_id:n
38682 { __pdf_object_retrieve:ne {#1} { \int_eval:n {#2} } }
38683 }
38684 ⟨/tex⟩

(End of definition for \pdf_object_new_indexed:nn and others. These functions are documented on
page 335.)

__pdf_object_record:nnN
__pdf_object_record:neN
__pdf_object_retrieve:nn
__pdf_object_record:NnN
__pdf_object_retrieve:Nn

Again we split for Lua: the same idea as above but with nested tables. As we’ve arranged
above that the TEX code passes a braced number, we can use tonumber(scan_string())
rather than scan_int() for the index.

38685 ⟨∗lua⟩
38686

38687 luacmd(’__pdf_object_record:nnN’, function()
38688 local name = scan_string()
38689 local index = tonumber(scan_string())
38690 local n = scan_int()
38691 __pdf_objects_indexed[name] = __pdf_objects_indexed[name] or {}
38692 __pdf_objects_indexed[name][index] = n
38693 end,’protected’,’global’)
38694

38695 luacmd(’__pdf_object_retrieve:nn’, function()
38696 local name = scan_string()
38697 local index = tonumber(scan_string())
38698 return cprint(12,tostring(object_id(name,index)))
38699 end,’global’)
38700

38701 ⟨/lua⟩
The non-Lua approach is to divide the range into blocks, and store in integer arrays that
can simulate dynamic assignment.

38702 ⟨∗tex⟩
38703 \sys_if_engine_luatex:F
38704 {
38705 \cs_new_protected:Npn __pdf_object_record:nnN #1#2#3
38706 {
38707 \use:e

1466

38708 {
38709 __pdf_object_record:NnN
38710 __pdf_object_index_split:nn {#1} {#2}
38711 \exp_not:N #3
38712 }
38713 }
38714 \cs_new_protected:Npn __pdf_object_record:NnN #1#2#3
38715 {
38716 \intarray_if_exist:NF #1
38717 { \intarray_new:Nn #1 \c__pdf_object_block_size_int }
38718 \intarray_gset:Nnn #1 {#2} #3
38719 }
38720 \cs_new:Npn __pdf_object_retrieve:nn #1#2
38721 {
38722 \use:e
38723 {
38724 \exp_not:N __pdf_object_retrieve:Nn
38725 __pdf_object_index_split:nn {#1} {#2}
38726 }
38727 }
38728 \cs_new:Npn __pdf_object_retrieve:Nn #1#2
38729 { \intarray_item:Nn #1 {#2} }

As we want blocks to start from one, and within the block for the top value to be “in”
the block, we do a little bit of manipulation. By shifting down by one, we keep the values
“in” the block, then we adjust the block/index number to get back on track.

38730 \cs_new:Npn __pdf_object_index_split:nn #1#2
38731 {
38732 \exp_not:c
38733 {
38734 g__pdf_object_ #1 _
38735 \int_eval:n
38736 {
38737 \int_div_truncate:nn { #2 - 1 }
38738 \c__pdf_object_block_size_int + 1
38739 }
38740 _intarray
38741 }
38742 {
38743 \int_eval:n
38744 { \int_mod:nn { #2 - 1 } \c__pdf_object_block_size_int + 1 }
38745 }
38746 }

(End of definition for __pdf_object_record:nnN and others.)

\c__pdf_object_block_size_int Sets the block size used for managing indexed objects.
38747 \int_const:Nn \c__pdf_object_block_size_int { 10000 }
38748 }

(End of definition for \c__pdf_object_block_size_int.)

__pdf_object_record:neN
__pdf_object_retrieve:ne

Common variants.
38749 \cs_generate_variant:Nn __pdf_object_record:nnN { ne }
38750 \cs_generate_variant:Nn __pdf_object_retrieve:nn { ne }

1467

(End of definition for __pdf_object_record:neN and __pdf_object_retrieve:ne.)

\pdf_object_unnamed_write:nn
\pdf_object_unnamed_write:ne
\pdf_object_unnamed_write:nx

No tracking needed here.
38751 \cs_new_protected:Npn \pdf_object_unnamed_write:nn #1#2
38752 {
38753 \exp_args:Ne __pdf_backend_object_now:nn {#1} {#2}
38754 \bool_gset_true:N \g__pdf_init_bool
38755 }
38756 \cs_generate_variant:Nn \pdf_object_unnamed_write:nn { ne , nx }

(End of definition for \pdf_object_unnamed_write:nn. This function is documented on page 335.)

\pdf_object_ref_last: A one-step wrapper for consistency.
38757 \cs_new:Npn \pdf_object_ref_last: { __pdf_backend_object_last: }

(End of definition for \pdf_object_ref_last:. This function is documented on page 336.)

\pdf_pageobject_ref:n

38758 \cs_new:Npn \pdf_pageobject_ref:n #1
38759 { \exp_args:Ne __pdf_backend_pageobject_ref:n {#1} }

(End of definition for \pdf_pageobject_ref:n. This function is documented on page 336.)

94.3 Version
\pdf_version_compare_p:Nn
\pdf_version_compare:NnTF
__pdf_version_compare_=:w
__pdf_version_compare_<:w
__pdf_version_compare_>:w

To compare version, we need to split the given value then deal with both major and
minor version

38760 \prg_new_conditional:Npnn \pdf_version_compare:Nn #1#2 { p , T , F , TF }
38761 { \use:c { __pdf_version_compare_ #1 :w } #2 . . \s__pdf_stop }
38762 \cs_new:cpn { __pdf_version_compare_=:w } #1 . #2 . #3 \s__pdf_stop
38763 {
38764 \bool_lazy_and:nnTF
38765 { \int_compare_p:nNn __pdf_backend_version_major: = {#1} }
38766 { \int_compare_p:nNn __pdf_backend_version_minor: = {#2} }
38767 { \prg_return_true: }
38768 { \prg_return_false: }
38769 }
38770 \cs_new:cpn { __pdf_version_compare_<:w } #1 . #2 . #3 \s__pdf_stop
38771 {
38772 \bool_lazy_or:nnTF
38773 { \int_compare_p:nNn __pdf_backend_version_major: < {#1} }
38774 {
38775 \bool_lazy_and_p:nn
38776 { \int_compare_p:nNn __pdf_backend_version_major: = {#1} }
38777 { \int_compare_p:nNn __pdf_backend_version_minor: < {#2} }
38778 }
38779 { \prg_return_true: }
38780 { \prg_return_false: }
38781 }
38782 \cs_new:cpn { __pdf_version_compare_>:w } #1 . #2 . #3 \s__pdf_stop
38783 {
38784 \bool_lazy_or:nnTF
38785 { \int_compare_p:nNn __pdf_backend_version_major: > {#1} }

1468

38786 {
38787 \bool_lazy_and_p:nn
38788 { \int_compare_p:nNn __pdf_backend_version_major: = {#1} }
38789 { \int_compare_p:nNn __pdf_backend_version_minor: > {#2} }
38790 }
38791 { \prg_return_true: }
38792 { \prg_return_false: }
38793 }

(End of definition for \pdf_version_compare:NnTF and others. This function is documented on page
336.)

\pdf_version_gset:n
\pdf_version_min_gset:n
__pdf_version_gset:w

Split the version and set.
38794 \cs_new_protected:Npn \pdf_version_gset:n #1
38795 { __pdf_version_gset:w #1 . . \s__pdf_stop }
38796 \cs_new_protected:Npn \pdf_version_min_gset:n #1
38797 {
38798 \pdf_version_compare:NnT < {#1}
38799 { __pdf_version_gset:w #1 . . \s__pdf_stop }
38800 }
38801 \cs_new_protected:Npn __pdf_version_gset:w #1 . #2 . #3\s__pdf_stop
38802 {
38803 \bool_if:NF \g__pdf_init_bool
38804 {
38805 __pdf_backend_version_major_gset:n {#1}
38806 __pdf_backend_version_minor_gset:n {#2}
38807 }
38808 }

(End of definition for \pdf_version_gset:n , \pdf_version_min_gset:n , and __pdf_version_gset:w.
These functions are documented on page 336.)

\pdf_version:
\pdf_version_major:
\pdf_version_minor:

Wrappers.
38809 \cs_new:Npn \pdf_version:
38810 { __pdf_backend_version_major: . __pdf_backend_version_minor: }
38811 \cs_new:Npn \pdf_version_major: { __pdf_backend_version_major: }
38812 \cs_new:Npn \pdf_version_minor: { __pdf_backend_version_minor: }

(End of definition for \pdf_version: , \pdf_version_major: , and \pdf_version_minor:. These func-
tions are documented on page 336.)

94.4 Page size
\pdf_pagesize_gset:nn

38813 \cs_new_protected:Npn \pdf_pagesize_gset:nn #1#2
38814 { __pdf_backend_pagesize_gset:nn {#1} {#2} }

(End of definition for \pdf_pagesize_gset:nn. This function is documented on page 336.)

1469

94.5 Destinations
\pdf_destination:nn

38815 \cs_new_protected:Npn \pdf_destination:nn #1#2
38816 { __pdf_backend_destination:nn {#1} {#2} }

(End of definition for \pdf_destination:nn. This function is documented on page 337.)

\pdf_destination:nnnn

38817 \cs_new_protected:Npn \pdf_destination:nnnn #1#2#3#4
38818 {
38819 \hbox_to_zero:n
38820 { __pdf_backend_destination:nnnn {#1} {#2} {#3} {#4} }
38821 }

(End of definition for \pdf_destination:nnnn. This function is documented on page 337.)

94.6 PDF Page size (media box)
Everything here is delayed to the start of the document so that the backend will definitely
be loaded.

38822 \cs_if_exist:NT \@kernel@before@begindocument
38823 {
38824 \tl_gput_right:Nn \@kernel@before@begindocument
38825 {
38826 \bool_lazy_all:nT
38827 {
38828 { \cs_if_exist_p:N \stockheight }
38829 { \cs_if_exist_p:N \stockwidth }
38830 { \cs_if_exist_p:N \IfDocumentMetadataTF }
38831 { \IfDocumentMetadataTF { \c_true_bool } { \c_false_bool } }
38832 { \int_compare_p:nNn \tex_mag:D = { 1000 } }
38833 }
38834 {
38835 \bool_lazy_and:nnTF
38836 { \dim_compare_p:nNn \stockheight > { 0pt } }
38837 { \dim_compare_p:nNn \stockwidth > { 0pt } }
38838 {
38839 __pdf_backend_pagesize_gset:nn
38840 \stockwidth \stockheight
38841 }
38842 {
38843 \bool_lazy_or:nnF
38844 { \dim_compare_p:nNn \stockheight < { 0pt } }
38845 { \dim_compare_p:nNn \stockwidth < { 0pt } }
38846 {
38847 \bool_lazy_and:nnT
38848 { \dim_compare_p:nNn \paperheight > { 0pt } }
38849 { \dim_compare_p:nNn \paperwidth > { 0pt } }
38850 {
38851 __pdf_backend_pagesize_gset:nn
38852 \paperwidth \paperheight
38853 }

1470

38854 }
38855 }
38856 }
38857 }
38858 }

38859 ⟨/tex⟩

38860 ⟨/package⟩

1471

Chapter 95

l3deprecation implementation

38861 ⟨∗package⟩

38862 ⟨@@=deprecation⟩

95.1 Patching definitions to deprecate
__kernel_patch_deprecation:nnNNpn {⟨date⟩} {⟨replacement⟩} ⟨definition⟩
⟨function⟩ ⟨parameters⟩ {⟨code⟩}

defines the ⟨function⟩ to produce an error and run its ⟨code⟩.
We make \debug_on:n {deprecation} turn the ⟨function⟩ into an \outer er-

ror, and \debug_off:n {deprecation} restore whatever the behaviour was without
\debug_on:n {deprecation}.

In the explanations below, ⟨definition⟩ ⟨function⟩ ⟨parameters⟩ {⟨code⟩} or
assignments that only differ in the scope of the ⟨definition⟩ will be called “the standard
definition”.

__kernel_patch_deprecation:nnNNpn
__deprecation_patch_aux:nnNNnn
__deprecation_warn_once:nnNnn

__deprecation_patch_aux:Nn
__deprecation_just_error:nnNN

(The parameter text is grabbed using #5#.) The arguments of __kernel_deprecation_-
code:nn are run upon \debug_on:n {deprecation} and \debug_off:n {deprecation},
respectively. In both scenarios we the ⟨function⟩ may be \outer so we undefine it with
\tex_let:D before redefining it, with __kernel_deprecation_error:Nnn or with some
code added shortly.

38863 \cs_new_protected:Npn __kernel_patch_deprecation:nnNNpn #1#2#3#4#5#
38864 { __deprecation_patch_aux:nnNNnn {#1} {#2} #3 #4 {#5} }
38865 \cs_new_protected:Npn __deprecation_patch_aux:nnNNnn #1#2#3#4#5#6
38866 {
38867 __kernel_deprecation_code:nn
38868 {
38869 \tex_let:D #4 \scan_stop:
38870 __kernel_deprecation_error:Nnn #4 {#2} {#1}
38871 }
38872 { \tex_let:D #4 \scan_stop: }
38873 \cs_if_eq:NNTF #3 \cs_gset_protected:Npn
38874 { __deprecation_warn_once:nnNnn {#1} {#2} #4 {#5} {#6} }
38875 { __deprecation_patch_aux:Nn #3 { #4 #5 {#6} } }
38876 }

1472

In case we want a warning, the ⟨function⟩ is defined to produce such a warning without
grabbing any argument, then redefine itself to the standard definition that the ⟨function⟩
should have, with arguments, and call that definition. The e-type expansion and \exp_-
not:n avoid needing to double the #, which we could not do anyways. We then deal with
the code for \debug_off:n {deprecation}: presumably someone doing that does not
need the warning so we simply do the standard definition.

38877 \cs_new_protected:Npn __deprecation_warn_once:nnNnn #1#2#3#4#5
38878 {
38879 \cs_gset_protected:Npe #3
38880 {
38881 __kernel_if_debug:TF
38882 {
38883 \exp_not:N \msg_warning:nneee
38884 { deprecation } { deprecated-command }
38885 {#1}
38886 { \token_to_str:N #3 }
38887 { \tl_to_str:n {#2} }
38888 }
38889 { }
38890 \exp_not:n { \cs_gset_protected:Npn #3 #4 {#5} }
38891 \exp_not:N #3
38892 }
38893 __kernel_deprecation_code:nn { }
38894 { \cs_set_protected:Npn #3 #4 {#5} }
38895 }

In case we want neither warning nor error, the ⟨function⟩ is given its standard de-
finition. Here #1 is \cs_new:Npn or \cs_new_protected:Npn) and #2 is ⟨function⟩
⟨parameters⟩ {⟨code⟩}, so #1#2 performs the assignment. For \debug_off:n {deprecation}
we want to use the same assignment but with a different scope, hence the \cs_if_eq:NNTF
test.

38896 \cs_new_protected:Npn __deprecation_patch_aux:Nn #1#2
38897 {
38898 #1 #2
38899 \cs_if_eq:NNTF #1 \cs_gset_protected:Npn
38900 { __kernel_deprecation_code:nn { } { \cs_set_protected:Npn #2 } }
38901 { __kernel_deprecation_code:nn { } { \cs_set:Npn #2 } }
38902 }

(End of definition for __kernel_patch_deprecation:nnNNpn and others.)

__kernel_deprecation_error:Nnn The \outer definition here ensures the command cannot appear in an argument.
38903 \cs_new_protected:Npn __kernel_deprecation_error:Nnn #1#2#3
38904 {
38905 \tex_protected:D \tex_outer:D \tex_edef:D #1
38906 {
38907 \exp_not:N \msg_expandable_error:nnnnn
38908 { deprecation } { deprecated-command }
38909 { \tl_to_str:n {#3} } { \token_to_str:N #1 } { \tl_to_str:n {#2} }
38910 \exp_not:N \msg_error:nneee
38911 { deprecation } { deprecated-command }
38912 { \tl_to_str:n {#3} } { \token_to_str:N #1 } { \tl_to_str:n {#2} }
38913 }
38914 }

1473

(End of definition for __kernel_deprecation_error:Nnn.)

38915 \msg_new:nnn { deprecation } { deprecated-command }
38916 {
38917 \tl_if_blank:nF {#3} { Use~ \tl_trim_spaces:n {#3} ~not~ }
38918 #2~deprecated~on~#1.
38919 }

95.2 Deprecated l3basics functions
38920 ⟨@@=cs⟩

\cs_argument_spec:N For the present, do not deprecate fully as LATEX 2ε will need to catch up: one for Fall
2022.

38921 %__kernel_patch_deprecation:nnNNpn { 2022-06-24 } { \cs_parameter_spec:N }
38922 \cs_new:Npn \cs_argument_spec:N { \cs_parameter_spec:N }

(End of definition for \cs_argument_spec:N.)

95.3 Deprecated l3file functions
38923 ⟨@@=file⟩

\iow_shipout_x:Nn
\iow_shipout_x:Nx
\iow_shipout_x:cn
\iow_shipout_x:cx

Previously described as x-type, but the hash behaviour is really e-type. Currently not
“live” as we need to have a transition.

38924 % __kernel_patch_deprecation:nnNNpn { 2023-10-10 } { \iow_shipout_e:Nn }
38925 \cs_new_protected:Npn \iow_shipout_x:Nn { \iow_shipout_e:Nn }
38926 \cs_generate_variant:Nn \iow_shipout_x:Nn { Nx , c, cx }

(End of definition for \iow_shipout_x:Nn.)

95.4 Deprecated l3keys functions
38927 ⟨@@=keys⟩

.str_set_x:N

.str_set_x:c
.str_gset_x:N
.str_gset_x:c

38928 \cs_new_protected:cpn { \c__keys_props_root_str .str_set_x:N } #1
38929 { __keys_variable_set:NnnN #1 { str } { } x }
38930 \cs_new_protected:cpn { \c__keys_props_root_str .str_set_x:c } #1
38931 { __keys_variable_set:cnnN {#1} { str } { } x }
38932 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset_x:N } #1
38933 { __keys_variable_set:NnnN #1 { str } { g } x }
38934 \cs_new_protected:cpn { \c__keys_props_root_str .str_gset_x:c } #1
38935 { __keys_variable_set:cnnN {#1} { str } { g } x }

(End of definition for .str_set_x:N and .str_gset_x:N.)

.tl_set_x:N

.tl_set_x:c
.tl_gset_x:N
.tl_gset_x:c

38936 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:N } #1
38937 { __keys_variable_set:NnnN #1 { tl } { } x }
38938 \cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:c } #1
38939 { __keys_variable_set:cnnN {#1} { tl } { } x }
38940 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:N } #1

1474

38941 { __keys_variable_set:NnnN #1 { tl } { g } x }
38942 \cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:c } #1
38943 { __keys_variable_set:cnnN {#1} { tl } { g } x }

(End of definition for .tl_set_x:N and .tl_gset_x:N.)

\keys_set_filter:nnnN
\keys_set_filter:nnVN
\keys_set_filter:nnvN
\keys_set_filter:nnoN
\keys_set_filter:nnnnN
\keys_set_filter:nnVnN
\keys_set_filter:nnvnN
\keys_set_filter:nnonN

\keys_set_filter:nnn
\keys_set_filter:nnV
\keys_set_filter:nnv
\keys_set_filter:nno

We need a transition here so for the present this is commented out: only needed for
latex-lab code so this should not last for too long.

38944 %__kernel_patch_deprecation:nnNNpn { 2024-01-10 } { \keys_set_exclude_groups:nnn }
38945 \cs_new_protected:Npn \keys_set_filter:nnn { \keys_set_exclude_groups:nnn }
38946 \cs_generate_variant:Nn \keys_set_filter:nnn { nnV , nnv , nno }
38947 %__kernel_patch_deprecation:nnNNpn { 2024-01-10 } { \keys_set_exclude_groups:nnnN }
38948 \cs_new_protected:Npn \keys_set_filter:nnnN { \keys_set_exclude_groups:nnnN }
38949 \cs_generate_variant:Nn \keys_set_filter:nnnN { nnV , nnv , nno }
38950 %__kernel_patch_deprecation:nnNNpn { 2024-01-10 } { \keys_set_exclude_groups:nnnnN }
38951 \cs_new_protected:Npn \keys_set_filter:nnnnN { \keys_set_exclude_groups:nnnnN }
38952 \cs_generate_variant:Nn \keys_set_filter:nnnnN { nnV , nnv , nno }

(End of definition for \keys_set_filter:nnnN , \keys_set_filter:nnnnN , and \keys_set_filter:nnn.)

95.5 Deprecated l3msg functions
38953 ⟨@@=msg⟩

\msg_gset:nnnn
\msg_gset:nnn 38954 __kernel_patch_deprecation:nnNNpn { 2024-02-13 } { \msg_set:nnnn }

38955 \cs_new_protected:Npn \msg_gset:nnnn { \msg_set:nnnn }
38956 __kernel_patch_deprecation:nnNNpn { 2024-02-13 } { \msg_set:nnn }
38957 \cs_new_protected:Npn \msg_gset:nnn { \msg_set:nnn }

(End of definition for \msg_gset:nnnn and \msg_gset:nnn.)

95.6 Deprecated l3pdf functions
38958 ⟨@@=pdf⟩

\g__pdf_object_prop For tracking objects.
38959 \prop_new:N \g__pdf_object_prop

(End of definition for \g__pdf_object_prop.)

\pdf_object_new:nn
\pdf_object_write:nn
\pdf_object_write:nx

38960 __kernel_patch_deprecation:nnNNpn { 2022-08-30 } { [\pdf_object_new:n] }
38961 \cs_new_protected:Npn \pdf_object_new:nn #1#2
38962 {
38963 \prop_gput:Nnn \g__pdf_object_prop {#1} {#2}
38964 \pdf_object_new:n {#1}
38965 }
38966 __kernel_patch_deprecation:nnNNpn { 2022-08-30 } { [\pdf_object_write:n] }
38967 \cs_new_protected:Npn \pdf_object_write:nn #1#2
38968 {
38969 \exp_args:Nee __pdf_backend_object_write:nnn
38970 { __pdf_object_retrieve:n {#1} }
38971 { \prop_item:Nn \g__pdf_object_prop {#1} } {#2}

1475

38972 \bool_gset_true:N \g__pdf_init_bool
38973 }
38974 \cs_generate_variant:Nn \pdf_object_write:nn { nx }

(End of definition for \pdf_object_new:nn and \pdf_object_write:nn.)

95.7 Deprecated l3prg functions
38975 ⟨@@=cs⟩

\bool_case_true:n
\bool_case_true:nTF 38976 __kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:n }

38977 \cs_new:Npn \bool_case_true:n { \bool_case:n }
38978 __kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nT }
38979 \cs_new:Npn \bool_case_true:nT { \bool_case:nT }
38980 __kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nF }
38981 \cs_new:Npn \bool_case_true:nF { \bool_case:nF }
38982 __kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nTF }
38983 \cs_new:Npn \bool_case_true:nTF { \bool_case:nTF }

(End of definition for \bool_case_true:nTF.)

95.8 Deprecated l3str functions
38984 ⟨@@=str⟩

\str_lower_case:n
\str_lower_case:f
\str_upper_case:n
\str_upper_case:f
\str_fold_case:n
\str_fold_case:V

38985 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_lowercase:n }
38986 \cs_new:Npn \str_lower_case:n { \str_lowercase:n }
38987 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_lowercase:f }
38988 \cs_new:Npn \str_lower_case:f { \str_lowercase:f }
38989 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_uppercase:n }
38990 \cs_new:Npn \str_upper_case:n { \str_uppercase:n }
38991 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_uppercase:f }
38992 \cs_new:Npn \str_upper_case:f { \str_uppercase:f }
38993 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:n }
38994 \cs_new:Npn \str_fold_case:n { \str_casefold:n }
38995 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:V }
38996 \cs_new:Npn \str_fold_case:V { \str_casefold:V }

(End of definition for \str_lower_case:n , \str_upper_case:n , and \str_fold_case:n.)

\str_foldcase:n
\str_foldcase:V 38997 __kernel_patch_deprecation:nnNNpn { 2020-10-17 } { \str_casefold:n }

38998 \cs_new:Npn \str_foldcase:n { \str_casefold:n }
38999 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_casefold:V }
39000 \cs_new:Npn \str_foldcase:V { \str_casefold:V }

(End of definition for \str_foldcase:n.)

1476

\str_declare_eight_bit_encoding:nnn This command was made internal, with one more argument. There is no easy way to
compute a reasonable value for that extra argument so we take a value that is big enough
to accommodate all of Unicode.

39001 __kernel_patch_deprecation:nnNNpn { 2020-08-20 } { }
39002 \cs_new_protected:Npn \str_declare_eight_bit_encoding:nnn #1
39003 { __str_declare_eight_bit_encoding:nnnn {#1} { 1114112 } }

(End of definition for \str_declare_eight_bit_encoding:nnn.)

95.9 Deprecated l3seq functions
39004 ⟨@@=seq⟩

\seq_indexed_map_inline:Nn
\seq_indexed_map_function:NN 39005 __kernel_patch_deprecation:nnNNpn { 2020-06-18 } { \seq_map_indexed_inline:Nn }

39006 \cs_new_protected:Npn \seq_indexed_map_inline:Nn { \seq_map_indexed_inline:Nn }
39007 __kernel_patch_deprecation:nnNNpn { 2020-06-18 } { \seq_map_indexed_function:NN }
39008 \cs_new:Npn \seq_indexed_map_function:NN { \seq_map_indexed_function:NN }

(End of definition for \seq_indexed_map_inline:Nn and \seq_indexed_map_function:NN.)

\seq_mapthread_function:NNN

39009 __kernel_patch_deprecation:nnNNpn { 2023-05-10 } { \seq_map_pairwise_function:NNN }
39010 \cs_new:Npn \seq_mapthread_function:NNN { \seq_map_pairwise_function:NNN }

(End of definition for \seq_mapthread_function:NNN.)

\seq_set_map_x:NNn
\seq_gset_map_x:NNn 39011 __kernel_patch_deprecation:nnNNpn { 2023-10-26 } { \seq_set_map_e:NNn }

39012 \cs_new_protected:Npn \seq_set_map_x:NNn { \seq_set_map_e:NNn }
39013 __kernel_patch_deprecation:nnNNpn { 2023-10-26 } { \seq_gset_map_e:NNn }
39014 \cs_new_protected:Npn \seq_gset_map_x:NNn { \seq_gset_map_e:NNn }

(End of definition for \seq_set_map_x:NNn and \seq_gset_map_x:NNn.)

95.10 Deprecated l3sys functions
39015 ⟨@@=sys⟩

\sys_load_deprecation:

39016 __kernel_patch_deprecation:nnNNpn { 2021-01-11 } { (no~longer~required) }
39017 \cs_new_protected:Npn \sys_load_deprecation: { }

(End of definition for \sys_load_deprecation:.)

1477

95.11 Deprecated l3text functions
39018 ⟨@@=text⟩

\text_titlecase:n
\text_titlecase:nn 39019 __kernel_patch_deprecation:nnNNpn { 2023-07-08 } { \text_titlecase_first:n }

39020 \cs_new:Npn \text_titlecase:n #1
39021 { \text_titlecase_first:n { \text_lowercase:n {#1} } }
39022 __kernel_patch_deprecation:nnNNpn { 2023-07-08 } { \text_titlecase_first:nn }
39023 \cs_new:Npn \text_titlecase:nn #1#2
39024 { \text_titlecase_first:nn {#1} { \text_lowercase:n {#2} } }

(End of definition for \text_titlecase:n and \text_titlecase:nn.)

95.12 Deprecated l3tl functions
39025 ⟨@@=tl⟩

\tl_lower_case:n
\tl_lower_case:nn
\tl_upper_case:n
\tl_upper_case:nn
\tl_mixed_case:n
\tl_mixed_case:nn

39026 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_lowercase:n }
39027 \cs_new:Npn \tl_lower_case:n #1
39028 { \text_lowercase:n {#1} }
39029 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_lowercase:nn }
39030 \cs_new:Npn \tl_lower_case:nn #1#2
39031 { \text_lowercase:nn {#1} {#2} }
39032 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_uppercase:n }
39033 \cs_new:Npn \tl_upper_case:n #1
39034 { \text_uppercase:n {#1} }
39035 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_uppercase:nn }
39036 \cs_new:Npn \tl_upper_case:nn #1#2
39037 { \text_uppercase:nn {#1} {#2} }
39038 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_titlecase_first:n }
39039 \cs_new:Npn \tl_mixed_case:n #1
39040 { \text_titlecase_first:n { \text_lowercase:n {#1} } }
39041 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_titlecase_first:nn }
39042 \cs_new:Npn \tl_mixed_case:nn #1#2
39043 { \text_titlecase_first:nn {#1} { \text_lowercase:n {#2} } }

(End of definition for \tl_lower_case:n and others.)

\tl_case:Nn
\tl_case:cn

\tl_case:NnTF
\tl_case:cnTF

39044 __kernel_patch_deprecation:nnNNpn { 2022-05-23 } { \token_case_meaning:Nn }
39045 \cs_new:Npn \tl_case:Nn { \token_case_meaning:Nn }
39046 __kernel_patch_deprecation:nnNNpn { 2022-05-23 } { \token_case_meaning:NnT }
39047 \cs_new:Npn \tl_case:NnT { \token_case_meaning:NnT }
39048 __kernel_patch_deprecation:nnNNpn { 2022-05-23 } { \token_case_meaning:NnF }
39049 \cs_new:Npn \tl_case:NnF { \token_case_meaning:NnF }
39050 __kernel_patch_deprecation:nnNNpn { 2022-05-23 } { \token_case_meaning:NnTF }
39051 \cs_new:Npn \tl_case:NnTF { \token_case_meaning:NnTF }
39052 \cs_generate_variant:Nn \tl_case:Nn { c }
39053 \prg_generate_conditional_variant:Nnn \tl_case:Nn
39054 { c } { T , F , TF }

(End of definition for \tl_case:NnTF.)

1478

\tl_build_clear:N
\tl_build_gclear:N 39055 __kernel_patch_deprecation:nnNNpn { 2023-10-18 } { \tl_build_begin:N }

39056 \cs_new_protected:Npn \tl_build_clear:N { \tl_build_begin:N }
39057 __kernel_patch_deprecation:nnNNpn { 2023-10-18 } { \tl_build_gbegin:N }
39058 \cs_new_protected:Npn \tl_build_gclear:N { \tl_build_gbegin:N }

(End of definition for \tl_build_clear:N and \tl_build_gclear:N.)

\tl_build_get:NN

39059 __kernel_patch_deprecation:nnNNpn { 2023-10-25 } { \tl_build_get_intermediate:NN }
39060 \cs_new_protected:Npn \tl_build_get:NN { \tl_build_get_intermediate:NN }

(End of definition for \tl_build_get:NN.)

95.13 Deprecated l3token functions
39061 ⟨@@=char⟩

\char_to_utfviii_bytes:n

39062 __kernel_patch_deprecation:nnNNpn { 2022-10-09 } { [\codepoint_generate:nn] }
39063 \cs_new:Npn \char_to_utfviii_bytes:n { __kernel_codepoint_to_bytes:n }

(End of definition for \char_to_utfviii_bytes:n.)

\char_to_nfd:N
\char_to_nfd:n 39064 __kernel_patch_deprecation:nnNNpn { 2022-10-09 } { \codepoint_to_nfd:n }

39065 \cs_new:Npn \char_to_nfd:N #1 { \codepoint_to_nfd:n {‘#1} }
39066 __kernel_patch_deprecation:nnNNpn { 2022-10-09 } { \codepoint_to_nfd:n }
39067 \cs_new:Npn \char_to_nfd:n { \codepoint_to_nfd:n }

(End of definition for \char_to_nfd:N and \char_to_nfd:n.)

\char_lower_case:N
\char_upper_case:N
\char_mixed_case:Nn

\char_fold_case:N
\char_str_lower_case:N
\char_str_upper_case:N
\char_str_mixed_case:N
\char_str_fold_case:N

39068 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_lowercase:n }
39069 \cs_new:Npn \char_lower_case:N { \text_lowercase:n }
39070 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_uppercase:n }
39071 \cs_new:Npn \char_upper_case:N { \text_uppercase:n }
39072 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \text_titlecase_first:n }
39073 \cs_new:Npn \char_mixed_case:N { \text_titlecase_first:n }
39074 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:n }
39075 \cs_new:Npn \char_fold_case:N { \str_casefold:n }
39076 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_lowercase:n }
39077 \cs_new:Npn \char_str_lower_case:N { \str_lowercase:n }
39078 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_uppercase:n }
39079 \cs_new:Npn \char_str_upper_case:N { \str_uppercase:n }
39080 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_titlecase:n }
39081 \cs_new:Npn \char_str_mixed_case:N { \str_titlecase:n }
39082 __kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:n }
39083 \cs_new:Npn \char_str_fold_case:N { \str_casefold:n }

(End of definition for \char_lower_case:N and others.)

1479

\char_lowercase:N
\char_titlecase:N
\char_uppercase:N
\char_foldcase:N

\char_str_lowercase:N
\char_str_titlecase:N
\char_str_uppercase:N
\char_str_foldcase:N

39084 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \text_lowercase:n }
39085 \cs_new:Npn \char_lowercase:N { \text_lowercase:n }
39086 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \text_uppercase:n }
39087 \cs_new:Npn \char_uppercase:N { \text_uppercase:n }
39088 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \text_titlecase_first:n }
39089 \cs_new:Npn \char_titlecase:N { \text_titlecase_first:n }
39090 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_casefold:n }
39091 \cs_new:Npn \char_foldcase:N { \str_casefold:n }
39092 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_lowercase:n }
39093 \cs_new:Npn \char_str_lowercase:N { \str_lowercase:n }
39094 __kernel_patch_deprecation:nnNNpn { 2022-10-17 }
39095 { \tl_to_str:e { \text_titlecase_first:n } }
39096 \cs_new:Npn \char_str_titlecase:N #1
39097 { \tl_to_str:e { \text_titlecase_first:n {#1} } }
39098 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_uppercase:n }
39099 \cs_new:Npn \char_str_uppercase:N { \str_uppercase:n }
39100 __kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_casefold:n }
39101 \cs_new:Npn \char_str_foldcase:N { \str_casefold:n }

(End of definition for \char_lowercase:N and others.)

\peek_catcode_ignore_spaces:NTF
\peek_catcode_remove_ignore_spaces:NTF

\peek_charcode_ignore_spaces:NTF
\peek_charcode_remove_ignore_spaces:NTF

\peek_meaning_ignore_spaces:NTF
\peek_meaning_remove_ignore_spaces:NTF

A little extra fun here to deal with the expansion.
39102 \tl_map_inline:nn
39103 {
39104 { catcode } { catcode_remove }
39105 { charcode } { charcode_remove }
39106 { meaning } { meaning_remove }
39107 }
39108 {
39109 \use:e
39110 {
39111 __kernel_patch_deprecation:nnNNpn { 2022-01-11 } { \peek_remove_spaces:n }
39112 \cs_gset_protected:Npn \exp_not:c { peek_ #1 _ignore_spaces:NTF } ##1##2##3
39113 {
39114 \peek_remove_spaces:n
39115 { \exp_not:c { peek_ #1 :NTF } ##1 {##2} {##3} }
39116 }
39117 __kernel_patch_deprecation:nnNNpn { 2022-01-11 } { \peek_remove_spaces:n }
39118 \cs_gset_protected:Npn \exp_not:c { peek_ #1 _ignore_spaces:NT } ##1##2
39119 {
39120 \peek_remove_spaces:n
39121 { \exp_not:c { peek_ #1 :NT } ##1 {##2} }
39122 }
39123 __kernel_patch_deprecation:nnNNpn { 2022-01-11 } { \peek_remove_spaces:n }
39124 \cs_gset_protected:Npn \exp_not:c { peek_ #1 _ignore_spaces:NF } ##1##2
39125 {
39126 \peek_remove_spaces:n
39127 { \exp_not:c { peek_ #1 :NF } ##1 {##2} }
39128 }
39129 }
39130 }

(End of definition for \peek_catcode_ignore_spaces:NTF and others.)

1480

95.14 Deprecated l3prop functions
\prop_put_if_new:Nnn
\prop_put_if_new:NVn
\prop_put_if_new:NnV
\prop_put_if_new:cnn
\prop_put_if_new:cVn
\prop_put_if_new:cnV
\prop_gput_if_new:Nnn
\prop_gput_if_new:NVn
\prop_gput_if_new:NnV
\prop_gput_if_new:cnn
\prop_gput_if_new:cVn
\prop_gput_if_new:cnV

39131 %__kernel_patch_deprecation:nnNNpn { 2024-03-30 } { \prop_put_if_not_in:Nnn }
39132 \cs_new_protected:Npn \prop_put_if_new:Nnn { \prop_put_if_not_in:Nnn }
39133 %__kernel_patch_deprecation:nnNNpn { 2024-03-30 } { \prop_gput_if_not_in:Nnn }
39134 \cs_new_protected:Npn \prop_gput_if_new:Nnn { \prop_gput_if_not_in:Nnn }
39135 \cs_generate_variant:Nn \prop_put_if_new:Nnn
39136 { NnV , NV , c , cnV , cV }
39137 \cs_generate_variant:Nn \prop_gput_if_new:Nnn
39138 { NnV , NV , c , cnV , cV }

(End of definition for \prop_put_if_new:Nnn and \prop_gput_if_new:Nnn.)

39139 ⟨/package⟩

1481

Chapter 96

l3debug implementation

Internal kernel functions that are only defined here are listed in l3kernel-functions, see 41.1.
39140 ⟨∗package⟩

39141 ⟨@@=debug⟩

Standard file identification.
39142 \ProvidesExplFile{l3debug.def}{2024-12-09}{}{L3 Debugging support}

\s__debug_stop Internal scan marks.
39143 \scan_new:N \s__debug_stop

(End of definition for \s__debug_stop.)

__debug_use_i_delimit_by_s_stop:nw Functions to gobble up to a scan mark.
39144 \cs_new:Npn __debug_use_i_delimit_by_s_stop:nw #1 #2 \s__debug_stop {#1}

(End of definition for __debug_use_i_delimit_by_s_stop:nw.)

\q__debug_recursion_tail
\q__debug_recursion_stop

Internal quarks.
39145 \quark_new:N \q__debug_recursion_tail
39146 \quark_new:N \q__debug_recursion_stop

(End of definition for \q__debug_recursion_tail and \q__debug_recursion_stop.)

__debug_if_recursion_tail_stop:N Functions to query recursion quarks.
39147 \cs_new:Npn __debug_use_none_delimit_by_q_recursion_stop:w
39148 #1 \q__debug_recursion_stop { }
39149 __kernel_quark_new_test:N __debug_if_recursion_tail_stop:N

(End of definition for __debug_if_recursion_tail_stop:N.)

\debug_on:n
\debug_off:n

__debug_all_on:
__debug_all_off:

39150 \cs_gset_protected:Npn \debug_on:n #1
39151 {
39152 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }
39153 {
39154 \cs_if_exist_use:cF { __debug_ ##1 _on: }
39155 { \msg_error:nnn { debug } { debug } {##1} }
39156 }

1482

39157 }
39158 \cs_gset_protected:Npn \debug_off:n #1
39159 {
39160 \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} }
39161 {
39162 \cs_if_exist_use:cF { __debug_ ##1 _off: }
39163 { \msg_error:nnn { debug } { debug } {##1} }
39164 }
39165 }
39166 \cs_new_protected:Npn __debug_all_on:
39167 {
39168 \debug_on:n
39169 {
39170 check-declarations ,
39171 check-expressions ,
39172 deprecation ,
39173 log-functions ,
39174 }
39175 }
39176 \cs_new_protected:Npn __debug_all_off:
39177 {
39178 \debug_off:n
39179 {
39180 check-declarations ,
39181 check-expressions ,
39182 deprecation ,
39183 log-functions ,
39184 }
39185 }

(End of definition for \debug_on:n and others. These functions are documented on page 31.)

\debug_suspend:
\debug_resume:

__debug_suspended:T
\l__debug_suspended_tl

Suspend and resume locally all debug-related errors and logging except deprecation errors.
The \debug_suspend: and \debug_resume: pairs can be nested. We keep track of
nesting in a token list containing a number of periods. At first begin with the “non-
suspended” version of __debug_suspended:T.

39186 \tl_new:N \l__debug_suspended_tl { }
39187 \cs_gset_protected:Npn \debug_suspend:
39188 {
39189 \tl_put_right:Nn \l__debug_suspended_tl { . }
39190 \cs_set_eq:NN __debug_suspended:T \use:n
39191 }
39192 \cs_gset_protected:Npn \debug_resume:
39193 {
39194 __kernel_tl_set:Nx \l__debug_suspended_tl
39195 { \tl_tail:N \l__debug_suspended_tl }
39196 \tl_if_empty:NT \l__debug_suspended_tl
39197 {
39198 \cs_set_eq:NN __debug_suspended:T \use_none:n
39199 }
39200 }
39201 \cs_new_eq:NN __debug_suspended:T \use_none:n

(End of definition for \debug_suspend: and others. These functions are documented on page 31.)

1483

__debug_check-declarations_on:
__debug_check-declarations_off:

__kernel_chk_var_exist:N
__kernel_chk_cs_exist:N
__kernel_chk_cs_exist:c

__kernel_chk_flag_exist:NN
__kernel_chk_var_local:N
__kernel_chk_var_global:N
__kernel_chk_var_scope:NN

When debugging is enabled these two functions set up functions that test their argument
(when check-declarations is active)

• __kernel_chk_var_exist:N and __kernel_chk_cs_exist:N, two functions
that test that their argument is defined;

• __kernel_chk_var_scope:NN that checks that its argument #2 has scope #1.

• __kernel_chk_var_local:N and __kernel_chk_var_global:N that perform
both checks.

39202 \cs_new_protected:Npn __kernel_chk_var_exist:N #1 { }
39203 \cs_new_protected:Npn __kernel_chk_cs_exist:N #1 { }
39204 \cs_generate_variant:Nn __kernel_chk_cs_exist:N { c }
39205 \cs_new:Npn __kernel_chk_flag_exist:NN { }
39206 \cs_new_protected:Npn __kernel_chk_var_local:N #1 { }
39207 \cs_new_protected:Npn __kernel_chk_var_global:N #1 { }
39208 \cs_new_protected:Npn __kernel_chk_var_scope:NN #1#2 { }
39209 \cs_new_protected:cpn { __debug_check-declarations_on: }
39210 {
39211 \cs_set_protected:Npn __kernel_chk_var_exist:N ##1
39212 {
39213 __debug_suspended:T \use_none:nnn
39214 \cs_if_exist:NF ##1
39215 {
39216 \msg_error:nne { debug } { non-declared-variable }
39217 { \token_to_str:N ##1 }
39218 }
39219 }
39220 \cs_set_protected:Npn __kernel_chk_cs_exist:N ##1
39221 {
39222 __debug_suspended:T \use_none:nnn
39223 \cs_if_exist:NF ##1
39224 {
39225 \msg_error:nne { kernel } { command-not-defined }
39226 { \token_to_str:N ##1 }
39227 }
39228 }
39229 \cs_set:Npn __kernel_chk_flag_exist:NN ##1##2
39230 {
39231 __debug_suspended:T \use_iii:nnnn
39232 \flag_if_exist:NTF ##2
39233 { ##1 ##2 }
39234 {
39235 \msg_expandable_error:nnn { kernel } { bad-variable } {##2}
39236 ##1 \l_tmpa_flag
39237 }
39238 }
39239 \cs_set_protected:Npn __kernel_chk_var_scope:NN
39240 {
39241 __debug_suspended:T \use_none:nnn
39242 __debug_chk_var_scope_aux:NN
39243 }
39244 \cs_set_protected:Npn __kernel_chk_var_local:N ##1
39245 {

1484

39246 __debug_suspended:T \use_none:nnnnn
39247 __kernel_chk_var_exist:N ##1
39248 __debug_chk_var_scope_aux:NN l ##1
39249 }
39250 \cs_set_protected:Npn __kernel_chk_var_global:N ##1
39251 {
39252 __debug_suspended:T \use_none:nnnnn
39253 __kernel_chk_var_exist:N ##1
39254 __debug_chk_var_scope_aux:NN g ##1
39255 }
39256 }
39257 \cs_new_protected:cpn { __debug_check-declarations_off: }
39258 {
39259 \cs_set_protected:Npn __kernel_chk_var_exist:N ##1 { }
39260 \cs_set_protected:Npn __kernel_chk_cs_exist:N ##1 { }
39261 \cs_set:Npn __kernel_chk_flag_exist:NN { }
39262 \cs_set_protected:Npn __kernel_chk_var_local:N ##1 { }
39263 \cs_set_protected:Npn __kernel_chk_var_global:N ##1 { }
39264 \cs_set_protected:Npn __kernel_chk_var_scope:NN ##1##2 { }
39265 }

(End of definition for __debug_check-declarations_on: and others.)

__debug_chk_var_scope_aux:NN
__debug_chk_var_scope_aux:Nn
__debug_chk_var_scope_aux:NNn

First check whether the name of the variable #2 starts with ⟨letter⟩_. If it does then
pass that letter, the ⟨scope⟩, and the variable name to __debug_chk_var_scope_-
aux:NNn. That function compares the two letters and triggers an error if they differ
(the \scan_stop: case is not reachable here). If the second character was not _ then
pass the same data to the same auxiliary, except for its first argument which is now a
control sequence. That control sequence is actually a token list (but to avoid triggering
the checking code we manipulate it using \cs_set_nopar:Npn) containing a single letter
⟨scope⟩ according to what the first assignment to the given variable was.

39266 \cs_new_protected:Npn __debug_chk_var_scope_aux:NN #1#2
39267 { \exp_args:NNf __debug_chk_var_scope_aux:Nn #1 { \cs_to_str:N #2 } }
39268 \cs_new_protected:Npn __debug_chk_var_scope_aux:Nn #1#2
39269 {
39270 \if:w _ \use_i:nn __debug_use_i_delimit_by_s_stop:nw #2 ? ? \s__debug_stop
39271 \exp_after:wN __debug_chk_var_scope_aux:NNn
39272 __debug_use_i_delimit_by_s_stop:nw #2 ? \s__debug_stop
39273 #1 {#2}
39274 \else:
39275 \exp_args:Nc __debug_chk_var_scope_aux:NNn
39276 { __debug_chk_/ #2 }
39277 #1 {#2}
39278 \fi:
39279 }
39280 \cs_new_protected:Npn __debug_chk_var_scope_aux:NNn #1#2#3
39281 {
39282 \if:w #1 #2
39283 \else:
39284 \if:w #1 \scan_stop:
39285 \cs_gset_nopar:Npn #1 {#2}
39286 \else:
39287 \msg_error:nneee { debug } { local-global }
39288 {#1} {#2} { \iow_char:N \\ #3 }

1485

39289 \fi:
39290 \fi:
39291 }
39292 \use:c { __debug_check-declarations_off: }

(End of definition for __debug_chk_var_scope_aux:NN , __debug_chk_var_scope_aux:Nn , and __-
debug_chk_var_scope_aux:NNn.)

__debug_log-functions_on:
__debug_log-functions_off:

__kernel_debug_log:e

These two functions (corresponding to the expl3 option log-functions) control whether
__kernel_debug_log:e writes to the log file or not. By default, logging is off.

39293 \cs_new_protected:cpn { __debug_log-functions_on: }
39294 {
39295 \cs_set_protected:Npn __kernel_debug_log:e
39296 { __debug_suspended:T \use_none:nn \iow_log:e }
39297 }
39298 \cs_new_protected:cpn { __debug_log-functions_off: }
39299 { \cs_set_protected:Npn __kernel_debug_log:e { \use_none:n } }
39300 \cs_new_protected:Npn __kernel_debug_log:e { \use_none:n }

(End of definition for __debug_log-functions_on: , __debug_log-functions_off: , and __kernel_-
debug_log:e.)

__debug_check-expressions_on:
__debug_check-expressions_off:

__kernel_chk_expr:nNnN
__debug_chk_expr_aux:nNnN

When debugging is enabled these two functions set __kernel_chk_expr:nNnN to test or
not whether the given expression is valid. The idea is to evaluate the expression within
a brace group (to catch trailing \use_none:nn or similar), then test that the result is
what we expect. This is done by turning it to an integer and hitting that with \tex_-
romannumeral:D after replacing the first character by -0. If all goes well, that primitive
finds a non-positive integer and gives an empty output. If the original expression evalu-
ation stopped early it leaves a trailing \tex_relax:D, which stops the second evaluation
(used to convert to integer) before it encounters the final \tex_relax:D. Since \tex_-
romannumeral:D does not absorb \tex_relax:D the output will be nonempty. Note
that #3 is empty except for mu expressions for which it is \tex_mutoglue:D to avoid
an “incompatible glue units” error. Note also that if we had omitted the first \tex_-
relax:D then for instance 1+2\relax+3 would incorrectly be accepted as a valid integer
expression.

39301 \cs_new_protected:cpn { __debug_check-expressions_on: }
39302 {
39303 \cs_set:Npn __kernel_chk_expr:nNnN ##1##2
39304 {
39305 __debug_suspended:T { ##1 \use_none:nnnnnnn }
39306 \exp_after:wN __debug_chk_expr_aux:nNnN
39307 \exp_after:wN { \tex_the:D ##2 ##1 \scan_stop: }
39308 ##2
39309 }
39310 }
39311 \cs_new_protected:cpn { __debug_check-expressions_off: }
39312 { \cs_set:Npn __kernel_chk_expr:nNnN ##1##2##3##4 {##1} }
39313 \cs_new:Npn __kernel_chk_expr:nNnN #1#2#3#4 {#1}
39314 \cs_new:Npn __debug_chk_expr_aux:nNnN #1#2#3#4
39315 {
39316 \tl_if_empty:oF
39317 {
39318 \tex_romannumeral:D - 0
39319 \exp_after:wN \use_none:n

1486

39320 \int_value:w #3 #2 #1 \scan_stop:
39321 }
39322 {
39323 \msg_expandable_error:nnnn
39324 { debug } { expr } {#4} {#1}
39325 }
39326 #1
39327 }

(End of definition for __debug_check-expressions_on: and others.)

__debug_deprecation_on:
__debug_deprecation_off:

Make deprecated commands throw errors if the user requests it. This relies on two token
lists, filled up in l3deprecation by calls to __kernel_deprecation_code:nn.

39328 \cs_new_protected:Npn __debug_deprecation_on:
39329 { \g__debug_deprecation_on_tl }
39330 \cs_new_protected:Npn __debug_deprecation_off:
39331 { \g__debug_deprecation_off_tl }

(End of definition for __debug_deprecation_on: and __debug_deprecation_off:.)

\l__debug_internal_tl
\l__debug_tmpa_tl
\l__debug_tmpb_tl

For patching.
39332 \tl_new:N \l__debug_internal_tl
39333 \tl_new:N \l__debug_tmpa_tl
39334 \tl_new:N \l__debug_tmpb_tl

(End of definition for \l__debug_internal_tl , \l__debug_tmpa_tl , and \l__debug_tmpb_tl.)

__debug_generate_parameter_list:NNN
__debug_build_parm_text:n
__debug_build_arg_list:n
__debug_arg_list_from_signature:nNN

__debug_arg_check_invalid:N
__debug_parm_terminate:w
__debug_arg_if_braced:n
__debug_get_base_form:N

__debug_arg_return:N
__debug_arg_if_braced:NTF

Some functions don’t take the arguments their signature indicates. For instance,
\clist_concat:NNN doesn’t take (directly) any argument, so patching it with something
that uses #1, #2, or #3 results in “Illegal parameter number in definition of \clist_-
concat:NNN”.

Instead of changing the definition of the macros, we’ll create a copy of such macros,
say, __debug_clist_concat:NNN which will be defined as <debug code with #1, #2 and #3>\clist_concat:NNN#1#2#3.
For that we need to identify the signature of every function and build the appropriate
parameter list.

__debug_generate_parameter_list:NNN takes a function in #1 and returns teo
parameter lists: #2 contains the simple #1#2#3 as would be used in the ⟨parameter text⟩
of the definition and #3 contains the same parameters but with braces where necessary.

With the current implementation the resulting #3 is, for example for \some_function:NnNn,
#1{#2}#3{#4}. While this is correct, it might be unnecessary. Bracing everything will
usually have the same outcome (unless the function was misused in the first place). What
should be done?

39335 \cs_new_protected:Npn __debug_generate_parameter_list:NNN #1#2#3
39336 {
39337 __kernel_tl_set:Nx \l__debug_internal_tl
39338 { \exp_last_unbraced:Nf \use_ii:nnn \cs_split_function:N #1 }
39339 __kernel_tl_set:Nx #2
39340 { \exp_args:NV __debug_build_parm_text:n \l__debug_internal_tl }
39341 __kernel_tl_set:Nx #3
39342 { \exp_args:NV __debug_build_arg_list:n \l__debug_internal_tl }
39343 }
39344 \cs_new:Npn __debug_build_parm_text:n #1
39345 {

1487

39346 __debug_arg_list_from_signature:nNN { 1 } \c_false_bool #1
39347 \q__debug_recursion_tail \q__debug_recursion_stop
39348 }
39349 \cs_new:Npn __debug_build_arg_list:n #1
39350 {
39351 __debug_arg_list_from_signature:nNN { 1 } \c_true_bool #1
39352 \q__debug_recursion_tail \q__debug_recursion_stop
39353 }
39354 \cs_new:Npn __debug_arg_list_from_signature:nNN #1 #2 #3
39355 {
39356 __debug_if_recursion_tail_stop:N #3
39357 __debug_arg_check_invalid:N #3
39358 \bool_if:NT #2 { __debug_arg_if_braced:NT #3 { \use_none:n } }
39359 \use:n { \c_hash_str \int_eval:n {#1} }
39360 \exp_args:Nf __debug_arg_list_from_signature:nNN
39361 { \int_eval:n {#1+1} } #2
39362 }

Argument types w, p, T, and F shouldn’t be included in the parameter lists, so we abort
the loop if either is found.

39363 \cs_new:Npn __debug_arg_check_invalid:N #1
39364 {
39365 \if:w w #1 __debug_parm_terminate:w \else:
39366 \if:w p #1 __debug_parm_terminate:w \else:
39367 \if:w T #1 __debug_parm_terminate:w \else:
39368 \if:w F #1 __debug_parm_terminate:w \else:
39369 \exp:w
39370 \fi:
39371 \fi:
39372 \fi:
39373 \fi:
39374 \exp_end:
39375 }
39376 \cs_new:Npn __debug_parm_terminate:w
39377 { \exp_after:wN __debug_use_none_delimit_by_q_recursion_stop:w \exp:w }
39378 \prg_new_conditional:Npnn __debug_arg_if_braced:N #1 { T }
39379 { \exp_args:Nf __debug_arg_if_braced:n { __debug_get_base_form:N #1 } }
39380 \cs_new:Npn __debug_arg_if_braced:n #1
39381 {
39382 \if:w n #1 \prg_return_true: \else:
39383 \if:w N #1 \prg_return_false: \else:
39384 \msg_expandable_error:nnn
39385 { debug } { bad-arg-type } {#1}
39386 \fi:
39387 \fi:
39388 }
39389 \msg_new:nnn { debug } { bad-arg-type }
39390 { Wrong~argument~type~#1. }

The macro below gets the base form of an argument type given a variant. It serves only
to differentiate arguments which should be braced from ones which shouldn’t. If all were
to be braced this would be unnecessary. I moved the n and N variants to the beginning
of the test as the are much more common here.

39391 \cs_new:Npn __debug_get_base_form:N #1
39392 {

1488

39393 \if:w n #1 __debug_arg_return:N n \else:
39394 \if:w N #1 __debug_arg_return:N N \else:
39395 \if:w c #1 __debug_arg_return:N N \else:
39396 \if:w o #1 __debug_arg_return:N n \else:
39397 \if:w V #1 __debug_arg_return:N n \else:
39398 \if:w v #1 __debug_arg_return:N n \else:
39399 \if:w f #1 __debug_arg_return:N n \else:
39400 \if:w e #1 __debug_arg_return:N n \else:
39401 \if:w x #1 __debug_arg_return:N n \else:
39402 __debug_arg_return:N \scan_stop:
39403 \fi:
39404 \fi:
39405 \fi:
39406 \fi:
39407 \fi:
39408 \fi:
39409 \fi:
39410 \fi:
39411 \fi:
39412 \exp_stop_f:
39413 }
39414 \cs_new:Npn __debug_arg_return:N #1
39415 { \exp_after:wN #1 \exp:w \exp_end_continue_f:w }

(End of definition for __debug_generate_parameter_list:NNN and others.)

__kernel_patch:nnn
__kernel_patch_aux:nnn

__debug_setup_debug_code:Nnn
__debug_add_to_debug_code:Nnn
__debug_insert_debug_code:Nnn

__kernel_patch_weird:nnn
__kernel_patch_weird_aux:nnn

__debug_patch_weird:Nnn

Simple patching by adding material at the start and end of (a collection of) functions
is straight-forward as we know the catcode set up. The approach is essentially that in
etoolbox. Notice the need to worry about spaces: those are otherwise lost as normally in
expl3 code they would be ~.

As discussed above, some functions don’t take arguments, so we can’t patch some-
thing that uses an argument in them. For these functions __kernel_patch:nnn is used.
It starts by creating a copy of the function (say, \clist_concat:NNN) with a __debug_
prefix in the name. This copy won’t be changed. The code redefines the original func-
tion to take the exact same arguments as advertised in its signature (see __debug_-
generate_parameter_list:NNN above). The redefined function also contains the debug
code in the proper position. If a function with the same name and the __debug_ prefix
was already defined, then the macro patches that definition by adding more debug code
to it.

39416 \group_begin:
39417 \cs_set_protected:Npn __kernel_patch:nnn
39418 {
39419 \group_begin:
39420 \char_set_catcode_other:N \#
39421 __kernel_patch_aux:nnn
39422 }
39423 \cs_set_protected:Npn __kernel_patch_aux:nnn #1#2#3
39424 {
39425 \char_set_catcode_parameter:N \#
39426 \char_set_catcode_space:N \ %
39427 \tex_endlinechar:D -1 \scan_stop:
39428 \tl_map_inline:nn {#3}
39429 {

1489

39430 \cs_if_exist:cTF { __debug_ \cs_to_str:N ##1 }
39431 { __debug_add_to_debug_code:Nnn }
39432 { __debug_setup_debug_code:Nnn }
39433 ##1 {#1} {#2}
39434 }
39435 \group_end:
39436 }
39437 \cs_set_protected:Npn __debug_setup_debug_code:Nnn #1#2#3
39438 {
39439 \cs_gset_eq:cN { __debug_ \cs_to_str:N #1 } #1
39440 __debug_generate_parameter_list:NNN #1 \l__debug_tmpa_tl \l__debug_tmpb_tl
39441 \exp_args:Ne \tex_scantokens:D
39442 {
39443 \tex_global:D \cs_prefix_spec:N #1
39444 \tex_def:D \exp_not:N #1
39445 \tl_use:N \l__debug_tmpa_tl
39446 {
39447 \tl_to_str:n {#2}
39448 \exp_not:c { __debug_ \cs_to_str:N #1 }
39449 \tl_use:N \l__debug_tmpb_tl
39450 \tl_to_str:n {#3}
39451 }
39452 }
39453 }
39454 \cs_set_protected:Npn __debug_add_to_debug_code:Nnn #1#2#3
39455 {
39456 \use:e
39457 {
39458 \cs_set:Npn \exp_not:N __debug_tmp:w
39459 ##1 \tl_to_str:n { macro: }
39460 ##2 \tl_to_str:n { -> }
39461 ##3 \c_backslash_str \tl_to_str:n { __debug_ }
39462 \cs_to_str:N #1
39463 ##4 \s__debug_stop
39464 {
39465 \exp_not:N \exp_args:Ne \exp_not:N \tex_scantokens:D
39466 {
39467 \tex_global:D ##1
39468 \tex_def:D \exp_not:N #1 ##2
39469 {
39470 ##3 \tl_to_str:n {#2}
39471 \c_backslash_str __debug_ \cs_to_str:N #1
39472 ##4 \tl_to_str:n {#3}
39473 }
39474 }
39475 }
39476 }
39477 \exp_after:wN __debug_tmp:w \cs_meaning:N #1 \s__debug_stop
39478 }

Some functions, however, won’t work with the signature reading setup above because
their signature contains weird arguments. These functions need to be patched using
__kernel_patch_weird:nnn, which won’t make a copy of the function, rather it will
patch the debug code directly into it. This means that whatever argument the debug

1490

code uses must be actually used by the patched function.
39479 \cs_set_protected:Npn __kernel_patch_weird:nnn
39480 {
39481 \group_begin:
39482 \char_set_catcode_other:N \#
39483 __kernel_patch_weird_aux:nnn
39484 }
39485 \cs_set_protected:Npn __kernel_patch_weird_aux:nnn #1#2#3
39486 {
39487 \char_set_catcode_parameter:N \#
39488 \char_set_catcode_space:N \ %
39489 \tex_endlinechar:D -1 \scan_stop:
39490 \tl_map_inline:nn {#3}
39491 { __debug_patch_weird:Nnn ##1 {#1} {#2} }
39492 \group_end:
39493 }
39494 \cs_set_protected:Npn __debug_patch_weird:Nnn #1#2#3
39495 {
39496 \use:e
39497 {
39498 \tex_endlinechar:D -1 \scan_stop:
39499 \exp_not:N \tex_scantokens:D
39500 {
39501 \tex_global:D \cs_prefix_spec:N #1
39502 \tex_def:D \exp_not:N #1
39503 \cs_parameter_spec:N #1
39504 {
39505 \tl_to_str:n {#2}
39506 \cs_replacement_spec:N #1
39507 \tl_to_str:n {#3}
39508 }
39509 }
39510 }
39511 }

(End of definition for __kernel_patch:nnn and others.)
Patching the second argument to ensure it exists. This happens before we alter #1

so the ordering is correct. For many variable types such as int a low-level error occurs
when #2 is unknown, so adding a check is not needed.

39512 __kernel_patch:nnn
39513 { __kernel_chk_var_exist:N #2 }
39514 { }
39515 {
39516 \bool_set_eq:NN
39517 \bool_gset_eq:NN
39518 \clist_set_eq:NN
39519 \clist_gset_eq:NN
39520 \fp_set_eq:NN
39521 \fp_gset_eq:NN
39522 \prop_set_eq:NN
39523 \prop_gset_eq:NN
39524 \seq_set_eq:NN
39525 \seq_gset_eq:NN
39526 \str_set_eq:NN

1491

39527 \str_gset_eq:NN
39528 \tl_set_eq:NN
39529 \tl_gset_eq:NN
39530 }

Patching both second and third arguments.
39531 __kernel_patch:nnn
39532 {
39533 __kernel_chk_var_exist:N #2
39534 __kernel_chk_var_exist:N #3
39535 }
39536 { }
39537 {
39538 \clist_concat:NNN
39539 \clist_gconcat:NNN
39540 \prop_concat:NNN
39541 \prop_gconcat:NNN
39542 \seq_concat:NNN
39543 \seq_gconcat:NNN
39544 \str_concat:NNN
39545 \str_gconcat:NNN
39546 \tl_concat:NNN
39547 \tl_gconcat:NNN
39548 }

39549 \cs_gset_protected:Npn __kernel_tl_set:Nx { \cs_set_nopar:Npe }
39550 \cs_gset_protected:Npn __kernel_tl_gset:Nx { \cs_gset_nopar:Npe }

Patching where the first argument to a function needs scope-checking: either local
or global (so two lists).

39551 __kernel_patch:nnn
39552 { __kernel_chk_var_local:N #1 }
39553 { }
39554 {
39555 \bool_set:Nn
39556 \bool_set_eq:NN
39557 \bool_set_true:N
39558 \bool_set_false:N
39559 \box_set_eq:NN
39560 \box_set_eq_drop:NN
39561 \box_set_to_last:N
39562 \clist_clear:N
39563 \clist_set_eq:NN
39564 \dim_zero:N
39565 \dim_set:Nn
39566 \dim_set_eq:NN
39567 \dim_add:Nn
39568 \dim_sub:Nn
39569 \fp_set_eq:NN
39570 \int_zero:N
39571 \int_set_eq:NN
39572 \int_add:Nn
39573 \int_sub:Nn
39574 \int_incr:N
39575 \int_decr:N

1492

39576 \int_set:Nn
39577 \hbox_set:Nn
39578 \hbox_set_to_wd:Nnn
39579 \hbox_set:Nw
39580 \hbox_set_to_wd:Nnw
39581 \muskip_zero:N
39582 \muskip_set:Nn
39583 \muskip_add:Nn
39584 \muskip_sub:Nn
39585 \muskip_set_eq:NN
39586 \prop_clear:N
39587 \prop_concat:NNN
39588 \prop_pop:NnN
39589 \prop_pop:NnNT
39590 \prop_pop:NnNF
39591 \prop_pop:NnNTF
39592 \prop_put:Nnn
39593 \prop_put_if_not_in:Nnn
39594 \prop_put_from_keyval:Nn
39595 \prop_remove:Nn
39596 \prop_set_eq:NN
39597 \prop_set_from_keyval:Nn
39598 \seq_set_eq:NN
39599 \skip_zero:N
39600 \skip_set:Nn
39601 \skip_set_eq:NN
39602 \skip_add:Nn
39603 \skip_sub:Nn
39604 \str_clear:N
39605 \str_set_eq:NN
39606 \str_put_left:Nn
39607 \str_put_right:Nn
39608 __kernel_tl_set:Nx
39609 \tl_clear:N
39610 \tl_set_eq:NN
39611 \tl_put_left:Nn
39612 \tl_put_left:NV
39613 \tl_put_left:Nv
39614 \tl_put_left:Ne
39615 \tl_put_left:No
39616 \tl_put_right:Nn
39617 \tl_put_right:NV
39618 \tl_put_right:Nv
39619 \tl_put_right:Ne
39620 \tl_put_right:No
39621 \tl_build_begin:N
39622 \tl_build_put_right:Nn
39623 \tl_build_put_left:Nn
39624 \vbox_set:Nn
39625 \vbox_set_top:Nn
39626 \vbox_set_to_ht:Nnn
39627 \vbox_set:Nw
39628 \vbox_set_to_ht:Nnw
39629 \vbox_set_split_to_ht:NNn

1493

39630 }
39631 __kernel_patch:nnn
39632 { __kernel_chk_var_global:N #1 }
39633 { }
39634 {
39635 \bool_gset:Nn
39636 \bool_gset_eq:NN
39637 \bool_gset_true:N
39638 \bool_gset_false:N
39639 \box_gset_eq:NN
39640 \box_gset_eq_drop:NN
39641 \box_gset_to_last:N
39642 \cctab_gset:Nn
39643 \clist_gclear:N
39644 \clist_gset_eq:NN
39645 \dim_gset_eq:NN
39646 \dim_gzero:N
39647 \dim_gset:Nn
39648 \dim_gadd:Nn
39649 \dim_gsub:Nn
39650 \fp_gset_eq:NN
39651 \int_gzero:N
39652 \int_gset_eq:NN
39653 \int_gadd:Nn
39654 \int_gsub:Nn
39655 \int_gincr:N
39656 \int_gdecr:N
39657 \int_gset:Nn
39658 \hbox_gset:Nn
39659 \hbox_gset_to_wd:Nnn
39660 \hbox_gset:Nw
39661 \hbox_gset_to_wd:Nnw
39662 \muskip_gzero:N
39663 \muskip_gset:Nn
39664 \muskip_gadd:Nn
39665 \muskip_gsub:Nn
39666 \muskip_gset_eq:NN
39667 \prop_gclear:N
39668 \prop_gconcat:NNN
39669 \prop_gpop:NnN
39670 \prop_gpop:NnNT
39671 \prop_gpop:NnNF
39672 \prop_gpop:NnNTF
39673 \prop_gput:Nnn
39674 \prop_gput_if_not_in:Nnn
39675 \prop_gput_from_keyval:Nn
39676 \prop_gremove:Nn
39677 \prop_gset_eq:NN
39678 \prop_gset_from_keyval:Nn
39679 \seq_gset_eq:NN
39680 \skip_gzero:N
39681 \skip_gset:Nn
39682 \skip_gset_eq:NN
39683 \skip_gadd:Nn

1494

39684 \skip_gsub:Nn
39685 \str_gclear:N
39686 \str_gset_eq:NN
39687 \str_gput_left:Nn
39688 \str_gput_right:Nn
39689 __kernel_tl_gset:Nx
39690 \tl_gclear:N
39691 \tl_gset_eq:NN
39692 \tl_gput_left:Nn
39693 \tl_gput_left:NV
39694 \tl_gput_left:Nv
39695 \tl_gput_left:Ne
39696 \tl_gput_left:No
39697 \tl_gput_right:Nn
39698 \tl_gput_right:NV
39699 \tl_gput_right:Nv
39700 \tl_gput_right:Ne
39701 \tl_gput_right:No
39702 \tl_build_gbegin:N
39703 \tl_build_gput_right:Nn
39704 \tl_build_gput_left:Nn
39705 \vbox_gset:Nn
39706 \vbox_gset_top:Nn
39707 \vbox_gset_to_ht:Nnn
39708 \vbox_gset:Nw
39709 \vbox_gset_to_ht:Nnw
39710 \vbox_gset_split_to_ht:NNn
39711 }

Scoping for constants.
39712 __kernel_patch:nnn
39713 { __kernel_chk_var_scope:NN c #1 }
39714 { }
39715 {
39716 \bool_const:Nn
39717 \cctab_const:Nn
39718 \dim_const:Nn
39719 \int_const:Nn
39720 \intarray_const_from_clist:Nn
39721 \muskip_const:Nn
39722 \prop_const_from_keyval:Nn
39723 \prop_const_linked_from_keyval:Nn
39724 \skip_const:Nn
39725 \str_const:Nn
39726 \tl_const:Nn
39727 }

Flag functions.
39728 __kernel_patch:nnn
39729 { __kernel_chk_flag_exist:NN }
39730 { }
39731 {
39732 \flag_ensure_raised:N
39733 \flag_height:N
39734 \flag_if_raised:NT

1495

39735 \flag_if_raised:NF
39736 \flag_if_raised:NTF
39737 \flag_if_raised_p:N
39738 \flag_raise:N
39739 }

Various one-offs.
39740 __kernel_patch:nnn
39741 { __kernel_chk_cs_exist:N #1 }
39742 { }
39743 { \cs_generate_variant:Nn }
39744 __kernel_patch:nnn
39745 { __kernel_chk_var_scope:NN g #1 }
39746 { }
39747 { \cctab_new:N }
39748 __kernel_patch:nnn
39749 { __kernel_chk_var_scope:NN l #1 }
39750 { }
39751 { \flag_new:N }
39752 __kernel_patch:nnn
39753 {
39754 __kernel_chk_var_scope:NN l #1
39755 __kernel_chk_flag_exist:NN
39756 }
39757 { }
39758 { \flag_clear:N }
39759 __kernel_patch:nnn
39760 { __kernel_chk_var_scope:NN g #1 }
39761 { }
39762 { \intarray_new:Nn }
39763 __kernel_patch:nnn
39764 { __kernel_chk_var_scope:NN q #1 }
39765 { }
39766 { \quark_new:N }
39767 __kernel_patch:nnn
39768 { __kernel_chk_var_scope:NN s #1 }
39769 { }
39770 { \scan_new:N }

Patch various internal commands to log definitions of functions. First, a kernel
internal. Then internals from the cs, keys and msg modules.

39771 __kernel_patch:nnn
39772 { }
39773 {
39774 __kernel_debug_log:e
39775 { Defining~\token_to_str:N #1~ \msg_line_context: }
39776 }
39777 { __kernel_chk_if_free_cs:N }
39778 ⟨@@=cs⟩
39779 __kernel_patch_weird:nnn
39780 {
39781 \cs_if_free:NF #4
39782 {
39783 __kernel_debug_log:e
39784 {

1496

39785 Variant~\token_to_str:N #4~%
39786 already~defined;~ not~ changing~ it~ \msg_line_context:
39787 }
39788 }
39789 }
39790 { }
39791 { __cs_generate_variant:wwNN }
39792 ⟨@@=keys⟩
39793 __kernel_patch:nnn
39794 {
39795 \cs_if_exist:cF { \c__keys_code_root_str #1 }
39796 { __kernel_debug_log:e { Defining~key~#1~\msg_line_context: } }
39797 }
39798 { }
39799 { __keys_cmd_set_direct:nn }
39800 ⟨@@=msg⟩
39801 __kernel_patch:nnn
39802 { }
39803 {
39804 __kernel_debug_log:e
39805 { Defining~message~ #1 / #2 ~\msg_line_context: }
39806 }
39807 { __msg_chk_free:nn }

39808 ⟨@@=prg⟩

Internal functions from prg module.
39809 __kernel_patch_weird:nnn
39810 { __kernel_chk_cs_exist:c { #5 _p : #6 } }
39811 { }
39812 { __prg_set_eq_conditional_p_form:wNnnnn }
39813 __kernel_patch_weird:nnn
39814 { __kernel_chk_cs_exist:c { #5 : #6 TF } }
39815 { }
39816 { __prg_set_eq_conditional_TF_form:wNnnnn }
39817 __kernel_patch_weird:nnn
39818 { __kernel_chk_cs_exist:c { #5 : #6 T } }
39819 { }
39820 { __prg_set_eq_conditional_T_form:wNnnnn }
39821 __kernel_patch_weird:nnn
39822 { __kernel_chk_cs_exist:c { #5 : #6 F } }
39823 { }
39824 { __prg_set_eq_conditional_F_form:wNnnnn }

39825 ⟨@@=regex⟩

Internal functions from regex module.
39826 __kernel_patch:nnn
39827 {
39828 __regex_trace_push:nnN { regex } { 1 } __regex_escape_use:nnnn
39829 \group_begin:
39830 __kernel_tl_set:Nx \l__regex_internal_a_tl
39831 { __regex_trace_pop:nnN { regex } { 1 } __regex_escape_use:nnnn }
39832 \use_none:nnn
39833 }
39834 { }

1497

39835 { __regex_escape_use:nnn }
39836 __kernel_patch:nnn
39837 { __regex_trace_push:nnN { regex } { 1 } __regex_build:N }
39838 {
39839 __regex_trace_states:n { 2 }
39840 __regex_trace_pop:nnN { regex } { 1 } __regex_build:N
39841 }
39842 { __regex_build:N }
39843 __kernel_patch:nnn
39844 { __regex_trace_push:nnN { regex } { 1 } __regex_build_for_cs:n }
39845 {
39846 __regex_trace_states:n { 2 }
39847 __regex_trace_pop:nnN { regex } { 1 } __regex_build_for_cs:n
39848 }
39849 { __regex_build_for_cs:n }
39850 __kernel_patch:nnn
39851 {
39852 __regex_trace:nne { regex } { 2 }
39853 {
39854 regex~new~state~
39855 L=\int_use:N \l__regex_left_state_int ~ -> ~
39856 R=\int_use:N \l__regex_right_state_int ~ -> ~
39857 M=\int_use:N \l__regex_max_state_int ~ -> ~
39858 \int_eval:n { \l__regex_max_state_int + 1 }
39859 }
39860 }
39861 { }
39862 { __regex_build_new_state: }
39863 __kernel_patch:nnn
39864 { __regex_trace_push:nnN { regex } { 1 } __regex_group_aux:nnnnN }
39865 { __regex_trace_pop:nnN { regex } { 1 } __regex_group_aux:nnnnN }
39866 { __regex_group_aux:nnnnN }
39867 __kernel_patch:nnn
39868 { __regex_trace_push:nnN { regex } { 1 } __regex_branch:n }
39869 { __regex_trace_pop:nnN { regex } { 1 } __regex_branch:n }
39870 { __regex_branch:n }
39871 __kernel_patch:nnn
39872 {
39873 __regex_trace_push:nnN { regex } { 1 } __regex_match:n
39874 __regex_trace:nne { regex } { 1 } { analyzing~query~token~list }
39875 }
39876 { __regex_trace_pop:nnN { regex } { 1 } __regex_match:n }
39877 { __regex_match:n }
39878 __kernel_patch:nnn
39879 {
39880 __regex_trace_push:nnN { regex } { 1 } __regex_match_cs:n
39881 __regex_trace:nne { regex } { 1 } { analyzing~query~token~list }
39882 }
39883 { __regex_trace_pop:nnN { regex } { 1 } __regex_match_cs:n }
39884 { __regex_match_cs:n }
39885 __kernel_patch:nnn
39886 { __regex_trace:nne { regex } { 1 } { initializing } }
39887 { }
39888 { __regex_match_init: }

1498

39889 __kernel_patch:nnn
39890 {
39891 __regex_trace:nne { regex } { 2 }
39892 { state~\int_use:N \l__regex_curr_state_int }
39893 }
39894 { }
39895 { __regex_use_state: }
39896 __kernel_patch:nnn
39897 { __regex_trace_push:nnN { regex } { 1 } __regex_replacement:n }
39898 { __regex_trace_pop:nnN { regex } { 1 } __regex_replacement:n }
39899 { __regex_replacement:n }

39900 \group_end:

39901 ⟨@@=debug⟩

Patching arguments is a bit more involved: we do these one at a time. The basic
idea is the same, using a # token that is a string.

39902 \group_begin:
39903 \cs_set_protected:Npn __kernel_patch:Nn #1
39904 {
39905 \group_begin:
39906 \char_set_catcode_other:N \#
39907 __kernel_patch_aux:Nn #1
39908 }
39909 \cs_set_protected:Npn __kernel_patch_aux:Nn #1#2
39910 {
39911 \char_set_catcode_parameter:N \#
39912 \tex_endlinechar:D -1 \scan_stop:
39913 \exp_args:Ne \tex_scantokens:D
39914 {
39915 \tex_global:D \cs_prefix_spec:N #1 \tex_def:D \exp_not:N #1
39916 \cs_parameter_spec:N #1
39917 { \exp_args:No \tl_to_str:n { #1 #2 } }
39918 }
39919 \group_end:
39920 }

The functions here can get a bit repetitive, so we define a helper which can reuse
the same patch code repeatedly. The main part of the patch is the same, so we just have
to deal with the part which varies depending on the type of expression.

39921 \cs_set_protected:Npn __kernel_patch_eval:nn #1#2
39922 {
39923 \tl_map_inline:nn {#1}
39924 {
39925 \exp_args:NNe __kernel_patch:Nn ##1
39926 {
39927 { \c_hash_str 1 }
39928 {
39929 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 2 }
39930 \exp_not:n {#2}
39931 \exp_not:N ##1
39932 }
39933 }
39934 }
39935 }

1499

39936 ⟨@@=dim⟩
39937 __kernel_patch_eval:nn
39938 {
39939 \dim_set:Nn
39940 \dim_gset:Nn
39941 \dim_add:Nn
39942 \dim_gadd:Nn
39943 \dim_sub:Nn
39944 \dim_gsub:Nn
39945 \dim_const:Nn
39946 }
39947 { __dim_eval:w { } }
39948 ⟨@@=int⟩
39949 __kernel_patch_eval:nn
39950 {
39951 \int_set:Nn
39952 \int_gset:Nn
39953 \int_add:Nn
39954 \int_gadd:Nn
39955 \int_sub:Nn
39956 \int_gsub:Nn
39957 \int_const:Nn
39958 }
39959 { __int_eval:w { } }
39960 __kernel_patch_eval:nn
39961 {
39962 \muskip_set:Nn
39963 \muskip_gset:Nn
39964 \muskip_add:Nn
39965 \muskip_gadd:Nn
39966 \muskip_sub:Nn
39967 \muskip_gsub:Nn
39968 \muskip_const:Nn
39969 }
39970 { \tex_muexpr:D { \tex_mutoglue:D } }
39971 __kernel_patch_eval:nn
39972 {
39973 \skip_set:Nn
39974 \skip_gset:Nn
39975 \skip_add:Nn
39976 \skip_gadd:Nn
39977 \skip_sub:Nn
39978 \skip_gsub:Nn
39979 \skip_const:Nn
39980 }
39981 { \tex_glueexpr:D { } }

Patching expandable expressions, first the one-argument versions, then the two-
argument ones.

39982 \cs_set_protected:Npn __kernel_patch_eval:nn #1#2
39983 {
39984 \tl_map_inline:nn {#1}
39985 {
39986 \exp_args:NNe __kernel_patch:Nn ##1

1500

39987 {
39988 {
39989 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 1 }
39990 \exp_not:n {#2}
39991 \exp_not:N ##1
39992 }
39993 }
39994 }
39995 }
39996 ⟨@@=box⟩
39997 __kernel_patch_eval:nn
39998 { __box_dim_eval:n }
39999 { __box_dim_eval:w { } }
40000 ⟨@@=dim⟩
40001 __kernel_patch_eval:nn
40002 {
40003 \dim_eval:n
40004 \dim_to_decimal:n
40005 \dim_to_decimal_in_sp:n
40006 \dim_abs:n
40007 \dim_sign:n
40008 }
40009 { __dim_eval:w { } }
40010 ⟨@@=int⟩
40011 __kernel_patch_eval:nn
40012 {
40013 \int_eval:n
40014 \int_abs:n
40015 \int_sign:n
40016 }
40017 { __int_eval:w { } }
40018 __kernel_patch_eval:nn
40019 {
40020 \skip_eval:n
40021 \skip_horizontal:n
40022 \skip_vertical:n
40023 }
40024 { \tex_glueexpr:D { } }
40025 __kernel_patch_eval:nn
40026 {
40027 \muskip_eval:n
40028 }
40029 { \tex_muexpr:D { \tex_mutoglue:D } }
40030 \cs_set_protected:Npn __kernel_patch_eval:nn #1#2
40031 {
40032 \tl_map_inline:nn {#1}
40033 {
40034 \exp_args:NNe __kernel_patch:Nn ##1
40035 {
40036 {
40037 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 1 }
40038 \exp_not:n {#2}
40039 \exp_not:N ##1
40040 }

1501

40041 {
40042 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 2 }
40043 \exp_not:n {#2}
40044 \exp_not:N ##1
40045 }
40046 }
40047 }
40048 }
40049 ⟨@@=dim⟩
40050 __kernel_patch_eval:nn
40051 {
40052 \dim_max:nn
40053 \dim_min:nn
40054 }
40055 { __dim_eval:w { } }
40056 ⟨@@=int⟩
40057 __kernel_patch_eval:nn
40058 {
40059 \int_max:nn
40060 \int_min:nn
40061 \int_div_truncate:nn
40062 \int_mod:nn
40063 }
40064 { __int_eval:w { } }

Conditionals: three argument ones then one argument ones
40065 \cs_set_protected:Npn __kernel_patch_cond:nn #1#2
40066 {
40067 \clist_map_inline:nn { :nNnT , :nNnF , :nNnTF , _p:nNn }
40068 {
40069 \exp_args:Nce __kernel_patch:Nn { #1 ##1 }
40070 {
40071 {
40072 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 1 }
40073 \exp_not:n {#2}
40074 \exp_not:c { #1 ##1 }
40075 }
40076 { \c_hash_str 2 }
40077 {
40078 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 3 }
40079 \exp_not:n {#2}
40080 \exp_not:c { #1 ##1 }
40081 }
40082 }
40083 }
40084 }
40085 ⟨@@=dim⟩
40086 __kernel_patch_cond:nn { dim_compare } { __dim_eval:w { } }
40087 ⟨@@=int⟩
40088 __kernel_patch_cond:nn { int_compare } { __int_eval:w { } }
40089 \cs_set_protected:Npn __kernel_patch_cond:nn #1#2
40090 {
40091 \clist_map_inline:nn { :nT , :nF , :nTF , _p:n }
40092 {
40093 \exp_args:Nce __kernel_patch:Nn { #1 ##1 }

1502

40094 {
40095 {
40096 \exp_not:N __kernel_chk_expr:nNnN { \c_hash_str 1 }
40097 \exp_not:n {#2}
40098 \exp_not:c { #1 ##1 }
40099 }
40100 }
40101 }
40102 }
40103 ⟨@@=int⟩
40104 __kernel_patch_cond:nn { int_if_even } { __int_eval:w { } }
40105 __kernel_patch_cond:nn { int_if_odd } { __int_eval:w { } }

Step functions.
40106 ⟨@@=dim⟩
40107 __kernel_patch:Nn \dim_step_function:nnnN
40108 {
40109 {
40110 __kernel_chk_expr:nNnN {#1} __dim_eval:w { }
40111 \dim_step_function:nnnN
40112 }
40113 {
40114 __kernel_chk_expr:nNnN {#2} __dim_eval:w { }
40115 \dim_step_function:nnnN
40116 }
40117 {
40118 __kernel_chk_expr:nNnN {#3} __dim_eval:w { }
40119 \dim_step_function:nnnN
40120 }
40121 }
40122 ⟨@@=int⟩
40123 __kernel_patch:Nn \int_step_function:nnnN
40124 {
40125 {
40126 __kernel_chk_expr:nNnN {#1} __int_eval:w { }
40127 \int_step_function:nnnN
40128 }
40129 {
40130 __kernel_chk_expr:nNnN {#2} __int_eval:w { }
40131 \int_step_function:nnnN
40132 }
40133 {
40134 __kernel_chk_expr:nNnN {#3} __int_eval:w { }
40135 \int_step_function:nnnN
40136 }
40137 }

Odds and ends
40138 __kernel_patch:Nn \dim_to_fp:n { { (#1) } }

40139 \group_end:

40140 ⟨@@=skip⟩

This one has catcode changes so must be done by hand.
40141 \cs_set_protected:Npn __skip_tmp:w #1

1503

40142 {
40143 \prg_set_conditional:Npnn \skip_if_finite:n ##1 { p , T , F , TF }
40144 {
40145 \exp_after:wN __skip_if_finite:wwNw
40146 \skip_use:N \tex_glueexpr:D
40147 __kernel_chk_expr:nNnN
40148 {##1} \tex_glueexpr:D { } \skip_if_finite:n
40149 ; \prg_return_false:
40150 #1 ; \prg_return_true: \s__skip_stop
40151 }
40152 }
40153 \exp_args:No __skip_tmp:w { \tl_to_str:n { fil } }

40154 ⟨@@=msg⟩

Messages.
40155 \msg_new:nnnn { debug } { debug }
40156 { The~debugging~option~’#1’~does~not~exist~\msg_line_context:. }
40157 {
40158 The~functions~’\iow_char:N\\debug_on:n’~and~
40159 ’\iow_char:N\\debug_off:n’~only~accept~the~arguments~
40160 ’all’,~’check-declarations’,~’check-expressions’,~
40161 ’deprecation’,~’log-functions’,~not~’#1’.
40162 }
40163 \msg_new:nnn { debug } { expr } { ’#2’~in~#1 }
40164 \msg_new:nnnn { debug } { local-global }
40165 { Inconsistent~local/global~assignment }
40166 {
40167 \c__msg_coding_error_text_tl
40168 \if:w l #2 Local
40169 \else:
40170 \if:w g #2 Global \else: Constant \fi:
40171 \fi:
40172 \ %
40173 assignment~to~a~
40174 \if:w l #1 local
40175 \else:
40176 \if:w g #1 global \else: constant \fi:
40177 \fi:
40178 \ %
40179 variable~’#3’.
40180 }
40181 \msg_new:nnnn { debug } { non-declared-variable }
40182 { The~variable~#1~has~not~been~declared~\msg_line_context:. }
40183 {
40184 \c__msg_coding_error_text_tl
40185 Checking~is~active,~and~you~have~tried~do~so~something~like: \\
40186 \ \ \tl_set:Nn ~ #1 ~ \{ ~ ... ~ \} \\
40187 without~first~having: \\
40188 \ \ \tl_new:N ~ #1 \\
40189 \\
40190 LaTeX~will~continue,~creating~the~variable~where~it~is~the~one~being~set.
40191 }

__kernel_if_debug:TF Flip the switch for deprecated code.

1504

40192 \cs_set_protected:Npn __kernel_if_debug:TF #1#2 {#1}

(End of definition for __kernel_if_debug:TF.)

40193 ⟨/package⟩

1505

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\! . 20051, 20067
! . 279
\" 19267, 19270, 32178,

34497, 34515, 34539, 34545, 34549,
34555, 34559, 34565, 34571, 34578,
34579, 34585, 34589, 34591, 34700

\# . . 10674, 14188, 19267, 34434, 39420,
39425, 39482, 39487, 39906, 39911

\$ 5257, 14187, 19267, 19270, 34434
\% 10676, 14189, 19267, 34434
\& 9378, 14180, 19267, 19270
&& . 278
\’ 32178, 34497, 34509, 34536,

34543, 34547, 34552, 34557, 34560,
34562, 34569, 34574, 34575, 34582,
34587, 34590, 34598, 34599, 34646,
34647, 34654, 34655, 34666, 34667,
34672, 34673, 34701, 34702, 34724,
34725, 34728, 34729, 34730, 34731

\(. 31790
\) . 31790
* 9139, 9151, 13780,

13803, 19448, 19450, 19454, 19462
* . 279
** . 279
+ . 279
\, . 21580, 34446
\- . 150
- . 279
\. 32178, 34497, 34514,

34602, 34603, 34612, 34613, 34622,
34623, 34640, 34652, 34653, 34703,
34704, 34734, 34735, 34738, 34739

\/ . 149, 4140
/ . 279
\: . 14186
\::: 44, 411, 430, 2389, 2390, 2391,

2392, 2393, 2394, 2395, 2397, 2399,
2400, 2401, 2408, 2411, 2414, 2420,
2576, 2578, 2583, 2588, 2590, 2595,
2647, 2648, 2649, 2650, 2651, 2662

\::N 44, 2393, 2651
\::V . 44, 2414
\::V_unbraced 44, 2575
\::c . 44, 2395

\::e . 44, 2399
\::e_unbraced 44, 2575
\::f 44, 2401, 2650
\::f_unbraced 44, 2575, 2648
\::n 44, 821, 2392, 2647, 2648, 2651
\::o 44, 2397, 2649
\::o_unbraced

. . . . 44, 2575, 2647, 2649, 2650, 2651
\::p 44, 411, 2394
\::v . 44, 2414
\::v_unbraced 44, 2575
\::x . 44, 2408
\::x_unbraced 44, 2575, 2662
< . 279
\= 21581, 32178,

34497, 34512, 34592, 34593, 34608,
34609, 34631, 34632, 34633, 34660,
34661, 34686, 34687, 34740, 34741

= . 279
> . 279
? . 279
?: . 278
\??? . 91, 641
\\ . 2307, 3488, 3491, 3492, 3516, 3517,

3524, 3525, 4041, 4270, 4594, 4595,
5991, 5998, 5999, 6000, 6124, 7950,
7954, 7959, 7993, 8002, 8006, 8011,
8031, 8033, 8034, 8036, 8039, 8041,
8046, 8048, 8050, 8055, 8059, 8062,
8066, 8068, 8072, 8074, 8080, 8082,
8086, 8088, 8092, 8097, 8099, 8141,
8143, 8148, 8150, 8156, 8161, 8162,
8166, 8170, 8180, 8183, 8187, 8188,
8192, 8200, 8226, 8271, 9281, 9299,
9301, 9306, 9307, 9331, 9341, 9348,
9363, 9784, 9792, 9799, 9811, 9812,
9827, 9828, 9835, 9855, 9858, 9859,
9891, 9919, 9952, 9953, 9966, 10023,
10024, 10032, 10047, 10048, 10077,
10088, 10092, 10098, 10105, 10128,
10279, 10679, 11665, 11669, 11670,
11672, 11678, 11680, 11685, 11686,
11688, 11689, 11691, 11693, 11705,
11715, 11717, 11718, 11719, 11817,
11818, 14182, 14739, 14740, 14743,
15065, 15068, 15069, 15070, 15071,

1506

Index 1507

15076, 15082, 15087, 15094, 15253,
15256, 15257, 15258, 15260, 15266,
15271, 15276, 15427, 15434, 19267,
22854, 22866, 22872, 23861, 23864,
23865, 23866, 23873, 23876, 23877,
30478, 30479, 30486, 30862, 30864,
30865, 30868, 30870, 30871, 30874,
30876, 30877, 30878, 30882, 30889,
34432, 36802, 38406, 38408, 38435,
38437, 38457, 38459, 38480, 38482,
38489, 38491, 38498, 38500, 38506,
38519, 38521, 39288, 40158, 40159,
40185, 40186, 40187, 40188, 40189

\{ 4543, 7954, 7959,
8006, 8048, 8050, 8062, 8099, 8188,
8192, 10673, 14183, 14744, 19267,
31830, 31831, 31832, 34434, 40186

\} 64, 7953, 7959, 8063, 8099, 8188, 8192,
10675, 14184, 14744, 19267, 31830,
31831, 31832, 31833, 34434, 40186

\␣ 64, 66, 69, 71, 148, 1801,
3538, 3729, 4101, 4488, 4493, 4537,
4547, 4732, 7210, 9126, 9829, 10009,
10680, 11689, 13780, 13803, 14744,
15068, 15069, 15070, 19267, 19388,
19391, 30905, 30911, 30922, 30948,
31332, 31828, 31829, 34445, 39426,
39488, 40172, 40178, 40186, 40188

\^ 59, 1955, 2685, 3588, 3608,
3685, 3688, 4489, 4494, 4495, 4496,
4497, 4500, 4511, 4548, 4602, 4604,
4606, 4608, 4610, 4612, 5256, 7161,
7164, 7178, 7181, 7190, 7193, 7196,
7199, 7213, 7216, 8616, 8619, 9385,
10588, 10627, 14185, 14858, 14859,
15194, 15195, 15376, 15377, 15378,
19267, 19270, 19272, 19278, 19325,
27801, 32178, 34497, 34510, 34537,
34544, 34548, 34553, 34558, 34563,
34570, 34576, 34577, 34583, 34588,
34600, 34601, 34618, 34619, 34626,
34627, 34641, 34642, 34643, 34674,
34675, 34696, 34697, 34698, 34699

^ . 279
_ 14191, 19267, 19270, 34434
\‘ . 32178,

34497, 34508, 34535, 34542, 34546,
34551, 34556, 34561, 34568, 34572,
34573, 34581, 34586, 34726, 34727

|| . 278
\~ 64, 4533, 4537, 4543,

10677, 12424, 14190, 19267, 19270,
32178, 34438, 34497, 34511, 34538,
34550, 34554, 34564, 34580, 34584,

34628, 34629, 34630, 34684, 34685

A
\A . 13781, 13804
\AA 32182, 33764, 34458
\aa 32182, 33764, 34468
\above . 151
\abovedisplayshortskip 152
\abovedisplayskip 153
\abovewithdelims 154
abs . 279
\accent . 155
acos . 282
acosd . 282
acot . 283
acotd . 283
acsc . 282
acscd . 282
\adjdemerits 156
\adjustspacing 931
\advance . 157
\AE 32183, 33765, 34459, 34728
\ae 32183, 33765, 34469, 34729
\afterassignment 158
\aftergroup . 159
\alignmark . 779
\aligntab . 780
asec . 282
asecd . 282
asin . 282
asind . 282
atan . 283
atand . 283
\AtBeginDocument 682, 11577
\atop . 160
\atopwithdelims 161
\attribute . 781
\attributedef 782
\automaticdiscretionary 783
\automatichyphenmode 785
\automatichyphenpenalty 786
\autospacing 1133
\autoxspacing 1134

B
\b 32178, 34497, 34522
\babelshorthand 31785
\badness . 162
\baselineskip 163
\batchmode . 164
\begin 10129, 31783, 31793, 34429
\begincsname 788
\begingroup 3, 7, 12, 16, 35, 63, 68, 142, 165
\beginL . 473

Index 1508

\beginR . 474
\belowdisplayshortskip 166
\belowdisplayskip 167
\bfseries . 34408
\binoppenalty 168
bitset commands:

\bitset_addto_named_index:Nn . . .
. 291, 30307, 30307

\bitset_clear:N
. 292, 30397, 30397, 30405

\bitset_gclear:N
. 292, 30397, 30401, 30406

\bitset_gset_false:Nn
. 292, 30363, 30369, 30396

\bitset_gset_true:Nn
. 292, 30363, 30365, 30394

\bitset_if_exist:N 30313, 30315
\bitset_if_exist:NTF 292, 30312
\bitset_if_exist_p:N 292, 30312
\bitset_item:Nn

. 292, 30429, 30429, 30444
\bitset_log:N 293, 30445, 30447, 30448
\bitset_log_named_index:N

. 293, 30460, 30463, 30465
\bitset_new:N 291, 30290, 30290, 30305
\bitset_new:Nn 291, 30290, 30296, 30306
\bitset_set_false:Nn

. 292, 30363, 30367, 30395
\bitset_set_true:Nn

. 292, 30363, 30363, 30393
\bitset_show:N

. 292, 293, 30445, 30445, 30446
\bitset_show_named_index:N

. 293, 30460, 30460, 30462
\bitset_to_arabic:N 290,

293, 1261, 30407, 30407, 30425, 30456
\bitset_to_bin:N

291, 293, 30407, 30421, 30426, 30455
\bitset_use:N 293, 30427, 30427, 30428

bitset internal commands:
__bitset_gset_false:Nn

. 30316, 30322, 30370
__bitset_gset_true:Nn

. 30316, 30318, 30366
\l__bitset_internal_int

. 30347, 30351, 30355
__bitset_set:NNn

. . 30364, 30366, 30368, 30370, 30371
__bitset_set:NNnN 30316,

30317, 30319, 30321, 30323, 30324
__bitset_set_aux:NNn 30363
__bitset_set_false:Nn

. 30316, 30320, 30368

__bitset_set_true:Nn
. 30316, 30316, 30364

__bitset_show:NN 30445, 30447, 30449
__bitset_show_named_index:NN . . .

. 30461, 30464, 30466
__bitset_test_digits:n 30348
__bitset_test_digits:nTF

. 30348, 30381
__bitset_test_digits:w

. 30348, 30350, 30362
__bitset_test_digits_end:

. 30352, 30354, 30361, 30362
__bitset_test_digits_end:n . . 30348
__bitset_to_int:nN

. 30407, 30412, 30416, 30419
\bodydir . 789
\bodydirection 790
bool commands:

\bool_case:n
. 73, 8537, 8543, 38976, 38977

\bool_case:nTF
73, 8537, 8537, 8539, 8541, 38978,

38979, 38980, 38981, 38982, 38983
\bool_case_true:n 38976, 38977
\bool_case_true:nTF

. 38976, 38979, 38981, 38983
\bool_const:Nn

. 67, 8280, 8280, 8285, 39716
\bool_do_until:Nn

. 71, 8503, 8505, 8506, 8508
\bool_do_until:nn 72, 8509, 8530, 8533
\bool_do_while:Nn

. 71, 8503, 8503, 8504, 8507
\bool_do_while:nn 72, 8509, 8517, 8520
.bool_gset:N 246, 22142
\bool_gset:Nn

. 68, 8302, 8307, 8313, 39635
\bool_gset_eq:NN 68, 4479,

6645, 8298, 8299, 8301, 39517, 39636
\bool_gset_false:N 67, 6593, 8286,

8292, 8297, 8318, 14396, 14405, 39638
.bool_gset_inverse:N 246, 22150
\bool_gset_inverse:N

. 68, 8314, 8317, 8319
\bool_gset_true:N

. 67, 6658, 8286, 8290,
8296, 8318, 8854, 14386, 38570,
38591, 38671, 38754, 38972, 39637

\bool_if:N 8325, 8333
\bool_if:n 8376
\bool_if:NTF 68, 108, 2151,

5372, 5381, 5822, 5995, 6081, 6099,
6117, 6268, 6487, 6495, 6727, 7337,
7360, 7433, 7660, 7827, 7833, 7874,

Index 1509

8244, 8249, 8315, 8318, 8325, 8336,
8395, 8498, 8500, 8504, 8506, 8852,
10894, 10901, 14400, 14409, 20274,
21617, 21712, 21801, 22063, 22072,
22118, 22363, 22474, 22515, 22531,
22533, 22538, 22545, 22609, 22615,
22650, 22660, 22688, 32616, 35974,
36669, 37014, 38575, 38803, 39358

\bool_if:nTF 68, 70, 72, 920,
6084, 8342, 8376, 8448, 8455, 8474,
8481, 8490, 8511, 8520, 8524, 8533,
8552, 8631, 11775, 12119, 12124, 16827

\bool_if_exist:N 8372, 8374
\bool_if_exist:NTF . . 69, 8372, 21842
\bool_if_exist_p:N 69, 8372
\bool_if_p:N 68, 8325
\bool_if_p:n

. 70, 597, 8283, 8305, 8310, 8376,
8384, 8384, 8455, 8481, 8487, 8491

\bool_lazy_all:n 8437
\bool_lazy_all:nTF

. 70, 5655, 8435, 38826
\bool_lazy_all_p:n 70, 8435
\bool_lazy_and:nn 8452
\bool_lazy_and:nnTF

70, 8452, 8706, 8993, 10441, 11650,
30683, 31526, 31794, 31948, 32055,
32117, 32647, 32791, 33559, 33622,
33660, 33907, 34314, 35692, 36582,
36996, 38563, 38764, 38835, 38847

\bool_lazy_and_p:nn
. 70, 8452, 32605, 33714, 38775, 38787

\bool_lazy_any:n 8463
\bool_lazy_any:nTF 70, 71,

8461, 11253, 14238, 14512, 14536,
14558, 14728, 31659, 31808, 33332

\bool_lazy_any_p:n
. 70, 71, 8461, 31951, 33566

\bool_lazy_or:nn 8478
\bool_lazy_or:nnTF

. . 70, 71, 3594, 3616, 8478, 8689,
8817, 11198, 31561, 32108, 32247,
32602, 32893, 32957, 33082, 33401,
33641, 33712, 33961, 34129, 34353,
37016, 37346, 38772, 38784, 38843

\bool_lazy_or_p:nn 71, 8478, 32120,
32794, 33561, 33624, 33663, 34317

\bool_log:N 68, 8349, 8351, 8352
\bool_log:n 68, 8345, 8347
\bool_new:N 67, 4338, 4779,

6562, 6563, 6565, 6566, 6567, 8278,
8278, 8279, 8368, 8369, 8370, 8371,
8849, 10622, 14249, 21456, 21684,

21685, 21692, 21693, 21698, 21701,
21842, 32198, 35565, 36827, 38562

\bool_not_p:n 71, 8487, 8487
.bool_set:N 246, 22142
\bool_set:Nn

68, 589, 593, 8302, 8302, 8312, 39555
\bool_set_eq:NN 68, 4473, 6806, 8298,

8298, 8300, 20280, 20282, 39516, 39556
\bool_set_false:N 67, 122,

5346, 5551, 6537, 6608, 6622, 6684,
6726, 8286, 8288, 8295, 8315, 10728,
10870, 10878, 10886, 10896, 10903,
21742, 22379, 22380, 22381, 22391,
22392, 22407, 22427, 22428, 22447,
22457, 22522, 35970, 36667, 39558

.bool_set_inverse:N 246, 22150
\bool_set_inverse:N

. 68, 8314, 8314, 8316
\bool_set_true:N

. 67, 135, 5351, 5555, 6531,
6724, 6805, 8286, 8286, 8294, 8315,
10856, 21737, 22390, 22408, 22409,
22429, 22444, 22452, 22527, 32199,
35988, 36010, 36041, 37539, 39557

\bool_show:N 68, 8349, 8349, 8350
\bool_show:n 68, 8345, 8345
\bool_to_str:N . . 68, 8334, 8334, 8339
\bool_to_str:n

. 68, 8334, 8340, 8346, 8348
\bool_until_do:Nn

. 71, 8497, 8499, 8500, 8502
\bool_until_do:nn 72, 8509, 8522, 8527
\bool_while_do:Nn

. 71, 8497, 8497, 8498, 8501
\bool_while_do:nn 72, 8509, 8509, 8514
\bool_xor:nn 8488
\bool_xor:nnTF 71, 8488
\bool_xor_p:nn 71, 8488
\c_false_bool 67, 69,

393, 423, 575, 590, 593–595, 1650,
1702, 1703, 1734, 1758, 1763, 1795,
1814, 2088, 2095, 2742, 3002, 5034,
5052, 5244, 5291, 5590, 5792, 5809,
5822, 6018, 6154, 6655, 7762, 7771,
7780, 7790, 7852, 7860, 8278, 8289,
8293, 8360, 8395, 8426, 8449, 8455,
8473, 8642, 20276, 22086, 22088,
22095, 22100, 38578, 38831, 39346

\g_tmpa_bool 69, 8368
\l_tmpa_bool 69, 8368
\g_tmpb_bool 69, 8368
\l_tmpb_bool 69, 8368
\c_true_bool 67, 69, 393, 590, 593–

595, 714, 1702, 1734, 1795, 1813,

Index 1510

2109, 4345, 4476, 4917, 4991, 5048,
5234, 5236, 5238, 5240, 5242, 5252,
5290, 5297, 5790, 5800, 5822, 5823,
6016, 6137, 6139, 6162, 6254, 6425,
6436, 6451, 6612, 7384, 7501, 7614,
8287, 8291, 8359, 8395, 8427, 8428,
8447, 8475, 8481, 8548, 8636, 20275,
20280, 22093, 22102, 38831, 39351

bool internal commands:
__bool_!:Nw 8406
__bool_&_0: 8418
__bool_&_1: 8418
__bool_&_2: 8418
__bool_(:Nw 8411
__bool_)_0: 8418
__bool_)_1: 8418
__bool_)_2: 8418
__bool_case:NnTF 8537
__bool_case:nTF

. 8538, 8540, 8542, 8544, 8545
__bool_case:w 8537, 8547, 8550, 8554
__bool_case_end:nw 8553, 8556
__bool_choose:NNN

. 8413, 8417, 8418, 8418
__bool_get_next:NN

594, 8392, 8396, 8396, 8408, 8414,
8429, 8430, 8431, 8432, 8433, 8434

__bool_if_p:n 8384, 8384, 8385
__bool_if_p_aux:w

. 593, 8384, 8387, 8394
__bool_if_recursion_tail_stop_-

do:nn 8324, 8324, 8447, 8473
__bool_lazy_all:n

. 8435, 8436, 8445, 8450
__bool_lazy_any:n

. 8461, 8462, 8471, 8476
__bool_p:Nw 8416
__bool_show:NN 8349, 8349, 8351, 8353
__bool_use_i_delimit_by_q_-

recursion_stop:nw
. 8322, 8322, 8449, 8475

__bool_|_0: 8418
__bool_|_1: 8418
__bool_|_2: 8418

\botmark . 169
\botmarks . 475
\boundary . 791
\box . 170
box commands:

\box_autosize_to_wd_and_ht:Nnn . .
. 316, 35361, 35361, 35363

\box_autosize_to_wd_and_ht_plus_-
dp:Nnn . . . 316, 35361, 35367, 35372

\box_clear:N 307, 308, 34759, 34759,
34763, 34766, 35600, 35687, 35764

\box_clear_new:N
. 308, 34765, 34765, 34769

\box_dp:N 309, 1366,
24349, 34787, 34788, 34791, 34794,
34799, 34803, 35106, 35235, 35350,
35369, 35375, 35449, 35456, 35461,
35801, 35802, 35914, 35919, 35947,
35961, 36132, 36410, 36431, 36734

\box_gautosize_to_wd_and_ht:Nnn .
. 316, 35361, 35364, 35366

\box_gautosize_to_wd_and_ht_-
plus_dp:Nnn 316, 35361, 35373, 35378

\box_gclear:N
307, 34759, 34761, 34764, 34768, 35609

\box_gclear_new:N
. 308, 34765, 34767, 34770

\box_gresize_to_ht:Nn
. 316, 35254, 35257, 35259

\box_gresize_to_ht_plus_dp:Nn . . .
. 317, 35254, 35277, 35279

\box_gresize_to_wd:Nn
. 317, 35254, 35297, 35299

\box_gresize_to_wd_and_ht:Nnn . . .
. 317, 35254, 35314, 35316

\box_gresize_to_wd_and_ht_plus_-
dp:Nnn
. . . . 317, 35205, 35211, 35216, 36246

\box_grotate:Nn
. . . . 318, 35087, 35090, 35092, 36081

\box_gscale:Nnn
. . . . 318, 35332, 35335, 35337, 36288

\box_gset_clipped:N
. 318, 35429, 35432, 35434

\box_gset_dp:Nn
. 309, 34796, 34802, 34804

\box_gset_eq:NN
. 308, 34762, 34771, 34773,
34776, 35439, 35490, 35786, 39639

\box_gset_eq_drop:NN
. . . . 315, 34777, 34779, 34782, 39640

\box_gset_ht:Nn
. 309, 34796, 34811, 34813

\box_gset_to_last:N
. . . . 310, 34850, 34852, 34855, 39641

\box_gset_trim:Nnnnn
. 318, 35435, 35438, 35440

\box_gset_viewport:Nnnnn
. 318, 35486, 35489, 35491

\box_gset_wd:Nn
. 309, 34796, 34820, 34822

\box_ht:N 309, 1366,
24348, 34787, 34787, 34790, 34794,

Index 1511

34808, 34812, 35105, 35234, 35349,
35362, 35365, 35369, 35375, 35466,
35474, 35479, 35682, 35759, 35803,
35804, 35905, 35910, 35947, 35954,
36126, 36130, 36409, 36430, 36732

\box_ht_plus_dp:N
309, 34793, 34793, 34795, 35805, 35806

\box_if_empty:N 34846, 34848
\box_if_empty:NTF 310, 34846
\box_if_empty_p:N 310, 34846
\box_if_exist:N 34783, 34785
\box_if_exist:NTF

. . . . 308, 34766, 34768, 34783, 34881
\box_if_exist_p:N 308, 34783
\box_if_horizontal:N . . 34838, 34842
\box_if_horizontal:NTF . . . 310, 34838
\box_if_horizontal_p:N . . . 310, 34838
\box_if_vertical:N 34840, 34844
\box_if_vertical:NTF 310, 34838
\box_if_vertical_p:N 310, 34838
\box_log:N . . . 311, 34867, 34867, 34869
\box_log:Nnn

. . . . 311, 34867, 34868, 34870, 34878
\box_move_down:nn

. 308, 1384, 34827, 34833,
35453, 35461, 35504, 35511, 36105

\box_move_left:nn . . 308, 34827, 34827
\box_move_right:nn . 308, 34827, 34829
\box_move_up:nn

. 308, 34827, 34831, 35470,
35479, 35518, 35531, 36450, 36729

\box_new:N
. . 307, 308, 34753, 34753, 34758,
34766, 34768, 34856, 34857, 34858,
34859, 34860, 35086, 35541, 35616

\box_resize_to_ht:Nn
. 316, 35254, 35254, 35256

\box_resize_to_ht_plus_dp:Nn . . .
. 317, 35254, 35274, 35276

\box_resize_to_wd:Nn
. 317, 35254, 35294, 35296

\box_resize_to_wd_and_ht:Nnn . . .
. 317, 35254, 35311, 35313

\box_resize_to_wd_and_ht_plus_-
dp:Nnn
. . . . 317, 35205, 35205, 35210, 36239

\box_rotate:Nn
. . . . 318, 35087, 35087, 35089, 36078

\box_scale:Nnn
. . . . 318, 35332, 35332, 35334, 36285

\box_set_clipped:N
. 318, 35429, 35429, 35431

\box_set_dp:Nn 309,
1385, 34796, 34796, 34801, 35132,

35404, 35407, 35456, 35464, 35507,
35512, 36110, 36410, 36431, 36733

\box_set_eq:NN 308,
34760, 34771, 34771, 34775, 35436,
35487, 35774, 36433, 36737, 39559

\box_set_eq_drop:NN
. . . . 315, 34777, 34777, 34781, 39560

\box_set_ht:Nn
. 309, 34796, 34805, 34810, 35131,
35403, 35408, 35473, 35482, 35521,
35534, 36108, 36409, 36430, 36731

\box_set_to_last:N
. . . . 310, 34850, 34850, 34854, 39561

\box_set_trim:Nnnnn
. 318, 35435, 35435, 35437

\box_set_viewport:Nnnnn
. 318, 35486, 35486, 35488

\box_set_wd:Nn
. 309, 34796, 34814, 34819, 35133,
35420, 36111, 36411, 36432, 36735

\box_show:N
. . 311, 314, 324, 34861, 34861, 34863

\box_show:Nnn 311, 325, 1418, 34861,
34862, 34864, 34866, 36771, 36774

\box_use:N 308, 34823,
34824, 34826, 35120, 35446, 35497,
36106, 36447, 36450, 36726, 36729

\box_use_drop:N 315, 34823, 34823,
34825, 35135, 35415, 35424, 35454,
35462, 35471, 35480, 35505, 35511,
35519, 35532, 36113, 36533, 36661

\box_wd:N 309, 24347, 34787,
34789, 34792, 34817, 34821, 35107,
35236, 35351, 35383, 35498, 35807,
35808, 35909, 35918, 35936, 35941,
36129, 36137, 36331, 36338, 36364,
36411, 36432, 36448, 36727, 36736

\c_empty_box
. 307, 310, 34760, 34762, 34856

\g_tmpa_box 310, 34857
\l_tmpa_box 310, 34857
\g_tmpb_box 310, 34857
\l_tmpb_box 310, 34857

box internal commands:
\l__box_angle_fp

. . 35075, 35097, 35098, 35099, 35128
__box_autosize:NnnnN . . . 35361,

35362, 35365, 35369, 35375, 35379
__box_backend_clip:N . 35430, 35433
__box_backend_rotate:Nn 35126
__box_backend_scale:Nnn 35396
\l__box_bottom_dim 35078,

35106, 35163, 35167, 35172, 35178,

Index 1512

35183, 35187, 35196, 35198, 35227,
35235, 35244, 35288, 35350, 35356

\l__box_bottom_new_dim
35082, 35132, 35164, 35175, 35186,

35197, 35243, 35355, 35404, 35408
\l__box_cos_fp 35076,

35099, 35111, 35116, 35143, 35155
__box_dim_eval:n

1366, 34748, 34749, 34752, 34794,
34799, 34803, 34808, 34812, 34817,
34821, 34828, 34830, 34832, 34834,
34913, 34918, 34945, 34951, 34959,
34983, 35017, 35022, 35050, 35056,
35067, 35072, 35507, 35531, 39998

__box_dim_eval:w
. 34748, 34748, 34750, 39999

\l__box_internal_box 35086, 35120,
35121, 35127, 35131, 35132, 35133,
35135, 35394, 35403, 35404, 35407,
35408, 35415, 35420, 35424, 35443,
35451, 35454, 35456, 35459, 35462,
35464, 35466, 35468, 35471, 35473,
35474, 35477, 35479, 35480, 35482,
35484, 35494, 35502, 35505, 35507,
35510, 35511, 35512, 35516, 35519,
35521, 35529, 35532, 35534, 35536

\l__box_left_dim . . . 35078, 35108,
35163, 35165, 35174, 35178, 35183,
35189, 35194, 35198, 35237, 35352

\l__box_left_new_dim 35082, 35123,
35134, 35166, 35177, 35188, 35199

__box_log:nNnn . 34867, 34871, 34872
__box_resize:N . . . 35205, 35229,

35239, 35271, 35291, 35308, 35329
__box_resize:NNN

. . 35205, 35241, 35243, 35245, 35249
__box_resize_common:N

. 35247, 35359, 35392, 35392
__box_resize_set_corners:N

. 35205, 35221,
35232, 35264, 35284, 35304, 35321

__box_resize_to_ht:NnN
. 35254, 35255, 35258, 35260

__box_resize_to_ht_plus_dp:NnN .
. 35254, 35275, 35278, 35280

__box_resize_to_wd:NnN
. 35254, 35295, 35298, 35300

__box_resize_to_wd_and_ht:NnnN .
. 35312, 35315, 35317

__box_resize_to_wd_and_ht_plus_-
dp:NnnN . 35205, 35207, 35213, 35217

__box_resize_to_wd_ht:NnnN . . 35254
\l__box_right_dim . . 35078, 35107,

35161, 35167, 35172, 35176, 35185,

35187, 35196, 35200, 35223, 35236,
35242, 35306, 35323, 35351, 35358

\l__box_right_new_dim . . . 35082,
35134, 35168, 35179, 35190, 35201,
35241, 35357, 35412, 35414, 35420

__box_rotate:N . 35087, 35100, 35103
__box_rotate:NnN

. 35087, 35088, 35091, 35093
__box_rotate_quadrant_four: . . .

. 35087, 35118, 35192
__box_rotate_quadrant_one:

. 35087, 35112, 35159
__box_rotate_quadrant_three: . . .

. 35087, 35117, 35181
__box_rotate_quadrant_two:

. 35087, 35113, 35170
__box_rotate_xdir:nnN

35087, 35137, 35165, 35167, 35176,
35178, 35187, 35189, 35198, 35200

__box_rotate_ydir:nnN
35087, 35148, 35161, 35163, 35172,

35174, 35183, 35185, 35194, 35196
__box_scale:N

. 35332, 35344, 35347, 35389
__box_scale:NnnN

. 35332, 35333, 35336, 35338
\l__box_scale_x_fp 35203,

35222, 35242, 35270, 35290, 35305,
35307, 35322, 35342, 35358, 35383,
35386, 35387, 35388, 35398, 35410

\l__box_scale_y_fp
. . . . 35203, 35224, 35244, 35246,
35265, 35270, 35285, 35290, 35307,
35324, 35343, 35354, 35356, 35384,
35386, 35387, 35388, 35399, 35401

__box_set_trim:NnnnnN
. 35435, 35436, 35439, 35441

__box_set_viewport:NnnnnN
. 35487, 35490, 35492

__box_show:NNnn
. . 34865, 34875, 34879, 34879, 34896

\l__box_sin_fp
. . 35076, 35098, 35109, 35144, 35154

\l__box_top_dim 35078, 35105, 35161,
35165, 35174, 35176, 35185, 35189,
35194, 35200, 35227, 35234, 35246,
35268, 35288, 35327, 35349, 35354

\l__box_top_new_dim
35082, 35131, 35162, 35173, 35184,

35195, 35245, 35353, 35403, 35407
__box_viewport:NnnnnN 35486

\boxdir . 792
\boxdirection 793
\boxmaxdepth 171

Index 1513

bp . 285
\breakafterdirmode 794
\brokenpenalty 172

C
\c . 32178,

34497, 34520, 34541, 34567, 34624,
34625, 34644, 34645, 34648, 34649,
34656, 34657, 34668, 34669, 34676,
34677, 34680, 34681, 34736, 34737

\catcode 66, 85, 86, 87, 88, 89, 90, 91, 92,
96, 97, 98, 99, 100, 101, 102, 103, 173

\catcodetable 795
cc . 285
cctab commands:

\cctab_begin:N . . 295, 1264, 1265,
1267, 1269–1272, 30648, 30648, 30661

\cctab_const:Nn
. . . 294, 295, 1265, 30781, 30781,
30791, 30793, 30800, 30842, 39717

\cctab_end: 295,
1264, 1265, 1268–1272, 30662, 30662

\cctab_gsave_current:N
. 294, 30584, 30584, 30589

\cctab_gset:Nn 294,
295, 1274, 30572, 30572, 30583, 39642

\cctab_if_exist:N 30736, 30738
\cctab_if_exist:NTF 295, 30736, 30743
\cctab_if_exist_p:N 295, 30736
\cctab_item:Nn 295, 30720, 30720, 30735
\cctab_new:N 294, 1264,

1265, 1274, 30503, 30505, 30525,
30544, 30792, 30853, 30854, 39747

\cctab_select:N . . . 129, 130, 294,
295, 14469, 30577, 30600, 30600,
30602, 30786, 30795, 30802, 30844

\c_code_cctab 295, 14469, 30805
\c_document_cctab . . . 295, 1267, 30805
\c_initex_cctab

. 296, 30577, 30786, 30792
\c_other_cctab 296, 30792
\g_tmpa_cctab 296, 30853
\g_tmpb_cctab 296, 30853

cctab internal commands:
\g__cctab_allocate_int

. 30499, 30641, 30643, 30645
__cctab_begin_aux:

. . . 1269, 30629, 30631, 30639, 30653
__cctab_chk_group_begin:n

. . . 1270, 30654, 30673, 30673, 30679
__cctab_chk_group_end:n

. 1270, 30667, 30673, 30680
__cctab_chk_if_valid:N 30740

__cctab_chk_if_valid:NTF
. . 30574, 30586, 30601, 30650, 30740

__cctab_chk_if_valid_aux:NTF . . .
. . 30740, 30745, 30761, 30767, 30774

\g__cctab_endlinechar_prop
. . . 1266, 30502, 30553, 30555, 30608

\g__cctab_group_seq
. 30498, 30675, 30682

__cctab_gset:n 30545, 30547, 30561,
30579, 30587, 30657, 30788, 30840

__cctab_gset_aux:n
. 30545, 30548, 30549

__cctab_gstore:Nnn
30503, 30523, 30532, 30533, 30534,

30535, 30537, 30538, 30540, 30541
\l__cctab_internal_a_tl

. 1269, 1270, 30500, 30608, 30609,
30634, 30644, 30652, 30655, 30656,
30657, 30664, 30666, 30668, 30669

\l__cctab_internal_b_tl
. 30500, 30682, 30686, 30693

\g__cctab_internal_cctab 30590
__cctab_internal_cctab_name: . . .

. 30590,
30593, 30611, 30612, 30613, 30614

__cctab_item:nN . 30721, 30724, 30728
__cctab_nesting_number:N

. . 30655, 30668, 30698, 30699, 30701
__cctab_nesting_number:w

. 30698, 30703, 30708
__cctab_new:N . 1265, 1269, 30503,

30508, 30510, 30517, 30528, 30592,
30612, 30633, 30642, 30784, 30809

\g__cctab_next_cctab 30629
__cctab_select:N . . . 1268, 30600,

30601, 30605, 30618, 30658, 30669
\g__cctab_stack_seq

. . . 1264, 30496, 30656, 30664, 30716
\g__cctab_unused_seq

1264, 1269, 1270, 30496, 30652, 30666
ceil . 281
\char . 174, 19624
char commands:

\l_char_active_seq . . . 93, 205, 19265
\char_fold_case:N 39068, 39075
\char_foldcase:N 39084, 39091
\char_generate:nn 129, 201,

451, 472, 558, 707, 771, 903, 3541,
3542, 3543, 3544, 3546, 3547, 3548,
4105, 4179, 4195, 4207, 4627, 5665,
6039, 12405, 12421, 14310, 14567,
14583, 19292, 19292, 19391, 20067,
30907, 30915, 30934, 30937, 30940,

Index 1514

30942, 30954, 30985, 31565, 31609,
33474, 33485, 33646, 33669, 37454

\char_gset_active_eq:NN
. 201, 19271, 19288

\char_gset_active_eq:nN
. 201, 19271, 19290

\char_lower_case:N 39068, 39069
\char_lowercase:N 39084, 39085
\char_mixed_case:N 39073
\char_mixed_case:Nn 39068
\char_set_active_eq:NN

. 201, 3538, 4101, 19271, 19287
\char_set_active_eq:nN

. 201, 4142, 4143, 19271, 19289
\char_set_catcode:nn . . 203, 112,

113, 114, 115, 116, 117, 118, 119,
19171, 19171, 19178, 19180, 19182,
19184, 19186, 19188, 19190, 19192,
19194, 19196, 19198, 19200, 19202,
19204, 19206, 19208, 19210, 19212,
19214, 19216, 19218, 19220, 19222,
19224, 19226, 19228, 19230, 19232,
19234, 19236, 19238, 19240, 30622

\char_set_catcode_active:N
. 202, 3588,
3608, 7161, 9378, 19177, 19203,
19272, 19325, 19387, 19462, 34438

\char_set_catcode_active:n
. 203, 9126,
19209, 19235, 19335, 21580, 21581,
30815, 30822, 30839, 30850, 31533

\char_set_catcode_alignment:N . . .
. 202, 7213, 19177, 19185, 19450

\char_set_catcode_alignment:n . . .
. . . . 203, 19209, 19217, 19350, 30828

\char_set_catcode_comment:N
. 202, 19177, 19205

\char_set_catcode_comment:n
. 203, 19209, 19237, 30827

\char_set_catcode_end_line:N . . .
. 202, 19177, 19187

\char_set_catcode_end_line:n . . .
. 203, 19209, 19219, 30823

\char_set_catcode_escape:N
. 202, 19177, 19177

\char_set_catcode_escape:n
. 203, 19209, 19209, 30830

\char_set_catcode_group_begin:N .
. 202, 3685, 7164, 19177, 19179

\char_set_catcode_group_begin:n .
. . . . 203, 19209, 19211, 19356, 30833

\char_set_catcode_group_end:N . . .
. 202, 3688, 7181, 19177, 19181

\char_set_catcode_group_end:n . . .
. . . . 203, 19209, 19213, 19354, 30835

\char_set_catcode_ignore:N
. 202, 19177, 19195

\char_set_catcode_ignore:n . 203,
126, 127, 19209, 19227, 30820, 30824

\char_set_catcode_invalid:N
. 202, 19177, 19207

\char_set_catcode_invalid:n
203, 19209, 19239, 30812, 30814, 30837

\char_set_catcode_letter:N
202, 7190, 19177, 19199, 26025, 26026

\char_set_catcode_letter:n
. . . . 203, 129, 131, 19209, 19231,
19339, 30817, 30819, 30829, 30832

\char_set_catcode_math_subscript:N
. 202, 7178, 19177, 19193, 19454

\char_set_catcode_math_subscript:n
. . . . 203, 19209, 19225, 19343, 30849

\char_set_catcode_math_superscript:N
. 202, 7216, 19177, 19191

\char_set_catcode_math_superscript:n
. 203, 130, 19209, 19223, 19345, 30831

\char_set_catcode_math_toggle:N .
. 202, 7193, 19177, 19183, 19448

\char_set_catcode_math_toggle:n .
. . . . 203, 19209, 19215, 19352, 30826

\char_set_catcode_other:N . . 202,
1267, 3850, 7196, 14858, 14859,
15194, 15195, 15376, 15377, 15378,
19177, 19201, 39420, 39482, 39906

\char_set_catcode_other:n
. 203, 128, 132, 9121, 9123,
9125, 19209, 19233, 19337, 30798,
30816, 30818, 30821, 30834, 30848

\char_set_catcode_parameter:N . . .
. 202, 7199,
19177, 19189, 39425, 39487, 39911

\char_set_catcode_parameter:n . . .
. . . . 203, 19209, 19221, 19347, 30825

\char_set_catcode_space:N
. . . . 202, 19177, 19197, 39426, 39488

\char_set_catcode_space:n
. . . 203, 133, 11595, 19209, 19229,
30803, 30836, 30846, 30847, 31332

\char_set_lccode:nn
203, 9374, 9375, 9376, 9377, 19241,

19247, 19278, 19360, 19361, 19388
\char_set_mathcode:nn

. 204, 19241, 19241
\char_set_sfcode:nn 204, 19241, 19259
\char_set_uccode:nn 204, 19241, 19253
\char_show_value_catcode:n

. 203, 19171, 19175

Index 1515

\char_show_value_lccode:n
. 204, 19241, 19251

\char_show_value_mathcode:n
. 204, 19241, 19245

\char_show_value_sfcode:n
. 205, 19241, 19263

\char_show_value_uccode:n
. 204, 19241, 19257

\l_char_special_seq 205, 19265
\char_str_fold_case:N . 39068, 39083
\char_str_foldcase:N . . 39084, 39101
\char_str_lower_case:N . 39068, 39077
\char_str_lowercase:N . 39084, 39093
\char_str_mixed_case:N . 39068, 39081
\char_str_titlecase:N . 39084, 39096
\char_str_upper_case:N . 39068, 39079
\char_str_uppercase:N . 39084, 39099
\char_titlecase:N 39084, 39089
\char_to_nfd:N 39064, 39065
\char_to_nfd:n 39064, 39067
\char_to_utfviii_bytes:n 39062, 39063
\char_upper_case:N 39068, 39071
\char_uppercase:N 39084, 39087
\char_value_catcode:n . 203, 1272,

112, 113, 114, 115, 116, 117, 118,
119, 12417, 12421, 19171, 19173,
19176, 30566, 30732, 31078, 31085,
31567, 32693, 32697, 32714, 32772,
32819, 33026, 34453, 34504, 34531

\char_value_lccode:n
. 204, 19241, 19249, 19252

\char_value_mathcode:n
. 204, 19241, 19243, 19246

\char_value_sfcode:n
. 205, 19241, 19261, 19264

\char_value_uccode:n
. 204, 19241, 19255, 19258

char internal commands:
__char_generate_aux:nn 19292
__char_generate_aux:nnw

. 19292, 19317, 19328, 19370
__char_generate_aux:w . 19294, 19298
__char_generate_auxii:nnw . . . 19292
__char_generate_invalid_-

catcode: 19292
__char_int_to_roman:w

. 19291, 19291, 19365, 19380
__char_quark_if_no_value:N . . 19170
__char_quark_if_no_value:NTF . 19170
__char_quark_if_no_value_p:N . 19170
__char_tmp:n 19358, 19369
__char_tmp:nN . . 19273, 19284, 19285
\l__char_tmp_tl 19292

\chardef 1273, 94, 105, 175

choice commands:
.choice: 246, 22158

choices commands:
.choices:nn 246, 22160

\cite 1299, 31783, 31793
\cleaders . 176
\clearmarks . 796
clist commands:

\clist_clear:N
. 190, 18541, 18541, 18542,
18558, 18715, 22341, 31288, 39562

\clist_clear_new:N
. 190, 18545, 18545, 18546

\clist_concat:NNN
. 191, 1487, 1489, 18584,
18584, 18597, 18612, 18625, 39538

\clist_const:Nn
190, 18537, 18537, 18539, 18540, 31481

\clist_count:N 195, 198,
18960, 18960, 18968, 18994, 19061,
19128, 19139, 31197, 31229, 31238

\clist_count:n . 195, 18960, 18972,
18989, 19092, 19119, 19140, 37978

\clist_gclear:N
190, 18541, 18543, 18544, 18560, 39643

\clist_gclear_new:N
. 190, 18545, 18547, 18548

\clist_gconcat:NNN . . . 191, 18584,
18586, 18598, 18614, 18627, 39539

\clist_get:NN
197, 18641, 18641, 18651, 18678, 18687

\clist_get:NNTF 197, 18678
\clist_gpop:NN

197, 18652, 18654, 18677, 18690, 18702
\clist_gpop:NNTF 198, 18678
\clist_gpush:Nn

. 198, 18703, 18705, 18706
\clist_gput_left:Nn

191, 18611, 18613, 18622, 18623, 18705
\clist_gput_right:Nn

. . . . 191, 18624, 18626, 18637, 18639
\clist_gremove_all:Nn

. 192, 18731, 18733, 18769
\clist_gremove_duplicates:N

. 192, 18709, 18711, 18730
\clist_greverse:N

. 192, 18770, 18772, 18775
.clist_gset:N 246, 22172
\clist_gset:Nn

191, 14596, 18603, 18605, 18609, 18610
\clist_gset_eq:NN

. 190, 18549, 18553, 18554,
18555, 18556, 18712, 39519, 39644

Index 1516

\clist_gset_from_seq:NN 190, 3253,
18557, 18559, 18582, 18583, 18734

\clist_gsort:Nn
. 193, 3238, 3250, 3255, 18788

\clist_if_empty:N 18788, 18790
\clist_if_empty:n 18792
\clist_if_empty:NTF

. 193, 18593, 18722, 18755, 18788,
18845, 18885, 18917, 19127, 21940

\clist_if_empty:nTF 193, 18792
\clist_if_empty_p:N 193, 18788
\clist_if_empty_p:n 193, 18792
\clist_if_exist:N 18599, 18601
\clist_if_exist:NTF

. . . . 191, 11442, 11563, 18599, 18992
\clist_if_exist_p:N 191, 18599
\clist_if_in:Nn 18806, 18839
\clist_if_in:nn 18810, 18841
\clist_if_in:NnTF

. 190, 193, 1002, 18718, 18806, 22525
\clist_if_in:nnTF . . 193, 18806, 23734
\clist_item:Nn

198, 894, 19058, 19058, 19088, 19128
\clist_item:nn

198, 894, 19089, 19089, 19097, 19123
\clist_log:N . 199, 19131, 19133, 19134
\clist_log:n 199, 19153, 19154
\clist_map_break: 194,

18850, 18862, 18871, 18872, 18895,
18922, 18935, 18943, 18944, 18956,
18956, 18957, 18959, 22528, 22573

\clist_map_break:n 195, 3246, 3252,
18826, 18956, 18958, 22602, 37955

\clist_map_function:NN
. . 194, 889, 16747, 16757, 18829,
18843, 18843, 18866, 18965, 19144

\clist_map_function:nN
. 194, 890, 14599,
16752, 16762, 16773, 18867, 18867,
18874, 19158, 22716, 38116, 38192

\clist_map_inline:Nn . . 194, 3246,
3252, 9212, 18716, 18883, 18883,
18902, 18904, 22523, 22564, 22593

\clist_map_inline:nn . . 194, 3040,
10176, 11751, 11783, 11795, 18883,
18899, 21895, 22027, 23061, 23245,
30024, 31107, 31292, 37532, 37735,
37737, 37773, 37942, 38096, 38140,
38145, 39152, 39160, 40067, 40091

\clist_map_tokens:Nn
194, 889, 18906, 18915, 18915, 18939

\clist_map_tokens:nn 194, 18940, 18940
\clist_map_variable:NNn

. . . . 194, 18905, 18905, 18907, 18913

\clist_map_variable:nNn
. 194, 18905, 18910

\clist_new:N
. . 190, 876, 18535, 18535, 18536,
18707, 19160, 19161, 19162, 19163,
21679, 21680, 21694, 21695, 21696

\clist_pop:NN
197, 18652, 18652, 18676, 18688, 18701

\clist_pop:NNTF 197, 18678
\clist_push:Nn 198, 18703, 18703, 18704
\clist_put_left:Nn

191, 18611, 18611, 18620, 18621, 18703
\clist_put_right:Nn . . 191, 18624,

18624, 18633, 18635, 22119, 22647,
22657, 22685, 31196, 31237, 31254

\clist_rand_item:N
. 198, 19118, 19125, 19130

\clist_rand_item:n
. 79, 198, 19118, 19118

\clist_remove_all:Nn
192, 9227, 18731, 18731, 18768, 22120

\clist_remove_duplicates:N
. 190, 192, 18709, 18709, 18729

\clist_reverse:N
. 192, 18770, 18770, 18774

\clist_reverse:n
192, 885, 18771, 18773, 18776, 18776

.clist_set:N 246, 22172
\clist_set:Nn 191,

197, 18603, 18603, 18607, 18608,
18612, 18614, 18625, 18627, 18812,
18901, 18912, 21939, 21953, 22342

\clist_set_eq:NN 190, 18549,
18549, 18550, 18551, 18552, 18710,
22355, 22510, 31268, 39518, 39563

\clist_set_from_seq:NN . 190, 3247,
18557, 18557, 18580, 18581, 18732

\clist_show:N
. 198, 199, 19131, 19131, 19132

\clist_show:n 199, 19153, 19153
\clist_sort:Nn

. 193, 3238, 3244, 3249, 18788
\clist_use:N . 196, 19023, 19023, 19024
\clist_use:Nn

. 196, 197, 18990, 19020, 19022
\clist_use:nn 197, 19025, 19057
\clist_use:Nnnn 196,

197, 845, 18990, 18990, 19013, 19021
\clist_use:nnnn

. 197, 19025, 19025, 19057
\clist_use:Nnnnn 196
\c_empty_clist

199, 18482, 18643, 18658, 18680, 18694
\g_tmpa_clist 199, 19160

Index 1517

\l_tmpa_clist 199, 19160
\g_tmpb_clist 199, 19160
\l_tmpb_clist 199, 19160

clist internal commands:
__clist_concat:NNNN

. 18584, 18585, 18587, 18588
__clist_count:n . 18960, 18965, 18969
__clist_count:w

. 18960, 18977, 18981, 18985
__clist_get:wN

. 18641, 18646, 18649, 18683
__clist_if_empty_n:w

. 18792, 18794, 18799, 18802
__clist_if_empty_n:wNw

. 18792, 18803, 18805
__clist_if_in_return:nnN

. 18806, 18808, 18813, 18816
__clist_if_wrap:n 18509
__clist_if_wrap:nTF . 877, 18509,

18534, 18576, 18723, 18737, 18818
__clist_if_wrap:w

. 877, 18509, 18513, 18532
\l__clist_internal_clist

. 880, 18483, 18617,
18618, 18630, 18631, 18812, 18813,
18814, 18901, 18902, 18912, 18913

\l__clist_internal_remove_clist .
. 18707,
18715, 18718, 18720, 18722, 18727

\l__clist_internal_remove_seq . . .
. 18707, 18739, 18740, 18741

__clist_item:nnnN
. . 19058, 19060, 19066, 19081, 19091

__clist_item_n:nw 19089, 19095, 19098
__clist_item_n_end:n

. 19089, 19106, 19114
__clist_item_N_loop:nw

. 19058, 19064, 19082, 19086
__clist_item_n_loop:nw

. . 19089, 19099, 19100, 19103, 19108
__clist_item_n_strip:n

. 19089, 19115, 19116
__clist_item_n_strip:w

. 19089, 19116, 19117
__clist_map_function:Nw

887, 18843, 18847, 18853, 18858, 18890
__clist_map_function_end:w

. . . . 887, 18843, 18856, 18860, 18864
__clist_map_function_n:Nn

. . . . 888, 18867, 18869, 18875, 18879
__clist_map_tokens:nw

. 18915, 18919, 18925, 18931
__clist_map_tokens_end:w

. 18915, 18928, 18933, 18937

__clist_map_tokens_n:nw
. 18940, 18942, 18946, 18954

__clist_map_unbrace:wn
888, 18867, 18878, 18882, 18952, 19042

__clist_map_variable:Nnn
. 889, 18905, 18906, 18908

__clist_pop:NNN
. 18652, 18653, 18655, 18656

__clist_pop:wN . 18652, 18669, 18675
__clist_pop:wwNNN

. . . . 882, 18652, 18661, 18664, 18697
__clist_pop_TF:NNN

. 18678, 18689, 18691, 18692
__clist_put_left:NNNn

. 18611, 18612, 18614, 18615
__clist_put_right:NNNn

. 18624, 18625, 18627, 18628
__clist_rand_item:nn

. 19118, 19119, 19120
__clist_remove_all:

. 18731, 18748, 18752, 18765
__clist_remove_all:NNNn

. 18731, 18732, 18734, 18735
__clist_remove_all:w

. 884, 18731, 18766, 18767
__clist_remove_duplicates:NN . . .

. 18709, 18710, 18712, 18713
__clist_reverse:wwNww

. . . . 885, 18776, 18778, 18779, 18783
__clist_reverse_end:ww

. 885, 18776, 18780, 18786
__clist_sanitize:n

. . 18496, 18496, 18538, 18604, 18606
__clist_sanitize:Nn

. . . . 877, 18496, 18498, 18502, 18506
__clist_set_from_seq:n

. 18557, 18569, 18573
__clist_set_from_seq:NNNN

. 18557, 18558, 18560, 18561
__clist_show:NN

. 19131, 19131, 19133, 19135
__clist_show:Nn

. 19153, 19153, 19154, 19155
__clist_tmp:w 884,

18489, 18489, 18744, 18766, 18820,
18829, 18833, 18835, 18970, 18988

__clist_trim_next:w
. 877, 888, 18490, 18490,
18493, 18499, 18507, 18870, 18880

__clist_use:Nw 892, 19025, 19027,
19028, 19029, 19035, 19038, 19054

__clist_use:nwwn 18990, 19004, 19018
__clist_use:nwwwwnwn

. . . . 891, 18990, 19001, 19003, 19015

Index 1518

__clist_use:wwn
. 18990, 18997, 18998, 19014

__clist_use_end:w
. . . . 892, 19025, 19029, 19048, 19054

__clist_use_i_delimit_by_s_-
stop:nw 18486, 18488, 19085

__clist_use_more:w
. . . . 892, 19025, 19030, 19051, 19054

__clist_use_none_delimit_by_s_-
mark:w 18486, 18486, 19040

__clist_use_none_delimit_by_s_-
stop:w
. 884, 18486, 18487, 18504, 18747,
18855, 18862, 18877, 18927, 18935,
18950, 18983, 19027, 19071, 19076

__clist_use_one:w 19025, 19028, 19046
__clist_wrap_item:w

. 877, 18505, 18533, 18533
\closein . 177
\closeout . 178
\clubpenalties 476
\clubpenalty 179
cm . 285
code commands:

.code:n 247, 22170
codepoint commands:

\codepoint_generate:nn 299, 30901,
30909, 30946, 31097, 32593, 32609,
32610, 32688, 32692, 32696, 32772,
32779, 32818, 32961, 32965, 33025,
33350, 33439, 33441, 33455, 33457,
33522, 33524, 33526, 33539, 33576,
33602, 33683, 33698, 33722, 33730,
33742, 34452, 34504, 34531, 39062

\codepoint_str_generate:n . . 299,
14169, 14172, 14174, 30901, 30903,
30920, 31148, 31188, 31377, 31388,
31416, 31440, 31462, 32741, 32757

\codepoint_to_category:n
. 300, 31066, 31066, 32620

\codepoint_to_nfd:n
. 300, 31075, 31075, 32807,
33363, 39064, 39065, 39066, 39067

codepoint internal commands:
__codepoint_add:nn

. 31182, 31183, 31184, 31194
\c__codepoint_block_size_int . . .

. . . . 31104, 31114, 31198, 31228,
31239, 31242, 31247, 31250, 31253,
31303, 31317, 31349, 31354, 31366

__codepoint_case:nn 31437,
31451, 31452, 31453, 31454, 31455

__codepoint_case:nnn
. 31437, 31439, 31442

__codepoint_casefold:n 31437, 31454
\l__codepoint_category_Cn_tl . 31206
__codepoint_data:nnn

. 31343, 31345, 31363
__codepoint_data_auxi:w

. . . . 31118, 31123, 31125, 31135,
31338, 31370, 31398, 31403, 31433

__codepoint_data_auxii:w
. 31141, 31145, 31382,
31386, 31406, 31407, 31409, 31411

__codepoint_data_auxiii:w
. 31143, 31154

__codepoint_data_auxiv:w
. 31159, 31175

__codepoint_data_auxv:nnnnw . . .
. 31179, 31201

__codepoint_data_category:n . . .
. 31161, 31167

\g__codepoint_data_ior
. . . . 31105, 31330, 31333, 31369,
31395, 31401, 31402, 31424, 31435

__codepoint_data_offset:nn
. 31162, 31163, 31169, 31185

__codepoint_finalise_blocks: . . .
. 31290, 31340

__codepoint_finalise_blocks:n . .
. 31295, 31298

__codepoint_finalise_blocks:nnn
. 31306, 31314

__codepoint_finalise_blocks:nnnw
. 31316, 31321, 31327

__codepoint_generate:n . . 30901,
30971, 30972, 30975, 30977, 30982

__codepoint_generate:nnnn
. 30901, 30959, 30965

__codepoint_lowercase:n 31437, 31452
\l__codepoint_matched_block_tl . .

. . 31117, 31258, 31263, 31266, 31284
\l__codepoint_next_codepoint_-

fint_tl . 31116, 31177, 31191, 31219
__codepoint_nfd:n 31091, 31461, 31461
__codepoint_nfd:nn

. 31461, 31462, 31463
__codepoint_range:nnn

. 31205, 31207, 31208,
31211, 31212, 31213, 31216, 31294

__codepoint_range:nnnn 31223, 31234
__codepoint_range_aux:nnn

. 31218, 31221
__codepoint_save_blocks:nn

. 31199, 31240, 31249, 31256
__codepoint_str_generate:nnnn . .

. 30901, 30927, 30932
__codepoint_titlecase:n 31437, 31453

Index 1519

\l__codepoint_tmpa_tl
. 31333, 31335, 31338

__codepoint_to_bytes_auxi:n . . .
. 30988, 30990, 30993

__codepoint_to_bytes_auxii:Nnn .
. . 30988, 30998, 31004, 31015, 31037

__codepoint_to_bytes_auxiii:n . .
. 30988, 31000, 31007,
31011, 31020, 31025, 31029, 31039

__codepoint_to_bytes_end:
. 30988, 31035, 31042,
31045, 31048, 31054, 31062, 31065

__codepoint_to_bytes_output:nnn
. 30988, 31043,
31046, 31050, 31056, 31059, 31064

__codepoint_to_bytes_outputi:nw
. 30988,
30997, 31003, 31013, 31033, 31041

__codepoint_to_bytes_outputii:nw
. . 30988, 30999, 31005, 31018, 31044

__codepoint_to_bytes_outputiii:nw
. 30988, 31010, 31023, 31047

__codepoint_to_bytes_outputiv:nw
. 30988, 31028, 31053

__codepoint_to_nfd:n
. 31075, 31076, 31077, 31081

__codepoint_to_nfd:nn
. 31075, 31078,
31084, 31085, 31088, 31099, 31101

__codepoint_to_nfd:nnn
. 31075, 31090, 31093

__codepoint_to_nfd:nnnn
. 31075, 31093, 31094

__codepoint_uppercase:n 31437, 31451
coffin commands:

\coffin_attach:NnnNnnnn
. 323, 1417, 36393, 36393, 36398

\coffin_clear:N
. 320, 35596, 35596, 35604

\coffin_display_handles:Nn
. 324, 36639, 36639, 36714

\coffin_dp:N 323, 35801,
35801, 35802, 36257, 36296, 36753

\coffin_gattach:NnnNnnnn
. 323, 36393, 36399, 36404

\coffin_gclear:N
. 320, 35596, 35605, 35613

\coffin_gjoin:NnnNnnnn
. 323, 36342, 36348, 36353

\coffin_greset_poles:N 322, 35649,
35662, 35721, 35739, 35879, 35885

\coffin_gresize:Nnn
. 322, 36236, 36243, 36249

\coffin_grotate:Nn
. 322, 36077, 36080, 36082

\coffin_gscale:Nnn
. 322, 36284, 36287, 36289

\coffin_gset_eq:NN
320, 35770, 35782, 35793, 36351, 36402

\coffin_gset_horizontal_pole:Nnn
. 321, 35833, 35836, 35838

\coffin_gset_vertical_pole:Nnn . .
. 322, 35833, 35854, 35856

\coffin_ht:N 324, 35801,
35803, 35804, 36257, 36296, 36752

\coffin_ht_plus_dp:N
. 324, 35801, 35805, 35806

\coffin_if_exist:N 35575, 35585
\coffin_if_exist:NTF 320, 35575, 35589
\coffin_if_exist_p:N 320, 35575
\coffin_join:NnnNnnnn

. 323, 36342, 36342, 36347
\coffin_log:N 324, 36764, 36767, 36769
\coffin_log:Nnn

. . . . 325, 36764, 36768, 36773, 36775
\coffin_log_structure:N

. 324, 36739, 36742, 36744
\coffin_mark_handle:Nnnn

. 324, 36594, 36594, 36638
\coffin_new:N 320,

1393, 35614, 35614, 35626, 35794,
35795, 35796, 35797, 35798, 35799,
35800, 36526, 36536, 36537, 36538

\coffin_reset_poles:N 322, 35636,
35656, 35708, 35732, 35879, 35879

\coffin_resize:Nnn
. 322, 36236, 36236, 36242

\coffin_rotate:Nn
. 322, 36077, 36077, 36079

\coffin_scale:Nnn
. 322, 36284, 36284, 36286

\coffin_set_eq:NN 320, 35770, 35770,
35781, 36345, 36396, 36452, 36655

\coffin_set_horizontal_pole:Nnn .
. 321, 35833, 35833, 35835

\coffin_set_vertical_pole:Nnn . . .
. 322, 35833, 35851, 35853

\coffin_show:N 324, 36764, 36764, 36766
\coffin_show:Nnn

. . . . 325, 36764, 36765, 36770, 36772
\coffin_show_structure:N

. 324, 325, 1418, 36739, 36739, 36741
\coffin_typeset:Nnnnn

. 323, 36528, 36528, 36535
\coffin_wd:N 324, 35801,

35807, 35808, 36253, 36300, 36754
\c_empty_coffin 325, 35794

Index 1520

\g_tmpa_coffin 325, 35797
\l_tmpa_coffin 325, 35797
\g_tmpb_coffin 325, 35797
\l_tmpb_coffin 325, 35797

coffin internal commands:
__coffin_align:NnnNnnnnN 36356,

36407, 36428, 36435, 36435, 36531
\l__coffin_aligned_coffin

. 35794, 36357,
36358, 36362, 36368, 36371, 36374,
36390, 36391, 36408, 36409, 36410,
36411, 36412, 36415, 36419, 36423,
36424, 36429, 36430, 36431, 36432,
36433, 36466, 36482, 36532, 36533,
36724, 36731, 36733, 36735, 36737

\l__coffin_aligned_internal_-
coffin 35794, 36445, 36452

__coffin_attach:NnnNnnnnN
. 36393, 36395, 36401, 36405

__coffin_attach_mark:NnnNnnnn . .
. . 36393, 36426, 36601, 36617, 36633

\l__coffin_bottom_corner_dim . . .
. 36073, 36105, 36109,
36188, 36199, 36200, 36220, 36228

\l__coffin_bounding_prop
. 36069, 36096, 36125,
36127, 36133, 36135, 36144, 36207

\l__coffin_bounding_shift_dim . . .
. . 36072, 36104, 36206, 36212, 36213

__coffin_calculate_intersection:Nnn
. . 35966, 35966, 36437, 36440, 36717

__coffin_calculate_intersection:nnnnnn
. 35966, 36030, 36038

__coffin_calculate_intersection:nnnnnnnn
. 35966, 35972, 35981, 36668

\c__coffin_corners_prop
. 35544, 35621, 35822, 35829

\l__coffin_corners_prop
. . . . 36070, 36087, 36091, 36114,
36119, 36150, 36190, 36217, 36264,
36268, 36274, 36280, 36315, 36329

\l__coffin_cos_fp
1401, 1404, 36067, 36086, 36171, 36180

__coffin_display_attach:Nnnnn . .
. . 36639, 36673, 36690, 36709, 36715

\l__coffin_display_coffin
. . . . 36536, 36655, 36661, 36726,
36727, 36732, 36734, 36736, 36737

\l__coffin_display_coord_coffin .
. 36536, 36603,
36618, 36634, 36676, 36691, 36710

\l__coffin_display_font_tl
. 36581, 36606, 36679

__coffin_display_handles_-
aux:nnnn 36639, 36696, 36701, 36707

__coffin_display_handles_-
aux:nnnnnn . . . 36639, 36659, 36663

\l__coffin_display_handles_prop .
. . 36539, 36609, 36613, 36682, 36686

\l__coffin_display_offset_dim . . .
. . 36576, 36635, 36636, 36711, 36712

\l__coffin_display_pole_coffin . .
. . 36536, 36596, 36602, 36641, 36674

\l__coffin_display_poles_prop . . .
. 36580, 36646,
36651, 36654, 36656, 36658, 36665

\l__coffin_display_x_dim
. 36578, 36671, 36721

\l__coffin_display_y_dim
. 36578, 36672, 36723

\c__coffin_empty_coffin 36526, 36531
\l__coffin_error_bool

. 35565, 35970, 35974,
35988, 36010, 36041, 36667, 36669

__coffin_find_bounding_shift: . .
. 36099, 36204, 36204

__coffin_find_bounding_shift_-
aux:nn 36204, 36208, 36210

__coffin_find_corner_maxima:N . .
. 36098, 36184, 36184

__coffin_find_corner_maxima_-
aux:nn 36184, 36191, 36193

__coffin_get_pole:NnN . . . 35809,
35809, 35968, 35969, 36493, 36494,
36497, 36498, 36648, 36649, 36652

__coffin_greset_structure:N . . .
. 35610, 35819, 35826, 35887

__coffin_gset_pole:Nnn
. 35662, 35739, 35833, 35874

__coffin_gupdate_corners:N
. 35888, 35891, 35893

__coffin_gupdate_poles:N
. 35889, 35922, 35924

__coffin_if_exist:NTF . . . 35587,
35587, 35598, 35607, 35629, 35642,
35667, 35702, 35715, 35744, 35772,
35784, 35841, 35859, 36747, 36778

\l__coffin_internal_box
. 35541, 35676,
35682, 35687, 35753, 35759, 35764,
36101, 36108, 36110, 36111, 36113

\l__coffin_internal_dim
. . . . 35541, 36132, 36134, 36138,
36295, 36298, 36363, 36365, 36366

\l__coffin_internal_tl . . . 35541,
36464, 36465, 36467, 36610, 36611,

Index 1521

36614, 36615, 36623, 36628, 36683,
36684, 36687, 36688, 36697, 36702

__coffin_join:NnnNnnnnN
. 36342, 36344, 36350, 36354

\l__coffin_left_corner_dim
. 36073, 36104, 36112,
36189, 36195, 36196, 36219, 36227

__coffin_mark_handle_aux:nnnnNnn
. 36594, 36622, 36627, 36631

__coffin_offset_corner:Nnnnn . . .
. 36473, 36476, 36478

__coffin_offset_corners:Nnn . . .
. 36379,
36380, 36386, 36387, 36473, 36473

__coffin_offset_pole:Nnnnnnn . . .
. 36454, 36457, 36459

__coffin_offset_poles:Nnn
. 36377, 36378, 36383,
36384, 36420, 36421, 36454, 36454

\l__coffin_offset_x_dim
. . . . 35566, 36360, 36361, 36364,
36375, 36377, 36379, 36385, 36388,
36422, 36441, 36449, 36720, 36728

\l__coffin_offset_y_dim
35566, 36378, 36380, 36385, 36388,

36422, 36443, 36450, 36722, 36729
\l__coffin_pole_a_tl

35568, 35968, 35973, 36493, 36496,
36497, 36500, 36648, 36650, 36653

\l__coffin_pole_b_tl 35568,
35969, 35973, 36494, 36496, 36498,
36500, 36649, 36650, 36652, 36653

\c__coffin_poles_prop
. 35551, 35623, 35824, 35831

\l__coffin_poles_prop
. 36070, 36089, 36093,
36116, 36121, 36158, 36225, 36266,
36270, 36276, 36282, 36321, 36336

__coffin_reset_structure:N 35601,
35819, 35819, 35881, 36368, 36412

__coffin_resize:NnnNN
. 36236, 36238, 36245, 36250

__coffin_resize_common:NnnN . . .
. 36260, 36262, 36262, 36301

\l__coffin_right_corner_dim
. . 36073, 36112, 36187, 36197, 36198

__coffin_rotate:NnNNN
. 36077, 36078, 36081, 36083

__coffin_rotate_bounding:nnn . . .
. 36097, 36141, 36141

__coffin_rotate_corner:Nnnn . . .
. 36092, 36141, 36147

__coffin_rotate_pole:Nnnnnn . . .
. 36094, 36153, 36153

__coffin_rotate_vector:nnNN . . .
. 36143,
36149, 36155, 36156, 36165, 36165

__coffin_rule:nn
. 36589, 36589, 36599, 36644

__coffin_scale:NnnNN
. 36284, 36285, 36288, 36290

__coffin_scale_corner:Nnnn
. 36269, 36312, 36312

__coffin_scale_pole:Nnnnnn
. 36271, 36312, 36318

__coffin_scale_vector:nnNN
. 36305, 36305, 36314, 36320

\l__coffin_scale_x_fp 36232, 36252,
36272, 36292, 36294, 36300, 36308

\l__coffin_scale_y_fp . . . 36232,
36254, 36293, 36294, 36298, 36310

\l__coffin_scaled_total_height_-
dim 36234, 36297, 36302

\l__coffin_scaled_width_dim
. 36234, 36299, 36302

__coffin_set_bounding:N
. 36095, 36123, 36123

__coffin_set_horizontal_-
pole:NnnN 35833, 35834, 35837, 35839

__coffin_set_pole:Nnn
. . . . 35656, 35732, 35833, 35869,
36466, 36506, 36510, 36518, 36522

__coffin_set_vertical:NnnNNN . . .
. 35653, 35655, 35661, 35665

__coffin_set_vertical:NnNNNNNw .
. 35728, 35730, 35737, 35742

__coffin_set_vertical_aux:
. 35653, 35672, 35690, 35748

__coffin_set_vertical_pole:NnnN
. 35833, 35852, 35855, 35857

__coffin_shift_corner:Nnnn
. 36115, 36215, 36215

__coffin_shift_pole:Nnnnnn
. 36117, 36215, 36223

__coffin_show:NNNnn
. 36764, 36771, 36774, 36776

__coffin_show_structure:NN
. . 36739, 36740, 36743, 36745, 36780

\l__coffin_sin_fp
1401, 1404, 36067, 36085, 36172, 36179

\l__coffin_slope_A_fp 35563
\l__coffin_slope_B_fp 35563
__coffin_to_value:N 35574, 35574,

35579, 35618, 35619, 35620, 35622,
35775, 35776, 35777, 35778, 35787,
35788, 35789, 35790, 35812, 35821,
35823, 35828, 35830, 35843, 35861,
35871, 35876, 35898, 35929, 36088,

Index 1522

36090, 36118, 36120, 36265, 36267,
36279, 36281, 36371, 36415, 36418,
36456, 36475, 36482, 36647, 36758

\l__coffin_top_corner_dim
. . 36073, 36109, 36186, 36201, 36202

__coffin_update_B:nnnnnnnnN . . .
. 36491, 36499, 36514

__coffin_update_corners:N
. 35882, 35891, 35891

__coffin_update_corners:NN
. 35891, 35892, 35894, 35895

__coffin_update_corners:NNN . . .
. 35891, 35897, 35901

__coffin_update_poles:N
. . 35883, 35922, 35922, 36374, 36419

__coffin_update_poles:NN
. 35922, 35923, 35925, 35926

__coffin_update_poles:NNN
. 35922, 35928, 35932

__coffin_update_T:nnnnnnnnN . . .
. 36491, 36495, 36502

__coffin_update_vertical_-
poles:NNN 36390, 36423, 36491, 36491

\l__coffin_x_dim . . . 35570, 35977,
35986, 36012, 36043, 36061, 36143,
36145, 36149, 36151, 36155, 36160,
36314, 36316, 36320, 36323, 36438,
36442, 36461, 36469, 36671, 36718

\l__coffin_x_prime_dim
. 35570, 36157,
36161, 36438, 36442, 36718, 36721

__coffin_x_shift_corner:Nnnn . . .
. 36275, 36327, 36327

__coffin_x_shift_pole:Nnnnnn . . .
. 36277, 36327, 36334

\l__coffin_y_dim 35570,
35978, 35990, 36008, 36057, 36143,
36145, 36149, 36151, 36155, 36160,
36314, 36316, 36320, 36323, 36439,
36444, 36462, 36469, 36672, 36719

\l__coffin_y_prime_dim
. 35570, 36157,
36162, 36439, 36444, 36719, 36723

color commands:
color.sc 330
\color_ensure_current:

. 326, 1390, 35633,
35646, 35704, 35717, 36810, 36810

\color_export:nnN . . 331, 37625, 37625
\color_export:nnnN . 331, 37625, 37635
\color_fill:n 330, 37477, 37477
\color_fill:nn 330, 37477, 37487
\l_color_fixed_model_tl 329, 36945,

36947, 37300, 37303, 37306, 37308,

37312, 37347, 37348, 37354, 37373,
37375, 37508, 37512, 37514, 37629

\color_group_begin:
. 326, 34898, 34902,
34907, 34914, 34919, 34927, 34933,
34947, 34953, 34960, 34965, 34978,
34980, 34984, 34989, 34994, 34999,
35006, 35011, 35018, 35023, 35031,
35037, 35052, 35058, 36808, 36808

\color_group_end: 326, 34898,
34902, 34907, 34914, 34919, 34939,
34960, 34965, 34978, 34980, 34984,
34989, 34994, 34999, 35006, 35011,
35018, 35023, 35044, 36808, 36809

\color_if_exist:n 36828
\color_if_exist:nTF . . 329, 36828,

36938, 36971, 37031, 37594, 38387
\color_if_exist_p:n 329, 36828
\color_log:n 329, 38378, 38380
\color_math:nn 330, 37380, 37380
\color_math:nn(n) 1436
\color_math:nnn . . . 330, 37380, 37385
\l_color_math_active_tl

. 330, 37377, 37438
\color_model_new:nnn 332, 37747, 37747
\color_profile_apply:nn

. 333, 38349, 38349
\color_select:n 329, 36598,

36605, 36643, 36678, 37329, 37329
\color_select:nn . . . 329, 37329, 37335
\color_set:nn 329, 37505, 37505
\color_set:nnn 329,

37505, 37551, 37614, 37615, 37616,
37617, 37618, 37619, 37620, 37621

\color_set_eq:nn . . . 329, 37505, 37592
\color_show:n 329, 38378, 38378
\color_stroke:n . . . 330, 37477, 37482
\color_stroke:nn . . . 330, 37477, 37493

color internal commands:
\g__color_alternative_model_prop

. 37734, 37846, 37944
\g__color_alternative_values_-

prop 37739,
37861, 37875, 37885, 38099, 38201

__color_backend_devicen_-
init:nnn 38114

__color_backend_iccbased_-
device:nnn . . . 38366, 38371, 38376

__color_backend_iccbased_-
init:nnn 38346

__color_backend_reset: 36816, 37458
__color_backend_separation_-

init:nnnnn . . . 37862, 37876, 37886

Index 1523

__color_backend_separation_-
init_CIELAB:nnn 37914

__color_check_model:N
. 36941, 37301, 37301

__color_check_model:nn
. 37301, 37305, 37315

\g__color_colorants_prop
. 37717, 37847, 38162

__color_convert:nnN 36846, 36846,
36848, 36960, 37056, 37067, 37308

__color_convert:nnnN . . . 36846,
36847, 36850, 36882, 37373, 37659

__color_convert_cmyk_cmyk:w . . .
. 36846, 36920

__color_convert_cmyk_gray:w . . .
. 36846, 36912

__color_convert_cmyk_rgb:w
. 36846, 36914

__color_convert_devicen_-
cmyk:nnnnnnnnn 37926, 38222, 38225

__color_convert_devicen_-
cmyk:nnnnw . . . 37926, 38219, 38247

__color_convert_devicen_cmyk_-
aux:nnnnw 37926, 38229, 38236

__color_convert_devicen_-
gray:nnn 37926, 38254, 38257

__color_convert_devicen_gray:nw
. 37926, 38251, 38268

__color_convert_devicen_gray_-
aux:nw 37926, 38259, 38262

__color_convert_devicen_-
rgb:nnnnnnn . . . 37926, 38275, 38278

__color_convert_devicen_-
rgb:nnnw 37926, 38272, 38298

__color_convert_devicen_rgb_-
aux:nnnw 37926, 38282, 38288

__color_convert_gray_cmyk:w . . .
. 36846, 36887

__color_convert_gray_gray:w . . .
. 36846, 36883

__color_convert_gray_rgb:w
. 36846, 36885

__color_convert_rgb_cmyk:nnn . . .
. . . 1424, 36846, 36895, 36900, 37268

__color_convert_rgb_cmyk:nnnn . .
. 36846, 36902, 36905

__color_convert_rgb_cmyk:w
. 36846, 36893

__color_convert_rgb_gray:w
. 36846, 36889

__color_convert_rgb_rgb:w
. 36846, 36891

\l__color_current_tl 1420,
36808, 36811, 36822, 36929, 36932,

36979, 37323, 37327, 37331, 37333,
37337, 37340, 37383, 37389, 37395,
37397, 37459, 37466, 37467, 37479,
37480, 37484, 37485, 37489, 37491,
37495, 37497, 37601, 37603, 37624

__color_draw:nnn 37477,
37480, 37485, 37491, 37497, 37499

__color_export:nN
. 37625, 37631, 37639, 37641

__color_export:nnnN
. 37625, 37642, 37643

__color_export:nnnNN
. 37654, 37654, 37674

__color_export_comma-sep-cmyk:Nw
. 37685

\c__color_export_comma-sep-cmyk_-
tl . 37664

__color_export_comma-sep-rgb:Nw
. 37690

\c__color_export_comma-sep-rgb_-
tl . 37664

__color_export_format_backend:nnN
. 37652, 37652

__color_export_format_comma-sep-cmyk:nnN
. 37669

__color_export_format_comma-sep-rgb:nnN
. 37669

__color_export_format_space-sep-cmyk:nnN
. 37669

__color_export_format_space-sep-rgb:nnN
. 37669

__color_export_HTML:n
. . 37690, 37696, 37697, 37698, 37701

__color_export_HTML:Nw 37690, 37692
\c__color_export_HTML_tl 37664
__color_export_space-sep-cmyk:Nw

. 37685
\c__color_export_space-sep-cmyk_-

tl . 37664
__color_export_space-sep-rgb:Nw

. 37690
\c__color_export_space-sep-rgb_-

tl . 37664
__color_extract:nNN

. 36840, 36840, 36845,
36985, 37024, 37025, 37033, 37048

\c__color_fallback_cmyk_tl . . . 37714
\c__color_fallback_gray_tl . . . 37714
\c__color_fallback_rgb_tl 37714
__color_finalise_current:

. 37320, 37320, 37332, 37339
\c__color_icc_colorspace_-

signatures_prop 38302, 38328

Index 1524

\l__color_ignore_error_bool
. 36827, 37014, 37539

\l__color_internal_int
. 36824, 38095, 38098, 38154

\l__color_internal_prop
. 37712, 37762, 37793,
37806, 37821, 37900, 37928, 38315

\l__color_internal_tl
. 36824, 36987, 36990,
37534, 37541, 37543, 37545, 37546,
37584, 37586, 37587, 37794, 37797,
37807, 37810, 37822, 37824, 37901,
37905, 37908, 37929, 37932, 37945,
37948, 37950, 38093, 38104, 38127,
38150, 38316, 38319, 38329, 38332

__color_math:nn
. 37380, 37382, 37387, 37393

__color_math_scan:w 1437, 37399,
37401, 37401, 37432, 37453, 37469

__color_math_scan_auxi:
. 37401, 37413, 37417

__color_math_scan_auxii:
. 37401, 37433, 37436

__color_math_scan_auxiii:N
. 37445, 37451

__color_math_scan_end:
. 37401, 37409, 37448, 37456

__color_math_script_aux:N
. 37461, 37473, 37476

__color_math_scripts:Nw
. 37424, 37461, 37461

\g__color_math_seq
. 37379, 37395, 37459, 37466

__color_model:N
. . . . 36838, 36838, 36929, 37323,
37523, 37545, 37584, 37601, 37624

__color_model_convert:nnn
. 37791, 37888

__color_model_devicen:n 37926, 37926
__color_model_devicen:nn

. 37926, 37931, 37939
__color_model_devicen:nnn

. 37926, 37973, 37975
__color_model_devicen:nnnn

. 37926, 37977, 37980
__color_model_devicen_colorant:n

. 37926, 38117, 38160
__color_model_devicen_convert:n

. 37926, 38192, 38197
__color_model_devicen_convert:nnn

. 37926
__color_model_devicen_convert:nnnn

. 37926, 37990, 38164, 38168

__color_model_devicen_convert:nnnnn
. 38172, 38177, 38182, 38184

__color_model_devicen_convert:w
. 37926

__color_model_devicen_convert_-
aux:n 37926, 38200, 38204

__color_model_devicen_convert_-
aux:w 38205, 38206

__color_model_devicen_convert_-
cmyk:n 37926

__color_model_devicen_convert_-
cmyk:nnn 38169

__color_model_devicen_convert_-
gray:n 37926

__color_model_devicen_convert_-
gray:nnn 38174

__color_model_devicen_convert_-
rgb:n 37926

__color_model_devicen_convert_-
rgb:nnn 38179

__color_model_devicen_init:nnn .
. 37926, 37989, 38078

__color_model_devicen_init:nnnn
. 37926, 38080, 38091

__color_model_devicen_mix:nw . . .
. 37926, 38050, 38069, 38075

__color_model_devicen_parse:nw .
. 37926, 38045, 38055, 38064

__color_model_devicen_parse_-
1:nn 37926

__color_model_devicen_parse_-
2:nn 37926

__color_model_devicen_parse_-
3:nn 37926

__color_model_devicen_parse_-
4:nn 37926

__color_model_devicen_parse_-
generic:nn . . . 37926, 37987, 38040

__color_model_devicen_tranform:nnn
. 37926

__color_model_devicen_tranform:w
. 37926

__color_model_devicen_tranform_-
1:nnnnn 37926

__color_model_devicen_tranform_-
3:nnnnn 37926

__color_model_devicen_tranform_-
4:nnnnn 37926

__color_model_devicen_transform:nnn
. 38137, 38141, 38146, 38148

__color_model_devicen_transform:w
. 38101, 38130

__color_model_iccbased:n
. 38313, 38313

Index 1525

__color_model_iccbased:nn
. 38313, 38318, 38326

__color_model_iccbased:nnn . . 38313
__color_model_iccbased_aux:nnn .

. 38313
__color_model_iccbased_aux:nnnnnn

. 38331, 38339
__color_model_init:nnn . . 37770,

37770, 37790, 37840, 37982, 38341
\g__color_model_int 37713,

37772, 37778, 38365, 38370, 38375
__color_model_new:nnn

. 37747, 37749, 37753
\c__color_model_range_CIELAB_tl .

. 37733
__color_model_separation:n

. 37791, 37791
__color_model_separation:nn . . .

. 37791, 37796, 37804
__color_model_separation:nnn . . .

. 37791, 37809, 37817
__color_model_separation:w

. 37791, 37824, 37837
__color_model_separation_-

CIELAB:nnnnnn 37791, 37898
__color_model_separation_-

CIELAB:nnnnnnn 37791, 37907, 37910
__color_model_separation_-

cmyk:nnnnnn 37791, 37850
__color_model_separation_-

gray:nnnnnn 37791, 37879
__color_model_separation_-

rgb:nnnnnn 37791, 37865
\l__color_model_tl

36922, 36957, 36958, 36961, 36985,
36988, 37026, 37034, 37036, 37043,
37048, 37054, 37056, 37058, 37064,
37069, 37306, 37308, 37317, 37941,
37947, 37948, 37950, 37968, 37973

\c__color_model_whitepoint_-
CIELAB_a_tl 37726

\c__color_model_whitepoint_-
CIELAB_b_tl 37726

\c__color_model_whitepoint_-
CIELAB_d50_tl 37726

\c__color_model_whitepoint_-
CIELAB_d55_tl 37726

\c__color_model_whitepoint_-
CIELAB_d65_tl 37726

\c__color_model_whitepoint_-
CIELAB_d75_tl 37726

\c__color_model_whitepoint_-
CIELAB_e_tl 37726

\l__color_named_._prop 37622

\l__color_named_._tl 37622
\l__color_named_tl . 37504, 37520,

37523, 37526, 37583, 37584, 37588
\l__color_named_white_prop . . . 37783
\l__color_next_model_tl . . 36922,

37033, 37034, 37054, 37055, 37068
\l__color_next_value_tl . . 36922,

37033, 37043, 37059, 37065, 37070
__color_parse:nN

. . . . 36926, 36926, 37331, 37383,
37479, 37484, 37520, 37541, 37630

__color_parse:Nw 36926, 36940, 36969
__color_parse_aux:nN

. 36926, 36933, 36936
__color_parse_break:w

. 36926, 37049, 37073
__color_parse_end:

. 36926, 37010, 37073, 37074
__color_parse_eq:Nn 36926
__color_parse_eq:nNn 36926
__color_parse_gray:n

. 36926, 37037, 37052
__color_parse_loop:nn

. 36926, 37002, 37029
__color_parse_loop:w

. 36926, 36986, 36992, 37009
__color_parse_loop_check:nn . . .

. 36926, 37006, 37012
__color_parse_loop_init:Nnn . . .

. 36926, 36975, 36982
__color_parse_mix:Nnnn

. 36926, 37042, 37075, 37081
__color_parse_mix:nNnn

. 36926, 37077, 37082
__color_parse_mix_cmyk:nw

. 36926, 37096, 38038
__color_parse_mix_gray:nw

. 36926, 37087, 37841, 37999
__color_parse_mix_rgb:nw

. 36926, 37089, 38023
__color_parse_model_&spot:w . 37298
__color_parse_model_cmy:w

. 37265, 37265
__color_parse_model_cmyk:w

. 37104, 37115
__color_parse_model_Gray:w

. 37129, 37129
__color_parse_model_gray:w

. 37104, 37104
__color_parse_model_hsb:nnn . . .

. 37129,
37132, 37135, 37138, 37175, 37272

__color_parse_model_hsb:nnnn . 37129
__color_parse_model_hsb:nnnnn 37129

Index 1526

__color_parse_model_HSB:w
. 37129, 37173

__color_parse_model_Hsb:w
. 37129, 37133

__color_parse_model_hsb:w
. 37129, 37131

__color_parse_model_hsb_0:nnnn .
. 37129

__color_parse_model_hsb_1:nnnn .
. 37129

__color_parse_model_hsb_2:nnnn .
. 37129

__color_parse_model_hsb_3:nnnn .
. 37129

__color_parse_model_hsb_4:nnnn .
. 37129

__color_parse_model_hsb_5:nnnn .
. 37129

__color_parse_model_hsb_aux:nnn
. 37129, 37142, 37146, 37258

__color_parse_model_hsb_-
aux:nnnn 37148, 37152

__color_parse_model_hsb_-
aux:nnnnn 37156, 37164

__color_parse_model_HTML:w
. 37129, 37180

__color_parse_model_HTML_aux:w .
. 37181, 37182

__color_parse_model_RGB:w
. 37129, 37191

__color_parse_model_rgb:w
. 37104, 37106

__color_parse_model_tHsb:n
. 37270, 37273, 37275

__color_parse_model_tHsb:nw . . .
. 37270, 37277, 37288, 37292

__color_parse_model_tHsb:w
. 37270, 37270

__color_parse_model_wave:w
. 37129, 37200

__color_parse_model_wave_-
auxi:nn
. . 37129, 37205, 37209, 37210, 37214

__color_parse_model_wave_-
auxii:nn . . 37129, 37218, 37225,
37232, 37239, 37246, 37250, 37256

__color_parse_model_wave_rho:n .
. 37129, 37219, 37226,
37233, 37240, 37247, 37261, 37263

__color_parse_number:n
. 37104, 37105,
37110, 37111, 37112, 37119, 37120,
37121, 37122, 37125, 37157, 37843,

37998, 38004, 38018, 38019, 38020,
38032, 38033, 38034, 38035, 38062

__color_parse_number:w
. 37104, 37126, 37127

__color_parse_set_eq:Nn
. 36939, 36943, 36974

__color_parse_set_eq:nNn
. 36946, 36947, 36950

__color_parse_std:n
. 36926, 37038, 37061

__color_profile_apply:nn
. 38349, 38351, 38354

__color_profile_apply_cmyk:n . . .
. 38349, 38373

__color_profile_apply_gray:n . . .
. 38349, 38363

__color_profile_apply_rgb:n . . .
. 38349, 38368

__color_select:N 36811,
36813, 36813, 37333, 37340, 37467

__color_select:nn
. 36813, 36815, 36819, 36820

__color_select:nnN
. . 37329, 37345, 37355, 37362, 37583

__color_select_loop:Nw
. 37329, 37349, 37351, 37359

__color_select_main:Nw
. 37329, 37337,
37342, 37389, 37489, 37495, 37637

__color_select_math:N
. 36813, 36818, 37397

__color_select_swap:Nnn
. 37329, 37358, 37371

__color_set:nn . 37505, 37513, 37516
__color_set:nnn . 37505, 37507, 37510
__color_set:nnw . 37505, 37527, 37530
__color_set_aux:nnn

. 37505, 37557, 37561
__color_set_colon:nnw

. 37505, 37563, 37568
__color_set_loop:nw

. . 37505, 37574, 37575, 37578, 37589
__color_show:n . 38378, 38389, 38398
__color_show:Nn

. 38378, 38379, 38381, 38382
__color_tmp:w 37670,

37678, 37679, 37680, 37681, 37682
\l__color_value_tl

36922, 36954, 36955, 36959, 36961,
36965, 36985, 36988, 37026, 37040,
37043, 37048, 37057, 37309, 37312,
37318, 37373, 37375, 38100, 38102

Index 1527

__color_values:N
. 36838, 36839, 36932,
37327, 37526, 37546, 37588, 37603

\columnwidth 35697
\compoundhyphenmode 797
\contextversion 10200, 10230, 10453, 10473
\copy . 180
\copyfont . 932
cos . 281
cosd . 282
cot . 281
cotd . 282
\count 181, 19633
\countdef . 182
\cr . 183
\crampeddisplaystyle 799
\crampedscriptscriptstyle 800
\crampedscriptstyle 802
\crampedtextstyle 803
\crcr . 184
\creationdate 768
cs commands:

\cs:w 22, 23, 556, 580, 668, 872, 874,
925, 1404, 1406, 1426, 1428, 1489,
1863, 1907, 1938, 2137, 2214, 2396,
2438, 2447, 2449, 2453, 2454, 2455,
2503, 2509, 2515, 2521, 2555, 2557,
2562, 2569, 2570, 2624, 2628, 2668,
2989, 4232, 7091, 7094, 8567, 8569,
10982, 11121, 12103, 14321, 14327,
17636, 17748, 18450, 18453, 19380,
20369, 20416, 20568, 20864, 21160,
21293, 21384, 21994, 21995, 22639,
23508, 23527, 23594, 24405, 24594,
24626, 25040, 25066, 25079, 25113,
25155, 25718, 25734, 27430, 28521,
29586, 29604, 31068, 34431, 34756

\cs_argument_spec:N . . . 38921, 38922
\cs_end: 22,

430, 580, 668, 669, 872, 874, 925,
1404, 1407, 1426, 1428, 1432, 1489,
1839, 1852, 1863, 1881, 1896, 1907,
1921, 1932, 1938, 2065, 2137, 2214,
2396, 2438, 2447, 2449, 2453, 2454,
2455, 2503, 2509, 2515, 2521, 2555,
2557, 2562, 2569, 2570, 2624, 2628,
2668, 2989, 4233, 4238, 6900, 7107,
8564, 8570, 8572, 8574, 8576, 8578,
8580, 8582, 8584, 8586, 8588, 8590,
10982, 10997, 11000, 11001, 11110,
11121, 12103, 14327, 14330, 17636,
17748, 18405, 18430, 18441, 18450,
18453, 19380, 20367, 20369, 20414,
20416, 20568, 20864, 21160, 21293,

21384, 21719, 21994, 21995, 22639,
23511, 23527, 23602, 24408, 24598,
24630, 25046, 25072, 25085, 25116,
25158, 25724, 25740, 27430, 28524,
29586, 29610, 31073, 34431, 34756

\cs_generate_from_arg_count:NNnn
. 20, 2117, 2117, 2127,
2128, 2129, 2130, 2160, 3105, 3105

\cs_generate_variant:Nn
. 16, 33–35, 67,
423, 424, 2702, 2702, 2715, 2716,
3031, 3033, 3035, 3037, 3105, 3106,
3216, 3218, 3240, 3243, 3249, 3255,
4001, 5014, 6165, 6915, 6956, 7285,
7286, 7309, 7311, 8279, 8285, 8294,
8295, 8296, 8297, 8300, 8301, 8312,
8313, 8316, 8319, 8339, 8350, 8352,
8501, 8502, 8507, 8508, 8940, 8972,
9112, 9137, 9265, 9268, 9477, 9479,
9481, 9483, 9751, 10170, 10171,
10172, 10173, 10211, 10216, 10250,
10275, 10293, 10295, 10297, 10468,
10489, 10501, 10509, 10525, 10537,
10539, 10541, 10568, 10571, 10572,
10585, 10591, 10592, 10595, 10598,
10702, 11059, 11102, 11210, 11224,
11227, 11240, 11250, 11294, 11312,
11315, 11318, 11321, 11351, 11419,
11426, 11439, 11452, 11482, 11504,
11510, 11557, 12137, 12143, 12144,
12149, 12150, 12155, 12156, 12161,
12162, 12179, 12180, 12197, 12198,
12199, 12200, 12201, 12202, 12203,
12204, 12267, 12268, 12269, 12270,
12271, 12272, 12273, 12274, 12275,
12276, 12277, 12278, 12335, 12336,
12337, 12338, 12339, 12340, 12341,
12342, 12343, 12344, 12345, 12346,
12361, 12395, 12396, 12397, 12398,
12462, 12464, 12466, 12468, 12470,
12472, 12474, 12476, 12536, 12539,
12542, 12545, 12558, 12569, 12570,
12575, 12576, 12577, 12578, 12740,
12770, 12780, 12801, 12806, 12808,
12817, 12829, 12830, 12867, 12870,
12875, 12876, 12927, 12938, 13138,
13149, 13150, 13173, 13180, 13182,
13259, 13280, 13282, 13301, 13317,
13371, 13377, 13400, 13403, 13464,
13479, 13480, 13483, 13484, 13514,
13515, 13516, 13517, 13518, 13519,
13520, 13529, 13530, 13531, 13532,
13565, 13566, 13571, 13572, 13651,
13686, 13715, 13733, 13759, 13773,

Index 1528

13820, 13881, 13959, 13978, 14016,
14031, 14048, 14049, 14050, 14063,
14159, 14204, 14211, 16433, 16434,
16504, 16511, 16535, 16723, 16726,
16729, 16732, 16735, 16764, 16765,
16766, 16767, 16768, 16769, 16775,
16815, 16816, 16817, 16818, 16819,
16820, 16833, 16836, 16839, 16842,
16845, 16848, 16861, 16874, 16875,
16897, 16898, 16899, 16900, 16905,
16906, 16907, 16908, 16925, 16926,
16951, 16952, 16953, 16954, 16960,
16961, 17037, 17038, 17086, 17087,
17137, 17150, 17151, 17169, 17195,
17196, 17248, 17254, 17282, 17311,
17321, 17344, 17345, 17401, 17445,
17468, 17482, 17484, 17485, 17487,
17488, 17502, 17504, 17638, 17641,
17662, 17677, 17678, 17683, 17684,
17686, 17688, 17701, 17702, 17703,
17704, 17713, 17714, 17715, 17716,
17721, 17722, 17725, 17734, 17737,
17746, 18006, 18027, 18364, 18368,
18394, 18402, 18414, 18416, 18418,
18448, 18451, 18454, 18539, 18540,
18580, 18581, 18582, 18583, 18597,
18598, 18607, 18608, 18609, 18610,
18620, 18621, 18622, 18623, 18633,
18635, 18637, 18639, 18651, 18676,
18677, 18704, 18706, 18729, 18730,
18768, 18769, 18774, 18775, 18866,
18874, 18904, 18907, 18939, 18968,
18989, 19013, 19022, 19024, 19081,
19088, 19097, 19130, 19132, 19134,
19287, 19288, 19289, 19290, 20021,
20084, 20106, 20109, 20112, 20141,
20144, 20147, 20150, 20153, 20156,
20213, 20231, 20245, 20248, 20268,
20271, 20291, 20297, 20303, 20309,
20343, 20344, 20345, 20396, 20462,
20463, 20476, 20477, 20478, 20479,
20504, 20509, 20511, 20516, 20518,
20523, 20525, 20530, 20532, 20539,
20674, 20689, 20712, 20726, 20746,
20748, 20866, 20872, 20876, 20877,
20882, 20883, 20892, 20893, 20896,
20899, 20907, 20908, 20916, 20917,
21275, 21295, 21301, 21304, 21305,
21310, 21311, 21320, 21321, 21323,
21325, 21330, 21331, 21336, 21337,
21365, 21366, 21368, 21386, 21392,
21397, 21398, 21403, 21404, 21413,
21414, 21416, 21418, 21423, 21424,
21429, 21430, 21436, 21584, 21585,

21727, 21734, 21836, 21839, 21855,
21910, 21922, 22024, 22135, 22141,
22384, 22395, 22398, 22401, 22412,
22415, 22421, 22432, 22435, 22441,
22479, 22919, 22971, 23004, 23015,
23053, 23056, 23066, 23148, 23150,
23180, 23222, 23231, 23240, 23249,
23312, 23314, 23851, 23854, 25546,
25553, 25554, 25555, 25558, 25559,
25562, 25563, 25568, 25569, 25576,
25577, 25578, 25579, 25581, 25583,
25884, 25936, 29019, 29073, 29151,
29196, 29211, 29265, 30120, 30140,
30169, 30223, 30231, 30239, 30305,
30306, 30393, 30394, 30395, 30396,
30405, 30406, 30425, 30426, 30428,
30444, 30446, 30448, 30462, 30465,
30544, 30583, 30589, 30602, 30661,
30679, 30735, 30791, 31064, 31510,
31851, 32176, 32267, 32463, 32667,
34373, 34758, 34763, 34764, 34769,
34770, 34775, 34776, 34781, 34782,
34790, 34791, 34792, 34795, 34801,
34804, 34810, 34813, 34819, 34822,
34825, 34826, 34854, 34855, 34863,
34866, 34869, 34878, 34896, 34909,
34910, 34921, 34922, 34935, 34936,
34955, 34956, 34975, 34976, 35001,
35002, 35013, 35014, 35025, 35026,
35039, 35040, 35060, 35061, 35064,
35065, 35068, 35074, 35089, 35092,
35210, 35216, 35256, 35259, 35276,
35279, 35296, 35299, 35313, 35316,
35334, 35337, 35363, 35366, 35372,
35378, 35431, 35434, 35437, 35440,
35488, 35491, 35604, 35613, 35626,
35639, 35652, 35658, 35664, 35712,
35725, 35734, 35741, 35781, 35793,
35835, 35838, 35853, 35856, 36079,
36082, 36242, 36249, 36286, 36289,
36347, 36353, 36398, 36404, 36535,
36638, 36714, 36741, 36744, 36766,
36769, 36772, 36775, 36845, 36848,
36849, 36882, 37081, 37790, 38168,
38593, 38673, 38749, 38750, 38756,
38926, 38946, 38949, 38952, 38974,
39052, 39135, 39137, 39204, 39743

\cs_gset:Nn 20, 2132, 2209
.cs_gset:Np 247, 22180
\cs_gset:Npe 18, 1451,

1456, 1458, 1999, 2018, 2022, 17291
\cs_gset:Npn . . 15, 18, 1451, 1454,

1489, 1496, 1498, 1499, 1500, 1501,
1502, 1503, 1504, 1505, 1506, 1507,

Index 1529

1508, 1509, 1510, 1511, 1512, 1513,
1514, 1515, 1516, 1517, 1518, 1519,
1520, 1521, 1522, 1523, 1524, 1525,
1526, 1527, 1528, 1529, 1530, 1531,
1532, 1533, 1534, 1535, 1536, 1537,
1538, 1539, 1540, 1541, 1542, 1543,
1544, 1545, 1546, 1547, 1548, 1549,
1550, 1551, 1552, 1553, 1555, 1556,
1557, 1558, 1559, 1560, 1561, 1562,
1563, 1588, 1590, 1592, 1597, 1669,
1672, 1734, 1735, 1736, 1737, 1787,
1789, 1791, 1793, 1798, 1804, 1805,
1809, 1816, 1819, 1846, 1862, 1890,
1906, 1909, 1911, 1913, 1915, 1919,
1926, 1930, 1937, 1940, 1947, 1949,
1951, 1970, 1998, 2018, 2021, 6932,
9260, 9262, 9311, 11789, 16585,
16586, 16624, 17286, 22189, 22191,
24285, 30055, 30060, 31081, 32672

\cs_gset:Npx
. . . . 18, 1451, 1458, 2000, 2018, 2023

\cs_gset_eq:NN 21, 1741,
2045, 2049, 2050, 2051, 2052, 2062,
8291, 8293, 9164, 10290, 10534,
12114, 12116, 12135, 14480, 14484,
16721, 17063, 17296, 17301, 19285,
20082, 20111, 20155, 20247, 20260,
20264, 20294, 20335, 20459, 20473,
20489, 20677, 20685, 29891, 29961,
30293, 30299, 31300, 31310, 39439

\cs_gset_nopar:Nn 20, 2132, 2209
\cs_gset_nopar:Npe

. . . 18, 699, 736, 741, 1451, 1452,
1996, 2007, 2013, 12131, 12141,
13354, 13374, 13402, 13492, 20093,
20100, 20111, 20155, 20247, 20270,
20294, 20301, 20307, 20459, 20473,
20489, 20499, 20503, 22907, 39550

\cs_gset_nopar:Npn
. 18, 1451, 1451, 1488, 1580, 1581,
1995, 2007, 2012, 16393, 16692, 39285

\cs_gset_nopar:Npx
. . . . 18, 1451, 1453, 1997, 2007, 2014

\cs_gset_protected:Nn 20, 2132, 2209
.cs_gset_protected:Np . . . 247, 22180
\cs_gset_protected:Npe

. 18, 1451, 1466, 1468, 2005,
2036, 2040, 17991, 21125, 25948, 38879

\cs_gset_protected:Npn
. 18, 1451, 1464, 1472, 1474,
1477, 1479, 1482, 1484, 1490, 1565,
1566, 1572, 1578, 1579, 1582, 1594,
1596, 1598, 1600, 1602, 1603, 1604,
1606, 1615, 1617, 1619, 1621, 1623,

1624, 1625, 1627, 1636, 1648, 1674,
1691, 1710, 1718, 1726, 1738, 1740,
1742, 1744, 1756, 1770, 1807, 1953,
1966, 1968, 1972, 1974, 1976, 1984,
1989, 2004, 2036, 2039, 3167, 3175,
3188, 3598, 3620, 3895, 7537, 8862,
10233, 10404, 10476, 11798, 12758,
13487, 13719, 17354, 17980, 18888,
20261, 20680, 21118, 22193, 22195,
25941, 30767, 34164, 38873, 38890,
38899, 39112, 39118, 39124, 39150,
39158, 39187, 39192, 39549, 39550

\cs_gset_protected:Npx
. . . . 18, 1451, 1468, 2006, 2036, 2041

\cs_gset_protected_nopar:Nn
. 20, 2132, 2209

\cs_gset_protected_nopar:Npe . . .
18, 1451, 1461, 1463, 2002, 2027, 2031

\cs_gset_protected_nopar:Npn . . .
. . . . 18, 1451, 1459, 2001, 2027, 2030

\cs_gset_protected_nopar:Npx . . .
. . . . 18, 1451, 1463, 2003, 2027, 2032

\cs_if_eq:NN 2253, 12623, 19524
\cs_if_eq:NNTF 29,

1473, 2253, 2259, 2260, 2261, 2263,
2264, 2265, 2267, 2268, 2269, 5640,
9210, 9321, 20159, 20251, 22046,
24050, 24060, 24086, 24088, 24090,
24290, 29846, 29977, 31970, 32020,
32040, 32466, 34303, 38873, 38899

\cs_if_eq_p:NN
. 29, 2253, 2258, 2262, 2266, 5657,
31527, 32109, 32110, 34354, 34355

\cs_if_exist:N . . 1823, 1837, 1850,
8372, 8374, 12181, 12182, 16876,
16878, 17689, 17691, 18424, 18426,
18599, 18601, 20605, 20607, 20884,
20886, 21312, 21314, 21405, 21407,
23307, 23309, 25674, 25675, 30278,
30280, 30736, 30738, 34783, 34785

\cs_if_exist:NTF
. 22, 29, 370, 629, 768,
910, 1569, 1575, 1823, 1835, 1877,
1910, 1912, 1914, 1916, 1917, 2273,
3165, 3183, 3186, 4286, 4292, 4298,
5018, 5368, 7077, 8647, 8648, 8649,
8651, 8655, 8687, 8731, 8752, 8856,
8991, 9019, 9050, 9208, 9246, 9845,
10200, 10204, 10230, 10453, 10457,
10473, 10950, 11131, 11575, 11628,
11749, 14086, 14087, 14096, 14451,
14460, 14464, 14478, 17664, 17665,
17666, 17667, 18376, 18377, 19597,
19616, 21748, 21862, 21959, 21964,

Index 1530

21992, 22508, 22547, 22555, 22567,
22579, 22585, 22596, 22612, 22617,
22711, 22772, 22781, 22891, 23190,
24283, 24457, 25536, 29848, 29884,
29954, 29979, 29993, 30020, 30285,
30611, 30712, 30765, 30805, 31444,
32088, 32252, 32454, 32519, 32527,
33792, 33799, 34486, 35577, 35579,
36857, 37364, 37755, 37760, 37819,
38822, 39214, 39223, 39430, 39795

\cs_if_exist_p:N
. 29, 369, 1823, 8664, 9066,
30688, 32056, 32118, 32248, 34315,
35693, 36583, 38828, 38829, 38830

\cs_if_exist_use:N 22, 396,
1909, 1915, 1951, 6029, 9631, 9649,
10671, 22581, 22600, 32260, 32329

\cs_if_exist_use:NTF
. 22, 1909, 1909, 1911, 1913, 1919,
1930, 1947, 1948, 1949, 1950, 1952,
2951, 3020, 4580, 4587, 4977, 4982,
5026, 5436, 5522, 7013, 9179, 16538,
23732, 24415, 24417, 32327, 32570,
32576, 32638, 32640, 36854, 36868,
37645, 37986, 38356, 39154, 39162

\cs_if_free:N 1865, 1879, 1894
\cs_if_free:NTF 29, 64, 629,

1865, 1978, 2877, 2904, 9621, 39781
\cs_if_free_p:N 28, 29, 64, 1865
\cs_log:N 22, 407, 2298, 2301, 2302, 2303
\cs_meaning:N

. 21, 381, 1413, 1414, 1429, 1430,
1437, 1440, 2310, 8988, 30777, 39477

\cs_new:Nn 18, 65, 2132, 2209
\cs_new:Npe 16, 41, 422,

1987, 1999, 2018, 2025, 2728, 3803,
4078, 4601, 4603, 4605, 4607, 4609,
4611, 8334, 8340, 9601, 9603, 9605,
9612, 10644, 10656, 11182, 11483,
14092, 15527, 21813, 22812, 23492,
24316, 24900, 26107, 28116, 28122,
28734, 29563, 29702, 31675, 31726,
32050, 32233, 37890, 38047, 38187

\cs_new:Npn 15, 16,
20, 65, 428, 443, 1473, 1599, 1620,
1987, 1998, 2018, 2024, 2103, 2105,
2107, 2115, 2168, 2258, 2259, 2260,
2261, 2262, 2263, 2264, 2265, 2266,
2267, 2268, 2269, 2335, 2339, 2348,
2357, 2366, 2369, 2378, 2379, 2389,
2390, 2391, 2392, 2393, 2394, 2395,
2397, 2399, 2401, 2414, 2420, 2426,
2437, 2439, 2446, 2448, 2450, 2457,
2458, 2460, 2462, 2464, 2466, 2471,

2476, 2482, 2488, 2494, 2500, 2506,
2512, 2518, 2524, 2531, 2538, 2545,
2552, 2559, 2566, 2575, 2576, 2578,
2583, 2588, 2590, 2600, 2601, 2603,
2605, 2607, 2609, 2611, 2617, 2623,
2625, 2631, 2633, 2640, 2647, 2648,
2649, 2650, 2651, 2652, 2654, 2663,
2665, 2668, 2669, 2670, 2672, 2674,
2679, 2689, 2692, 2697, 2698, 2699,
2700, 2769, 2790, 2812, 2815, 2823,
2836, 2851, 2862, 2894, 2985, 2987,
3230, 3386, 3399, 3404, 3410, 3411,
3418, 3425, 3432, 3439, 3446, 3447,
3449, 3456, 3462, 3556, 3561, 3562,
3570, 3576, 3777, 3782, 3789, 3825,
3831, 3836, 3851, 3874, 3879, 3931,
3937, 3955, 3960, 3975, 3977, 3979,
3986, 4002, 4004, 4007, 4013, 4271,
4304, 4309, 4311, 4318, 4320, 4321,
4326, 4332, 4354, 4356, 4358, 4578,
4584, 4595, 4600, 4613, 4618, 4630,
4645, 4655, 4667, 4690, 4695, 4796,
4811, 4817, 4834, 4844, 5356, 5638,
5653, 5687, 5703, 5750, 5788, 5819,
5825, 5831, 5839, 5844, 5850, 5855,
5869, 5884, 5893, 5901, 5903, 5955,
5964, 6035, 6071, 6278, 6692, 6796,
6799, 6820, 6822, 6828, 6830, 6837,
6847, 7046, 7436, 7552, 7558, 7597,
7604, 8237, 8322, 8384, 8385, 8394,
8396, 8406, 8411, 8416, 8418, 8426,
8427, 8428, 8429, 8430, 8431, 8432,
8433, 8434, 8435, 8445, 8461, 8471,
8487, 8497, 8499, 8503, 8505, 8509,
8517, 8522, 8530, 8537, 8539, 8541,
8543, 8545, 8550, 8556, 8559, 8566,
8568, 8570, 8571, 8573, 8575, 8577,
8579, 8581, 8583, 8585, 8587, 8589,
8591, 8596, 8597, 8598, 8599, 8600,
8601, 8602, 8603, 8604, 8605, 8617,
8620, 9026, 9046, 9052, 9056, 9097,
9241, 9310, 9345, 9407, 9412, 9417,
9419, 9421, 9423, 9429, 9437, 9443,
9449, 9582, 9584, 9619, 9752, 9774,
9776, 9778, 10139, 10140, 10149,
10162, 10164, 10166, 10168, 10388,
10390, 10465, 10599, 10607, 10645,
10662, 10717, 10768, 10777, 10796,
10797, 10805, 10811, 10819, 10829,
10834, 10840, 10846, 10919, 10921,
10923, 10971, 10979, 10985, 10992,
10993, 10999, 11001, 11008, 11013,
11021, 11031, 11033, 11042, 11044,
11045, 11047, 11097, 11103, 11108,

Index 1531

11116, 11125, 11140, 11146, 11150,
11156, 11158, 11169, 11170, 11171,
11173, 11191, 11193, 11222, 11225,
11228, 11233, 11238, 11241, 11243,
11251, 11265, 11275, 11285, 11292,
11297, 11304, 11374, 11480, 11499,
11505, 11511, 11516, 11522, 11536,
11574, 11642, 11765, 11766, 11770,
11771, 12390, 12451, 12531, 12599,
12684, 12687, 12688, 12689, 12690,
12702, 12731, 12738, 12741, 12748,
12754, 12771, 12778, 12781, 12789,
12802, 12804, 12807, 12809, 12818,
12823, 12828, 12831, 12842, 12843,
12844, 12845, 12852, 12859, 12861,
12868, 12879, 12891, 12900, 12906,
12912, 12914, 12917, 12922, 12928,
12929, 12930, 12931, 12939, 12981,
12990, 13009, 13011, 13024, 13031,
13047, 13058, 13066, 13072, 13075,
13080, 13092, 13098, 13099, 13101,
13109, 13115, 13122, 13124, 13126,
13139, 13141, 13143, 13151, 13159,
13165, 13172, 13174, 13179, 13181,
13183, 13184, 13192, 13204, 13213,
13222, 13227, 13233, 13256, 13257,
13258, 13260, 13314, 13437, 13445,
13452, 13453, 13629, 13634, 13639,
13644, 13649, 13658, 13664, 13669,
13674, 13679, 13684, 13688, 13694,
13696, 13704, 13706, 13708, 13734,
13760, 13762, 13764, 13772, 13774,
13785, 13794, 13797, 13808, 13817,
13819, 13821, 13829, 13831, 13838,
13859, 13869, 13874, 13879, 13880,
13882, 13890, 13892, 13900, 13906,
13912, 13931, 13933, 13942, 13948,
13955, 13957, 13960, 13970, 13977,
13979, 13987, 13992, 13997, 14008,
14015, 14017, 14023, 14025, 14030,
14032, 14038, 14039, 14044, 14045,
14046, 14047, 14051, 14056, 14061,
14064, 14066, 14074, 14079, 14089,
14107, 14118, 14120, 14126, 14135,
14150, 14160, 14164, 14178, 14179,
14259, 14267, 14274, 14315, 14317,
14323, 14329, 14331, 14336, 14341,
14357, 14373, 14387, 14486, 14492,
14518, 14524, 14556, 14566, 14577,
14603, 14610, 14670, 14677, 14699,
14709, 14778, 14788, 14825, 14887,
14928, 14930, 14947, 14953, 14976,
15006, 15027, 15036, 15115, 15135,
15155, 15178, 15185, 15212, 15315,

15329, 15356, 15365, 15367, 15388,
15393, 15399, 15404, 15472, 15495,
15507, 15514, 15520, 15525, 16403,
16409, 16417, 16424, 16431, 16435,
16441, 16474, 16484, 16487, 16591,
16600, 16647, 16652, 16654, 16663,
16669, 16674, 16702, 16709, 16807,
16813, 16896, 16909, 17007, 17014,
17032, 17105, 17135, 17163, 17168,
17190, 17225, 17227, 17235, 17241,
17249, 17255, 17257, 17259, 17270,
17312, 17322, 17346, 17361, 17371,
17379, 17381, 17388, 17394, 17422,
17440, 17444, 17446, 17469, 17470,
17471, 17478, 17480, 17520, 17540,
17545, 17547, 17548, 17554, 17562,
17568, 17570, 17578, 17586, 17594,
17602, 17615, 17617, 17624, 17626,
17748, 17755, 17769, 17774, 17780,
17791, 17796, 17803, 17805, 17807,
17809, 17811, 17813, 17815, 17833,
17838, 17843, 17848, 17853, 17855,
17861, 17879, 17887, 17895, 17901,
17907, 17915, 17923, 17929, 17935,
17942, 17958, 17968, 17970, 18007,
18021, 18028, 18060, 18092, 18094,
18096, 18102, 18108, 18120, 18128,
18140, 18148, 18181, 18214, 18216,
18218, 18220, 18222, 18227, 18232,
18237, 18242, 18243, 18244, 18245,
18246, 18247, 18248, 18249, 18250,
18251, 18252, 18253, 18254, 18255,
18256, 18257, 18258, 18267, 18268,
18277, 18283, 18285, 18294, 18301,
18307, 18309, 18311, 18327, 18338,
18361, 18438, 18439, 18447, 18449,
18452, 18458, 18459, 18460, 18461,
18462, 18463, 18464, 18465, 18466,
18467, 18468, 18486, 18487, 18488,
18490, 18496, 18502, 18532, 18533,
18573, 18675, 18765, 18767, 18776,
18783, 18786, 18799, 18805, 18843,
18853, 18860, 18867, 18875, 18882,
18915, 18925, 18933, 18940, 18946,
18956, 18958, 18960, 18969, 18972,
18981, 18990, 19014, 19015, 19018,
19020, 19025, 19035, 19046, 19048,
19051, 19057, 19058, 19066, 19082,
19089, 19098, 19100, 19114, 19116,
19117, 19118, 19120, 19125, 19173,
19243, 19249, 19255, 19261, 19292,
19298, 19328, 19370, 19395, 19397,
19545, 19575, 19722, 19734, 19735,
19743, 19752, 19761, 19770, 19772,

Index 1532

19774, 19776, 19778, 19780, 19782,
19784, 19786, 19788, 19790, 19792,
19794, 19801, 19807, 19814, 19815,
19816, 19817, 19820, 19914, 19922,
19924, 19926, 19936, 19946, 20032,
20035, 20037, 20038, 20044, 20058,
20069, 20076, 20325, 20364, 20377,
20379, 20391, 20447, 20449, 20618,
20645, 20652, 20662, 20690, 20700,
20713, 20715, 20717, 20725, 20727,
20743, 20772, 20778, 20860, 20918,
20923, 20925, 20933, 20941, 20949,
20951, 20963, 20969, 20982, 20984,
20986, 20988, 20990, 20998, 21003,
21008, 21013, 21018, 21020, 21026,
21028, 21036, 21044, 21050, 21056,
21064, 21072, 21078, 21084, 21091,
21105, 21139, 21141, 21147, 21160,
21161, 21168, 21176, 21181, 21195,
21204, 21209, 21219, 21229, 21247,
21253, 21259, 21268, 21273, 21352,
21355, 21360, 21363, 21431, 21460,
21471, 21477, 21479, 21481, 21491,
21497, 21502, 21509, 21517, 21521,
21528, 21530, 21538, 21542, 21549,
21559, 21567, 21575, 21589, 21598,
21610, 21611, 21612, 21613, 21615,
21631, 21642, 21650, 21655, 21661,
21764, 21781, 21785, 21822, 22124,
22360, 22633, 22635, 22700, 22709,
22715, 22717, 22722, 22726, 22730,
22734, 22740, 22752, 22756, 22760,
22823, 22835, 23042, 23044, 23054,
23077, 23149, 23151, 23153, 23164,
23223, 23225, 23232, 23238, 23256,
23264, 23273, 23283, 23333, 23334,
23335, 23336, 23337, 23338, 23339,
23340, 23341, 23342, 23352, 23376,
23378, 23380, 23389, 23391, 23398,
23410, 23411, 23413, 23423, 23433,
23443, 23453, 23461, 23463, 23470,
23472, 23473, 23478, 23485, 23499,
23501, 23517, 23518, 23526, 23528,
23537, 23539, 23551, 23556, 23560,
23565, 23567, 23569, 23571, 23573,
23580, 23582, 23590, 23592, 23604,
23606, 23608, 23610, 23634, 23636,
23638, 23639, 23640, 23642, 23644,
23646, 23648, 23666, 23681, 23682,
23688, 23704, 23710, 23838, 23839,
23840, 23841, 23842, 23843, 23844,
23849, 23852, 23898, 23900, 23902,
23904, 23910, 23914, 23916, 23925,
23926, 23935, 23948, 23961, 23968,

23982, 23998, 24010, 24021, 24031,
24037, 24048, 24058, 24084, 24095,
24112, 24123, 24128, 24148, 24150,
24161, 24166, 24179, 24202, 24203,
24207, 24224, 24225, 24249, 24257,
24275, 24304, 24330, 24334, 24337,
24339, 24345, 24357, 24369, 24376,
24382, 24390, 24413, 24428, 24447,
24455, 24470, 24485, 24496, 24506,
24516, 24521, 24530, 24547, 24560,
24565, 24571, 24573, 24580, 24610,
24638, 24654, 24665, 24670, 24688,
24706, 24717, 24732, 24737, 24748,
24758, 24768, 24784, 24828, 24833,
24840, 24848, 24854, 24859, 24863,
24880, 24888, 24920, 24937, 24951,
24970, 24978, 24987, 24996, 25007,
25009, 25023, 25033, 25034, 25051,
25058, 25063, 25076, 25089, 25094,
25122, 25136, 25164, 25165, 25169,
25186, 25208, 25210, 25221, 25253,
25257, 25272, 25289, 25313, 25315,
25317, 25319, 25329, 25334, 25345,
25357, 25368, 25381, 25401, 25419,
25421, 25433, 25439, 25447, 25461,
25468, 25479, 25486, 25500, 25590,
25599, 25603, 25628, 25639, 25645,
25670, 25672, 25689, 25711, 25716,
25727, 25744, 25771, 25772, 25773,
25774, 25790, 25801, 25809, 25821,
25827, 25833, 25841, 25849, 25855,
25861, 25869, 25877, 25885, 25898,
25920, 25968, 25974, 25985, 26009,
26011, 26013, 26015, 26023, 26027,
26034, 26041, 26042, 26043, 26044,
26045, 26046, 26049, 26051, 26080,
26088, 26099, 26101, 26103, 26105,
26112, 26136, 26138, 26148, 26163,
26172, 26186, 26194, 26202, 26209,
26216, 26224, 26234, 26248, 26259,
26260, 26266, 26283, 26290, 26292,
26299, 26304, 26321, 26322, 26323,
26342, 26348, 26358, 26370, 26377,
26391, 26399, 26437, 26446, 26467,
26469, 26471, 26480, 26491, 26503,
26518, 26531, 26544, 26552, 26570,
26588, 26595, 26603, 26613, 26614,
26623, 26624, 26633, 26643, 26657,
26667, 26678, 26686, 26688, 26699,
26705, 26740, 26761, 26763, 26765,
26767, 26774, 26783, 26788, 26795,
26802, 26822, 26827, 26844, 26855,
26860, 26870, 26872, 26882, 26890,
26892, 26898, 26900, 26902, 26906,

Index 1533

26925, 26926, 26931, 26939, 26940,
26963, 26976, 26983, 26991, 26992,
26993, 26994, 26995, 26996, 27004,
27010, 27012, 27014, 27036, 27041,
27051, 27061, 27072, 27085, 27096,
27101, 27108, 27117, 27119, 27128,
27137, 27151, 27153, 27155, 27168,
27178, 27183, 27192, 27200, 27207,
27213, 27222, 27224, 27236, 27241,
27249, 27254, 27264, 27270, 27276,
27283, 27290, 27292, 27297, 27299,
27304, 27306, 27320, 27330, 27342,
27347, 27354, 27364, 27366, 27368,
27379, 27393, 27407, 27427, 27440,
27442, 27447, 27460, 27465, 27473,
27478, 27488, 27500, 27530, 27531,
27532, 27534, 27536, 27538, 27552,
27558, 27567, 27586, 27592, 27602,
27621, 27629, 27662, 27668, 27677,
27679, 27693, 27752, 27760, 27778,
27795, 27796, 27801, 27826, 27849,
27877, 27893, 27903, 27914, 27935,
27950, 27955, 27960, 27962, 27976,
27982, 27997, 28005, 28015, 28025,
28038, 28056, 28062, 28076, 28091,
28129, 28131, 28133, 28135, 28137,
28152, 28167, 28182, 28197, 28212,
28227, 28235, 28249, 28251, 28257,
28269, 28277, 28284, 28510, 28517,
28554, 28562, 28563, 28574, 28581,
28583, 28589, 28600, 28610, 28617,
28624, 28639, 28678, 28691, 28722,
28728, 28735, 28755, 28757, 28774,
28789, 28802, 28809, 28814, 28816,
28825, 28838, 28841, 28862, 28875,
28890, 28908, 28923, 28933, 28942,
28955, 28971, 28988, 29001, 29007,
29009, 29014, 29015, 29016, 29017,
29020, 29025, 29031, 29036, 29038,
29061, 29069, 29071, 29074, 29079,
29085, 29090, 29092, 29115, 29140,
29149, 29150, 29152, 29157, 29159,
29164, 29166, 29176, 29184, 29192,
29194, 29197, 29202, 29207, 29209,
29210, 29212, 29217, 29222, 29224,
29229, 29236, 29250, 29255, 29257,
29267, 29269, 29271, 29273, 29275,
29286, 29296, 29298, 29301, 29306,
29308, 29316, 29317, 29331, 29338,
29344, 29345, 29358, 29373, 29379,
29401, 29416, 29426, 29447, 29456,
29479, 29497, 29508, 29513, 29524,
29541, 29546, 29574, 29578, 29583,
29590, 29596, 29601, 29613, 29632,

29639, 29641, 29657, 29663, 29670,
29678, 29690, 29710, 29720, 29726,
29731, 29744, 29756, 29764, 29773,
29796, 29806, 29991, 30071, 30086,
30087, 30135, 30141, 30155, 30224,
30232, 30240, 30246, 30253, 30258,
30264, 30276, 30407, 30416, 30421,
30429, 30593, 30699, 30701, 30708,
30720, 30724, 30728, 30903, 30909,
30920, 30932, 30946, 30965, 30982,
30988, 30993, 31037, 31039, 31041,
31044, 31047, 31053, 31059, 31065,
31066, 31075, 31077, 31088, 31093,
31094, 31343, 31363, 31437, 31442,
31451, 31452, 31453, 31454, 31455,
31461, 31463, 31516, 31522, 31524,
31534, 31549, 31559, 31576, 31590,
31607, 31620, 31622, 31623, 31672,
31690, 31701, 31703, 31705, 31716,
31750, 31765, 31766, 31768, 31770,
31834, 31842, 31849, 31852, 31854,
31860, 31871, 31883, 31888, 31897,
31911, 31922, 31932, 31937, 31943,
31968, 31982, 31987, 31992, 32003,
32005, 32010, 32016, 32030, 32036,
32062, 32072, 32082, 32084, 32095,
32101, 32106, 32114, 32115, 32130,
32131, 32144, 32149, 32159, 32166,
32200, 32202, 32204, 32206, 32208,
32210, 32212, 32214, 32216, 32218,
32228, 32240, 32245, 32257, 32265,
32268, 32270, 32276, 32287, 32289,
32295, 32309, 32323, 32334, 32336,
32342, 32347, 32353, 32367, 32378,
32387, 32394, 32401, 32411, 32420,
32425, 32436, 32438, 32452, 32461,
32464, 32471, 32476, 32481, 32486,
32497, 32504, 32509, 32511, 32515,
32517, 32537, 32544, 32552, 32568,
32574, 32580, 32587, 32598, 32614,
32627, 32634, 32636, 32645, 32657,
32662, 32679, 32683, 32704, 32708,
32719, 32725, 32765, 32770, 32771,
32773, 32789, 32828, 32833, 32844,
32861, 32872, 32885, 32903, 32908,
32943, 32953, 32970, 32982, 32995,
33006, 33022, 33028, 33062, 33070,
33080, 33093, 33122, 33156, 33234,
33252, 33269, 33294, 33310, 33320,
33330, 33342, 33357, 33370, 33376,
33386, 33399, 33407, 33417, 33422,
33431, 33433, 33449, 33465, 33469,
33480, 33491, 33504, 33532, 33545,
33552, 33557, 33582, 33595, 33608,

Index 1534

33615, 33620, 33632, 33639, 33651,
33658, 33674, 33691, 33705, 33710,
33736, 33823, 33825, 33831, 33842,
33853, 33859, 33877, 33890, 33900,
33916, 33921, 33926, 33944, 33945,
33951, 33954, 33959, 33974, 33979,
33997, 33999, 34001, 34003, 34005,
34007, 34009, 34011, 34013, 34015,
34020, 34026, 34033, 34040, 34050,
34067, 34072, 34079, 34084, 34102,
34104, 34105, 34110, 34116, 34122,
34127, 34137, 34144, 34155, 34157,
34159, 34175, 34184, 34191, 34193,
34195, 34201, 34212, 34213, 34218,
34223, 34230, 34241, 34246, 34248,
34250, 34255, 34260, 34271, 34282,
34287, 34294, 34299, 34310, 34312,
34330, 34331, 34340, 34346, 34351,
34363, 34431, 34484, 34749, 36838,
36839, 36883, 36885, 36887, 36889,
36891, 36893, 36900, 36905, 36912,
36914, 36920, 37075, 37082, 37087,
37089, 37096, 37104, 37106, 37115,
37125, 37127, 37129, 37131, 37133,
37138, 37146, 37152, 37164, 37166,
37167, 37168, 37169, 37170, 37171,
37172, 37173, 37180, 37182, 37191,
37200, 37214, 37256, 37263, 37265,
37270, 37275, 37288, 37298, 37643,
37701, 37842, 37853, 37860, 37868,
37874, 37882, 37884, 37916, 37918,
37997, 38003, 38005, 38014, 38027,
38042, 38055, 38069, 38160, 38186,
38197, 38204, 38206, 38219, 38225,
38236, 38251, 38257, 38262, 38272,
38278, 38288, 38343, 38344, 38398,
38594, 38599, 38645, 38674, 38679,
38720, 38728, 38730, 38757, 38758,
38762, 38770, 38782, 38809, 38811,
38812, 38922, 38977, 38979, 38981,
38983, 38986, 38988, 38990, 38992,
38994, 38996, 38998, 39000, 39008,
39010, 39020, 39023, 39027, 39030,
39033, 39036, 39039, 39042, 39045,
39047, 39049, 39051, 39063, 39065,
39067, 39069, 39071, 39073, 39075,
39077, 39079, 39081, 39083, 39085,
39087, 39089, 39091, 39093, 39096,
39099, 39101, 39144, 39147, 39205,
39313, 39314, 39344, 39349, 39354,
39363, 39376, 39380, 39391, 39414

\cs_new:Npx . 16, 1987, 2000, 2018, 2026
\cs_new_eq:NN 21,

66, 398, 400, 905, 1743, 2045, 2053,

2058, 2059, 2060, 2368, 2377, 2407,
2667, 2695, 2696, 2935, 3534, 3535,
4268, 4274, 4287, 4293, 4299, 4422,
4423, 4424, 4523, 4531, 4552, 4591,
4592, 4593, 4594, 4793, 6564, 6829,
7226, 7758, 8276, 8278, 8298, 8299,
8633, 8634, 8635, 8636, 8639, 8640,
8641, 8642, 8982, 10210, 10232,
10322, 10467, 10475, 10600, 11096,
11363, 11406, 11467, 11473, 11760,
11761, 11762, 12130, 12131, 12532,
12533, 13463, 13477, 13478, 13481,
13482, 13560, 13583, 13654, 13655,
13656, 13657, 14193, 14198, 14205,
14535, 14551, 14553, 15541, 16401,
16688, 16691, 16716, 16736, 16737,
16738, 16739, 16740, 16741, 16742,
16743, 16955, 17483, 17486, 17489,
17490, 17491, 17492, 17493, 17494,
17533, 17534, 17535, 17536, 17537,
17668, 17669, 17672, 17747, 18005,
18363, 18367, 18482, 18535, 18536,
18541, 18542, 18543, 18544, 18545,
18546, 18547, 18548, 18549, 18550,
18551, 18552, 18553, 18554, 18555,
18556, 18703, 18705, 19023, 19291,
19449, 19451, 19452, 19453, 19455,
19458, 19459, 19810, 19811, 19812,
20014, 20855, 20856, 20857, 21159,
21274, 21278, 21279, 21302, 21303,
21357, 21358, 21359, 21362, 21367,
21371, 21372, 21433, 21434, 21435,
21439, 21440, 21470, 23123, 23124,
23330, 23331, 23332, 23536, 23703,
23981, 24009, 24017, 24018, 24019,
24028, 24030, 24827, 24946, 24947,
24948, 25545, 25556, 25557, 29264,
29266, 29681, 29684, 29855, 29986,
30361, 30427, 32307, 32513, 32542,
32670, 32721, 32723, 32787, 32826,
33318, 33467, 33749, 33751, 33953,
34032, 34039, 34115, 34121, 34748,
34787, 34788, 34789, 34823, 34824,
34835, 34836, 34837, 34942, 34973,
34974, 35047, 35062, 35063, 35574,
35801, 35802, 35803, 35804, 35805,
35806, 35807, 35808, 36808, 36809,
37841, 37999, 38023, 38038, 39201

\cs_new_nopar:Nn 18, 2132, 2209
\cs_new_nopar:Npe

. 16, 1987, 1996, 2007, 2016
\cs_new_nopar:Npn

. 16, 398, 399, 1987, 1995, 2007, 2015
\cs_new_nopar:Npx

Index 1535

. 16, 1987, 1997, 2007, 2017
\cs_new_protected:Nn . 19, 2132, 2209
\cs_new_protected:Npe . . 16, 422,

427, 1987, 2005, 2036, 2043, 2717,
2721, 2726, 2885, 2889, 4102, 5196,
5210, 5212, 9469, 9471, 9473, 9475,
10251, 11072, 11440, 12549, 16852,
18393, 19281, 19961, 35690, 36926,
37320, 37561, 37672, 37775, 37781

\cs_new_protected:Npn . . 16, 428,
1473, 1605, 1626, 1987, 2004, 2036,
2042, 2045, 2046, 2047, 2048, 2049,
2050, 2051, 2052, 2053, 2058, 2059,
2060, 2061, 2063, 2072, 2093, 2117,
2127, 2129, 2140, 2149, 2271, 2280,
2282, 2284, 2286, 2288, 2296, 2298,
2299, 2301, 2302, 2304, 2312, 2314,
2316, 2380, 2408, 2573, 2595, 2662,
2686, 2702, 2715, 2733, 2737, 2740,
2749, 2873, 2890, 2900, 2909, 2933,
2939, 2947, 2958, 2960, 2962, 2964,
2966, 2977, 2979, 2992, 3000, 3011,
3030, 3032, 3034, 3036, 3038, 3125,
3144, 3151, 3163, 3196, 3215, 3217,
3219, 3238, 3241, 3244, 3250, 3256,
3272, 3281, 3301, 3311, 3322, 3332,
3342, 3343, 3350, 3356, 3366, 3376,
3472, 3478, 3480, 3495, 3578, 3589,
3609, 3631, 3641, 3643, 3667, 3674,
3686, 3689, 3692, 3702, 3710, 3717,
3726, 3741, 3758, 3769, 3884, 3886,
3893, 3902, 3908, 3910, 3912, 3922,
3924, 3926, 4014, 4033, 4044, 4063,
4086, 4098, 4123, 4134, 4148, 4156,
4163, 4165, 4175, 4185, 4216, 4222,
4224, 4229, 4245, 4269, 4272, 4275,
4277, 4289, 4295, 4301, 4360, 4362,
4363, 4368, 4374, 4382, 4392, 4406,
4425, 4443, 4445, 4453, 4465, 4484,
4486, 4491, 4499, 4501, 4508, 4513,
4515, 4517, 4524, 4532, 4534, 4536,
4538, 4545, 4550, 4553, 4559, 4805,
4863, 4875, 4886, 4899, 4932, 4961,
4970, 4975, 4980, 4985, 5006, 5015,
5022, 5031, 5036, 5043, 5056, 5058,
5060, 5062, 5068, 5090, 5103, 5130,
5135, 5153, 5167, 5202, 5223, 5225,
5233, 5235, 5237, 5239, 5241, 5243,
5247, 5258, 5274, 5287, 5293, 5304,
5317, 5323, 5342, 5362, 5393, 5404,
5419, 5432, 5450, 5458, 5463, 5465,
5467, 5484, 5503, 5505, 5528, 5540,
5560, 5581, 5588, 5595, 5606, 5613,
5619, 5677, 5729, 5738, 5751, 5766,

5775, 5794, 5813, 5970, 6041, 6051,
6053, 6055, 6062, 6107, 6120, 6136,
6138, 6140, 6145, 6160, 6166, 6189,
6209, 6224, 6231, 6238, 6240, 6242,
6249, 6263, 6279, 6288, 6302, 6314,
6331, 6340, 6342, 6354, 6363, 6375,
6388, 6395, 6415, 6446, 6480, 6498,
6507, 6513, 6519, 6525, 6568, 6577,
6591, 6610, 6636, 6641, 6651, 6663,
6701, 6710, 6722, 6729, 6731, 6733,
6753, 6758, 6764, 6775, 6780, 6785,
6801, 6853, 6871, 6873, 6916, 6940,
6957, 6963, 6965, 6985, 7011, 7022,
7031, 7040, 7073, 7087, 7098, 7104,
7113, 7121, 7156, 7162, 7165, 7173,
7179, 7182, 7191, 7194, 7197, 7200,
7205, 7214, 7217, 7220, 7225, 7231,
7236, 7241, 7246, 7247, 7248, 7256,
7257, 7258, 7281, 7283, 7287, 7295,
7297, 7299, 7303, 7304, 7323, 7340,
7342, 7344, 7346, 7363, 7365, 7367,
7382, 7390, 7400, 7411, 7420, 7437,
7449, 7459, 7468, 7508, 7545, 7547,
7576, 7581, 7612, 7634, 7652, 7654,
7681, 7683, 7712, 7729, 7740, 7745,
7759, 7765, 7767, 7768, 7774, 7776,
7777, 7783, 7785, 7787, 7793, 7795,
7797, 7805, 7825, 7831, 7837, 7843,
7851, 7853, 7855, 7857, 7859, 7861,
7863, 7865, 7867, 7872, 7900, 7910,
7915, 7924, 7926, 7940, 8253, 8255,
8257, 8264, 8278, 8280, 8286, 8288,
8290, 8292, 8302, 8307, 8314, 8317,
8345, 8347, 8349, 8351, 8353, 8629,
8774, 8791, 8844, 8850, 8869, 8880,
8903, 8933, 8937, 8965, 8969, 8973,
8978, 9030, 9088, 9090, 9092, 9113,
9143, 9146, 9148, 9155, 9165, 9171,
9249, 9257, 9266, 9269, 9276, 9317,
9346, 9366, 9371, 9382, 9458, 9460,
9493, 9516, 9572, 9586, 9629, 9651,
9652, 9665, 9670, 9696, 9705, 9707,
9709, 9726, 9753, 9755, 9757, 9758,
9760, 9762, 9764, 9766, 9768, 9770,
9772, 10210, 10214, 10228, 10239,
10260, 10266, 10282, 10294, 10296,
10298, 10310, 10311, 10312, 10339,
10341, 10352, 10354, 10373, 10375,
10377, 10392, 10394, 10396, 10402,
10409, 10418, 10420, 10422, 10427,
10467, 10471, 10483, 10490, 10502,
10510, 10516, 10526, 10538, 10540,
10542, 10554, 10555, 10556, 10566,
10569, 10573, 10579, 10586, 10593,

Index 1536

10596, 10608, 10639, 10650, 10668,
10703, 10726, 10738, 10757, 10761,
10850, 10866, 10875, 10883, 10892,
10899, 10905, 11054, 11090, 11205,
11310, 11313, 11316, 11319, 11338,
11346, 11414, 11420, 11427, 11428,
11433, 11453, 11468, 11474, 11546,
11551, 11558, 11559, 11560, 11587,
11600, 11612, 11622, 11624, 11626,
11635, 11643, 11767, 11768, 11773,
12109, 12111, 12113, 12115, 12117,
12122, 12132, 12138, 12145, 12147,
12151, 12153, 12157, 12159, 12163,
12171, 12189, 12191, 12193, 12195,
12205, 12210, 12215, 12220, 12228,
12236, 12241, 12246, 12251, 12259,
12279, 12281, 12286, 12291, 12299,
12307, 12309, 12314, 12319, 12327,
12355, 12362, 12364, 12366, 12368,
12380, 12399, 12414, 12432, 12454,
12456, 12458, 12460, 12478, 12500,
12506, 12534, 12537, 12540, 12543,
12565, 12567, 12571, 12573, 12657,
12658, 12659, 12755, 12768, 12795,
12797, 12799, 12871, 12873, 13145,
13147, 13279, 13281, 13283, 13299,
13302, 13315, 13318, 13351, 13353,
13355, 13357, 13366, 13372, 13378,
13395, 13396, 13398, 13401, 13404,
13415, 13420, 13425, 13433, 13435,
13485, 13489, 13494, 13499, 13504,
13509, 13521, 13523, 13525, 13527,
13533, 13548, 13561, 13563, 13567,
13569, 13716, 13731, 13740, 13750,
13752, 14199, 14206, 14215, 14347,
14363, 14379, 14385, 14389, 14391,
14411, 14431, 14439, 14449, 14458,
14542, 14550, 14552, 14554, 14564,
14570, 14594, 14605, 14611, 14614,
14616, 14621, 14647, 14653, 14659,
14687, 14761, 14809, 14862, 14945,
14951, 14974, 15004, 15025, 15100,
15196, 15201, 15203, 15205, 15281,
15283, 15285, 15290, 15300, 15379,
15384, 15386, 15439, 15441, 15443,
15448, 15458, 16390, 16492, 16494,
16505, 16512, 16518, 16536, 16545,
16550, 16555, 16560, 16565, 16571,
16576, 16583, 16589, 16598, 16608,
16610, 16612, 16617, 16622, 16634,
16679, 16718, 16724, 16727, 16730,
16733, 16744, 16749, 16754, 16759,
16770, 16776, 16778, 16780, 16782,
16784, 16821, 16823, 16825, 16831,

16834, 16837, 16840, 16843, 16846,
16870, 16872, 16880, 16888, 16901,
16903, 16911, 16913, 16915, 16927,
16929, 16931, 16956, 16958, 16968,
16974, 16987, 16996, 17021, 17023,
17025, 17050, 17051, 17052, 17077,
17109, 17117, 17127, 17138, 17140,
17142, 17144, 17152, 17170, 17172,
17174, 17283, 17288, 17293, 17299,
17305, 17334, 17351, 17402, 17404,
17406, 17412, 17414, 17416, 17501,
17503, 17505, 17633, 17639, 17642,
17675, 17676, 17679, 17681, 17685,
17687, 17693, 17695, 17697, 17699,
17705, 17707, 17709, 17711, 17717,
17719, 17723, 17726, 17735, 17738,
17749, 17972, 17974, 17976, 17983,
17985, 17987, 17999, 18365, 18369,
18392, 18397, 18403, 18412, 18415,
18417, 18419, 18455, 18456, 18457,
18469, 18470, 18471, 18489, 18537,
18557, 18559, 18561, 18584, 18586,
18588, 18603, 18605, 18611, 18613,
18615, 18624, 18626, 18628, 18641,
18649, 18652, 18654, 18656, 18664,
18692, 18709, 18711, 18713, 18731,
18733, 18735, 18770, 18772, 18816,
18883, 18899, 18905, 18908, 18910,
19131, 19133, 19135, 19153, 19154,
19155, 19171, 19175, 19177, 19179,
19181, 19183, 19185, 19187, 19189,
19191, 19193, 19195, 19197, 19199,
19201, 19203, 19205, 19207, 19209,
19211, 19213, 19215, 19217, 19219,
19221, 19223, 19225, 19227, 19229,
19231, 19233, 19235, 19237, 19239,
19241, 19245, 19247, 19251, 19253,
19257, 19259, 19263, 19275, 19821,
19823, 19825, 19830, 19837, 19846,
19857, 19862, 19876, 19884, 19902,
19904, 19906, 19908, 19910, 19912,
19972, 19989, 19994, 20001, 20006,
20008, 20023, 20024, 20030, 20033,
20052, 20079, 20085, 20090, 20107,
20110, 20113, 20119, 20126, 20131,
20139, 20142, 20145, 20148, 20151,
20154, 20157, 20170, 20176, 20186,
20195, 20201, 20214, 20219, 20232,
20243, 20246, 20249, 20258, 20266,
20269, 20272, 20278, 20284, 20286,
20292, 20298, 20304, 20310, 20315,
20326, 20331, 20332, 20338, 20357,
20397, 20411, 20423, 20431, 20450,
20456, 20464, 20470, 20496, 20498,

Index 1537

20500, 20502, 20546, 20564, 20571,
20579, 20595, 20675, 20745, 20747,
20749, 20785, 20792, 20814, 20821,
20829, 20839, 20861, 20867, 20873,
20874, 20878, 20880, 20888, 20890,
20894, 20897, 20900, 20902, 20909,
20911, 20992, 21114, 21121, 21133,
21276, 21280, 21290, 21296, 21306,
21308, 21316, 21318, 21322, 21324,
21326, 21328, 21332, 21334, 21369,
21373, 21381, 21387, 21393, 21395,
21399, 21401, 21409, 21411, 21415,
21417, 21419, 21421, 21425, 21427,
21437, 21441, 21710, 21717, 21725,
21728, 21735, 21740, 21745, 21758,
21768, 21793, 21799, 21834, 21837,
21840, 21856, 21858, 21860, 21876,
21887, 21889, 21891, 21908, 21911,
21913, 21923, 21937, 21950, 21957,
21975, 21977, 21979, 21998, 22006,
22011, 22025, 22034, 22061, 22070,
22079, 22112, 22125, 22136, 22142,
22144, 22146, 22148, 22150, 22152,
22154, 22156, 22158, 22160, 22162,
22164, 22166, 22168, 22170, 22172,
22174, 22176, 22178, 22180, 22182,
22184, 22186, 22188, 22190, 22192,
22194, 22196, 22198, 22200, 22202,
22204, 22206, 22208, 22210, 22212,
22214, 22216, 22218, 22220, 22222,
22224, 22226, 22228, 22230, 22232,
22234, 22236, 22238, 22240, 22242,
22244, 22246, 22248, 22250, 22252,
22254, 22256, 22258, 22260, 22262,
22264, 22266, 22268, 22270, 22272,
22274, 22276, 22278, 22280, 22282,
22284, 22286, 22288, 22290, 22292,
22294, 22296, 22298, 22300, 22302,
22304, 22306, 22308, 22310, 22312,
22314, 22316, 22318, 22320, 22322,
22324, 22326, 22328, 22330, 22332,
22339, 22366, 22368, 22374, 22385,
22396, 22399, 22402, 22413, 22416,
22422, 22433, 22436, 22442, 22450,
22455, 22460, 22480, 22485, 22489,
22495, 22500, 22506, 22520, 22543,
22562, 22577, 22591, 22607, 22643,
22667, 22699, 22786, 22788, 22790,
22903, 22909, 22994, 22996, 23057,
23092, 23118, 23127, 23136, 23171,
23173, 23181, 23192, 23200, 23207,
23213, 23241, 23250, 23292, 23297,
23311, 23313, 23315, 23343, 23346,
23457, 23730, 23747, 23749, 23751,

23753, 23781, 23783, 23785, 23787,
23807, 23809, 23811, 23813, 23815,
23817, 23819, 23821, 23823, 25544,
25547, 25549, 25551, 25560, 25561,
25564, 25566, 25570, 25571, 25572,
25573, 25574, 25580, 25582, 25584,
25655, 25657, 25937, 25944, 25956,
28767, 29624, 29833, 29844, 29860,
29864, 29870, 29875, 29879, 29895,
29899, 29947, 29949, 29964, 29969,
30010, 30015, 30092, 30094, 30108,
30121, 30160, 30170, 30182, 30187,
30197, 30205, 30211, 30290, 30296,
30307, 30316, 30318, 30320, 30322,
30324, 30362, 30363, 30365, 30367,
30369, 30371, 30397, 30401, 30445,
30447, 30449, 30460, 30463, 30466,
30505, 30510, 30517, 30523, 30525,
30547, 30549, 30561, 30572, 30584,
30600, 30605, 30618, 30631, 30639,
30648, 30662, 30673, 30680, 30761,
30774, 30781, 32171, 32727, 32732,
32734, 32736, 32738, 32743, 32748,
32750, 32752, 32754, 32759, 34161,
34368, 34751, 34753, 34759, 34761,
34765, 34767, 34771, 34773, 34777,
34779, 34793, 34796, 34802, 34805,
34811, 34814, 34820, 34827, 34829,
34831, 34833, 34850, 34852, 34861,
34864, 34867, 34870, 34872, 34879,
34897, 34899, 34904, 34911, 34916,
34923, 34929, 34937, 34943, 34949,
34957, 34962, 34967, 34969, 34971,
34977, 34979, 34981, 34986, 34991,
34996, 35003, 35008, 35015, 35020,
35027, 35033, 35041, 35048, 35054,
35066, 35069, 35087, 35090, 35093,
35103, 35137, 35148, 35159, 35170,
35181, 35192, 35205, 35211, 35217,
35232, 35239, 35249, 35254, 35257,
35260, 35274, 35277, 35280, 35294,
35297, 35300, 35311, 35314, 35317,
35332, 35335, 35338, 35347, 35361,
35364, 35367, 35373, 35379, 35392,
35429, 35432, 35435, 35438, 35441,
35486, 35489, 35492, 35587, 35596,
35605, 35614, 35627, 35640, 35653,
35659, 35665, 35700, 35713, 35726,
35727, 35728, 35735, 35742, 35768,
35769, 35770, 35782, 35809, 35819,
35826, 35833, 35836, 35839, 35851,
35854, 35857, 35869, 35874, 35879,
35885, 35891, 35893, 35895, 35901,
35922, 35924, 35926, 35932, 35966,

Index 1538

35981, 36038, 36077, 36080, 36083,
36123, 36141, 36147, 36153, 36165,
36184, 36193, 36204, 36210, 36215,
36223, 36236, 36243, 36250, 36262,
36284, 36287, 36290, 36305, 36312,
36318, 36327, 36334, 36342, 36348,
36354, 36393, 36399, 36405, 36426,
36435, 36454, 36459, 36473, 36478,
36491, 36502, 36514, 36528, 36589,
36594, 36631, 36639, 36663, 36707,
36715, 36739, 36742, 36745, 36764,
36767, 36770, 36773, 36776, 36810,
36813, 36818, 36820, 36840, 36846,
36850, 36936, 36943, 36950, 36969,
36982, 36992, 37012, 37029, 37052,
37061, 37073, 37074, 37301, 37315,
37329, 37335, 37342, 37351, 37362,
37371, 37380, 37385, 37393, 37401,
37417, 37436, 37451, 37456, 37461,
37476, 37477, 37482, 37487, 37493,
37499, 37505, 37510, 37516, 37530,
37551, 37568, 37578, 37592, 37625,
37635, 37641, 37652, 37654, 37685,
37688, 37690, 37692, 37710, 37747,
37753, 37770, 37791, 37804, 37817,
37837, 37850, 37865, 37879, 37888,
37898, 37910, 37926, 37939, 37975,
37980, 37995, 38001, 38012, 38025,
38040, 38078, 38091, 38130, 38136,
38138, 38143, 38148, 38164, 38169,
38174, 38179, 38184, 38313, 38326,
38339, 38349, 38354, 38363, 38368,
38373, 38378, 38380, 38382, 38573,
38582, 38587, 38640, 38661, 38667,
38705, 38714, 38751, 38794, 38796,
38801, 38813, 38815, 38817, 38863,
38865, 38877, 38896, 38903, 38925,
38928, 38930, 38932, 38934, 38936,
38938, 38940, 38942, 38945, 38948,
38951, 38955, 38957, 38961, 38967,
39002, 39006, 39012, 39014, 39017,
39056, 39058, 39060, 39132, 39134,
39166, 39176, 39202, 39203, 39206,
39207, 39208, 39209, 39257, 39266,
39268, 39280, 39293, 39298, 39300,
39301, 39311, 39328, 39330, 39335

\cs_new_protected:Npx
16, 1987, 2006, 2036, 2044, 2134, 2211

\cs_new_protected_nopar:Nn
. 19, 2132, 2209

\cs_new_protected_nopar:Npe
. 17, 1987, 2002, 2027, 2034

\cs_new_protected_nopar:Npn
. . . . 17, 1987, 2001, 2008, 2027, 2033

\cs_new_protected_nopar:Npx
. 17, 1987, 2003, 2027, 2035

\cs_parameter_spec:N
. 24, 2333, 2348, 13288,
13323, 38921, 38922, 39503, 39916

\cs_prefix_spec:N . 23, 2333, 2339,
13288, 13323, 39443, 39501, 39915

\cs_replacement_spec:N . . 24, 2333,
2357, 3105, 3106, 22801, 31814, 39506

\cs_set:Nn 19, 403, 2132, 2209
.cs_set:Np 247, 22180
\cs_set:Npe

. 17, 1469, 1474, 1476, 2018, 2019,
6265, 10673, 10674, 10675, 10676,
10677, 12511, 14661, 14689, 18820,
19832, 19849, 19889, 19895, 29971

\cs_set:Npn 15, 17, 65, 389,
399, 403, 933, 1469, 1472, 1595,
1616, 1618, 1987, 2007, 2018, 2018,
2132, 2209, 3211, 4563, 4564, 4565,
4894, 4895, 5471, 5473, 5490, 5492,
5732, 5733, 5997, 5998, 5999, 6000,
6026, 6613, 6918, 8986, 9271, 9273,
10615, 10937, 12440, 12509, 12666,
13550, 15306, 15463, 16645, 16667,
18744, 18833, 19326, 19834, 19848,
20317, 22181, 22183, 22738, 23756,
23764, 23773, 23790, 23798, 23826,
29835, 30041, 31167, 31169, 38901,
39229, 39261, 39303, 39312, 39458

\cs_set:Npx
. 17, 411, 1469, 1476, 2018, 2020

\cs_set_eq:NN 21, 66, 400, 590, 927,
930, 936, 1739, 2045, 2045, 2046,
2047, 2048, 2049, 2056, 2721, 2739,
2889, 3474, 3475, 3479, 3670, 3713,
3738, 4104, 4144, 4420, 5989, 6023,
6619, 6668, 7512, 7540, 7840, 7878,
7879, 7881, 7882, 7883, 7904, 8287,
8289, 8666, 10679, 10680, 10681,
10682, 10684, 10686, 10687, 12110,
12112, 14398, 14407, 15208, 17027,
17028, 17030, 17176, 17177, 17188,
18408, 19284, 19486, 19828, 19887,
19894, 20108, 20152, 20216, 20237,
20244, 20288, 20453, 20467, 20483,
21723, 21946, 21954, 22040, 29872,
29873, 29889, 29904, 30012, 30021,
30099, 30100, 30677, 39190, 39198

\cs_set_nopar:Nn 19, 2132, 2209
\cs_set_nopar:Npe

. 17, 468, 736, 927, 929,
930, 936, 939, 983, 987, 1001, 1469,
1470, 2007, 2010, 2410, 2597, 4065,

Index 1539

12130, 13352, 13368, 13399, 20108,
20152, 20216, 20217, 20237, 20244,
20267, 20288, 20453, 20467, 20483,
20497, 20501, 21772, 21790, 21931,
22492, 22497, 30032, 31491, 39549

\cs_set_nopar:Npn 16, 17,
206, 399, 1485, 1469, 1469, 2007,
2009, 20797, 21878, 22504, 29906,
31110, 31111, 31112, 31116, 31117,
31121, 31473, 31474, 31483, 31485

\cs_set_nopar:Npx
17, 1469, 1471, 1492, 2007, 2011, 2153

\cs_set_protected:Nn . 19, 2132, 2209
.cs_set_protected:Np 247, 22180
\cs_set_protected:Npe

. 17, 110, 1469, 1484,
1486, 2036, 2037, 9637, 21915, 31201

\cs_set_protected:Npn
16, 17, 400, 123, 1469, 1482, 1601,

1622, 2036, 2036, 2907, 3054, 3476,
4018, 5208, 5245, 5974, 5983, 5985,
5987, 5990, 5992, 6001, 6003, 6008,
6010, 6015, 6017, 6019, 6021, 6024,
6777, 6778, 7301, 9390, 9455, 10137,
10594, 10597, 10736, 10817, 10917,
10933, 12547, 12673, 12877, 13064,
13459, 14807, 14860, 16850, 17093,
18970, 19273, 19358, 19571, 19590,
19970, 21179, 21344, 21458, 21587,
21629, 21912, 22185, 22187, 22673,
23709, 24205, 24281, 24861, 24935,
24949, 25167, 25184, 25219, 25255,
25270, 25287, 26904, 29676, 29708,
31118, 31135, 31145, 31154, 31175,
31194, 31216, 31221, 31234, 31256,
31290, 31298, 31314, 31321, 31370,
31386, 31403, 31411, 31475, 31489,
31803, 33754, 33787, 34447, 34500,
34526, 35705, 35718, 35749, 37670,
38894, 38900, 39211, 39220, 39239,
39244, 39250, 39259, 39260, 39262,
39263, 39264, 39295, 39299, 39417,
39423, 39437, 39454, 39479, 39485,
39494, 39903, 39909, 39921, 39982,
40030, 40065, 40089, 40141, 40192

\cs_set_protected:Npx
. 17, 1469, 1486, 2036, 2038

\cs_set_protected_nopar:Nn
. 19, 2132, 2209

\cs_set_protected_nopar:Npe
. . . . 17, 1469, 1479, 1481, 2027, 2028

\cs_set_protected_nopar:Npn
. 17, 399, 1469, 1477, 2027, 2027

\cs_set_protected_nopar:Npx

. 17, 1469, 1481, 2027, 2029
\cs_show:N 21,

22, 29, 407, 2298, 2298, 2299, 2300
\cs_split_function:N . . . 23, 1611,

1632, 1749, 1750, 1807, 1809, 2104,
2145, 2708, 2997, 16508, 16529, 39338

\cs_to_str:N
. 6, 23, 118, 134, 393, 738,
759, 1798, 1798, 1813, 4306, 5804,
5940, 10600, 13356, 13418, 13423,
13431, 14180, 14181, 14182, 14183,
14184, 14185, 14186, 14187, 14188,
14189, 14190, 14191, 16650, 16672,
18393, 23707, 30294, 30300, 30302,
30310, 30373, 30377, 30384, 30431,
30436, 30472, 32080, 34435, 39267,
39430, 39439, 39448, 39462, 39471

\cs_undefine:N . 21, 872, 982, 989,
2061, 2061, 2063, 2069, 9506, 9507,
9508, 10235, 10478, 11763, 11764,
13091, 13347, 29888, 29958, 29959,
30126, 30635, 30696, 31301, 31312

cs internal commands:
__cs_count_signature:N

. 392, 2103, 2103, 2115, 2116
__cs_count_signature:n

. 2103, 2104, 2105
__cs_count_signature:nnN

. 2103, 2106, 2107
__cs_generate_from_signature:n .

. 2154, 2168
__cs_generate_from_signature:NNn

. 2136, 2140
__cs_generate_from_signature:nnNNNn

. 2144, 2149
__cs_generate_internal_c:NN . 2960
__cs_generate_internal_end:w . . .

. 2943, 2977
__cs_generate_internal_long:nnnNNn

. 2981, 2985
__cs_generate_internal_long:w . .

. 2944, 2979
__cs_generate_internal_loop:nwnnw

. 2941,
2947, 2959, 2961, 2963, 2965, 2968

__cs_generate_internal_N:NN . 2958
__cs_generate_internal_n:NN . 2962
__cs_generate_internal_one_-

go:NNn 428, 2930, 2939
__cs_generate_internal_other:NN

. 2952, 2966
__cs_generate_internal_test:Nw .

. 2915, 2935

Index 1540

__cs_generate_internal_test_-
aux:w 2917, 2933, 2936

__cs_generate_internal_variant:n
. . . 431, 2880, 2885, 2885, 3051, 3057

__cs_generate_internal_variant:NNn
. 428, 2905, 2909

__cs_generate_internal_variant:wwnNwn
. 2887, 2900

__cs_generate_internal_variant_-
loop:n . 2885, 2925, 2982, 2987, 2990

__cs_generate_internal_x:NN . 2964
__cs_generate_variant:N

. 2704, 2717, 2717
__cs_generate_variant:n 2992
__cs_generate_variant:nnNN

. 2707, 2740, 2740
__cs_generate_variant:nnNnn . . .

. 2992, 2996, 3000
__cs_generate_variant:Nnnw

. 2747, 2749, 2749, 2767
__cs_generate_variant:w

. 2992, 3007, 3011, 3028
__cs_generate_variant:ww

. 2717, 2723, 2733
__cs_generate_variant:wwNN

. . . 424, 425, 2756, 2873, 2873, 39791
__cs_generate_variant:wwNw

. 2717, 2735, 2737
__cs_generate_variant_F_-

form:nnn 2992, 3034
__cs_generate_variant_loop:nNwN

. . . . 424, 425, 2757, 2769, 2769, 2788
__cs_generate_variant_loop_-

base:N 2769, 2774, 2777, 2790
__cs_generate_variant_loop_-

end:nwwwNNnn
. 424, 425, 2759, 2769, 2815

__cs_generate_variant_loop_-
invalid:NNwNNnn
. 424, 2769, 2781, 2836

__cs_generate_variant_loop_-
long:wNNnn . . 425, 2762, 2769, 2823

__cs_generate_variant_loop_-
same:w 424, 2769, 2772, 2812

__cs_generate_variant_loop_-
special:NNwNNnn
. 2769, 2779, 2851, 2868

__cs_generate_variant_p_-
form:nnn 2992, 3030

__cs_generate_variant_same:N . . .
. 424, 2814, 2862, 2862

__cs_generate_variant_T_-
form:nnn 2992, 3032

__cs_generate_variant_TF_-
form:nnn 2992, 3036

__cs_if_exist_c_aux: 1823, 1840, 1846
__cs_if_exist_c_aux:w

. 1823, 1853, 1862
__cs_if_exist_use_aux:Nnn

. 1909, 1927, 1938, 1940
__cs_if_exist_use_aux:w

. 1909, 1922, 1926, 1933, 1937
__cs_if_free_c_aux:w

. 1882, 1890, 1897, 1906
__cs_parm_from_arg_count_-

test:nnTF 2072, 2074, 2093
__cs_split_function_auxi:w

. 1807, 1812, 1816
__cs_split_function_auxii:w . . .

. 1807, 1818, 1819
__cs_tmp:w 392, 422, 427, 431, 1807,

1822, 1987, 1987, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016,
2017, 2018, 2019, 2020, 2021, 2022,
2023, 2024, 2025, 2026, 2027, 2028,
2029, 2030, 2031, 2032, 2033, 2034,
2035, 2036, 2037, 2038, 2039, 2040,
2041, 2042, 2043, 2044, 2132, 2153,
2155, 2158, 2173, 2174, 2175, 2176,
2177, 2178, 2179, 2180, 2181, 2182,
2183, 2184, 2185, 2186, 2187, 2188,
2189, 2190, 2191, 2192, 2193, 2194,
2195, 2196, 2197, 2198, 2199, 2200,
2201, 2202, 2203, 2204, 2205, 2206,
2207, 2208, 2209, 2217, 2218, 2219,
2220, 2221, 2222, 2223, 2224, 2225,
2226, 2227, 2228, 2229, 2230, 2231,
2232, 2233, 2234, 2235, 2236, 2237,
2238, 2239, 2240, 2241, 2242, 2243,
2244, 2245, 2246, 2247, 2248, 2249,
2250, 2251, 2252, 2721, 2739, 2881,
2889, 2907, 2938, 3054, 3061, 3062,
3063, 3064, 3065, 3066, 3067, 3068,
3069, 3070, 3071, 3072, 3073, 3074,
3075, 3076, 3077, 3078, 3079, 3080,
3081, 3082, 3083, 3084, 3085, 3086,
3087, 3088, 3089, 3090, 3091, 3092,
3093, 3094, 3095, 3096, 3097, 3098,
3099, 3100, 3101, 3102, 3103, 3104

__cs_to_str:N
. 393, 1798, 1802, 1804, 1805

__cs_to_str:w . 393, 1798, 1801, 1805
__cs_use_i_delimit_by_s_stop:nw

. 2698, 2699, 3005

Index 1541

__cs_use_none_delimit_by_q_-
recursion_stop:w
. 2698, 2700, 2745, 2752, 3018

__cs_use_none_delimit_by_s_-
stop:w 2698, 2698, 3009

csc . 281
cscd . 282
\csname . 668,

4, 8, 13, 17, 30, 53, 54, 61, 94, 185
\csstring . 804
\currentcjktoken 1135
\currentgrouplevel 477
\currentgrouptype 478
\currentifbranch 479
\currentiflevel 480
\currentiftype 481
\currentspacingmode 1136
\currentxspacingmode 1137

D
\d 32178, 34497, 34519
\date . 371
\day 186, 1287, 9010
dd . 285
\deadcycles . 187
debug commands:

\debug_off:n . 31, 371, 1472, 1473,
1566, 1572, 1576, 39150, 39158, 39178

\debug_on:n . . . 31, 371, 699, 1472,
1566, 1566, 1570, 39150, 39150, 39168

\debug_resume: 31, 1265, 1390, 1483,
1578, 1579, 30521, 35624, 39186, 39192

\debug_suspend:
. 31, 1265, 1390, 1483,
1578, 1578, 30519, 35617, 39186, 39187

debug internal commands:
__debug_add_to_debug_code:Nnn . .

. 39416, 39431, 39454
__debug_all_off: 39150, 39176
__debug_all_on:

. 1569, 1575, 39150, 39166
__debug_arg_check_invalid:N . . .

. 39335, 39357, 39363
__debug_arg_if_braced:N 39378
__debug_arg_if_braced:n

. 39335, 39379, 39380
__debug_arg_if_braced:NTF

. 39335, 39358
__debug_arg_list_from_signature:nNN

. . 39335, 39346, 39351, 39354, 39360
__debug_arg_return:N 39335, 39393,

39394, 39395, 39396, 39397, 39398,
39399, 39400, 39401, 39402, 39414

__debug_build_arg_list:n
. 39335, 39342, 39349

__debug_build_parm_text:n
. 39335, 39340, 39344

__debug_check-declarations_off:
. 39202

__debug_check-declarations_on: .
. 39202

__debug_check-expressions_off: .
. 39301

__debug_check-expressions_on: 39301
__debug_chk_expr_aux:nNnN

. 39301, 39306, 39314
__debug_chk_var_scope_aux:NN . . .

. . 39242, 39248, 39254, 39266, 39266
__debug_chk_var_scope_aux:Nn . . .

. 39266, 39267, 39268
__debug_chk_var_scope_aux:NNn . .

. . . 1485, 39266, 39271, 39275, 39280
__debug_deprecation_off:

. 39328, 39330
\g__debug_deprecation_off_tl . . .

. 1580, 39331
__debug_deprecation_on: 39328, 39328
\g__debug_deprecation_on_tl

. 1580, 39329
__debug_generate_parameter_-

list:NNN
. . . . 1487, 1489, 39335, 39335, 39440

__debug_get_base_form:N
. 39335, 39379, 39391

__debug_if_recursion_tail_-
stop:N 39147, 39149, 39356

__debug_insert_debug_code:Nnn 39416
\l__debug_internal_tl

. 39332, 39337, 39340, 39342
__debug_log-functions_off: . . 39293
__debug_log-functions_on: . . . 39293
__debug_parm_terminate:w 39335,

39365, 39366, 39367, 39368, 39376
__debug_patch_weird:Nnn

. 39416, 39491, 39494
__debug_setup_debug_code:Nnn . . .

. 39416, 39432, 39437
__debug_suspended:TF

. 1483, 39186, 39190,
39198, 39201, 39213, 39222, 39231,
39241, 39246, 39252, 39296, 39305

\l__debug_suspended_tl 39186
__debug_tmp:w 39458, 39477
\l__debug_tmpa_tl 39332, 39440, 39445
\l__debug_tmpb_tl 39332, 39440, 39449
__debug_use_i_delimit_by_s_-

stop:nw . 39144, 39144, 39270, 39272

Index 1542

__debug_use_none_delimit_by_q_-
recursion_stop:w . . . 39147, 39377

\def . 36, 37,
38, 60, 62, 67, 68, 70, 84, 106, 143, 188

default commands:
.default:n 247, 22196

\defaulthyphenchar 189
\defaultskewchar 190
\deferred . 805
deg . 284
\delcode . 191
\delimiter . 192
\delimiterfactor 193
\delimitershortfall 194
deprecation internal commands:

__deprecation_just_error:nnNN 38863
__deprecation_patch_aux:Nn

. 38863, 38875, 38896
__deprecation_patch_aux:nnNNnn .

. 38863, 38864, 38865
__deprecation_warn_once:nnNnn . .

. 38863, 38874, 38877
\detokenize 30, 94, 482
\DH 32184, 33766, 34460
\dh 32184, 33766, 34470
dim commands:

\dim_abs:n 229, 958, 20918, 20918, 40006
\dim_add:Nn

229, 20900, 20900, 20907, 39567, 39941
\dim_case:nn 232, 20998, 21013
\dim_case:nnTF

. . . . 232, 20998, 20998, 21003, 21008
\dim_compare:n 20958
\dim_compare:nNn 20953
\dim_compare:nNnTF

. 230–233, 268, 20953,
21022, 21058, 21066, 21075, 21081,
21093, 21096, 21107, 21261, 35449,
35466, 35500, 35514, 35524, 35984,
35987, 35992, 36006, 36009, 36014,
36360, 36365, 36375, 36504, 36516

\dim_compare:nTF 230, 231,
233, 20958, 21030, 21038, 21047, 21053

\dim_compare_p:n 231, 20958
\dim_compare_p:nNn

. 230, 20953, 38836,
38837, 38844, 38845, 38848, 38849

\dim_const:Nn
228, 951, 965, 20867, 20867, 20872,
21282, 21283, 23125, 39718, 39945

\dim_do_until:nn
. 233, 21028, 21050, 21054

\dim_do_until:nNnn
. 232, 21056, 21078, 21082

\dim_do_while:nn
. 233, 21028, 21044, 21048

\dim_do_while:nNnn
. 232, 21056, 21072, 21076

\dim_eval:n 230,
231, 234, 951, 1365, 1366, 20870,
21001, 21006, 21011, 21016, 21111,
21139, 21139, 21277, 21281, 35681,
35758, 35846, 35864, 35905, 35909,
35910, 35914, 35918, 35919, 35936,
35941, 35947, 35954, 35961, 36126,
36129, 36130, 36137, 36219, 36220,
36227, 36228, 36331, 36338, 36487,
36488, 36752, 36753, 36754, 40003

\dim_gadd:Nn
229, 20900, 20902, 20908, 39648, 39942

.dim_gset:N 247, 22206
\dim_gset:Nn 229,

951, 20888, 20890, 20893, 39647, 39940
\dim_gset_eq:NN

. . . . 229, 20894, 20897, 20899, 39645
\dim_gsub:Nn

229, 20900, 20911, 20917, 39649, 39944
\dim_gzero:N 228, 20873,

20874, 20877, 20881, 21303, 39646
\dim_gzero_new:N

. 228, 20878, 20880, 20883
\dim_if_exist:N 20884, 20886
\dim_if_exist:NTF

. 229, 20879, 20881, 20884
\dim_if_exist_p:N 229, 20884
\dim_log:N . . . 236, 21278, 21278, 21279
\dim_log:n 237, 21278, 21280
\dim_max:nn

229, 20918, 20925, 36198, 36202, 40052
\dim_min:nn 229, 20918,

20933, 36196, 36200, 36213, 40053
\dim_new:N 228,

20861, 20861, 20866, 20869, 20879,
20881, 21284, 21285, 21286, 21287,
35078, 35079, 35080, 35081, 35082,
35083, 35084, 35085, 35542, 35566,
35567, 35570, 35571, 35572, 35573,
36072, 36073, 36074, 36075, 36076,
36234, 36235, 36576, 36578, 36579

\dim_ratio:nn 230, 20949, 20949
.dim_set:N 247, 22206
\dim_set:Nn 229,

20888, 20888, 20892, 35105, 35106,
35107, 35139, 35150, 35234, 35235,
35236, 35251, 35349, 35350, 35351,
35353, 35355, 35357, 35671, 35747,
35986, 35990, 36008, 36012, 36043,
36057, 36132, 36167, 36175, 36186,

Index 1543

36187, 36188, 36189, 36195, 36197,
36199, 36201, 36206, 36212, 36295,
36297, 36299, 36307, 36309, 36363,
36438, 36439, 36441, 36443, 36461,
36462, 36577, 36671, 36672, 36718,
36719, 36720, 36722, 39565, 39939

\dim_set_eq:NN 229, 20894,
20894, 20896, 35696, 35697, 39566

\dim_show:N . . 236, 21274, 21274, 21275
\dim_show:n . . . 236, 964, 21276, 21276
\dim_sign:n . . 234, 21141, 21141, 40007
\dim_step_function:nnnN

. 233, 957, 21084, 21084,
21136, 40107, 40111, 40115, 40119

\dim_step_inline:nnnn
. 234, 21114, 21114

\dim_step_variable:nnnNn
. 234, 21114, 21121

\dim_sub:Nn
229, 20900, 20909, 20916, 39568, 39943

\dim_to_decimal:n
. 234, 961, 21161, 21161,
21197, 21225, 21262, 21271, 40004

\dim_to_decimal_in_bp:n . . 235, 21178
\dim_to_decimal_in_cc:n . . 235, 21178
\dim_to_decimal_in_cm:n . . 235, 21178
\dim_to_decimal_in_dd:n . . 235, 21178
\dim_to_decimal_in_in:n . . 235, 21178
\dim_to_decimal_in_mm:n . . 235, 21178
\dim_to_decimal_in_pc:n . . 235, 21178
\dim_to_decimal_in_sp:n

. 236, 1070, 21176,
21176, 24343, 24380, 24974, 40005

\dim_to_decimal_in_unit:nn
. 236, 21204, 21204

\dim_to_fp:n 236, 1070, 1089,
21176, 29229, 29229, 35143, 35144,
35154, 35155, 35223, 35226, 35227,
35252, 35267, 35268, 35287, 35288,
35306, 35323, 35326, 35327, 35383,
35385, 35997, 35998, 35999, 36019,
36020, 36021, 36031, 36032, 36048,
36049, 36050, 36051, 36061, 36062,
36171, 36172, 36179, 36180, 36253,
36256, 36257, 36308, 36310, 40138

\dim_until_do:nn
. 233, 21028, 21036, 21041

\dim_until_do:nNnn
. 233, 21056, 21064, 21069

\dim_use:N 234,
1365, 20921, 20927, 20928, 20929,
20935, 20936, 20937, 20961, 20980,
21140, 21144, 21159, 21159, 21160,
21164, 21357, 21358, 21433, 21434,

36134, 36138, 36145, 36151, 36160,
36161, 36162, 36316, 36323, 36469

\dim_while_do:nn
. 233, 21028, 21028, 21033

\dim_while_do:nNnn
. 233, 21056, 21056, 21061

\dim_zero:N 228, 20873,
20873, 20876, 20879, 21302, 35108,
35237, 35352, 35977, 35978, 39564

\dim_zero_new:N
. 228, 20878, 20878, 20882

\c_max_dim . . . 235, 237, 240, 1019,
21282, 21376, 23152, 23194, 23202,
36186, 36187, 36188, 36189, 36206

\g_tmpa_dim 237, 21284
\l_tmpa_dim 237, 21284
\g_tmpb_dim 237, 21284
\l_tmpb_dim 237, 21284
\c_zero_dim 237, 21093, 21096, 21149,

21282, 21375, 23219, 34964, 34988,
35453, 35464, 35470, 35482, 35500,
35504, 35512, 35514, 35518, 35524,
35534, 35984, 35987, 35992, 36006,
36009, 36014, 36360, 36365, 36375

dim internal commands:
__dim_abs:N 20918, 20920, 20923
__dim_branch_unit:w

. 961, 21214, 21219, 21219
__dim_case:nnTF 20998,

21001, 21006, 21011, 21016, 21018
__dim_case:nw

. 20998, 21019, 21020, 21024
__dim_case_end:nw 20998, 21023, 21026
__dim_chk_unit:w

. 961, 21206, 21209, 21209
__dim_compare:w . 20958, 20960, 20963
__dim_compare:wNN

. . . . 953, 20958, 20966, 20969, 20979
__dim_compare_!:w 20958
__dim_compare_<:w 20958
__dim_compare_=:w 20958
__dim_compare_>:w 20958
__dim_compare_end:w . . 20966, 20990
__dim_compare_error:

953, 20958, 20961, 20963, 20992, 20996
__dim_convert_remainder:w

. 962, 21249, 21253, 21253
__dim_eval:w 20855, 20856, 20889,

20891, 20901, 20905, 20910, 20914,
20921, 20927, 20928, 20929, 20935,
20936, 20937, 20952, 20955, 20961,
20980, 20985, 21087, 21088, 21089,
21140, 21144, 21164, 21177, 21184,

Index 1544

21207, 21215, 21262, 39947, 40009,
40055, 40086, 40110, 40114, 40118

__dim_eval_end:
20855, 20857, 20889, 20891, 20901,

20905, 20910, 20914, 20921, 20931,
20939, 20952, 20955, 21140, 21144,
21164, 21177, 21184, 21207, 21262

__dim_get_quotient:w
. 962, 21226, 21229, 21229

__dim_get_remainder:w
. . . . 962, 21236, 21241, 21247, 21247

__dim_maxmin:wwN
. 20918, 20927, 20935, 20941

__dim_parse_decimal:w
. . . . 963, 21263, 21265, 21268, 21268

__dim_parse_decimal_aux:w
. 963, 21268, 21270, 21273

__dim_ratio:n . . 20949, 20950, 20951
__dim_sign:Nw . . 21141, 21143, 21147
__dim_step:NnnnN

. . 21084, 21094, 21101, 21105, 21110
__dim_step:NNnnnn

. 21114, 21117, 21124, 21133
__dim_step:wwwN . 21084, 21086, 21091
__dim_test_candidate:w

. 963, 21255, 21259, 21259
__dim_tmp:w . 21179, 21187, 21188,

21189, 21190, 21191, 21192, 21193
__dim_to_decimal:w

. 21161, 21164, 21168
__dim_to_decimal_aux:w

960, 961, 21178, 21183, 21195, 21222
__dim_use_none_delimit_by_s_-

stop:w 20860, 20860, 20976
\dimen 195, 19632
\dimendef . 196
\dimexpr . 483
\directlua 21, 23, 808
\disablecjktoken 1199
\discretionary 197
\discretionaryligaturemode 806
\disinhibitglue 1138
\displayindent 198
\displaylimits 199
\displaystyle 200
\displaywidowpenalties 484
\displaywidowpenalty 201
\displaywidth 202
\divide . 203
\DJ 32185, 33767, 34461
\dj 32185, 33767, 34471
\do . 1251
\doublehyphendemerits 204
\dp . 205

\draftmode . 933
draw commands:

\draw_begin: 330
\draw_end: 330

\dtou . 1139
\dump . 206
\dviextension 809
\dvifeedback 810
\dvivariable 811

E
\edef . 73, 82, 207
\efcode . 670
\elapsedtime 769
\else 9, 11, 18, 54, 55, 56, 208
else commands:

\else: 29,
66, 74, 102, 184, 185, 243, 319,
386, 388, 394, 422, 596, 725, 1116,
1389, 1392, 1434, 1662, 1670, 1696,
1827, 1831, 1842, 1847, 1858, 1863,
1868, 1873, 1886, 1902, 2066, 2088,
2097, 2111, 2170, 2171, 2256, 2432,
2688, 2722, 2773, 2774, 2776, 2780,
2792, 2793, 2794, 2795, 2796, 2797,
2798, 2799, 2800, 2864, 2865, 2867,
2916, 3019, 3156, 3157, 3648, 3651,
3654, 3664, 3679, 3706, 3721, 3748,
3764, 3798, 3806, 3808, 3810, 3812,
3814, 3816, 3818, 3820, 3842, 3863,
3867, 3943, 3947, 4059, 4082, 4093,
4126, 4128, 4152, 4191, 4202, 4235,
4410, 4411, 4415, 4416, 4432, 4439,
4639, 4649, 4699, 4708, 4721, 4722,
4724, 4726, 4729, 4730, 4734, 4739,
4750, 4754, 4758, 4765, 4830, 4837,
4847, 4849, 4859, 4866, 4868, 4879,
4999, 5113, 5156, 5161, 5173, 5178,
5268, 5414, 5427, 5516, 5545, 5584,
5602, 5715, 5771, 5805, 5835, 6257,
6275, 6294, 6328, 6381, 6428, 6432,
6439, 6460, 6471, 6618, 6730, 6840,
6883, 6886, 7006, 7017, 7026, 7054,
7066, 7092, 7109, 7117, 7386, 7640,
7920, 7931, 8329, 8380, 8401, 8423,
8441, 8457, 8467, 8483, 8493, 8608,
8610, 8612, 8614, 10329, 10332,
10335, 11112, 11119, 11380, 11389,
11400, 12105, 12583, 12593, 12608,
12617, 12636, 12650, 12680, 12698,
12713, 12948, 12966, 12986, 12994,
13004, 13020, 13043, 13054, 13060,
13206, 13218, 13267, 13270, 13273,
13589, 13594, 13599, 13606, 13611,

Index 1545

13863, 13919, 13922, 13925, 13937,
13952, 14091, 14280, 14288, 14296,
14445, 14496, 14497, 14501, 14506,
14529, 14582, 14682, 14933, 14963,
14966, 14996, 14999, 15016, 15019,
15122, 15127, 15145, 15164, 15167,
15216, 15221, 15224, 15339, 15351,
15360, 15482, 15487, 16413, 16451,
16459, 16470, 16480, 16499, 16523,
16527, 16569, 16629, 16640, 16659,
17043, 17113, 17122, 17558, 17569,
17590, 17606, 17609, 17630, 17671,
17794, 17821, 17829, 17867, 17875,
18178, 18211, 18262, 18379, 18405,
18432, 18441, 18645, 18660, 18682,
18696, 19307, 19313, 19316, 19334,
19401, 19404, 19407, 19410, 19413,
19416, 19419, 19422, 19425, 19428,
19468, 19473, 19478, 19483, 19490,
19497, 19502, 19507, 19512, 19517,
19522, 19529, 19534, 19556, 19562,
19565, 19601, 19604, 19739, 19748,
19756, 19765, 19841, 19866, 19870,
19880, 19918, 19932, 19941, 19951,
19985, 20370, 20418, 20427, 20575,
20613, 20623, 20924, 20945, 20956,
20966, 20991, 21151, 21154, 21200,
21720, 23157, 23384, 23401, 23402,
23417, 23427, 23522, 23598, 23660,
23663, 23677, 23695, 23699, 23939,
23952, 23972, 24000, 24001, 24023,
24044, 24067, 24068, 24101, 24118,
24136, 24171, 24175, 24211, 24228,
24234, 24238, 24242, 24401, 24434,
24442, 24475, 24479, 24491, 24501,
24511, 24542, 24555, 24590, 24600,
24619, 24632, 24645, 24649, 24660,
24683, 24700, 24712, 24726, 24739,
24743, 24751, 24753, 24763, 24774,
24790, 24804, 24810, 24813, 24820,
24842, 24872, 24895, 24923, 24926,
25100, 25104, 25111, 25130, 25142,
25146, 25153, 25175, 25192, 25198,
25230, 25262, 25278, 25298, 25339,
25354, 25387, 25389, 25395, 25410,
25463, 25680, 25696, 25707, 25756,
25759, 25762, 25765, 25796, 25805,
25814, 25817, 25978, 25991, 25994,
26001, 26019, 26043, 26044, 26059,
26069, 26118, 26121, 26130, 26142,
26153, 26167, 26180, 26220, 26254,
26274, 26311, 26329, 26332, 26338,
26352, 26387, 26405, 26408, 26411,
26414, 26475, 26548, 26618, 26619,

26628, 26663, 26746, 26750, 26754,
26816, 26851, 26866, 27132, 27161,
27165, 27325, 27334, 27388, 27399,
27415, 27423, 27482, 27562, 27573,
27578, 27612, 27625, 27637, 27643,
27764, 27772, 27811, 27818, 27840,
27867, 27882, 27886, 27908, 27939,
27942, 27967, 27970, 28011, 28019,
28030, 28033, 28148, 28163, 28178,
28193, 28208, 28223, 28244, 28289,
28595, 28633, 28634, 28643, 28687,
28742, 28743, 28744, 28848, 28870,
28885, 28903, 28951, 28967, 29173,
29240, 29245, 29383, 29419, 29432,
29462, 29466, 29474, 29501, 29527,
29535, 29552, 29555, 30146, 30150,
30202, 30261, 30273, 30357, 31001,
31012, 31032, 31380, 31539, 31543,
31554, 31569, 31581, 31585, 31594,
31595, 31596, 31597, 31598, 31599,
31600, 31601, 31602, 31613, 31627,
31630, 31633, 31636, 31639, 31642,
31645, 31739, 31745, 31754, 31758,
32162, 33097, 33101, 33105, 33108,
33112, 33126, 33129, 33132, 33135,
33138, 33141, 33161, 33164, 33167,
33170, 33173, 33176, 33179, 33182,
33185, 33188, 33191, 33194, 33197,
33200, 33203, 33206, 33209, 33238,
33241, 33256, 33259, 33273, 33276,
33279, 33282, 33298, 33301, 33304,
34839, 34841, 34847, 39274, 39283,
39286, 39365, 39366, 39367, 39368,
39382, 39383, 39393, 39394, 39395,
39396, 39397, 39398, 39399, 39400,
39401, 40169, 40170, 40175, 40176

\em . 34414
em . 285
\emergencystretch 209
\emph . 34387
\enablecjktoken 1200
\end 366, 210, 31783, 31793, 34430
\endcsname 668,

4, 8, 13, 17, 30, 53, 54, 61, 94, 211
\endgroup . 3, 7, 12, 16, 36, 67, 71, 77, 212
\endinput 78, 213
\endL . 485
\endlinechar 93, 104, 214
\endlocalcontrol 814
\endR . 486
\ensuremath 1303, 31788
\epTeXinputencoding 1140
\epTeXversion 1141
\eqno . 215

Index 1546

\errhelp . 68, 216
\errmessage 70, 217
\errorcontextlines 68, 218
\errorstopmode 219
\escapechar . 220
escapehex . 11895
\ETC . 4257
\eTeXglueshrinkorder 812
\eTeXgluestretchorder 813
\eTeXrevision 487
\eTeXversion 488
\etoksapp . 815
\etokspre . 816
\euc . 1142
\everycr . 221
\everydisplay 222
\everyeof . 489
\everyhbox . 223
\everyjob 28, 29, 224
\everymath . 225
\everypar . 226
\everyvbox . 227
ex . 285
\exceptionpenalty 817
\exhyphenchar 818
\exhyphenpenalty 228
exp . 280
exp commands:

\exp:w 43, 44,
386, 393, 413, 414, 421, 578–581,
599, 661, 728, 737, 751, 877, 1060,
1062, 1063, 1066, 1067, 1085, 1090,
1411, 1589, 1591, 2404, 2417, 2423,
2465, 2469, 2474, 2480, 2486, 2498,
2510, 2516, 2522, 2527, 2529, 2536,
2543, 2581, 2586, 2593, 2602, 2604,
2608, 2615, 2621, 2629, 2638, 2645,
2660, 2673, 2677, 2682, 2684, 2972,
7841, 7849, 7887, 7925, 7934, 7945,
8391, 8538, 8540, 8542, 8544, 8561,
8618, 8621, 10782, 12437, 12710,
13130, 13211, 13369, 13375, 13392,
13410, 13631, 13636, 13641, 13646,
13666, 13671, 13676, 13681, 13846,
13855, 13910, 17835, 17840, 17845,
17850, 18499, 18507, 18568, 18870,
18880, 19294, 19771, 19773, 19775,
19777, 19779, 19781, 19783, 19785,
19787, 19789, 19791, 19793, 19860,
20965, 21000, 21005, 21010, 21015,
23430, 23545, 23549, 23915, 24041,
24042, 24043, 24044, 24163, 24181,
24210, 24254, 24266, 24271, 24279,
24287, 24308, 24314, 24386, 24399,

24400, 24409, 24422, 24440, 24441,
24461, 24474, 24478, 24500, 24528,
24541, 24554, 24578, 24589, 24599,
24618, 24631, 24644, 24647, 24659,
24682, 24711, 24725, 24742, 24762,
24773, 24779, 24789, 24831, 24838,
24869, 24884, 24892, 24909, 24925,
24929, 24938, 24975, 24984, 24993,
24998, 25000, 25011, 25013, 25028,
25031, 25038, 25049, 25133, 25179,
25197, 25200, 25214, 25227, 25277,
25295, 25366, 25378, 25407, 25409,
25413, 25415, 25473, 25483, 25493,
25505, 25687, 25704, 25714, 25880,
25881, 25882, 26063, 26066, 26074,
26084, 26092, 27105, 27636, 27658,
27813, 27989, 28265, 29008, 29023,
29040, 29077, 29094, 29136, 29155,
29168, 29200, 29215, 29226, 29322,
29369, 29409, 29445, 29645, 29647,
29650, 29655, 29667, 29713, 29824,
29826, 30002, 30167, 30267, 31838,
31877, 32147, 32222, 32301, 32315,
32446, 34179, 39369, 39377, 39415

\exp_after:wN
. 40, 42, 43, 213, 386, 389,
411, 414, 451, 468, 558, 577, 579,
580, 628, 721, 734, 737, 865, 890,
902, 926, 1035, 1059, 1060, 1062,
1063, 1130, 1131, 1195, 1408, 1408,
1426, 1428, 1433, 1435, 1589, 1591,
1653, 1677, 1695, 1697, 1761, 1766,
1773, 1802, 1806, 1811, 1822, 1847,
1863, 1891, 1907, 1927, 1938, 1943,
2076, 2096, 2098, 2137, 2214, 2323,
2343, 2352, 2361, 2373, 2383, 2389,
2396, 2398, 2403, 2404, 2416, 2417,
2422, 2423, 2428, 2433, 2435, 2438,
2447, 2449, 2452, 2453, 2454, 2457,
2459, 2461, 2463, 2465, 2468, 2473,
2478, 2479, 2480, 2484, 2485, 2486,
2490, 2491, 2496, 2497, 2498, 2502,
2503, 2504, 2508, 2509, 2510, 2514,
2515, 2516, 2520, 2521, 2522, 2526,
2527, 2528, 2529, 2533, 2534, 2535,
2536, 2540, 2541, 2542, 2543, 2547,
2548, 2549, 2554, 2555, 2556, 2561,
2562, 2563, 2564, 2568, 2569, 2570,
2571, 2577, 2580, 2581, 2585, 2586,
2592, 2593, 2600, 2602, 2604, 2606,
2608, 2610, 2613, 2614, 2619, 2620,
2624, 2627, 2628, 2632, 2635, 2636,
2637, 2642, 2643, 2644, 2653, 2656,
2657, 2658, 2659, 2664, 2666, 2668,

Index 1547

2669, 2673, 2676, 2681, 2719, 2723,
2745, 2752, 2772, 2915, 2917, 2970,
2972, 2989, 3007, 3018, 3148, 3234,
3235, 3278, 3297, 3298, 3313, 3314,
3315, 3558, 3564, 3566, 3577, 3661,
3662, 3663, 3664, 3670, 3671, 3687,
3705, 3707, 3713, 3714, 3745, 3747,
3749, 3779, 3794, 3796, 3797, 3799,
3828, 3838, 3846, 3856, 3866, 3868,
3870, 3896, 3933, 3942, 3945, 3946,
3948, 3949, 3957, 3958, 3972, 4010,
4050, 4054, 4055, 4056, 4058, 4060,
4070, 4073, 4090, 4092, 4094, 4115,
4119, 4151, 4153, 4158, 4159, 4160,
4194, 4231, 4276, 4302, 4306, 4314,
4371, 4378, 4385, 4389, 4396, 4402,
4449, 4571, 4574, 4615, 4633, 4638,
4640, 4641, 4648, 4651, 4652, 4658,
4670, 4682, 4701, 4709, 4800, 4821,
4839, 4850, 4870, 4965, 5162, 5205,
5269, 5281, 5413, 5416, 5426, 5428,
5610, 5617, 5625, 5710, 5804, 6220,
6510, 6516, 6522, 6632, 6656, 6687,
6718, 6744, 6782, 6832, 6833, 6844,
6961, 6990, 7052, 7053, 7056, 7057,
7065, 7067, 7068, 7091, 7094, 7171,
7541, 7542, 7555, 7578, 7579, 7590,
7629, 7742, 7743, 7841, 7845, 7846,
7847, 7887, 7925, 7942, 7943, 7944,
8389, 8408, 8413, 8417, 8562, 8894,
8895, 8896, 8997, 9132, 9399, 9595,
9596, 10142, 10143, 10229, 10413,
10431, 10472, 10712, 10715, 10765,
10774, 10777, 10780, 10781, 10783,
10823, 10889, 10920, 10941, 10953,
10981, 10989, 11080, 11081, 11082,
11120, 11471, 11596, 12102, 12167,
12168, 12175, 12176, 12192, 12196,
12208, 12213, 12218, 12225, 12232,
12233, 12239, 12244, 12249, 12256,
12263, 12264, 12280, 12284, 12289,
12295, 12303, 12304, 12308, 12312,
12317, 12323, 12331, 12332, 12358,
12382, 12383, 12384, 12385, 12386,
12445, 12446, 12447, 12510, 12520,
12525, 12601, 12632, 12646, 12694,
12696, 12807, 12860, 12865, 12925,
12933, 12936, 12983, 12993, 13017,
13027, 13028, 13029, 13032, 13036,
13037, 13061, 13128, 13207, 13209,
13210, 13211, 13216, 13217, 13219,
13291, 13309, 13310, 13369, 13375,
13390, 13393, 13408, 13410, 13411,
13428, 13436, 13441, 13443, 13446,

13497, 13502, 13507, 13512, 13698,
13699, 13711, 13776, 13799, 13833,
13834, 13845, 13846, 13854, 13862,
13864, 13871, 13876, 13894, 13895,
13896, 13908, 13909, 13936, 13938,
13944, 13950, 13964, 13984, 13995,
14011, 14019, 14027, 14034, 14041,
14053, 14254, 14270, 14289, 14298,
14319, 14320, 14325, 14326, 14351,
14352, 14367, 14368, 14416, 14421,
14488, 14817, 14853, 14855, 14870,
14876, 15040, 15042, 15109, 15128,
15129, 15143, 15144, 15171, 15172,
15287, 15309, 15322, 15323, 15350,
15445, 15466, 15475, 16406, 16412,
16414, 16438, 16489, 16490, 16569,
16603, 16658, 16666, 16677, 16871,
16873, 16885, 16893, 17001, 17011,
17097, 17131, 17143, 17156, 17157,
17158, 17180, 17181, 17226, 17261,
17262, 17263, 17363, 17364, 17366,
17367, 17375, 17376, 17380, 17383,
17426, 17427, 17453, 17454, 17457,
17510, 17550, 17564, 17569, 17572,
17573, 17580, 17581, 17597, 17598,
17619, 17620, 17629, 17766, 17771,
17776, 17799, 17801, 17937, 17938,
17939, 17964, 17965, 18150, 18178,
18183, 18211, 18224, 18234, 18261,
18263, 18264, 18272, 18289, 18333,
18409, 18442, 18444, 18450, 18453,
18498, 18506, 18568, 18646, 18661,
18683, 18697, 18752, 18760, 18766,
18847, 18869, 18879, 18997, 18998,
19001, 19002, 19294, 19295, 19331,
19374, 19375, 19377, 19378, 19379,
19541, 19560, 19608, 19717, 19746,
19747, 19749, 19755, 19758, 19840,
19843, 19859, 19865, 19868, 19871,
19878, 19879, 19881, 19917, 19919,
19929, 19930, 19931, 19933, 19939,
19940, 19942, 19949, 19950, 19952,
19979, 19984, 19986, 19992, 20036,
20041, 20048, 20072, 20117, 20128,
20136, 20137, 20167, 20192, 20196,
20199, 20216, 20236, 20312, 20313,
20320, 20328, 20362, 20368, 20369,
20371, 20385, 20386, 20389, 20407,
20415, 20419, 20426, 20428, 20437,
20443, 20562, 20567, 20574, 20576,
20584, 20614, 20633, 20635, 20636,
20641, 20733, 20756, 20761, 20768,
20835, 20845, 20920, 20924, 20927,
20928, 20935, 20936, 20960, 20965,

Index 1548

20976, 20979, 21086, 21087, 21088,
21143, 21163, 21183, 21206, 21214,
21215, 21236, 21241, 21249, 21255,
21270, 21348, 21760, 21775, 21815,
21966, 21994, 22002, 22014, 22117,
22470, 22639, 22640, 22719, 22742,
23175, 23176, 23177, 23195, 23203,
23227, 23228, 23270, 23277, 23278,
23289, 23383, 23385, 23386, 23404,
23405, 23406, 23416, 23418, 23426,
23428, 23435, 23436, 23437, 23438,
23439, 23440, 23445, 23446, 23447,
23448, 23449, 23450, 23451, 23494,
23507, 23510, 23521, 23523, 23538,
23542, 23543, 23544, 23547, 23548,
23612, 23614, 23641, 23645, 23670,
23674, 23691, 23698, 23700, 23770,
23778, 23795, 23804, 23850, 23915,
23984, 23985, 23986, 24046, 24056,
24075, 24081, 24100, 24102, 24104,
24115, 24116, 24119, 24130, 24134,
24141, 24142, 24153, 24154, 24163,
24170, 24172, 24173, 24181, 24210,
24228, 24229, 24232, 24233, 24235,
24236, 24240, 24241, 24243, 24244,
24253, 24254, 24259, 24265, 24271,
24279, 24287, 24306, 24307, 24310,
24311, 24313, 24320, 24321, 24323,
24341, 24342, 24370, 24373, 24378,
24379, 24384, 24385, 24387, 24396,
24397, 24398, 24399, 24402, 24403,
24404, 24407, 24422, 24439, 24440,
24450, 24451, 24461, 24473, 24477,
24490, 24492, 24500, 24510, 24512,
24518, 24523, 24525, 24527, 24533,
24534, 24538, 24540, 24552, 24553,
24575, 24577, 24583, 24586, 24588,
24592, 24597, 24602, 24603, 24613,
24614, 24616, 24617, 24620, 24624,
24629, 24643, 24646, 24658, 24667,
24674, 24675, 24676, 24677, 24679,
24681, 24692, 24693, 24694, 24695,
24697, 24699, 24701, 24702, 24703,
24709, 24710, 24720, 24724, 24725,
24727, 24728, 24729, 24734, 24740,
24741, 24752, 24754, 24761, 24762,
24764, 24765, 24772, 24778, 24788,
24852, 24865, 24866, 24867, 24868,
24882, 24883, 24885, 24890, 24891,
24906, 24908, 24925, 24929, 24938,
24972, 24973, 24974, 24980, 24981,
24982, 24983, 24989, 24990, 24991,
24992, 24999, 25012, 25020, 25026,
25027, 25029, 25030, 25036, 25037,

25039, 25065, 25078, 25098, 25099,
25101, 25102, 25109, 25110, 25112,
25115, 25127, 25128, 25129, 25131,
25132, 25133, 25140, 25141, 25143,
25144, 25151, 25152, 25154, 25157,
25172, 25173, 25174, 25177, 25178,
25179, 25189, 25190, 25191, 25194,
25195, 25196, 25199, 25203, 25212,
25213, 25224, 25225, 25226, 25229,
25231, 25232, 25233, 25260, 25261,
25263, 25264, 25265, 25275, 25276,
25277, 25279, 25280, 25281, 25293,
25294, 25297, 25299, 25300, 25301,
25321, 25322, 25323, 25324, 25325,
25326, 25327, 25337, 25338, 25340,
25341, 25342, 25348, 25359, 25360,
25361, 25362, 25363, 25364, 25365,
25366, 25371, 25372, 25373, 25374,
25375, 25376, 25377, 25393, 25394,
25396, 25397, 25404, 25405, 25406,
25411, 25412, 25414, 25430, 25445,
25454, 25464, 25470, 25471, 25472,
25477, 25490, 25491, 25492, 25498,
25686, 25703, 25713, 25749, 25750,
25797, 25879, 25977, 25979, 26018,
26020, 26023, 26058, 26060, 26062,
26065, 26072, 26073, 26076, 26077,
26082, 26083, 26090, 26091, 26126,
26127, 26128, 26130, 26141, 26166,
26168, 26174, 26175, 26179, 26182,
26204, 26206, 26219, 26221, 26227,
26229, 26232, 26238, 26240, 26242,
26243, 26244, 26246, 26251, 26253,
26255, 26259, 26262, 26268, 26269,
26273, 26275, 26276, 26277, 26285,
26287, 26288, 26295, 26301, 26308,
26309, 26314, 26315, 26316, 26317,
26336, 26337, 26338, 26344, 26345,
26346, 26351, 26353, 26361, 26363,
26365, 26366, 26368, 26379, 26381,
26383, 26384, 26389, 26440, 26441,
26448, 26449, 26451, 26453, 26455,
26458, 26461, 26463, 26465, 26474,
26476, 26482, 26484, 26486, 26487,
26488, 26494, 26496, 26498, 26499,
26500, 26521, 26522, 26525, 26533,
26535, 26539, 26540, 26541, 26542,
26547, 26549, 26556, 26559, 26562,
26565, 26574, 26577, 26580, 26583,
26590, 26592, 26598, 26606, 26608,
26610, 26627, 26629, 26636, 26638,
26641, 26647, 26649, 26651, 26652,
26653, 26655, 26669, 26670, 26673,
26691, 26693, 26695, 26707, 26710,

Index 1549

26713, 26716, 26719, 26722, 26725,
26728, 26732, 26744, 26748, 26752,
26755, 26770, 26776, 26778, 26780,
26790, 26814, 26817, 26829, 26831,
26835, 26836, 26837, 26839, 26840,
26842, 26849, 26857, 26858, 26864,
26865, 26871, 26874, 26875, 26876,
26877, 26885, 26928, 26933, 26935,
26942, 26945, 26948, 26951, 26954,
26957, 26965, 26966, 26978, 26986,
26988, 26998, 27000, 27007, 27016,
27018, 27021, 27024, 27027, 27030,
27043, 27045, 27053, 27055, 27063,
27065, 27075, 27078, 27081, 27088,
27103, 27104, 27121, 27123, 27124,
27181, 27194, 27196, 27202, 27215,
27217, 27219, 27243, 27257, 27259,
27266, 27268, 27309, 27310, 27311,
27313, 27314, 27315, 27317, 27318,
27324, 27326, 27327, 27333, 27335,
27336, 27337, 27338, 27350, 27356,
27358, 27395, 27402, 27409, 27429,
27430, 27432, 27434, 27436, 27449,
27454, 27455, 27456, 27457, 27458,
27462, 27467, 27469, 27475, 27481,
27483, 27484, 27490, 27491, 27492,
27493, 27494, 27495, 27496, 27497,
27502, 27504, 27506, 27508, 27510,
27515, 27517, 27519, 27521, 27523,
27525, 27543, 27547, 27555, 27556,
27561, 27563, 27572, 27575, 27576,
27577, 27579, 27580, 27581, 27589,
27595, 27607, 27610, 27611, 27613,
27614, 27638, 27639, 27642, 27644,
27660, 27664, 27665, 27666, 27682,
27688, 27754, 27755, 27756, 27763,
27765, 27766, 27771, 27773, 27774,
27783, 27784, 27786, 27789, 27792,
27808, 27812, 27813, 27817, 27819,
27854, 27860, 27861, 27863, 27865,
27866, 27868, 27869, 27879, 27880,
27883, 27884, 27885, 27887, 27888,
27889, 27906, 27907, 27909, 27910,
27916, 27918, 27921, 27924, 27927,
27930, 27938, 27941, 27943, 27946,
27953, 27957, 27965, 27966, 27969,
27971, 27973, 27978, 27979, 27985,
27990, 27991, 27999, 28000, 28001,
28002, 28045, 28067, 28068, 28071,
28072, 28081, 28082, 28083, 28087,
28094, 28095, 28096, 28237, 28238,
28239, 28241, 28259, 28260, 28261,
28262, 28263, 28264, 28271, 28280,
28287, 28288, 28512, 28513, 28519,

28520, 28523, 28528, 28531, 28534,
28537, 28540, 28543, 28546, 28549,
28565, 28566, 28576, 28585, 28593,
28594, 28596, 28597, 28602, 28603,
28612, 28619, 28628, 28629, 28642,
28644, 28672, 28673, 28682, 28685,
28710, 28716, 28717, 28759, 28760,
28762, 28776, 28777, 28785, 28796,
28830, 28833, 28843, 28844, 28847,
28849, 28855, 28869, 28871, 28912,
28915, 28935, 29008, 29018, 29022,
29040, 29043, 29064, 29065, 29072,
29076, 29094, 29097, 29126, 29127,
29133, 29134, 29135, 29142, 29150,
29154, 29168, 29171, 29187, 29188,
29195, 29199, 29210, 29214, 29226,
29231, 29232, 29233, 29239, 29241,
29244, 29246, 29311, 29321, 29328,
29333, 29334, 29344, 29371, 29382,
29384, 29386, 29388, 29393, 29394,
29396, 29407, 29408, 29428, 29434,
29435, 29437, 29440, 29445, 29451,
29452, 29482, 29484, 29487, 29490,
29492, 29500, 29502, 29506, 29510,
29515, 29520, 29531, 29565, 29585,
29603, 29644, 29648, 29652, 29654,
29665, 29666, 29672, 29692, 29712,
29812, 29821, 29822, 29823, 29827,
29828, 29996, 29997, 29998, 29999,
30000, 30001, 30004, 30006, 30043,
30044, 30045, 30049, 30050, 30063,
30074, 30077, 30081, 30086, 30090,
30137, 30138, 30162, 30163, 30164,
30165, 30166, 30174, 30185, 30191,
30217, 30218, 30219, 30226, 30227,
30234, 30235, 30243, 30244, 30248,
30249, 30250, 30255, 30260, 30266,
30269, 30270, 30271, 30272, 30273,
30412, 30703, 30704, 30914, 30953,
30967, 30984, 31336, 31338, 31482,
31542, 31544, 31551, 31552, 31555,
31584, 31586, 31592, 31604, 31612,
31614, 31731, 31736, 31737, 31740,
31741, 31746, 31753, 31756, 31759,
31836, 31875, 31892, 31893, 31937,
31938, 31961, 32012, 32032, 32111,
32137, 32146, 32161, 32163, 32220,
32299, 32313, 32445, 33809, 34177,
34225, 34226, 34287, 34288, 34289,
34296, 34359, 36815, 36819, 36838,
36839, 37305, 37358, 37453, 37480,
37485, 37491, 37497, 37642, 37660,
37824, 38101, 39271, 39306, 39307,
39319, 39377, 39415, 39477, 40145

Index 1550

\exp_args:cc 37, 1425, 1427, 2446
\exp_args:Nc

. . . 34, 37, 405, 1425, 1425, 1429,
1437, 1701, 1714, 1722, 1730, 1985,
2008, 2046, 2051, 2058, 2069, 2116,
2128, 2213, 2258, 2259, 2260, 2261,
2283, 2287, 2446, 2716, 3890, 5566,
10147, 10153, 10399, 12489, 12760,
13356, 13418, 13423, 13431, 13464,
18473, 22801, 24064, 24303, 25183,
25207, 25237, 25239, 25241, 25243,
25245, 25247, 25249, 25251, 25269,
25285, 25286, 25305, 25307, 29689,
30612, 30613, 30614, 30642, 31281,
34427, 35897, 35928, 37502, 39275

\exp_args:Ncc 38, 2048,
2052, 2060, 2266, 2267, 2268, 2269,
2446, 2448, 14436, 14618, 16578, 16614

\exp_args:Nccc 38, 2446, 2450
\exp_args:Ncco 38, 2531, 2566
\exp_args:Nccx 39, 3080
\exp_args:Nce 40069, 40093
\exp_args:Ncf 38, 2476, 2518
\exp_args:NcNc 38, 2531, 2552
\exp_args:NcNo 38, 2531, 2559
\exp_args:Ncno 39, 3080
\exp_args:NcnV 39, 3080
\exp_args:Ncnx 39, 3080
\exp_args:Nco 38, 416, 2476, 2500
\exp_args:Ncoo 39, 3080
\exp_args:NcV 38, 2476, 2506
\exp_args:Ncv 38, 2476, 2512
\exp_args:NcVV 39, 3080
\exp_args:Ncx 38, 3054
\exp_args:Ne 37, 2074,

2462, 2462, 4475, 5256, 5257, 5628,
5937, 5939, 6359, 8359, 8360, 9372,
10304, 10307, 10548, 10551, 10617,
10973, 10975, 11099, 11113, 11142,
11230, 11239, 11260, 11270, 11280,
11293, 11481, 11507, 13290, 14154,
14453, 15509, 15522, 18422, 18475,
19362, 22165, 22201, 22231, 22263,
22799, 25588, 30027, 30667, 31076,
31090, 31123, 31439, 31462, 31973,
32079, 32089, 32223, 32413, 32618,
32664, 32740, 32756, 32805, 33008,
33030, 33361, 33493, 33508, 33584,
33824, 34180, 34326, 36902, 36933,
37135, 37142, 37272, 37557, 37977,
38080, 38200, 38346, 38351, 38589,
38596, 38601, 38669, 38676, 38681,
38753, 38759, 39441, 39465, 39913

\exp_args:Nee . . . 38, 3054, 10151,
11367, 11538, 37148, 37749, 38969

\exp_args:Neee
. 39, 3080, 11245, 36895, 37175, 37258

\exp_args:Nf . 37, 2104, 2464, 2464,
8384, 9425, 9426, 9754, 9756, 10815,
10873, 12426, 13153, 13154, 13170,
13188, 13196, 13200, 13224, 13230,
13240, 13287, 13322, 13823, 13825,
13884, 13886, 13902, 14333, 14338,
14673, 14701, 15225, 15226, 15390,
15401, 17229, 17230, 17246, 17836,
17841, 17846, 17851, 18023, 18093,
18095, 18113, 18122, 18133, 18142,
18280, 18297, 19072, 19086, 19108,
19119, 19176, 19246, 19252, 19258,
19264, 20062, 20064, 20174, 20803,
21001, 21006, 21011, 21016, 23246,
25930, 29004, 29544, 29580, 29728,
30419, 30548, 30721, 30776, 30990,
31218, 31223, 31327, 31345, 33090,
33119, 33153, 33231, 33249, 33266,
33291, 37077, 38064, 39360, 39379

\exp_args:Nff
. 38, 3054, 13194, 16971, 23711

\exp_args:Nffo 39, 3080
\exp_args:Nfo 38, 3054
\exp_args:NNc . 38, 381, 2047, 2050,

2059, 2130, 2262, 2263, 2264, 2265,
2300, 2303, 2446, 2446, 2972, 10229,
10382, 10383, 10472, 16619, 17356,
17979, 17990, 21117, 21124, 25940,
25947, 29841, 29966, 30114, 30644

\exp_args:Nnc 38, 3054, 34166
\exp_args:NNcf 39, 3080
\exp_args:NNe 38, 2308, 2476,

2488, 5734, 11565, 11579, 11645,
31246, 37892, 39925, 39986, 40034

\exp_args:Nne
. 38, 3054, 11106, 11157, 11192, 13080

\exp_args:NNf 38, 930, 2476,
2494, 6630, 10228, 10471, 10699,
20206, 21110, 28231, 28232, 39267

\exp_args:Nnf
. 38, 3054, 12404, 22797, 31316

\exp_args:Nnff 39, 3080
\exp_args:Nnnc 39, 3080
\exp_args:NNNe

. 38, 434, 2531, 2545, 4928, 5409
\exp_args:Nnne 11487
\exp_args:Nnnf 39, 3080
\exp_args:NNNo 38, 470, 2457,

2460, 4129, 4920, 6031, 6094, 7445
\exp_args:NNno 39, 3080

Index 1551

\exp_args:Nnno 39, 3080
\exp_args:NNNV 38,

2531, 2531, 31822, 36989, 37542, 37632
\exp_args:NNNv . 38, 2531, 2538, 10385
\exp_args:NNnV 39, 3080
\exp_args:NNNx 39, 3080
\exp_args:NNnx 39, 3080
\exp_args:Nnnx 39, 3080
\exp_args:NNo

. . 32, 38, 2457, 2458, 6911, 7834,
12362, 20224, 20383, 22637, 30012

\exp_args:Nno 38, 3054, 6931,
8902, 10356, 11089, 12389, 12450,
12603, 12612, 12931, 13024, 13058,
13766, 20968, 23755, 23763, 23772,
23789, 23797, 23825, 24329, 24333

\exp_args:NNoo 39, 3080
\exp_args:NNox 39, 3080
\exp_args:Nnox 39, 3080
\exp_args:NNV 38, 2476, 2476
\exp_args:NNv 38, 2476, 2482
\exp_args:NnV 38, 3054, 37056
\exp_args:Nnv 38, 3054
\exp_args:NNVV 39, 3080
\exp_args:NNx 38, 3054
\exp_args:Nnx 38, 3054
\exp_args:No 34, 37, 116,

737, 2292, 2297, 2457, 2457, 2938,
2961, 2968, 3040, 3057, 3885, 3916,
3976, 3978, 4310, 5010, 5074, 5094,
5779, 5828, 6333, 6755, 6760, 6953,
6968, 7063, 7261, 7659, 7663, 7688,
7689, 7884, 8877, 8892, 9589, 10415,
10611, 10707, 11077, 11177, 12377,
12657, 12658, 12659, 12686, 12687,
12688, 12689, 12690, 12739, 12769,
12779, 12800, 12869, 12872, 12874,
12930, 12939, 13146, 13148, 13172,
13179, 13181, 13238, 13247, 13705,
13732, 13737, 13751, 13772, 13819,
13830, 13880, 13891, 13958, 13977,
14015, 14030, 14546, 14599, 14885,
16810, 18099, 18105, 18759, 18771,
18773, 18808, 18813, 18988, 19102,
19106, 19140, 21354, 22167, 22203,
22233, 22265, 22367, 22637, 22670,
25587, 29862, 29877, 29897, 29948,
30024, 30093, 30410, 31579, 32230,
34871, 39152, 39160, 39917, 40153

\exp_args:Noc 38, 3054
\exp_args:Nof 38, 3054, 12419
\exp_args:Noo . . . 38, 3054, 5116, 6346
\exp_args:Noof 39, 3080
\exp_args:Nooo 39, 3080, 22334

\exp_args:Noooo 10153
\exp_args:Noox 39, 3080
\exp_args:Nox 38, 3054
\exp_args:NV 37, 2464,

2471, 10849, 10925, 11064, 11625,
11630, 22008, 22163, 22199, 22229,
22261, 30657, 31821, 32344, 33969,
36947, 37507, 37796, 37809, 37907,
37931, 37973, 38318, 39340, 39342

\exp_args:Nv
. . . 37, 2464, 2466, 31306, 32125,
33918, 34076, 34322, 36946, 38389

\exp_args:NVo 38, 3054, 22000
\exp_args:NVV . . 38, 2476, 2524, 10760
\exp_args:Nx 37, 2573,

2573, 2981, 22169, 22205, 22235, 22267
\exp_args:Nxo 38, 3054
\exp_args:Nxx 38, 3054
\exp_args_generate:n

. 35, 3038, 3038, 10148, 11498
\exp_arsgs:Nn 38259
\exp_end: 43, 386, 389, 393, 413, 414,

421, 578–580, 601, 721, 728, 736,
737, 751, 1060, 1090, 1412, 1702,
1715, 1723, 1731, 2435, 2444, 2684,
2972, 7841, 7846, 7895, 7925, 7936,
7943, 8557, 8593, 8596, 8597, 8598,
8599, 8600, 8601, 8602, 8603, 8604,
8606, 12453, 13100, 13219, 13362,
13381, 13695, 13879, 17862, 18494,
19321, 19328, 19331, 19370, 19374,
19808, 21027, 24046, 25005, 27660,
29371, 29373, 29445, 29648, 29665,
29827, 31857, 32273, 34198, 39374

\exp_end_continue_f:nw 44, 2684, 2692
\exp_end_continue_f:w 43,

44, 413, 1062, 1063, 2404, 2465,
2498, 2522, 2593, 2608, 2621, 2645,
2660, 2673, 2684, 2686, 8391, 10071,
10782, 12710, 18568, 19860, 20965,
23430, 23545, 23549, 24163, 24181,
24202, 24266, 24271, 24279, 24287,
24308, 24386, 24422, 24430, 24461,
24831, 24838, 24884, 24931, 24938,
24975, 25019, 25025, 25028, 25038,
25049, 25214, 25407, 25409, 25413,
25415, 25473, 25483, 25493, 25505,
25687, 25704, 25714, 25880, 25881,
25882, 26063, 26074, 26084, 26092,
27105, 27813, 27989, 28265, 29008,
29023, 29040, 29077, 29094, 29136,
29155, 29168, 29200, 29215, 29226,
29322, 29409, 29650, 29655, 29713,
30002, 30167, 30267, 32147, 39415

Index 1552

\exp_last_two_unbraced:Nnn . . 40,
2663, 2663, 20816, 35971, 36495, 36499

\exp_last_unbraced:cf
. 36859, 36865, 36871

\exp_last_unbraced:Nco
. 40, 2600, 2623, 18890

\exp_last_unbraced:NcV 40, 2600, 2625
\exp_last_unbraced:Ne

. 40, 2600, 2605, 29279
\exp_last_unbraced:Nf

40, 2600, 2607, 4626, 5957, 14769,
15054, 15243, 15415, 16507, 16528,
16649, 16671, 18111, 18131, 20263,
20681, 23260, 23275, 23706, 25678,
26156, 29598, 29810, 36849, 39338

\exp_last_unbraced:Nfo
. 40, 2600, 2650, 30117

\exp_last_unbraced:NNf 40, 2600, 2617
\exp_last_unbraced:Nnf

. 40, 2600, 2648, 20654, 20692
\exp_last_unbraced:NNNf

. 40, 2600, 2640, 8304
\exp_last_unbraced:NNNNf

. 40, 2600, 2654, 8309
\exp_last_unbraced:NNNNo 40,

2600, 2652, 2732, 2736, 2899, 10991,
14073, 14886, 23498, 23516, 31620

\exp_last_unbraced:NNNo
. 40, 2600, 2631, 20812, 20850

\exp_last_unbraced:NnNo 40, 2600, 2651
\exp_last_unbraced:NNNV 40, 2600, 2633
\exp_last_unbraced:NNo

. 40, 2600, 2609,
10614, 13108, 31883, 34213, 36466

\exp_last_unbraced:Nno
. 40, 2600, 2647, 17314, 18919

\exp_last_unbraced:NNV 40, 2600, 2611
\exp_last_unbraced:No 40,

2600, 2600, 36622, 36627, 36695, 36701
\exp_last_unbraced:Noo 40, 2600, 2649
\exp_last_unbraced:NV

. 40, 2600, 2601, 7942, 38331
\exp_last_unbraced:Nv

. 40, 1245, 2600, 2603
\exp_last_unbraced:Nx 40, 2600, 2662
\exp_not:N 41, 101, 172, 285,

414, 420, 451, 461, 468, 469, 549,
577, 724–726, 902, 909, 919, 1068,
1408, 1409, 1657, 1748, 1751, 2136,
2137, 2213, 2214, 2323, 2389, 2428,
2574, 2668, 2668, 2709, 2711, 2712,
2719, 2720, 2721, 2722, 2723, 2724,
2730, 2756, 2765, 2820, 2821, 2881,
2887, 2889, 2895, 2942, 2959, 2961,

2989, 3649, 3652, 3805, 3806, 3807,
3808, 3809, 3810, 3811, 3812, 3813,
3814, 3815, 3816, 3817, 3818, 3819,
3820, 4038, 4047, 4048, 4050, 4056,
4067, 4071, 4080, 4081, 4082, 4084,
4106, 4110, 4194, 4196, 4198, 4204,
4206, 4250, 4602, 4604, 4606, 4608,
4610, 4612, 4998, 5000, 5198, 5200,
5211, 5215, 5373, 6046, 6749, 7163,
7176, 7919, 8336, 8342, 9470, 9472,
9474, 9476, 9602, 9604, 9608, 9610,
9615, 9617, 10253, 10254, 10258,
11074, 11077, 11078, 11080, 11081,
11082, 11083, 11086, 11087, 11184,
11186, 11442, 11443, 11444, 11445,
11446, 11449, 11450, 11485, 11487,
11489, 11492, 11495, 12513, 12552,
12553, 12554, 12555, 12946, 12964,
12992, 12999, 13010, 13011, 13083,
13086, 13087, 13723, 13724, 14094,
14097, 14099, 14100, 14101, 14104,
14663, 14664, 14691, 14692, 14693,
15529, 15530, 15531, 15533, 15534,
15536, 16809, 16811, 16855, 16856,
16857, 16858, 17338, 17408, 17995,
18260, 18822, 19282, 19336, 19338,
19340, 19341, 19342, 19344, 19346,
19348, 19349, 19351, 19353, 19355,
19357, 19365, 19379, 19399, 19402,
19405, 19408, 19411, 19414, 19417,
19420, 19423, 19426, 19463, 19467,
19472, 19477, 19482, 19489, 19496,
19501, 19506, 19511, 19516, 19521,
19528, 19533, 19538, 19541, 19542,
19545, 19555, 19560, 19575, 19594,
19599, 19600, 19601, 19602, 19603,
19604, 19606, 19608, 19609, 19610,
19614, 19615, 19618, 19619, 19711,
19714, 19715, 19717, 19718, 19722,
19725, 19726, 19728, 19731, 19851,
19864, 19878, 19891, 19897, 19928,
19931, 19938, 19939, 19948, 19949,
19963, 19964, 19975, 19976, 20096,
20098, 20102, 20103, 20189, 20438,
20550, 20585, 20591, 20602, 20737,
20775, 20780, 20781, 20797, 20800,
20802, 20803, 20804, 20807, 21129,
21168, 21815, 21816, 21818, 21822,
21823, 21845, 21847, 21901, 21902,
21918, 21983, 21985, 22018, 22019,
22130, 22131, 22362, 22364, 22814,
22819, 22823, 22826, 22835, 22836,
23494, 23495, 24227, 24228, 24323,
24324, 24325, 24326, 24432, 24472,

Index 1553

24476, 24498, 24591, 24623, 24708,
24722, 24739, 24750, 24760, 24797,
24799, 24902, 24903, 24905, 24906,
24907, 24908, 24909, 24910, 24913,
24915, 24917, 25096, 25097, 25138,
25139, 25259, 25274, 25952, 26109,
28118, 28119, 28120, 28124, 28125,
28126, 29565, 29566, 29567, 29569,
29574, 29704, 29705, 29973, 29974,
29975, 30034, 30035, 30036, 30062,
30708, 30927, 30959, 31203, 31205,
31207, 31208, 31211, 31212, 31213,
31536, 31537, 31540, 31551, 31625,
31628, 31631, 31634, 31637, 31640,
31643, 31677, 31680, 31682, 31683,
31684, 31687, 31728, 31731, 31732,
31735, 31736, 31737, 31738, 31739,
31740, 31741, 31742, 31743, 31745,
31746, 31747, 31784, 31926, 32052,
32053, 32058, 32059, 32089, 32161,
32235, 32236, 32240, 32242, 32323,
32394, 33853, 35696, 35697, 36928,
36929, 36930, 36931, 36932, 36933,
36934, 37156, 37322, 37323, 37324,
37325, 37326, 37327, 37563, 37564,
37568, 37570, 37674, 37675, 37777,
37783, 37785, 37786, 37892, 37893,
37894, 37895, 38050, 38051, 38052,
38189, 38191, 38194, 38229, 38282,
38711, 38724, 38732, 38883, 38891,
38907, 38910, 39112, 39115, 39118,
39121, 39124, 39127, 39444, 39448,
39458, 39465, 39468, 39499, 39502,
39915, 39929, 39931, 39989, 39991,
40037, 40039, 40042, 40044, 40072,
40074, 40078, 40080, 40096, 40098

\exp_not:n . . . 41, 42, 53, 101, 123–
127, 160, 161, 166, 167, 172, 196–
198, 213, 223, 258, 259, 299, 301,
371, 445, 450, 451, 457, 461, 468–
470, 477, 549, 556, 560, 571, 701,
711, 731, 737–739, 833, 837, 878,
879, 882, 885, 895, 927, 977, 1306,
1307, 1310, 1473, 1408, 1410, 1658,
1664, 1666, 1672, 1673, 1753, 2076,
2335, 2336, 2389, 2400, 2411, 2589,
2597, 2668, 2669, 2670, 2672, 2674,
2679, 2825, 2840, 2855, 2930, 2963,
2986, 3388, 3677, 3791, 3822, 4070,
4099, 4111, 4113, 4119, 4132, 4250,
4329, 4998, 5000, 5631, 6103, 6267,
6485, 6673, 6738, 6750, 6828, 6829,
7091, 7094, 7163, 7171, 7188, 7203,
7244, 7436, 7564, 7572, 7600, 7605,

7607, 7887, 8934, 8966, 9464, 9639,
10570, 10589, 11766, 11769, 11771,
12213, 12218, 12244, 12249, 12284,
12289, 12312, 12317, 12514, 12515,
12516, 13082, 13085, 13089, 13169,
13362, 13363, 13439, 13542, 13587,
13598, 13744, 16781, 16783, 16884,
16885, 16892, 16893, 16909, 16941,
17010, 17014, 17017, 17018, 17029,
17032, 17035, 17136, 17168, 17192,
17245, 17339, 17418, 17469, 17479,
17996, 18534, 18577, 18578, 18592,
18594, 18670, 18723, 18759, 18767,
18787, 18823, 19014, 19019, 19047,
19050, 19053, 19085, 19117, 19137,
19366, 19613, 19832, 19852, 19892,
19898, 20047, 20123, 20124, 20190,
20199, 20217, 20389, 20394, 20401,
20442, 20443, 20448, 20551, 20557,
20558, 20561, 20589, 20593, 20600,
20775, 20783, 20833, 20844, 21130,
21594, 21603, 21904, 21918, 21933,
21983, 21985, 22021, 22132, 22346,
22356, 22358, 22651, 22661, 22687,
22689, 24318, 25548, 25550, 25552,
25650, 25953, 26110, 29290, 30055,
30056, 30060, 30063, 30064, 31206,
31555, 31584, 31783, 31785, 31815,
31975, 31976, 31977, 32114, 32135,
32179, 32194, 32415, 32416, 32675,
32686, 34489, 34493, 34494, 35815,
37784, 38127, 38890, 39930, 39990,
40038, 40043, 40073, 40079, 40097

\exp_stop_f: 42, 43, 184,
413, 445, 451, 661, 730, 833, 849,
1026, 1039, 1110, 1111, 1202, 1231,
2401, 2407, 3147, 3407, 3591, 3600,
3601, 3611, 3622, 3623, 3659, 3729,
3762, 3763, 3767, 3843, 3859, 3865,
3944, 4107, 4409, 4410, 4411, 4416,
4697, 4718, 4719, 4723, 4727, 4728,
4731, 4732, 4747, 4748, 4751, 4755,
4756, 4759, 4820, 5171, 5176, 5190,
5191, 5204, 5266, 5267, 5306, 6272,
6325, 6839, 6843, 6991, 7015, 7050,
7055, 7061, 7406, 8616, 8618, 8619,
8621, 9031, 10229, 10472, 10770,
10784, 10796, 11006, 13206, 13265,
13271, 13861, 13877, 13917, 13923,
13935, 13952, 14088, 14278, 14286,
14495, 14496, 14497, 14502, 14503,
14527, 14898, 14960, 14964, 14994,
14997, 15013, 15017, 15038, 15118,
15120, 15140, 15141, 15158, 15160,

Index 1554

15214, 15217, 15218, 15337, 15342,
15483, 16896, 17552, 17566, 17576,
17584, 17793, 17798, 17960, 19172,
19174, 19242, 19244, 19248, 19250,
19254, 19256, 19260, 19262, 19301,
19302, 19303, 19304, 19310, 19314,
19332, 19441, 20449, 20974, 21145,
23155, 23158, 23285, 23333, 23538,
23653, 23668, 23915, 23941, 23990,
24002, 24068, 24209, 24239, 24395,
24438, 24489, 24509, 24536, 24550,
24585, 24612, 24621, 24640, 24656,
24672, 24690, 24751, 24770, 24786,
25020, 25108, 25150, 25388, 25392,
25769, 25771, 25786, 25803, 25811,
25812, 25999, 26119, 26125, 26140,
26177, 26250, 26272, 26326, 26327,
26335, 26672, 26690, 26834, 26846,
26862, 26879, 27158, 27159, 27256,
27349, 27384, 27402, 27411, 27413,
27569, 27604, 27757, 27807, 27853,
27858, 27940, 28007, 28013, 28028,
28040, 28078, 28099, 28139, 28154,
28169, 28184, 28199, 28214, 28242,
28286, 28552, 28562, 28592, 28744,
28746, 28795, 28868, 28877, 28892,
28944, 28957, 29041, 29095, 29146,
29169, 29419, 29420, 29421, 29430,
29440, 29458, 29527, 29530, 29533,
29672, 29692, 29812, 30063, 30090,
30143, 30147, 30189, 30261, 30268,
30361, 30995, 30996, 31002, 31567,
31611, 31728, 31735, 31752, 31755,
33095, 33098, 33099, 33102, 33103,
33124, 33127, 33130, 33133, 33136,
33139, 33158, 33159, 33165, 33168,
33171, 33174, 33177, 33180, 33183,
33186, 33189, 33192, 33195, 33198,
33201, 33204, 33207, 33236, 33239,
33254, 33257, 33271, 33274, 33277,
33280, 33296, 33299, 33302, 39412

exp internal commands:
__exp_arg_last_unbraced:nn

. . 2575, 2575, 2577, 2580, 2585, 2592
__exp_arg_next:Nnn . 2389, 2390, 2396
__exp_arg_next:nnn

413, 2389, 2389, 2398, 2403, 2416, 2422
__exp_eval_error_msg:w

. 2426, 2430, 2439
__exp_eval_register:N 2417,

2423, 2426, 2426, 2437, 2438, 2469,
2474, 2480, 2486, 2510, 2516, 2528,
2529, 2536, 2543, 2581, 2586, 2602,
2604, 2615, 2629, 2638, 2677, 2682

\l__exp_internal_tl
. 383, 1488, 1492, 1493,
2389, 2389, 2410, 2412, 2597, 2598

__exp_last_two_unbraced:nnN . . .
. 2663, 2664, 2665

\expandafter 3, 4, 7,
8, 12, 13, 16, 17, 28, 29, 53, 54, 61, 229

\expanded . 820
\expandglyphsinfont 934
\ExplFileDate 11, 11590, 11605, 11619, 11623
\ExplFileDescription . . . 11, 11589, 11602
\ExplFileExtension . . 11592, 11607, 11616
\ExplFileName . . . 11, 11591, 11606, 11615
\ExplFileVersion 11, 11593, 11608, 11617
\explicitdiscretionary 821
\explicithyphenpenalty 819
\ExplSyntaxOff 6,

10, 189, 341, 342, 371, 82, 110, 123
\ExplSyntaxOn 6, 10,

189, 294, 341, 342, 371, 706, 899, 106

F
fact . 280
false . 285
\fam . 230
\fi 6, 15, 20, 32, 33, 34, 54, 56, 57, 72, 80, 231
fi commands:

\fi: . 29,
66, 74, 102, 184, 185, 213, 243,
319, 386, 388–390, 393, 394, 451,
472, 473, 570, 571, 574, 601, 670,
706, 711, 751, 753, 755, 855, 865,
902, 933, 934, 943, 944, 1039, 1067,
1082, 1116, 1389, 1393, 1436, 1654,
1662, 1670, 1678, 1698, 1703, 1716,
1724, 1732, 1734, 1735, 1736, 1737,
1762, 1767, 1774, 1801, 1806, 1828,
1833, 1844, 1847, 1854, 1860, 1862,
1863, 1870, 1875, 1883, 1888, 1890,
1891, 1898, 1904, 1906, 1907, 1923,
1926, 1927, 1934, 1937, 1938, 1944,
2068, 2089, 2099, 2113, 2171, 2256,
2374, 2384, 2431, 2434, 2441, 2442,
2691, 2730, 2746, 2753, 2762, 2776,
2777, 2782, 2783, 2784, 2802, 2803,
2804, 2805, 2806, 2807, 2808, 2809,
2810, 2818, 2837, 2839, 2869, 2870,
2871, 2918, 3006, 3017, 3027, 3149,
3160, 3161, 3205, 3236, 3279, 3290,
3299, 3308, 3363, 3373, 3383, 3495,
3497, 3568, 3572, 3576, 3603, 3614,
3626, 3627, 3638, 3656, 3657, 3658,
3665, 3681, 3687, 3690, 3698, 3708,
3723, 3731, 3739, 3750, 3766, 3786,

Index 1555

3800, 3822, 3844, 3852, 3854, 3857,
3864, 3869, 3950, 3951, 4011, 4047,
4048, 4049, 4052, 4061, 4084, 4095,
4130, 4131, 4141, 4154, 4197, 4198,
4205, 4206, 4211, 4212, 4237, 4241,
4315, 4372, 4379, 4380, 4386, 4390,
4397, 4398, 4403, 4404, 4413, 4414,
4418, 4419, 4433, 4441, 4450, 4451,
4478, 4634, 4642, 4653, 4659, 4671,
4710, 4711, 4721, 4724, 4725, 4729,
4733, 4734, 4735, 4736, 4741, 4752,
4753, 4757, 4760, 4761, 4762, 4767,
4801, 4802, 4822, 4823, 4832, 4840,
4841, 4851, 4852, 4861, 4871, 4872,
4883, 4884, 4897, 4916, 4917, 4925,
4926, 4991, 5001, 5034, 5048, 5052,
5115, 5160, 5163, 5164, 5180, 5183,
5206, 5264, 5265, 5270, 5297, 5298,
5309, 5313, 5347, 5352, 5360, 5395,
5402, 5407, 5417, 5429, 5455, 5518,
5547, 5586, 5593, 5604, 5692, 5711,
5717, 5722, 5745, 5757, 5758, 5761,
5773, 5807, 5837, 6221, 6260, 6276,
6300, 6320, 6329, 6386, 6393, 6413,
6431, 6442, 6444, 6474, 6477, 6511,
6517, 6523, 6620, 6657, 6688, 6689,
6719, 6745, 6790, 6842, 6888, 6889,
6901, 6952, 6954, 7007, 7019, 7029,
7038, 7058, 7069, 7095, 7111, 7119,
7169, 7171, 7186, 7188, 7209, 7388,
7409, 7487, 7504, 7505, 7525, 7564,
7566, 7572, 7574, 7579, 7609, 7632,
7648, 7734, 7736, 7737, 7743, 7922,
7938, 8331, 8382, 8401, 8423, 8443,
8459, 8469, 8485, 8495, 8608, 8610,
8612, 8614, 8618, 8621, 8890, 8898,
10331, 10334, 10337, 10414, 10432,
10722, 10763, 10772, 10793, 10803,
10807, 10814, 10822, 11017, 11021,
11024, 11074, 11087, 11114, 11123,
11382, 11391, 11402, 12107, 12371,
12378, 12524, 12525, 12585, 12595,
12610, 12619, 12638, 12652, 12665,
12669, 12682, 12700, 12715, 12920,
12925, 12950, 12968, 12988, 12996,
13006, 13016, 13022, 13029, 13040,
13045, 13047, 13051, 13056, 13060,
13061, 13208, 13220, 13269, 13275,
13276, 13380, 13387, 13392, 13429,
13436, 13442, 13446, 13589, 13594,
13599, 13606, 13611, 13712, 13790,
13794, 13795, 13813, 13866, 13879,
13921, 13927, 13928, 13939, 13952,
13953, 13974, 14012, 14038, 14149,

14255, 14263, 14271, 14282, 14299,
14301, 14447, 14499, 14500, 14505,
14508, 14509, 14531, 14584, 14684,
14900, 14933, 14969, 14970, 15001,
15002, 15022, 15023, 15041, 15126,
15130, 15140, 15150, 15166, 15170,
15173, 15178, 15180, 15223, 15227,
15228, 15319, 15324, 15335, 15341,
15353, 15356, 15358, 15362, 15476,
15490, 15491, 16407, 16415, 16439,
16453, 16461, 16472, 16482, 16502,
16532, 16533, 16605, 16631, 16642,
16661, 16664, 16937, 16940, 17009,
17045, 17098, 17115, 17125, 17179,
17184, 17559, 17560, 17569, 17592,
17609, 17610, 17612, 17629, 17630,
17674, 17751, 17759, 17786, 17794,
17800, 17823, 17831, 17869, 17877,
17962, 18179, 18212, 18260, 18265,
18381, 18407, 18434, 18443, 18647,
18662, 18685, 18699, 19301, 19302,
19303, 19304, 19309, 19310, 19318,
19319, 19320, 19349, 19355, 19373,
19382, 19384, 19430, 19431, 19432,
19433, 19434, 19435, 19436, 19437,
19438, 19439, 19468, 19473, 19478,
19483, 19490, 19497, 19502, 19507,
19512, 19517, 19522, 19529, 19534,
19556, 19567, 19568, 19618, 19619,
19741, 19750, 19759, 19767, 19844,
19873, 19874, 19882, 19920, 19934,
19943, 19953, 19975, 19976, 19977,
19987, 19994, 19996, 20321, 20328,
20372, 20420, 20429, 20577, 20616,
20625, 20656, 20657, 20658, 20659,
20668, 20669, 20670, 20671, 20694,
20695, 20696, 20697, 20706, 20707,
20708, 20709, 20924, 20947, 20956,
20973, 20977, 20991, 20994, 21156,
21157, 21200, 21215, 21216, 21722,
21777, 21789, 23160, 23161, 23196,
23204, 23268, 23287, 23301, 23387,
23403, 23407, 23419, 23429, 23524,
23577, 23580, 23581, 23586, 23600,
23638, 23639, 23640, 23641, 23642,
23643, 23644, 23645, 23646, 23647,
23648, 23649, 23662, 23664, 23675,
23678, 23692, 23697, 23701, 23830,
23921, 23922, 23931, 23932, 23943,
23944, 23945, 23956, 23957, 23958,
23965, 23976, 23977, 23978, 23988,
23989, 23993, 23994, 24002, 24005,
24006, 24014, 24025, 24045, 24068,
24103, 24120, 24139, 24140, 24149,

Index 1556

24155, 24175, 24176, 24204, 24213,
24230, 24237, 24245, 24246, 24347,
24348, 24349, 24352, 24355, 24394,
24410, 24436, 24437, 24444, 24452,
24481, 24482, 24485, 24487, 24488,
24493, 24503, 24506, 24508, 24513,
24544, 24557, 24562, 24568, 24571,
24572, 24606, 24607, 24634, 24635,
24648, 24651, 24662, 24685, 24704,
24714, 24730, 24739, 24745, 24751,
24755, 24760, 24766, 24781, 24792,
24809, 24817, 24819, 24825, 24846,
24874, 24897, 24930, 24932, 25055,
25103, 25107, 25117, 25118, 25134,
25145, 25149, 25159, 25160, 25180,
25201, 25204, 25234, 25266, 25282,
25302, 25343, 25355, 25368, 25370,
25390, 25391, 25398, 25416, 25455,
25465, 25682, 25698, 25709, 25749,
25750, 25751, 25758, 25760, 25761,
25767, 25768, 25771, 25798, 25806,
25807, 25815, 25816, 25818, 25819,
25980, 25993, 26003, 26004, 26009,
26010, 26011, 26012, 26013, 26014,
26021, 26031, 26038, 26049, 26050,
26061, 26078, 26123, 26124, 26131,
26144, 26159, 26169, 26183, 26213,
26222, 26256, 26278, 26296, 26313,
26330, 26331, 26333, 26334, 26339,
26354, 26387, 26416, 26417, 26418,
26419, 26420, 26433, 26477, 26550,
26617, 26619, 26620, 26630, 26659,
26662, 26663, 26674, 26694, 26757,
26758, 26759, 26771, 26810, 26811,
26812, 26813, 26819, 26822, 26824,
26834, 26852, 26867, 26879, 26886,
27134, 27138, 27140, 27144, 27151,
27152, 27162, 27163, 27166, 27258,
27328, 27339, 27351, 27383, 27390,
27401, 27417, 27424, 27485, 27542,
27552, 27554, 27564, 27582, 27583,
27615, 27618, 27627, 27629, 27631,
27645, 27659, 27683, 27767, 27775,
27806, 27814, 27820, 27831, 27834,
27837, 27846, 27855, 27857, 27863,
27870, 27873, 27882, 27890, 27911,
27944, 27945, 27972, 27974, 27992,
27993, 28012, 28023, 28032, 28035,
28046, 28049, 28052, 28070, 28080,
28091, 28093, 28102, 28149, 28164,
28179, 28194, 28209, 28224, 28227,
28229, 28246, 28291, 28598, 28634,
28635, 28645, 28686, 28687, 28711,
28738, 28739, 28742, 28744, 28745,

28750, 28762, 28781, 28786, 28794,
28797, 28829, 28839, 28840, 28850,
28872, 28887, 28905, 28913, 28916,
28944, 28952, 28968, 29040, 29058,
29094, 29112, 29145, 29168, 29174,
29247, 29248, 29353, 29354, 29363,
29370, 29375, 29385, 29395, 29420,
29423, 29436, 29468, 29476, 29477,
29505, 29527, 29528, 29529, 29532,
29537, 29557, 29558, 30075, 30078,
30152, 30153, 30194, 30202, 30255,
30261, 30274, 30359, 31030, 31031,
31034, 31337, 31379, 31383, 31384,
31399, 31541, 31545, 31556, 31571,
31583, 31587, 31603, 31615, 31647,
31648, 31649, 31650, 31651, 31652,
31653, 31743, 31747, 31761, 31762,
32164, 33107, 33110, 33111, 33114,
33115, 33143, 33144, 33145, 33146,
33147, 33148, 33163, 33211, 33212,
33213, 33214, 33215, 33216, 33217,
33218, 33219, 33220, 33221, 33222,
33223, 33224, 33225, 33226, 33243,
33244, 33261, 33262, 33284, 33285,
33286, 33287, 33306, 33307, 33308,
34839, 34841, 34847, 39278, 39289,
39290, 39370, 39371, 39372, 39373,
39386, 39387, 39403, 39404, 39405,
39406, 39407, 39408, 39409, 39410,
39411, 40170, 40171, 40176, 40177

file commands:
\file_compare_timestamp:nNn

. 11364, 11372
\file_compare_timestamp:nNnTF . . .

. 105, 11364
\file_compare_timestamp_p:nNn . . .

. 105, 11364
\g_file_curr_dir_str

. . . . 102, 10928, 11457, 11463, 11476
\g_file_curr_ext_str

. . . . 102, 10928, 11459, 11465, 11478
\g_file_curr_name_str 102,

9163, 9286, 10928, 11458, 11464, 11477
\file_full_name:n

. 105, 11097, 11097, 11102, 11214,
11231, 11239, 11246, 11293, 11368,
11369, 11409, 11481, 38347, 38352

\file_get:nnN
106, 11054, 11054, 11059, 11060, 11071

\file_get:nnNTF . . . 106, 11054, 11056
\file_get_full_name:nN

105, 11205, 11205, 11210, 11211, 11219
\file_get_full_name:nNTF

. 105, 10220, 11062,

Index 1557

11205, 11207, 11416, 11422, 11435
\file_get_hex_dump:nN

103, 11310, 11310, 11312, 11322, 11324
\file_get_hex_dump:nnnN

103, 11346, 11346, 11351, 11352, 11361
\file_get_hex_dump:nnnNTF

. 103, 11346, 11348
\file_get_hex_dump:nNTF

. 103, 11310, 11311
\file_get_mdfive_hash:nN

104, 11310, 11313, 11315, 11326, 11328
\file_get_mdfive_hash:nNTF

. 104, 11310, 11314
\file_get_size:nN

104, 11310, 11316, 11318, 11330, 11332
\file_get_size:nNTF 104, 11310, 11317
\file_get_timestamp:nN

104, 11310, 11319, 11321, 11334, 11336
\file_get_timestamp:nNTF

. 104, 11310, 11320
\file_hex_dump:n

. 103, 11243, 11292, 11294
\file_hex_dump:nnn

103, 11243, 11243, 11250, 11356, 38329
\file_if_exist:n 11407, 11413
\file_if_exist:nTF 103, 105,

106, 11407, 11739, 11741, 11745, 14466
\file_if_exist_input:n

. 106, 11414, 11414, 11419
\file_if_exist_input:nTF

. 106, 11414, 11420, 11426
\file_if_exist_p:n 103, 11407
\file_input:n

106, 107, 11433, 11433, 11439, 14470
\file_input_raw:n

. 106, 11480, 11480, 11482
\file_input_stop: . . 107, 11427, 11427
\file_log_list: . . . 107, 11558, 11559
\file_mdfive_hash:n

. 104, 11222, 11238, 11240
\file_parse_full_name:n

. 106, 680, 11499, 11499, 11504
\file_parse_full_name:nNNN

105, 106, 11461, 11546, 11546, 11557
\file_parse_full_name_apply:nN . .

. 106,
680, 11499, 11501, 11505, 11510, 11548

\l_file_search_path_seq
. 103, 104, 106, 10962, 11129

\file_show_list: . . . 107, 11558, 11558
\file_size:n . 104, 11222, 11222, 11224
\file_timestamp:n

. 76, 104, 11222, 11225, 11227

file internal commands:
\l__file_base_name_tl 10957
__file_compare_timestamp:nnN . . .

. 11364, 11367, 11374
__file_const:nn 11753
__file_details:nn

. 11222, 11223, 11226, 11228
__file_details_aux:nn

. 11222, 11230, 11233, 11261
\l__file_dir_str . 10959, 11462, 11463
__file_ext_check:nn

. 11138, 11164, 11171
__file_ext_check:nnn . 11186, 11191
__file_ext_check:nnnn . 11192, 11193
__file_ext_check:nnnw . 11177, 11182
__file_ext_check:nnw

. 11172, 11173, 11180
\l__file_ext_str . 10959, 11462, 11465
__file_full_name:n

. 11097, 11099, 11103
__file_full_name_assign:nnnNNN .

. 11549, 11551
__file_full_name_aux:n

. . 11097, 11106, 11108, 11157, 11192
__file_full_name_aux:nN

. 11097, 11142, 11156
__file_full_name_aux:Nnn

. 11097, 11130, 11134, 11140
__file_full_name_aux:nnN

. 11097, 11157, 11158
__file_full_name_auxi:nn

. 11097, 11113, 11116
__file_full_name_auxii:nn

. 11097, 11106, 11125
__file_full_name_slash:n

. 11097, 11143, 11146
__file_full_name_slash:nw

. 11148, 11150
__file_full_name_slash:w 11097
\l__file_full_name_tl

. . . . 10957, 11062, 11065, 11416,
11417, 11422, 11423, 11435, 11436

__file_get_aux:nnN
. 11054, 11064, 11072

__file_get_details:nnN . . 11310,
11323, 11327, 11331, 11335, 11338

__file_get_do:Nw 11054, 11080, 11090
__file_get_full_name_search:nN .

. 11205
__file_hex_dump:n

. 11243, 11293, 11297, 11304
__file_hex_dump_auxi:nnn

. 11243, 11245, 11251

Index 1558

__file_hex_dump_auxii:nnnn
. 11243, 11260, 11265

__file_hex_dump_auxiii:nnnn . . .
. 11243, 11268, 11270, 11275

__file_hex_dump_auxiiv:nnn . . 11243
__file_hex_dump_auxiv:nnn

. 11278, 11280, 11285
__file_id_info_auxi:w

. 11587, 11598, 11600
__file_id_info_auxii:w

. 683, 11587, 11610, 11612
__file_id_info_auxiii:w

. 11587, 11620, 11622
__file_if_recursion_tail_-

break:NN 10969
__file_if_recursion_tail_stop:N

. 10969
__file_if_recursion_tail_stop_-

do:Nn 10969
__file_if_recursion_tail_stop_-

do:nn 10970
__file_input:n 11417,

11423, 11433, 11436, 11440, 11452
__file_input_pop:

. 11433, 11450, 11468, 11473
__file_input_pop:nnn

. 11433, 11471, 11474
__file_input_push:n

. 11433, 11445, 11453, 11467
__file_input_raw:nn

. 11480, 11481, 11483
\g__file_internal_ior

. 11221, 11645, 11656, 11658
\l__file_internal_tl

. 10927, 11470, 11471
__file_kernel_dependency_-

compare:nnn
. 11624, 11630, 11633, 11635

__file_list:N
. 11558, 11558, 11559, 11560

__file_list_aux:n 11558, 11571, 11574
\c__file_marker_tl

. 670, 11053, 11078, 11091
__file_mdfive_hash:n

. 11222, 11239, 11241
__file_mismatched_dependency_-

error:nn 11640, 11643, 11643
__file_name_cleanup:w

. 11097, 11165, 11169
__file_name_end:

. 11097, 11136, 11169, 11170
__file_name_expand:n

. 10971, 10976, 10979

__file_name_expand_cleanup:Nw . .
. 668, 10971, 10981, 10985

__file_name_expand_cleanup:w . . .
. 668, 10971, 10989, 10992

__file_name_expand_end:
. 668, 10971, 10983, 10985, 10988,
10993, 10997, 10999, 11000, 11002

__file_name_expand_error:Nw . . .
. 668, 669, 10971, 10988, 10999

__file_name_expand_error_aux:Nw
. 669, 10971, 11000, 11001

__file_name_ext_check:nn 11097
__file_name_ext_check:nnn . . . 11097
__file_name_ext_check:nnnn . . 11097
__file_name_ext_check:nnnw . . 11097
__file_name_ext_check:nnw . . . 11097
__file_name_quote:nw

. 11045, 11046, 11047
\l__file_name_str 10959, 11462, 11464
__file_name_strip_quotes:n

. 10971, 10975, 11008
__file_name_strip_quotes:nnn . 10971
__file_name_strip_quotes:nnnw 10971
__file_name_strip_quotes:nw . . .

. 11010, 11013, 11019, 11022
__file_name_strip_quotes_-

end:wnwn 11016, 11021
__file_name_trim_spaces:n

. 10971, 10973, 11031
__file_name_trim_spaces:nw

. 10971, 11032, 11033
__file_name_trim_spaces_aux:n . .

. 10971, 11038, 11042
__file_name_trim_spaces_aux:w . .

. 10971, 11043, 11044
__file_parse_full_name_area:nw .

. . . . 681, 11511, 11513, 11516, 11520
__file_parse_full_name_auxi:nN .

. 11507, 11511, 11511
__file_parse_full_name_base:nw .

. . . . 681, 11519, 11522, 11522, 11534
__file_parse_full_name_tidy:nnnN

681, 11529, 11530, 11532, 11536, 11536
__file_parse_version:w

. 11624, 11638, 11639, 11642
__file_quark_if_nil:n 10966
__file_quark_if_nil:nTF

. . 10966, 11035, 11049, 11175, 11184
__file_quark_if_nil_p:n 10966
\g__file_record_seq 679,

682, 10956, 11444, 11568, 11582, 11583
__file_size:n . . 11096, 11096, 11113
\g__file_stack_seq

. 679, 10931, 11455, 11470

Index 1559

__file_str_cmp:nn 11363, 11363, 11395
__file_timestamp:n

. 11364, 11396, 11397, 11406
__file_tmp:w

. . 10933, 10937, 10941, 10947, 10953
\l__file_tmp_seq . . . 10963, 11562,

11565, 11568, 11569, 11571, 11579,
11584, 11655, 11657, 11676, 11680

\filedump . 770
\filemoddate 771
\filesize . 772
\finalhyphendemerits 232
\firstmark . 233
\firstmarks . 490
\firstvalidlanguage 822
\fixupboxesmode 823
flag commands:

\flag_clear:N . . . 187, 5622, 7510,
7511, 14544, 14572, 14666, 14695,
14764, 14812, 14813, 14865, 14866,
15102, 15103, 15104, 15105, 15106,
15207, 15302, 15303, 15304, 15305,
15460, 15461, 15462, 18397, 18397,
18402, 18413, 18456, 29908, 39758

\flag_clear:n 18455, 18456
\flag_clear_new:N

. . 187, 784, 15047, 15048, 15049,
15050, 15230, 15231, 15232, 15410,
15411, 18412, 18412, 18414, 18457

\flag_clear_new:n 18455, 18457
\flag_ensure_raised:N

. . . 187, 5649, 5671, 18452, 18452,
18454, 18468, 23760, 23769, 23777,
23794, 23803, 23834, 29907, 39732

\flag_ensure_raised:n . 18455, 18468
\flag_height:N 187,

7520, 7522, 14388, 18422, 18438,
18438, 18448, 18450, 18466, 39733

\flag_height:n . . 18455, 18466, 18476
\flag_if_exist:N 18424, 18426
\flag_if_exist:NTF . . . 187, 18413,

18424, 18459, 18460, 18461, 39232
\flag_if_exist:nTF

. 18455, 18459, 18460, 18461
\flag_if_exist_p:N

. 187, 369, 18424, 18458
\flag_if_exist_p:n 18455
\flag_if_raised:N 18428, 18436
\flag_if_raised:NTF . . . 187, 5630,

14381, 14386, 14388, 15074, 15080,
15085, 15092, 15264, 15269, 15274,
15425, 15432, 18428, 18463, 18464,
18465, 29910, 39734, 39735, 39736

\flag_if_raised:nTF
. 18455, 18463, 18464, 18465

\flag_if_raised_p:N
. 187, 18428, 18462, 39737

\flag_if_raised_p:n 18455
\flag_log:N . . 187, 18415, 18417, 18418
\flag_log:n 18469, 18470
\flag_new:N

. 186, 187, 784, 5612, 7370, 7371,
14250, 14251, 18392, 18392, 18394,
18395, 18396, 18413, 18455, 23726,
23727, 23728, 23729, 29894, 39751

\flag_new:n 18455, 18455
\flag_raise:N 187,

7563, 7571, 14530, 14580, 14680,
14713, 14784, 14797, 14835, 14840,
14921, 15123, 15124, 15147, 15148,
15161, 15162, 15181, 15182, 15188,
15189, 15219, 15369, 15370, 15479,
15480, 15484, 15485, 15499, 15500,
18449, 18449, 18451, 18467, 39738

\flag_raise:n 18455, 18467
\flag_show:N . 187, 18415, 18415, 18416
\flag_show:n 18469, 18469
\l_tmpa_flag . . 188, 369, 18395, 39236
\l_tmpb_flag 188, 18395

flag internal commands:
__flag_clear:wN

. 18397, 18399, 18403, 18409
__flag_height_end:wN

. 18438, 18442, 18447
__flag_height_loop:wN

. 18438, 18438, 18439, 18444
__flag_show:NN

. 18415, 18415, 18417, 18419
__flag_show:Nn

. 18469, 18469, 18470, 18471
\floatingpenalty 234
floor . 281
\fmtname 8687, 8690, 8691,

8703, 8713, 31795, 32056, 32057,
35693, 35694, 36583, 36584, 38564

\font . 235
\fontchardp . 491
\fontcharht . 492
\fontcharic . 493
\fontcharwd . 494
\fontdimen 1011, 236
\fontencoding 34376
\fontfamily 34377
\fontid . 825
\fontname . 237
\fontseries 34378
\fontshape 34379

Index 1560

\fontsize . 34382
\footnotesize 34418
\forcecjktoken 1201
\formatname . 826
fp commands:

\c_e_fp 274, 277, 25659
\fp_abs:n 279,

285, 1225, 29269, 29269, 35252,
35354, 35356, 35358, 36298, 36300

\fp_add:Nn
265, 1224, 1225, 25570, 25570, 25576

\fp_clear_function:n 273, 30092, 30092
\fp_clear_variable:n

. 273, 29860, 29860, 30031
\fp_compare:n 25684
\fp_compare:nNn 25700
\fp_compare:nNnTF

. 268–270, 25700, 25852,
25858, 25863, 25871, 25922, 25928,
35109, 35111, 35116, 35386, 35401,
35410, 36040, 36272, 37021, 37204,
37208, 37216, 37223, 37230, 37237,
37244, 37291, 37703, 37706, 38152

\fp_compare:nTF 268–270,
279, 25684, 25824, 25830, 25835, 25843

\fp_compare_p:n 269, 25684
\fp_compare_p:nNn

268, 25700, 36997, 36998, 37017, 37018
\fp_const:Nn . . . 265, 25547, 25551,

25555, 25659, 25660, 25661, 25662
\l_fp_division_by_zero_flag

. 275, 23726, 23794, 23803
\fp_do_until:nn

. 270, 25821, 25821, 25825
\fp_do_until:nNnn

. 269, 25849, 25849, 25853
\fp_do_while:nn

. 270, 25821, 25827, 25831
\fp_do_while:nNnn

. 270, 25849, 25855, 25859
\fp_eval:n 266, 269, 273,

278–285, 293, 1104, 1261, 29264,
29266, 30419, 36888, 36890, 36896,
36897, 36898, 36903, 36907, 36908,
36909, 36913, 36916, 36917, 36918,
37078, 37088, 37092, 37093, 37094,
37099, 37100, 37101, 37102, 37130,
37135, 37143, 37149, 37158, 37159,
37160, 37176, 37177, 37178, 37186,
37187, 37188, 37195, 37196, 37197,
37259, 37264, 37295, 37855, 37856,
37857, 37858, 37870, 37871, 37872,
37883, 38008, 38009, 38071, 38230,
38231, 38232, 38233, 38241, 38242,

38243, 38244, 38260, 38266, 38283,
38284, 38285, 38293, 38294, 38295

\fp_format:nn 286
\fp_gadd:Nn . . 265, 25570, 25571, 25577
.fp_gset:N 247, 22214
\fp_gset:Nn

265, 25547, 25549, 25554, 25571, 25573
\fp_gset_eq:NN 265, 25556,

25557, 25559, 25561, 39521, 39650
\fp_gsub:Nn . . 266, 25570, 25573, 25579
\fp_gzero:N

. . . . 265, 25560, 25561, 25563, 25567
\fp_gzero_new:N

. 265, 25564, 25566, 25569
\fp_if_exist:N 25674, 25675
\fp_if_exist:NTF

. . . . 267, 25565, 25567, 25674, 29808
\fp_if_exist_p:N 267, 25674
\fp_if_nan:n 25676
\fp_if_nan:nTF 269, 286, 25676
\fp_if_nan_p:n 269, 25676
\l_fp_invalid_operation_flag . . .

. . . . 275, 23726, 23760, 23769, 23777
\fp_log:N 276, 25580, 25582, 25583
\fp_log:n 276, 25655, 25657
\fp_max:nn 285, 29271, 29271
\fp_min:nn 285, 29271, 29273
\fp_new:N 265, 25544,

25544, 25546, 25565, 25567, 25663,
25664, 25665, 25666, 29622, 35075,
35076, 35077, 35203, 35204, 35563,
35564, 36067, 36068, 36232, 36233

\fp_new_function:n . 273, 29947, 29947
\fp_new_variable:n

. 271–273, 1247, 29875, 29875
\l_fp_overflow_flag 275, 23726
.fp_set:N 247, 22214
\fp_set:Nn

. . 265, 271, 25547, 25547, 25553,
25570, 25572, 29905, 29909, 30052,
35097, 35098, 35099, 35222, 35224,
35265, 35285, 35305, 35322, 35324,
35342, 35343, 35383, 35384, 36085,
36086, 36252, 36254, 36292, 36293

\fp_set_eq:NN 265, 25556,
25556, 25558, 25560, 35270, 35290,
35307, 35387, 35388, 39520, 39569

\fp_set_function:nnn
. 273, 1250, 30010, 30010

\fp_set_variable:nn
. . 271–273, 1245, 1247, 29894, 29895

\fp_show:N
. . 271, 272, 276, 25580, 25580, 25581

Index 1561

\fp_show:n
. . . 271–273, 276, 1247, 25655, 25655

\fp_sign:n 266, 29267, 29267
\fp_step_function:nnnN

. . . . 271, 25877, 25877, 25884, 25959
\fp_step_inline:nnnn 271, 25937, 25937
\fp_step_variable:nnnNn

. 271, 25937, 25944
\fp_sub:Nn . . . 266, 25570, 25572, 25578
\fp_to_decimal:N . 266, 267, 23717,

29071, 29071, 29073, 29102, 29264
\fp_to_decimal:n

. 266, 267, 29071, 29074,
29266, 29268, 29270, 29272, 29274

\fp_to_dim:N
. 266, 1223, 29194, 29194, 29196

\fp_to_dim:n
. . 266, 275, 29194, 29197, 35141,
35152, 35252, 35995, 36017, 36045,
36059, 36169, 36177, 36308, 36310

\fp_to_int:N . 266, 29210, 29210, 29211
\fp_to_int:n . 266, 29210, 29212, 37707
\fp_to_scientific:N

267, 29017, 29017, 29019, 29048, 29055
\fp_to_scientific:n 267, 29017, 29020
\fp_to_tl:N 267, 289, 23718,

25588, 29150, 29150, 29151, 29915
\fp_to_tl:n 267, 23344,

23759, 23768, 23793, 23802, 23831,
25428, 25443, 25656, 25658, 25894,
25895, 25914, 25925, 29150, 29152

\fp_trap:nn 275, 1044, 23730,
23730, 23845, 23846, 23847, 23848

\l_fp_underflow_flag 275, 23726
\fp_until_do:nn

. 270, 25821, 25833, 25838
\fp_until_do:nNnn

. 270, 25849, 25861, 25866
\fp_use:N 267, 289, 29264, 29264, 29265
\fp_while_do:nn

. 270, 25821, 25841, 25846
\fp_while_do:nNnn

. 270, 25849, 25869, 25874
\fp_zero:N

. . . . 265, 25560, 25560, 25562, 25565
\fp_zero_new:N 265, 25564, 25564, 25568
\c_inf_fp 274,

284, 23358, 24940, 26430, 26512,
26850, 27611, 27634, 27836, 27839,
27843, 27866, 28068, 28231, 30272

\c_minus_inf_fp
. 274, 284, 23358, 26431,
26515, 26848, 27386, 28232, 30273

\c_minus_zero_fp
. . . . 274, 23358, 26427, 28951, 30271

\c_nan_fp .
274, 284, 1047, 1072, 23358, 23770,
23778, 23850, 24056, 24075, 24081,
24104, 24271, 24279, 24287, 24365,
24422, 24461, 24852, 24929, 24941,
25430, 25445, 25918, 27810, 29328,
29907, 30086, 30185, 30244, 30270

\c_one_degree_fp 274, 284, 24943, 25661
\c_one_fp 274, 1100,

1209, 24944, 25373, 25394, 25659,
26018, 26871, 27605, 27805, 27856,
28041, 28155, 28185, 28734, 29344

\c_pi_fp . 274, 284, 1082, 24942, 25661
\g_tmpa_fp 274, 25663
\l_tmpa_fp 274, 25663
\g_tmpb_fp 274, 25663
\l_tmpb_fp 271, 272, 274, 25663
\c_zero_fp 274, 1104,

1121, 1253, 23358, 23412, 24945,
25385, 25397, 25545, 25560, 25561,
26020, 26023, 26259, 26426, 27614,
27635, 27833, 27869, 28949, 29055,
29239, 30269, 35109, 35111, 35116,
35401, 35410, 36272, 37021, 38152

fp internal commands:
__fp_ 26027, 26034, 26043, 26044
__fp_&_o:ww 1107, 1116, 26024
__fp_&_symbolic_o:ww 29676
__fp_&_tuple_o:ww 26024
__fp_*_o:ww 26391
__fp_*_symbolic_o:ww 29676
__fp_*_tuple_o:ww 26898
__fp_+_o:ww . 1119, 1120, 1149, 26112
__fp_+_symbolic_o:ww 29676
__fp_-_o:ww 1119, 1120, 26107
__fp_-_symbolic_o:ww 29676
__fp_/_o:ww . 1128, 1129, 1172, 26503
__fp_/_symbolic_o:ww 29676
__fp_⟨op⟩_o:w 1239
__fp_^_o:ww 27801
__fp_^_symbolic_o:ww 29676
__fp_acos_o:w 1213, 1216, 28890, 28890
__fp_acot_o:Nw

. 28130, 28132, 28722, 28728
__fp_acotii_o:Nww 28732, 28735, 28755
__fp_acotii_o:ww 1209
__fp_acsc_normal_o:NnwNnw

. . . 1215, 28948, 28963, 28971, 28971
__fp_acsc_o:w 28942, 28942
__fp_add:NNNn 25570,

25570, 25571, 25572, 25573, 25574
__fp_add_big_i:wNww 1122

Index 1562

__fp_add_big_i_o:wNww
. . . . 1119, 1122, 26179, 26186, 26186

__fp_add_big_ii:wNww 1122
__fp_add_big_ii_o:wNww

. 26182, 26186, 26194
__fp_add_inf_o:Nww

. 26128, 26148, 26148
__fp_add_normal_o:Nww

. 1122, 26127, 26163, 26163
__fp_add_npos_o:NnwNnw

. 1122, 26166, 26172, 26172
__fp_add_return_ii_o:Nww

. 26130, 26136, 26136, 26141
__fp_add_significand_carry_-

o:wwwNN . 1124, 26219, 26234, 26234
__fp_add_significand_no_carry_-

o:wwwNN . 1123, 26221, 26224, 26224
__fp_add_significand_o:NnnwnnnnN

1122, 1123, 26189, 26197, 26202, 26202
__fp_add_significand_pack:NNNNNNN

. 26202, 26206, 26209
__fp_add_significand_test_o:N . .

. 26202, 26204, 26216
__fp_add_zeros_o:Nww

. 26126, 26138, 26138
__fp_and_return:wNw

. 26024, 26030, 26037, 26049
__fp_array_bounds:NNnTF

. 30141, 30141, 30172, 30242
__fp_array_bounds_error:NNn . . .

. 30141, 30144, 30148, 30155
__fp_array_count:n 23461, 23461,

24040, 25778, 25779, 26911, 28990
__fp_array_gset:NNNNww

. 30160, 30163, 30170
__fp_array_gset:w 30160, 30176, 30187
__fp_array_gset_normal:w

. 30160, 30191, 30197
__fp_array_gset_recover:Nw

. 30160, 30177, 30182
__fp_array_gset_special:nnNNN . .

. 30160,
30190, 30192, 30193, 30205, 30217

__fp_array_gzero:N 1253
__fp_array_if_all_fp:nTF

. 23473, 23473, 25423
__fp_array_if_all_fp_loop:w . . .

. 23473, 23475, 23478, 23481
\g__fp_array_int

. 30106, 30113, 30115, 30127
__fp_array_item:N 30224, 30248, 30253
__fp_array_item:NNNnN

. 30224, 30243, 30246

__fp_array_item:NwN
. 30224, 30226, 30234, 30240

__fp_array_item:w 30224, 30256, 30258
__fp_array_item_normal:w

. 30224, 30260, 30276
__fp_array_item_special:w

. 30224, 30255, 30264
\l__fp_array_loop_int

. 30107, 30213, 30216, 30219
__fp_array_new:nNNN 30108
__fp_array_new:nNNNN . 30117, 30121
__fp_array_to_clist:n

. . 24108, 29275, 29275, 29368, 29778
__fp_array_to_clist_loop:Nw . . .

. 29275, 29281, 29286, 29291
__fp_asec_o:w 28955, 28955
__fp_asin_auxi_o:NnNww

1214, 1216, 28920, 28923, 28923, 28982
__fp_asin_isqrt:wn

. 28923, 28926, 28933
__fp_asin_normal_o:NnwNnnnnw . . .

. 28881, 28897, 28908, 28908
__fp_asin_o:w 28875, 28875
__fp_atan_auxi:ww

. 1211, 28800, 28814, 28814
__fp_atan_auxii:w 28814, 28815, 28816
__fp_atan_combine_aux:ww

. 28841, 28855, 28862
__fp_atan_combine_o:NwwwwwN . . .

. . . 1210, 28759, 28776, 28841, 28841
__fp_atan_default:w

1100, 1209, 28722, 28726, 28732, 28734
__fp_atan_div:wnwwnw

. 1210, 28787, 28789, 28789
__fp_atan_inf_o:NNNw

. 1209, 28747, 28748,
28749, 28757, 28757, 28893, 28966

__fp_atan_near:wwwn
. 28789, 28796, 28802

__fp_atan_near_aux:wwn
. 28789, 28807, 28809

__fp_atan_normal_o:NNnwNnw
. 1209, 28751, 28767, 28767

__fp_atan_o:Nw
. 28134, 28136, 28722, 28722

__fp_atan_Taylor_break:w
. 28825, 28828, 28838

__fp_atan_Taylor_loop:www
. . . 1211, 28820, 28825, 28825, 28833

__fp_atan_test_o:NwwNwwN
. . . 1215, 28770, 28774, 28774, 28930

__fp_atanii_o:Nww
. 28726, 28735, 28735, 28756

Index 1563

__fp_basics_pack_high:NNNNNw . . .
. 1123,
1140, 23571, 23573, 26227, 26379,
26482, 26494, 26636, 26829, 27356

__fp_basics_pack_high_carry:w . .
. 1036, 23571, 23576, 23580

__fp_basics_pack_low:NNNNNw . . .
. 1130, 1140, 23571,
23571, 26229, 26381, 26484, 26496,
26638, 26778, 26780, 26831, 27358

__fp_basics_pack_weird_high:NNNNNNNNw
. 23582, 23590, 26238, 26647

__fp_basics_pack_weird_low:NNNNw
. 23582, 23582, 26240, 26649

__fp_bcmp:ww 25716, 25744
\c__fp_big_leading_shift_int . . .

. . 23557, 26708, 27044, 27054, 27064
\c__fp_big_middle_shift_int

. . . . 23557, 26711, 26714, 26717,
26720, 26723, 26726, 26730, 27046,
27056, 27066, 27076, 27079, 27082

\c__fp_big_trailing_shift_int . . .
. 23557, 26734, 27089

\c__fp_Bigg_leading_shift_int . . .
. 23562, 26557, 26575

\c__fp_Bigg_middle_shift_int . . .
. . 23562, 26560, 26563, 26578, 26581

\c__fp_Bigg_trailing_shift_int . .
. 23562, 26566, 26584

__fp_binary_rev_type_o:Nww
. 25063, 25076, 26901, 26903

__fp_binary_type_o:Nww
. 25063, 25063, 26899, 26912

\c__fp_block_int 23363, 27308
__fp_case_return:nw 1039,

23639, 23639, 23669, 23672, 23677,
24169, 27570, 28065, 28747, 28748,
28749, 29042, 29096, 29170, 29172,
29173, 29239, 30190, 30192, 30193

__fp_case_return_i_o:ww
. 23646, 23646,
26129, 26143, 26152, 26424, 28738

__fp_case_return_ii_o:ww 23646,
23648, 26425, 27854, 27872, 28739

__fp_case_return_o:Nw
. 1039, 1040, 23640,
23640, 26850, 27605, 27610, 27613,
27805, 27810, 27833, 27836, 27839,
28041, 28155, 28185, 28949, 28951

__fp_case_return_o:Nww
. . . . 23644, 23644, 26426, 26427,
26430, 26431, 27856, 27865, 27868

__fp_case_return_same_o:w
. 1039, 1040,

23642, 23642, 26659, 26663, 26851,
26863, 26866, 27389, 27617, 27830,
28045, 28048, 28140, 28148, 28163,
28178, 28193, 28200, 28208, 28223,
28878, 28886, 28904, 28950, 28967

__fp_case_use:nw . . . 1039, 23638,
23638, 26154, 26422, 26423, 26428,
26429, 26511, 26514, 26661, 26847,
27382, 27385, 27841, 28051, 28141,
28146, 28156, 28161, 28171, 28176,
28186, 28191, 28201, 28206, 28216,
28221, 28880, 28883, 28893, 28895,
28901, 28945, 28947, 28958, 28961,
28966, 29045, 29052, 29099, 29106

__fp_change_func_type:NNN
23501, 23501, 24856, 26894, 29027,

29081, 29158, 29204, 29219, 30174
__fp_change_func_type_aux:w . . .

. 23501, 23510, 23517
__fp_change_func_type_chk:NNN . .

. 23501, 23507, 23518
__fp_chk:w

. . . 1025–1027, 1082, 1120, 1122,
1124, 1130, 1133, 1240, 23345,
23346, 23347, 23358, 23359, 23360,
23361, 23362, 23372, 23377, 23379,
23380, 23408, 23411, 23413, 23423,
23436, 23455, 23650, 23666, 23826,
23831, 24058, 24112, 24121, 24123,
24954, 25594, 25612, 25629, 25634,
25635, 25745, 25746, 25898, 25914,
25918, 25982, 25983, 25986, 25997,
25998, 26006, 26007, 26015, 26027,
26030, 26034, 26037, 26113, 26133,
26134, 26136, 26137, 26138, 26146,
26149, 26160, 26161, 26163, 26172,
26248, 26400, 26434, 26435, 26438,
26519, 26657, 26665, 26667, 26844,
26853, 26855, 26860, 26868, 26870,
26872, 26876, 27379, 27391, 27393,
27602, 27619, 27621, 27802, 27821,
27823, 27824, 27827, 27844, 27847,
27850, 27874, 27875, 27877, 27893,
27982, 27995, 27997, 28001, 28005,
28038, 28054, 28137, 28150, 28152,
28165, 28167, 28180, 28182, 28195,
28197, 28210, 28212, 28225, 28235,
28736, 28752, 28753, 28757, 28768,
28875, 28888, 28890, 28906, 28909,
28919, 28942, 28953, 28955, 28969,
28971, 28976, 29038, 29059, 29062,
29092, 29113, 29116, 29166, 29182,
29185, 29260, 29261, 29345, 29347,
29379, 30187, 30195, 30198, 30277

Index 1564

__fp_clear_function:n
. 30092, 30093, 30094

__fp_clear_variable:n
. 29860, 29862, 29864

__fp_clear_variable_aux:n
. . . 1246, 29860, 29868, 29870, 30027

__fp_compare:wNNNNw 25313
__fp_compare_aux:wn

. 25700, 25703, 25711
__fp_compare_back:ww 1231,

25716, 25716, 25732, 25996, 29363
__fp_compare_back_any:ww

. 1108–1110,
25388, 25713, 25716, 25727, 25795

__fp_compare_back_tuple:ww
. 25772, 25772

__fp_compare_nan:w
. . . 1109, 25716, 25749, 25750, 25771

__fp_compare_npos:nwnw
. 1107, 1109, 1111,
25755, 25801, 25801, 26250, 27158

__fp_compare_return:w
. 25684, 25686, 25689

__fp_compare_significand:nnnnnnnn
. 25801, 25804, 25809

__fp_cos_o:w 28152, 28152
__fp_cot_o:w 1194, 28212, 28212
__fp_cot_zero_o:Nnw

1193, 1194, 28170, 28212, 28215, 28227
__fp_csc_o:w 28167, 28167
__fp_decimate:nNnnnn

. . 1037, 1040, 1188, 23592, 23592,
23657, 23684, 24125, 26188, 26196,
26275, 27648, 27652, 28020, 29122

__fp_decimate_:Nnnnn . 23604, 23604
__fp_decimate_auxi:Nnnnn 1038, 23608
__fp_decimate_auxii:Nnnnn . . . 23608
__fp_decimate_auxiii:Nnnnn . . 23608
__fp_decimate_auxiv:Nnnnn . . . 23608
__fp_decimate_auxix:Nnnnn . . . 23608
__fp_decimate_auxv:Nnnnn 23608
__fp_decimate_auxvi:Nnnnn . . . 23608
__fp_decimate_auxvii:Nnnnn . . 23608
__fp_decimate_auxviii:Nnnnn . 23608
__fp_decimate_auxx:Nnnnn 23608
__fp_decimate_auxxi:Nnnnn . . . 23608
__fp_decimate_auxxii:Nnnnn . . 23608
__fp_decimate_auxxiii:Nnnnn . 23608
__fp_decimate_auxxiv:Nnnnn . . 23608
__fp_decimate_auxxv:Nnnnn . . . 23608
__fp_decimate_auxxvi:Nnnnn . . 23608
__fp_decimate_pack:nnnnnnnnnnw .

. 1038, 23615, 23634, 23634

__fp_decimate_pack:nnnnnnw
. 23635, 23636

__fp_decimate_tiny:Nnnnn
. 23604, 23606

__fp_div_npos_o:Nww
. . . . 1132, 1133, 26508, 26518, 26518

__fp_div_significand_calc:wwnnnnnnn
. 1136, 26535,
26544, 26544, 26592, 27462, 27469

__fp_div_significand_calc_-
i:wwnnnnnnn . . . 26544, 26547, 26552

__fp_div_significand_calc_-
ii:wwnnnnnnn . . 26544, 26549, 26570

__fp_div_significand_i_o:wnnw . .
. . . . 1133, 1136, 26525, 26531, 26531

__fp_div_significand_ii:wwn . . .
. 1138,
26539, 26540, 26541, 26588, 26588

__fp_div_significand_iii:wwnnnnn
. 1138, 26542, 26595, 26595

__fp_div_significand_iv:wwnnnnnnn
. 1138, 26598, 26603, 26603

__fp_div_significand_large_-
o:wwwNNNNwN
. 1140, 26629, 26643, 26643

__fp_div_significand_pack:NNN . .
. 1140, 1174, 26590,
26623, 26623, 27449, 27467, 27475

__fp_div_significand_small_-
o:wwwNNNNwN
. 1140, 26627, 26633, 26633

__fp_div_significand_test_o:w . .
. 1140, 26533, 26624, 26624

__fp_div_significand_v:NN
. 26608, 26610, 26613

__fp_div_significand_v:NNw . . 26603
__fp_div_significand_vi:Nw

. 1139, 26603, 26606, 26614
__fp_division_by_zero_o:Nnw . . .

. 1044, 23790, 23838,
23841, 26848, 27386, 28231, 28232

__fp_division_by_zero_o:NNww . . .
. 1044, 23798,
23838, 23842, 26512, 26515, 27843

\c__fp_empty_tuple_fp
. 23456, 24265, 24915, 24925

__fp_ep_compare:wwww
. 27153, 27153, 28783

__fp_ep_compare_aux:wwww
. 27153, 27154, 27155

__fp_ep_div:wwwwn
. 1206, 27183, 27183, 27294,
28712, 28799, 28803, 28812, 28979

Index 1565

__fp_ep_div_eps_pack:NNNNNw . . .
. 27213, 27217, 27219, 27222

__fp_ep_div_epsi:wnNNNNn 1163
__fp_ep_div_epsi:wnNNNNNn

. 27210, 27213, 27213
__fp_ep_div_epsii:wwnNNNNNn . . .

. 27213, 27215, 27224
__fp_ep_div_esti:wwwwn

. 1163, 27189, 27192, 27192
__fp_ep_div_estii:wwnnwwn

. 27192, 27194, 27200
__fp_ep_div_estiii:NNNNNwwwn . . .

. 27192, 27202, 27207
__fp_ep_inv_to_float_o:wN . . . 1195
__fp_ep_inv_to_float_o:wwN 1205,

27290, 27292, 27298, 28174, 28189
__fp_ep_isqrt:wwn 27236, 27236, 28940
__fp_ep_isqrt_aux:wwn 27236
__fp_ep_isqrt_auxi:wwn 27239, 27241
__fp_ep_isqrt_auxii:wwnnnwn . . .

. 27236, 27243, 27249
__fp_ep_isqrt_epsi:wN

. 1166, 27273, 27276, 27276
__fp_ep_isqrt_epsii:wwN

. . 27276, 27279, 27280, 27281, 27283
__fp_ep_isqrt_esti:wwwnnwn

. 27251, 27254, 27254, 27259
__fp_ep_isqrt_estii:wwwnnwn . . .

. 27254, 27257, 27264
__fp_ep_isqrt_estiii:NNNNNwwwn .

. 27254, 27266, 27270
__fp_ep_mul:wwwwn

. 1189, 27168, 27168, 28081,
28094, 28669, 28699, 28927, 28938

__fp_ep_mul_raw:wwwwN
. . 27168, 27174, 27178, 28253, 28619

__fp_ep_to_ep:wwN
. 27119, 27119, 27170,
27173, 27185, 27188, 27238, 28928

__fp_ep_to_ep_end:www
. 27119, 27133, 27137

__fp_ep_to_ep_loop:N 1204, 27119,
27124, 27128, 27135, 27138, 28620

__fp_ep_to_ep_zero:ww
. 27119, 27143, 27151

__fp_ep_to_fixed:wwn 27101, 27101,
28250, 28806, 28815, 28925, 29388

__fp_ep_to_fixed_auxi:www
. 27101, 27103, 27108

__fp_ep_to_fixed_auxii:nnnnnnnwn
. 27101, 27114, 27117

__fp_ep_to_float_o:wN 1195

__fp_ep_to_float_o:wwN
. 1192, 1205, 27290, 27290, 27295,
27302, 28105, 28144, 28159, 28718

__fp_error:nnnn
. 23759, 23767, 23776,
23793, 23801, 23829, 23852, 23852,
23854, 24051, 24053, 24074, 24079,
24851, 25426, 25441, 25894, 25913,
25924, 29033, 29087, 29161, 30184

__fp_exp_after_?_f:nw
. 1033, 1068, 24249

__fp_exp_after_any_f:Nnw
. 23526, 23526, 23532

__fp_exp_after_any_f:nw . . 1034,
23526, 23528, 23552, 24251, 25020

__fp_exp_after_array_f:w
. 1034, 23537, 23546, 23551,
23552, 24905, 26064, 26075, 26085,
26093, 29651, 29810, 30003, 30089

__fp_exp_after_expr_mark_f:nw . .
. 1068, 24249, 24257

__fp_exp_after_expr_stop_f:nw . .
. 23526, 23536

__fp_exp_after_f:nw . 1030, 1068,
23413, 23423, 23531, 24953, 25091

__fp_exp_after_normal:nNNw
. 23416, 23426, 23443, 23443

__fp_exp_after_normal:Nwwwww . . .
. 23445, 23453

__fp_exp_after_o:w
. 1030, 23413, 23413,
23643, 23647, 23649, 24119, 24163,
24181, 25408, 26014, 26032, 26041,
26050, 26137, 26874, 27994, 27999

__fp_exp_after_special:nNNw . . .
. . . 1031, 23418, 23428, 23433, 23433

__fp_exp_after_symbolic_aux:w . .
. 29641, 29644, 29657

__fp_exp_after_symbolic_f:nw . . .
. 1240, 29641, 29641,
29672, 29692, 29714, 29837, 30062

__fp_exp_after_symbolic_loop:N .
. 29641,
29646, 29663, 29668, 29825, 30047

__fp_exp_after_tuple_f:nw
. 23537, 23538, 23539, 25215

__fp_exp_after_tuple_o:w 23537,
23537, 26039, 26042, 26045, 26047

\c__fp_exp_intarray
. . 27695, 27781, 27788, 27791, 27793

__fp_exp_intarray:w
. 27752, 27765, 27778

__fp_exp_intarray_aux:w
. . 27752, 27786, 27789, 27792, 27795

Index 1566

__fp_exp_large:NwN 1181,
27752, 27754, 27760, 27773, 27978

__fp_exp_large_after:wwn
. 1181, 27752, 27771, 27796

__fp_exp_normal_o:w
. 27607, 27621, 27621

__fp_exp_o:w . . . 27365, 27602, 27602
__fp_exp_overflow:NN

. 27621, 27634, 27635, 27662
__fp_exp_pos_large:NnnNwn

. 27653, 27752, 27752
__fp_exp_pos_o:NNwnw

. 27624, 27626, 27629
__fp_exp_pos_o:Nnwnw 27621
__fp_exp_Taylor:Nnnwn

. 27649, 27668, 27668, 27798
__fp_exp_Taylor_break:Nww

. 27668, 27682, 27693
__fp_exp_Taylor_ii:ww . 27674, 27677
__fp_exp_Taylor_loop:www

. 27668, 27678, 27679, 27688
__fp_expand:n 1225
__fp_exponent:w 23380, 23380
__fp_facorial_int_o:n 1189
__fp_fact_int_o:n 28059, 28062
__fp_fact_int_o:w 28056
__fp_fact_loop_o:w

. 28074, 28076, 28076, 28087
\c__fp_fact_max_arg_int 28037, 28064
__fp_fact_o:w . . 27369, 28038, 28038
__fp_fact_pos_o:w 28053, 28056, 28056
__fp_fact_small_o:w . . 28079, 28091
\c__fp_five_int 23913,

23937, 23950, 23963, 23970, 24023
__fp_fixed_⟨calculation⟩:wwn . 1151
__fp_fixed_add:nnNnnnwn

. 26994, 27002, 27004
__fp_fixed_add:Nnnnnwnn

. 26994, 26994, 26995, 26996
__fp_fixed_add:wwn . . 1151, 1154,

26994, 26994, 27234, 27544, 27552,
27563, 27581, 28811, 28871, 29403

__fp_fixed_add_after:NNNNNwn . . .
. 26994, 26998, 27012

__fp_fixed_add_one:wN
. 1152, 26926, 26926,
27227, 27685, 27694, 28937, 29394

__fp_fixed_add_pack:NNNNNwn . . .
. 26994, 27000, 27007, 27010

__fp_fixed_continue:wn
. 26925, 26925, 27171,
27176, 27186, 27763, 27953, 28288,
28657, 28929, 28938, 29386, 29398

__fp_fixed_div_int:wnN
. 26963, 26968, 26976, 26988

__fp_fixed_div_int:wwN . . . 1153,
26963, 26963, 27543, 27684, 28830

__fp_fixed_div_int_after:Nw . . .
. 1154, 26963, 26965, 26993

__fp_fixed_div_int_auxi:wnn . . .
. 26963, 26969,
26970, 26971, 26972, 26973, 26983

__fp_fixed_div_int_auxii:wnn . . .
. 1154, 26963, 26974, 26991

__fp_fixed_div_int_pack:Nw
. 1154, 26963, 26986, 26992

__fp_fixed_div_myriad:wn
. 26931, 26931, 27231

__fp_fixed_inv_to_float_o:wN . . .
. 27297, 27297, 27626, 27889

__fp_fixed_mul:nnnnnnnw
. 27014, 27034, 27036

__fp_fixed_mul:wwn . . 1151, 1153,
1155, 1203, 1205, 27014, 27014,
27180, 27211, 27226, 27228, 27232,
27285, 27288, 27301, 27545, 27555,
27595, 27686, 27784, 27799, 27899,
28626, 28680, 28818, 28851, 28853

__fp_fixed_mul_add:nnnnwnnnn . . .
. 1158, 27083, 27085, 27085

__fp_fixed_mul_add:nnnnwnnwN . . .
. 1159, 27090, 27096, 27096

__fp_fixed_mul_add:Nwnnnwnnn . . .
. 1158,
27047, 27057, 27068, 27072, 27072

__fp_fixed_mul_add:wwwn
. 1156, 27041, 27041, 29408

__fp_fixed_mul_after:wwn
1156, 26933, 26939, 26939, 26942,

27016, 27043, 27053, 27063, 27916
__fp_fixed_mul_one_minus_-

mul:wwn 27041
__fp_fixed_mul_short:wwn

. 1153, 26940, 26940,
27209, 27230, 27272, 27274, 28864

__fp_fixed_mul_sub_back:wwwn . . .
. 1156, 27041, 27051,
27286, 28647, 28649, 28650, 28651,
28652, 28653, 28654, 28655, 28656,
28660, 28662, 28663, 28664, 28665,
28666, 28667, 28668, 28693, 28695,
28696, 28697, 28698, 28701, 28703,
28704, 28705, 28706, 28831, 28839

__fp_fixed_one_minus_mul:wwn . . .
. 1156–1158, 27061

__fp_fixed_sub:wwn
. 26994, 26995, 27278,

Index 1567

27561, 27577, 27589, 28292, 28812,
28869, 28935, 29396, 29405, 29437

__fp_fixed_to_float_o:Nw
. 27304, 27304, 27570

__fp_fixed_to_float_o:wN
. 1152, 1167, 1212, 27291,
27304, 27305, 27306, 27590, 27600,
27624, 27885, 28859, 29336, 29442

__fp_fixed_to_float_pack:ww . . .
. 27337, 27347

__fp_fixed_to_float_rad_o:wN . . .
. 27299, 27299, 28859

__fp_fixed_to_float_round_-
up:wnnnnw 27350, 27354

__fp_fixed_to_float_zero:w
. 27333, 27342

__fp_fixed_to_loop:N
. 27310, 27320, 27324

__fp_fixed_to_loop_end:w
. 27326, 27330

__fp_from_dim:wNNnnnnnn
. 29229, 29252, 29255

__fp_from_dim:wnnnnwNn 29256, 29257
__fp_from_dim:wnnnnwNw 29229
__fp_from_dim:wNw 29229, 29241, 29250
__fp_from_dim_test:ww 1224, 24341,

24378, 24972, 29229, 29231, 29236
__fp_func_to_name:N

. 23704, 23704, 24851, 24860
__fp_func_to_name_aux:w

. 23704, 23707, 23710
__fp_function_arg_few:w

. 30071, 30074, 30086
__fp_function_arg_get:w

. 30071, 30077, 30087
\l__fp_function_arg_int

. . 30009, 30023, 30026, 30029, 30037
__fp_function_arg_o:w . . . 30036,

30041, 30045, 30071, 30071, 30081
__fp_function_o:w

. . 29751, 29974, 29991, 29991, 29998
__fp_function_set_parsing:Nn . . .

. . 29961, 29964, 29964, 30021, 30100
__fp_function_set_parsing_-

aux:NNn 29964, 29966, 29969
\c__fp_half_prec_int

. 23363, 24582, 24614
__fp_id_if_invalid:n 29782
__fp_id_if_invalid:nTF

. 1246, 29781, 29866,
29881, 29901, 29951, 30017, 30096

__fp_id_if_invalid_aux:N
. 29781, 29790, 29796, 29804

__fp_if_has_symbolic:nTF
. 29632, 29632, 29659

__fp_if_has_symbolic_aux:w
. 29632, 29634, 29639

__fp_if_type_fp:NTwFw
. 1032, 1100, 23393,
23472, 23472, 23480, 23487, 23503,
23530, 25435, 25449, 25692, 25729,
25730, 25887, 25888, 25889, 26055

__fp_inf_fp:N . . 23376, 23378, 23814
__fp_int:w 23650
__fp_int:wTF 23650, 29347
__fp_int_eval:w 1035,

1050, 1052, 1067, 1082, 1122, 1130,
1134, 1138, 1167, 23330, 23330,
23390, 23465, 23596, 23599, 23987,
23991, 24003, 24004, 24040, 24131,
24135, 24174, 24388, 24393, 24435,
24524, 24535, 24584, 24615, 24621,
24622, 24668, 24678, 24680, 24696,
24698, 24721, 24723, 24886, 25106,
25148, 25348, 25705, 26176, 26184,
26205, 26207, 26228, 26230, 26239,
26241, 26270, 26276, 26286, 26288,
26362, 26364, 26380, 26382, 26386,
26402, 26442, 26450, 26452, 26454,
26456, 26459, 26462, 26464, 26483,
26485, 26495, 26497, 26523, 26526,
26534, 26536, 26557, 26560, 26563,
26566, 26575, 26578, 26581, 26584,
26591, 26593, 26599, 26607, 26609,
26611, 26617, 26637, 26639, 26648,
26650, 26671, 26692, 26696, 26708,
26711, 26714, 26717, 26720, 26723,
26726, 26729, 26733, 26745, 26749,
26753, 26756, 26777, 26779, 26781,
26791, 26830, 26832, 26841, 26929,
26934, 26936, 26943, 26946, 26949,
26952, 26955, 26958, 26967, 26979,
26987, 26989, 26999, 27001, 27008,
27017, 27019, 27022, 27025, 27028,
27031, 27044, 27046, 27054, 27056,
27064, 27066, 27076, 27079, 27082,
27089, 27104, 27122, 27125, 27181,
27195, 27197, 27203, 27216, 27218,
27220, 27244, 27260, 27267, 27268,
27291, 27308, 27312, 27357, 27359,
27403, 27414, 27433, 27435, 27437,
27450, 27463, 27468, 27470, 27476,
27493, 27494, 27495, 27496, 27497,
27498, 27503, 27505, 27507, 27509,
27511, 27516, 27518, 27520, 27522,
27524, 27526, 27548, 27556, 27640,
27689, 27766, 27774, 27782, 27788,

Index 1568

27791, 27896, 27917, 27919, 27922,
27925, 27928, 27931, 27947, 27973,
27987, 28003, 28073, 28083, 28088,
28240, 28272, 28281, 28513, 28527,
28530, 28533, 28536, 28539, 28542,
28545, 28548, 28551, 28567, 28577,
28586, 28604, 28613, 28620, 28631,
28641, 28674, 28684, 28709, 28718,
28761, 28778, 28780, 28792, 28793,
28834, 28845, 28856, 28914, 29066,
29189, 29242, 29312, 29335, 29389,
29441, 29463, 29465, 29467, 29472,
29491, 29503, 29511, 29516, 29521

__fp_int_eval_end: 23330,
23331, 23390, 23468, 23587, 24040,
24145, 24149, 25349, 25705, 26386,
26421, 26613, 26989, 27125, 27947,
28003, 28273, 28282, 28631, 28641,
28684, 28709, 28793, 29470, 29472

__fp_int_p:w 23650
__fp_int_to_roman:w 23330, 23332,

23599, 24596, 24628, 27430, 30115
__fp_invalid_operation:nnw

. 1043, 1044, 23756,
23838, 23838, 23850, 29047, 29054,
29101, 29108, 29208, 29223, 29723

__fp_invalid_operation_o:nw . . .
. 1044, 23849, 23849,
23851, 24860, 26661, 26887, 27382,
28051, 28060, 28147, 28162, 28177,
28192, 28207, 28222, 28884, 28902,
28918, 28946, 28959, 28975, 29593

__fp_invalid_operation_o:Nww . . .
1044, 23764, 23838, 23839, 25061,

26156, 26428, 26429, 27988, 29616
__fp_invalid_operation_o:nww . 26913
__fp_invalid_operation_tl_o:nn .

. 1044,
23773, 23838, 23840, 24106, 29367

__fp_kind:w 23391, 23391, 24099, 25678
\c__fp_leading_shift_int

. 23553, 26934,
26943, 27017, 27917, 28567, 28604

__fp_ln_c:NwNw
. . . . 1175, 1176, 27527, 27558, 27558

__fp_ln_div_after:Nw
. 1174, 27429, 27478

__fp_ln_div_i:w 27451, 27460
__fp_ln_div_ii:wwn

. . 27454, 27455, 27456, 27457, 27465
__fp_ln_div_vi:wwn . . . 27458, 27473
__fp_ln_exponent:wn

. 1177, 27405, 27567, 27567
__fp_ln_exponent_one:ww 27572, 27586

__fp_ln_exponent_small:NNww . . .
. 27575, 27579, 27592

\c__fp_ln_i_fixed_tl 27370
\c__fp_ln_ii_fixed_tl 27370
\c__fp_ln_iii_fixed_tl 27370
\c__fp_ln_iv_fixed_tl 27370
\c__fp_ln_ix_fixed_tl 27370
__fp_ln_npos_o:w

. . . . 1169, 1170, 27391, 27393, 27393
__fp_ln_o:w

. . . . 1169, 1185, 27367, 27379, 27379
__fp_ln_significand:NNNNnnnN . . .

. . . 1171, 27404, 27407, 27407, 27897
__fp_ln_square_t_after:w

. 27502, 27534
__fp_ln_square_t_pack:NNNNNw . . .

. . 27504, 27506, 27508, 27510, 27532
__fp_ln_t_large:NNw

. 1174, 27483, 27490, 27500
__fp_ln_t_small:Nw . . . 27481, 27488
__fp_ln_t_small:w 1174
__fp_ln_Taylor:wwNw

. 1175, 27535, 27536, 27536
__fp_ln_Taylor_break:w 27541, 27552
__fp_ln_Taylor_loop:www

. 27537, 27538, 27547
__fp_ln_twice_t_after:w 27515, 27531
__fp_ln_twice_t_pack:Nw . 27517,

27519, 27521, 27523, 27525, 27530
\c__fp_ln_vi_fixed_tl 27370
\c__fp_ln_vii_fixed_tl 27370
\c__fp_ln_viii_fixed_tl 27370
\c__fp_ln_x_fixed_tl

. 27370, 27589, 27596
__fp_ln_x_ii:wnnnn

. 27409, 27427, 27427
__fp_ln_x_iii:NNNNNNw . 27436, 27440
__fp_ln_x_iii_var:NNNNNw

. 27434, 27442
__fp_ln_x_iv:wnnnnnnnn

. 1173, 27432, 27447
__fp_logb_aux_o:w 26844, 26849, 26855
__fp_logb_o:w . . 26102, 26844, 26844
\c__fp_max_exp_exponent_int

. 23369, 27632
\c__fp_max_exponent_int . . 23367,

23373, 23401, 27142, 27344, 27952
\c__fp_middle_shift_int

. 23553, 26946,
26949, 26952, 26955, 27019, 27022,
27025, 27028, 27919, 27922, 27925,
27928, 28570, 28577, 28607, 28613

__fp_minmax_aux_o:Nw
. 25968, 25972, 25974

Index 1569

__fp_minmax_auxi:ww
. 25990, 26002, 26009, 26009

__fp_minmax_auxii:ww
. 25992, 26000, 26009, 26011

__fp_minmax_break_o:w
. 25983, 26013, 26013

__fp_minmax_loop:Nww 1115,
25977, 25979, 25985, 25985, 26005

__fp_minmax_o:Nw
. . . 1107, 25671, 25673, 25968, 25968

\c__fp_minus_min_exponent_int . . .
. 23367, 23402

__fp_misused:n
. 23343, 23343, 23347, 23458

__fp_mul_cases_o:NnNnww
. 1132, 26393, 26399, 26505

__fp_mul_cases_o:nNnnww 26399
__fp_mul_npos_o:Nww

. 1129, 1130, 1132,
1223, 1224, 26396, 26437, 26437, 29259

__fp_mul_significand_drop:NNNNNw
. 1130, 26446,
26455, 26458, 26461, 26463, 26467

__fp_mul_significand_keep:NNNNNw
. 26446, 26451, 26453, 26469

__fp_mul_significand_large_-
f:NwwNNNN 26476, 26480, 26480

__fp_mul_significand_o:nnnnNnnnn
. 1130, 26444, 26446, 26446

__fp_mul_significand_small_-
f:NNwwwN 26474, 26491, 26491

__fp_mul_significand_test_f:NNN
. 1131, 26448, 26471, 26471

\c__fp_myriad_int 23366,
26929, 26960, 26961, 27038, 27099

__fp_neg_sign:N
. . . 1120, 23389, 23389, 26110, 26263

__fp_new_function:n
. 29947, 29948, 29949

__fp_new_variable:n
. 29875, 29877, 29879

__fp_not_o:w 1107, 24879, 26015, 26015
\c__fp_one_fixed_tl 26923,

27543, 27756, 27953, 27980, 28763,
28830, 28935, 29386, 29396, 29437

__fp_overflow:w 1030, 1044, 1046,
23404, 23838, 23843, 27634, 28067

\c__fp_overflowing_fp
. 23370, 29048, 29102

__fp_pack:NNNNNw
. 23553, 23556, 26935,
26945, 26948, 26951, 26954, 26957,
27018, 27021, 27024, 27027, 27030,
27918, 27921, 27924, 27927, 27930

__fp_pack_big:NNNNNNw
. 23557, 23560,
26710, 26713, 26716, 26719, 26722,
26725, 26728, 26732, 27045, 27055,
27065, 27075, 27078, 27081, 27088

__fp_pack_Bigg:NNNNNNw
. 23562, 23565, 26559,
26562, 26565, 26577, 26580, 26583

__fp_pack_eight:wNNNNNNNN
. 1036, 1126, 23569, 23569,
26372, 26681, 27110, 28259, 28260

__fp_pack_twice_four:wNNNNNNNN .
1036, 23567, 23567, 24156, 24157,

26314, 26315, 27111, 27112, 27113,
27145, 27146, 27147, 27335, 27336,
27671, 27672, 27673, 28261, 28262,
28556, 28557, 28558, 28559, 29252

__fp_parse:n
. 1058, 1070, 1082, 1090,
1103, 1104, 1112, 1224, 1225, 1253,
24187, 24338, 24996, 24996, 25548,
25550, 25552, 25575, 25678, 25687,
25704, 25714, 25882, 25932, 26857,
29023, 29077, 29155, 29200, 29215,
29268, 29270, 29272, 29274, 30167

__fp_parse_after:ww
. 24996, 24999, 25007, 25012

__fp_parse_apply_binary:NwNwN . .
. 1062,
1063, 1066, 1094, 25034, 25034, 25225

__fp_parse_apply_binary_chk:NN .
. . 25034, 25039, 25051, 25065, 25078

__fp_parse_apply_binary_-
error:NNN 25034, 25054, 25058

__fp_parse_apply_comma:NwNwN . . .
. 1094, 25184, 25195, 25210

__fp_parse_apply_compare:NwNNNNNwN
. 25372, 25381

__fp_parse_apply_compare_-
aux:NNwN 25393, 25396, 25401

__fp_parse_apply_function:NNNwN
. 1085, 24828, 24828, 24989

__fp_parse_apply_unary:NNNwN . . .
. 24833, 24833, 24865, 24980

__fp_parse_apply_unary_chk:nNNNNw
. 24844, 24845, 24848

__fp_parse_apply_unary_chk:nNNNw
. 24833

__fp_parse_apply_unary_chk:NwNw
. 24833, 24835, 24840

__fp_parse_apply_unary_error:NNw
. 24833, 24856, 24859, 26895

__fp_parse_apply_unary_type:NNN
. 24833, 24836, 24854

Index 1570

__fp_parse_caseless_inf:N
. 24946, 24946

__fp_parse_caseless_infinity:N .
. 24946, 24947

__fp_parse_caseless_nan:N
. 24946, 24948

__fp_parse_compare:NNNNNNN
. 25313, 25314, 25316,
25318, 25321, 25334, 25342, 25403

__fp_parse_compare_auxi:NNNNNNN
. 25313, 25337, 25345, 25359

__fp_parse_compare_auxii:NNNNN .
. 25313,
25350, 25351, 25352, 25353, 25357

__fp_parse_compare_end:NNNNw . . .
. 25313, 25354, 25368

__fp_parse_continue:NwN
. 1062, 1063,
1090, 25023, 25026, 25033, 25036,
25212, 25411, 26072, 26082, 26090

__fp_parse_continue_compare:NNwNN
. 25404, 25419

__fp_parse_digits_:N
. 24205, 24223, 24224

__fp_parse_digits_i:N . 24205, 24222
__fp_parse_digits_ii:N 24205, 24221
__fp_parse_digits_iii:N 24205, 24220
__fp_parse_digits_iv:N 24205, 24219
__fp_parse_digits_v:N . 24205, 24218
__fp_parse_digits_vi:N

. 24205, 24217, 24540, 24588
__fp_parse_digits_vii:N

. 1075, 24205, 24527, 24577
__fp_parse_excl_error:

. 25313, 25329, 25338
__fp_parse_expand:w

. 1066, 1067, 24202, 24202, 24204,
24214, 24254, 24314, 24358, 24367,
24370, 24374, 24411, 24445, 24483,
24485, 24504, 24506, 24528, 24545,
24558, 24578, 24608, 24636, 24652,
24663, 24686, 24715, 24725, 24732,
24746, 24762, 24782, 24793, 24875,
24898, 24910, 24985, 24994, 25002,
25015, 25133, 25179, 25203, 25229,
25277, 25297, 25366, 25379, 26068

__fp_parse_exponent:N 1080, 24313,
24519, 24668, 24735, 24737, 24737

__fp_parse_exponent:Nw
. 24543, 24556, 24605,
24633, 24684, 24713, 24732, 24732

__fp_parse_exponent_aux:NN
. 24737, 24740, 24748

__fp_parse_exponent_body:N
. 24764, 24768, 24768

__fp_parse_exponent_digits:N . . .
. 24772, 24784, 24784, 24788

__fp_parse_exponent_keep:N . . 24795
__fp_parse_exponent_keep:NTF . . .

. 24775, 24795
__fp_parse_exponent_sign:N

. 24754, 24758, 24758, 24761
__fp_parse_function:NNN

23899, 23901, 23903, 23906, 24978,
24987, 25671, 25673, 28130, 28132,
28134, 28136, 29297, 29299, 29973

__fp_parse_function_all_fp_-
o:nnw . . . 24033, 25421, 25421, 25970

__fp_parse_function_one_two:nnw
. 1209,
25433, 25433, 28724, 28730, 29340

__fp_parse_function_one_two_-
aux:nnw 25433, 25437, 25447

__fp_parse_function_one_two_-
auxii:nnw 25433, 25459, 25461

__fp_parse_function_one_two_-
error_o:w
. . 25433, 25436, 25439, 25456, 25464

__fp_parse_infix:NN
. 1068, 1072, 1088, 1093,
24253, 24423, 24462, 24938, 24953,
24975, 25091, 25094, 25177, 29837

__fp_parse_infix_!:N 25313
__fp_parse_infix_&:Nw 25270
__fp_parse_infix_(:N 25253
__fp_parse_infix_):N 25167
__fp_parse_infix_*:N 25255
__fp_parse_infix_+:N

. 1066, 24202, 25219
__fp_parse_infix_,:N 25184
__fp_parse_infix_-:N 25219
__fp_parse_infix_/:N 25219
__fp_parse_infix_::N . 25287, 26053
__fp_parse_infix_<:N 25313
__fp_parse_infix_=:N 25313
__fp_parse_infix_>:N 25313
__fp_parse_infix_?:N 25287
__fp_parse_infix_⟨operation2⟩:N 1066
__fp_parse_infix_^:N 25219
__fp_parse_infix_after_operand:NwN

. 1072,
24306, 24384, 24882, 25089, 25089

__fp_parse_infix_after_paren:NN
. 24907, 24933, 25136, 25136

__fp_parse_infix_and:N 25219, 25286
__fp_parse_infix_check:NNN

. 25112, 25122, 25154

Index 1571

__fp_parse_infix_comma:w
. 1094, 25184, 25199, 25208

__fp_parse_infix_end:N
. 1090, 1094, 25003,
25008, 25016, 25165, 25165, 25166

__fp_parse_infix_juxt:N
. 1093, 25102, 25110, 25219

__fp_parse_infix_mark:NNN
. 25099, 25141, 25164, 25164

__fp_parse_infix_mul:N
. 1093, 1096, 25127,
25144, 25152, 25219, 25254, 25263

__fp_parse_infix_or:N . 25219, 25285
__fp_parse_infix_|:Nw 25270
__fp_parse_large:N

. 1074, 24490, 24573, 24573
__fp_parse_large_leading:wwNN . .

. 1078, 24575, 24580, 24580
__fp_parse_large_round:NN

. 1078, 24616, 24688, 24688
__fp_parse_large_round_aux:wNN .

. 24688, 24697, 24717
__fp_parse_large_round_test:NN .

. 24688, 24701, 24706
__fp_parse_large_trailing:wwNN .

. 1078, 24586, 24610, 24610
__fp_parse_letters:N

. . . 1072, 24399, 24413, 24428, 24440
__fp_parse_lparen_after:NwN . . .

. 24888, 24890, 24900
__fp_parse_o:n

. . . 1058, 24996, 25009, 25880, 25881
__fp_parse_one:Nw 1061–

1066, 1073, 1088, 1090, 24202,
24225, 24225, 24467, 24827, 25029

__fp_parse_one_digit:NN
. 1086, 24241, 24382, 24382

__fp_parse_one_fp:NN
. 1068, 24233, 24249, 24249

__fp_parse_one_other:NN
. 24244, 24390, 24390

__fp_parse_one_register:NN
. 24236, 24304, 24304

__fp_parse_one_register_aux:Nw .
. 24304, 24310, 24316

__fp_parse_one_register_-
auxii:wwwNw . . . 24304, 24321, 24330

__fp_parse_one_register_dim:ww .
. 24304, 24324, 24336, 24339

__fp_parse_one_register_int:www
. 24304, 24326, 24337

__fp_parse_one_register_-
math:NNw 24345, 24351, 24354, 24357

__fp_parse_one_register_mu:www .
. 24304, 24325, 24334

__fp_parse_one_register_-
special:N 24309, 24345, 24345

__fp_parse_one_register_wd:Nw . .
. 24345, 24373, 24376

__fp_parse_one_register_wd:w . . .
. . 24345, 24347, 24348, 24349, 24369

__fp_parse_operand:Nw 1061–
1064, 1066, 1090, 1094, 24202,
24871, 24873, 24894, 24896, 24985,
24994, 25001, 25014, 25023, 25023,
25202, 25228, 25296, 25379, 26067

__fp_parse_pack_carry:w
. 1077, 24560, 24568, 24571

__fp_parse_pack_leading:NNNNNww
. 24523, 24560, 24565, 24583

__fp_parse_pack_trailing:NNNNNNww
. 24533,
24560, 24560, 24602, 24613, 24620

__fp_parse_prefix:NNN
. 24402, 24447, 24447

__fp_parse_prefix_!:Nw 24861
__fp_parse_prefix_(:Nw 24888
__fp_parse_prefix_):Nw 24920
__fp_parse_prefix_+:Nw 24827
__fp_parse_prefix_-:Nw 24861
__fp_parse_prefix_.:Nw 24880
__fp_parse_prefix_unknown:NNN . .

. 24447, 24450, 24455
__fp_parse_return_semicolon:w . .

. . . . 24203, 24203, 24212, 24443,
24650, 24661, 24744, 24776, 24791

__fp_parse_round:Nw . . 23904, 23910
__fp_parse_round_after:wN 1080,

24665, 24665, 24670, 24679, 24720
__fp_parse_round_loop:N

. 1080, 1081, 24638,
24638, 24643, 24681, 24699, 24724

__fp_parse_round_up:N
. 24638, 24646, 24654, 24658

__fp_parse_small:N
. 1075, 24510, 24521, 24521

__fp_parse_small_leading:wwNN . .
. . . 1076, 24525, 24530, 24530, 24592

__fp_parse_small_round:NN
. 24552, 24670, 24670, 24709

__fp_parse_small_trailing:wwNN .
. . . 1076, 24538, 24547, 24547, 24624

__fp_parse_strim_end:w
. 24496, 24502, 24506

__fp_parse_strim_zeros:N
. 1074, 1086,
24477, 24496, 24496, 24500, 24886

Index 1572

__fp_parse_trim_end:w
. 24470, 24480, 24485

__fp_parse_trim_zeros:N
. 24388, 24470, 24470, 24473

__fp_parse_unary_function:NNN . .
. 24978,
24978, 26100, 26102, 26104, 26106,
27365, 27367, 27369, 28118, 28124

__fp_parse_word:Nw
. 1072, 24396, 24413, 24413

__fp_parse_word_abs:N . 26099, 26099
__fp_parse_word_acos:N 28110
__fp_parse_word_acosd:N 28110
__fp_parse_word_acot:N 28129, 28129
__fp_parse_word_acotd:N 28129, 28131
__fp_parse_word_acsc:N 28110
__fp_parse_word_acscd:N 28110
__fp_parse_word_asec:N 28110
__fp_parse_word_asecd:N 28110
__fp_parse_word_asin:N 28110
__fp_parse_word_asind:N 28110
__fp_parse_word_atan:N 28129, 28133
__fp_parse_word_atand:N 28129, 28135
__fp_parse_word_bp:N 24949
__fp_parse_word_cc:N 24949
__fp_parse_word_ceil:N 23898, 23902
__fp_parse_word_cm:N 24949
__fp_parse_word_cos:N 28110
__fp_parse_word_cosd:N 28110
__fp_parse_word_cot:N 28110
__fp_parse_word_cotd:N 28110
__fp_parse_word_csc:N 28110
__fp_parse_word_cscd:N 28110
__fp_parse_word_dd:N 24949
__fp_parse_word_deg:N 24935
__fp_parse_word_em:N 24968
__fp_parse_word_ex:N 24968
__fp_parse_word_exp:N . 27364, 27364
__fp_parse_word_fact:N 27364, 27368
__fp_parse_word_false:N 24935
__fp_parse_word_floor:N 23898, 23900
__fp_parse_word_in:N 24949
__fp_parse_word_inf:N

. 24935, 24946, 24947
__fp_parse_word_ln:N . 27364, 27366
__fp_parse_word_logb:N 26099, 26101
__fp_parse_word_max:N . 25670, 25670
__fp_parse_word_min:N . 25670, 25672
__fp_parse_word_mm:N 24949
__fp_parse_word_nan:N . 24935, 24948
__fp_parse_word_nc:N 24949
__fp_parse_word_nd:N 24949
__fp_parse_word_pc:N 24949
__fp_parse_word_pi:N 24935

__fp_parse_word_pt:N 24949
__fp_parse_word_rand:N 29296, 29296
__fp_parse_word_randint:N

. 29296, 29298
__fp_parse_word_round:N 23904, 23904
__fp_parse_word_sec:N 28110
__fp_parse_word_secd:N 28110
__fp_parse_word_sign:N 26099, 26103
__fp_parse_word_sin:N 28110
__fp_parse_word_sind:N 28110
__fp_parse_word_sp:N 24949
__fp_parse_word_sqrt:N 26099, 26105
__fp_parse_word_tan:N 28110
__fp_parse_word_tand:N 28110
__fp_parse_word_true:N 24935
__fp_parse_word_trunc:N 23898, 23898
__fp_parse_zero:

. . . 1074, 24492, 24512, 24516, 24516
__fp_pow_B:wwN 27900, 27935
__fp_pow_C_neg:w 27938, 27955
__fp_pow_C_overflow:w

. 27943, 27950, 27971
__fp_pow_C_pack:w 27957, 27965, 27976
__fp_pow_C_pos:w 27941, 27960
__fp_pow_C_pos_loop:wN

. 27961, 27962, 27969
__fp_pow_exponent:Nwnnnnnw

. 27906, 27909, 27914
__fp_pow_exponent:wnN . 27898, 27903
__fp_pow_neg:www

. 1187, 27812, 27982, 27982
__fp_pow_neg_aux:wNN

. 1187, 27982, 27985, 27997
__fp_pow_neg_case:w

. 27984, 28005, 28005
__fp_pow_neg_case_aux:nnnnn . . .

. 28005, 28009, 28015
__fp_pow_neg_case_aux:Nnnw

. 1188, 28005, 28021, 28025
__fp_pow_normal_o:ww

. 1183, 27817, 27849, 27849
__fp_pow_npos_aux:NNnww

. 27883, 27887, 27893, 27893
__fp_pow_npos_o:Nww

. 1184, 27860, 27877, 27877
__fp_pow_zero_or_inf:ww

. 1183, 27819, 27826, 27826
\c__fp_prec_and_int . . . 24187, 25250
\c__fp_prec_colon_int

. 24187, 25308, 26067
\c__fp_prec_comma_int

. 1087, 24187, 24261,
24894, 24922, 25188, 25193, 25202

Index 1573

\c__fp_prec_comp_int
. 24187, 25336, 25379

\c__fp_prec_end_int . . 1090, 1094,
24187, 24263, 25001, 25014, 25171

\c__fp_prec_func_int
. . . 1087, 24187, 24893, 24985, 24994

\c__fp_prec_hat_int . . . 24187, 25238
\c__fp_prec_hatii_int . 24187, 25238
\c__fp_prec_int

23363, 23596, 23657, 23684, 24125,
27652, 28017, 28020, 29120, 29122,
29128, 29179, 29351, 29390, 29441

\c__fp_prec_juxt_int . . 24187, 25240
\c__fp_prec_not_int

. 1086, 24187, 24878, 24879
\c__fp_prec_or_int 24187, 25252
\c__fp_prec_plus_int

. 1061, 24187, 25246, 25248
\c__fp_prec_quest_int

. 24187, 25291, 25306
\c__fp_prec_times_int

. 24187, 25242, 25244
\c__fp_prec_tuple_int

. . . 1087, 24187, 24262, 24896, 24924
__fp_rand_myriads:n

1230, 1231, 29306, 29306, 29323, 29409
__fp_rand_myriads_get:w

. 29306, 29311, 29316
__fp_rand_myriads_loop:w

. 29306, 29307, 29308, 29314
__fp_rand_o:Nw . 29297, 29317, 29317
__fp_rand_o:w . . 29317, 29321, 29331
__fp_randinat_wide_aux:w 29479
__fp_randinat_wide_auxii:w . . 29479
__fp_randint:n . 29541, 29544, 29546
__fp_randint:ww

. . 29447, 29451, 29456, 29461, 29551
__fp_randint_auxi_o:ww

. 29338, 29365, 29373
__fp_randint_auxii:wn

. 29338, 29376, 29377, 29379
__fp_randint_auxiii_o:ww

. 29338, 29377, 29401
__fp_randint_auxiv_o:ww

. 29338, 29412, 29416
__fp_randint_auxv_o:w

. 29338, 29414, 29424, 29426
__fp_randint_badarg:w

. . . 1231, 29338, 29345, 29361, 29362
__fp_randint_default:w

. 29338, 29342, 29344
__fp_randint_o:Nw 29299, 29338, 29338
__fp_randint_o:w 29338, 29342, 29358

__fp_randint_split_aux:w
. 29479, 29502, 29508

__fp_randint_split_o:Nw
. 1234, 29479,
29484, 29487, 29490, 29492, 29497

__fp_randint_wide_aux:w
. 1234, 29482, 29513

__fp_randint_wide_auxii:w
. 29515, 29524

__fp_reverse_args:Nww
. 1215, 1216, 23339, 23339,
28710, 28785, 28898, 28964, 29435

__fp_round:NNN
. 1050, 1052, 1131, 1147,
23914, 23981, 23984, 26231, 26242,
26486, 26498, 26640, 26651, 26835

__fp_round:Nwn
. . 24042, 24095, 24097, 24112, 29227

__fp_round:Nww
. 24043, 24064, 24095, 24095

__fp_round:Nwww . 24044, 24058, 24058
__fp_round_aux_o:Nw

. 24031, 24035, 24037
__fp_round_digit:Nw

. 1038, 1052, 1130, 1131,
1147, 23614, 23998, 23998, 26245,
26388, 26489, 26501, 26654, 26840

__fp_round_name_from_cs:N 24034,
24054, 24080, 24084, 24084, 24107

__fp_round_neg:NNN
. 1050, 1053, 1127,
24009, 24030, 26350, 26365, 26383

__fp_round_no_arg_o:Nw
. 24041, 24048, 24048

__fp_round_normal:NnnwNNnn
. 24095, 24126, 24128

__fp_round_normal:NNwNnn
. 24095, 24130, 24150

__fp_round_normal:NwNNnw
. 24095, 24115, 24123

__fp_round_normal_end:wwNnn . . .
. 24095, 24158, 24161

__fp_round_o:Nw 23899,
23901, 23903, 23907, 24031, 24031

__fp_round_pack:Nw
. 24095, 24134, 24148

__fp_round_return_one:
. 1050, 23914, 23920,
23930, 23938, 23942, 23951, 23955,
23964, 23971, 23975, 24013, 24024

__fp_round_s:NNNw 1050,
1052, 1080, 23982, 23982, 24674, 24692

__fp_round_special:NwwNnn
. 24095, 24153, 24166

Index 1574

__fp_round_special_aux:Nw
. 24095, 24172, 24179

__fp_round_to_nearest:NNN 1053,
1054, 23907, 23910, 23914, 23935,
23981, 24018, 24050, 24060, 29227

__fp_round_to_nearest_neg:NNN . .
. 24009, 24018, 24030

__fp_round_to_nearest_ninf:NNN .
. 1054, 23914, 23948, 24029

__fp_round_to_nearest_ninf_-
neg:NNN 24009, 24019

__fp_round_to_nearest_pinf:NNN .
. 1054, 23914, 23968, 24020

__fp_round_to_nearest_pinf_-
neg:NNN 24009, 24028

__fp_round_to_nearest_zero:NNN .
. 1054, 23914, 23961

__fp_round_to_nearest_zero_-
neg:NNN 24009, 24021

__fp_round_to_ninf:NNN
. . 23901, 23914, 23916, 24017, 24088

__fp_round_to_ninf_neg:NNN
. 24009, 24009

__fp_round_to_pinf:NNN
. . 23903, 23914, 23926, 24009, 24090

__fp_round_to_pinf_neg:NNN
. 24009, 24017

__fp_round_to_zero:NNN
. 23899, 23914, 23925, 24086

__fp_round_to_zero_neg:NNN
. 24009, 24010

__fp_rrot:www . . 23340, 23340, 28831
__fp_sanitize:Nw 1122, 1125,

1130, 1133, 1141, 1189, 1205, 1212,
1231, 23398, 23398, 23410, 24164,
24182, 26174, 26268, 26440, 26521,
26669, 27395, 27638, 27879, 28071,
28672, 28716, 28843, 29333, 29428

__fp_sanitize:wN
1071, 1075, 23398, 23410, 24387, 24885

__fp_sanitize_zero:w
. 23398, 23406, 23411

__fp_sec_o:w 28182, 28182
__fp_set_function:Nnnn

. 1246, 30010, 30012, 30015
__fp_set_sign_o:w 24878,

26100, 26871, 26872, 26872, 26894
__fp_set_variable:nn

. 29894, 29897, 29899
__fp_show:NN

. 25580, 25580, 25582, 25584
__fp_show_validate:n

. 25587, 25590, 25590

__fp_show_validate:nn
. 25590, 25592, 25601, 25603

__fp_show_validate:w
. 25590, 25611, 25628

__fp_show_validate_aux:n 25590,
25599, 25636, 25643, 25651, 25652

__fp_sign_aux_o:w
. 26860, 26864, 26865, 26870

__fp_sign_o:w . . 26104, 26860, 26860
__fp_sin_o:w

. 1042, 1085, 1214, 28137, 28137
__fp_sin_series_aux_o:NNnwww . . .

. 28624, 28628, 28639
__fp_sin_series_o:NNwwww

. 1192, 1206, 28143,
28158, 28173, 28188, 28624, 28624

__fp_small_int:wTF
. . . 1188, 23666, 23666, 24097, 28058

__fp_small_int_normal:NnwTF . . .
. 23666, 23670, 23682

__fp_small_int_test:NnnwNTF . 23666
__fp_small_int_test:NnnwNw

. 23685, 23688
__fp_small_int_true:wTF

. . 23666, 23669, 23674, 23681, 23691
__fp_sqrt_auxi_o:NNNNwnnN

. 26691, 26699, 26699
__fp_sqrt_auxii_o:NnnnnnnnN . . .

. 1143, 1145,
26701, 26705, 26705, 26785, 26797

__fp_sqrt_auxiii_o:wnnnnnnnn . . .
. 26702, 26740, 26740, 26786

__fp_sqrt_auxiv_o:NNNNNw
. 26740, 26744, 26761

__fp_sqrt_auxix_o:wnwnw
. 26774, 26776, 26783

__fp_sqrt_auxv_o:NNNNNw
. 26740, 26748, 26763

__fp_sqrt_auxvi_o:NNNNNw
. 26740, 26752, 26765

__fp_sqrt_auxvii_o:NNNNNw
. 26740, 26755, 26767

__fp_sqrt_auxviii_o:nnnnnnn . . .
. 26762,
26764, 26766, 26772, 26774, 26774

__fp_sqrt_auxx_o:Nnnnnnnn
. 26770, 26788, 26788

__fp_sqrt_auxxi_o:wwnnN
. 26788, 26790, 26795

__fp_sqrt_auxxii_o:nnnnnnnnw . . .
. 26798, 26802, 26802

__fp_sqrt_auxxiii_o:w
. 26802, 26809, 26822

Index 1575

__fp_sqrt_auxxiv_o:wnnnnnnnN . . .
. . 26814, 26817, 26825, 26827, 26827

__fp_sqrt_Newton_o:wwn . . . 1142,
26676, 26687, 26688, 26688, 26695

__fp_sqrt_npos_auxi_o:wwnnN . . .
. 26667, 26673, 26678

__fp_sqrt_npos_auxii_o:wNNNNNNNN
. 26667, 26682, 26686

__fp_sqrt_npos_o:w
. 26664, 26667, 26667

__fp_sqrt_o:w . . 26106, 26657, 26657
__fp_step:NNnnnn

. 25937, 25940, 25947, 25956
__fp_step:NnnnnN . . . 1113, 25877,

25903, 25904, 25920, 25931, 25936
__fp_step:wwwN . 25877, 25879, 25885
__fp_step_fp:wwwN 25877, 25890, 25898
__fp_str_if_eq:nn . 23703, 23703,

24799, 24811, 25097, 25139, 27852
__fp_sub_back_far_o:NnnwnnnnN . .

. 1126, 26277, 26323, 26323
__fp_sub_back_near_after:wNNNNw

. 26283, 26285, 26292, 26361
__fp_sub_back_near_o:nnnnnnnnN .

. 1125, 26273, 26283, 26283
__fp_sub_back_near_pack:NNNNNNw

. 26283, 26287, 26290, 26363
__fp_sub_back_not_far_o:wwwwNN .

. 26338, 26358, 26358
__fp_sub_back_quite_far_ii:NN . .

. 26342, 26344, 26348
__fp_sub_back_quite_far_o:wwNN .

. 26336, 26342, 26342
__fp_sub_back_shift:wnnnn

. 1126, 26295, 26299, 26299
__fp_sub_back_shift_ii:ww

. 26299, 26301, 26304
__fp_sub_back_shift_iii:NNNNNNNNw

. 26299, 26309, 26312, 26321
__fp_sub_back_shift_iv:nnnnw . . .

. 26299, 26316, 26322
__fp_sub_back_very_far_ii_-

o:nnNwwNN 26370, 26373, 26377
__fp_sub_back_very_far_o:wwwwNN

. 26337, 26370, 26370
__fp_sub_eq_o:Nnwnw

. 26248, 26251, 26259
__fp_sub_npos_i_o:Nnwnw

. . . 1124, 26253, 26262, 26266, 26266
__fp_sub_npos_ii_o:Nnwnw

. 26248, 26255, 26260
__fp_sub_npos_o:NnwNnw

. 1124, 26168, 26248, 26248
__fp_symbolic_&_o:ww 29676

__fp_symbolic_&_symbolic_o:ww 29676
__fp_symbolic_*_o:ww 29676
__fp_symbolic_*_symbolic_o:ww 29676
__fp_symbolic_+_o:ww 29676
__fp_symbolic_+_symbolic_o:ww 29676
__fp_symbolic_-_o:ww 29676
__fp_symbolic_-_symbolic_o:ww 29676
__fp_symbolic_/_o:ww 29676
__fp_symbolic_/_symbolic_o:ww 29676
__fp_symbolic_^_o:ww 29676
__fp_symbolic_^_symbolic_o:ww 29676
__fp_symbolic_acos_o:w 29696
__fp_symbolic_acsc_o:w 29696
__fp_symbolic_asec_o:w 29696
__fp_symbolic_asin_o:w 29696
__fp_symbolic_binary_o:Nww

. 29670, 29670, 29680
__fp_symbolic_binary_to_tl:Nww .

. 29744, 29750, 29764
__fp_symbolic_chk:w

. 1239, 25596, 25622, 25646,
25650, 29624, 29624, 29629, 29642,
29660, 29673, 29693, 29745, 29817,
29822, 29838, 29997, 30035, 30044

__fp_symbolic_convert:wnnN
. 29708, 29712, 29720

__fp_symbolic_cos_o:w 29696
__fp_symbolic_cot_o:w 29696
__fp_symbolic_cs_arg_to_fn:NN . .

. 29726, 29726, 29760
__fp_symbolic_csc_o:w 29696
__fp_symbolic_exp_o:w 29696
\l__fp_symbolic_flag 29894
\l__fp_symbolic_fp . . 1247, 29622,

29905, 29909, 29915, 30052, 30056
__fp_symbolic_function_to_tl:Nw

. 29744, 29751, 29773
__fp_symbolic_ln_o:w 29696
__fp_symbolic_not_o:w 29696
__fp_symbolic_op_arg_to_fn:nN . .

. 29726, 29728, 29731
__fp_symbolic_sec_o:w 29696
__fp_symbolic_set_sign_o:w . . 29696
__fp_symbolic_show_validate:w . .

. 25590, 25621, 25645
__fp_symbolic_sin_o:w 29696
__fp_symbolic_tan_o:w 29696
__fp_symbolic_to_decimal:w . . 29708
__fp_symbolic_to_int:w 29708
__fp_symbolic_to_scientific:w 29708
__fp_symbolic_to_tl:w . 29744, 29744
__fp_symbolic_unary_o:NNw

. 29690, 29690, 29704

Index 1576

__fp_symbolic_unary_to_tl:NNw . .
. 29744, 29749, 29756

__fp_symbolic_|_o:ww 29676
__fp_symbolic_|_symbolic_o:ww 29676
__fp_tan_o:w 28197, 28197
__fp_tan_series_aux_o:Nnwww . . .

. 28678, 28682, 28691
__fp_tan_series_o:NNwwww

. . . 1194, 28204, 28219, 28678, 28678
__fp_ternary:NwwN

. 1107, 25306, 26051, 26051
__fp_ternary_auxi:NwwN

. . . . 1107, 1117, 26051, 26060, 26080
__fp_ternary_auxii:NwwN

1107, 1117, 25308, 26051, 26058, 26088
__fp_tmp:w

. 1038, 1095, 23608, 23618, 23619,
23620, 23621, 23622, 23623, 23624,
23625, 23626, 23627, 23628, 23629,
23630, 23631, 23632, 23633, 23709,
23711, 24205, 24217, 24218, 24219,
24220, 24221, 24222, 24223, 24281,
24303, 24861, 24878, 24879, 24935,
24940, 24941, 24942, 24943, 24944,
24945, 24949, 24957, 24958, 24959,
24960, 24961, 24962, 24963, 24964,
24965, 24966, 24967, 25167, 25183,
25184, 25207, 25219, 25237, 25239,
25241, 25243, 25245, 25247, 25249,
25251, 25255, 25269, 25270, 25285,
25286, 25287, 25305, 25307, 26904,
26918, 26919, 29676, 29689, 29708,
29717, 29718, 29719, 29835, 29846,
29852, 29856, 29971, 29977, 29983,
29987, 30055, 30060, 30064, 30068

__fp_to_decimal:w 29082,
29092, 29092, 29209, 29226, 30229

__fp_to_decimal_dispatch:w
. 1219, 1222, 1223, 25930, 29072,
29076, 29079, 29079, 29091, 29717

__fp_to_decimal_huge:wnnnn
. 29092, 29127, 29149

__fp_to_decimal_large:Nnnw
. 29092, 29123, 29140

__fp_to_decimal_normal:wnnnnn . .
. 29092, 29097, 29115, 29180

__fp_to_decimal_recover:w
. 29079, 29082, 29085

__fp_to_dim:w . . 29194, 29204, 29209
__fp_to_dim_dispatch:w

. . . 1222, 29194, 29195, 29199, 29202
__fp_to_dim_recover:w

. 29194, 29204, 29207
__fp_to_int:w . . . 1223, 29219, 29224

__fp_to_int_dispatch:w
. . 29210, 29210, 29214, 29217, 29718

__fp_to_int_recover:w
. 29210, 29219, 29222

__fp_to_scientific:w
. 1220, 29028, 29038, 29038

__fp_to_scientific_dispatch:w . .
. 1218, 1222, 29018,
29022, 29025, 29025, 29037, 29719

__fp_to_scientific_normal:wnnnnn
. 29038, 29043, 29061

__fp_to_scientific_normal:wNw . .
. 29038, 29064, 29069

__fp_to_scientific_recover:w . . .
. 29025, 29028, 29031

__fp_to_tl:w
. 29158, 29166, 29166, 30237

__fp_to_tl_dispatch:w 1217, 1221,
29150, 29154, 29157, 29157, 29165,
29290, 29628, 29761, 29768, 29770

__fp_to_tl_normal:nnnnn
. 29166, 29171, 29176

__fp_to_tl_recover:w
. 29157, 29158, 29159

__fp_to_tl_scientific:wnnnnn . . .
. 29166, 29181, 29184

__fp_to_tl_scientific:wNw
. 29166, 29187, 29192

\c__fp_trailing_shift_int
. 23553, 26936,
26958, 27031, 27931, 28570, 28607

__fp_trap_division_by_zero_-
set:N .
. . 23781, 23782, 23784, 23786, 23787

__fp_trap_division_by_zero_set_-
error: 23781, 23781

__fp_trap_division_by_zero_set_-
flag: 23781, 23783

__fp_trap_division_by_zero_set_-
none: 23781, 23785

__fp_trap_invalid_operation_-
set:N .
. . 23747, 23748, 23750, 23752, 23753

__fp_trap_invalid_operation_-
set_error: 23747, 23747

__fp_trap_invalid_operation_-
set_flag: 23747, 23749

__fp_trap_invalid_operation_-
set_none: 23747, 23751

__fp_trap_overflow_set:N
. . 23807, 23808, 23810, 23812, 23813

__fp_trap_overflow_set:NnNn . . .
. 23807, 23814, 23822, 23823

Index 1577

__fp_trap_overflow_set_error: . .
. 23807, 23807

__fp_trap_overflow_set_flag: . . .
. 23807, 23809

__fp_trap_overflow_set_none: . . .
. 23807, 23811

__fp_trap_underflow_set:N
. . 23807, 23816, 23818, 23820, 23821

__fp_trap_underflow_set_error: .
. 23807, 23815

__fp_trap_underflow_set_flag: . .
. 23807, 23817

__fp_trap_underflow_set_none: . .
. 23807, 23819

__fp_trig:NNNNNwn
. 28143, 28158, 28173,
28188, 28203, 28218, 28235, 28235

\c__fp_trig_intarray 1202,
28296, 28526, 28529, 28532, 28535,
28538, 28541, 28544, 28547, 28550

__fp_trig_large:ww
. 28243, 28510, 28510

__fp_trig_large_auxi:w
. 28510, 28512, 28517

__fp_trig_large_auxii:w
. 1202, 28510, 28520, 28554

__fp_trig_large_auxiii:w . 1202,
28510, 28528, 28531, 28534, 28537,
28540, 28543, 28546, 28549, 28562

__fp_trig_large_auxix:Nw
. 28583, 28593, 28596, 28600

__fp_trig_large_auxv:www
. 28560, 28563, 28563

__fp_trig_large_auxvi:wnnnnnnnn
. 28563, 28569, 28574

__fp_trig_large_auxvii:w
. 28566, 28583, 28583

__fp_trig_large_auxviii:w . . . 28583
__fp_trig_large_auxviii:ww

. 28585, 28589
__fp_trig_large_auxx:wNNNNN . . .

. 28583, 28606, 28610
__fp_trig_large_auxxi:w

. 28583, 28603, 28617
__fp_trig_large_pack:NNNNNw . . .

. 28563, 28576, 28581, 28612
__fp_trig_small:ww . . 1196, 1204,

28245, 28249, 28249, 28255, 28622
__fp_trigd_large:ww

. 28243, 28257, 28257
__fp_trigd_large_auxi:nnnnwNNNN

. 28257, 28263, 28269
__fp_trigd_large_auxii:wNw

. 28257, 28271, 28277

__fp_trigd_large_auxiii:www . . .
. 28257, 28280, 28284

__fp_trigd_small:ww
. . . 1196, 28245, 28251, 28251, 28294

__fp_trim_zeros:w
. . 29009, 29009, 29133, 29142, 29193

__fp_trim_zeros_dot:w
. 29009, 29012, 29015

__fp_trim_zeros_end:w
. 29009, 29015, 29016

__fp_trim_zeros_loop:w
. 29009, 29011, 29012, 29014

__fp_tuple_ 26041, 26042, 26045, 26046
__fp_tuple_&_o:ww 26024
__fp_tuple_&_tuple_o:ww 26024
__fp_tuple_*_o:ww 26898
__fp_tuple_+_tuple_o:ww 26904
__fp_tuple_-_tuple_o:ww 26904
__fp_tuple_/_o:ww 26898
__fp_tuple_chk:w

. 1031, 23456, 23457,
23458, 23460, 23462, 23463, 23540,
23543, 25216, 25428, 25443, 25468,
25471, 25487, 25488, 25491, 25595,
25617, 25640, 25643, 25775, 25776,
26907, 26908, 26914, 26915, 28988

__fp_tuple_compare_back:ww
. 25772, 25773

__fp_tuple_compare_back_loop:w .
. 25772, 25782, 25790, 25799

__fp_tuple_compare_back_-
tuple:ww 25772, 25774

__fp_tuple_convert:Nw
. . 28988, 28988, 29037, 29091, 29165

__fp_tuple_convert_end:w
. 28988, 28993, 28997, 29007

__fp_tuple_convert_loop:nNw . . .
. 28988, 28996, 29001, 29004

__fp_tuple_count:w
. 23461, 23462, 23463

__fp_tuple_count_loop:Nw
. 23461, 23466, 23470, 23471

__fp_tuple_map_loop_o:nw
. 25468, 25474, 25479, 25484

__fp_tuple_map_o:nw 25468,
25468, 26891, 26899, 26901, 26903

__fp_tuple_mapthread_loop_o:nw .
. 25486, 25494, 25500, 25506

__fp_tuple_mapthread_o:nww
. 25486, 25486, 26912

__fp_tuple_not_o:w . . . 26015, 26023
__fp_tuple_set_sign_aux_o:Nnw . .

. 26882, 26885, 26890

Index 1578

__fp_tuple_set_sign_aux_o:w . . .
. 26882, 26891, 26892

__fp_tuple_set_sign_o:w 26882, 26882
__fp_tuple_show_validate:w

. 25590, 25616, 25639
__fp_tuple_to_decimal:w 29079, 29090
__fp_tuple_to_scientific:w

. 29025, 29036
__fp_tuple_to_tl:w . . . 29157, 29164
__fp_tuple_|_o:ww 26024
__fp_tuple_|_tuple_o:ww 26024
__fp_type_from_scan:N 1032,

23485, 23485, 25042, 25044, 25068,
25070, 25081, 25083, 25720, 25722,
25736, 25738, 29586, 29606, 29608

__fp_type_from_scan:w
. 23485, 23494, 23499

__fp_type_from_scan_other:N . . .
. . 23485, 23489, 23492, 23509, 23527

__fp_types_binary:Nww
1237, 1239, 29596, 29596, 29674, 29750

__fp_types_binary_auxi:Nww
. 29596, 29598, 29601

__fp_types_binary_auxii:NNww . . .
. 29596, 29603, 29613

__fp_types_cs_to_op:N
. 29563, 29563,
29581, 29599, 29729, 29769, 29777

__fp_types_cs_to_op_auxi:wwwn . .
. 29563, 29565, 29574

__fp_types_unary:NNw
1237, 1239, 29578, 29578, 29694, 29749

__fp_types_unary_auxi:nNw
. 29578, 29580, 29583

__fp_types_unary_auxii:NnNw . . .
. 29578, 29585, 29590

__fp_underflow:w 1030,
1044, 1046, 23405, 23838, 23844, 27635

__fp_use_i:ww
1160, 1214, 23341, 23341, 27148, 28917

__fp_use_i:www 23341, 23342
__fp_use_i_delimit_by_s_stop:nw

. 23352,
23352, 25693, 26056, 29567, 29569

__fp_use_i_until_s:nw
. 1204, 23336, 23337, 23385,
23395, 23658, 28287, 28565, 28571,
28602, 29351, 29422, 30079, 30175

__fp_use_ii_until_s:nnw
. 23336, 23338, 23383, 23394

__fp_use_none_stop_f:n
. . 23333, 23333, 27313, 27314, 27315

__fp_use_none_until_s:w . 23336,
23336, 26693, 27991, 28912, 28915

__fp_use_s:n 23334, 23334
__fp_use_s:nn 23334, 23335
__fp_variable_o:w 1239,

29806, 29806, 29818, 29823, 29839
__fp_variable_set_parsing:Nn . . .

. . 29833, 29833, 29873, 29891, 29904
__fp_variable_set_parsing_-

aux:NNn 29833, 29841, 29844
__fp_zero_fp:N

. 23376, 23376, 23822, 24170
__fp_|_o:ww 1107, 26024
__fp_|_symbolic_o:ww 29676
__fp_|_tuple_o:ww 26024

fparray commands:
\fparray_count:N . 288, 289, 30135,

30135, 30140, 30147, 30158, 30214
\fparray_gset:Nnn

. 288, 1254, 30160, 30160, 30169
\fparray_gzero:N

. 288, 30211, 30211, 30223
\fparray_if_exist:N . . . 30278, 30280
\fparray_if_exist:NTF . . . 289, 30278
\fparray_if_exist_p:N . . . 289, 30278
\fparray_item:Nn

. 289, 1254, 30224, 30224, 30231
\fparray_item_to_tl:Nn

. 289, 30224, 30232, 30239
\fparray_new:Nn

. 288, 30108, 30108, 30120
\futurelet . 238

G
\gdef . 239
get commands:

get_luadata 12083
\GetIdInfo 11, 11587
\gleaders . 832
\glet . 833
\global 105, 140, 240
\globaldefs . 241
\glueexpr . 495
\glueshrink . 496
\glueshrinkorder 497
\gluestretch 498
\gluestretchorder 499
\gluetomu . 500
\glyphdimensionsmode 834
group commands:

\group_align_safe_begin/end: 454, 601
\group_align_safe_begin:

. 75, 594, 710,
715, 3581, 4016, 8388, 8615, 8617,
12508, 13117, 19396, 19833, 19854,
19886, 31844, 32259, 34186, 37405

Index 1579

\group_align_safe_end:
. 75, 710, 715, 3584, 4028,
8390, 8615, 8620, 12529, 13100,
19440, 19842, 19851, 19891, 19897,
31856, 32272, 34197, 37408, 37412

\group_begin:
. 14, 706, 1420, 1437, 1418,
1419, 2300, 2303, 2306, 2684, 2879,
3056, 3221, 3258, 3537, 3580, 3587,
3607, 3684, 3849, 4035, 4100, 4469,
4561, 4888, 5397, 5731, 5972, 6073,
6500, 6875, 7155, 7413, 7439, 7451,
7461, 7470, 7656, 7685, 7807, 8615,
8665, 8889, 8985, 9138, 9150, 9349,
9373, 9389, 9454, 10379, 10624,
10670, 10932, 11075, 11594, 12184,
12370, 12546, 12551, 12630, 12643,
13458, 13779, 13802, 14303, 14413,
14468, 14763, 14811, 14857, 14864,
15193, 15375, 16849, 16854, 17060,
17091, 17728, 17740, 19271, 19277,
19324, 19386, 19443, 19461, 19485,
19570, 19589, 19969, 21178, 21457,
21586, 21628, 22737, 26024, 30022,
30576, 30785, 30810, 31106, 31331,
31368, 31471, 31532, 31802, 33753,
33786, 34437, 34499, 34883, 36808,
36984, 37538, 37627, 37669, 39416,
39419, 39481, 39829, 39902, 39905

\c_group_begin_token 117, 205, 213,
724, 905, 3649, 4192, 12961, 13001,
19420, 19443, 19467, 31594, 34926,
34932, 34946, 34952, 35030, 35036,
35051, 35057, 37464, 37465, 37472

\group_end: 14, 15, 467,
468, 576, 835, 1267, 1271, 1420,
1418, 1420, 2300, 2303, 2309, 2693,
2882, 3059, 3225, 3267, 3476, 3550,
3585, 3606, 3630, 3691, 3873, 4022,
4122, 4481, 4575, 4921, 4929, 5410,
5735, 6032, 6080, 6087, 6095, 6504,
6505, 6912, 7219, 7418, 7446, 7534,
7679, 7726, 7808, 7809, 8622, 8684,
8906, 9013, 9142, 9154, 9368, 9381,
9400, 9600, 10385, 10628, 10699,
10955, 11093, 11597, 12187, 12392,
12442, 12556, 12564, 12633, 12647,
13476, 13784, 13807, 14313, 14428,
14471, 14776, 14823, 14882, 14944,
15374, 15506, 16859, 16869, 17072,
17101, 17106, 17732, 17744, 19279,
19286, 19385, 19390, 19460, 19464,
19492, 19588, 19637, 19993, 21194,
21583, 21609, 21668, 22751, 26048,

30067, 30580, 30789, 30841, 31341,
31342, 31436, 31506, 31548, 31822,
33779, 33812, 34441, 34744, 34889,
36809, 36989, 37542, 37632, 37684,
39435, 39492, 39900, 39919, 40139

\c_group_end_token 205,
905, 3652, 19423, 19443, 19472,
31595, 34940, 35045, 37468, 37476

\group_insert_after:N
. 15, 1424, 1424, 4477,
36816, 37468, 37469, 37502, 37786

\group_log_list: 15, 2312, 2314
\group_show_list: 15, 2312, 2312

groups commands:
.groups:n 248, 22222

\gtoksapp . 835
\gtokspre . 836

H
\H 65, 32178, 34497,

34517, 34664, 34665, 34692, 34693
\halign . 242
\hangafter . 243
\hangindent . 244
\hbadness . 245
\hbox . 246
hbox commands:

\hbox:n 307,
311, 34897, 34897, 35124, 35421, 36592

\hbox_gset:Nn 311, 34899,
34904, 34910, 35091, 35214, 35258,
35278, 35298, 35315, 35336, 35365,
35376, 35433, 35644, 36081, 39658

\hbox_gset:Nw
312, 34923, 34929, 34936, 35717, 39660

\hbox_gset_end:
. 312, 34923, 34942, 35720

\hbox_gset_to_wd:Nnn
. . . . 312, 34911, 34916, 34922, 39659

\hbox_gset_to_wd:Nnw
. . . . 312, 34943, 34949, 34956, 39661

\hbox_overlap_center:n
. 312, 34967, 34967

\hbox_overlap_left:n 312, 34967, 34969
\hbox_overlap_right:n

. 312, 34967, 34971
\hbox_set:Nn 307,

311, 312, 326, 34899, 34899, 34909,
35088, 35120, 35121, 35208, 35255,
35275, 35295, 35312, 35333, 35362,
35370, 35394, 35430, 35443, 35451,
35459, 35468, 35477, 35494, 35502,
35510, 35516, 35529, 35631, 36078,
36101, 36358, 36445, 36724, 39577

Index 1580

\hbox_set:Nw
312, 34923, 34923, 34935, 35704, 39579

\hbox_set_end:
. . . . 312, 34923, 34937, 34942, 35707

\hbox_set_to_wd:Nnn
. . . . 312, 34911, 34911, 34921, 39578

\hbox_set_to_wd:Nnw
. . . . 312, 34943, 34943, 34955, 39580

\hbox_to_wd:nn 311, 34957, 34957, 35412
\hbox_to_zero:n 311, 34957,

34962, 34968, 34970, 34972, 38819
\hbox_unpack:N

. . . . 312, 34973, 34973, 34975, 36362
\hbox_unpack_drop:N

. 315, 34973, 34974, 34976
hcoffin commands:

\hcoffin_gset:Nn
. 321, 35627, 35640, 35652

\hcoffin_gset:Nw
. 321, 35700, 35713, 35725

\hcoffin_gset_end:
. 321, 35700, 35718, 35727

\hcoffin_set:Nn
. 321, 322, 35627, 35627,
35639, 36596, 36603, 36641, 36676

\hcoffin_set:Nw
. 321, 35700, 35700, 35712

\hcoffin_set_end:
. 321, 35700, 35705, 35726

\hfi . 1143
\hfil . 247
\hfill . 248
\hfilneg . 249
\hfuzz . 250
\hjcode . 827
\hoffset . 251
\holdinginserts 252
hook commands:

\hook_gput_code:nnn . . . 30712, 30714
\hpack . 828
\hrule . 253
\hsize . 254
\hskip . 255
\hss . 256
\ht . 257
\Huge . 34415
\huge . 34419
\hyphenation 258
\hyphenationbounds 829
\hyphenationmin 830
\hyphenchar . 259
\hyphenpenalty 260
\hyphenpenaltymode 831

I
\i . 33777,

34472, 34573, 34575, 34577, 34579,
34630, 34633, 34636, 34639, 34710

\if . 261
if commands:

\if:w 29, 30, 200, 392, 393,
425, 493, 697, 713, 714, 716, 726,
727, 744, 1389, 1395, 1801, 2170,
2171, 2771, 2774, 2775, 2776, 2777,
2792, 2793, 2794, 2795, 2796, 2797,
2798, 2799, 2800, 2864, 2865, 2867,
4716, 4745, 4799, 11118, 12591,
12601, 12694, 13015, 13035, 13050,
13598, 13605, 13610, 18260, 19754,
21200, 21215, 21216, 24099, 24472,
24476, 24498, 24591, 24623, 24642,
24708, 24722, 24739, 24760, 24799,
24811, 25097, 25139, 25259, 25274,
25678, 27852, 27882, 29363, 31372,
31381, 31397, 31578, 39270, 39282,
39284, 39365, 39366, 39367, 39368,
39382, 39383, 39393, 39394, 39395,
39396, 39397, 39398, 39399, 39400,
39401, 40168, 40170, 40174, 40176

\if_bool:N . . 74, 589, 1399, 8276, 8327
\if_box_empty:N

. 319, 34835, 34837, 34847
\if_case:w 184, 751,

753, 792, 865, 1039, 1132, 1187,
1231, 2077, 3660, 3859, 4046, 4428,
4700, 5514, 5543, 5600, 6272, 6325,
6944, 6991, 7089, 7406, 7917, 7928,
10784, 13877, 13951, 14289, 15320,
17533, 17537, 18151, 18184, 19376,
23400, 23653, 23668, 24039, 24068,
25347, 25388, 26115, 26250, 26325,
26350, 26402, 26846, 26862, 26879,
27157, 27384, 27411, 27569, 27604,
27762, 27807, 27858, 27984, 28007,
28040, 28099, 28139, 28154, 28169,
28184, 28199, 28214, 28740, 28793,
28877, 28892, 28944, 28957, 29041,
29095, 29169, 29360, 30189, 30268

\if_catcode:w 30, 724, 725,
904, 919, 1389, 1397, 2911, 3649,
3652, 3807, 3809, 3811, 3813, 3815,
3817, 3819, 4047, 4048, 4192, 12956,
12999, 19399, 19402, 19405, 19408,
19411, 19414, 19417, 19420, 19423,
19426, 19467, 19472, 19477, 19482,
19489, 19496, 19501, 19506, 19511,
19516, 19521, 19528, 19555, 19864,
19923, 19928, 19975, 19976, 23299,

Index 1581

24227, 24432, 24750, 24797, 25096,
25138, 31536, 31537, 31579, 31594,
31595, 31596, 31597, 31598, 31599,
31600, 31601, 31602, 31625, 31628,
31631, 31634, 31637, 31640, 31643

\if_charcode:w
. 30, 200, 460, 724, 725, 755,
919, 1389, 1396, 3719, 3743, 3792,
4088, 4125, 4127, 4637, 4647, 5158,
5713, 6881, 6884, 11378, 11387,
12942, 12992, 14035, 14269, 14933,
19533, 19925, 23656, 25691, 26054

\if_cs_exist:N . . . 30, 1404, 1404,
1829, 1867, 2687, 19327, 19563, 19763

\if_cs_exist:w . . . 30, 1404, 1405,
1432, 1839, 1852, 1881, 1896, 1921,
1932, 2065, 4233, 11110, 18405,
18430, 18441, 20367, 20414, 21719

\if_dim:w 243, 20855,
20855, 20943, 20955, 20978, 21149

\if_eof:w 102,
649, 10322, 10322, 10327, 10412, 10430

\if_false:
. . 29, 67, 213, 451, 472, 558, 570,
571, 574, 601, 670, 706, 711, 715,
723, 837, 855, 902, 943, 1389, 1390,
1856, 1862, 3572, 3638, 3687, 3690,
4196, 4197, 4204, 4205, 4897, 4916,
4917, 4926, 4991, 5034, 5048, 5052,
5264, 5297, 5309, 5313, 5347, 5352,
5360, 5395, 5402, 5407, 5455, 5692,
5711, 5722, 5745, 5757, 5758, 5761,
7171, 7188, 7525, 7564, 7572, 7579,
7609, 7734, 7736, 7737, 7743, 8618,
8621, 8890, 8898, 10763, 10803,
10807, 10814, 10822, 11074, 11087,
12112, 12116, 12371, 12378, 12524,
12525, 12665, 12669, 12709, 12920,
12925, 13016, 13029, 13047, 13051,
13061, 13380, 13392, 13436, 13446,
16937, 16940, 17179, 17184, 17771,
19349, 19355, 19373, 20668, 20669,
20670, 20671, 20706, 20707, 20708,
20709, 20965, 21777, 21789, 30353

\if_hbox:N . . . 319, 34835, 34835, 34839
\if_int_compare:w

29, 184, 744, 855, 856, 1422, 1422,
3146, 3203, 3232, 3274, 3285, 3288,
3306, 3361, 3371, 3381, 3600, 3622,
3696, 3729, 3737, 3760, 3784, 3840,
3855, 3941, 3944, 4139, 4313, 4370,
4376, 4377, 4384, 4388, 4394, 4395,
4400, 4401, 4409, 4410, 4411, 4416,
4447, 4448, 4697, 4718, 4719, 4720,

4723, 4727, 4728, 4731, 4732, 4747,
4748, 4751, 4755, 4756, 4759, 4820,
4838, 4848, 4857, 4865, 4867, 4877,
4880, 4908, 4995, 5107, 5171, 5176,
5204, 5262, 5295, 5406, 5423, 5769,
5802, 5833, 6219, 6290, 6316, 6377,
6390, 6401, 6417, 6468, 6509, 6515,
6521, 6685, 6686, 6713, 6740, 6839,
6896, 7015, 7024, 7035, 7050, 7106,
7115, 7167, 7184, 7207, 7473, 7502,
7560, 7568, 7637, 10325, 10326,
10770, 11394, 13206, 13215, 13264,
13265, 13271, 13586, 13593, 13861,
13916, 13917, 13923, 13935, 13951,
14085, 14278, 14286, 14495, 14496,
14497, 14502, 14503, 14527, 14579,
14679, 14898, 14960, 14964, 14994,
14997, 15013, 15017, 15038, 15118,
15120, 15139, 15140, 15158, 15160,
15214, 15217, 15218, 15336, 15337,
15478, 15483, 17533, 17588, 17629,
17630, 17751, 17804, 17806, 17808,
17810, 17812, 17814, 17816, 17819,
17827, 17960, 19301, 19302, 19303,
19304, 19309, 19310, 19314, 19745,
20994, 23155, 23158, 23202, 23266,
23285, 23401, 23402, 23596, 23693,
23919, 23929, 23937, 23950, 23963,
23970, 23991, 24003, 24012, 24023,
24132, 24137, 24209, 24239, 24392,
24394, 24431, 24436, 24489, 24509,
24536, 24550, 24585, 24612, 24640,
24656, 24672, 24690, 24750, 24770,
24786, 24870, 24893, 24922, 24924,
25105, 25107, 25147, 25149, 25171,
25188, 25193, 25223, 25291, 25336,
25702, 25760, 25763, 25794, 25803,
25806, 25811, 25812, 25815, 25818,
25995, 26119, 26140, 26177, 26272,
26326, 26327, 26330, 26333, 26403,
26412, 26617, 26690, 26743, 26747,
26751, 26769, 26804, 26805, 26806,
26807, 26808, 26834, 27159, 27162,
27256, 27349, 27397, 27413, 27540,
27574, 27632, 27641, 27681, 27853,
27864, 27882, 27905, 27937, 27940,
27987, 28017, 28064, 28078, 28242,
28286, 28744, 28782, 28791, 28827,
28911, 28914, 29143, 29350, 29418,
29419, 29420, 29430, 29458, 29463,
29464, 29527, 29528, 29529, 29533,
29548, 29553, 30076, 30143, 30147,
30355, 30995, 30996, 31002, 31373,
31567, 31611, 31728, 31735, 31752,

Index 1582

31755, 33095, 33098, 33099, 33102,
33103, 33124, 33127, 33130, 33133,
33136, 33139, 33158, 33159, 33165,
33168, 33171, 33174, 33177, 33180,
33183, 33186, 33189, 33192, 33195,
33198, 33201, 33204, 33207, 33236,
33239, 33254, 33257, 33271, 33274,
33277, 33280, 33296, 33299, 33302

\if_int_odd:w 185,
1207, 3865, 4437, 4828, 4836, 4846,
5268, 5583, 17533, 17536, 17663,
17865, 17873, 18375, 19300, 19308,
19974, 23941, 23988, 24000, 25384,
26386, 26672, 28028, 28592, 28631,
28641, 28684, 28708, 28868, 29526

\if_meaning:w
. . . . 30, 469, 725, 818, 832, 1116,
1294, 1389, 1398, 1650, 1676, 1694,
1758, 1763, 1772, 1825, 1847, 1863,
1871, 1891, 1907, 1942, 2095, 2109,
2255, 2372, 2428, 2429, 2719, 2742,
2751, 3002, 3014, 3015, 3156, 3157,
3612, 3624, 3646, 3676, 3704, 3805,
4009, 4049, 4050, 4080, 4150, 4189,
4231, 4476, 4632, 4657, 4669, 4798,
4819, 5155, 5157, 5590, 6254, 6425,
6436, 6451, 6612, 6655, 6790, 7062,
7384, 7501, 7614, 8401, 8423, 10720,
11015, 12581, 12634, 12648, 12983,
13385, 13427, 13440, 13710, 13788,
13811, 13972, 14010, 14441, 15168,
15317, 15332, 15359, 15474, 16405,
16411, 16437, 16449, 16457, 16489,
16496, 16520, 16524, 16602, 16638,
16656, 17009, 17041, 17096, 17111,
17119, 17556, 17559, 17569, 17604,
17609, 17610, 17786, 18643, 18658,
18680, 18694, 19560, 19599, 19602,
19737, 19839, 19867, 19878, 19916,
19977, 20328, 20425, 20573, 20611,
20621, 20924, 20971, 21152, 23382,
23403, 23415, 23425, 23520, 23575,
23584, 23675, 23690, 23692, 23830,
23918, 23928, 23940, 23953, 23954,
23973, 23974, 23988, 23989, 24000,
24001, 24067, 24114, 24149, 24152,
24168, 24175, 24228, 24231, 24347,
24348, 24349, 24350, 24353, 24449,
24562, 24568, 24798, 24842, 25053,
25124, 25385, 25403, 25453, 25463,
25749, 25750, 25751, 25752, 25753,
25754, 25976, 25988, 25989, 26017,
26029, 26036, 26053, 26116, 26151,
26165, 26211, 26218, 26294, 26306,

26406, 26409, 26420, 26473, 26546,
26616, 26619, 26626, 26659, 26660,
26663, 26884, 27130, 27141, 27322,
27332, 27381, 27480, 27560, 27609,
27623, 27770, 27804, 27816, 27829,
27832, 27835, 27838, 27863, 27964,
27968, 28027, 28044, 28050, 28634,
28687, 28738, 28739, 28741, 28742,
28762, 28779, 28846, 28944, 29040,
29094, 29168, 29238, 29243, 29349,
29381, 29392, 29499, 30073, 30202,
30255, 30261, 31335, 31551, 32161

\if_mode_horizontal:
. 30, 1400, 1401, 8610

\if_mode_inner: . 30, 1400, 1403, 8612
\if_mode_math: . . 30, 1400, 1400, 8614
\if_mode_vertical:

. 30, 1400, 1402, 2382, 8608
\if_predicate:w

. 64, 67, 74, 8276, 8276,
8378, 8439, 8454, 8465, 8480, 8491

\if_true: .
. . 29, 67, 1389, 1389, 1884, 1890,
1900, 1906, 12110, 12114, 13041, 13047

\if_vbox:N . . . 319, 34835, 34836, 34841
\ifabsdim . 935
\ifabsnum . 936
\ifcase . 262
\ifcat . 263
\ifcondition 837
\ifcsname 371, 668, 501
\ifdbox . 1144
\ifddir . 1145
\ifdefined . 502
\ifdim . 264
\IfDocumentMetadataTF 38830, 38831
\ifeof . 265
\iffalse . 266
\IfFileExists 671
\iffontchar . 503
\ifhbox . 267
\ifhmode . 268
\ifincsname . 671
\ifinner . 269
\ifjfont . 1146
\ifmbox . 1147
\ifmdir . 1148
\ifmmode . 270
\ifnum 10, 22, 52, 56, 271
\ifodd . 272
\ifpdfabsdim 623
\ifpdfabsnum 624
\ifpdfprimitive 625
\ifprimitive 774

Index 1583

\iftbox . 1149
\iftdir . 1151
\iftfont . 1150
\iftrue . 273
\ifvbox . 274
\ifvmode . 275
\ifvoid . 276
\ifx 4, 8, 13, 17, 53, 54, 61, 277
\ifybox . 1152
\ifydir . 1153
\ignoreligaturesinfont 937
\ignorespaces 278
\IJ 32186, 33768, 34462
\ij 32186, 33768, 34474
\immediate 68, 279
\immediateassigned 838
\immediateassignment 839
in . 285
\indent . 280
inf . 284
\infty 24350, 24351
inherit commands:

.inherit:n 248, 22224
\inhibitglue 1154
\inhibitxspcode 1155
\initcatcodetable 840
initial commands:

.initial:n 248, 22226
\input . 14, 281
\inputlineno 282
\insert . 283
\insertht . 938
\insertpenalties 284
int commands:

\int_abs:n
172, 849, 17562, 17562, 23202, 40014

\int_add:Nn 174, 4417,
5585, 6407, 6408, 6665, 6737, 10879,
17693, 17693, 17701, 39572, 39953

\int_case:nn 177, 865, 17833, 17848,
18013, 18019, 30883, 33010, 33032,
33037, 33049, 33495, 33510, 33586

\int_case:nnTF 177,
4167, 8242, 17450, 17833, 17833,
17838, 17843, 18994, 24259, 28990

\int_compare:n 17764
\int_compare:nNn 17817
\int_compare:nNnTF 175–178,

268, 3133, 3988, 4455, 4467, 4620,
4950, 4952, 5815, 6615, 6967, 7126,
7526, 7719, 8259, 8694, 8700, 9178,
10575, 10692, 11267, 11277, 11637,
11676, 12373, 12401, 12416, 12424,
13161, 13168, 13235, 13840, 13842,

13851, 14094, 14099, 14109, 14112,
14166, 14635, 14711, 15516, 16976,
16977, 16979, 16981, 17054, 17237,
17244, 17644, 17650, 17817, 17857,
17909, 17917, 17926, 17932, 17944,
17947, 18009, 18098, 18104, 18110,
18130, 18284, 18303, 18305, 18347,
19068, 19070, 19075, 19084, 19105,
19122, 19139, 20060, 20203, 20221,
21172, 21221, 21224, 22913, 23140,
23145, 23152, 23258, 25778, 26910,
28973, 29118, 29120, 30123, 30326,
30328, 30409, 30552, 30730, 30763,
30905, 30911, 30922, 30948, 30951,
31083, 31096, 31177, 31185, 31197,
31238, 31241, 31265, 31677, 31682,
31692, 31695, 31713, 31722, 32674,
32713, 37785, 38057, 38063, 38657

\int_compare:nTF 175, 176, 178, 269,
953, 6038, 6078, 7978, 8207, 8208,
8213, 8215, 10000, 10002, 10284,
10528, 17764, 17881, 17889, 17898,
17904, 29178, 29799, 29801, 30769

\int_compare_p:n 176, 6085, 17764
\int_compare_p:nNn

. 29, 175, 5660, 5661, 8708, 8996,
9082, 9084, 9086, 10443, 11199,
11200, 11256, 11257, 17817, 30685,
32607, 33642, 33643, 33664, 33665,
33909, 38765, 38766, 38773, 38776,
38777, 38785, 38788, 38789, 38832

\int_const:Nn 173, 4348,
4349, 4350, 4351, 4771, 4772, 4773,
4774, 4775, 4776, 4780, 4781, 4782,
4783, 4784, 4785, 4786, 4787, 4788,
4789, 4790, 4791, 4792, 8910, 9006,
9008, 9010, 9011, 9012, 9069, 10193,
10372, 10438, 10439, 14218, 14219,
17639, 17639, 17641, 18313, 18314,
18315, 18316, 18317, 18318, 18319,
18320, 18321, 18322, 18323, 18324,
18325, 18326, 18371, 18372, 18373,
20051, 23363, 23364, 23365, 23366,
23367, 23368, 23369, 23553, 23554,
23555, 23557, 23558, 23559, 23562,
23563, 23564, 23913, 24187, 24188,
24189, 24190, 24191, 24192, 24193,
24194, 24195, 24196, 24197, 24198,
24199, 24200, 24201, 28037, 29300,
31104, 38642, 38747, 39719, 39957

\int_decr:N 174,
3294, 3295, 3296, 3359, 3360, 3369,
3370, 3379, 3380, 3639, 7108, 7185,
7408, 7503, 17705, 17707, 17714, 39575

Index 1584

\int_div_round:nn . . 172, 17594, 17615
\int_div_truncate:nn

. 172, 173, 8723, 8744,
9009, 14334, 14339, 14987, 14988,
15043, 15225, 15391, 15402, 17594,
17594, 18024, 18123, 18143, 20063,
31008, 31021, 31026, 31038, 31114,
31242, 31250, 31353, 38737, 40061

\int_do_until:nn
. 178, 17879, 17901, 17905

\int_do_until:nNnn
. 177, 17907, 17929, 17933

\int_do_while:nn
. 178, 17879, 17895, 17899

\int_do_while:nNnn
. 178, 17907, 17923, 17927

\int_eval:n 20, 35, 172–
177, 184, 370, 373, 401, 476, 633,
721, 851, 868, 1014, 1015, 1019,
1020, 1025, 1059, 1109, 1134, 1136,
2077, 2106, 2122, 3235, 3500, 3501,
3762, 3843, 3847, 3870, 5829, 6037,
7028, 7982, 8027, 8028, 8248, 8563,
9031, 10007, 10246, 10497, 10815,
10873, 11247, 11248, 11271, 11281,
11288, 11289, 12427, 12820, 12825,
12833, 13154, 13162, 13170, 13197,
13201, 13210, 13217, 13252, 13262,
13834, 13847, 13872, 13896, 13897,
13909, 13914, 13945, 13962, 13999,
14090, 14119, 14123, 14130, 14139,
14289, 14309, 14327, 14604, 15129,
15144, 15172, 15321, 15326, 15344,
15488, 16972, 17230, 17238, 17246,
17424, 17545, 17545, 17640, 17836,
17841, 17846, 17851, 18005, 18093,
18095, 18225, 18235, 18270, 18281,
18287, 18298, 18329, 18366, 18370,
18962, 18974, 19062, 19072, 19086,
19093, 19109, 19172, 19174, 19242,
19244, 19248, 19250, 19254, 19256,
19260, 19262, 19295, 19296, 20719,
21199, 21237, 21242, 21250, 21256,
21265, 22912, 22998, 23046, 23064,
23080, 23139, 23177, 23178, 23229,
23246, 23373, 29449, 29452, 29453,
29543, 29544, 30082, 30118, 30166,
30228, 30236, 30433, 30548, 30721,
30991, 31043, 31046, 31051, 31057,
31076, 31123, 31173, 31192, 31219,
31275, 31287, 31317, 31328, 31347,
31374, 31457, 32660, 33091, 33120,
33154, 33232, 33250, 33267, 33292,
34865, 34875, 38065, 38108, 38154,

38665, 38670, 38677, 38682, 38735,
38743, 39359, 39361, 39858, 40013

\int_eval:w . . . 172, 371, 375, 3565,
3829, 3839, 10766, 10775, 10800,
10812, 13865, 14321, 17377, 17545,
17547, 18410, 18445, 21271, 23094,
23271, 23278, 23279, 23290, 26858

\int_from_alph:n . . . 181, 18268, 18268
\int_from_base:nn

182, 18285, 18285, 18308, 18310, 18312
\int_from_bin:n

. 181, 293, 1261, 18307, 18307, 30410
\int_from_hex:n

182, 18307, 18309, 37186, 37187, 37188
\int_from_oct:n . . . 182, 18307, 18311
\int_from_roman:n . . 182, 18327, 18327
\int_gadd:Nn

174, 17693, 17697, 17702, 39653, 39954
\int_gdecr:N 174, 3900, 4027,

10407, 12766, 13729, 17303, 17359,
17705, 17711, 17716, 18003, 18896,
20684, 21137, 25960, 34169, 39656

\int_gincr:N 174,
3889, 4017, 6183, 10398, 12757,
13718, 17295, 17353, 17705, 17709,
17715, 17978, 17989, 18887, 20056,
20679, 21116, 21123, 22906, 23130,
25939, 25946, 30113, 30641, 34163,
37772, 38365, 38370, 38375, 39655

.int_gset:N 248, 22236
\int_gset:Nn 174, 852,

2325, 6200, 9406, 17717, 17719,
17722, 34874, 34876, 39657, 39952

\int_gset_eq:NN 173, 17685,
17687, 17688, 17731, 17743, 39652

\int_gset_regex_count:NNn
. 174, 17723, 17738, 17746

\int_gset_regex_count:Nnn
. 174, 17723, 17726, 17734

\int_gsub:Nn 174, 17693,
17699, 17704, 30127, 39654, 39956

\int_gzero:N 173, 2315, 6163, 6180,
17675, 17676, 17678, 17682, 39651

\int_gzero_new:N
. 173, 17679, 17681, 17684

\int_if_even:n 17871
\int_if_even:nTF 177, 17863
\int_if_even_p:n 177, 17863
\int_if_exist:N 17689, 17691
\int_if_exist:NTF

. 173, 5509, 5564, 17680,
17682, 17689, 18341, 18345, 38647

\int_if_exist_p:N 173, 17689
\int_if_odd:n 17863

Index 1585

\int_if_odd:nTF 177,
7325, 7348, 7422, 11025, 17863, 27245

\int_if_odd_p:n 177, 6111, 17863
\int_if_zero:n 17825
\int_if_zero:nTF 177, 17825
\int_if_zero_p:n 177, 17825
\int_incr:N . 174, 3207, 3304, 3305,

3680, 3722, 3735, 3753, 4282, 4283,
5400, 6043, 6207, 6247, 6336, 6666,
6762, 7096, 7168, 7402, 7407, 7442,
7500, 7585, 7586, 7622, 7649, 7749,
7750, 7912, 17079, 17705, 17705,
17713, 21897, 23063, 23218, 23252,
23303, 30026, 30216, 38098, 39574

\int_log:N . . . 183, 18367, 18367, 18368
\int_log:n 183, 18369, 18369
\int_max:nn . 173, 1225, 5888, 5889,

5896, 5897, 6194, 6360, 7715, 7717,
17562, 17570, 27106, 28266, 40059

\int_min:nn
173, 1229, 17562, 17578, 31225, 40060

\int_mod:nn
. . . 173, 8725, 8746, 9007, 14640,
14704, 14988, 14989, 15226, 17594,
17617, 18014, 18114, 18134, 20065,
31040, 31253, 31366, 38744, 40062

\int_new:N
. . . . 173, 3112, 3113, 3114, 3115,
3116, 3117, 3118, 3119, 3120, 3121,
3122, 3551, 3552, 3553, 3554, 4006,
4335, 4336, 4337, 4347, 4769, 4770,
4777, 4778, 4795, 6128, 6130, 6131,
6132, 6135, 6158, 6159, 6540, 6541,
6542, 6543, 6544, 6545, 6546, 6548,
6549, 6550, 6551, 6554, 6555, 6556,
6816, 7369, 7372, 7373, 7374, 7380,
7381, 8263, 8623, 10601, 10604,
10606, 10619, 14686, 17633, 17633,
17638, 17646, 17652, 17680, 17682,
18383, 18384, 18385, 18386, 18387,
18388, 20050, 21677, 22890, 22893,
22894, 23126, 30009, 30106, 30107,
30347, 30499, 36824, 37713, 38581

\int_rand:n
. . . . 182, 23055, 23239, 29541, 29541

\int_rand:nn
79, 182, 1228, 1235, 13177, 17252,

18371, 19123, 19128, 29447, 29447
\int_range:nn 1229
.int_set:N 248, 22236
\int_set:Nn . . 174, 370, 2307, 2321,

2322, 2327, 2329, 3127, 3129, 3131,
3153, 3154, 3169, 3177, 3178, 3190,
3191, 3209, 3212, 3634, 3697, 4041,

4137, 4140, 4270, 5591, 6129, 6193,
6196, 6234, 6236, 6305, 6356, 6357,
6367, 6378, 6402, 6420, 6469, 6601,
6603, 6627, 6670, 6671, 6712, 6747,
7447, 7519, 7521, 7665, 7691, 7714,
7716, 10358, 10360, 10581, 10583,
10602, 10612, 10625, 10672, 10678,
10690, 10695, 12374, 12409, 14765,
14814, 14867, 17080, 17717, 17717,
17721, 21902, 23294, 30609, 30610,
30625, 30796, 30811, 30845, 34884,
34885, 34886, 34887, 39576, 39951

\int_set_eq:NN 173, 3170, 3200, 4408,
4878, 4882, 4891, 4893, 4936, 5003,
5299, 5399, 5412, 5511, 6149, 6169,
6186, 6191, 6211, 6245, 6246, 6296,
6399, 6400, 6452, 6501, 6579, 6602,
6606, 6607, 6621, 6625, 6628, 6667,
6677, 6808, 6809, 7398, 7615, 7908,
8891, 11076, 12372, 12375, 17685,
17685, 17686, 17729, 17741, 39571

\int_set_gregex_count:NNn 17723
\int_set_regex_count:NNn

. 174, 17723, 17735
\int_set_regex_count:Nnn

. . . . 174, 17723, 17723, 17725, 17737
\int_show:N . . 182, 18363, 18363, 18364
\int_show:n 183, 633, 870, 18365, 18365
\int_sign:n

172, 958, 17548, 17548, 30692, 40015
\int_step_function:nN

. . . . 179, 17935, 17968, 30814, 30815
\int_step_function:nnN 179,

6678, 7515, 17935, 17970, 19369,
30816, 30817, 30818, 30819, 30839

\int_step_function:nnnN
. 75, 179, 861, 1112, 7694,
7702, 17935, 17935, 17969, 17971,
18002, 40123, 40127, 40131, 40135

\int_step_inline:nn 179,
1020, 17067, 17972, 17972, 23133,
30529, 30563, 30620, 31259, 31304

\int_step_inline:nnn 179,
3261, 6594, 8266, 9120, 9122, 9124,
10197, 10450, 14624, 14633, 17972,
17974, 30536, 30539, 30797, 31277

\int_step_inline:nnnn
179, 1114, 17972, 17973, 17975, 17976

\int_step_variable:nNn
. 179, 17972, 17983

\int_step_variable:nnNn
. 179, 17972, 17985

\int_step_variable:nnnNn
. . . . 179, 17972, 17984, 17986, 17987

Index 1586

\int_sub:Nn 174, 4412,
5114, 6455, 6463, 6472, 9350, 10887,
17693, 17695, 17703, 39573, 39955

\int_to_Alph:n 180, 181, 18028, 18060
\int_to_alph:n 180, 181, 18028, 18028
\int_to_arabic:n

. 180, 18005, 18005, 18006
\int_to_Base:n 181
\int_to_base:n 181
\int_to_Base:nn

. 181, 182, 18092, 18094, 18219
\int_to_base:nn 181,

182, 18092, 18092, 18215, 18217, 18221
\int_to_bin:n 181, 18214, 18214
\int_to_Hex:n 181,

182, 4623, 18214, 18218, 31392, 37707
\int_to_hex:n . 181, 182, 18214, 18216
\int_to_oct:n . 181, 182, 18214, 18220
\int_to_Roman:n 181, 182, 18222, 18232
\int_to_roman:n 181, 182, 18222, 18222
\int_to_symbols:nnn

180, 18007, 18007, 18023, 18030, 18062
\int_until_do:nn

. 178, 17879, 17887, 17892
\int_until_do:nNnn

. 178, 17907, 17915, 17920
\int_use:N . . . 171, 175, 1052, 1058,

2326, 2328, 2330, 3891, 4019, 4039,
4910, 4997, 5075, 5086, 5095, 5099,
5110, 5111, 5117, 5118, 5124, 5125,
5282, 6111, 6201, 6206, 6227, 6229,
6334, 6347, 6348, 6748, 6800, 6898,
6909, 7064, 7447, 7531, 7532, 7723,
7724, 8260, 8734, 8736, 8739, 8755,
8757, 8761, 8764, 8769, 9310, 10009,
10361, 10400, 10577, 12759, 12761,
13720, 13724, 15125, 15149, 15163,
15183, 15190, 15372, 15481, 15486,
15502, 17296, 17302, 17355, 17357,
17747, 17747, 17748, 17981, 17992,
18889, 18891, 20678, 20686, 21119,
21126, 21903, 22907, 23001, 23049,
25942, 25949, 30037, 30643, 30645,
30676, 30725, 34165, 34167, 37778,
38649, 39855, 39856, 39857, 39892

\int_value:w 184,
375, 451, 595, 849, 855, 953, 1014,
1015, 1019, 1020, 1029, 1035, 1039,
1052, 1060, 1067, 1070, 1075, 1082,
1110, 1111, 1120, 1128, 1136, 1202,
1206, 1220, 1806, 3235, 3565, 3577,
3780, 3827, 3829, 3839, 3847, 3866,
3868, 3876, 4081, 4116, 4180, 4200,
4209, 4616, 5143, 5149, 5179, 5181,

5190, 5191, 5306, 5791, 5806, 6833,
6834, 6845, 7556, 8414, 8417, 8563,
9053, 9058, 10766, 10775, 13210,
13217, 13834, 13835, 13847, 13865,
13872, 13895, 13896, 13897, 13909,
13945, 14557, 14681, 15043, 15121,
15129, 15144, 15172, 17002, 17012,
17365, 17377, 17533, 17533, 17550,
17551, 17564, 17565, 17572, 17573,
17574, 17580, 17581, 17582, 17596,
17598, 17599, 17616, 17619, 17620,
17621, 17628, 17767, 17771, 17801,
17938, 17939, 17940, 17966, 18178,
18211, 18410, 18445, 19295, 19296,
19396, 20952, 21143, 21177, 21184,
21207, 21215, 21216, 21271, 23149,
23152, 23177, 23178, 23224, 23229,
23271, 23278, 23279, 23290, 23447,
23448, 23449, 23450, 23451, 23465,
23613, 23674, 23692, 23987, 24117,
24131, 24133, 24135, 24138, 24174,
24312, 24342, 24343, 24380, 24388,
24519, 24524, 24526, 24535, 24539,
24576, 24584, 24587, 24593, 24604,
24615, 24621, 24622, 24625, 24668,
24678, 24680, 24696, 24698, 24721,
24735, 24811, 24812, 24886, 24974,
25748, 25781, 26126, 26127, 26128,
26130, 26176, 26179, 26182, 26205,
26207, 26228, 26230, 26239, 26241,
26245, 26263, 26270, 26276, 26286,
26288, 26302, 26310, 26318, 26362,
26364, 26380, 26382, 26385, 26388,
26442, 26450, 26452, 26454, 26456,
26459, 26462, 26464, 26483, 26485,
26489, 26495, 26497, 26501, 26523,
26526, 26534, 26536, 26539, 26540,
26541, 26542, 26557, 26560, 26563,
26566, 26575, 26578, 26581, 26584,
26591, 26593, 26599, 26607, 26609,
26611, 26637, 26639, 26648, 26650,
26654, 26671, 26692, 26696, 26708,
26711, 26714, 26717, 26720, 26723,
26726, 26729, 26733, 26745, 26749,
26753, 26756, 26777, 26779, 26781,
26791, 26815, 26818, 26830, 26832,
26838, 26841, 26858, 26878, 26929,
26934, 26936, 26943, 26946, 26949,
26952, 26955, 26958, 26967, 26979,
26987, 26989, 26999, 27001, 27008,
27017, 27019, 27022, 27025, 27028,
27031, 27044, 27046, 27054, 27056,
27064, 27066, 27076, 27079, 27082,
27089, 27104, 27122, 27125, 27181,

Index 1587

27195, 27197, 27203, 27216, 27218,
27220, 27244, 27260, 27267, 27268,
27312, 27314, 27315, 27316, 27357,
27359, 27396, 27403, 27410, 27431,
27433, 27435, 27437, 27450, 27454,
27455, 27456, 27457, 27458, 27463,
27468, 27470, 27476, 27493, 27494,
27495, 27496, 27497, 27498, 27503,
27505, 27507, 27509, 27511, 27516,
27518, 27520, 27522, 27524, 27526,
27548, 27556, 27572, 27577, 27581,
27640, 27689, 27757, 27766, 27774,
27785, 27787, 27790, 27793, 27881,
27917, 27919, 27922, 27925, 27928,
27931, 27938, 27941, 27943, 27947,
27969, 27971, 28003, 28073, 28083,
28088, 28098, 28240, 28272, 28281,
28513, 28514, 28525, 28528, 28531,
28534, 28537, 28540, 28543, 28546,
28549, 28567, 28577, 28586, 28604,
28613, 28620, 28630, 28674, 28683,
28718, 28761, 28778, 28834, 28845,
28856, 29066, 29142, 29189, 29234,
29242, 29244, 29246, 29312, 29335,
29389, 29429, 29441, 29452, 29453,
29483, 29486, 29489, 29491, 29493,
29500, 29503, 29511, 29516, 29521,
30082, 30166, 30228, 30236, 30249,
30250, 30251, 30261, 31593, 39320

\int_while_do:nn
. 178, 17879, 17879, 17884

\int_while_do:nNnn
. 178, 17907, 17907, 17912

\int_zero:N
. . . . 173, 3635, 3636, 3637, 3736,
4890, 5112, 5548, 6075, 6148, 6179,
6600, 6877, 7392, 7393, 7441, 7628,
7903, 10732, 17061, 17675, 17675,
17677, 17680, 21894, 23060, 23215,
23244, 30023, 30213, 38095, 39570

\int_zero_new:N
. 173, 17679, 17679, 17683

\c_max_char_int
. 183, 4620, 18373, 19310, 20051

\c_max_int . . . 183, 260, 540, 1228,
1229, 4047, 4048, 4049, 18372,
29494, 34862, 34868, 36765, 36768

\c_max_register_int
. 183, 436, 1442, 3129,
3154, 3191, 10007, 10009, 17054, 17533

\c_one_int 183,
3737, 4051, 4697, 4820, 5833, 5889,
5897, 5940, 6085, 6191, 6306, 6379,
6390, 6401, 6404, 6421, 6461, 6470,

6595, 6598, 6606, 6627, 6680, 6697,
6698, 6708, 6770, 6771, 6845, 7015,
7028, 7050, 7516, 7697, 7705, 8268,
17706, 17708, 17710, 17712, 18371,
18410, 18445, 19978, 23271, 23290,
26743, 26747, 26751, 26805, 27397,
27540, 27681, 27987, 28827, 28911,
29352, 29356, 29363, 29548, 30076

\g_tmpa_int 183, 18383
\l_tmpa_int 4, 54, 183, 18383
\g_tmpb_int 183, 18383
\l_tmpb_int 4, 183, 18383
\c_zero_int 183, 381, 393, 721, 1441,

1804, 1806, 3760, 3784, 3840, 3941,
4053, 4313, 4455, 4467, 4908, 5406,
5661, 5802, 5888, 5896, 6078, 6177,
6199, 6290, 6316, 6377, 6417, 6468,
6530, 6861, 6868, 6896, 6967, 7035,
7106, 7115, 7126, 7158, 7167, 7184,
7207, 7477, 7493, 7527, 7560, 7568,
7619, 7621, 7693, 7715, 7717, 7720,
8891, 9061, 11076, 11398, 12372,
13215, 13264, 13588, 13593, 13916,
13951, 14679, 15478, 17629, 17630,
17644, 17675, 17676, 17751, 17759,
17827, 17944, 17947, 18371, 19309,
19975, 19976, 19977, 20994, 21172,
23134, 23258, 23693, 23919, 23923,
23925, 23929, 23933, 23946, 23959,
23966, 23979, 23991, 24003, 24012,
24015, 24026, 24132, 24137, 25763,
25795, 26769, 26804, 26806, 26807,
26808, 27574, 27641, 27864, 27882,
27905, 27937, 28783, 29143, 29335,
29364, 29464, 29528, 30049, 30355

int internal commands:
__int_abs:N 17562, 17564, 17568
__int_case:nnTF 17833,

17836, 17841, 17846, 17851, 17853
__int_case:nw

. 17833, 17854, 17855, 17859
__int_case_end:nw 17833, 17858, 17861
__int_compare:nnN

. 856, 17764, 17796, 17804, 17806,
17808, 17810, 17812, 17814, 17816

__int_compare:NNw
. 856, 17764, 17776, 17780

__int_compare:Nw
855, 856, 17764, 17772, 17774, 17801

__int_compare:w
. 855, 17764, 17766, 17769

__int_compare_!=:NNw 17764
__int_compare_<:NNw 17764
__int_compare_<=:NNw 17764

Index 1588

__int_compare_=:NNw 17764
__int_compare_==:NNw 17764
__int_compare_>:NNw 17764
__int_compare_>=:NNw 17764
__int_compare_end_=:NNw . 856, 17764
__int_compare_error:

855, 17749, 17749, 17753, 17767, 17769
__int_compare_error:Nw

. 855–857, 17749, 17755, 17789
__int_const:nN

. 17639, 17640, 17642, 17662
__int_constdef:Nw . 17639, 17657,

17668, 17669, 17670, 17672, 17673
__int_div_truncate:NwNw

. 17594, 17597, 17602, 17625
__int_eval:w 370,

849, 850, 855, 17533, 17534, 17546,
17547, 17551, 17565, 17573, 17574,
17581, 17582, 17596, 17598, 17599,
17616, 17619, 17620, 17621, 17628,
17660, 17694, 17696, 17698, 17700,
17718, 17720, 17767, 17801, 17819,
17827, 17865, 17873, 17938, 17939,
17940, 17966, 18151, 18178, 18184,
18211, 39959, 40017, 40064, 40088,
40104, 40105, 40126, 40130, 40134

__int_eval_end:
. 17533, 17535, 17546,
17551, 17565, 17600, 17616, 17622,
17631, 17660, 17694, 17696, 17698,
17700, 17718, 17720, 17819, 17865,
17873, 18151, 18178, 18184, 18211

__int_from_alph:N
. 868, 18268, 18281, 18283

__int_from_alph:nN
. . . . 867, 18268, 18273, 18277, 18280

__int_from_base:N
. 868, 18285, 18298, 18301

__int_from_base:nnN
. . . . 868, 18285, 18290, 18294, 18297

__int_from_roman:NN
. . 18327, 18333, 18338, 18354, 18358

\c__int_from_roman_C_int 18313
\c__int_from_roman_c_int 18313
\c__int_from_roman_D_int 18313
\c__int_from_roman_d_int 18313
__int_from_roman_error:w

. 18327, 18342, 18346, 18361
\c__int_from_roman_I_int 18313
\c__int_from_roman_i_int 18313
\c__int_from_roman_L_int 18313
\c__int_from_roman_l_int 18313
\c__int_from_roman_M_int 18313
\c__int_from_roman_m_int 18313

\c__int_from_roman_V_int 18313
\c__int_from_roman_v_int 18313
\c__int_from_roman_X_int 18313
\c__int_from_roman_x_int 18313
__int_if_recursion_tail_stop:N .

. 17543, 17544, 18340
__int_if_recursion_tail_stop_-

do:Nn .
. . 17543, 17543, 18279, 18296, 18343

\l__int_internal_a_int
. 17729, 17730,
17731, 17741, 17742, 17743, 18387

\l__int_internal_b_int 18387
\c__int_max_constdef_int 17639
__int_maxmin:wwN

. 17562, 17572, 17580, 17586
__int_mod:ww . . . 17594, 17619, 17624
__int_pass_signs:wn

867, 18258, 18258, 18261, 18272, 18289
__int_pass_signs_end:wn

. 18258, 18263, 18267
__int_show:nN 18363
__int_sign:Nw . . 17548, 17550, 17554
__int_step:NNnnnn

. 17972, 17979, 17990, 17999
__int_step:NwnnN

. . 17935, 17945, 17953, 17958, 17964
__int_step:wwwN . 17935, 17937, 17942
__int_to_Base:nn 18092, 18095, 18102
__int_to_base:nn 18092, 18093, 18096
__int_to_Base:nnN

. . 18092, 18105, 18106, 18128, 18142
__int_to_base:nnN

. . 18092, 18099, 18100, 18108, 18122
__int_to_Base:nnnN

. 18092, 18133, 18140
__int_to_base:nnnN

. 18092, 18113, 18120
__int_to_Letter:n

. 18092, 18131, 18134, 18181
__int_to_letter:n

. 18092, 18111, 18114, 18148
__int_to_roman:N

. 18222, 18224, 18227, 18230
__int_to_roman:w 856, 866,

1422, 1423, 17533, 17777, 18225, 18235
__int_to_Roman_aux:N

. 18234, 18237, 18240
__int_to_Roman_c:w . . . 18222, 18254
__int_to_roman_c:w . . . 18222, 18246
__int_to_Roman_d:w . . . 18222, 18255
__int_to_roman_d:w . . . 18222, 18247
__int_to_Roman_i:w . . . 18222, 18250
__int_to_roman_i:w . . . 18222, 18242

Index 1589

__int_to_Roman_l:w . . . 18222, 18253
__int_to_roman_l:w . . . 18222, 18245
__int_to_Roman_m:w . . . 18222, 18256
__int_to_roman_m:w . . . 18222, 18248
__int_to_Roman_Q:w . . . 18222, 18257
__int_to_roman_Q:w . . . 18222, 18249
__int_to_Roman_v:w . . . 18222, 18251
__int_to_roman_v:w . . . 18222, 18243
__int_to_Roman_x:w . . . 18222, 18252
__int_to_roman_x:w . . . 18222, 18244
__int_to_symbols:nnnn

. 18007, 18011, 18021, 18027
__int_use_none_delimit_by_s_-

stop:w 17540, 17540, 17799
intarray commands:

\intarray_const_from_clist:Nn . . .
. 260, 23057, 23057, 23066, 23241,
23241, 23249, 27695, 28296, 39720

\intarray_count:N
. . 261, 372, 14641, 14704, 22913,
22916, 22957, 22971, 23001, 23049,
23055, 23140, 23143, 23145, 23146,
23149, 23149, 23150, 23158, 23168,
23216, 23239, 23258, 23321, 30138

\intarray_gset:Nnn 261, 372,
1019, 1021, 14625, 14637, 14650,
14656, 22993, 22996, 23004, 23171,
23173, 23180, 30524, 31324, 38718

\intarray_gzero:N
260, 23006, 23015, 23213, 23213, 23222

\intarray_if_exist:N . . 23307, 23309
\intarray_if_exist:NTF

. 261, 23307, 38716
\intarray_if_exist_p:N . . . 261, 23307
\intarray_item:Nn 261, 372,

1015, 1019, 1021, 14635, 14640,
14674, 14703, 14711, 23017, 23044,
23053, 23055, 23223, 23225, 23231,
23239, 30731, 31351, 31365, 38729

\intarray_log:N
. 261, 23311, 23313, 23314

\intarray_new:Nn
260, 1012, 1018, 1021, 6557, 6558,

7375, 7376, 7377, 7378, 7379, 14623,
14632, 22902, 22909, 22919, 23127,
23136, 23148, 30130, 30131, 30132,
30520, 31113, 31302, 38717, 39762

\intarray_rand_item:N 261, 23054,
23054, 23056, 23238, 23238, 23240

\intarray_show:N
261, 1016, 1021, 23311, 23311, 23312

intarray internal commands:
__intarray:w 22896, 22907

\l__intarray_bad_index_int
. 22893, 23001, 23049

__intarray_bounds:NNnTF
. 23153, 23153, 23183, 23234

__intarray_bounds_error:NNnw . . .
. 23153, 23156, 23159, 23164

__intarray_const_from_clist:nN .
. 23241, 23246, 23250

__intarray_count:w 23123,
23124, 23139, 23149, 23247, 23266

__intarray_entry:w
. . 23123, 23123, 23172, 23219, 23224

\g__intarray_font_int
. 23126, 23130, 23132

__intarray_gset:Nnn 23171
__intarray_gset:Nww . . 23175, 23181
__intarray_gset:w 22973, 22995
__intarray_gset:wTF . . 22973, 22998
__intarray_gset_count:Nw

. 1011, 22891, 22912, 22957
__intarray_gset_overflow:Nnn . 23171
__intarray_gset_overflow:NNnn . .

. 23195, 23203, 23207
__intarray_gset_overflow_-

test:nw 1017, 1021, 23117,
23118, 23185, 23192, 23200, 23253

__intarray_gset_range:nNw . . . 23091
__intarray_gset_range:Nw

. 23292, 23295, 23297, 23304
__intarray_gset_range:w 23094
__intarray_item:Nw

. 23223, 23227, 23232
__intarray_item:w 23017, 23043
__intarray_item:wTF . . 23017, 23046
\l__intarray_loop_int

. . . . 22890, 23060, 23063, 23064,
23215, 23218, 23219, 23244, 23247,
23252, 23254, 23294, 23302, 23303

__intarray_new:N
. 22902, 22903, 22911,
23059, 23127, 23127, 23138, 23243

__intarray_range_to_clist:w . . .
. 23076, 23079

__intarray_range_to_clist:ww . . .
. 23273, 23277, 23283, 23289

__intarray_show:NN
. 23311, 23313, 23315

__intarray_signed_max_dim:n . . .
. 23151, 23151, 23210, 23211

\c__intarray_sp_dim
. 23125, 23132, 23172

__intarray_table 22931
\g__intarray_table_int

. 22893, 22906, 22907

Index 1590

__intarray_to_clist:Nn
. . . 1016, 23067, 23256, 23256, 23322

__intarray_to_clist:w
. . 23067, 23256, 23261, 23264, 23270

\interactionmode 504
\interlinepenalties 505
\interlinepenalty 285
ior commands:

\ior_close:N
. . . . 94, 95, 10241, 10282, 10282,
10293, 11658, 31401, 31435, 31505

\ior_get:NN
95–97, 99, 10339, 10339, 10343, 10419

\ior_get:NNTF 96, 10339, 10340
\ior_get_term:nN 99, 10373, 10373
\ior_if_eof:N 649, 10323
\ior_if_eof:NTF

98, 10323, 10345, 10365, 10405, 10424
\ior_if_eof_p:N 98, 10323
\ior_log:N . . . 95, 10294, 10296, 10297
\ior_log_list: 95, 10310, 10311
\ior_map_break: 98,

10388, 10388, 10389, 10391, 10406,
10413, 10425, 10431, 31336, 31431

\ior_map_break:n 98, 10388, 10390
\ior_map_inline:Nn

. 97, 10392, 10392, 11656
\ior_map_variable:NNn

. 97, 10418, 10418, 31333
\ior_new:N 94, 10210, 10210, 10211,

10212, 10213, 11221, 31105, 31470
\ior_open:Nn 94,

679, 10214, 10214, 10216, 10218,
10227, 31330, 31369, 31402, 31472

\ior_open:NnTF 94, 10215, 10218
\ior_shell_open:Nn

. 94, 372, 10260, 10260, 11645
\ior_show:N . . 95, 10294, 10294, 10295
\ior_show_list: 95, 10310, 10310
\ior_str_get:NN

95, 96, 99, 10352, 10352, 10363, 10421
\ior_str_get:NNTF . . . 96, 10352, 10353
\ior_str_get_term:nN 99, 10373, 10375
\ior_str_map_inline:Nn

97, 10392, 10394, 31395, 31424, 31497
\ior_str_map_variable:NNn

. 97, 10418, 10420
\g_tmpa_ior 102, 10212
\g_tmpb_ior 102, 10212

ior internal commands:
\l__ior_file_name_tl

. 10217, 10220, 10222
__ior_get:NN

. . 10339, 10341, 10348, 10374, 10393

__ior_get_term:NnN
. 10373, 10374, 10376, 10377

\l__ior_internal_tl
. . 10192, 10302, 10305, 10411, 10415

__ior_list:N
. 10310, 10310, 10311, 10312

__ior_map_inline:NNn
. 10392, 10393, 10395, 10396

__ior_map_inline:NNNn
. 10392, 10399, 10402

__ior_map_inline_loop:NNN
. 10392, 10405, 10409, 10416

__ior_map_variable:NNNn
. 10418, 10419, 10421, 10422

__ior_map_variable_loop:NNNn . . .
. 10418, 10424, 10427, 10434

__ior_new:N
645, 10228, 10228, 10232, 10233, 10245

__ior_new_aux:N 10232, 10236
__ior_open_stream:Nn

. 10239, 10243, 10247, 10251
__ior_shell_open:nN

. 10260, 10263, 10266, 10275
__ior_show:NN

. 10294, 10294, 10296, 10298
__ior_str_get:NN

. . 10352, 10354, 10368, 10376, 10395
\l__ior_stream_tl

. 10195, 10242, 10246, 10253
\g__ior_streams_prop

646, 10196, 10254, 10287, 10302, 10317
\g__ior_streams_seq

. 10194, 10242, 10288, 10289
\c__ior_term_ior 10193,

10210, 10284, 10290, 10326, 10383
\c__ior_term_noprompt_ior

. 10372, 10382
iow commands:

\iow_char:N 86, 100, 3488,
3491, 3492, 3516, 3517, 3524, 3525,
4594, 4595, 4602, 4604, 4606, 4608,
4610, 4612, 5256, 5257, 5991, 5998,
5999, 6000, 6124, 7950, 7953, 7954,
7959, 7993, 8002, 8006, 8011, 8031,
8033, 8034, 8036, 8039, 8041, 8046,
8048, 8050, 8055, 8059, 8062, 8063,
8066, 8068, 8072, 8074, 8080, 8082,
8086, 8088, 8092, 8097, 8099, 8141,
8143, 8148, 8150, 8156, 8161, 8166,
8170, 8180, 8183, 8187, 8188, 8192,
8200, 8271, 9855, 9858, 9859, 9891,
9919, 10077, 10600, 10600, 11715,
11717, 11718, 11719, 14743, 27801,
30862, 30864, 30865, 30868, 30870,

Index 1591

30871, 30874, 30876, 30877, 30878,
30882, 30889, 39288, 40158, 40159

\iow_close:N
. . 94, 95, 10492, 10526, 10526, 10537

\iow_indent:n 101,
658, 659, 8227, 9812, 9953, 10024,
10032, 10048, 10650, 10650, 10653,
10665, 10682, 10687, 14741, 15066,
15254, 23862, 23874, 38407, 38436,
38458, 38481, 38490, 38499, 38520

\l_iow_line_count_int
. 101, 102, 466, 659, 3990,
3994, 9350, 10601, 10691, 10696, 10734

\iow_log:N . . . 95, 10538, 10540, 10541
\iow_log:n 99,

370, 1972, 1972, 9550, 9557, 10593,
10593, 10594, 10595, 13316, 39296

\iow_log_list: 95, 10554, 10555
\iow_new:N

94, 10467, 10467, 10468, 10469, 10470
\iow_newline: 86, 99–101, 373, 623,

655, 734, 3940, 6046, 9372, 10599,
10599, 10679, 10688, 10694, 11574,
25594, 25595, 36752, 36753, 36754

\iow_now:Nn
99, 100, 8938, 10586, 10586, 10591,
10592, 10593, 10594, 10596, 10597

\iow_open:Nn . 94, 10483, 10483, 10489
\iow_shell_open:Nn

. 94, 372, 10510, 10510
\iow_shipout:Nn 99, 100,

655, 8970, 10569, 10569, 10571, 10572
\iow_shipout_e:Nn 99,

100, 10566, 10566, 10568, 38924, 38925
\iow_shipout_x:Nn

. 655, 38924, 38925, 38926
\iow_show:N . . 95, 10538, 10538, 10539
\iow_show_list: 95, 10554, 10554
\iow_term:n 99,

1972, 1974, 8261, 9384, 9540, 9545,
9563, 9589, 10593, 10596, 10597, 10598

\iow_wrap:nnnN
. 99–102, 633, 659, 734,
9348, 9351, 9363, 9521, 9555, 9561,
9568, 10642, 10648, 10653, 10665,
10668, 10668, 10702, 13300, 13316

\iow_wrap_allow_break: 101, 10639,
10639, 10642, 10648, 10681, 10686

\iow_wrap_allow_break:n 658
\c_log_iow

102, 650, 10438, 10528, 10593, 10594
\c_term_iow . . 102, 650, 651, 10438,

10467, 10528, 10534, 10596, 10597
\g_tmpa_iow 102, 10469

\g_tmpb_iow 102, 10469
iow internal commands:

\l__iow_file_name_tl
. 10482, 10485, 10487

__iow_indent:n
. 658, 10650, 10656, 10682

__iow_indent_error:n
. 658, 10650, 10662, 10687

\l__iow_indent_int 10618,
10732, 10750, 10862, 10879, 10887

\l__iow_indent_tl . . 10618, 10733,
10749, 10861, 10880, 10888, 10889

\l__iow_internal_tl
. 10437, 10546, 10549

\l__iow_line_break_bool
10622, 10728, 10856, 10870, 10878,

10886, 10894, 10896, 10901, 10903
\l__iow_line_part_tl

. . . . 661, 662, 664, 10620, 10730,
10742, 10763, 10821, 10824, 10855,
10869, 10871, 10877, 10885, 10908

\l__iow_line_target_int
. 664, 10604, 10690,
10692, 10695, 10857, 10862, 10897

\l__iow_line_tl 10620, 10729, 10746,
10836, 10852, 10868, 10869, 10877,
10885, 10907, 10908, 10913, 10915

__iow_list:N
. 10554, 10554, 10555, 10556

__iow_new:N
. . 10471, 10471, 10475, 10476, 10496

__iow_new_aux:N 10475, 10479
\l__iow_newline_tl 10603,

10688, 10689, 10691, 10694, 10912
\l__iow_one_indent_int

. 10605, 10879, 10887
\l__iow_one_indent_tl

. 657, 10605, 10880
__iow_open_stream:Nn

. . 10483, 10494, 10498, 10502, 10509
__iow_set_indent:n

. 656, 10605, 10608, 10617
__iow_shell_open:nN

. 10510, 10513, 10516, 10525
__iow_show:NN

. 10538, 10538, 10540, 10542
\l__iow_stream_tl

. 10448, 10493, 10497, 10504
\g__iow_streams_prop

654, 10449, 10505, 10531, 10546, 10561
\g__iow_streams_seq

. 10447, 10493, 10532, 10533
__iow_tmp:w 662, 10736,

10760, 10817, 10849, 10917, 10925

Index 1592

__iow_unindent:w
. . . . 656, 10605, 10607, 10615, 10889

__iow_use_i_delimit_by_s_-
stop:nw 10465, 10465, 10721

__iow_with:nNnn
. 10573, 10577, 10579, 10585

__iow_wrap_allow_break:
. 658, 10639, 10644, 10681

__iow_wrap_allow_break:n
. 10866, 10866

__iow_wrap_allow_break_error: . .
. 658, 10639, 10645, 10686

\c__iow_wrap_allow_break_marker_-
tl 10624, 10644

__iow_wrap_break:w
. 10803, 10817, 10819

__iow_wrap_break_end:w
. 662, 10817, 10826, 10846

__iow_wrap_break_first:w
. 10817, 10823, 10829

__iow_wrap_break_loop:w
. 10817, 10832, 10840, 10844

__iow_wrap_break_none:w
. 10817, 10831, 10834

__iow_wrap_chunk:nw
. 10734, 10736, 10738,
10872, 10873, 10881, 10890, 10897

__iow_wrap_do: . 10698, 10703, 10703
__iow_wrap_end:n 10892, 10899
__iow_wrap_end_chunk:w

. . . . 660, 10754, 10761, 10811, 10853
\c__iow_wrap_end_marker_tl

. 10624, 10708
__iow_wrap_fix_newline:w

. 10703, 10712, 10717, 10724
__iow_wrap_indent:n . . 10875, 10875
\c__iow_wrap_indent_marker_tl . . .

. 10624, 10658
__iow_wrap_line:nw 660,

663, 10748, 10752, 10761, 10761, 10860
__iow_wrap_line_aux:Nw

. 10761, 10771, 10777
__iow_wrap_line_end:NnnnnnnnN . .

. 10761, 10780, 10797
__iow_wrap_line_end:nw 662, 10761,

10802, 10805, 10837, 10838, 10847
__iow_wrap_line_loop:w

. 10761, 10765, 10768, 10774
__iow_wrap_line_seven:nnnnnnn . .

. 10761, 10792, 10796
\c__iow_wrap_marker_tl

. 657, 660, 10624, 10760
__iow_wrap_newline:n . 10892, 10892

\c__iow_wrap_newline_marker_tl . .
. 659, 10624, 10723

__iow_wrap_next:nw
. . 10736, 10743, 10757, 10815, 10857

__iow_wrap_next_line:w
. 10809, 10850, 10850

__iow_wrap_start:w
. 10703, 10715, 10726

__iow_wrap_store_do:n
. . 10808, 10895, 10902, 10905, 10905

\l__iow_wrap_tl
. 659, 664, 665, 10623,
10685, 10700, 10705, 10707, 10710,
10712, 10715, 10731, 10909, 10911

__iow_wrap_trim:N . . . 665, 10838,
10869, 10895, 10902, 10917, 10919

__iow_wrap_trim:w 10917, 10920, 10921
__iow_wrap_trim_aux:w

. 10917, 10922, 10923
__iow_wrap_unindent:n . 10875, 10883
\c__iow_wrap_unindent_marker_tl .

. 10624, 10660
\itshape . 34410

J
\j 33778, 34473, 34643, 34722
\jcharwidowpenalty 1156
\jfam . 1157
\jfont . 1158
\jis . 1159
\jobname . 286

K
\k 32178, 34497, 34521, 34596,

34597, 34614, 34615, 34637, 34638,
34639, 34694, 34695, 34720, 34721

\kanjiskip 1160
\kansuji . 1161
\kansujichar 1162
\kcatcode . 1163
\kchar . 1202
\kchardef . 1203
\kern . 287
kernel internal commands:

__kernel_backend_align_begin: . 377
__kernel_backend_align_end: . . 377
\g__kernel_backend_header_bool . 377
__kernel_backend_literal:n . . . 377
__kernel_backend_literal_pdf:n 377
__kernel_backend_literal_-

postscript:n 377
__kernel_backend_literal_svg:n 377
__kernel_backend_matrix:n 377
__kernel_backend_postscript:n . 377

Index 1593

__kernel_backend_scope_begin: . 377
__kernel_backend_scope_end: . . 377
__kernel_chk_cs_exist:N

. 369, 1484,
39202, 39203, 39204, 39220, 39260,
39741, 39810, 39814, 39818, 39822

__kernel_chk_defined:NTF
. 370, 2271, 2271, 2290,
8355, 10300, 10544, 13285, 13320,
18421, 18473, 23317, 30451, 30468

__kernel_chk_expr:nNnN
. . 370, 1486, 39301, 39303, 39312,
39313, 39929, 39989, 40037, 40042,
40072, 40078, 40096, 40110, 40114,
40118, 40126, 40130, 40134, 40147

__kernel_chk_flag_exist:NN
. 369, 39202,
39205, 39229, 39261, 39729, 39755

__kernel_chk_if_free_cs:N
. 620, 905,
1976, 1976, 1984, 1985, 1991, 2055,
8282, 12134, 12140, 13491, 16392,
16720, 17635, 17656, 19444, 19446,
19456, 20081, 20087, 20863, 21292,
21383, 22905, 23129, 30292, 30298,
30507, 30527, 30783, 34755, 39777

__kernel_chk_tl_type:NnnTF
. . . 370, 846, 895, 946, 948, 7260,
13318, 13318, 14201, 14208, 17507,
19137, 20751, 20831, 20841, 25586

__kernel_chk_var_exist:N . . 369,
1484, 39202, 39202, 39211, 39247,
39253, 39259, 39513, 39533, 39534

__kernel_chk_var_global:N
. 369, 1484,
39202, 39207, 39250, 39263, 39632

__kernel_chk_var_local:N
. 369, 1484,
39202, 39206, 39244, 39262, 39552

__kernel_chk_var_scope:NN
. 369, 1484, 39202,
39208, 39239, 39264, 39713, 39745,
39749, 39754, 39760, 39764, 39768

__kernel_codepoint_case:nn
. . . . 376, 14155, 31437, 31437, 32665

__kernel_codepoint_data:nn
376, 31071, 31343, 31343, 31374, 31457

__kernel_codepoint_to_bytes:n . .
. 370, 15523,
30928, 30960, 30988, 30988, 39063

\l__kernel_color_stack_int 378
__kernel_cs_parm_from_arg_-

count:nnTF
. 370, 1638, 2072, 2072, 2119

__kernel_debug_log:n
. . 370, 1486, 39293, 39295, 39299,
39300, 39774, 39783, 39796, 39804

__kernel_dependency_version_-
check:Nn 371, 11624, 11624

__kernel_dependency_version_-
check:nn . 371, 11624, 11625, 11626

__kernel_deprecation_code:nn . . .
. 371, 1472, 1487,
1580, 1582, 38867, 38893, 38900, 38901

__kernel_deprecation_error:Nnn .
. 1472, 38870, 38903, 38903

__kernel_exp_not:w . . . 371, 420,
451, 468, 721, 741, 945, 2667, 2667,
2669, 2671, 2673, 2676, 2681, 4070,
12141, 12167, 12168, 12175, 12176,
12190, 12192, 12194, 12196, 12208,
12213, 12218, 12224, 12225, 12232,
12233, 12239, 12244, 12249, 12255,
12256, 12263, 12264, 12280, 12284,
12289, 12295, 12296, 12303, 12304,
12308, 12312, 12317, 12323, 12324,
12331, 12332, 12510, 12860, 12865,
12919, 12924, 12933, 13128, 13291,
13369, 13375, 13390, 13408, 13446,
13497, 13502, 13507, 13512, 17782,
20729, 20744, 21462, 30914, 30953,
30967, 30984, 31836, 32220, 34177

\l__kernel_expl_bool
. 105, 108, 122, 135, 1388

\c__kernel_expl_date_tl
685, 1388, 11628, 11631, 11667, 11671

__kernel_file_input_pop:
. 371, 11433, 11473

__kernel_file_input_push:n
. 371, 11433, 11467

__kernel_file_missing:n
. . . . 371, 10215, 11428, 11428, 11437

__kernel_file_name_quote:n
. 646, 10258, 10507,
11045, 11045, 11086, 11449, 11495

__kernel_file_name_sanitize:n . .
. 371, 680, 10486, 10971,
10971, 11100, 11431, 11489, 11508

__kernel_group_show:NN
. 2312, 2313, 2315, 2316

__kernel_if_debug:TF
. . . . 1565, 1565, 38881, 40192, 40192

__kernel_int_add:nnn
. 371, 17626, 17626, 29494

__kernel_intarray_gset:Nnn
. 372, 1014, 1016,
1019, 6597, 6703, 6706, 7404, 7476,
7478, 7484, 7492, 7494, 7497, 7618,

Index 1594

7620, 7624, 7626, 7638, 7641, 22993,
22994, 23064, 23134, 23146, 23171,
23171, 23186, 23254, 23302, 30200,
30201, 30203, 30207, 30208, 30209,
30530, 30531, 30565, 30568, 31281

__kernel_intarray_gset_range_-
from_clist:Nnn 372,
6766, 23091, 23092, 23292, 23292

__kernel_intarray_item:Nn . 372,
1015, 1020, 1202, 4316, 6714, 6741,
6825, 6826, 6850, 6851, 6858, 6865,
6922, 6926, 6945, 7481, 7672, 7891,
23017, 23042, 23223, 23223, 23235,
23269, 23288, 27781, 27787, 27790,
27793, 28526, 28529, 28532, 28535,
28538, 28541, 28544, 28547, 28550,
30249, 30250, 30251, 30623, 30626

__kernel_intarray_range_to_-
clist:Nnn 372,
6695, 23076, 23077, 23273, 23273

__kernel_ior_open:Nn 372,
646, 10222, 10239, 10239, 10250, 10273

__kernel_iow_open:Nn
372, 10483, 10487, 10490, 10501, 10523

__kernel_iow_with:Nnn . 373, 623,
655, 734, 9385, 9387, 9591, 9593,
10573, 10573, 10588, 13305, 13307

__kernel_kern:n 373, 1388, 34751,
34751, 35123, 35414, 35423, 35445,
35447, 35496, 35498, 36103, 36361,
36366, 36448, 36449, 36727, 36728

\l__kernel_keyval_allow_blank_-
keys_bool 931,
20274, 20280, 20282, 21456, 21617

__kernel_msg_error:nnn . . 9762, 9768
__kernel_msg_error:nnnn . 9762, 9770
__kernel_msg_error:nnnnn 9762, 9772
__kernel_msg_expandable_-

error:nnn 9774, 9774, 9776
__kernel_msg_expandable_-

error:nnnn 9774, 9778
__kernel_msg_info:nnnn . . 9762, 9762
__kernel_msg_log_eval:Nn

. 373, 8348, 9753, 9755,
18370, 21281, 21374, 21442, 25658

__kernel_msg_new:nnn 9758, 9760, 9986
__kernel_msg_new:nnnn . . . 9758, 9758
__kernel_msg_show_eval:Nn

. 373, 8346, 9753, 9753,
18366, 21277, 21370, 21438, 25656

__kernel_msg_warning:nnn 9762, 9764
__kernel_msg_warning:nnnn 9762, 9766
__kernel_patch:Nn

. . . . 39903, 39925, 39986, 40034,

40069, 40093, 40107, 40123, 40138
__kernel_patch:nnn

1489, 39416, 39417, 39512, 39531,
39551, 39631, 39712, 39728, 39740,
39744, 39748, 39752, 39759, 39763,
39767, 39771, 39793, 39801, 39826,
39836, 39843, 39850, 39863, 39867,
39871, 39878, 39885, 39889, 39896

__kernel_patch_aux:Nn . 39907, 39909
__kernel_patch_aux:nnn

. 39416, 39421, 39423
__kernel_patch_cond:nn . . 40065,

40086, 40088, 40089, 40104, 40105
__kernel_patch_deprecation:nnNNpn

1472, 38863, 38863, 38921, 38924,
38944, 38947, 38950, 38954, 38956,
38960, 38966, 38976, 38978, 38980,
38982, 38985, 38987, 38989, 38991,
38993, 38995, 38997, 38999, 39001,
39005, 39007, 39009, 39011, 39013,
39016, 39019, 39022, 39026, 39029,
39032, 39035, 39038, 39041, 39044,
39046, 39048, 39050, 39055, 39057,
39059, 39062, 39064, 39066, 39068,
39070, 39072, 39074, 39076, 39078,
39080, 39082, 39084, 39086, 39088,
39090, 39092, 39094, 39098, 39100,
39111, 39117, 39123, 39131, 39133

__kernel_patch_eval:nn
. . . . 39921, 39937, 39949, 39960,
39971, 39982, 39997, 40001, 40011,
40018, 40025, 40030, 40050, 40057

__kernel_patch_weird:nnn
. 1490, 39416, 39479,
39779, 39809, 39813, 39817, 39821

__kernel_patch_weird_aux:nnn . . .
. 39416, 39483, 39485

__kernel_pdf_object_id:n
. 373, 38582, 38599

__kernel_pdf_object_id_indexed:nn
. 373, 38661, 38679

__kernel_prefix_arg_replacement:wN
. 2333, 2335, 2343, 2352, 2361

\g__kernel_prg_map_int
. 373, 463, 718,
861, 957, 1388, 3889, 3891, 3900,
4017, 4019, 4027, 4039, 8623, 10398,
10400, 10407, 12757, 12759, 12761,
12766, 13718, 13720, 13724, 13729,
17295, 17296, 17302, 17303, 17353,
17355, 17357, 17359, 17978, 17981,
17989, 17992, 18003, 18887, 18889,
18891, 18896, 20678, 20679, 20684,
20686, 21116, 21119, 21123, 21126,

Index 1595

21137, 25939, 25942, 25946, 25949,
25960, 34163, 34165, 34167, 34169

__kernel_primitive:NN
. 343, 143, 143, 148,
149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197,
198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218,
219, 220, 221, 222, 223, 224, 225,
226, 227, 228, 229, 230, 231, 232,
233, 234, 235, 236, 237, 238, 239,
240, 241, 242, 243, 244, 245, 246,
247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267,
268, 269, 270, 271, 272, 273, 274,
275, 276, 277, 278, 279, 280, 281,
282, 283, 284, 285, 286, 287, 288,
289, 290, 291, 292, 293, 294, 295,
296, 297, 298, 299, 300, 301, 302,
303, 304, 305, 306, 307, 308, 309,
310, 311, 312, 313, 314, 315, 316,
317, 318, 319, 320, 321, 322, 323,
324, 325, 326, 327, 328, 329, 330,
331, 332, 333, 334, 335, 336, 337,
338, 339, 340, 341, 342, 343, 344,
345, 346, 347, 348, 349, 350, 351,
352, 353, 354, 355, 356, 357, 358,
359, 360, 361, 362, 363, 364, 365,
366, 367, 368, 369, 370, 371, 372,
373, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384, 385, 386,
387, 388, 389, 390, 391, 392, 393,
394, 395, 396, 397, 398, 399, 400,
401, 402, 403, 404, 405, 406, 407,
408, 409, 410, 411, 412, 413, 414,
415, 416, 417, 418, 419, 420, 421,
422, 423, 424, 425, 426, 427, 428,
429, 430, 431, 432, 433, 434, 435,
436, 437, 438, 439, 440, 441, 442,
443, 444, 445, 446, 447, 448, 449,
450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 463,
464, 465, 466, 467, 468, 469, 470,
471, 472, 473, 474, 475, 476, 477,
478, 479, 480, 481, 482, 483, 484,
485, 486, 487, 488, 489, 490, 491,
492, 493, 494, 495, 496, 497, 498,

499, 500, 501, 502, 503, 504, 505,
506, 507, 508, 509, 510, 511, 512,
513, 514, 515, 516, 517, 518, 519,
520, 521, 522, 523, 524, 525, 526,
527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540,
541, 542, 543, 544, 545, 546, 547,
548, 549, 550, 551, 552, 553, 554,
555, 556, 557, 558, 559, 560, 561,
562, 563, 565, 566, 567, 568, 569,
570, 571, 572, 573, 574, 576, 577,
578, 579, 580, 581, 582, 583, 584,
585, 586, 587, 588, 589, 590, 591,
592, 593, 594, 595, 596, 597, 598,
599, 600, 601, 602, 603, 604, 605,
606, 607, 609, 611, 613, 614, 615,
616, 617, 618, 619, 620, 621, 622,
623, 624, 625, 626, 628, 629, 630,
631, 632, 633, 634, 635, 636, 637,
638, 639, 640, 641, 642, 643, 644,
645, 646, 647, 648, 649, 650, 651,
652, 653, 654, 655, 656, 657, 658,
659, 660, 661, 662, 663, 664, 665,
666, 667, 668, 669, 670, 671, 672,
673, 674, 675, 676, 677, 678, 679,
680, 681, 682, 683, 684, 689, 698,
699, 700, 701, 702, 703, 705, 706,
707, 708, 709, 710, 711, 712, 713,
714, 715, 717, 719, 721, 722, 723,
725, 726, 727, 728, 729, 730, 732,
734, 735, 737, 739, 740, 741, 742,
743, 744, 745, 746, 747, 748, 749,
750, 751, 752, 753, 754, 755, 756,
757, 758, 759, 760, 761, 762, 763,
764, 766, 768, 769, 770, 771, 772,
773, 774, 775, 776, 777, 778, 779,
780, 781, 782, 783, 785, 786, 788,
789, 790, 791, 792, 793, 794, 795,
796, 797, 799, 800, 802, 803, 804,
805, 806, 808, 809, 810, 811, 812,
813, 814, 815, 816, 817, 818, 819,
820, 821, 822, 823, 825, 826, 827,
828, 829, 830, 831, 832, 833, 834,
835, 836, 837, 838, 839, 840, 841,
842, 843, 844, 845, 846, 847, 848,
849, 850, 851, 852, 853, 854, 855,
856, 857, 858, 859, 860, 861, 862,
863, 864, 865, 866, 867, 868, 869,
870, 871, 872, 873, 874, 875, 877,
879, 880, 881, 882, 883, 884, 885,
886, 887, 888, 889, 890, 891, 892,
893, 894, 895, 896, 897, 898, 899,
900, 901, 902, 903, 904, 905, 906,
907, 908, 909, 910, 911, 912, 913,

Index 1596

914, 915, 916, 917, 918, 919, 921,
922, 923, 924, 925, 926, 927, 928,
929, 930, 931, 932, 933, 934, 935,
936, 937, 938, 939, 941, 943, 945,
946, 947, 948, 949, 950, 951, 952,
953, 954, 955, 956, 957, 958, 959,
960, 961, 962, 963, 964, 965, 966,
967, 968, 969, 970, 971, 972, 973,
974, 975, 976, 977, 978, 979, 980,
981, 982, 983, 984, 985, 986, 987,
988, 989, 991, 993, 994, 995, 996,
998, 999, 1000, 1001, 1003, 1004,
1006, 1008, 1009, 1010, 1011, 1012,
1014, 1016, 1017, 1018, 1019, 1021,
1022, 1023, 1024, 1025, 1026, 1027,
1028, 1029, 1030, 1031, 1032, 1033,
1034, 1035, 1036, 1037, 1038, 1039,
1040, 1041, 1042, 1043, 1044, 1045,
1046, 1047, 1048, 1049, 1050, 1051,
1052, 1053, 1054, 1055, 1056, 1057,
1058, 1060, 1062, 1063, 1065, 1067,
1068, 1069, 1070, 1072, 1073, 1074,
1076, 1078, 1080, 1081, 1082, 1083,
1084, 1085, 1086, 1087, 1088, 1089,
1090, 1091, 1093, 1095, 1096, 1097,
1098, 1099, 1100, 1101, 1102, 1103,
1104, 1105, 1106, 1107, 1108, 1109,
1110, 1111, 1113, 1115, 1116, 1117,
1118, 1119, 1120, 1121, 1122, 1123,
1124, 1125, 1126, 1127, 1128, 1129,
1130, 1131, 1132, 1133, 1134, 1135,
1136, 1137, 1138, 1139, 1140, 1141,
1142, 1143, 1144, 1145, 1146, 1147,
1148, 1149, 1150, 1151, 1152, 1153,
1154, 1155, 1156, 1157, 1158, 1159,
1160, 1161, 1162, 1163, 1164, 1165,
1166, 1167, 1168, 1169, 1170, 1171,
1172, 1173, 1174, 1175, 1176, 1177,
1178, 1179, 1180, 1182, 1184, 1185,
1186, 1187, 1188, 1190, 1191, 1192,
1193, 1194, 1195, 1196, 1197, 1198,
1199, 1200, 1201, 1202, 1203, 1204,
1205, 1206, 1207, 1208, 1209, 1210,
1211, 1212, 1213, 1214, 1215, 1216

__kernel_quark_new_conditional:Nn
. 375, 4359, 10966, 12353,
16492, 16512, 19170, 21709, 31513

__kernel_quark_new_test:N
. 374, 817, 818, 820, 821,
8324, 10969, 10970, 12352, 13456,
13457, 16492, 16492, 17543, 17544,
20020, 31518, 31519, 34174, 39149

__kernel_randint:n
. 375, 1229, 1233,

29301, 29301, 29313, 29471, 29556
__kernel_randint:nn

. . . . 375, 29475, 29479, 29479, 29554
\c__kernel_randint_max_int

. . . . 1233, 1388, 29300, 29469, 29553
__kernel_register_log:N

. 375, 2280,
2284, 2286, 2287, 18367, 21278,
21279, 21371, 21372, 21439, 21440

__kernel_register_show:N
. 375, 733, 2280, 2280,
2282, 2283, 18363, 21274, 21367, 21435

__kernel_register_show_aux:NN . .
. 2280, 2281, 2285, 2288

__kernel_register_show_aux:nNN .
. 2280, 2292, 2296

__kernel_show:NN
. 2298, 2298, 2301, 2304

__kernel_str_to_other:n 376, 747,
749, 754, 13774, 13774, 13826, 13887

__kernel_str_to_other_fast:n . . .
. . . 376, 4568, 5779, 10611, 10707,
13725, 13745, 13797, 13797, 14415

__kernel_str_to_other_fast_-
loop:w 13797

__kernel_sys_configuration_-
load:n 608, 8787, 8853

__kernel_sys_everyjob:
. 375, 8973, 8973, 9167

__kernel_tl_gset:Nn
. . . 376, 570, 571, 699, 741, 3223,
3771, 4567, 5777, 7513, 7524, 7588,
7732, 9191, 12130, 12131, 12173,
12194, 12196, 12238, 12243, 12248,
12253, 12261, 12308, 12311, 12316,
12321, 12329, 12457, 12461, 12874,
13148, 13422, 13488, 13501, 13511,
13524, 13528, 14349, 14365, 14415,
14426, 14545, 14597, 14608, 14766,
14815, 14868, 14874, 15107, 15307,
15464, 16756, 16761, 16779, 16783,
16824, 16890, 16930, 16959, 16965,
17024, 17173, 17216, 17405, 17415,
18560, 18587, 18606, 18655, 18691,
18734, 18773, 25550, 39550, 39689

__kernel_tl_set:Nn 376, 4457, 5347,
5352, 5623, 5692, 7667, 7700, 10246,
10485, 10497, 10610, 10685, 10688,
10689, 10705, 10710, 10868, 10888,
10907, 10909, 11213, 11340, 11355,
12130, 12130, 12165, 12190, 12192,
12207, 12212, 12217, 12222, 12230,
12280, 12283, 12288, 12293, 12301,
12455, 12459, 12872, 13146, 13417,

Index 1597

13434, 13486, 13496, 13506, 13522,
13526, 14304, 16746, 16751, 16777,
16781, 16803, 16822, 16882, 16928,
16957, 16963, 17022, 17129, 17154,
17171, 17185, 17213, 17403, 17413,
18558, 18585, 18604, 18653, 18689,
18732, 18771, 22356, 22357, 22358,
22462, 22669, 25548, 39194, 39337,
39339, 39341, 39549, 39608, 39830

__kernel_tl_to_str:w
. 376, 716, 741,
1415, 1417, 12601, 12695, 12807,
13486, 13488, 13492, 13497, 13502,
13507, 13512, 13700, 13768, 16490

keys commands:
\l_keys_choice_int . 246, 249, 251,

253, 21677, 21894, 21897, 21902, 21903
\l_keys_choice_tl

. . . . 246, 249, 251, 253, 21677, 21901
\keys_define:nn

. 245, 9951, 21725, 21725, 21727
\keys_if_choice_exist:nnn 22778
\keys_if_choice_exist:nnnTF

. 257, 22778
\keys_if_choice_exist_p:nnn

. 257, 22778
\keys_if_exist:nn 22770, 22777
\keys_if_exist:nnTF

. 257, 1008, 22770, 22795
\keys_if_exist_p:nn 257, 22770
\l_keys_key_str

. 254, 256, 21681, 21968,
21969, 22471, 22472, 22568, 22572,
22597, 22600, 22601, 22649, 22706

\l_keys_key_tl
. 21682, 21968, 21969, 22472

\keys_log:nn 257, 22786, 22788
\l_keys_path_str

. . . . 254, 256, 983, 21686, 21754,
21772, 21791, 21808, 21844, 21846,
21848, 21851, 21863, 21866, 21870,
21878, 21880, 21881, 21884, 21899,
21915, 21928, 21932, 21943, 21946,
21954, 21960, 21964, 21967, 21971,
21982, 21984, 21986, 21989, 22000,
22009, 22014, 22016, 22031, 22041,
22047, 22051, 22066, 22075, 22117,
22128, 22171, 22462, 22470, 22508,
22511, 22547, 22551, 22556, 22565,
22579, 22581, 22582, 22586, 22594,
22629, 22659, 22682, 22694, 22703

\l_keys_path_tl . 21687, 21791, 21870
\keys_precompile:nnN 256, 22442, 22442

\keys_set:nn . . 245, 247, 248, 253,
254, 256, 22374, 22374, 22384, 22446

\keys_set_exclude_groups:nnn . . .
256, 22402, 22416, 22421, 38944, 38945

\keys_set_exclude_groups:nnnN . . .
256, 22402, 22413, 22415, 38947, 38948

\keys_set_exclude_groups:nnnnN . .
. 256, 22402, 22402,
22412, 22414, 22418, 38950, 38951

\keys_set_filter:nnn
. 38944, 38945, 38946

\keys_set_filter:nnnN
. 38944, 38948, 38949

\keys_set_filter:nnnnN
. 38944, 38951, 38952

\keys_set_groups:nnn
. 256, 22402, 22436, 22441

\keys_set_groups:nnnN
. 256, 22402, 22433, 22435

\keys_set_groups:nnnnN
256, 22402, 22422, 22432, 22434, 22438

\keys_set_known:nn
. 255, 22385, 22399, 22401

\keys_set_known:nnN
. 255, 22385, 22396, 22398

\keys_set_known:nnnN
255, 22385, 22385, 22395, 22397, 22400

\keys_show:nn 257, 22786, 22786
\l_keys_usage_load_prop

. . . . 253, 21703, 22085, 22092, 22099
\l_keys_usage_preamble_prop

. . . . 253, 21703, 22087, 22094, 22101
\l_keys_value_tl 254, 256,

21697, 21970, 21971, 22066, 22550,
22554, 22560, 22571, 22582, 22601,
22621, 22625, 22651, 22661, 22689

keys internal commands:
__keys_bool_set:Nn

. 21834, 21834, 21836,
21855, 22143, 22145, 22147, 22149

__keys_bool_set:Nnnn
. 21834, 21835, 21838, 21840

__keys_bool_set_inverse:Nn
. 21834, 21837,
21839, 22151, 22153, 22155, 22157

__keys_check_forbidden: 22034, 22061
__keys_check_groups: . 22512, 22520
__keys_check_required: 22034, 22070
\c__keys_check_root_str . . 21670,

22041, 22047, 22051, 22581, 22600
__keys_choice_find:n

. 21857, 22700, 22700, 22716
__keys_choice_find:nn

. 22700, 22703, 22705, 22709

Index 1598

__keys_choice_make: 21843,
21856, 21856, 21888, 21981, 22159

__keys_choice_make:N
. 21856, 21857, 21859, 21860

__keys_choice_make_aux:N
. 21856, 21872, 21874, 21876

__keys_choices_make:nn
. 21887, 21887,
22161, 22163, 22165, 22167, 22169

__keys_choices_make:Nnn
. 21887, 21888, 21890, 21891

__keys_cmd_set:nn . 21844, 21846,
21898, 21908, 21908, 21910, 21982,
21984, 21986, 22016, 22128, 22171

__keys_cmd_set_direct:nn
. . . . 21848, 21880, 21881, 21908,
21909, 21911, 22000, 22008, 39799

\c__keys_code_root_str
. 1005, 21670, 21912, 21915,
21964, 22579, 22597, 22613, 22639,
22711, 22773, 22782, 22803, 39795

__keys_cs_set:NNpn 21913,
21913, 21922, 22181, 22183, 22185,
22187, 22189, 22191, 22193, 22195

__keys_cs_undefine:N . . . 21717,
21717, 21927, 21942, 22030, 22050

__keys_default_inherit:
. 22543, 22557, 22562

\c__keys_default_root_str
. . . . 21670, 21928, 21932, 22547,
22551, 22568, 22572, 22618, 22622

__keys_default_set:n
. . . . 21853, 21923, 21923, 21991,
22197, 22199, 22201, 22203, 22205

__keys_define:n . 21731, 21735, 21735
__keys_define:nn 21731, 21735, 21740
__keys_define:nnn

. 21725, 21726, 21728, 21734
__keys_define_aux:nn

. 21735, 21738, 21743, 21745
__keys_define_code:n

. 21749, 21799, 21799
__keys_define_code:nnn

. 21799, 21803, 21813
__keys_define_code:w

. 21799, 21815, 21822
\l__keys_exclude_bool

. . . . 21692, 22352, 22380, 22391,
22408, 22428, 22515, 22533, 22538

__keys_execute: 22476,
22516, 22535, 22539, 22577, 22577

__keys_execute:nn
21971, 22577, 22582, 22601, 22625,

22633, 22634, 22635, 22712, 22713

__keys_execute_inherit:
. 21961, 22577, 22587, 22591

__keys_execute_unknown:
. . . 1004, 22577, 22588, 22605, 22607

__keys_find_key_module:wNN
. . 21966, 22014, 22450, 22470, 22480

__keys_find_key_module_auxi:Nw .
. . 22450, 22482, 22485, 22493, 22498

__keys_find_key_module_auxii:Nw
. 22450, 22482, 22489, 22490

__keys_find_key_module_auxiii:Nn
. 22450

__keys_find_key_module_auxiii:Nw
. 22493, 22495

__keys_find_key_module_auxiv:Nw
. 22450, 22483, 22500, 22502

\l__keys_groups_clist 1002, 21679,
21939, 21940, 21947, 22510, 22525

\c__keys_groups_root_str
. . 21670, 21943, 21946, 22508, 22511

__keys_groups_set:n
. 21937, 21937, 22223

__keys_inherit:n 21950, 21950, 22225
\l__keys_inherit_clist

. 21680, 21953, 21955
\c__keys_inherit_root_str

. 21670, 21954,
21960, 22556, 22565, 22586, 22594

\l__keys_inherit_str 21688,
21963, 22469, 22599, 22702, 22706

__keys_initialise:n 21957, 21957,
22227, 22229, 22231, 22233, 22235

__keys_legacy_if_inverse:nn . 21975
__keys_legacy_if_inverse:nnnn 21975
__keys_legacy_if_set:nn

. 21975, 21975, 22245, 22247
__keys_legacy_if_set:nnnn

. 21976, 21978, 21979
__keys_legacy_if_set_inverse:nn

. 21977, 22249, 22251
__keys_meta_make:n

. 21998, 21998, 22253
__keys_meta_make:nn

. 21998, 22006, 22255
\l__keys_module_str 21683,

21726, 21730, 21732, 21774, 22003,
22114, 22121, 22367, 22370, 22372,
22453, 22458, 22468, 22471, 22477,
22613, 22618, 22622, 22625, 22629

__keys_multichoice_find:n
. 21859, 22700, 22715

__keys_multichoice_make:
. 21856, 21858, 21890, 22257

Index 1599

__keys_multichoices_make:nn . . .
. 21887, 21889,
22259, 22261, 22263, 22265, 22267

\l__keys_no_value_bool
. 21684, 21737, 21742,
21801, 22063, 22072, 22452, 22457,
22545, 22615, 22650, 22660, 22688

\l__keys_only_known_bool
. 21685, 22351,
22379, 22390, 22407, 22427, 22609

__keys_parent:n
21863, 21866, 21870, 21960, 22556,

22565, 22586, 22594, 22717, 22717
__keys_parent_auxi:w

. . 22717, 22719, 22722, 22728, 22732
__keys_parent_auxii:w

. 22717, 22719, 22726
__keys_parent_auxiii:n

. 22717, 22728, 22730
__keys_parent_auxiv:w

. 22717, 22720, 22734
__keys_precompile:n

. 21710, 21710, 21909,
21917, 22816, 22818, 22824, 22825

\l__keys_precompile_bool
. 21701, 21712, 22444, 22447

\l__keys_precompile_tl
. 21701, 21713, 22445, 22448

__keys_prop_put:Nn 22011, 22011,
22024, 22277, 22279, 22281, 22283

__keys_property_find:n
. 21747, 21758, 21758

__keys_property_find_auxi:w . . .
. 21758, 21760, 21764, 21778

__keys_property_find_auxii:w . . .
. 21758, 21761, 21768, 21769

__keys_property_find_auxiii:w . .
. 21758, 21778, 21781, 21786

__keys_property_find_auxiv:w . . .
. . . . 983, 21758, 21779, 21785, 21787

__keys_property_find_err:w
. . 21758, 21762, 21770, 21793, 21794

\l__keys_property_str . . . 21691,
21748, 21751, 21754, 21790, 21796,
21804, 21805, 21808, 21811, 21816

\c__keys_props_root_str
. 21676, 21748, 21804,
21805, 21811, 22142, 22144, 22146,
22148, 22150, 22152, 22154, 22156,
22158, 22160, 22162, 22164, 22166,
22168, 22170, 22172, 22174, 22176,
22178, 22180, 22182, 22184, 22186,
22188, 22190, 22192, 22194, 22196,
22198, 22200, 22202, 22204, 22206,

22208, 22210, 22212, 22214, 22216,
22218, 22220, 22222, 22224, 22226,
22228, 22230, 22232, 22234, 22236,
22238, 22240, 22242, 22244, 22246,
22248, 22250, 22252, 22254, 22256,
22258, 22260, 22262, 22264, 22266,
22268, 22270, 22272, 22274, 22276,
22278, 22280, 22282, 22284, 22286,
22288, 22290, 22292, 22294, 22296,
22298, 22300, 22302, 22304, 22306,
22308, 22310, 22312, 22314, 22316,
22318, 22320, 22322, 22324, 22326,
22328, 22330, 38928, 38930, 38932,
38934, 38936, 38938, 38940, 38942

__keys_quark_if_no_value:N . . 21709
__keys_quark_if_no_value:NTF . . .

. 21709, 22645
__keys_quark_if_no_value_p:N . 21709
\l__keys_relative_tl 21689, 22337,

22343, 22358, 22645, 22655, 22669,
22670, 22674, 22675, 22683, 22695

__keys_reset_bool:N
. . 22332, 22351, 22352, 22353, 22360

__keys_reset_var:N 22332
\l__keys_selective_bool

. 21692, 22353,
22381, 22392, 22409, 22429, 22474

\l__keys_selective_clist . . 1002,
21694, 22336, 22342, 22357, 22523

__keys_set:nn
. . 22002, 22009, 22332, 22349, 22366

__keys_set:nnn . 22332, 22367, 22368
__keys_set:nnnnNn 22332,

22332, 22376, 22387, 22404, 22424
__keys_set:nnnnnnnNn

. 22332, 22334, 22339
__keys_set_keyval:n

. 22371, 22450, 22450
__keys_set_keyval:nn

. 22371, 22450, 22455
__keys_set_keyval:nnn

. . 22450, 22453, 22458, 22460, 22479
__keys_set_selective:

. 22450, 22475, 22506
__keys_show:n . . 22786, 22799, 22812
__keys_show:Nnn

. 22786, 22787, 22789, 22790
__keys_show:Nw . 22786, 22831, 22835
__keys_show:w . . 22786, 22814, 22823
__keys_store_unused: . . . 22517,

22534, 22540, 22577, 22610, 22643
__keys_store_unused:w

. 22673, 22694, 22699

Index 1600

__keys_store_unused_aux:
. 22577, 22664, 22667

__keys_tmp:w 22738, 22750
\l__keys_tmp_bool

. 21698, 22522, 22527, 22531
\l__keys_tmp_clist

. . 21695, 22377, 22400, 22419, 22439
\l__keys_tmpa_tl . . . 21698, 22015,

22114, 22115, 22119, 22120, 22122
\l__keys_tmpb_tl 21698,

22015, 22020, 22116, 22119, 22120
__keys_trim_spaces:n

. 983, 21730, 21775, 21899, 22370,
22466, 22670, 22711, 22712, 22737,
22740, 22773, 22782, 22793, 22804

__keys_trim_spaces_auxi:w
. . 22737, 22742, 22743, 22752, 22762

__keys_trim_spaces_auxii:w 22737,
22744, 22746, 22756, 22763, 22765

__keys_trim_spaces_auxiii:w . . .
. 22737, 22747, 22760, 22766

\c__keys_type_root_str
. 21670, 21863, 21866, 21878

__keys_undefine:
. 21952, 22025, 22025, 22325

\l__keys_unused_clist
. 21696, 22335, 22341,
22355, 22356, 22647, 22657, 22685

__keys_usage:n . 22079, 22079, 22327
__keys_usage:NN

. 22079, 22085, 22087,
22092, 22094, 22099, 22101, 22112

__keys_usage:w . 22079, 22117, 22124
__keys_value_or_default:n

. 22473, 22543, 22543
__keys_value_requirement:nn . . .

. 21934,
22034, 22034, 22139, 22329, 22331

__keys_variable_set:NnnN
. 22125, 22125,
22135, 22138, 22173, 22175, 22177,
22179, 22293, 22295, 22297, 22299,
22301, 22303, 22305, 22307, 22309,
22311, 22313, 22315, 22317, 22319,
22321, 22323, 38929, 38931, 38933,
38935, 38937, 38939, 38941, 38943

__keys_variable_set_required:NnnN
. 22125, 22136, 22141,
22207, 22209, 22211, 22213, 22215,
22217, 22219, 22221, 22237, 22239,
22241, 22243, 22269, 22271, 22273,
22275, 22285, 22287, 22289, 22291

keyval commands:
\keyval_parse:NNn 259,

978, 21460, 21470, 21584, 21731, 22371
\keyval_parse:nnn

. 258, 259, 931, 972,
977, 20281, 21460, 21460, 21470, 21585

keyval internal commands:
__keyval_blank_key_error:w

. 21591, 21600, 21613, 21615
__keyval_blank_true:w

. 21545, 21613, 21613
__keyval_clean_up_active:w

. 975, 21487,
21500, 21521, 21521, 21553, 21573

__keyval_clean_up_other:w
. . . . 975, 21526, 21531, 21542, 21542

__keyval_end_loop_active:w
. 21474, 21567, 21575

__keyval_end_loop_other:w
. 976, 21484, 21567, 21567

__keyval_if_blank:w
. . 21545, 21591, 21600, 21610, 21611

__keyval_if_empty:w
. 21610, 21610, 21611

__keyval_if_recursion_tail:w . . .
. 21473, 21483, 21610, 21612

__keyval_key:nn
. . . . 975, 21547, 21586, 21598, 21613

__keyval_loop_active:nnw
. 21465, 21471, 21471, 21574

__keyval_loop_other:nnw
. 973, 21475,
21481, 21481, 21557, 21565, 21577,
21596, 21605, 21614, 21615, 21620

__keyval_misplaced_equal_after_-
active_error:w
. . . . 974, 21494, 21498, 21549, 21549

__keyval_misplaced_equal_in_-
split_error:w
. 21505, 21510, 21514,
21518, 21534, 21539, 21549, 21559

__keyval_pair:nnnn
974, 975, 21520, 21541, 21586, 21589

__keyval_split_active:w . . . 973,
974, 21477, 21479, 21485, 21504, 21569

__keyval_split_active_auxi:w . . .
. . 21486, 21491, 21491, 21522, 21572

__keyval_split_active_auxii:w . .
. . . . 974, 21491, 21495, 21497, 21551

__keyval_split_active_auxiii:w .
. 974, 21491, 21501, 21502

__keyval_split_active_auxiv:w . .
. 974, 21491, 21506, 21509

Index 1601

__keyval_split_active_auxv:w . . .
. 21491, 21515, 21517

__keyval_split_other:w . . 21477,
21477, 21493, 21513, 21524, 21533

__keyval_split_other_auxi:w . . .
. . . . 975, 21525, 21528, 21528, 21543

__keyval_split_other_auxii:w . . .
. 21528, 21529, 21530

__keyval_split_other_auxiii:w . .
. 975, 21528, 21535, 21538

__keyval_tmp:w 976, 21458,
21582, 21587, 21608, 21629, 21667

__keyval_trim:nN
. 21501, 21520, 21529,
21541, 21547, 21613, 21628, 21631

__keyval_trim_auxi:w
. . 21628, 21633, 21642, 21645, 21650

__keyval_trim_auxii:w
. 21628, 21637, 21650

__keyval_trim_auxiii:w . . 21628,
21638, 21652, 21655, 21659, 21663

__keyval_trim_auxiv:w
. 21628, 21640, 21661

\knaccode . 672
\knbccode . 673
\knbscode . 674
\kuten . 1164

L
\L 32187, 33769, 34463
\l 32187, 33769, 34475
\label 31783, 31793, 34436
\language . 288
\LARGE . 34416
\Large . 34417
\large . 34420
\lastallocatedtoks 3184
\lastbox . 289
\lastkern . 290
\lastlinefit 506
\lastnamedcs 841
\lastnodechar 1165
\lastnodefont 1166
\lastnodesubtype 1167
\lastnodetype 507
\lastpenalty 291
\lastsavedboxresourceindex 939
\lastsavedimageresourceindex 941
\lastsavedimageresourcepages 943
\lastskip . 292
\lastxpos . 945
\lastypos . 946
\latelua . 842
\lateluafunction 843

\lccode 64, 65, 293
\leaders . 294
\left . 295
\leftghost . 844
\lefthyphenmin 296
\leftmarginkern 675
\leftskip . 297
legacy commands:

\legacy_if:n 12100
\legacy_if:nTF 111, 12100
.legacy_if_gset:n 248, 22244
\legacy_if_gset:nn . 111, 12117, 12122
\legacy_if_gset_false:n

. 111, 12109, 12115, 12124
.legacy_if_gset_inverse:n 248, 22244
\legacy_if_gset_true:n

. 111, 12109, 12113, 12124
\legacy_if_p:n 111, 12100
.legacy_if_set:n 248, 22244
\legacy_if_set:nn . . 111, 12117, 12117
\legacy_if_set_false:n

. 111, 12109, 12111, 12119
.legacy_if_set_inverse:n . 248, 22244
\legacy_if_set_true:n

. 111, 12109, 12109, 12119
\leqno . 298
\let 5, 140, 141, 299
\letcharcode 845
\letterspacefont 676
\limits 1436, 300
\LineBreak 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 62
\linedir . 846
\linedirection 847
\linepenalty 301
\lineskip . 302
\lineskiplimit 303
\linewidth 35696
\ln 27906, 27909
ln . 280
\localbrokenpenalty 848
\localinterlinepenalty 849
\localleftbox 854
\localrightbox 855
\loccount 10204, 10457
\loctoks 3156, 3157, 3183
logb . 280
\long 143, 304, 19626, 19630
\LongText 38, 76
\looseness . 305
\lower . 306
\lowercase 67, 307
\lpcode . 677

Index 1602

ltx.pdf.object commands:
ltx.pdf.object_id 38605

ltx.utils 109, 11826
ltx.utils.filedump 109, 11899
ltx.utils.filemd5sum 109, 11920
ltx.utils.filemoddate 109, 11929
ltx.utils.filesize 110, 11982
lua commands:

\lua_escape:n
109, 11763, 11765, 11770, 11771, 11785

\lua_load_module:n
. 109, 11772, 11773, 11796

\lua_now:n
. . . . 108, 109, 8666, 8675, 11764,
11765, 11765, 11766, 11786, 30725

\lua_shipout:n 108, 11765, 11768, 11796
\lua_shipout_e:n

. . . . 108, 11765, 11767, 11769, 11796
lua internal commands:

\l__lua_err_msg_str . . . 11772, 11778
__lua_escape:n . 11760, 11760, 11770
__lua_load_module_p:n . 11775, 12042
__lua_now:n 11760, 11761, 11765
__lua_shipout:n . 11760, 11762, 11767

\luabytecode 850
\luabytecodecall 851
luacmd . 11992
\luacopyinputnodes 852
\luadef . 853
\luaescapestring 856
\luafunction 857
\luafunctioncall 858
\luatexbanner 859
\luatexrevision 860
\luatexversion 10, 56, 861

M
\mag . 308
\mark . 309
\marks . 508
\mathaccent . 310
\mathbin . 311
\mathchar 312, 19625
\mathchardef 313
\mathchoice . 314
\mathclose . 315
\mathcode . 316
\mathcolor 1435
\mathdefaultsmode 862
\mathdelimitersmode 863
\mathdir . 864
\mathdirection 865
\mathdisplayskipmode 866
\matheqdirmode 867

\matheqnogapstep 868
\mathflattenmode 869
\mathinner . 317
\mathitalicsmode 870
\mathnolimitsmode 871
\mathop . 318
\mathopen . 319
\mathoption . 872
\mathord . 320
\mathpenaltiesmode 873
\mathpunct . 321
\mathrel . 322
\mathrulesfam 874
\mathrulesmode 875
\mathrulethicknessmode 877
\mathscriptboxmode 880
\mathscriptcharmode 881
\mathscriptsmode 879
\mathstyle . 882
\mathsurround 323
\mathsurroundmode 883
\mathsurroundskip 884
max . 280
\maxdeadcycles 324
\maxdepth . 325
md5.HEX . 11912
\mdfivesum . 773
\mdseries . 34409
\meaning . 326
\medmuskip . 327
\message . 328
\MessageBreak 60
meta commands:

.meta:n 248, 22252

.meta:nn 249, 22254
\middle . 509
min . 280
\mkern . 329
mm . 285
mode commands:

\mode_if_horizontal: 8609
\mode_if_horizontal:TF 73, 8609
\mode_if_horizontal_p: 73, 8609
\mode_if_inner: 8611
\mode_if_inner:TF 73, 8611
\mode_if_inner_p: 73, 8611
\mode_if_math: 8613
\mode_if_math:TF 74, 8613
\mode_if_math_p: 74, 8613
\mode_if_vertical: 8607
\mode_if_vertical:TF 74, 8607
\mode_if_vertical_p: 74, 8607
\mode_leave_vertical:

. 31, 2380, 2380, 36530, 36591

Index 1603

\month 330, 1293, 9011
\moveleft . 331
\moveright . 332
msg commands:

\msg_critical:nn 87, 107, 9498
\msg_critical:nnn 87, 9498
\msg_critical:nnnn 87, 9498
\msg_critical:nnnnn 87, 9498
\msg_critical:nnnnnn 87, 9498
\msg_critical_text:n

. 85, 9407, 9412, 9501
\msg_error:nn 87, 1953, 1968,

4869, 4903, 4951, 4954, 5425, 5696,
7124, 7208, 8780, 8863, 9506, 9508,
10264, 10514, 30671, 30717, 35976

\msg_error:nnn 87, 1651,
1706, 1759, 1764, 1953, 1966, 2164,
2276, 2743, 3003, 3482, 4909, 5132,
5524, 5537, 5576, 5609, 5723, 6897,
6904, 7116, 7222, 8884, 9506, 9507,
9622, 9769, 10270, 10520, 11430,
11800, 12482, 13537, 14382, 14443,
16497, 16521, 16525, 16683, 17056,
20028, 20285, 21797, 21850, 21988,
22056, 22074, 22915, 23142, 23344,
23742, 29626, 29867, 29882, 29886,
29902, 29952, 29956, 30018, 30097,
30125, 30690, 30748, 30754, 34892,
35592, 36978, 37047, 37369, 37611,
37647, 37757, 37766, 37800, 37813,
37828, 37833, 37903, 37922, 37935,
37952, 37962, 37970, 38322, 38335,
38358, 39155, 39163, 39216, 39225

\msg_error:nnnn 87, 1642,
1682, 1778, 1953, 1953, 1967, 1969,
1980, 2121, 2828, 3023, 3046, 3345,
3352, 5109, 5172, 5387, 7128, 7144,
8802, 8821, 8837, 9253, 9506, 9506,
9648, 9771, 10641, 11659, 11777,
14475, 16540, 19148, 20209, 20227,
21753, 21807, 21869, 21883, 22065,
22106, 22628, 22681, 23738, 35814

\msg_error:nnnnn . . 87, 2157, 3498,
7529, 7722, 8363, 9506, 9773, 10652,
13294, 13335, 16991, 23000, 23183,
29912, 30172, 37019, 38910, 39287

\msg_error:nnnnnn
. 87, 90, 2843, 2857, 7327,
7350, 7424, 9506, 13329, 20823, 23209

\msg_error_text:n 85,
9407, 9410, 9415, 9417, 9512, 10160

\msg_expandable_error:nn
91, 2690, 4597, 8594, 10148, 10168,

10995, 16711, 19305, 19311, 19315,
21212, 21555, 21563, 21619, 24270

\msg_expandable_error:nnn . . . 91,
2443, 4692, 5714, 9059, 9775, 9777,
10148, 10166, 10173, 11027, 11487,
11791, 12813, 17464, 17760, 17949,
19009, 21098, 24277, 24292, 24297,
24363, 24420, 24459, 24465, 24801,
24806, 24815, 24822, 24913, 24927,
25125, 25176, 25909, 39235, 39384

\msg_expandable_error:nnnn
. . . . 91, 4622, 7027, 9779, 10148,
10164, 10172, 10647, 11004, 25310,
25331, 26070, 29459, 29549, 39323

\msg_expandable_error:nnnnn . 91,
10148, 10162, 10171, 10664, 23048,
23234, 23853, 29326, 30242, 38907

\msg_expandable_error:nnnnnn . . .
. 91, 10148, 10149,
10163, 10165, 10167, 10169, 10170

\msg_fatal:nn 87, 9485
\msg_fatal:nnn 87, 9485
\msg_fatal:nnnn 87, 9485
\msg_fatal:nnnnn 87, 9485
\msg_fatal:nnnnnn 87, 9485
\msg_fatal_text:n 85, 9407, 9407, 9488
\msg_gset:nnn 38954, 38957
\msg_gset:nnnn 38954, 38955
\msg_if_exist:nn 9244
\msg_if_exist:nnTF 84, 9244, 9251, 9632
\msg_if_exist_p:nn 84, 9244
\msg_info:nn 88, 9516
\msg_info:nnn 88, 9516
\msg_info:nnnn 88, 9516, 9763
\msg_info:nnnnn 88, 9516
\msg_info:nnnnnn 88, 89, 9516
\msg_info_text:n

. 86, 9407, 9421, 9545, 9550
\msg_line_context:

. 85, 621, 1970, 1970, 9310,
9311, 21623, 21625, 30862, 39775,
39786, 39796, 39805, 40156, 40182

\msg_line_number: 85, 9310, 9310, 9315
\msg_log:nn 89, 9553
\msg_log:nnn 89, 9553
\msg_log:nnnn 89, 9553
\msg_log:nnnnn 89, 9553
\msg_log:nnnnnn

. 89, 947, 3911, 3925, 7247, 7257,
9553, 10311, 10555, 11559, 17503,
19133, 19154, 20747, 22789, 23313,
30447, 30464, 36743, 36774, 38381

\msg_module_name:n 84,
86, 9320, 9426, 9443, 9443, 9451, 9519

Index 1604

\g_msg_module_name_prop
. 84, 3528, 8235,
9434, 9445, 9446, 10174, 10182,
10185, 10187, 11822, 15098, 21626,
22882, 23721, 30491, 30896, 38548

\msg_module_type:n
. 84–86, 9425, 9437, 9437

\g_msg_module_type_prop
. 84, 3529, 8236,
9434, 9439, 9440, 10175, 10183,
10186, 10188, 11823, 15099, 21627,
22883, 23722, 30492, 30897, 38549

\msg_new:nnn
. 84, 4258, 7949, 7951, 7956,
8217, 8229, 9257, 9266, 9268, 9761,
9890, 9923, 9934, 9936, 9938, 9940,
9942, 10070, 10072, 10074, 10076,
10078, 10080, 10082, 10084, 10091,
10093, 10101, 10108, 11702, 14715,
14717, 14726, 21622, 21624, 22875,
22888, 23881, 23883, 23885, 23887,
23889, 23891, 23893, 25508, 25510,
25512, 25514, 25516, 25518, 25520,
25522, 25524, 25526, 25528, 25530,
25532, 25534, 25538, 25962, 25964,
25966, 30476, 30482, 30489, 36800,
38503, 38550, 38915, 39389, 40163

\msg_new:nnnn
. 84, 620, 3487, 3504, 3511,
3520, 7962, 7969, 7975, 7985, 7991,
8015, 8022, 8030, 8038, 8045, 8052,
8058, 8065, 8071, 8079, 8085, 8091,
8101, 8108, 8117, 8120, 8128, 8134,
8140, 8147, 8154, 8164, 8175, 8185,
8195, 8204, 8210, 8219, 8222, 9257,
9257, 9265, 9267, 9759, 9780, 9788,
9796, 9803, 9814, 9822, 9831, 9838,
9847, 9851, 9861, 9870, 9877, 9883,
9892, 9899, 9907, 9915, 9944, 9947,
9956, 9962, 9969, 9976, 9988, 9995,
10004, 10012, 10019, 10035, 10043,
10052, 10062, 10119, 10125, 10131,
10276, 11663, 11696, 11708, 11714,
11721, 11726, 11805, 11812, 14586,
14719, 14734, 14748, 14754, 14801,
14846, 14936, 15051, 15233, 15240,
15412, 22839, 22842, 22845, 22851,
22857, 22863, 22869, 23713, 23855,
23870, 29919, 29925, 29931, 29937,
30855, 30861, 30867, 30873, 30880,
36784, 36791, 36794, 38402, 38412,
38418, 38425, 38431, 38440, 38446,
38454, 38463, 38469, 38476, 38485,
38494, 38509, 38515, 38524, 38530,

38536, 38542, 40155, 40164, 40181
\msg_none:nn 89, 9565
\msg_none:nnn 89, 9565
\msg_none:nnnn 89, 9565
\msg_none:nnnnn 89, 9565
\msg_none:nnnnnn 89, 9565
\msg_note:nn 88, 9516
\msg_note:nnn 88, 9516
\msg_note:nnnn 88, 9516
\msg_note:nnnnn 88, 9516
\msg_note:nnnnnn 88, 9516
\msg_redirect_class:nn 92, 9705, 9705
\msg_redirect_module:nnn

. 92, 9705, 9707
\msg_redirect_name:nnn 92, 9696, 9696
\msg_see_documentation_text:n . . .

. 86, 9443, 9449
\msg_set:nnn

. 84, 9257, 9276, 38956, 38957
\msg_set:nnnn

. . 84, 9257, 9269, 9277, 38954, 38955
\msg_show:nn 90, 9566
\msg_show:nnn 90, 9566
\msg_show:nnnn 90, 9566
\msg_show:nnnnn 90, 9566
\msg_show:nnnnnn

. 90, 947, 1418, 3909, 3923, 7246,
7256, 9566, 10310, 10554, 11558,
17501, 19131, 19153, 20745, 22787,
23311, 30445, 30461, 36740, 38379

\msg_show_item:n
. 90, 9601, 9601, 17516, 19144, 19158

\msg_show_item:nn
. 90, 9601, 9605, 20789, 30472

\msg_show_item_unbraced:n
. 90, 9601, 9603

\msg_show_item_unbraced:nn
. 90, 647, 9601, 9612, 10318,
10562, 22797, 36759, 38392, 38400

\msg_term:nn 89, 9553
\msg_term:nnn 89, 9553
\msg_term:nnnn 89, 9553
\msg_term:nnnnn 89, 9553
\msg_term:nnnnnn 89, 1418, 9553, 36771
\msg_warning:nn 88, 5415, 9516
\msg_warning:nnn . . 88, 5331, 5335,

5377, 5439, 5477, 5496, 9516, 9765
\msg_warning:nnnn 88, 5039,

5186, 9516, 9767, 29850, 29981, 30387
\msg_warning:nnnnn . . 88, 9516, 38883
\msg_warning:nnnnnn . . 88, 9516, 9736
\msg_warning_text:n

. 85, 9407, 9419, 9540

Index 1605

msg internal commands:
__msg_chk_free:nn . 9249, 9259, 39807
__msg_chk_if_free:nn 9249
__msg_class_chk_exist:nTF

. . 9619, 9619, 9634, 9701, 9711, 9716
\l__msg_class_loop_seq . 632, 9628,

9720, 9728, 9738, 9739, 9742, 9744
__msg_class_new:nn 629,

9454, 9455, 9485, 9498, 9509, 9538,
9543, 9548, 9553, 9559, 9565, 9566

\l__msg_class_tl 630,
632, 9624, 9641, 9654, 9675, 9679,
9682, 9690, 9729, 9731, 9733, 9747

\c__msg_coding_error_text_tl . . .
9278, 9783, 9791, 9817, 9825, 9834,

9841, 9854, 9864, 9886, 9895, 9902,
9910, 9918, 9950, 9959, 9965, 9972,
9979, 9991, 10015, 10022, 10038,
10046, 10055, 10065, 40167, 40184

\c__msg_continue_text_tl . 9278, 9327
\c__msg_critical_text_tl . 9278, 9503
\l__msg_current_class_tl

. 632, 9624, 9636,
9674, 9679, 9682, 9690, 9719, 9733

__msg_expandable_error:n 642
__msg_expandable_error:nn

. 10137, 10140, 10151
__msg_fatal_exit: . . 9485, 9491, 9493
\c__msg_fatal_text_tl . . . 9278, 9490
\c__msg_help_text_tl 9278, 9337
\l__msg_hierarchy_seq

. 631, 9627, 9657, 9667, 9672
__msg_info_aux:NNnnnnnn

. 9516, 9516, 9540, 9545, 9550
\l__msg_internal_tl

. . 9236, 9363, 9369, 9496, 9590, 9596
__msg_interrupt:n . . 9364, 9373, 9382
__msg_interrupt:Nnnn 9317
__msg_interrupt:NnnnN

. 9317, 9487, 9500, 9511
__msg_interrupt_more_text:n . . .

. 622, 9346, 9348, 9371
__msg_interrupt_text:n

. 9346, 9362, 9366
__msg_interrupt_wrap:nnn

. 9325, 9335, 9346, 9346
\c__msg_more_text_prefix_tl

. 9242, 9262, 9273, 9322, 9339
\l__msg_name_str 9237,

9320, 9353, 9357, 9519, 9527, 9531
\c__msg_no_info_text_tl . . 9278, 9329
__msg_no_more_text:nnnn

. 9317, 9323, 9345
\c__msg_on_line_text_tl . . 9278, 9313

__msg_redirect:nnn
. 9705, 9706, 9708, 9709

__msg_redirect_loop_chk:nnn . . .
. 9705, 9721, 9726, 9747, 9751

__msg_redirect_loop_list:n
. 9705, 9743, 9752

\l__msg_redirect_prop
. 9626, 9654, 9699, 9702

\c__msg_return_text_tl
. 9278, 9786, 9794, 9801

__msg_show:n . . 628, 9566, 9570, 9572
__msg_show:nn

. 9566, 9580, 9583, 9585, 9586
__msg_show:w 9566, 9577, 9584
__msg_show_dot:w . . . 9566, 9577, 9582
__msg_show_eval:nnN

. 9753, 9754, 9756, 9757
__msg_text:n . 9407, 9425, 9426, 9429
__msg_text:nn

. 9407, 9418, 9420, 9422, 9423
\c__msg_text_prefix_tl

642, 9242, 9246, 9260, 9271, 9326,
9336, 9524, 9556, 9562, 9569, 10154

\l__msg_text_str 9237,
9319, 9351, 9356, 9518, 9523, 9530

__msg_tmp:w 10137, 10147
\c__msg_trouble_text_tl 9278
__msg_use:nnnnnnn . . 9464, 9629, 9629
__msg_use_code:

630, 9629, 9637, 9651, 9655, 9680, 9691
__msg_use_hierarchy:nwwN

. 9629, 9658, 9659, 9665
__msg_use_none_delimit_by_s_-

stop:w 9241, 9241, 9660, 10143
__msg_use_redirect_module:n . . .

. 631, 9629, 9662, 9670, 9683
__msg_use_redirect_name:n

. 9629, 9645, 9652
\mskip . 333
\muexpr . 510
multichoice commands:

.multichoice: 249, 22256
multichoices commands:

.multichoices:nn 249, 22256
\multiply . 334
\muskip 335, 19634
muskip commands:

\c_max_muskip 243, 21443
\muskip_add:Nn

241, 21419, 21419, 21423, 39583, 39964
\muskip_const:Nn 241, 21387, 21387,

21392, 21443, 21444, 39721, 39968
\muskip_eval:n 242, 21390,

21431, 21431, 21438, 21442, 40027

Index 1606

\muskip_gadd:Nn
241, 21419, 21421, 21424, 39664, 39965

.muskip_gset:N 249, 22268
\muskip_gset:Nn

242, 21409, 21411, 21414, 39663, 39963
\muskip_gset_eq:NN

. . . . 242, 21415, 21417, 21418, 39666
\muskip_gsub:Nn

242, 21419, 21427, 21430, 39665, 39967
\muskip_gzero:N

241, 21393, 21395, 21398, 21402, 39662
\muskip_gzero_new:N

. 241, 21399, 21401, 21404
\muskip_if_exist:N 21405, 21407
\muskip_if_exist:NTF

. 241, 21400, 21402, 21405
\muskip_if_exist_p:N 241, 21405
\muskip_log:N 243, 21439, 21439, 21440
\muskip_log:n 243, 21439, 21441
\muskip_new:N 241,

21381, 21381, 21386, 21389, 21400,
21402, 21445, 21446, 21447, 21448

.muskip_set:N 249, 22268
\muskip_set:Nn

242, 21409, 21409, 21413, 39582, 39962
\muskip_set_eq:NN

. . . . 242, 21415, 21415, 21416, 39585
\muskip_show:N 242, 21435, 21435, 21436
\muskip_show:n 243, 971, 21437, 21437
\muskip_sub:Nn

242, 21419, 21425, 21429, 39584, 39966
\muskip_use:N

. . . . 242, 21432, 21433, 21433, 21434
\muskip_zero:N

241, 21393, 21393, 21397, 21400, 39581
\muskip_zero_new:N

. 241, 21399, 21399, 21403
\g_tmpa_muskip 243, 21445
\l_tmpa_muskip 243, 21445
\g_tmpb_muskip 243, 21445
\l_tmpb_muskip 243, 21445
\c_zero_muskip 243, 21394, 21396, 21443

\muskipdef . 336
\mutoglue . 511

N
\n 8919, 8921, 8923, 12040
nan . 284
nc . 285
nd . 285
\newbox . 851
\newcatcodetable 30512
\newcount . 851
\newdimen . 851

\newlinechar 59, 337
\newluabytecode 19
\next . 36, 73, 81
\NG 32188, 33770, 34464
\ng 32188, 33770, 34476
\noalign . 338
\noautospacing 1168
\noautoxspacing 1169
\noboundary . 339
\nobreakspace 34444
\noexpand 60, 75, 78, 84, 340
\nohrule . 885
\noindent . 341
\nokerns . 886
\noligs . 887
\nolimits . 342
\nonscript . 343
\nonstopmode 344
\normaldeviate 947
\normalend 1311, 1312
\normaleveryjob 1313
\normalexpanded 1322
\normalfont 34404
\normalhoffset 1325
\normalinput 1314
\normalitaliccorrection 1324, 1326
\normallanguage 1315
\normalleft 1332, 1333
\normalmathop 1316
\normalmiddle 1334
\normalmonth 1317
\normalouter 1318
\normalover 1319
\normalright 1335
\normalshowtokens 1328
\normalsize 34421
\normalunexpanded 1321
\normalvcenter 1320
\normalvoffset 1327
\nospaces . 888
\notexpanded: ⟨token⟩ 215
\novrule . 889
\nulldelimiterspace 345
\nullfont . 346
\num . 264
\number . 347
\numexpr . 512

O
\O 32189, 33771, 34465, 34730
\o 32189, 33771, 34477, 34731
\odelcode . 1206
\odelimiter 1207
\OE 32190, 33772, 34466

Index 1607

\oe 32190, 33772, 34478
\omathaccent 1208
\omathchar 1209
\omathchardef 1210
\omathcode 1211
\omit . 348
\openin . 349
\openout . 350
\or . 351
or commands:

\or: 184, 751, 753, 902,
1039, 1389, 1391, 2079, 2080, 2081,
2082, 2083, 2084, 2085, 2086, 2087,
3662, 3663, 3861, 3862, 4057, 4429,
4430, 4431, 4432, 4703, 4704, 4705,
4706, 4707, 6274, 6327, 6959, 6961,
6993, 6994, 6995, 6996, 6997, 6998,
6999, 7000, 7001, 7002, 7003, 7004,
7005, 7407, 7408, 10786, 10787,
10788, 10789, 10790, 10791, 10792,
13877, 13953, 14291, 14292, 14293,
14294, 14295, 15322, 15323, 17533,
18153, 18154, 18155, 18156, 18157,
18158, 18159, 18160, 18161, 18162,
18163, 18164, 18165, 18166, 18167,
18168, 18169, 18170, 18171, 18172,
18173, 18174, 18175, 18176, 18177,
18186, 18187, 18188, 18189, 18190,
18191, 18192, 18193, 18194, 18195,
18196, 18197, 18198, 18199, 18200,
18201, 18202, 18203, 18204, 18205,
18206, 18207, 18208, 18209, 18210,
19336, 19338, 19340, 19341, 19342,
19344, 19346, 19348, 19349, 19351,
19353, 19355, 19357, 23404, 23405,
23406, 23655, 23670, 23671, 24042,
24043, 24068, 25351, 25352, 25353,
25389, 26127, 26128, 26129, 26252,
26337, 26423, 26424, 26425, 26426,
26427, 26428, 26429, 26430, 26431,
26510, 26513, 26849, 26850, 26864,
26865, 26879, 27164, 27387, 27412,
27418, 27419, 27420, 27421, 27422,
27571, 27606, 27608, 27616, 27809,
27859, 27862, 27871, 27986, 28009,
28010, 28042, 28043, 28047, 28100,
28101, 28141, 28146, 28156, 28161,
28171, 28176, 28186, 28191, 28201,
28206, 28216, 28221, 28748, 28749,
28794, 28879, 28882, 28894, 28900,
28947, 28949, 28950, 28960, 28966,
29043, 29044, 29051, 29097, 29098,
29105, 29171, 29172, 29366, 30191,
30192, 30193, 30270, 30271, 30272

\oradical . 1212
\orieveryjob 1305, 1306
\oripdfoutput 1308, 1309
\outer . 851, 352
\output . 353
\outputbox . 890
\outputmode . 948
\outputpenalty 354
\over . 355
\overfullrule 356
\overline . 357
\overwithdelims 358

P
\PackageError 67, 75
\pagebottomoffset 891
\pagedepth . 359
\pagedir . 892
\pagedirection 893
\pagediscards 513
\pagefilllstretch 360
\pagefillstretch 361
\pagefilstretch 362
\pagefistretch 1170
\pagegoal . 363
\pageheight . 949
\pageleftoffset 894
\pagerightoffset 895
\pageshrink . 364
\pagestretch 365
\pagetopoffset 896
\pagetotal . 366
\pagewidth . 950
\paperheight 38848, 38852
\paperwidth 38849, 38852
\par . . 16–20, 96, 400, 1372, 367, 34978,

34980, 34984, 34989, 34994, 34999,
35006, 35011, 35018, 35023, 35043

\pardir . 897
\pardirection 898
\parfillskip 368
\parindent . 369
\parshape . 370
\parshapedimen 514
\parshapeindent 515
\parshapelength 516
\parskip . 371
\partokencontext 1213
\partokenname 1214
\patterns . 372
\pausing . 373
pc . 285
pdf commands:

\pdf_destination:nn 337, 38815, 38815

Index 1608

\pdf_destination:nnnn
. 337, 38817, 38817

\pdf_object_id:n 373
\pdf_object_id_indexed:nn 373
\pdf_object_if_exist:n 38655
\pdf_object_if_exist:nTF . 334, 38655
\pdf_object_if_exist_p:n . 334, 38655
\pdf_object_new:n

. . . . 334, 38582, 38582, 38960, 38964
\pdf_object_new:nn 38960, 38961
\pdf_object_new_indexed:nn

. 335, 38661, 38661
\pdf_object_ref:n . . 334, 38582, 38594
\pdf_object_ref_indexed:nn

. 335, 38661, 38674
\pdf_object_ref_last:

. 336, 38757, 38757
\pdf_object_unnamed_write:nn . . .

. 335, 38751, 38751, 38756
\pdf_object_write:n 38966
\pdf_object_write:nn

. 38960, 38967, 38974
\pdf_object_write:nnn

. 334, 38582, 38587, 38593
\pdf_object_write_indexed:nnnn . .

. 335, 38661, 38667, 38673
\pdf_pageobject_ref:n

. 336, 38758, 38758
\pdf_pagesize_gset:nn

. 336, 38813, 38813
\pdf_uncompress: . . . 336, 38573, 38573
\pdf_version: 336, 38809, 38809
\pdf_version_compare:Nn . . 336, 38760
\pdf_version_compare:NnTF

. 336, 38760, 38798
\pdf_version_compare_p:Nn 336, 38760
\pdf_version_gset:n 336, 38794, 38794
\pdf_version_major: 336, 38809, 38811
\pdf_version_min_gset:n

. 336, 38794, 38796
\pdf_version_minor: 336, 38809, 38812

pdf internal commands:
__pdf_backend_compress_objects:n

. 38578
__pdf_backend_compresslevel:n 38577
__pdf_backend_destination:nn . 38816
__pdf_backend_destination:nnnn .

. 38820
__pdf_backend_object_id:n

. 38601, 38681
\g__pdf_backend_object_int

. 38581, 38585, 38665
__pdf_backend_object_last: . . 38757

__pdf_backend_object_new:
. 38584, 38663

__pdf_backend_object_now:nn . 38753
__pdf_backend_object_ref:n

. 38596, 38676
__pdf_backend_object_write:nnn .

. 38589, 38669, 38969
__pdf_backend_pageobject_ref:n .

. 38759
__pdf_backend_pagesize_gset:nn .

. 38814, 38839, 38851
__pdf_backend_version_major: . . .

. 38765, 38773,
38776, 38785, 38788, 38810, 38811

__pdf_backend_version_major_-
gset:n 38805

__pdf_backend_version_minor: . . .
. . 38766, 38777, 38789, 38810, 38812

__pdf_backend_version_minor_-
gset:n 38806

\g__pdf_init_bool . . 38562, 38575,
38591, 38671, 38754, 38803, 38972

\c__pdf_object_block_size_int . . .
. 38717, 38738, 38744, 38747

__pdf_object_index_split:nn . . .
. 38710, 38725, 38730

\g__pdf_object_prop
. 38959, 38963, 38971

__pdf_object_record:nN
. 38585, 38605, 38640

__pdf_object_record:NnN
. 38685, 38709, 38714

__pdf_object_record:nnN
. . 38664, 38685, 38705, 38749, 38749

__pdf_object_retrieve:n
. 38590, 38597,
38602, 38605, 38645, 38657, 38970

__pdf_object_retrieve:Nn
. 38685, 38724, 38728

__pdf_object_retrieve:nn
. 38670, 38677,
38682, 38685, 38720, 38749, 38750

__pdf_version_compare_<:w 38760
__pdf_version_compare_=:w 38760
__pdf_version_compare_>:w 38760
__pdf_version_gset:w

. 38794, 38795, 38799, 38801
\pdfadjustinterwordglue 626
\pdfadjustspacing 628
\pdfannot . 539
\pdfappendkern 629
\pdfcatalog . 540
\pdfcolorstack 542
\pdfcolorstackinit 543

Index 1609

\pdfcompresslevel 541
\pdfcopyfont 630
\pdfcreationdate 631
\pdfdecimaldigits 544
\pdfdest . 545
\pdfdestmargin 546
\pdfdraftmode 632
\pdfeachlinedepth 633
\pdfeachlineheight 634
\pdfelapsedtime 635
\pdfendlink . 547
\pdfendthread 548
\pdfescapehex 636
\pdfescapename 637
\pdfescapestring 638
\pdfextension 899
\pdffakespace 549
\pdffeedback 900
\pdffiledump 702
\pdffilemoddate 701
\pdffilesize 699
\pdffirstlineheight 639
\pdffontattr 550
\pdffontexpand 640
\pdffontname 551
\pdffontobjnum 552
\pdffontsize 641
\pdfgamma . 553
\pdfgentounicode 554
\pdfglyphtounicode 555
\pdfhorigin . 556
\pdfignoreddimen 642
\pdfimageapplygamma 557
\pdfimagegamma 558
\pdfimagehicolor 559
\pdfimageresolution 560
\pdfincludechars 561
\pdfinclusioncopyfonts 562
\pdfinclusionerrorlevel 563
\pdfinfo . 565
\pdfinfoomitdate 566
\pdfinsertht 643
\pdfinterwordspaceoff 567
\pdfinterwordspaceon 568
\pdflastannot 569
\pdflastlinedepth 644
\pdflastlink 570
\pdflastmatch 645
\pdflastobj . 571
\pdflastxform 572
\pdflastximage 573
\pdflastximagecolordepth 574
\pdflastximagepages 576
\pdflastxpos 646

\pdflastypos 647
\pdflinkmargin 577
\pdfliteral . 578
\pdfmajorversion 581
\pdfmapfile . 579
\pdfmapline . 580
\pdfmatch . 648
\pdfmdfivesum 700
\pdfminorversion 582
\pdfnames . 583
\pdfnobuiltintounicode 584
\pdfnoligatures 649
\pdfnormaldeviate 650
\pdfobj . 585
\pdfobjcompresslevel 586
\pdfomitcharset 587
\pdfoutline . 588
\pdfoutput . 589
\pdfpageattr 590
\pdfpagebox . 591
\pdfpageheight 651
\pdfpageref . 592
\pdfpageresources 593
\pdfpagesattr 594
\pdfpagewidth 652
\pdfpkmode . 653
\pdfpkresolution 654
\pdfprependkern 656
\pdfprimitive 655
\pdfprotrudechars 657
\pdfpxdimen . 658
\pdfrandomseed 659
\pdfrefobj . 595
\pdfrefxform 596
\pdfrefximage 597
\pdfresettimer 660
\pdfrestore . 598
\pdfretval . 599
\pdfrunninglinkoff 600
\pdfrunninglinkon 601
\pdfsave . 602
\pdfsavepos . 661
\pdfsetmatrix 603
\pdfsetrandomseed 662
\pdfshellescape 663
\pdfstartlink 604
\pdfstartthread 605
\pdfstrcmp 138, 5, 698
\pdfsuppressptexinfo 606
\pdfsuppresswarningdupdest 607
\pdfsuppresswarningdupmap 609
\pdfsuppresswarningpagegroup 611
\pdftexbanner 667
\pdftexrevision 668

Index 1610

\pdftexversion 669
\pdfthread . 613
\pdfthreadmargin 614
\pdftracingfonts 664, 1263, 1264
\pdftrailer . 615
\pdftrailerid 616
\pdfunescapehex 665
\pdfuniformdeviate 666
\pdfuniqueresname 617
\pdfvariable 901
\pdfvorigin . 618
\pdfxform . 619
\pdfxformname 620
\pdfximage . 621
\pdfximagebbox 622
peek commands:

\peek_after:Nw 75, 210, 4042,
19821, 19821, 19834, 19859, 19900

\peek_analysis_map_break:
. . . 213, 4002, 4002, 4003, 4005, 4025

\peek_analysis_map_break:n
. 213, 4002, 4004, 7822

\peek_analysis_map_inline:n . 47,
210, 213, 451, 576, 4014, 4014, 7815

\peek_catcode:NTF . . 211, 19955, 37406
\peek_catcode_ignore_spaces:NTF .

. 39102
\peek_catcode_remove:NTF

. 211, 19955, 37472
\peek_catcode_remove_ignore_-

spaces:NTF 39102
\peek_charcode:NTF 211, 214, 215, 19955
\peek_charcode_ignore_spaces:NTF

. 39102
\peek_charcode_remove:NTF

. 211, 214, 19955
\peek_charcode_remove_ignore_-

spaces:NTF 39102
\peek_gafter:Nw . . . 210, 19821, 19823
\peek_meaning:NTF . . 211, 19955, 20026
\peek_meaning_ignore_spaces:NTF .

. 39102
\peek_meaning_remove:NTF . 211, 19955
\peek_meaning_remove_ignore_-

spaces:NTF 39102
\peek_N_type:TF

. . . . 212, 19969, 20001, 20006, 20008
\peek_regex:NTF

. . . 214, 7759, 7768, 7774, 7775, 7776
\peek_regex:nTF . . . 214, 527, 575,

577, 578, 7759, 7759, 7765, 7766, 7767
\peek_regex_remove_once:NTF

214, 7759, 7787, 7793, 7794, 7795, 7796

\peek_regex_remove_once:nTF 214,
577, 7759, 7777, 7783, 7784, 7785, 7786

\peek_regex_replace_once:Nn
. 215, 7851, 7865

\peek_regex_replace_once:nn
. 215, 7851, 7857

\peek_regex_replace_once:NnTF . . .
. 215, 7851,
7859, 7861, 7862, 7863, 7864, 7866

\peek_regex_replace_once:nnTF . . .
. . . 215, 549, 553, 575, 580, 7851,
7851, 7853, 7854, 7855, 7856, 7858

\peek_remove_filler:n
. . . . 212, 19846, 19846, 37403, 37470

\peek_remove_spaces:n
. . 210, 211, 19830, 19830, 39111,
39114, 39117, 39120, 39123, 39126

\g_peek_token 210, 19810, 19824
\l_peek_token

. . . . 210, 213, 468, 471, 472, 917,
919, 920, 1436, 4047, 4048, 4049,
4050, 4136, 4189, 4192, 4239, 19810,
19822, 19839, 19864, 19867, 19878,
19916, 19928, 19948, 19975, 19976,
19977, 19980, 37419, 37426, 37440

peek internal commands:
__peek_execute_branches_-

catcode: 920, 19922, 19922
__peek_execute_branches_-

catcode_aux:
. 19922, 19923, 19925, 19926

__peek_execute_branches_-
catcode_auxii:N 19922, 19930, 19936

__peek_execute_branches_-
catcode_auxiii: 19922, 19933, 19946

__peek_execute_branches_-
charcode: 920, 19922, 19924

__peek_execute_branches_-
meaning: 920, 19914, 19914

__peek_execute_branches_N_type:
. . 19969, 19972, 20004, 20007, 20009

__peek_false:w
. 920, 921, 19814, 19816,
19832, 19843, 19849, 19879, 19895,
19919, 19942, 19952, 19986, 19999

__peek_N_type:w . 19969, 19979, 19989
__peek_N_type_aux:nnw

. 19969, 19981, 19994
__peek_remove_filler:

. 19846, 19859, 19862
__peek_remove_filler:w

. . 19846, 19848, 19855, 19857, 19881
__peek_remove_filler_expand:w . .

. 19846, 19872, 19876

Index 1611

__peek_remove_spaces:
. 19830, 19834, 19837

\l__peek_search_tl
916, 919, 19813, 19888, 19939, 19949

\l__peek_search_token
. 916, 19812, 19887, 19916

__peek_tmp:w
. . 19814, 19817, 19828, 19970, 19992

__peek_token_generic:NNTF . 920,
921, 19902, 19902, 19904, 19905,
19906, 19907, 20003, 20007, 20009

__peek_token_generic_aux:NNNTF .
. 19884, 19884, 19903, 19909

__peek_token_remove_generic:NNTF
. 920, 19902,
19908, 19910, 19911, 19912, 19913

__peek_true:w 920,
921, 19814, 19814, 19894, 19917,
19940, 19950, 19984, 19998, 19999

__peek_true_aux:w
. . 917, 918, 19814, 19815, 19827,
19834, 19835, 19848, 19889, 19903

__peek_true_remove:w
. 917, 918, 19825,
19825, 19840, 19865, 19869, 19909

__peek_use_none_delimit_by_s_-
stop:w . . . 920, 19820, 19820, 19982

\penalty . 374
\pi 24353, 24354
pi . 284
\postbreakpenalty 1171
\postdisplaypenalty 375
\postexhyphenchar 902
\posthyphenchar 903
\prebinoppenalty 904
\prebreakpenalty 1172
\predisplaydirection 517
\predisplaygapfactor 905
\predisplaypenalty 376
\predisplaysize 377
\preexhyphenchar 906
\prehyphenchar 907
\prerelpenalty 908
\pretolerance 378
\prevdepth . 379
\prevgraf . 380
prg commands:

\prg_break: 75, 548, 786,
839, 840, 2377, 2378, 3401, 3476,
3856, 3934, 3964, 3965, 3966, 3967,
3968, 3969, 4328, 4594, 4598, 5857,
5867, 5872, 5881, 5905, 5950, 6813,
7636, 8624, 13167, 14353, 14369,
14489, 14521, 14627, 14630, 14771,

14818, 14871, 14877, 15110, 15191,
15363, 15504, 17232, 17265, 17316,
17369, 17384, 17391, 17951, 18500,
18978, 23466, 23475, 25475, 25495,
25496, 25783, 25784, 25797, 25887,
25888, 25889, 29281, 29307, 29531

\prg_break:n
. 75, 2377, 2379, 6350, 6841,
8624, 13169, 14255, 14263, 14275,
17106, 17245, 17961, 18406, 23267,
23286, 23300, 23482, 29791, 29802

\prg_break_point: 75, 438,
445, 828, 2377, 2377, 2378, 2379,
3228, 3270, 3394, 3401, 3774, 3935,
3971, 4324, 4572, 5853, 5902, 6351,
6683, 6835, 7630, 7636, 8624, 13157,
14256, 14264, 14354, 14370, 14490,
14522, 14628, 14631, 14772, 14819,
14872, 14878, 15111, 15311, 15468,
17103, 17233, 17267, 17318, 17369,
17385, 17437, 17444, 17956, 18400,
18500, 18978, 23261, 23280, 23295,
23467, 23476, 25476, 25497, 25785,
25891, 29282, 29307, 29539, 29792

\prg_break_point:Nn
. 74, 154, 409, 467, 478, 840,
861, 957, 2368, 2368, 2369, 3899,
4025, 6575, 6589, 6634, 7821, 8624,
10406, 10425, 12736, 12765, 12776,
13702, 13728, 13748, 13770, 17268,
17309, 17319, 17342, 17349, 17358,
17386, 18003, 18850, 18872, 18895,
18922, 18944, 20660, 20682, 20698,
21137, 25960, 33829, 33848, 34168

\prg_do_nothing:
. 14, 75, 497, 551, 571, 680,
705, 767, 821, 827, 877, 894, 1046,
1224, 2366, 2366, 2377, 2786, 2813,
2912, 2913, 2914, 3316, 3474, 3475,
3745, 3794, 4090, 4420, 4905, 4948,
4949, 4956, 4957, 6895, 7123, 7546,
7550, 7602, 8896, 10785, 11082,
11502, 11541, 11543, 12386, 13051,
13522, 13524, 14419, 15361, 16620,
16656, 16657, 16794, 16801, 17198,
17200, 18493, 18499, 18507, 18669,
18870, 18880, 18943, 18954, 19032,
19044, 19099, 19103, 19110, 22634,
23748, 23782, 23808, 23816, 25360,
29262, 29661, 29815, 30677, 32288

\prg_generate_conditional_-
variant:Nnn 34, 67, 2992,
2992, 7274, 7280, 7310, 7312, 8333,
10227, 11071, 11219, 11324, 11328,

Index 1612

11332, 11336, 11361, 11372, 11413,
12587, 12597, 12621, 12624, 12640,
12654, 12660, 12671, 12691, 12722,
12729, 12952, 12970, 12979, 13601,
13613, 13621, 13652, 13687, 16463,
16485, 16966, 16967, 17047, 17107,
17201, 17203, 17217, 17219, 17221,
17223, 18436, 18687, 18701, 18702,
18839, 18841, 20351, 20353, 20355,
20492, 20494, 20627, 20650, 22777,
34842, 34844, 34848, 35585, 39053

\prg_gset_conditional:Nnn
. 65, 1615, 1617

\prg_gset_conditional:Npnn
. 65, 1594, 1596,
1823, 1837, 1850, 1865, 1879, 1894

\prg_gset_eq_conditional:NNn . . .
. 66, 1738, 1740

\prg_gset_protected_conditional:Nnn
. 65, 1615, 1623

\prg_gset_protected_conditional:Npnn
. 65, 1594, 1602

\prg_map_break:Nn
. 74, 409, 467, 719, 890, 945,
2368, 2369, 2375, 4003, 4005, 4319,
8624, 10389, 10391, 12803, 12805,
13761, 13763, 17256, 17258, 18957,
18959, 20714, 20716, 34158, 34160

\prg_new_conditional:Nnn
. 65, 1615, 1619, 8277

\prg_new_conditional:Npnn
. 65, 67, 375, 725, 906, 1594,
1598, 2253, 4714, 4743, 4826, 4855,
8277, 8325, 8376, 8437, 8452, 8463,
8478, 8488, 8607, 8609, 8611, 8613,
9244, 10323, 11364, 11407, 12100,
12579, 12589, 12604, 12613, 12675,
12692, 12703, 12940, 12954, 12972,
13013, 13033, 13048, 13584, 13591,
13596, 13603, 13608, 14252, 14261,
14276, 14284, 14958, 14992, 15011,
16447, 16455, 16465, 16475, 16625,
16636, 17039, 17764, 17817, 17825,
17863, 17871, 18428, 18509, 18792,
19465, 19470, 19475, 19480, 19487,
19493, 19499, 19504, 19509, 19514,
19519, 19526, 19531, 19538, 19553,
19558, 19594, 19702, 19711, 20609,
20629, 20953, 20958, 21338, 21346,
22770, 22778, 23650, 24795, 25676,
25684, 25700, 31655, 31710, 31719,
33088, 33117, 33150, 33228, 33246,
33264, 33289, 34838, 34840, 34846,
35575, 36828, 38655, 38760, 39378

\prg_new_eq_conditional:NNn
. 66, 1738, 1742, 8277, 8372, 8374,
12181, 12182, 12623, 13573, 13575,
13577, 13579, 13581, 16876, 16878,
17495, 17496, 17497, 17498, 17499,
17500, 17689, 17691, 18424, 18426,
18599, 18601, 18788, 18790, 19524,
20605, 20607, 20884, 20886, 21312,
21314, 21405, 21407, 23307, 23309,
25674, 25675, 30278, 30280, 30312,
30314, 30736, 30738, 34783, 34785

\prg_new_protected_conditional:Nnn
. 65, 1615, 1625, 8277

\prg_new_protected_conditional:Npnn
. 65, 920, 1594, 1604,
4435, 7269, 7275, 7305, 7307, 8277,
8874, 10218, 10343, 10363, 11060,
11211, 11322, 11326, 11330, 11334,
11352, 12628, 12641, 12662, 12717,
12724, 13615, 13623, 14393, 14402,
16962, 16964, 17088, 17197, 17199,
17205, 17208, 17211, 17214, 18678,
18688, 18690, 18806, 18810, 20346,
20480, 20486, 29781, 30348, 30740

\prg_replicate:nn
73, 122, 164, 574, 599, 1020, 1286,

4279, 4911, 5664, 6281, 6307, 6453,
6461, 6624, 6789, 6900, 7561, 7569,
7616, 7734, 7736, 8559, 8559, 9354,
9528, 10617, 23216, 27106, 27958,
28266, 28522, 28568, 28605, 29128,
29136, 30111, 30214, 30333, 31236,
31247, 31252, 37984, 37992, 38060,
38094, 38106, 38109, 38189, 38190

\prg_return_false: 65, 66, 388, 566,
835, 855, 886, 938, 942, 1588, 1590,
1662, 1670, 1832, 1843, 1859, 1874,
1887, 1903, 2256, 4440, 4740, 4766,
4831, 4860, 7387, 8277, 8330, 8381,
8442, 8458, 8468, 8484, 8494, 8608,
8610, 8612, 8614, 8878, 8886, 9247,
10225, 10330, 10346, 10366, 11069,
11216, 11343, 11358, 11381, 11390,
11401, 11410, 12104, 12584, 12594,
12609, 12618, 12637, 12651, 12668,
12681, 12699, 12714, 12720, 12727,
12949, 12967, 12987, 12995, 13005,
13021, 13044, 13055, 13589, 13594,
13599, 13606, 13611, 13619, 13627,
14257, 14265, 14281, 14297, 14400,
14409, 14962, 14965, 14968, 14995,
14998, 15015, 15018, 15021, 16452,
16460, 16471, 16481, 16630, 16641,
16994, 17044, 17102, 17121, 17762,

Index 1613

17794, 17799, 17822, 17830, 17868,
17876, 18433, 18525, 18528, 18681,
18695, 18795, 18830, 18836, 19468,
19473, 19478, 19483, 19490, 19497,
19502, 19507, 19512, 19517, 19522,
19529, 19534, 19551, 19556, 19561,
19566, 19600, 19603, 19615, 19715,
19740, 19757, 19766, 20349, 20484,
20490, 20624, 20638, 20642, 20956,
20975, 20990, 20991, 21342, 21349,
22775, 22784, 23661, 23663, 24808,
24818, 25681, 25695, 25708, 29791,
30358, 30750, 30756, 31665, 31668,
31714, 31724, 33096, 33100, 33106,
33142, 33162, 33210, 33242, 33260,
33283, 33305, 34839, 34841, 34847,
35581, 35583, 36833, 36836, 38658,
38768, 38780, 38792, 39383, 40149

\prg_return_true:
. 65, 66, 388, 562, 566,
670, 713, 725, 835, 938, 942, 1588,
1588, 1662, 1670, 1830, 1841, 1857,
1872, 1885, 1901, 2256, 4438, 4738,
4764, 4829, 4858, 7385, 8277, 8328,
8379, 8440, 8456, 8466, 8482, 8492,
8608, 8610, 8612, 8614, 8899, 9247,
10223, 10328, 10333, 10336, 10349,
10369, 11067, 11217, 11344, 11359,
11379, 11388, 11399, 11411, 12106,
12582, 12592, 12607, 12616, 12635,
12649, 12668, 12679, 12697, 12712,
12720, 12727, 12947, 12965, 12985,
13003, 13019, 13042, 13053, 13589,
13594, 13599, 13606, 13611, 13619,
13627, 14275, 14279, 14287, 14300,
14400, 14409, 14962, 14968, 15000,
15015, 15021, 16450, 16458, 16469,
16479, 16628, 16639, 17005, 17042,
17106, 17124, 17794, 17820, 17828,
17866, 17874, 18431, 18521, 18524,
18530, 18684, 18698, 18796, 18826,
18836, 19468, 19473, 19478, 19483,
19490, 19497, 19502, 19507, 19512,
19517, 19522, 19529, 19534, 19550,
19556, 19564, 19614, 19738, 19764,
20349, 20484, 20490, 20612, 20622,
20642, 20648, 20956, 20991, 21341,
21350, 22774, 22783, 23654, 23659,
24803, 24824, 25679, 25697, 25706,
29785, 29788, 29802, 30356, 30746,
31666, 31714, 31724, 33104, 33109,
33113, 33125, 33128, 33131, 33134,
33137, 33140, 33160, 33166, 33169,
33172, 33175, 33178, 33181, 33184,

33187, 33190, 33193, 33196, 33199,
33202, 33205, 33208, 33237, 33240,
33255, 33258, 33272, 33275, 33278,
33281, 33297, 33300, 33303, 34839,
34841, 34847, 35580, 36834, 38659,
38767, 38779, 38791, 39382, 40150

\prg_set_conditional:Nnn
. 65, 1615, 1615, 8277

\prg_set_conditional:Npnn
. 65, 66, 394, 1594, 1594, 8277, 40143

\prg_set_eq_conditional:NNn
. 66, 1738, 1738, 8277

\prg_set_protected_conditional:Nnn
. 65, 1615, 1621, 8277

\prg_set_protected_conditional:Npnn
. 65, 1594, 1600, 8277

prg internal commands:
__prg_break_point:Nn 409
__prg_F_true:w 1691, 1724, 1736
__prg_generate_conditional:nnNNNnnn

. 1610, 1639, 1648, 1648
__prg_generate_conditional:NNnnnnNw

. 1648, 1657, 1674, 1689
__prg_generate_conditional_-

count:NNNnn 1615, 1616,
1618, 1620, 1622, 1624, 1626, 1627

__prg_generate_conditional_-
count:nnNNNnn . . . 1615, 1631, 1636

__prg_generate_conditional_-
fast:nw . 388, 389, 1648, 1661, 1672

__prg_generate_conditional_-
parm:NNNpnn 1594, 1595,
1597, 1599, 1601, 1603, 1605, 1606

__prg_generate_conditional_-
test:w 1648, 1659, 1669

__prg_generate_F_form:wNNnnnnN .
. 1691, 1718

__prg_generate_p_form:wNNnnnnN .
. 388, 1691, 1691

__prg_generate_T_form:wNNnnnnN .
. 1691, 1710

__prg_generate_TF_form:wNNnnnnN
. 1691, 1726

__prg_p_true:w 1691, 1703, 1734
__prg_replicate:N

. 8559, 8566, 8567, 8569
__prg_replicate_ 8559
__prg_replicate_0:n 8559
__prg_replicate_1:n 8559
__prg_replicate_2:n 8559
__prg_replicate_3:n 8559
__prg_replicate_4:n 8559
__prg_replicate_5:n 8559
__prg_replicate_6:n 8559

Index 1614

__prg_replicate_7:n 8559
__prg_replicate_8:n 8559
__prg_replicate_9:n 8559
__prg_replicate_first:N

. 8559, 8562, 8568
__prg_replicate_first_-:n . . . 8559
__prg_replicate_first_0:n . . . 8559
__prg_replicate_first_1:n . . . 8559
__prg_replicate_first_2:n . . . 8559
__prg_replicate_first_3:n . . . 8559
__prg_replicate_first_4:n . . . 8559
__prg_replicate_first_5:n . . . 8559
__prg_replicate_first_6:n . . . 8559
__prg_replicate_first_7:n . . . 8559
__prg_replicate_first_8:n . . . 8559
__prg_replicate_first_9:n . . . 8559
__prg_set_eq_conditional:NNNn . .

. 1738, 1739, 1741, 1743, 1744
__prg_set_eq_conditional:nnNnnNNw

. 1748, 1756, 1756
__prg_set_eq_conditional_F_-

form:nnn 1756
__prg_set_eq_conditional_F_-

form:wNnnnn 1793, 39824
__prg_set_eq_conditional_-

loop:nnnnNw . 1756, 1768, 1770, 1785
__prg_set_eq_conditional_p_-

form:nnn 1756
__prg_set_eq_conditional_p_-

form:wNnnnn 1787, 39812
__prg_set_eq_conditional_T_-

form:nnn 1756
__prg_set_eq_conditional_T_-

form:wNnnnn 1791, 39820
__prg_set_eq_conditional_TF_-

form:nnn 1756
__prg_set_eq_conditional_TF_-

form:wNnnnn 1789, 39816
__prg_T_true:w 1691, 1716, 1735
__prg_TF_true:w 389, 1691, 1732, 1737
__prg_use_none_delimit_by_q_-

recursion_stop:w
. . 1592, 1592, 1677, 1761, 1766, 1773

\primitive . 775
prop commands:

\c_empty_prop 227, 926, 927,
942, 20078, 20082, 20116, 20335, 20611

\prop_clear:N
218, 219, 932, 20107, 20107, 20109,
20140, 20146, 36369, 37324, 39586

\prop_clear_new:N 219, 20139,
20139, 20141, 37524, 37556, 37597

\prop_clear_new_linked:N
. 219, 20139, 20145, 20147

\prop_concat:NNN 218, 221,
222, 20243, 20243, 20245, 39540, 39587

\prop_const_from_keyval:Nn
. 220, 20298, 20298,
20303, 35544, 35551, 38302, 39722

\prop_const_linked_from_keyval:Nn
. . . . 220, 20298, 20304, 20309, 39723

\prop_count:N 223, 20717, 20717, 20726
\prop_gclear:N 219, 20107,

20110, 20112, 20143, 20149, 39667
\prop_gclear_new:N 219, 1390,

20139, 20142, 20144, 35618, 35619
\prop_gclear_new_linked:N

. 219, 20139, 20148, 20150
\prop_gconcat:NNN

221, 20243, 20246, 20248, 39541, 39668
\prop_get:NnN 151, 152,

218, 222, 223, 934, 20338, 20338,
20343, 20344, 20345, 20346, 20351,
20353, 20355, 36609, 36613, 36682,
36686, 36843, 36958, 37058, 38099

\prop_get:NnNTF . . 222, 224, 9654,
9674, 9729, 10302, 10546, 14462,
20338, 22114, 30608, 35811, 36952,
37063, 37534, 37793, 37806, 37821,
37900, 37928, 37944, 38315, 38328

\prop_gpop:NnN . 222, 20464, 20470,
20478, 20479, 20486, 20494, 39669

\prop_gpop:NnNTF
222, 225, 20464, 39670, 39671, 39672

.prop_gput:N 249, 22276
\prop_gput:Nnn 221, 932, 3528, 3529,

8235, 8236, 9436, 10174, 10175,
10182, 10183, 10185, 10186, 10187,
10188, 10208, 10254, 10461, 10505,
11822, 11823, 14223, 14224, 14225,
14226, 14227, 14228, 14229, 14230,
14231, 14232, 14233, 14234, 14235,
14236, 14237, 14244, 14247, 15098,
15099, 20496, 20498, 20518, 20523,
20525, 20530, 21626, 21627, 22882,
22883, 23721, 23722, 30384, 30491,
30492, 30555, 30896, 30897, 35837,
35855, 35876, 35894, 35925, 37718,
37719, 37720, 37721, 37722, 37723,
37724, 37725, 37736, 37738, 37740,
37741, 37742, 37743, 37744, 37745,
37746, 37846, 37847, 37861, 37875,
37885, 38548, 38549, 38963, 39673

\prop_gput_from_keyval:Nn
. 222, 932, 20266,
20269, 20271, 20295, 30309, 39675

\prop_gput_if_new:Nnn
. 39131, 39134, 39137

Index 1615

\prop_gput_if_not_in:Nnn
. 221, 20496,
20502, 20539, 39133, 39134, 39674

\prop_gremove:Nn 223, 10287, 10531,
20450, 20456, 20463, 30553, 39676

\prop_gset_eq:NN
. 219, 20151, 20154, 20156, 35620,
35622, 35787, 35789, 35828, 35830,
36081, 36247, 36288, 39523, 39677

\prop_gset_from_keyval:Nn
220, 20286, 20292, 20297, 30301, 39678

\prop_if_empty:N 20609, 20627
\prop_if_empty:NTF

. 224, 20609, 20730, 36832
\prop_if_empty_p:N 224, 20609
\prop_if_exist:N 20605, 20607
\prop_if_exist:NTF

. 223, 20071, 20140, 20143,
20146, 20149, 20605, 22013, 36830

\prop_if_exist_p:N 223, 20605
\prop_if_in:Nn 218, 20629, 20650
\prop_if_in:NnTF 224,

9439, 9445, 20629, 30373, 30431, 37536
\prop_if_in_p:Nn 224, 20629
\prop_item:Nn . 218, 223, 225, 935,

9440, 9446, 20379, 20379, 20396,
30377, 30436, 38162, 38201, 38971

\prop_log:N . . 227, 20745, 20747, 20748
\prop_make_flat:N

218, 220, 20201, 20201, 20210, 20213
\prop_make_linked:N 218,

220, 926, 20219, 20219, 20228, 20231
\prop_map_break: . . . 226, 943, 944,

20656, 20657, 20658, 20659, 20660,
20682, 20694, 20695, 20696, 20697,
20698, 20713, 20713, 20714, 20716

\prop_map_break:n
. . . . 226, 20394, 20648, 20713, 20715

\prop_map_function:NN
. 90, 225, 944, 10317,
10561, 20652, 20652, 20674, 20722,
20738, 20789, 30472, 36757, 38390

\prop_map_inline:Nn
. 225, 20675, 20675, 20689,
36091, 36093, 36096, 36114, 36116,
36190, 36207, 36268, 36270, 36274,
36276, 36456, 36475, 36656, 36665

\prop_map_tokens:Nn 225, 841, 936,
942, 20383, 20633, 20690, 20690, 20712

\prop_new:N
. 218–220, 9434, 9435, 9457, 9626,
10196, 10449, 14222, 20079, 20079,
20084, 20140, 20143, 20239, 20240,
20241, 20242, 20300, 21703, 21704,

22013, 30294, 30300, 30502, 36069,
36070, 36071, 36539, 36580, 37622,
37712, 37717, 37734, 37739, 38959

\prop_new_linked:N 218–220, 20085,
20085, 20106, 20146, 20149, 20306

\prop_pop:NnN 218, 222, 20464, 20464,
20476, 20477, 20480, 20492, 39588

\prop_pop:NnNTF 222,
224, 933, 20464, 39589, 39590, 39591

.prop_put:N 249, 22276
\prop_put:Nnn

218, 221, 222, 423, 923, 931, 939,
9702, 9718, 9735, 20496, 20496,
20504, 20509, 20511, 20516, 22121,
35834, 35852, 35871, 35892, 35923,
36125, 36127, 36133, 36135, 36144,
36150, 36158, 36217, 36225, 36315,
36321, 36329, 36336, 36480, 36540,
36542, 36544, 36546, 36548, 36550,
36552, 36554, 36556, 36558, 36560,
36562, 36564, 36566, 36568, 36570,
36572, 36574, 36930, 37325, 37525,
37544, 37587, 37602, 37783, 39592

\prop_put_from_keyval:Nn . . . 222,
932, 20266, 20266, 20268, 20289, 39594

\prop_put_if_new:Nnn
. 39131, 39132, 39135

\prop_put_if_not_in:Nnn
. 221, 931, 20496,
20500, 20532, 39131, 39132, 39593

\prop_remove:Nn
218, 223, 9699, 9714, 20450, 20450,
20462, 36651, 36654, 36658, 39595

\prop_set_eq:NN 218, 219, 927, 930,
931, 20151, 20151, 20153, 35775,
35777, 35821, 35823, 36078, 36087,
36089, 36240, 36264, 36266, 36285,
36413, 36646, 37607, 39522, 39596

\prop_set_from_keyval:Nn . . . 220,
222, 20286, 20286, 20291, 37762, 39597

\prop_show:N 226,
933, 946, 20334, 20745, 20745, 20746

\prop_to_keyval:N . . 223, 20727, 20727
\g_tmpa_prop 227, 20239
\l_tmpa_prop 227, 20239
\g_tmpb_prop 227, 20239
\l_tmpb_prop 227, 20239

prop internal commands:
\c__prop_basis_int

. . . . 925, 20050, 20060, 20063, 20065
__prop_chk:w 922, 924, 926,

929, 933, 943, 20023, 20023, 20040,
20078, 20328, 20401, 20557, 20755

__prop_chk_get:nw 20023, 20027, 20030

Index 1616

__prop_chk_loop:nw
. 20023, 20023, 20024, 20031

__prop_clear:NNN 20107,
20108, 20111, 20113, 20288, 20294

__prop_clear:wNNN
927, 929, 20107, 20117, 20119, 20216

__prop_clear_entries:NN
. 927, 20122, 20126, 20173

__prop_clear_loop:Nw
. . . . 927, 20107, 20128, 20131, 20136

__prop_concat:nNNN
. 20243, 20252, 20255, 20258

__prop_concat:NNNNN
. 20243, 20244, 20247, 20249

__prop_count:nn . 20717, 20722, 20725
__prop_flatten:N

. 925, 20035, 20035, 20165
__prop_flatten:w

. 923, 926, 946, 947, 20033,
20033, 20074, 20077, 20095, 20120,
20123, 20171, 20181, 20365, 20412,
20565, 20615, 20619, 20780, 20793

__prop_flatten_aux:N
. . . . 925, 20034, 20035, 20037, 20038

__prop_flatten_aux:w
. 20035, 20036, 20037

__prop_flatten_loop:w
. . . . 925, 20035, 20041, 20044, 20048

__prop_from_keyval:nn . . . 20266,
20267, 20270, 20272, 20301, 20307

__prop_from_keyval:Nnn
. 20266, 20275, 20276, 20278

__prop_get:NnnTF
. . . . 934, 20338, 20340, 20348, 20357

__prop_get_linked:w 935,
942, 20338, 20362, 20364, 20389, 20641

__prop_get_linked_aux:w
. . . . 935, 20338, 20368, 20371, 20377

__prop_if_empty:w 942
__prop_if_empty_return:w

. 20609, 20614, 20618
__prop_if_flat:NTF . . 946, 20069,

20069, 20115, 20161, 20163, 20205,
20223, 20381, 20631, 20753, 20764

__prop_if_flat_aux:w
. 20069, 20072, 20076

__prop_if_in_flat:nnn
. 20629, 20635, 20645

__prop_if_recursion_tail_stop:n
. 20020, 20020, 20021, 20774

\l__prop_internal_tl
. 925, 926, 929, 930,
940, 941, 947, 948, 20015, 20054,
20096, 20097, 20098, 20100, 20189,

20190, 20192, 20199, 20235, 20237,
20548, 20558, 20561, 20590, 20601,
20767, 20824, 20832, 20836, 20842

__prop_item:nnn
. 936, 20379, 20385, 20391

\prop_make_flat:N__prop_make_-
flat:Nn 20201

__prop_make_flat:Nn . . 20206, 20214
__prop_make_linked:Nn

. 20219, 20224, 20232
__prop_map_function:Nw

. . . . 943, 20652, 20655, 20662, 20672
__prop_map_tokens:nw

. 20690, 20693, 20700, 20710
__prop_missing_eq:n

. 931, 20266, 20281, 20284
__prop_new_linked:N

. . . . 930, 20085, 20088, 20090, 20234
__prop_next_prefix:

. 20052, 20052, 20092
__prop_pair:wn

922–924, 933, 944, 948, 949, 20026,
20030, 20032, 20032, 20042, 20044,
20047, 20129, 20132, 20184, 20187,
20193, 20260, 20261, 20264, 20318,
20321, 20550, 20656, 20657, 20658,
20659, 20663, 20664, 20665, 20666,
20678, 20680, 20685, 20694, 20695,
20696, 20697, 20701, 20702, 20703,
20704, 20758, 20772, 20775, 20846

__prop_pop:NnNNnTF
. 937, 20397, 20397, 20452,
20458, 20466, 20472, 20482, 20488

__prop_pop_linked:NNNn
. 20397, 20415, 20423

__prop_pop_linked:w
. 937, 20397, 20428, 20431

__prop_pop_linked:wnNNnTF
. 936, 937, 20397, 20407, 20411

__prop_pop_linked_next:w
. 20397, 20443, 20449

__prop_pop_linked_prev:w
. 20397, 20437, 20447, 20584

\g__prop_prefix_int
. 925, 20050, 20055, 20056

__prop_put:NNNnn 20496
__prop_put:nNNnn

20262, 20267, 20270, 20301, 20307,
20497, 20499, 20501, 20503, 20546

__prop_put_linked:NNNN 20496
__prop_put_linked:NNnN 20567, 20571
__prop_put_linked:wnNN . . 940, 20496
__prop_put_linked:wnnN 20562, 20564

Index 1617

__prop_put_linked_new:w
. 940, 941, 20496, 20574, 20579

__prop_put_linked_old:w
. 940, 941, 20496, 20576, 20595

__prop_set_eq:NNNN
. . 20151, 20152, 20155, 20157, 20254

__prop_set_eq:nNnNN
. 929, 20151, 20174, 20176

__prop_set_eq:wNNNN
. . . . 930, 20151, 20167, 20170, 20236

__prop_set_eq_end:w
. 929, 20151, 20191, 20195

__prop_set_eq_loop:NNnw
. . 20151, 20180, 20186, 20192, 20196

__prop_show:NN
. 20745, 20745, 20747, 20749

__prop_show_bad_name:NNN
. 947, 948, 20745, 20809, 20821

__prop_show_end:NNN
. 947, 20745, 20808, 20829

__prop_show_finally:NNn
. . . . 947, 20745, 20765, 20785, 20835

__prop_show_flat:w 946,
948, 20745, 20756, 20772, 20776, 20845

__prop_show_linked:w
. 946, 20745, 20761, 20778

__prop_show_loop:NNw
. . . . 948, 20745, 20812, 20814, 20850

__prop_show_loop_key:wNNN
. 947, 948, 20745, 20803, 20839

__prop_show_prepare:w
. 947, 20745, 20768, 20792

__prop_split:NnTFn 933, 934, 940,
942, 20310, 20310, 20359, 20399, 20553

__prop_split_aux:nNTFn
. 20310, 20312, 20315

__prop_split_flat:w
933, 934, 20310, 20317, 20325, 20328

__prop_split_linked:w
. . . . 933, 20310, 20317, 20329, 20331

__prop_split_test:wn
. 933, 20310, 20320, 20326

__prop_split_wrong:Nw
. 933, 934, 20310, 20321, 20332

__prop_tmp:w . . . 947, 948, 20014,
20014, 20260, 20264, 20797, 20816

__prop_to_keyval:nn
. 20727, 20738, 20743

__prop_to_keyval:nnw 20727
__prop_to_keyval_exp_after:wN 20727
__prop_to_prefix:n

. . 20052, 20055, 20058, 20062, 20064
prop ⟨prefix⟩ internal commands:

__prop ⟨prefix⟩ 922, 923

\protect .
1305, 10684, 24288, 31815, 32052,

32067, 32076, 32090, 32092, 34342
\protected . 82, 84, 106, 518, 19628, 19630
\protrudechars 951
\protrusionboundary 909
\ProvidesExplClass 10
\ProvidesExplFile 10, 39142
\ProvidesExplPackage 10
pt . 285
\ptexfontname 1173
\ptexlineendmode 1174
\ptexminorversion 1175
\ptexrevision 1176
\ptextracingfonts 1177
\ptexversion 1178
\pxdimen . 952

Q
quark commands:

\q_mark 152, 451, 16395,
33374, 33376, 33383, 33386, 33396

\q_nil 27, 28, 130, 152, 384,
814, 816, 818, 1548, 1551, 11148,
11150, 16395, 16449, 16468, 16474,
16489, 16490, 16496, 16520, 16524,
22719, 22720, 22722, 22724, 22726,
22728, 22734, 38045, 38051, 38052

\q_no_value
. 80, 96, 103–106, 151, 152,
160, 167, 197, 222, 814, 816, 836,
837, 882, 938, 8872, 10340, 10353,
11057, 11208, 11311, 11314, 11317,
11320, 11349, 16395, 16457, 16478,
16484, 17112, 17120, 17132, 17158,
18644, 18659, 20341, 20468, 20474

\quark_if_nil:N 16447
\quark_if_nil:n 816, 817, 16465, 16485
\quark_if_nil:NTF 152, 375, 818, 16447
\quark_if_nil:nTF . . 152, 716, 815,

816, 818, 11152, 16465, 38059, 38072
\quark_if_nil_p:N 152, 16447
\quark_if_nil_p:n 152, 16465
\quark_if_no_value:N . . 16455, 16463
\quark_if_no_value:n 16475
\quark_if_no_value:NTF

152, 16447, 36611, 36615, 36684, 36688
\quark_if_no_value:nTF . . . 152, 16465
\quark_if_no_value_p:N . . . 152, 16447
\quark_if_no_value_p:n . . . 152, 16465
\quark_if_recursion_tail_-

break:NN . . . 154, 817, 16435, 16435
\quark_if_recursion_tail_-

break:nN . . . 154, 817, 16435, 16441

Index 1618

\quark_if_recursion_tail_stop:N .
153, 374, 817, 1301, 16403, 16403,

33756, 33789, 34449, 34502, 34528
\quark_if_recursion_tail_stop:n .

. 153,
374, 816, 817, 5846, 5966, 16417,
16417, 16433, 17522, 31120, 31323

\quark_if_recursion_tail_stop_-
do:Nn .
. . 153, 374, 817, 16403, 16409, 30418

\quark_if_recursion_tail_stop_-
do:nn 153, 374,
817, 16417, 16424, 16434, 34074, 37290

\quark_new:N
. . 152, 374, 375, 820, 4352, 4353,
8320, 8321, 10466, 10965, 10967,
10968, 12347, 12348, 12349, 12350,
12351, 13454, 13455, 14221, 16390,
16390, 16395, 16396, 16397, 16398,
16399, 16400, 16402, 17541, 17542,
19169, 20018, 20019, 21708, 31512,
31514, 31515, 39145, 39146, 39766

\q_recursion_stop . . . 27, 28, 153,
154, 384, 814, 1550, 1554, 5842,
5961, 16399, 17511, 30413, 31134,
31319, 33776, 33811, 34070, 34079,
34103, 34482, 34525, 34743, 37286

\q_recursion_tail
. 153, 154, 814, 815, 5842,
5960, 16399, 16405, 16411, 16420,
16427, 16432, 16437, 16444, 17511,
30413, 31133, 31319, 33775, 33810,
34070, 34481, 34524, 34742, 37285

\q_stop 27, 28, 40,
124, 151, 152, 384, 814, 1549, 1552,
9133, 9143, 11148, 11150, 12928,
16395, 31141, 31145, 31155, 31180,
31201, 31338, 31370, 31382, 31386,
31397, 31398, 31404, 31406, 31407,
31409, 31412, 31426, 31433, 31475,
31487, 31489, 31499, 31502, 38072

quark internal commands:
\q__bool_recursion_stop

. 8320, 8323, 8436, 8462
\q__bool_recursion_tail

. 8320, 8436, 8462
\q__char_no_value 19169
\q__cs_nil 3015
\q__cs_recursion_stop

. 2697, 2701, 2712, 3008
\q__debug_recursion_stop

. 39145, 39148, 39347, 39352
\q__debug_recursion_tail

. 39145, 39347, 39352

\q__file_nil
. . 10965, 11032, 11046, 11172, 11178

\q__file_recursion_stop
. 10967, 11011, 11022

\q__file_recursion_tail
. 10967, 11011, 11015

\q__int_recursion_stop
. . 17541, 18274, 18291, 18334, 18361

\q__int_recursion_tail
. 17541, 18274, 18291, 18334

\q__iow_nil 10466, 10713, 10720
\q__keys_no_value

1005, 21690, 21708, 22377, 22397,
22400, 22414, 22419, 22434, 22439

\q__prg_recursion_stop
. 391, 1593, 1666, 1753

\q__prg_recursion_tail
. 391, 1666, 1676, 1753, 1772

\q__prop_recursion_stop
. 20018, 20759, 20847

\q__prop_recursion_tail
. 20018, 20758, 20846

__quark_if_empty_if:n
. . 16465, 16467, 16477, 16487, 16627

__quark_if_nil:w
. 816, 16465, 16468, 16474

__quark_if_no_value:w
. 16465, 16478, 16484

__quark_if_recursion_tail:w 815,
820, 16417, 16420, 16427, 16431, 16444

__quark_module_name:N
. . . . 821, 16493, 16516, 16645, 16647

__quark_module_name:w
. 16645, 16649, 16652

__quark_module_name_end:w
. 16645, 16660, 16663

__quark_module_name_loop:w
. 16645, 16653, 16654, 16658

__quark_new_conditional:Nnnn . . .
. 16492, 16514, 16518, 16535

__quark_new_conditional_N:Nnnn .
. 16612, 16617

__quark_new_conditional_n:Nnnn .
. 16612, 16612

__quark_new_conditional_N_-
aux:NNNn 16612, 16619, 16634

__quark_new_conditional_n_-
aux:NNNn 16612, 16614, 16622

__quark_new_test:NNNn
. 16492, 16500, 16505, 16511

__quark_new_test_aux:Nn
. 16493, 16494, 16504

__quark_new_test_aux:nnNNnnnn . .
. 16492, 16507, 16528, 16536

Index 1619

__quark_new_test_aux_do:nNNnnnnNNn
. . 819, 820, 16547, 16552, 16557,
16562, 16567, 16573, 16576, 16576

__quark_new_test_define_break_-
ifx:nNNNNn . . . 16574, 16589, 16610

__quark_new_test_define_break_-
tl:nNNNNn 16558, 16589, 16608

__quark_new_test_define_-
ifx:nNnNNn 819,
820, 16563, 16568, 16589, 16598, 16611

__quark_new_test_define_-
tl:nNnNNn 819,
820, 16548, 16553, 16589, 16589, 16609

__quark_new_test_N:Nnnn 16545, 16560
__quark_new_test_n:Nnnn 16545, 16545
__quark_new_test_NN:Nnnn

. 16545, 16571
__quark_new_test_Nn:Nnnn

. 16545, 16565
__quark_new_test_nN:Nnnn 16555
__quark_new_test_nn:Nnnn

. 16545, 16550
\q__quark_nil 16402
__quark_quark_conditional_-

name:N . . . 822, 16515, 16667, 16669
__quark_quark_conditional_-

name:w . . . 822, 16667, 16671, 16674
__quark_test_define_aux:NNNNnnNNn

. 820, 16576, 16578, 16583
__quark_tmp:w

. . . . 822, 16645, 16666, 16667, 16677
\q__regex_nil

. . . 4323, 4328, 4353, 4358, 4966,
4970, 5626, 5644, 5645, 5740, 5750

\q__regex_recursion_stop
. . 4352, 4355, 4357, 5626, 5645, 7631

\q__str_nil
792, 14221, 15310, 15317, 15332, 15359

\q__str_recursion_stop
. 13454, 14058, 14066, 14071

\q__str_recursion_tail
. 747, 13454, 13701,
13710, 13727, 13747, 13769, 14058

\q__text_nil 31512, 32083, 32084
\q__text_recursion_stop

. . . . 31514, 31517, 31895, 31990,
32014, 32034, 32262, 32276, 32285,
32290, 32351, 32367, 32376, 32423,
32486, 32495, 32587, 32596, 32833,
32842, 32862, 32870, 32971, 32980,
33063, 33068, 33311, 33316, 33343,
33355, 33408, 33415, 33545, 33550,
33608, 33613, 33651, 33656, 33691,
33703, 33828, 33831, 33840, 33847,

33890, 33898, 33924, 33944, 33977,
34040, 34048, 34082, 34104, 34137,
34142, 34188, 34201, 34210, 34228,
34241, 34243, 34260, 34269, 34297

\q__text_recursion_tail
. 31514, 31663, 31894,
31990, 32014, 32034, 32262, 32290,
32350, 32423, 33828, 33847, 33924,
33977, 34082, 34188, 34227, 34297

\q__text_stop
. 32236, 32242, 32244, 32245

\q__tl_mark 709,
710, 12347, 12455, 12457, 12459, 12461

\q__tl_nil 710, 12347, 12493
\q__tl_recursion_stop 12350
\q__tl_recursion_tail . 12350, 13156
\q__tl_stop 710, 12347, 12492

\quitvmode . 678

R
\r 32178, 34497,

34516, 34540, 34566, 34690, 34691
\radical . 381
\raise . 382
rand . 284
randint . 284
\randomseed . 953
\read . 383
\readline . 519
\readpapersizespecial 1179
\ref 31783, 31793
regex commands:

\regex_const:Nn 56, 7231, 7241
\regex_count:NnN

. . 57, 7281, 7283, 7286, 17736, 17742
\regex_count:nnN 57, 174,

565, 7281, 7281, 7285, 17724, 17730
\regex_extract_all:NnN

. 58, 7301, 7317, 16841
\regex_extract_all:nnN

. . 49, 58, 158, 476, 7301, 7317, 16838
\regex_extract_all:NnNTF . . . 58, 7301
\regex_extract_all:nnNTF . . . 58, 7301
\regex_extract_once:NnN

. 58, 7301, 7315, 16835
\regex_extract_once:nnN

. 58, 158, 7301, 7315, 16832
\regex_extract_once:NnNTF . . 58, 7301
\regex_extract_once:nnNTF 52, 58, 7301
\regex_gset:Nn 56, 7231, 7236
\regex_log:N 56, 519, 7246, 7257
\regex_log:n 56, 7246, 7247
\regex_match:Nn 7275, 7280
\regex_match:nn 7269, 7274

Index 1620

\regex_match:NnTF 57, 7269
\regex_match:nNTF 12726
\regex_match:nnTF

. 57, 117, 567, 576, 7269, 12719
\regex_match_case:nn

. . . 57, 60, 498, 528, 7287, 7295, 7425
\regex_match_case:nnTF . . 57, 7287,

7287, 7296, 7297, 7298, 7299, 7300
\regex_new:N 56,

479, 7225, 7225, 7227, 7228, 7229, 7230
\regex_replace_all:NnN

. 59, 7301, 7321, 12544
\regex_replace_all:nnN 49,

59, 128, 201, 564, 7301, 7321, 12541
\regex_replace_all:NnNTF . . . 59, 7301
\regex_replace_all:nnNTF . . . 59, 7301
\regex_replace_case_all:nN

. 60, 7346, 7351, 7363
\regex_replace_case_all:nNTF . . .

. 60, 7346,
7346, 7364, 7365, 7366, 7367, 7368

\regex_replace_case_once:nN
. 60, 7323, 7328, 7340

\regex_replace_case_once:nNTF . . .
. 60, 7323,
7323, 7341, 7342, 7343, 7344, 7345

\regex_replace_once:NnN
. 59, 7301, 7319, 12538

\regex_replace_once:nnN 58–
60, 128, 215, 563, 7301, 7319, 12535

\regex_replace_once:NnNTF . . 59, 7301
\regex_replace_once:nnNTF

. 59, 580, 7301
\regex_set:Nn . . 48, 56, 57, 7231, 7231
\regex_show:N 56, 507, 519, 7246, 7256
\regex_show:n . . 49, 54, 56, 7246, 7246
\regex_split:NnN 59, 7301, 7322, 16847
\regex_split:nnN

. 59, 159, 7301, 7322, 16844
\regex_split:NnNTF 59, 7301
\regex_split:nnNTF 59, 7301
\g_tmpa_regex 61, 7227
\l_tmpa_regex 61, 7227
\g_tmpb_regex 61, 7227
\l_tmpb_regex 61, 7227

regex internal commands:
__regex_A_test: . 491, 5234, 5256,

5872, 5875, 5881, 5999, 6480, 6513
__regex_action_cost:n 527,

531, 6269, 6270, 6278, 6727, 6753, 6753
__regex_action_free:n . 527, 539,

6292, 6298, 6299, 6310, 6368, 6372,
6397, 6422, 6426, 6429, 6457, 6465,
6475, 6489, 6532, 6725, 6729, 6729

__regex_action_free_aux:nn
. 6729, 6730, 6732, 6733

__regex_action_free_group:n . . .
527, 539, 6318, 6437, 6440, 6729, 6731

__regex_action_start_wildcard:N
. 527, 6153, 6173, 6722, 6722

__regex_action_submatch:nN
. 527, 6177, 6199,
6391, 6392, 6530, 6778, 6780, 6780

__regex_action_submatch_aux:w . .
. 6780, 6782, 6785

__regex_action_submatch_auxii:w
. 6780, 6791, 6796

__regex_action_submatch_-
auxiii:w 6780, 6792, 6797, 6798, 6799

__regex_action_submatch_auxiv:w
. 6780

__regex_action_success:
. . . 527, 6156, 6202, 6220, 6801, 6801

__regex_action_wildcard: 544
\l__regex_added_begin_int

. 7380, 7519, 7527, 7531,
7585, 7714, 7719, 7723, 7734, 7749

\l__regex_added_end_int
. 7380, 7521, 7527, 7532,
7586, 7716, 7719, 7724, 7736, 7750

\c__regex_all_catcodes_int
. 4780, 4892, 4996, 5592

\c__regex_ascii_lower_int
. 4351, 4412, 4417

\c__regex_ascii_max_control_int .
. 4348, 4528

\c__regex_ascii_max_int
. 4348, 4521, 4529, 4720

\c__regex_ascii_min_int
. 4348, 4520, 4527

__regex_assertion:Nn . 491, 505,
537, 5230, 5252, 5861, 5992, 6480, 6480

__regex_b_test: 491,
537, 5242, 5244, 5878, 5997, 6480, 6498

\l__regex_balance_int
. 479, 551, 574, 4347,
6877, 6909, 7168, 7185, 7392, 7405,
7407, 7408, 7665, 7691, 7715, 7717

\g__regex_balance_intarray
. . . . 476, 565, 6856, 6863, 7379, 7404

\g__regex_balance_tl . . 551, 6819,
6878, 6908, 6934, 6951, 6961, 7036

\l__regex_begin_flag
. 7370, 7510, 7520, 7563

__regex_branch:n 491, 509,
533, 4344, 4897, 4972, 5402, 5455,
5640, 5750, 5758, 5842, 5844, 5847,
5974, 6363, 6363, 39868, 39869, 39870

Index 1621

__regex_break_point:TF
. 480, 504, 531, 4360, 4361,
4362, 4366, 6269, 6270, 6486, 6503

__regex_break_true:w
. 480, 481, 4360, 4360, 4366, 4371,
4378, 4385, 4389, 4396, 4402, 4449,
4461, 4477, 5205, 6510, 6516, 6522

__regex_build:N
. 563, 6136, 6138, 7277,
7284, 7304, 7308, 39837, 39840, 39842

__regex_build:n 528,
563, 6136, 6136, 7271, 7282, 7303, 7306

__regex_build_aux:NN . 575, 6136,
6139, 6143, 6145, 7771, 7790, 7860

__regex_build_aux:Nn
575, 6136, 6137, 6140, 7762, 7780, 7852

__regex_build_for_cs:n
4472, 6209, 6209, 39844, 39847, 39849

__regex_build_new_state:
. 6150, 6151, 6170, 6171,
6175, 6212, 6213, 6242, 6242, 6251,
6283, 6317, 6321, 6365, 6380, 6385,
6424, 6443, 6478, 6482, 6527, 39862

\l__regex_build_tl 509, 580,
4341, 4889, 4896, 4914, 4919, 4922,
4923, 4926, 4927, 4930, 4990, 4993,
5033, 5047, 5051, 5174, 5188, 5229,
5251, 5264, 5296, 5309, 5313, 5395,
5398, 5401, 5407, 5408, 5411, 5454,
5744, 5748, 5755, 5761, 5782, 5798,
5816, 5973, 6030, 6033, 6044, 6074,
6089, 6093, 6096, 6102, 6876, 6899,
6910, 6913, 6964, 7033, 7090, 7093,
7107, 7175, 7918, 7921, 7929, 7932

__regex_build_transition_-
left:NNN 6238, 6238, 6426, 6440, 6457

__regex_build_transition_-
right:nNn 6238,
6240, 6284, 6318, 6368, 6372,
6397, 6422, 6429, 6437, 6465, 6475

__regex_build_transitions_-
laziness:NNNNN
. 6249, 6249, 6291, 6297, 6309

\l__regex_capturing_group_int . . .
. 476, 526, 573,
6135, 6148, 6186, 6191, 6194, 6334,
6336, 6347, 6348, 6356, 6357, 6360,
6624, 6697, 6698, 6771, 6790, 7024,
7028, 7616, 7637, 7645, 7696, 7704

\g__regex_case_balance_tl
. 6939, 6942, 6948, 6952, 6960

__regex_case_build:n
567, 6160, 6160, 6165, 7334, 7357, 7431

__regex_case_build_aux:Nn
. 6160, 6162, 6166

__regex_case_build_loop:n
. 6160, 6184, 6189

\l__regex_case_changed_char_int .
. 481, 4388,
4400, 4401, 4408, 4412, 4417, 6545

\g__regex_case_int
. 563, 564, 6158, 6163, 6180,
6183, 6200, 6201, 7291, 7335, 7627

\l__regex_case_max_group_int . . .
. 6159, 6179, 6186, 6193, 6194

__regex_case_replacement:n
. 6938, 6940, 6956, 7358

__regex_case_replacement_aux:n .
. 6950, 6957

\g__regex_case_replacement_tl . . .
. 6938, 6948, 6954, 6959

\c__regex_catcode_A_int 4780
\c__regex_catcode_B_int 4780
\c__regex_catcode_C_int 4780
\c__regex_catcode_D_int 4780
\c__regex_catcode_E_int 4780
\c__regex_catcode_in_class_mode_-

int 4770, 4881, 5263, 5424, 5517, 5546
\c__regex_catcode_L_int 4780
\c__regex_catcode_M_int 4780
\c__regex_catcode_mode_int

. . 4770, 4877, 4950, 5295, 5515, 5544
\c__regex_catcode_O_int 4780
\c__regex_catcode_P_int 4780
\c__regex_catcode_S_int 4780
\c__regex_catcode_T_int 4780
\c__regex_catcode_U_int 4780
\l__regex_catcodes_bool

. 4777, 5551, 5555, 5590
\l__regex_catcodes_int

. 492, 4777, 4893, 4995,
4997, 5003, 5282, 5299, 5399, 5412,
5511, 5548, 5583, 5585, 5591, 5592

__regex_char_if_alphanumeric:N 4743
__regex_char_if_alphanumeric:NTF

. 4714, 4943, 7142
__regex_char_if_special:N . . . 4714
__regex_char_if_special:NTF . . .

. 4714, 4939
__regex_chk_c_allowed:TF

. 4863, 4863, 5504
__regex_class:NnnnN

. 491, 499, 500, 506,
4345, 4991, 5290, 5291, 5297, 5657,
5790, 5800, 5862, 5989, 6263, 6263

\c__regex_class_mode_int
. 4770, 4867, 4882

Index 1622

__regex_class_repeat:n
. . . 532, 6273, 6279, 6279, 6295, 6304

__regex_class_repeat:nN
. 6274, 6288, 6288

__regex_class_repeat:nnN
. 6275, 6302, 6302

__regex_clean_assertion:Nn
. 5819, 5861, 5869

__regex_clean_bool:n
. . 5819, 5819, 5871, 5886, 5890, 5898

__regex_clean_branch:n
. 5819, 5847, 5850

__regex_clean_branch_loop:n 5819,
5852, 5855, 5860, 5882, 5891, 5899

__regex_clean_class:n
. 5819, 5887, 5901, 5912, 5933

__regex_clean_class:NnnnN
. 5819, 5862, 5884

__regex_clean_class_loop:nnn . . .
. 5819,
5902, 5903, 5914, 5924, 5934, 5948

__regex_clean_exact_cs:n
. 5819, 5909, 5955

__regex_clean_exact_cs:w
. 5819, 5959, 5964, 5968

__regex_clean_group:nnnN
. 5819, 5863, 5864, 5865, 5893

__regex_clean_int:n
. . . 5819, 5825, 5828, 5888, 5889,
5896, 5897, 5910, 5911, 5923, 5933

__regex_clean_int_aux:N
. 5819, 5829, 5831

__regex_clean_regex:n
. 5819, 5839, 5895, 5908, 7261

__regex_clean_regex_loop:w
. 5819, 5841, 5844, 5848

__regex_command_K:
. . . 491, 5816, 5860, 5990, 6525, 6525

__regex_compile:n . . . 4932, 4932,
4968, 6142, 7233, 7238, 7243, 7250

__regex_compile:w
. 497, 4886, 4886, 4934, 5597

__regex_compile_$: 5225
__regex_compile_(: 5419
__regex_compile_): 5458
__regex_compile_.: 5196
__regex_compile_/A: 5225
__regex_compile_/B: 5225
__regex_compile_/b: 5225
__regex_compile_/c: 5503
__regex_compile_/D: 5208
__regex_compile_/d: 5208
__regex_compile_/G: 5225
__regex_compile_/H: 5208

__regex_compile_/h: 5208
__regex_compile_/K: 5813
__regex_compile_/N: 5208
__regex_compile_/S: 5208
__regex_compile_/s: 5208
__regex_compile_/u: 5677
__regex_compile_/V: 5208
__regex_compile_/v: 5208
__regex_compile_/W: 5208
__regex_compile_/w: 5208
__regex_compile_/Z: 5225
__regex_compile_/z: 5225
__regex_compile_[: 5274
__regex_compile_]: 5258
__regex_compile_^: 5225
__regex_compile_abort_tokens:n .

. . 5006, 5006, 5014, 5040, 5379, 5389
__regex_compile_anchor_letter:NNN

. 5225, 5225,
5234, 5236, 5238, 5240, 5242, 5244

__regex_compile_c_[:w 5540
__regex_compile_c_C:NN

. 5519, 5528, 5528
__regex_compile_c_lbrack_add:N .

. 5540, 5566, 5581
__regex_compile_c_lbrack_end: . .

. 5540, 5573, 5577, 5588
__regex_compile_c_lbrack_-

loop:NN 5540, 5552, 5556, 5560, 5568
__regex_compile_c_test:NN

. 5503, 5504, 5505
__regex_compile_class:NN

. 5304, 5310, 5314, 5317
__regex_compile_class:TFNN

. 506, 5289, 5300, 5304, 5304
__regex_compile_class_catcode:w

. 5281, 5293, 5293
__regex_compile_class_normal:w .

. 5284, 5287, 5287
__regex_compile_class_posix:NNNNw

. 5323, 5329, 5342
__regex_compile_class_posix_-

end:w 5323, 5360, 5362
__regex_compile_class_posix_-

loop:w . 5323, 5348, 5353, 5356, 5359
__regex_compile_class_posix_-

test:w 5277, 5323, 5323
__regex_compile_cs_aux:Nn

. 5612, 5625, 5638, 5646
__regex_compile_cs_aux:NNnnnN . .

. 5612, 5643, 5653, 5666
__regex_compile_end:

. 497, 4886, 4899, 4959, 5621

Index 1623

__regex_compile_end_cs:
. 4955, 5612, 5616, 5619

__regex_compile_escaped:N
. 4944, 4975, 4980

__regex_compile_group_begin:N . .
. . 5393, 5393, 5441, 5446, 5464, 5466

__regex_compile_group_end:
. 5393, 5404, 5461

__regex_compile_if_quantifier:TFw
. 5015, 5015, 5741, 5753

__regex_compile_lparen:w 5428, 5432
__regex_compile_one:n

. 4985, 4985, 5142, 5148,
5200, 5211, 5214, 5224, 5370, 5628

__regex_compile_quantifier:w . . .
. 5004,
5022, 5022, 5269, 5413, 5746, 5762

__regex_compile_quantifier_*:w 5056
__regex_compile_quantifier_+:w 5056
__regex_compile_quantifier_?:w 5056
__regex_compile_quantifier_-

abort:nNN
. . 5031, 5036, 5066, 5085, 5098, 5121

__regex_compile_quantifier_-
braced_auxi:w . . . 5062, 5065, 5068

__regex_compile_quantifier_-
braced_auxii:w . . 5062, 5081, 5090

__regex_compile_quantifier_-
braced_auxiii:w . 5062, 5080, 5103

__regex_compile_quantifier_-
laziness:nnNN . 501, 5043, 5043,
5057, 5059, 5061, 5074, 5094, 5116

__regex_compile_quantifier_-
none: . . 5027, 5029, 5031, 5031, 5038

__regex_compile_range:Nw
. 5140, 5153, 5167

__regex_compile_raw:N 4819, 4940,
4944, 4946, 4978, 4983, 5011, 5133,
5135, 5135, 5155, 5199, 5249, 5272,
5320, 5340, 5358, 5416, 5421, 5426,
5442, 5452, 5460, 5478, 5479, 5480,
5486, 5497, 5498, 5499, 5507, 5562,
5610, 5617, 5682, 5698, 5699, 5705

__regex_compile_raw_error:N . . .
. 5130, 5130, 5227, 5680, 5817

__regex_compile_special:N . 493,
4940, 4975, 4975, 5017, 5024, 5045,
5072, 5077, 5092, 5105, 5139, 5157,
5307, 5325, 5344, 5364, 5365, 5434,
5469, 5487, 5530, 5549, 5689, 5708

__regex_compile_special_group_-
-:w . 5467

__regex_compile_special_group_-
::w . 5463

__regex_compile_special_group_-
i:w 5467, 5467

__regex_compile_special_group_-
|:w . 5463

__regex_compile_u_brace:NNN . . .
. 5683, 5684, 5687, 5687

__regex_compile_u_end:
. 5684, 5751, 5751

__regex_compile_u_in_cs:
. 5772, 5775, 5775

__regex_compile_u_in_cs_aux:n . .
. 5785, 5788

__regex_compile_u_loop:NN
. 5693, 5703, 5703, 5706, 5718

__regex_compile_u_not_cs:
. 5770, 5794, 5794

__regex_compile_u_payload:
. 517, 5751, 5760, 5764, 5766

__regex_compile_ur:n
. 517, 5729, 5736, 5738

__regex_compile_ur_aux:w
. 5729, 5740, 5750

__regex_compile_ur_end:
. 5683, 5697, 5729, 5729

__regex_compile_use:n
. 4961, 4961, 6192

__regex_compile_use_aux:w 4965, 4970
__regex_compile_|: 5450
__regex_compute_case_changed_-

char: 4406, 4406, 4422, 6668
__regex_count:nnN

. 7282, 7284, 7437, 7437
\l__regex_cs_flag 5612
\c__regex_cs_in_class_mode_int . .

. 4770, 5603
\c__regex_cs_mode_int . . . 4770, 5601
\l__regex_curr_analysis_tl

541, 6559, 6605, 6632, 6639, 6673, 6674
\l__regex_curr_catcode_int

. . 4428, 4447, 4455, 4467, 6545, 6671
\l__regex_curr_char_int

. 543, 4370, 4376, 4377,
4384, 4394, 4395, 4408, 4409, 4410,
4411, 4416, 4448, 5204, 6219, 6501,
6509, 6545, 6628, 6667, 6670, 6686

__regex_curr_cs_to_str:
. 4304, 4304, 4458, 4475

\l__regex_curr_pos_int
. 478, 543, 6521, 6540, 6616, 6627,
6666, 6800, 6808, 7393, 7398, 7402,
7403, 7405, 7903, 7908, 7912, 7913

\l__regex_curr_state_int 540, 546,
6551, 6704, 6705, 6707, 6712, 6715,
6737, 6742, 6747, 6748, 6756, 39892

Index 1624

\l__regex_curr_submatches_tl . . .
. 6552, 6623, 6717,
6749, 6750, 6761, 6783, 6787, 6812

\l__regex_curr_token_tl
. 4307, 6545, 6669

\l__regex_default_catcodes_int . .
. 492, 4777,
4891, 4893, 5003, 5299, 5399, 5412

__regex_disable_submatches: 4471,
5598, 6775, 6775, 7414, 7440, 7801

\l__regex_empty_success_bool . . .
. 6562, 6608, 6612, 6806, 7501

\l__regex_end_flag
. 7370, 7511, 7522, 7571

__regex_escape_␣:w 4594
__regex_escape_/\scan_stop::w 4594
__regex_escape_/a:w 4594
__regex_escape_/e:w 4594
__regex_escape_/f:w 4594
__regex_escape_/n:w 4594
__regex_escape_/r:w 4594
__regex_escape_/t:w 4594
__regex_escape_/x:w 4613
__regex_escape_\:w 4578
__regex_escape_\scan_stop::w . 4594
__regex_escape_escaped:N

. 4564, 4588, 4591, 4592
__regex_escape_loop:N 486,

4571, 4578, 4578, 4582, 4585, 4589,
4613, 4652, 4663, 4664, 4684, 4693

__regex_escape_raw:N
. . . . 487, 4565, 4591, 4593, 4602,
4604, 4606, 4608, 4610, 4612, 4626

__regex_escape_unescaped:N
. 4563, 4581, 4591, 4591

__regex_escape_use:nnn 39835
__regex_escape_use:nnnn 485, 497,

4559, 4559, 4937, 6879, 39828, 39831
__regex_escape_x:N

. 487, 4651, 4655, 4655
__regex_escape_x_end:w

. 487, 4613, 4615, 4618
__regex_escape_x_large:n 4613
__regex_escape_x_loop:N

. . . 487, 4648, 4667, 4667, 4676, 4679
__regex_escape_x_loop_error: . 4667
__regex_escape_x_loop_error:n . .

. 4673, 4685, 4690
__regex_escape_x_test:N

. 487, 4616, 4630, 4630, 4638
__regex_escape_x_testii:N

. 4630, 4640, 4645
\l__regex_every_match_tl

. 6561, 6643, 6653, 6690

__regex_extract:
. 567, 579, 7455, 7462,
7475, 7612, 7612, 7662, 7686, 7876

__regex_extract_all:nnN
. 7316, 7449, 7459

__regex_extract_aux:w
. 7612, 7629, 7634, 7650

__regex_extract_check:n
. 7576, 7578, 7581

__regex_extract_check:w
. . . . 569, 570, 7523, 7576, 7576, 7587

__regex_extract_check_end:w . . .
. 571, 7576, 7592, 7604

__regex_extract_check_loop:w . . .
. 7576, 7590, 7597, 7602, 7605

__regex_extract_once:nnN
. 7314, 7449, 7449

__regex_extract_seq:N
. 7508, 7535, 7537

__regex_extract_seq:NNn
. 7508, 7541, 7545

__regex_extract_seq_aux:n
. 7516, 7552, 7552

__regex_extract_seq_aux:ww
. 7552, 7555, 7558

__regex_extract_seq_loop:Nw . . .
. 7508, 7540, 7547, 7550

\l__regex_fresh_thread_bool
. 541, 546, 6531,
6537, 6562, 6684, 6724, 6726, 6807

__regex_G_test:
. . . 491, 5236, 5876, 6000, 6480, 6519

__regex_get_digits:NTFw
. 4805, 4805, 5064, 5079

__regex_get_digits_loop:nw
. 4808, 4811, 4814

__regex_get_digits_loop:w . . . 4805
__regex_group:nnnN

. 491, 509, 5441, 5446,
5732, 5863, 5983, 6154, 6331, 6331

__regex_group_aux:nnnnN
. 533, 6314, 6314,
6333, 6341, 6344, 39864, 39865, 39866

__regex_group_aux:nnnnnN 533
__regex_group_end_extract_seq:N

. . . 570, 7457, 7466, 7506, 7508, 7508
__regex_group_end_replace:N . . .

. 7677, 7710, 7712, 7712
__regex_group_end_replace_-

check:n 574, 7712, 7742, 7745
__regex_group_end_replace_-

check:w 574, 7712, 7731, 7740
__regex_group_end_replace_try: .

. 574, 7712, 7718, 7729, 7751

Index 1625

\l__regex_group_level_int . 4769,
4890, 4908, 4910, 4912, 5400, 5406

__regex_group_no_capture:nnnN . .
. 491, 5464, 5732, 5733,
5745, 5757, 5864, 5985, 6331, 6340

__regex_group_repeat:nn
. 6326, 6375, 6375

__regex_group_repeat:nnN
. 6327, 6415, 6415

__regex_group_repeat:nnnN
. 6328, 6446, 6446

__regex_group_repeat_aux:n
534, 536, 6382, 6395, 6395, 6433, 6450

__regex_group_resetting:nnnN . . .
491, 5466, 5733, 5865, 5987, 6342, 6342

__regex_group_resetting_-
loop:nnNn . . 6342, 6346, 6354, 6359

__regex_group_submatches:nNN . . .
. . 6383, 6388, 6388, 6418, 6434, 6448

__regex_hexadecimal_use:NTF . . .
. 4650, 4662, 4675, 4695, 4695

__regex_if_end_range:NNTF
. 5153, 5153, 5169

__regex_if_in_class: 4826
__regex_if_in_class:TF . . . 4826,

4901, 4988, 5004, 5137, 5198, 5260,
5276, 5421, 5452, 5460, 7996, 8009

__regex_if_in_class_or_catcode:TF
. 4844, 4844, 5227, 5249, 5679

__regex_if_in_cs:TF
. . 4834, 4834, 5608, 5615, 7994, 8003

__regex_if_match:nn
. 7271, 7277, 7411, 7411, 7430

__regex_if_raw_digit:NNTF
. 4807, 4813, 4817, 4817

__regex_if_two_empty_matches:TF
. . . 541, 6562, 6564, 6613, 6619, 6803

__regex_if_within_catcode: . . 4855
__regex_if_within_catcode:TF . . .

. 4855, 5279
__regex_input_item:n

. 575, 579, 580, 7757,
7758, 7818, 7840, 7881, 7904, 7913

\l__regex_input_tl
. 576, 578, 579, 7757,
7813, 7817, 7839, 7841, 7902, 7906

__regex_int_eval:w
. 4268, 4268, 4310, 4437,
4701, 5583, 6239, 6241, 6255, 6256,
6258, 6259, 6401, 6491, 6534, 6708,
6756, 6769, 6833, 6834, 6845, 6855,
7034, 7037, 7639, 7643, 7930, 7935

__regex_intarray_item:NnTF
. 4309, 4309, 6856, 6863

__regex_intarray_item_aux:nNTF .
. 4309, 4310, 4311

\l__regex_internal_a_int 501, 555,
4333, 5064, 5075, 5086, 5095, 5099,
5107, 5110, 5114, 5117, 5124, 6296,
6299, 6305, 6310, 6384, 6399, 6405,
6411, 6420, 6423, 6427, 6430, 6435,
6438, 6441, 6456, 6464, 6473, 7043,
7064, 7628, 7637, 7639, 7644, 7649

\l__regex_internal_a_tl 485, 517,
518, 522, 574, 4333, 4457, 4460,
4562, 4569, 4576, 5347, 5352, 5368,
5373, 5378, 5382, 5388, 5389, 5623,
5634, 5692, 5736, 5768, 5780, 5796,
5977, 5980, 6033, 6054, 6096, 6103,
6195, 6196, 6233, 6234, 6235, 6236,
6366, 6367, 6371, 6373, 6629, 6632,
7254, 7266, 7667, 7700, 7735, 39830

\l__regex_internal_b_int
. 4333, 5079,
5108, 5111, 5112, 5114, 5118, 5125,
6400, 6405, 6410, 6456, 6464, 6473

\l__regex_internal_b_tl
. 4333, 5691, 5711, 5724

\l__regex_internal_bool
. 4333, 5346, 5351, 5372, 5381

\l__regex_internal_c_int
. 4333, 6402, 6407, 6408, 6412

\l__regex_internal_regex
. . . . 496, 4793, 4930, 4968, 5625,
5631, 6143, 7234, 7239, 7244, 7251

\l__regex_internal_seq 4333, 6109,
6110, 6115, 6122, 6123, 6124, 6126

\g__regex_internal_tl
. 569, 570, 4333,
4567, 4571, 5777, 5784, 7513, 7524,
7525, 7543, 7588, 7591, 7727, 7732

__regex_item_caseful_equal:n . . .
. 491, 4368,
4368, 4488, 4489, 4493, 4494, 4495,
4496, 4497, 4506, 4511, 4529, 4547,
4894, 5491, 5659, 5791, 5910, 6001

__regex_item_caseful_range:nn . .
. 491,
4368, 4374, 4485, 4500, 4503, 4504,
4505, 4519, 4526, 4533, 4535, 4537,
4540, 4541, 4542, 4543, 4548, 4551,
4556, 4557, 4895, 5493, 5918, 6003

__regex_item_caseless_equal:n . .
. . . 491, 4382, 4382, 5472, 5911, 6008

__regex_item_caseless_range:nn .
. . . 491, 4382, 4392, 5474, 5919, 6010

__regex_item_catcode:
. 4425, 4425, 4437

Index 1626

__regex_item_catcode:n 4435
__regex_item_catcode:nTF . . 491,

506, 4425, 4444, 4997, 5301, 5929, 6015
__regex_item_catcode_reverse:nTF

. . . 491, 4425, 4443, 5302, 5930, 6017
__regex_item_cs:n

. . . 491, 4465, 4465, 5631, 5908, 6024
__regex_item_equal:n

. 4423, 4423, 4894, 5143,
5149, 5177, 5190, 5191, 5471, 5490

__regex_item_exact:nn
491, 518, 4445, 4445, 5806, 5920, 6021

__regex_item_exact_cs:n . . . 491,
514, 4445, 4453, 5633, 5803, 5909, 6023

__regex_item_range:nn
. . 4423, 4424, 4895, 5179, 5473, 5492

__regex_item_reverse:n
. 491, 507, 4363, 4363, 4444,
4510, 5215, 5372, 5912, 6019, 6504

\l__regex_last_char_int
. 6501, 6515, 6545, 6667, 6809

\l__regex_last_char_success_int .
. 6545, 6603, 6628, 6809

\l__regex_left_state_int
. 6131, 6152,
6172, 6176, 6227, 6234, 6245, 6252,
6255, 6256, 6258, 6259, 6285, 6293,
6296, 6319, 6367, 6369, 6379, 6399,
6419, 6421, 6449, 6452, 6455, 6458,
6470, 6483, 6492, 6528, 6535, 39855

\l__regex_left_state_seq
. 6131, 6226, 6233, 6366

__regex_maplike_break:
. 478, 576, 4318, 4318, 4319,
6575, 6589, 6634, 6648, 6656, 7821

__regex_match:n
6568, 6568, 7417, 7444, 7454, 7464,

7490, 7659, 7688, 39873, 39876, 39877
__regex_match_case:nnTF

. 7289, 7420, 7420
__regex_match_case_aux:nn 7420, 7436
\l__regex_match_count_int

. . . . 565, 567, 7369, 7441, 7442, 7447
__regex_match_cs:n

4475, 6568, 6577, 39880, 39883, 39884
__regex_match_init:

. 6568, 6570, 6580, 6591, 7812, 39888
__regex_match_once_init:

. . 6571, 6581, 6610, 6610, 6660, 7814
__regex_match_once_init_aux: . . .

. 6630, 6636
__regex_match_one_active:n

. 6663, 6681, 6692

__regex_match_one_token:nnN . . .
. 543, 546, 576, 6573, 6574, 6585,
6586, 6588, 6633, 6663, 6663, 7819

\l__regex_match_success_bool . . .
. . . 541, 6565, 6622, 6647, 6655, 6805

\l__regex_matched_analysis_tl . . .
541, 6559, 6604, 6629, 6638, 6672, 6810

\l__regex_max_pos_int
. 550, 6540, 7398,
7496, 7502, 7675, 7708, 7894, 7908

\l__regex_max_state_int 526, 529,
588, 6128, 6149, 6169, 6204, 6206,
6207, 6211, 6244, 6246, 6247, 6306,
6378, 6398, 6400, 6408, 6452, 6458,
6466, 6476, 6595, 8268, 39857, 39858

\l__regex_max_thread_int
. 6555, 6579,
6625, 6677, 6680, 6685, 6762, 6770

__regex_maybe_compute_ccc:
. 4387, 4399, 4420, 4422, 6668

\l__regex_min_pos_int
. 550, 6540, 6601, 6602

\l__regex_min_state_int 529, 6128,
6149, 6169, 6211, 6595, 6626, 8267

\l__regex_min_submatch_int
. 565, 569,
573, 6606, 6607, 7372, 7515, 7695, 7703

\l__regex_min_thread_int
. . 6555, 6579, 6625, 6677, 6679, 6685

\l__regex_mode_int 4770,
4828, 4836, 4838, 4846, 4848, 4857,
4865, 4867, 4877, 4878, 4880, 4882,
4936, 4950, 4952, 5262, 5266, 5267,
5268, 5295, 5306, 5423, 5513, 5514,
5542, 5543, 5599, 5600, 5769, 5815

__regex_mode_quit_c:
. 4875, 4875, 4987, 5396

__regex_msg_repeated:nnN
. 6069, 6090, 6100, 8237, 8237

__regex_multi_match:n
541, 6641, 6651, 7442, 7462, 7471, 7686

\c__regex_no_match_regex
. 4342, 4793, 7226

\c__regex_outer_mode_int
. 4770, 4838, 4848, 4857,
4865, 4878, 4936, 4952, 5769, 5815

__regex_peek:nnTF
578, 7761, 7770, 7779, 7789, 7797, 7797

__regex_peek_aux:nnTF
. 7797, 7799, 7805, 7870

__regex_peek_end:
. . . . 575, 577, 7763, 7772, 7825, 7825

\l__regex_peek_false_tl
. 7754, 7809, 7829, 7835, 7898

Index 1627

__regex_peek_reinsert:N . . . 577,
579, 7828, 7829, 7835, 7837, 7837, 7898

__regex_peek_remove_end:n
. . . . 575, 577, 7781, 7791, 7825, 7831

__regex_peek_replace:nnTF
. 7852, 7860, 7867, 7867

__regex_peek_replace_end:
. 7870, 7872, 7872

__regex_peek_replacement_put:n .
. 7878, 7915, 7915

__regex_peek_replacement_put_-
submatch_aux:n . . 7880, 7926, 7926

__regex_peek_replacement_-
token:n 580, 7882, 7924, 7924

__regex_peek_replacement_var:N .
. 7883, 7940, 7940

\l__regex_peek_true_tl
577, 579, 7754, 7808, 7828, 7834, 7887

__regex_pop_lr_states:
. 6187, 6216, 6224, 6231, 6324

__regex_posix_alnum: . . . 4513, 4513
__regex_posix_alpha:

. 521, 4513, 4514, 4515
__regex_posix_ascii: . . . 4513, 4517
__regex_posix_blank: . . . 4513, 4523
__regex_posix_cntrl: . . . 4513, 4524
__regex_posix_digit:

. 4513, 4514, 4531, 4555
__regex_posix_graph: . . . 4513, 4532
__regex_posix_lower: 4513, 4516, 4534
__regex_posix_print: . . . 4513, 4536
__regex_posix_punct: . . . 4513, 4538
__regex_posix_space: . . . 4513, 4545
__regex_posix_upper: 4513, 4516, 4550
__regex_posix_word: 4513, 4552
__regex_posix_xdigit: . . . 4513, 4553
__regex_prop_.: 504, 5196
__regex_prop_d:

. 504, 521, 4484, 4484, 4531
__regex_prop_h: 4484, 4486, 4523
__regex_prop_N: 4484, 4508, 5224
__regex_prop_s: 4484, 4491
__regex_prop_v: 4484, 4499
__regex_prop_w:

. . 4484, 4501, 4552, 6502, 6504, 6505
__regex_push_lr_states:

. 6178, 6214, 6224, 6224, 6322
__regex_quark_if_nil:N 4359
__regex_quark_if_nil:NTF 5649, 5669
__regex_quark_if_nil:nTF 4359
__regex_quark_if_nil_p:n 4359
__regex_query_range:nn

. 550, 579, 6824, 6830,
6830, 6849, 6920, 7670, 7707, 7889

__regex_query_range_loop:ww . . .
. 6830, 6832, 6837, 6844

__regex_query_set:n 7390,
7390, 7456, 7465, 7491, 7663, 7689

__regex_query_set_aux:nN
. 7390, 7394, 7396, 7397, 7400

__regex_query_set_from_input_-
tl: 7877, 7900, 7900

__regex_query_set_item:n
. 7900, 7904, 7905, 7907, 7910

__regex_query_submatch:n
. . 6847, 6847, 7034, 7567, 7930, 7935

__regex_reinsert_item:n
578, 579, 7837, 7840, 7843, 7881, 7919

__regex_replace_all:nnN
. 7320, 7681, 7681

__regex_replace_all_aux:nnN . . .
. 7356, 7682, 7683

__regex_replace_once:nnN
. 7318, 7652, 7652

__regex_replace_once_aux:nnN . . .
. 7333, 7652, 7653, 7654

__regex_replacement:n
. . . . 579, 6871, 6871, 6915, 7335,
7653, 7682, 7884, 39897, 39898, 39899

__regex_replacement_apply:Nn . . .
. 6871, 6872, 6873, 6950

__regex_replacement_balance_-
one_match:n
. . . 549, 6820, 6820, 6932, 7666, 7698

__regex_replacement_c:w . 7073, 7073
__regex_replacement_c_A:w

. 553, 7005, 7161, 7162
__regex_replacement_c_B:w

. 6993, 7164, 7165
__regex_replacement_c_C:w 7173, 7173
__regex_replacement_c_D:w

. 7000, 7178, 7179
__regex_replacement_c_E:w

. 6994, 7181, 7182
__regex_replacement_c_L:w

. 7003, 7190, 7191
__regex_replacement_c_M:w

. 6995, 7193, 7194
__regex_replacement_c_O:w 6992,

6997, 7001, 7004, 7006, 7196, 7197
__regex_replacement_c_P:w

. 6998, 7199, 7200
__regex_replacement_c_S:w

. 6988, 7002, 7205, 7205
__regex_replacement_c_T:w

. 6996, 7213, 7214
__regex_replacement_c_U:w

. 6999, 7216, 7217

Index 1628

__regex_replacement_cat:NNN . . .
. 7078, 7121, 7121

\l__regex_replacement_category_-
seq 6817, 6902, 6905, 6906, 6975, 7135

\l__regex_replacement_category_-
tl 553,
6817, 6970, 6976, 6979, 7136, 7137

__regex_replacement_char:nNN . . .
. 560,
7156, 7156, 7163, 7170, 7180, 7187,
7192, 7195, 7198, 7202, 7215, 7218

\l__regex_replacement_csnames_-
int 548, 6816, 6896, 6898, 6900,
6967, 7035, 7089, 7096, 7106, 7108,
7115, 7126, 7167, 7184, 7917, 7928

__regex_replacement_cu_aux:Nw . .
. 7083, 7087, 7087, 7101

__regex_replacement_do_one_-
match:n 579,
580, 6822, 6822, 6918, 7669, 7706, 7888

__regex_replacement_error:NNN . .
. 7044, 7056,
7067, 7079, 7084, 7102, 7220, 7220

__regex_replacement_escaped:N . .
. 6892, 7011, 7011, 7140

__regex_replacement_exp_not:N . .
. . . 556, 6828, 6828, 7083, 7176, 7882

__regex_replacement_exp_not:n . .
. 6829, 6829, 7101, 7883

__regex_replacement_g:w . 7040, 7040
__regex_replacement_g_digits:NN

. 7040, 7043, 7046, 7053
__regex_replacement_lbrace:N . . .

. . 6885, 7042, 7082, 7100, 7113, 7113
__regex_replacement_normal:n . . .

. 6887, 6893, 6965, 6965,
7018, 7048, 7075, 7110, 7118, 7133

__regex_replacement_normal_-
aux:N 6965, 6971, 6985

__regex_replacement_put:n
. . 6963, 6963, 6968, 7159, 7211, 7878

__regex_replacement_put_-
submatch:n . 7016, 7022, 7022, 7063

__regex_replacement_put_-
submatch_aux:n
. 7022, 7025, 7031, 7879

__regex_replacement_rbrace:N . . .
. 6882, 7062, 7104, 7104

__regex_replacement_set:n
. 6871, 6872, 6916, 6953

\l__regex_replacement_tl
. 7756, 7869, 7884

__regex_replacement_u:w . 7098, 7098

__regex_return:
563, 7272, 7278, 7306, 7308, 7382, 7382

\l__regex_right_state_int
. . . 6131, 6155, 6196, 6197, 6217,
6229, 6236, 6245, 6246, 6285, 6292,
6298, 6311, 6319, 6369, 6373, 6384,
6398, 6407, 6419, 6423, 6427, 6430,
6435, 6438, 6441, 6449, 6463, 6466,
6469, 6472, 6476, 6492, 6535, 39856

\l__regex_right_state_seq
. . 6131, 6195, 6205, 6228, 6235, 6371

\l__regex_saved_success_bool . . .
. 541, 4473, 4480, 6565

__regex_show:N
. 561, 5970, 5970, 7251, 7263

__regex_show:NN 7246, 7256, 7257, 7258
__regex_show:Nn 7246, 7246, 7247, 7248
__regex_show_char:n 6002,

6006, 6009, 6013, 6022, 6035, 6035
__regex_show_class:NnnnN

. 5989, 6071, 6071
__regex_show_group_aux:nnnnN . . .

. 5984, 5986, 5988, 6062, 6062
__regex_show_item_catcode:NnTF .

. 6016, 6018, 6107, 6107
__regex_show_item_exact_cs:n . . .

. 6023, 6120, 6120
\l__regex_show_lines_int

. 4795, 6043, 6075, 6078, 6085
__regex_show_one:n

. . . 5978, 5991, 5994, 6002, 6005,
6009, 6012, 6022, 6026, 6041, 6041,
6057, 6064, 6068, 6081, 6097, 6125

__regex_show_pop:
. 6051, 6053, 6060, 6067

\l__regex_show_prefix_seq . 4794,
5976, 5979, 6027, 6047, 6052, 6054

__regex_show_push:n
. . 6028, 6051, 6051, 6058, 6065, 6076

__regex_show_scope:nn
. 6020, 6025, 6051, 6055, 6112

__regex_single_match: . 541, 4470,
6641, 6641, 7415, 7452, 7657, 7810

__regex_split:nnN . . 7322, 7468, 7468
__regex_standard_escapechar: . . .

. . 4269, 4269, 4566, 4935, 6147, 6168
\l__regex_start_pos_int

. . . 6521, 6540, 6616, 6621, 6627,
7474, 7486, 7499, 7502, 7625, 7708

\g__regex_state_active_intarray .
. 476, 529, 540–
542, 6557, 6598, 6703, 6706, 6714, 6741

\l__regex_step_int 476, 6554, 6600,
6665, 6704, 6708, 6716, 6730, 6732

Index 1629

__regex_store_state:n
. 540, 6626, 6755, 6758, 6758

__regex_store_submatches: . . . 6758
__regex_store_submatches:n . . 6777
__regex_store_submatches:nn . . .

. 6760, 6764
__regex_submatch_balance:n

. . 6821, 6853, 6853, 6935, 7037, 7556
\g__regex_submatch_begin_-

intarray
. 476, 549, 572, 6826, 6850, 6866,
6927, 7375, 7481, 7484, 7497, 7638

\g__regex_submatch_case_intarray
. 6946, 7375, 7620, 7626

\g__regex_submatch_end_intarray .
. 476, 572, 6851, 6859,
7375, 7478, 7494, 7641, 7672, 7891

\l__regex_submatch_int
476, 565, 568, 569, 573, 6607, 7372,
7493, 7495, 7498, 7500, 7503, 7516,
7615, 7619, 7621, 7622, 7697, 7705

\g__regex_submatch_prev_intarray
. 476, 565, 571, 6825,
6923, 7375, 7476, 7492, 7618, 7624

\g__regex_success_bool
. . . . 541, 4474, 4476, 4479, 6565,
6593, 6646, 6658, 7337, 7360, 7384,
7433, 7614, 7660, 7827, 7833, 7874

\l__regex_success_pos_int
. 6540, 6602, 6621, 6808, 7474

\l__regex_success_submatches_tl .
. 540, 572, 6552, 6811, 7629

__regex_tests_action_cost:n . . .
. . 6263, 6265, 6278, 6284, 6293, 6311

\g__regex_thread_info_intarray . .
. 476, 539–541, 547, 6557, 6696, 6767

__regex_tl_even_items:n
. 4320, 4320, 4321, 7358

__regex_tl_even_items_loop:nn . .
. 4320, 4323, 4326, 4330

__regex_tl_odd_items:n
. 4320, 4320, 7334, 7357, 7431

__regex_tmp:w 569, 4332, 4332, 5208,
5218, 5219, 5220, 5221, 5222, 5245,
5256, 5257, 7301, 7314, 7316, 7318,
7320, 7322, 7512, 7517, 7540, 7547,
7554, 7592, 7597, 7601, 7605, 7610

__regex_toks_clear:N
. 4272, 4272, 6204, 6244

__regex_toks_memcpy:NNn
. 4277, 4277, 6409

__regex_toks_put_left:Nn
. 4286, 4287,
4289, 6176, 6197, 6239, 6391, 6392

__regex_toks_put_right:Nn
. 477, 4286,
4293, 4295, 4299, 4301, 6152, 6155,
6172, 6217, 6241, 6252, 6483, 6528

__regex_toks_set:Nn
. 4272, 4274, 4275, 7403, 7913

__regex_toks_use:w
. 4271, 4271, 6705, 6843, 8271

__regex_trace:nnn
. . . 8253, 8254, 8256, 8257, 8270,
39852, 39874, 39881, 39886, 39891

__regex_trace_pop:nnN
. 8253, 8255, 39831, 39840, 39847,
39865, 39869, 39876, 39883, 39898

__regex_trace_push:nnN
. 8253, 8253, 39828, 39837, 39844,
39864, 39868, 39873, 39880, 39897

\g__regex_trace_regex_int 8263
__regex_trace_states:n

. 8264, 8264, 39839, 39846
__regex_two_if_eq:NNNNTF

4796, 4796, 5045, 5092, 5105, 5139,
5307, 5344, 5364, 5365, 5434, 5469,
5486, 5487, 5549, 5682, 5689, 7133

__regex_use_i_delimit_by_q_-
recursion_stop:nw 4354, 4356, 5672

__regex_use_none_delimit_by_q_-
nil:w 4328, 4354, 4358

__regex_use_none_delimit_by_q_-
recursion_stop:w
. 4354, 4354, 5650, 5674, 7630

__regex_use_state:
. 6701, 6701, 6718, 6744, 39895

__regex_use_state_and_submatches:w
. 544, 6694, 6710, 6710

__regex_Z_test: 491, 5238,
5240, 5257, 5877, 5998, 6480, 6507

\l__regex_zeroth_submatch_int . . .
. 565, 571, 7372, 7477, 7479,
7482, 7485, 7615, 7625, 7627, 7639,
7644, 7666, 7669, 7673, 7888, 7892

register commands:
register_luadata 12063

\relax . . 4, 8, 13, 17, 53, 54, 61, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 96, 97,
98, 99, 100, 101, 102, 103, 104, 105, 384

\relpenalty . 385
\resettimer . 776
reverse commands:

\reverse_if:N
29, 697, 755, 855, 856, 1068, 1389,

1394, 4376, 4377, 4394, 4395, 4400,
4401, 8490, 12102, 14035, 17629,
17804, 17806, 17808, 17810, 17873,

Index 1630

20978, 20983, 20987, 20989, 24229,
27863, 28685, 28708, 31373, 31397

\right . 386
\rightghost . 910
\righthyphenmin 387
\rightmarginkern 679
\rightskip . 388
\rmfamily . 34405
\romannumeral 389
round . 281
\rpcode . 680

S
\saveboxresource 957
\savecatcodetable 911
\saveimageresource 958
\savepos . 956
\savinghyphcodes 520
\savingvdiscards 521
scan commands:

\scan_new:N 155,
735, 823, 3123, 3124, 3533, 8535,
8536, 9239, 9240, 10463, 10464,
10964, 13063, 13340, 13341, 13342,
13450, 13451, 14220, 16679, 16679,
16706, 16707, 16708, 17538, 17539,
18484, 18485, 19168, 19393, 19394,
19818, 19819, 20016, 20017, 20022,
20858, 20859, 21289, 21452, 21453,
21454, 21455, 21705, 21706, 21707,
23345, 23348, 23349, 23350, 23351,
23353, 23354, 23355, 23356, 23357,
23456, 29623, 31511, 31520, 31521,
36812, 36826, 38561, 39143, 39770

\scan_stop: 14, 23, 24,
155, 172, 212, 371, 375, 394, 398,
408, 414, 469, 483, 491, 514, 590,
672, 700, 705, 713–715, 720, 726,
755, 822, 856, 861, 909, 917, 919,
921, 922, 940, 944, 951, 952, 957,
1064, 1068–1070, 1073, 1307, 1485,
121, 134, 1418, 1418, 1825, 1847,
1863, 1871, 1891, 1907, 1942, 1955,
2323, 2346, 2355, 2364, 2429, 2695,
2696, 2711, 2751, 2777, 2801, 2818,
3008, 3014, 3157, 3538, 3694, 3734,
3738, 3744, 3746, 3793, 3795, 4080,
4089, 4091, 4101, 4142, 4143, 4144,
4150, 4437, 4458, 4459, 4572, 4632,
4657, 4669, 4701, 4815, 5583, 5642,
5960, 5964, 5967, 6122, 6708, 6720,
6869, 7034, 7037, 7158, 7210, 7512,
7930, 7935, 8893, 8897, 9127, 9139,
9151, 9210, 10253, 10258, 10380,

10504, 10507, 11079, 11086, 11118,
11449, 11495, 12376, 12591, 12601,
12664, 12694, 12696, 13018, 13038,
13052, 14036, 14330, 15321, 16401,
16688, 16691, 17177, 18003, 19378,
19486, 19555, 19867, 19928, 20004,
20007, 20009, 20425, 20573, 20870,
20889, 20891, 20895, 20898, 20901,
20905, 20910, 20914, 21137, 21299,
21317, 21319, 21327, 21329, 21333,
21335, 21356, 21361, 21364, 21390,
21410, 21412, 21420, 21422, 21426,
21428, 21432, 22912, 22995, 23094,
23132, 23139, 23299, 23331, 23520,
24227, 24231, 24432, 24449, 24750,
24797, 24798, 25053, 25096, 25124,
25138, 25960, 27774, 27782, 28527,
28530, 28533, 28536, 28539, 28542,
28545, 28548, 28551, 29592, 29615,
29855, 29986, 30551, 30578, 30787,
31537, 31538, 34750, 34898, 36592,
38869, 38872, 39284, 39307, 39320,
39402, 39427, 39489, 39498, 39912

\s_stop 5, 155, 823, 16691, 16702
scan internal commands:

\s__bool_mark 8535, 8548, 8556
\s__bool_stop 8535, 8548, 8556
\s__char_stop 19168
\s__clist_mark 882, 884–886,

891, 18484, 18486, 18514, 18515,
18532, 18661, 18671, 18675, 18697,
18747, 18753, 18767, 18779, 18780,
18781, 18784, 18785, 18786, 18795,
18796, 18805, 19003, 19004, 19016,
19017, 19032, 19040, 19046, 19049

\s__clist_stop
885, 887, 891, 18484, 18487, 18488,
18500, 18504, 18646, 18649, 18661,
18664, 18672, 18675, 18683, 18697,
18753, 18781, 18784, 18785, 18797,
18805, 18848, 18849, 18856, 18860,
18862, 18864, 18871, 18877, 18893,
18894, 18920, 18921, 18928, 18933,
18935, 18937, 18943, 18950, 18978,
18983, 19005, 19016, 19017, 19018,
19033, 19046, 19049, 19079, 19114

\s__color_mark
36826, 37085, 37087, 37090, 37097,

37338, 37343, 37349, 37352, 37359,
37390, 37490, 37496, 37576, 37579,
37589, 37638, 38006, 38048, 38051,
38069, 38075, 38191, 38220, 38223,
38237, 38248, 38252, 38255, 38263,
38269, 38273, 38276, 38289, 38299

Index 1631

\s__color_stop 1422,
36812, 36855, 36861, 36862, 36869,
36873, 36874, 36877, 36883, 36885,
36887, 36889, 36891, 36893, 36912,
36914, 36920, 36940, 36969, 36986,
36992, 37009, 37085, 37087, 37090,
37097, 37104, 37106, 37115, 37126,
37127, 37129, 37131, 37133, 37173,
37180, 37181, 37182, 37191, 37200,
37265, 37270, 37298, 37338, 37343,
37349, 37352, 37359, 37367, 37390,
37490, 37496, 37527, 37530, 37564,
37570, 37576, 37579, 37589, 37638,
37657, 37661, 37686, 37688, 37690,
37692, 37710, 37825, 37838, 37842,
37853, 37860, 37868, 37874, 37882,
37884, 37890, 37894, 37895, 37916,
37918, 37997, 38003, 38006, 38014,
38028, 38042, 38045, 38048, 38052,
38055, 38065, 38069, 38075, 38102,
38131, 38186, 38187, 38194, 38205,
38206, 38220, 38223, 38237, 38248,
38252, 38255, 38263, 38269, 38273,
38276, 38289, 38299, 38343, 38344

\s__cs_mark 393, 394, 422,
424, 1813, 1814, 1817, 1818, 1819,
2695, 2725, 2726, 2728, 2734, 2738,
2760, 2769, 2788, 2816, 2819, 2827,
2842, 2874, 2888, 2892, 2901, 2920,
2929, 2934, 3009, 3012, 3028, 16698

\s__cs_stop 393, 424, 1814,
1817, 1818, 1819, 2695, 2698, 2699,
2729, 2738, 2764, 2816, 2819, 2823,
2831, 2837, 2846, 2852, 2854, 2874,
2896, 2901, 2931, 2934, 3009, 16699

\s__debug_stop 39143,
39144, 39270, 39272, 39463, 39477

\s__dim_mark 20858, 21019, 21026
\s__dim_stop 20858,

20860, 20966, 20990, 21019, 21026
\s__file_stop . . 681, 10937, 10942,

10964, 11032, 11033, 11037, 11044,
11046, 11047, 11172, 11173, 11178,
11180, 11182, 11514, 11516, 11519,
11520, 11522, 11534, 11610, 11613,
11620, 11622, 11638, 11639, 11642

\s__fp 1025–1027, 1032,
1033, 1058, 1064, 1066, 1068, 1082,
1084, 1085, 1116, 1120, 1122, 1124,
1130, 1133, 1223, 23345, 23358,
23359, 23360, 23361, 23362, 23372,
23377, 23379, 23380, 23395, 23408,
23411, 23413, 23423, 23435, 23455,
23472, 23475, 23482, 23489, 23505,

23532, 23638, 23640, 23642, 23643,
23644, 23646, 23647, 23648, 23650,
23666, 23826, 23831, 24058, 24112,
24121, 24123, 24799, 24954, 25436,
25451, 25475, 25495, 25496, 25594,
25609, 25611, 25629, 25634, 25635,
25694, 25730, 25731, 25745, 25746,
25783, 25784, 25887, 25888, 25889,
25898, 25914, 25918, 25982, 25983,
25986, 25997, 25998, 26006, 26007,
26009, 26010, 26011, 26013, 26014,
26015, 26027, 26030, 26034, 26037,
26057, 26107, 26110, 26113, 26133,
26134, 26136, 26137, 26138, 26146,
26149, 26160, 26161, 26163, 26172,
26248, 26400, 26434, 26435, 26438,
26519, 26657, 26665, 26667, 26844,
26853, 26855, 26860, 26868, 26870,
26872, 26875, 27379, 27391, 27393,
27602, 27619, 27621, 27802, 27821,
27823, 27824, 27827, 27844, 27847,
27850, 27874, 27875, 27877, 27893,
27982, 27995, 27997, 28000, 28005,
28038, 28054, 28137, 28150, 28152,
28165, 28167, 28180, 28182, 28195,
28197, 28210, 28212, 28225, 28235,
28736, 28752, 28753, 28757, 28768,
28875, 28888, 28890, 28906, 28909,
28919, 28942, 28953, 28955, 28969,
28971, 28976, 29038, 29059, 29062,
29092, 29113, 29116, 29166, 29182,
29185, 29260, 29261, 29345, 29347,
29379, 30187, 30195, 30198, 30277

\s__fp_⟨type⟩ 1058
\s__fp_division 23353
\s__fp_exact 23353, 23358,

23359, 23360, 23361, 23362, 25982
\s__fp_expr_mark

. . . 1064, 1065, 1068, 1090, 1093,
23348, 25003, 25016, 25097, 25139

\s__fp_expr_stop
1034, 23348, 23546, 24905, 25004,

25008, 25017, 26064, 26075, 26085,
26093, 29651, 29811, 30003, 30089

\s__fp_invalid 23353
\s__fp_mark

23350, 23495, 23496, 23500, 29566,
29568, 29576, 29635, 29636, 29640

\s__fp_overflow 23353, 23379
\s__fp_stop

. 1032, 23350, 23352, 23396,
23472, 23483, 23490, 23496, 23500,
23514, 23533, 24327, 24331, 24835,
24840, 25436, 25458, 25612, 25617,

Index 1632

25622, 25629, 25640, 25646, 25693,
25694, 25730, 25731, 25887, 25888,
25889, 26056, 26057, 27678, 27693,
29012, 29016, 29570, 29637, 29640

\s__fp_symbolic 1239, 1240, 25596,
25619, 25622, 25646, 25650, 29623,
29629, 29636, 29640, 29642, 29660,
29673, 29693, 29722, 29745, 29817,
29821, 29838, 29996, 30034, 30043

\s__fp_tuple 1031,
23456, 23462, 23463, 23540, 23542,
25216, 25428, 25443, 25468, 25470,
25487, 25488, 25490, 25595, 25614,
25617, 25640, 25643, 25775, 25776,
26907, 26908, 26914, 26915, 28988

\s__fp_underflow 23353, 23377
\s__int_mark

. . 17538, 17777, 17780, 17854, 17861
\s__int_stop 856, 867, 17538, 17540,

17756, 17772, 17774, 17778, 17791,
17854, 17861, 18267, 18273, 18290

\s__iow_mark . 10463, 10827, 10834,
10846, 10920, 10921, 10922, 10923

\s__iow_stop
. . . . 10463, 10465, 10713, 10754,
10812, 10850, 10863, 10920, 10923

\s__kernel_stop 2336, 2344, 2353, 2362
\s__keys_mark 21705,

21766, 21769, 21781, 21783, 21787,
22487, 22490, 22495, 22501, 22744,
22747, 22756, 22758, 22763, 22766

\s__keys_nil 21705, 21761,
21762, 21764, 21766, 21769, 21778,
21779, 21781, 21783, 21786, 21787,
21794, 22482, 22483, 22485, 22487,
22490, 22493, 22501, 22502, 22743,
22746, 22752, 22754, 22762, 22765

\s__keys_stop
21705, 21818, 21823, 21967, 22014,

22117, 22124, 22470, 22480, 22676,
22696, 22819, 22826, 22831, 22836

\s__keyval_mark
972–974, 977, 21452, 21466, 21477,

21478, 21479, 21480, 21486, 21487,
21489, 21494, 21495, 21498, 21499,
21500, 21505, 21506, 21510, 21511,
21514, 21515, 21518, 21519, 21522,
21525, 21526, 21531, 21534, 21535,
21539, 21540, 21543, 21546, 21550,
21551, 21552, 21553, 21560, 21561,
21570, 21571, 21573, 21577, 21591,
21592, 21600, 21601, 21610, 21611,
21612, 21613, 21615, 21636, 21637,
21642, 21646, 21648, 21650, 21662

\s__keyval_nil 973,
21452, 21485, 21493, 21498, 21500,
21501, 21502, 21504, 21510, 21513,
21518, 21522, 21524, 21531, 21533,
21539, 21543, 21545, 21550, 21552,
21560, 21571, 21591, 21600, 21635,
21639, 21655, 21658, 21662, 21663

\s__keyval_stop . . . 21452, 21478,
21480, 21491, 21499, 21511, 21519,
21522, 21528, 21540, 21543, 21545,
21546, 21550, 21560, 21591, 21592,
21600, 21601, 21610, 21613, 21615

\s__keyval_tail 973,
21452, 21466, 21474, 21475, 21484,
21568, 21570, 21576, 21577, 21612

\s__msg_mark
. . 9239, 9576, 9659, 9660, 9665, 9668

\s__msg_stop 9239,
9241, 9578, 9582, 9584, 9661, 10144

\s__pdf_stop . 38561, 38761, 38762,
38770, 38782, 38795, 38799, 38801

\s__peek_mark
. 19818, 19981, 19982, 19989

\s__peek_stop
. . 19818, 19820, 19970, 19983, 19992

\s__prg_mark 1660, 1662, 1670
\s__prg_stop 1687, 1692, 1711, 1719,

1727, 1783, 1787, 1789, 1791, 1793
\s__prop 922–

924, 929, 933, 941, 943, 944, 946–
948, 20022, 20030, 20032, 20033,
20037, 20040, 20042, 20044, 20047,
20078, 20097, 20120, 20123, 20129,
20132, 20171, 20181, 20184, 20187,
20190, 20193, 20197, 20261, 20318,
20321, 20326, 20365, 20374, 20378,
20401, 20412, 20432, 20447, 20448,
20551, 20557, 20565, 20596, 20615,
20619, 20656, 20657, 20658, 20659,
20663, 20664, 20665, 20666, 20680,
20694, 20695, 20696, 20697, 20701,
20702, 20703, 20704, 20755, 20757,
20758, 20761, 20772, 20775, 20778,
20782, 20793, 20814, 20845, 20846

\s__prop_mark
. . 933, 934, 20016, 20073, 20074,
20077, 20318, 20320, 20322, 20373,
20374, 20378, 20798, 20817, 20818

\s__prop_stop 933,
20016, 20074, 20077, 20318, 20323,
20331, 20332, 20375, 20378, 20615,
20619, 20761, 20778, 20798, 20818

\s__quark .
16401, 16650, 16652, 16653, 16664,

Index 1633

16667, 16672, 16675, 16677, 16696
\g__scan_marks_tl

. 823, 16681, 16687, 16691
\s__seq .

824, 829, 832, 837, 841, 843, 845,
16706, 16717, 16747, 16752, 16757,
16762, 16773, 16805, 16884, 16892,
16896, 17000, 17012, 17014, 17179,
17227, 17381, 17388, 17470, 17509

\s__seq_mark
. . 16707, 17458, 17459, 17473, 17476

\s__seq_stop
16707, 17003, 17014, 17132, 17135,

17143, 17145, 17226, 17227, 17380,
17381, 17383, 17388, 17392, 17394,
17399, 17460, 17473, 17476, 17478

\s__skip_stop
. 21289, 21350, 21352, 40150

\s__sort_mark 441, 444–446,
3123, 3319, 3323, 3329, 3333, 3339,
3342, 3407, 3408, 3410, 3447, 3449,
3452, 3456, 3459, 3462, 3464, 3467

\s__sort_stop 443, 445, 446, 3123,
3395, 3404, 3408, 3410, 3447, 3448,
3449, 3454, 3456, 3460, 3462, 3470

\s__str 766,
774, 792, 795, 14220, 14369, 14373,
14557, 14604, 14672, 14675, 15119,
15131, 15136, 15146, 15151, 15156,
15159, 15174, 15187, 15190, 15325,
15326, 15343, 15349, 15365, 15371,
15372, 15477, 15492, 15501, 15502

\s__str_mark 742,
746, 749, 755, 13450, 13650, 13685,
13694, 13777, 13794, 14042, 14044

\s__str_stop 749, 753, 791,
795, 13450, 13452, 13453, 13557,
13650, 13685, 13694, 13777, 13786,
13792, 13794, 13800, 13817, 13836,
13898, 13955, 13967, 14005, 14021,
14028, 14036, 14038, 14042, 14044,
14369, 14375, 14417, 14422, 14432,
14627, 14630, 14649, 14655, 15034,
15036, 15044, 15132, 15168, 15282,
15284, 15288, 15300, 15440, 15442,
15446, 15458, 15467, 15474, 15495

\s__text_recursion_stop . . 31520,
31523, 31846, 31860, 31869, 31911,
31920, 32062, 32070, 32149, 32157

\s__text_recursion_tail
. 31520, 31527, 31528, 31846

\s__text_stop
. . 31511, 31605, 31607, 32083, 32084

\s__tl 450–453,

461, 462, 3532, 3533, 3791, 3827,
3833, 3858, 3876, 3881, 3898, 3902,
3934, 3937, 4074, 4078, 4119, 4123

\s__tl_act_stop 728, 13063,
13069, 13070, 13073, 13076, 13080,
13089, 13092, 13095, 13098, 13101,
13103, 13105, 13109, 13112, 13118

\s__tl_mark 12848,
12849, 12852, 12855, 12856, 13340

\s__tl_nil 722, 12883,
12887, 12906, 12909, 12912, 13340

\s__tl_stop 707,
717, 718, 721, 12438, 12440, 12696,
12702, 12734, 12735, 12744, 12748,
12750, 12752, 12754, 12763, 12764,
12774, 12775, 12784, 12789, 12791,
12793, 12850, 12852, 12857, 12859,
12889, 12912, 12929, 12944, 12958,
12984, 13009, 13304, 13314, 13340

\s__token_mark
. . . . 915, 19393, 19797, 19798, 19807

\s__token_stop . . 909, 911, 19393,
19543, 19546, 19576, 19611, 19719,
19723, 19729, 19752, 19799, 19807

\scantextokens 912
\scantokens . 522
\scriptbaselineshiftfactor 1180
\scriptfont . 390
\scriptscriptbaselineshiftfactor . 1182
\scriptscriptfont 391
\scriptscriptstyle 392
\scriptsize 34422
\scriptspace 393
\scriptstyle 394
\scrollmode . 395
\scshape . 34411
sec . 281
secd . 282
\selectfont 34383
seq commands:

\c_empty_seq 169, 825, 16717, 16721,
16725, 16728, 17041, 17111, 17119

\seq_clear:N
. 156, 169, 6027, 6906, 7539,
9157, 9657, 9720, 11562, 11655,
16724, 16724, 16726, 16731, 16917

\seq_clear_new:N
. 156, 16730, 16730, 16732

\seq_concat:NNN 159,
169, 11568, 16870, 16870, 16874, 39542

\seq_const_from_clist:Nn
. 157, 16770, 16770, 16775

Index 1634

\seq_count:N . . 160, 166, 168, 261,
6905, 11676, 16972, 17054, 17238,
17252, 17422, 17422, 17445, 17450

\seq_elt:w 824
\seq_elt_end: 824
\seq_gclear:N

. . . . 156, 438, 3260, 3269, 16724,
16727, 16729, 16734, 17066, 17074

\seq_gclear_new:N
. 156, 16730, 16733, 16735

\seq_gconcat:NNN
159, 11581, 16870, 16872, 16875, 39543

\seq_get:NN 167, 6366, 6371, 17489,
17489, 17490, 17495, 17496, 37466

\seq_get:NNTF 167, 17495
\seq_get_left:NN 160,

17127, 17127, 17137, 17197, 17198,
17201, 17489, 17490, 17495, 17496

\seq_get_left:NNTF 161, 17197
\seq_get_right:NN 160, 17152,

17152, 17169, 17199, 17200, 17203
\seq_get_right:NNTF 161, 17197
\seq_gpop:NN

. 167, 11470, 17489, 17493,
17494, 17499, 17500, 30682, 37459

\seq_gpop:NNTF
168, 10242, 10493, 17495, 30652, 30664

\seq_gpop_left:NN
. 160, 17138, 17140, 17151, 17208,
17219, 17493, 17494, 17499, 17500

\seq_gpop_left:NNTF 161, 17205
\seq_gpop_right:NN

160, 17170, 17172, 17196, 17214, 17223
\seq_gpop_right:NNTF 162, 17205
\seq_gpush:Nn 32, 168, 10289,

10533, 11455, 17483, 17486, 17487,
17488, 30656, 30666, 30675, 37395

\seq_gput_left:Nn
159, 16880, 16888, 16899, 16900, 17486

\seq_gput_right:Nn
. . 159, 3264, 10939, 10946, 11444,
16901, 16903, 16907, 16908, 17069

\seq_gremove_all:Nn
. . . . 162, 16927, 16929, 16953, 16954

\seq_gremove_duplicates:N
. 162, 16911, 16913, 16926

\seq_greverse:N
. 163, 17021, 17023, 17038

\seq_gset_eq:NN 156, 3242, 16728,
16736, 16740, 16741, 16742, 16743,
16858, 16914, 17051, 39525, 39679

\seq_gset_filter:NNn 158, 16821, 16823
\seq_gset_from_clist:NN

. . . . 157, 16744, 16754, 16767, 16768

\seq_gset_from_clist:Nn
. 157, 16744, 16759, 16769

\seq_gset_item:Nnn
162, 16956, 16958, 16961, 16964, 16967

\seq_gset_item:NnnTF 162, 16956
\seq_gset_map:NNn . . 165, 17412, 17414
\seq_gset_map_e:NNn

. . . . 166, 17402, 17404, 39013, 39014
\seq_gset_map_x:NNn . . . 39011, 39014
\seq_gset_regex_extract_all:NNn .

. 158, 16831
\seq_gset_regex_extract_all:Nnn .

. 158, 16831
\seq_gset_regex_extract_once:NNn

. 158, 16831
\seq_gset_regex_extract_once:Nnn

. 158, 16831
\seq_gset_regex_split:NNn 159, 16831
\seq_gset_regex_split:Nnn 159, 16831
\seq_gset_split:Nnn

. . . . 157, 16776, 16778, 16817, 16818
\seq_gset_split_keep_spaces:Nnn .

. 157, 16776, 16782, 16820
\seq_gshuffle:N

. 163, 17049, 17051, 17087
\seq_gsort:Nn

. 163, 3238, 3241, 3243, 17039
\seq_if_empty:N 17039, 17047
\seq_if_empty:NTF

163, 6902, 17039, 17251, 18563, 30716
\seq_if_empty_p:N 163, 17039
\seq_if_exist:N 16876, 16878
\seq_if_exist:NTF

. . . . 159, 16731, 16734, 16876, 17448
\seq_if_exist_p:N 159, 16876
\seq_if_in:Nn 886, 17088, 17107
\seq_if_in:NnTF 163,

168, 169, 10288, 10532, 16920, 17088
\seq_indexed_map_function:NN . . .

. 39005, 39008
\seq_indexed_map_inline:Nn

. 39005, 39006
\seq_item:Nn . . 58, 160, 839, 9738,

9739, 9744, 17225, 17225, 17248, 17252
\seq_log:N . . . 170, 17501, 17503, 17504
\seq_map_break:

. 158, 165, 166, 17255,
17255, 17256, 17258, 17268, 17309,
17319, 17342, 17349, 17358, 17386

\seq_map_break:n . . 165, 840, 3239,
3242, 9677, 9691, 11130, 17255, 17257

\seq_map_function:NN . 6, 90, 163,
164, 842, 6047, 6115, 9742, 11571,
17259, 17259, 17282, 17516, 18569

Index 1635

\seq_map_indexed_function:NN . . .
. . . . 164, 17346, 17346, 39007, 39008

\seq_map_indexed_inline:Nn
. . . . 164, 17346, 17351, 39005, 39006

\seq_map_inline:Nn
. 163, 164, 169, 828, 3239,
3242, 9672, 16918, 17305, 17305, 17311

\seq_map_pairwise_function:NNN . .
164, 17379, 17379, 17401, 39009, 39010

\seq_map_tokens:Nn 163,
164, 11129, 11680, 17312, 17312, 17321

\seq_map_variable:NNn
. . . . 164, 17334, 17334, 17344, 17345

\seq_mapthread_function:NNN
. 39009, 39010

\seq_new:N 6, 156, 3110,
4339, 4794, 6133, 6134, 6818, 9627,
9628, 10194, 10447, 10931, 10956,
10962, 10963, 16718, 16718, 16723,
16731, 16734, 16910, 17049, 17526,
17527, 17528, 17529, 18708, 19265,
19268, 30496, 30497, 30498, 37379

\seq_pop:NN
. . . . 167, 6195, 6233, 6235, 6975,
17489, 17491, 17492, 17497, 17498

\seq_pop:NNTF 168, 17495
\seq_pop_left:NN

. 160, 17138, 17138, 17150, 17205,
17217, 17491, 17492, 17497, 17498

\seq_pop_left:NNTF 161, 17205
\seq_pop_right:NN 160, 5976, 6054,

17170, 17170, 17195, 17211, 17221
\seq_pop_right:NNTF 162, 17205
\seq_push:Nn 168, 6205, 6226,

6228, 7135, 17483, 17483, 17484, 17485
\seq_put_left:Nn 159, 9667,

16880, 16880, 16897, 16898, 17483
\seq_put_right:Nn 159, 168,

169, 5979, 6052, 7549, 9728, 11657,
16901, 16901, 16905, 16906, 16921

\seq_rand_item:N
. 161, 17249, 17249, 17254

\seq_remove_all:Nn . 157, 162, 168,
169, 16927, 16927, 16951, 16952, 18740

\seq_remove_duplicates:N . . . 162,
168, 169, 11569, 16911, 16911, 16925

\seq_reverse:N
. 163, 833, 17021, 17021, 17037

\seq_set_eq:NN 156, 169, 3239, 16725,
16736, 16736, 16737, 16738, 16739,
16855, 16912, 17050, 39524, 39598

\seq_set_filter:NNn
. 158, 843, 6110, 16821, 16821

\seq_set_from_clist:NN
157, 16744, 16744, 16764, 16765, 18739

\seq_set_from_clist:Nn . 157, 190,
826, 11565, 11579, 16744, 16749, 16766

\seq_set_item:Nnn
162, 16956, 16956, 16960, 16962, 16966

\seq_set_item:NnnTF 162, 16956
\seq_set_map:NNn . . . 165, 17412, 17412
\seq_set_map_e:NNn 166,

844, 6123, 17402, 17402, 39011, 39012
\seq_set_map_x:NNn 39011, 39012
\seq_set_regex_extract_all:NNn . .

. 158, 16831, 16840, 16842
\seq_set_regex_extract_all:Nnn . .

. 158, 16831, 16837, 16839
\seq_set_regex_extract_once:NNn .

. 158, 16831, 16834, 16836
\seq_set_regex_extract_once:Nnn .

. 158, 16831, 16831, 16833
\seq_set_regex_split:NNn

. 159, 16831, 16846, 16848
\seq_set_regex_split:Nnn

. 159, 16831, 16843, 16845
\seq_set_split:Nnn

. . . 157, 6109, 6122, 9160, 16776,
16776, 16815, 16816, 19266, 19269

\seq_set_split_keep_spaces:Nnn . .
. 157, 16776, 16780, 16819

\seq_show:N
. . 170, 628, 734, 17501, 17501, 17502

\seq_shuffle:N 163, 17049, 17050, 17086
\seq_sort:Nn

. . . . 46, 163, 3238, 3238, 3240, 17039
\seq_use:Nn

. 167, 6126, 17446, 17480, 17482
\seq_use:Nnnn

. . . . 166, 17446, 17446, 17468, 17481
\g_tmpa_seq 170, 17526
\l_tmpa_seq 170, 17526
\g_tmpb_seq 170, 17526
\l_tmpb_seq 170, 17526

seq internal commands:
__seq_count:w

844, 17422, 17427, 17440, 17443, 17444
__seq_count_end:w 844,

17422, 17429, 17430, 17431, 17432,
17433, 17434, 17435, 17436, 17444

__seq_get_left:wnw
. 17127, 17131, 17135

__seq_get_right_end:NnN
. 17152, 17160, 17168

__seq_get_right_loop:nw
. . . . 837, 17152, 17157, 17163, 17166

__seq_if_in: . . . 17088, 17097, 17105

Index 1636

__seq_int_eval:w
. 16955, 16955, 17002, 17012

\l__seq_internal_a_int
. . 17061, 17067, 17079, 17081, 17082

\l__seq_internal_a_tl
. 827, 832, 16714, 16788,
16792, 16798, 16803, 16805, 16942,
16947, 16970, 17017, 17092, 17096

\l__seq_internal_b_int
. 17080, 17083, 17084

\l__seq_internal_b_tl
. . 16714, 16938, 16942, 17095, 17096

\g__seq_internal_seq 17049
__seq_item:n

. . . . 824, 828, 830, 835–837, 839–
841, 843–845, 16709, 16709, 16884,
16892, 16902, 16904, 16909, 16970,
17007, 17010, 17027, 17028, 17030,
17035, 17063, 17093, 17132, 17135,
17145, 17160, 17163, 17176, 17177,
17188, 17232, 17241, 17266, 17271,
17272, 17273, 17274, 17286, 17291,
17297, 17301, 17317, 17323, 17324,
17325, 17326, 17369, 17371, 17408,
17418, 17429, 17430, 17431, 17432,
17433, 17434, 17435, 17436, 17441,
17442, 17457, 17472, 17475, 17478

__seq_item:nN . . 17225, 17230, 17235
__seq_item:nwn

. 17225, 17229, 17241, 17246
__seq_item:wNn . 17225, 17226, 17227
__seq_map_function:Nw

. . . . 840, 17259, 17262, 17270, 17280
__seq_map_indexed:NN

. 17348, 17356, 17361
__seq_map_indexed:nNN 17346
__seq_map_indexed:Nw

. . . . 842, 17346, 17363, 17371, 17375
__seq_map_pairwise_function:Nnnwnn

. 17379, 17390, 17394, 17399
__seq_map_pairwise_function:wNN

. 17379, 17380, 17381
__seq_map_pairwise_function:wNw

. 17379, 17383, 17388
__seq_map_tokens:nw

. 17312, 17315, 17322, 17332
__seq_pop:NNNN 17109,

17109, 17139, 17141, 17171, 17173
__seq_pop_item_def:

. 824, 16829, 16949, 17065, 17283,
17299, 17309, 17342, 17410, 17420

__seq_pop_left:NNN 17138,
17139, 17141, 17142, 17207, 17210

__seq_pop_left:wnwNNN
. 17138, 17143, 17144

__seq_pop_right:NNN . 831, 17170,
17171, 17173, 17174, 17213, 17216

__seq_pop_right_loop:nn
. 17170, 17181, 17190, 17193

__seq_pop_TF:NNNN
. 838, 17109, 17117, 17198,
17200, 17207, 17210, 17213, 17216

__seq_push_item_def:
. . 17062, 17283, 17285, 17290, 17293

__seq_push_item_def:n
. 824, 16827, 16933, 17283, 17283,
17288, 17307, 17336, 17408, 17418

__seq_put_left_aux:w
. . . . 829, 16880, 16885, 16893, 16896

__seq_remove_all_aux:NNn
. 16927, 16928, 16930, 16931

__seq_remove_duplicates:NN
. 16911, 16912, 16914, 16915

__seq_reverse:NN
. 17021, 17022, 17024, 17025

__seq_reverse_item:nw 833
__seq_reverse_item:nwn

. 17021, 17028, 17032
__seq_set_filter:NNNn

. 16821, 16822, 16824, 16825
__seq_set_item:NnnNN . . . 16956,

16957, 16959, 16963, 16965, 16968
__seq_set_item:nnNNNN

. 16956, 16971, 16974
__seq_set_item:nNnnNNNN

. . . . 832, 16956, 16977, 16982, 16996
__seq_set_item:wn

. 16956, 17001, 17007, 17011
__seq_set_item_end:w

. 832, 16956, 17009, 17014
__seq_set_item_false:nnNNNN . . .

. 832, 16956, 16985, 16987
__seq_set_map:NNNn

. 17412, 17413, 17415, 17416
__seq_set_map_e:NNNn

. 17402, 17403, 17405, 17406
__seq_set_split:NNnn 16776
__seq_set_split:NNNnn

. . 16777, 16779, 16781, 16783, 16784
__seq_set_split:Nw

. . . . 827, 16776, 16794, 16801, 16807
__seq_set_split:w

. 827, 16776, 16809, 16813
__seq_set_split_end: 827, 16776,

16796, 16800, 16807, 16811, 16813
__seq_show:NN

. 17501, 17501, 17503, 17505

Index 1637

__seq_show_validate:nn
. 17501, 17510, 17520, 17524

__seq_shuffle:NN
. 17049, 17050, 17051, 17052

__seq_shuffle_item:n
. 17049, 17063, 17077

__seq_tmp:w . 16716, 16716, 16850,
16863, 16864, 16865, 16866, 16867,
16868, 17027, 17030, 17176, 17188

\l__seq_tmp_seq 16855, 16857, 16858,
16910, 16917, 16920, 16921, 16923

__seq_use:NNnNnn
. 17446, 17453, 17454, 17469

__seq_use:nwwn . 17446, 17459, 17478
__seq_use:nwwwwnwn

. 17446, 17458, 17470, 17471
__seq_use_setup:w 17446, 17457, 17470
__seq_wrap_item:n

. 827, 828, 16747, 16752,
16757, 16762, 16773, 16789, 16814,
16827, 16909, 16909, 16945, 17523

\setbox . 396
\setfontid . 913
\setlanguage 397
\setrandomseed 959
\sfcode . 398
\sffamily 34406, 36587
\shapemode . 914
\shbscode . 681
\shellescape 777
\Shipout . 1249
\shipout 399, 1236, 1237
\ShortText 37, 75
\show . 400
\showbox . 401
\showboxbreadth 402
\showboxdepth 403
\showgroups . 523
\showifs . 524
\showlists . 404
\showmode . 1184
\showstream 1215
\showthe . 405
\showtokens . 525
sign . 281
sin . 281
sind . 282
\sjis . 1185
\skewchar . 406
\skip . 407, 19635
skip commands:

\c_max_skip 240, 21375
\skip_add:Nn

238, 21326, 21326, 21330, 39602, 39975

\skip_const:Nn
. 237, 969, 21296, 21296,
21301, 21375, 21376, 39724, 39979

\skip_eval:n . . . 239, 21299, 21340,
21355, 21355, 21370, 21374, 40020

\skip_gadd:Nn
238, 21326, 21328, 21331, 39683, 39976

.skip_gset:N 249, 22284
\skip_gset:Nn 238,

965, 21316, 21318, 21321, 39681, 39974
\skip_gset_eq:NN

. . . . 238, 21322, 21324, 21325, 39682
\skip_gsub:Nn

238, 21326, 21334, 21337, 39684, 39978
\skip_gzero:N

237, 21302, 21303, 21305, 21309, 39680
\skip_gzero_new:N

. 238, 21306, 21308, 21311
\skip_horizontal:N

. . . . 240, 21359, 21359, 21361, 21365
\skip_horizontal:n

. 240, 21359, 21360, 40021
\skip_if_eq:nn 21338
\skip_if_eq:nnTF 239, 21338
\skip_if_eq_p:nn 239, 21338
\skip_if_exist:N 21312, 21314
\skip_if_exist:NTF

. 238, 21307, 21309, 21312
\skip_if_exist_p:N 238, 21312
\skip_if_finite:n 21346, 40143, 40148
\skip_if_finite:nTF 239, 21344
\skip_if_finite_p:n 239, 21344
\skip_log:N . . 240, 21371, 21371, 21372
\skip_log:n 240, 21371, 21373
\skip_new:N 237, 238,

21290, 21290, 21295, 21298, 21307,
21309, 21377, 21378, 21379, 21380

.skip_set:N 249, 22284
\skip_set:Nn

238, 21316, 21316, 21320, 39600, 39973
\skip_set_eq:NN

. . . . 238, 21322, 21322, 21323, 39601
\skip_show:N . 239, 21367, 21367, 21368
\skip_show:n . . 239, 968, 21369, 21369
\skip_sub:Nn

238, 21326, 21332, 21336, 39603, 39977
\skip_use:N 239, 21349,

21356, 21357, 21357, 21358, 40146
\skip_vertical:N

. . . . 241, 21359, 21362, 21364, 21366
\skip_vertical:n

. 241, 21359, 21363, 40022
\skip_zero:N 237, 238, 241,

951, 21302, 21302, 21304, 21307, 39599

Index 1638

\skip_zero_new:N
. 238, 21306, 21306, 21310

\g_tmpa_skip 240, 21377
\l_tmpa_skip 240, 21377
\g_tmpb_skip 240, 21377
\l_tmpb_skip 240, 21377
\c_zero_skip

. 240, 951, 20873, 20875, 21375
skip internal commands:

__skip_if_finite:wwNw
. 21344, 21348, 21352, 40145

__skip_tmp:w
. 21344, 21354, 40141, 40153

\skipdef . 408
\slshape . 34412
\small . 34423
sort commands:

\sort_return_same:
. 45, 46, 441, 3322, 3322

\sort_return_swapped:
. 45, 46, 441, 3322, 3332

sort internal commands:
__sort:nnNnn 442, 443
\l__sort_A_int . . 440, 3120, 3127,

3134, 3137, 3146, 3286, 3291, 3294,
3314, 3346, 3353, 3368, 3370, 3371

\l__sort_B_int 440, 3120,
3291, 3295, 3303, 3305, 3306, 3358,
3359, 3368, 3369, 3378, 3379, 3381

\l__sort_begin_int
. . . . 435, 440, 3118, 3283, 3371, 3381

\l__sort_block_int . 434, 435, 439,
3117, 3129, 3134, 3138, 3141, 3146,
3147, 3212, 3274, 3277, 3284, 3287

\l__sort_C_int 440, 3120,
3292, 3296, 3303, 3304, 3315, 3347,
3354, 3358, 3360, 3361, 3378, 3380

__sort_compare:nn 437, 441, 3211, 3313
__sort_compute_range:

. 434–436, 3151,
3151, 3159, 3167, 3175, 3188, 3199

__sort_copy_block:
. 439, 3293, 3301, 3301, 3309

__sort_disable_toksdef:
. 3198, 3478, 3478

__sort_disabled_toksdef:n
. 3478, 3479, 3480

\l__sort_end_int 435,
439, 440, 3118, 3275, 3283, 3284,
3285, 3286, 3287, 3288, 3289, 3306

__sort_error: 3472, 3472, 3484, 3502
__sort_i:nnnnNn 444
\g__sort_internal_seq

437, 438, 3110, 3260, 3264, 3268, 3269

\g__sort_internal_tl
. 3110, 3223, 3226, 3227

\l__sort_length_int
. 434, 435, 3112, 3209, 3274

__sort_level:
437, 447, 3213, 3272, 3272, 3278, 3476

__sort_loop:wNn 443, 444
__sort_main:NNNn

. 438, 3196, 3196, 3222, 3259
\l__sort_max_int

. 434, 435, 3112, 3131, 3203
\c__sort_max_length_int 3151
__sort_merge_blocks:

. 3276, 3281, 3281, 3298, 3475
__sort_merge_blocks_aux:

439, 3297, 3311, 3311, 3364, 3374, 3474
__sort_merge_blocks_end:

. 442, 3372, 3376, 3376, 3384
\l__sort_min_int

. 434, 435, 437, 3112, 3128,
3136, 3153, 3169, 3177, 3190, 3200,
3210, 3224, 3262, 3275, 3500, 3501

__sort_quick_cleanup:w
. 3386, 3407, 3410

__sort_quick_end:nnTFNn
. 445, 446, 3406,
3446, 3446, 3452, 3459, 3464, 3467

__sort_quick_only_i:NnnnnNn . . .
. 3411, 3414, 3418, 3421

__sort_quick_only_i_end:nnnwnw .
. 3422, 3446, 3449

__sort_quick_only_ii:NnnnnNn . . .
. 3411, 3413, 3425, 3427

__sort_quick_only_ii_end:nnnwnw
. 3429, 3446, 3456

__sort_quick_prepare:Nnnn
. 3386, 3392, 3399, 3402

__sort_quick_prepare_end:NNNnw .
. 3386, 3394, 3404

__sort_quick_single_end:nnnwnw .
. 3415, 3446, 3447

__sort_quick_split:NnNn
. 444, 445, 3406,
3411, 3411, 3451, 3458, 3464, 3466

__sort_quick_split_end:nnnwnw . .
. 3436, 3443, 3446, 3462

__sort_quick_split_i:NnnnnNn . . .
. . . 443, 3411, 3428, 3432, 3435, 3442

__sort_quick_split_ii:NnnnnNn . .
. 3411, 3420, 3434, 3439, 3441

__sort_redefine_compute_range: .
. 3151, 3158, 3163, 3183

Index 1639

__sort_return_mark:w
. 441, 3317, 3318,
3322, 3323, 3328, 3333, 3338, 3342

__sort_return_none_error:
441, 3320, 3322, 3343, 3348, 3356, 3366

__sort_return_same:w
. 441, 3330, 3348, 3356, 3356

__sort_return_swapped:w
. 3340, 3366, 3366

__sort_return_two_error:
. 441, 3322, 3327, 3337, 3350

__sort_seq:NNNNn
437, 3238, 3239, 3242, 3246, 3252, 3256

__sort_shrink_range: 435,
436, 3125, 3125, 3155, 3171, 3179, 3192

__sort_shrink_range_loop:
. 3125, 3130, 3144, 3148

__sort_tl:NNn
. 437, 3215, 3215, 3217, 3219

__sort_tl_toks:w
. 437, 3215, 3224, 3230, 3234

__sort_too_long_error:NNw
. 3204, 3495, 3495

\l__sort_top_int
. 434, 437, 440, 3112, 3200,
3203, 3206, 3207, 3210, 3232, 3262,
3285, 3288, 3289, 3292, 3361, 3501

\l__sort_true_max_int
. 434, 435, 3112, 3128,
3141, 3154, 3170, 3178, 3191, 3500

sp . 285
spac commands:

\spac_directions_normal_body_dir
. 1329

\spac_directions_normal_page_dir
. 1330

\spacefactor 409
\spaceskip . 410
\span . 411
\special . 412
\splitbotmark 413
\splitbotmarks 526
\splitdiscards 527
\splitfirstmark 414
\splitfirstmarks 528
\splitmaxdepth 415
\splittopskip 416
sqrt . 283
\SS 32191, 33773, 34483
\ss 32191, 33773, 34479
\stbscode . 682
\stockheight . . 38828, 38836, 38840, 38844
\stockwidth . . . 38829, 38837, 38840, 38845

str commands:
\c_ampersand_str 146, 14180
\c_atsign_str 146, 14180
\c_backslash_str

. 146, 4584, 5187, 14180,
14885, 14887, 14910, 14939, 14941,
14973, 14982, 14986, 39461, 39471

\c_circumflex_str 146, 14180
\c_colon_str

. 146, 14180, 19546, 19723,
19729, 21817, 21823, 37564, 37569

\c_dollar_str 146, 14180
\c_empty_str 146, 14193
\c_hash_str 146, 14180,

14853, 14956, 15529, 15530, 15533,
15536, 31397, 31426, 31430, 31499,
39359, 39927, 39929, 39989, 40037,
40042, 40072, 40076, 40078, 40096

\c_left_brace_str . 146, 493, 4647,
5062, 5066, 5086, 5099, 5123, 5595,
5606, 5610, 5689, 5713, 6884, 14180

\c_percent_str 146, 14180, 14855, 15009
\c_right_brace_str

. . . . 146, 4683, 5072, 5092, 5105,
5613, 5617, 5710, 6881, 14180, 22836

\str_case:Nn 137, 13629, 13654
\str_case:nn 137,

5327, 8719, 10111, 13629, 13629,
13651, 13652, 13654, 38082, 38120

\str_case:NnTF
. . . . 137, 13629, 13655, 13656, 13657

\str_case:nnTF
. . 137, 598, 858, 954, 5937, 8795,
8830, 9214, 9927, 13629, 13634,
13639, 13644, 13655, 13656, 13657,
22036, 22081, 25607, 29733, 29747

\str_case_e:nn
. . . . 138, 13629, 13664, 13686, 13687

\str_case_e:nnTF 138, 5070,
13629, 13669, 13674, 13679, 14908

\str_casefold:n
. 144, 145, 302, 14045,
14045, 14048, 24418, 37751, 38993,
38994, 38995, 38996, 38997, 38998,
38999, 39000, 39074, 39075, 39082,
39083, 39090, 39091, 39100, 39101

\c_str_cctab 296, 1268, 30792
\str_clear:N 135, 13458,

21796, 21963, 22468, 22469, 39604
\str_clear_new:N 135, 13458
\str_compare:nNn 13584, 13591
\str_compare:nNnTF 138, 13584
\str_compare_p:nNn 138, 13584

Index 1640

\str_concat:NNN
. . . . 135, 13458, 13481, 13483, 39544

\str_const:Nn
. . . . 135, 8645, 8667, 8685, 8717,
8786, 9017, 9176, 11735, 11742,
11746, 11750, 13485, 13489, 13516,
14180, 14181, 14182, 14183, 14184,
14185, 14186, 14187, 14188, 14189,
14190, 14191, 14192, 14949, 14950,
14972, 21670, 21671, 21672, 21673,
21674, 21675, 21676, 31122, 39725

\str_convert_pdfname:n
. 149, 15507, 15507, 37848

\str_count:N 140, 3995, 9356, 9357,
9530, 9531, 10613, 10691, 13977,
13977, 13978, 30328, 30333, 30409

\str_count:n
. 140, 3989, 13977, 13977, 13979

\str_count_ignore_spaces:n
. 140, 754, 3577, 13977, 13992

\str_count_spaces:N
. 140, 13957, 13957, 13959

\str_count_spaces:n
140, 754, 13957, 13958, 13960, 13983

\str_declare_eight_bit_encoding:nnn
. 39001, 39002

\str_fold_case:n . 38985, 38994, 38996
\str_foldcase:n . 38997, 38998, 39000
\str_gclear:N 135, 13458, 39685
\str_gclear_new:N 135, 13458
\str_gconcat:NNN

. . . . 135, 13458, 13482, 13484, 39545
\str_gput_left:Nn

. . . . 136, 13485, 13499, 13518, 39687
\str_gput_right:Nn

. . . . 136, 13485, 13509, 13520, 39688
\str_gremove_all:Nn

. 143, 13567, 13569, 13572
\str_gremove_once:Nn

. 143, 13561, 13563, 13566
\str_greplace_all:Nnn

. . . . 143, 13521, 13527, 13532, 13570
\str_greplace_once:Nnn

. . . . 143, 13521, 13523, 13530, 13564
.str_gset:N 249, 22292
\str_gset:Nn

. 136, 11476, 11477, 11478,
13485, 13487, 13515, 30319, 30323

\str_gset_convert:Nnnn
. 149, 14389, 14391, 14403

\str_gset_convert:NnnnTF . 149, 14389
.str_gset_e:N 249, 22292

\str_gset_eq:NN
. 135, 11463, 11464, 11465, 13458,
13478, 13480, 30403, 39527, 39686

.str_gset_x:N 38928
\str_head:N

. 141, 755, 14015, 14015, 14016
\str_head:n 141, 724,

755, 12945, 12992, 14015, 14015, 14017
\str_head_ignore_spaces:n

. 141, 14015, 14025
\str_if_empty:N 13577, 13579
\str_if_empty:n 13581
\str_if_empty:NTF

136, 13573, 21751, 21774, 22702, 31479
\str_if_empty:nTF 136, 13573
\str_if_empty_p:N 136, 13573
\str_if_empty_p:n 136, 13573
\str_if_eq:NN 13608, 13613
\str_if_eq:nn 942, 13596, 13601, 13603
\str_if_eq:NNTF 136, 744, 13608
\str_if_eq:nnTF

. 103, 115, 116, 137, 138,
218, 224, 225, 831, 910, 4972, 8095,
8239, 8703, 8779, 8810, 8988, 9688,
9731, 10027, 10030, 10095, 11540,
11603, 11618, 13596, 13660, 13690,
15292, 15295, 15450, 15453, 16935,
19549, 19606, 20393, 20647, 21340,
21865, 24288, 24361, 25631, 25642,
25648, 29722, 31408, 31426, 31428,
31477, 31499, 31996, 32052, 32429,
32530, 34342, 37036, 37354, 37518,
37553, 37598, 37656, 37950, 37960

\str_if_eq_p:NN 136, 13608
\str_if_eq_p:nn 137, 8660,

8690, 8691, 8818, 8819, 9184, 9186,
11754, 13596, 31528, 31795, 31813,
32057, 35694, 36584, 37348, 38564

\str_if_exist:N
. 13573, 13575, 30313, 30315

\str_if_exist:NTF
. 135, 8777, 8846, 13573

\str_if_exist_p:N 135, 13573
\str_if_in:Nn 13615, 13621
\str_if_in:nn 13623
\str_if_in:NnTF 137, 13615
\str_if_in:nnTF 137, 3044, 13615, 30776
\str_item:Nn

. . . . 141, 13819, 13819, 13820, 30435
\str_item:nn

. . 141, 750, 754, 13819, 13819, 13821
\str_item_ignore_spaces:nn

. 141, 750, 13819, 13829
\str_log:N . . . 145, 14198, 14206, 14211

Index 1641

\str_log:n 145, 14198, 14205
\str_lower_case:n 38985, 38986, 38988
\str_lowercase:n . 144, 302, 14045,

14046, 14049, 38985, 38986, 38987,
38988, 39076, 39077, 39092, 39093

\str_map_break: 139, 13696,
13702, 13711, 13728, 13736, 13748,
13754, 13760, 13761, 13763, 13770

\str_map_break:n
. . 139, 140, 3048, 5836, 13696, 13762

\str_map_function:NN
. 138, 748, 13696, 13704, 13715

\str_map_function:nN . . 138, 139,
747, 5829, 13696, 13696, 13705, 15510

\str_map_inline:Nn
. 139, 13696, 13731, 13733

\str_map_inline:nn
. 139, 3042, 6582, 13696, 13716, 13732

\str_map_tokens:Nn
. 139, 13764, 13772, 13773

\str_map_tokens:nn
. 139, 13764, 13764, 13772

\str_map_variable:NNn
. 139, 13696, 13750, 13759

\str_map_variable:nNn
. 139, 13696, 13740, 13751

\str_mdfive_hash:n
. 145, 14178, 14178, 14179

\str_new:N
. . . 135, 9237, 9238, 10928, 10929,
10930, 10959, 10960, 10961, 11772,
13458, 14194, 14195, 14196, 14197,
21681, 21683, 21686, 21688, 21691

\str_put_left:Nn
136, 741, 13485, 13494, 13517, 39606

\str_put_right:Nn
136, 741, 13485, 13504, 13519, 39607

\str_range:Nnn
142, 13880, 13880, 13881, 30340, 30342

\str_range:nnn 103, 142,
754, 3992, 5939, 13880, 13880, 13882

\str_range_ignore_spaces:nnn . . .
. 142, 13880, 13890

\str_remove_all:Nn
. 143, 13567, 13567, 13571

\str_remove_once:Nn
. 143, 13561, 13561, 13565

\str_replace_all:Nnn
. . . . 143, 13521, 13525, 13531, 13568

\str_replace_once:Nnn
. . . . 143, 13521, 13521, 13529, 13562

.str_set:N 249, 22292
\str_set:Nn 136, 143,

249, 983, 9319, 9320, 9518, 9519,

11553, 11554, 11555, 13485, 13485,
13514, 13755, 21730, 21732, 22370,
22372, 22477, 22599, 30317, 30321

\str_set_convert:Nnnn 149,
150, 765, 776, 14389, 14389, 14394

\str_set_convert:NnnnTF
. 149, 765, 14389

.str_set_e:N 249, 22292
\str_set_eq:NN 135, 13458,

13477, 13479, 30399, 39526, 39605
.str_set_x:N 38928
\str_show:N . . 145, 14198, 14199, 14204
\str_show:n 145, 14198, 14198
\str_tail:N . . 141, 14030, 14030, 14031
\str_tail:n

141, 456, 14030, 14030, 14032, 31579
\str_tail_ignore_spaces:n

. 141, 14030, 14039
\str_titlecase:n 39080, 39081
\str_upper_case:n 38985, 38990, 38992
\str_uppercase:n . 144, 302, 14045,

14047, 14050, 38989, 38990, 38991,
38992, 39078, 39079, 39098, 39099

\str_use:N 140, 13458
\c_tilde_str 146, 14180
\g_tmpa_str 146, 14194
\l_tmpa_str 143, 146, 14194
\g_tmpb_str 146, 14194
\l_tmpb_str 146, 14194
\c_underscore_str . . 146, 14180, 30029
\c_zero_str

146, 14180, 30293, 30299, 30399, 30403
str internal commands:

\g__str_alias_prop . 768, 14222, 14462
\c__str_byte_-1_tl 14303
\c__str_byte_0_tl 14303
\c__str_byte_1_tl 14303
\c__str_byte_255_tl 14303
\c__str_byte_⟨number⟩_tl 763
\l__str_byte_flag

. 770, 14250, 14530, 14544,
14547, 14812, 14821, 14865, 14880

__str_case:nnTF 13629,
13632, 13637, 13642, 13647, 13649

__str_case:nw
. 13629, 13650, 13658, 13662

__str_case_e:nnTF 13629,
13667, 13672, 13677, 13682, 13684

__str_case_e:nw
. 13629, 13685, 13688, 13692

__str_case_end:nw
. 13629, 13661, 13691, 13694

__str_change_case:nn
. . 14045, 14045, 14046, 14047, 14051

Index 1642

__str_change_case_aux:nn
. 14045, 14053, 14056

__str_change_case_char:nN
. 14045, 14070, 14079

__str_change_case_char:nnn
. 14045, 14090, 14119,
14122, 14128, 14137, 14150, 14159

__str_change_case_char:nnnnn . . .
. 14045, 14162, 14164

__str_change_case_char_aux:nnn .
. 14045, 14154, 14160

__str_change_case_char_auxi:nN .
. 14045, 14097, 14101, 14107

__str_change_case_char_auxii:nN
. 14045, 14100, 14104, 14118

__str_change_case_codepoint:nN .
. 14045, 14083, 14089, 14092

__str_change_case_codepoint:nNN
. 14045, 14110, 14120

__str_change_case_codepoint:nNNN
. 14045, 14113, 14126

__str_change_case_codepoint:nNNNN
. 14045, 14135

__str_change_case_codepoint:nNNNNN
. 14114

__str_change_case_end:nw 14045
__str_change_case_end:wn

. 14064, 14082
__str_change_case_loop:nw

. . 14045, 14058, 14066, 14077, 14157
__str_change_case_output:nw . . .

. . 14045, 14061, 14063, 14076, 14152
__str_change_case_result:n

. . 14045, 14059, 14061, 14062, 14064
__str_change_case_space:n

. 14045, 14069, 14074
__str_collect_delimit_by_q_-

stop:w 13908, 13931, 13931
__str_collect_end:nnnnnnnnw . . .

. 753, 13931, 13950, 13955
__str_collect_end:wn

. 13931, 13938, 13948
__str_collect_loop:wn

. 13931, 13932, 13933, 13944
__str_collect_loop:wnNNNNNNN . . .

. 13931, 13936, 13942
__str_convert:nnn

767, 768, 14434, 14435, 14449, 14449
__str_convert:nnnn

. 768, 14449, 14453, 14458
__str_convert:NNnNN

. 14431, 14436, 14439
__str_convert:nNNnnn . . . 14389,

14390, 14392, 14397, 14406, 14411

__str_convert:wwwnn
. . . . 767, 14416, 14421, 14431, 14431

__str_convert_decode_:
. 14420, 14554, 14554

__str_convert_decode_clist: . . .
. 14594, 14594

__str_convert_decode_eight_-
bit:n 14615, 14659, 14659

__str_convert_decode_utf16: . 15281
__str_convert_decode_utf16be: 15281
__str_convert_decode_utf16le: 15281
__str_convert_decode_utf32: . 15439
__str_convert_decode_utf32be: 15439
__str_convert_decode_utf32le: 15439
__str_convert_decode_utf8: . . 15100
__str_convert_encode_:

. 14425, 14558, 14564, 14570
__str_convert_encode_clist: . . .

. 14605, 14605
__str_convert_encode_eight_-

bit:n 14617, 14686, 14687
__str_convert_encode_utf16: . 15196
__str_convert_encode_utf16be: 15196
__str_convert_encode_utf16le: 15196
__str_convert_encode_utf32: . 15379
__str_convert_encode_utf32be: 15379
__str_convert_encode_utf32le: 15379
__str_convert_encode_utf8: . . 15025
__str_convert_escape_:

. 14552, 14552, 14553
__str_convert_escape_bytes: . . .

. 14552, 14553
__str_convert_escape_hex:

. 14945, 14945
__str_convert_escape_name:

. 783, 14949, 14951
__str_convert_escape_string: . . .

. 14972, 14974
__str_convert_escape_url:

. 15004, 15004
__str_convert_gmap:N

. 14347, 14347, 14555,
14667, 14946, 14952, 14975, 15005

__str_convert_gmap_internal:N . .
. 14363,
14363, 14565, 14573, 14607, 14696,
15026, 15209, 15381, 15385, 15387

__str_convert_gmap_internal_-
loop:Nw 14363

__str_convert_gmap_internal_-
loop:Nww 14367, 14373, 14377

__str_convert_gmap_loop:NN
. 14347, 14351, 14357, 14361

Index 1643

__str_convert_lowercase_-
alphanum:n . . . 14454, 14486, 14486

__str_convert_lowercase_-
alphanum_loop:N
. 14486, 14488, 14492, 14510

__str_convert_pdfname:n
. 15507, 15510, 15514, 15541

__str_convert_pdfname_bytes:n . .
. 15507, 15517, 15520

__str_convert_pdfname_bytes_-
aux:n 15507, 15522, 15525

__str_convert_pdfname_bytes_-
aux:nnn 15507

__str_convert_pdfname_bytes_-
aux:nnnn 15526, 15527

__str_convert_unescape_:
. 14536, 14542, 14550, 14551

__str_convert_unescape_bytes: . .
. 14536, 14551

__str_convert_unescape_hex: . . .
. 14761, 14761

__str_convert_unescape_name: . . .
. 778, 14807

__str_convert_unescape_string: .
. 14857, 14862

__str_convert_unescape_url: . 14807
__str_count:n

. . . . 754, 13835, 13895, 13977, 13987
__str_count_aux:n

. . 13977, 13981, 13989, 13994, 13997
__str_count_loop:NNNNNNNNN 13977,

13984, 13990, 13995, 14008, 14013
__str_count_spaces_loop:w

. 13957, 13964, 13970, 13975
__str_declare_eight_bit_-

aux:NNnnn 14611, 14618, 14621
__str_declare_eight_bit_-

encoding:nnnn
. 772, 14611, 14611, 15544,
15551, 15615, 15657, 15714, 15815,
15902, 15988, 16062, 16075, 16128,
16226, 16289, 16327, 16342, 39003

__str_declare_eight_bit_loop:Nn
. 14611, 14629, 14653, 14657

__str_declare_eight_bit_-
loop:Nnn 14611, 14626, 14647, 14651

__str_decode_clist_char:n
. 14594, 14600, 14603

__str_decode_eight_bit_aux:n . . .
. 14659, 14673, 14677

__str_decode_eight_bit_aux:Nn . .
. 14659, 14663, 14670

__str_decode_native_char:N
. 14554, 14555, 14556

__str_decode_utf_viii_aux:wNnnwN
. 15100, 15143, 15155

__str_decode_utf_viii_continuation:wwN
. 15100, 15128, 15135, 15171

__str_decode_utf_viii_end:
. 15100, 15110, 15185

__str_decode_utf_viii_overflow:w
. 15100, 15169, 15178

__str_decode_utf_viii_start:N . .
. 15100, 15109, 15115,
15133, 15136, 15153, 15156, 15176

__str_decode_utf_xvi:Nw
. 791, 15281, 15282,
15284, 15293, 15296, 15297, 15300

__str_decode_utf_xvi_bom:NN . . .
. 15281, 15287, 15290

__str_decode_utf_xvi_error:nNN .
. 15315,
15333, 15352, 15361, 15366, 15367

__str_decode_utf_xvi_extra:NNw .
. 15315, 15323, 15365

__str_decode_utf_xvi_pair:NN . . .
. 791, 792, 15309,
15315, 15315, 15327, 15330, 15354

__str_decode_utf_xvi_pair_-
end:Nw . . 15315, 15318, 15334, 15356

__str_decode_utf_xvi_quad:NNwNN
. 15315, 15322, 15329

__str_decode_utf_xxxii:Nw
. 795, 15439, 15440,
15442, 15451, 15454, 15455, 15458

__str_decode_utf_xxxii_bom:NNNN
. 15439, 15445, 15448

__str_decode_utf_xxxii_end:w . . .
. 15439, 15475, 15495

__str_decode_utf_xxxii_loop:NNNN
. 15439, 15466, 15472, 15493

__str_encode_clist_char:n
. 14605, 14607, 14610

__str_encode_eight_bit_aux:NNn .
. 14686, 14691, 14699

__str_encode_eight_bit_aux:nnN .
. 14686, 14701, 14709

__str_encode_native_char:n
. . 14558, 14565, 14566, 14573, 14577

__str_encode_utf_vii_loop:wwnnw 784
__str_encode_utf_viii_char:n . . .

. 15025, 15026, 15027
__str_encode_utf_viii_loop:wwnnw

. 15025, 15029, 15036, 15042
__str_encode_utf_xvi_aux:N

. . 15196, 15198, 15202, 15204, 15205
__str_encode_utf_xvi_be:nn . . . 789

Index 1644

__str_encode_utf_xvi_char:n . . .
. 15196, 15209, 15212

__str_encode_utf_xxxii_be:n . . .
. 15379, 15381, 15385, 15388

__str_encode_utf_xxxii_be_-
aux:nn 15379, 15390, 15393

__str_encode_utf_xxxii_le:n . . .
. 15379, 15387, 15399

__str_encode_utf_xxxii_le_-
aux:nn 15379, 15401, 15404

__str_end 15230, 15410
\l__str_end_flag

. . . . 15232, 15247, 15274, 15305,
15411, 15418, 15432, 15461, 15499

\g__str_error_bool 14249,
14386, 14396, 14400, 14405, 14409

\l__str_error_flag
. . . . 14250, 14572, 14574, 14580,
14666, 14668, 14680, 14695, 14697,
14713, 14764, 14775, 14784, 14797,
14813, 14822, 14835, 14840, 14866,
14881, 14921, 15102, 15113, 15124,
15148, 15162, 15182, 15189, 15207,
15210, 15219, 15302, 15313, 15369,
15462, 15470, 15480, 15485, 15500

__str_escape_hex_char:N
. 14945, 14946, 14947

__str_escape_name_char:n
. . 14949, 14952, 14953, 15518, 15541

\c__str_escape_name_not_str
. 781, 14949

\c__str_escape_name_str . . 781, 14949
__str_escape_string_char:N

. 14972, 14975, 14976
\c__str_escape_string_str 14972
__str_escape_url_char:n

. 15004, 15005, 15006
__str_extra 15047, 15230
\l__str_extra_flag

. . . . 15048, 15057, 15080, 15104,
15123, 15231, 15246, 15269, 15304

__str_filter_bytes:n . . . 14512,
14518, 14535, 14546, 14827, 14889

__str_filter_bytes_aux:N
. 14512, 14520, 14524, 14532

__str_head:w 755, 14015, 14019, 14023
__str_hexadecimal_use:N 14284
__str_hexadecimal_use:NTF

778, 14284, 14781, 14791, 14830, 14832
__str_if_contains_char:Nn . . . 14252
__str_if_contains_char:nn . . . 14261
__str_if_contains_char:NnTF . . .

. 14252, 14961, 14967, 14980

__str_if_contains_char:nnTF . . .
. 762, 14252, 15014, 15020

__str_if_contains_char_aux:nn . .
. 14252, 14254, 14259

__str_if_contains_char_auxi:nN .
. . 14252, 14260, 14263, 14267, 14272

__str_if_contains_char_true: . . .
. 14252, 14270, 14274

__str_if_eq:nn 744, 13583, 13583,
13587, 13593, 13598, 13605, 13610

__str_if_escape_name:n 14958
__str_if_escape_name:nTF

. 14949, 14955
__str_if_escape_string:N 14992
__str_if_escape_string:NTF

. 14972, 14978
__str_if_escape_url:n 15011
__str_if_escape_url:nTF 15004, 15008
__str_if_flag_error:Nnn

. 765, 766, 14379, 14379,
14398, 14407, 14547, 14574, 14668,
14697, 14775, 14821, 14822, 14880,
14881, 15113, 15210, 15313, 15470

__str_if_flag_no_error:Nnn
. . . . 765, 14379, 14385, 14398, 14407

__str_if_flag_times:NTF . 14387,
14387, 15056, 15057, 15058, 15059,
15245, 15246, 15247, 15417, 15418

__str_if_recursion_tail_-
break:NN 13456, 13456, 13736, 13754

__str_if_recursion_tail_stop_-
do:Nn 13456, 13457, 14081

\l__str_internal_tl
. 768, 14215, 14304,
14305, 14307, 14462, 14463, 14464,
14466, 14470, 14474, 14481, 14613

__str_item:nn
. . . . 750, 13819, 13825, 13830, 13831

__str_item:w 750, 13819, 13833, 13838
__str_map_function:nn

747, 13696, 13699, 13708, 13713, 13767
__str_map_function:w

747, 13696, 13698, 13706, 13707, 13767
__str_map_inline:NN

. 13696, 13723, 13734, 13738
__str_map_variable:NnN

. 13696, 13744, 13752, 13757
\c__str_max_byte_int . . 14219, 14579
__str_missing 15047, 15230
\l__str_missing_flag

15047, 15056, 15074, 15103, 15147,
15188, 15230, 15245, 15264, 15303

\l__str_modulo_int 14686
__str_octal_use:N 14276

Index 1645

__str_octal_use:NTF
762, 763, 14276, 14892, 14894, 14896

__str_output_byte:n 793,
14315, 14315, 14344, 14345, 14507,
14712, 15039, 15045, 15397, 15406

__str_output_byte:w
. 778, 14315, 14316,
14317, 14768, 14794, 14829, 14891

__str_output_byte_pair:nnN
. 14331, 14333, 14338, 14341

__str_output_byte_pair_be:n . . .
. . 14331, 14331, 15198, 15202, 15396

__str_output_byte_pair_le:n . . .
. 14331, 14336, 15204, 15407

__str_output_end:
. 778, 14315, 14316, 14329,
14773, 14793, 14843, 14925, 14929

__str_output_hexadecimal:n
. . . . 14315, 14323, 14948, 14956,
15009, 15529, 15530, 15533, 15536

__str_overflow 15047, 15410
\l__str_overflow_flag . . . 15050,

15059, 15092, 15106, 15181, 15410,
15417, 15425, 15460, 15479, 15484

__str_overlong 15047
\l__str_overlong_flag

. . 15049, 15058, 15085, 15105, 15161
__str_range:nnn

. 13880, 13886, 13891, 13892
__str_range:nnw . 13880, 13902, 13906
__str_range:w . . 13880, 13894, 13900
__str_range_normalize:nn

. 13903, 13904, 13912, 13912
__str_replace:NNNnn 13521,

13522, 13524, 13526, 13528, 13533
__str_replace_aux:NNNnnn

. 13521, 13542, 13548
__str_replace_next:w . . . 13521,

13526, 13528, 13550, 13553, 13560
\c__str_replacement_char_int . . .

. 14218, 14681,
15125, 15149, 15163, 15183, 15190,
15220, 15372, 15481, 15486, 15502

\g__str_result_tl 760, 764–
766, 770, 772, 778, 791, 793, 795,
14217, 14349, 14353, 14365, 14369,
14415, 14426, 14427, 14429, 14545,
14546, 14596, 14597, 14600, 14608,
14766, 14770, 14815, 14817, 14868,
14871, 14874, 14877, 15107, 15109,
15199, 15282, 15284, 15288, 15307,
15382, 15440, 15442, 15445, 15464

__str_skip_end:NNNNNNNN
. 751, 13859, 13876, 13879

__str_skip_end:w 13859, 13864, 13874
__str_skip_exp_end:w

. 751, 753, 13846,
13855, 13859, 13859, 13871, 13910

__str_skip_loop:wNNNNNNNN
. 13859, 13862, 13869

__str_tail_auxi:w 14030, 14034, 14038
__str_tail_auxii:w

. 755, 14030, 14041, 14044
__str_tmp:n 13459, 13465, 13468
__str_tmp:w 774, 778,

789, 791, 795, 14215, 14215, 14661,
14667, 14689, 14696, 14807, 14853,
14855, 14860, 14885, 15208, 15215,
15220, 15222, 15225, 15226, 15306,
15321, 15326, 15337, 15340, 15346,
15347, 15463, 15478, 15483, 15489

__str_to_other_end:w
. 749, 13774, 13789, 13794

__str_to_other_fast_end:w
. 13797, 13812, 13817

__str_to_other_fast_loop:w
. 13799, 13808, 13815

__str_to_other_loop:w
. . . . 749, 13774, 13776, 13785, 13791

__str_unescape_hex_auxi:N
. . 14761, 14769, 14778, 14785, 14794

__str_unescape_hex_auxii:N
. 14761, 14782, 14788, 14798

__str_unescape_name_loop:wNN . . .
. 14807, 14854

__str_unescape_string_loop:wNNN
. . 14857, 14876, 14887, 14926, 14929

__str_unescape_string_newlines:wN
. 14857, 14870, 14930, 14934

__str_unescape_string_repeat:NNNNNN
. . 14857, 14901, 14903, 14905, 14928

__str_unescape_url_loop:wNN . . .
. 14807, 14856

__str_use_i_delimit_by_s_-
stop:nw 755, 13452, 13453,
13845, 13854, 13973, 14024, 14027

__str_use_none_delimit_by_s_-
stop:w 13452,
13452, 13555, 13843, 13852, 14011,
14375, 14649, 14655, 15040, 15132

\strcmp . 5
\string . 417
\sum . 1437
\suppressfontnotfounderror 703
\suppressifcsnameerror 915
\suppresslongerror 916
\suppressmathparerror 917
\suppressoutererror 918

Index 1646

\suppressprimitiveerror 919
\synctex . 683
sys commands:

\c_sys_backend_str . . . 82, 8774, 8846
\c_sys_day_int 76, 8983
\c_sys_engine_exec_str

. 77, 604, 8665, 11648
\c_sys_engine_format_str

. 77, 604, 8665, 11649
\c_sys_engine_str

. 77, 604, 684, 8645, 8719
\c_sys_engine_version_str . . 78, 8717
\sys_ensure_backend: . 82, 8844, 8844
\sys_finalise: . . 82, 8776, 9165, 9165
\sys_get_query:nN 81, 9088, 9088
\sys_get_query:nnN . . . 81, 9088, 9090
\sys_get_query:nnnN

. . . . 81, 9088, 9089, 9091, 9092, 9158
\sys_get_shell:nnN

. 80, 8869, 8869, 8874, 9117
\sys_get_shell:nnNTF 80, 94, 8869, 8871
\sys_gset_rand_seed:n

. 79, 284, 9028, 9030
\c_sys_hour_int 76, 8983
\sys_if_engine_luatex:TF

. 77, 108, 8645, 8673, 8698,
8812, 8822, 8823, 8909, 8931, 8963,
9044, 9071, 10256, 11084, 11295,
11447, 11493, 11733, 11781, 19638,
30503, 30545, 30590, 30603, 30629,
30698, 30722, 30759, 38638, 38703

\sys_if_engine_luatex_p:
. 77, 8645, 10442,
14240, 14514, 14538, 14560, 14730

\sys_if_engine_opentype:TF . . 77,
604, 15512, 30813, 30838, 30901,
31079, 31670, 31708, 32702, 33816

\sys_if_engine_opentype_p: . 77, 604
\sys_if_engine_pdftex:TF 77,

8645, 8669, 8693, 9198, 31679, 31729
\sys_if_engine_pdftex_p:

. 77, 8645, 8707
\sys_if_engine_ptex:TF

. 77, 8645, 8671, 8696, 32668
\sys_if_engine_ptex_p:

. 77, 3595, 3617, 8645
\sys_if_engine_uptex:TF

. 77, 8645, 8672, 8697
\sys_if_engine_uptex_p:

. 77, 3596, 3618, 8645
\sys_if_engine_xetex:TF

. . 7, 77, 8645, 8670, 8695, 8793, 9193

\sys_if_engine_xetex_p:
. 77, 8645, 8994,
14241, 14515, 14539, 14561, 14731

\sys_if_output_dvi:TF 78, 9174
\sys_if_output_dvi_p: 78, 9174
\sys_if_output_pdf:TF

. 78, 8808, 9174, 9196
\sys_if_output_pdf_p: 78, 9174
\sys_if_platform_unix:TF

. 79, 8774, 11751
\sys_if_platform_unix_p:

. 79, 8774, 11751
\sys_if_platform_windows:TF

. 79, 8774, 11751
\sys_if_platform_windows_p:

. 79, 8774, 11751
\sys_if_shell:TF

. . 80, 8876, 9079, 9115, 10262, 10512
\sys_if_shell_p: 80, 9079
\sys_if_shell_restricted:TF

. 80, 9079, 9105, 9107
\sys_if_shell_restricted_p: 80, 9079
\sys_if_shell_unrestricted:TF . . .

. 80, 9079
\sys_if_shell_unrestricted_p: . . .

. 80, 9079
\sys_if_timer_exist:TF 78, 9033
\sys_if_timer_exist_p: 78, 9033
\c_sys_jobname_str . 76, 102, 616, 8981
\sys_load_backend:n

. 82, 8774, 8774, 8847
\sys_load_debug: 82,

1568, 1574, 8850, 8850, 8862, 10129
\sys_load_deprecation: . 39016, 39017
\c_sys_minute_int 76, 8983
\c_sys_month_int 76, 8983
\c_sys_output_str 78, 9174
\c_sys_platform_str

. 79, 8774, 11733, 11754
\sys_rand_seed: 79, 163, 284, 9024, 9026
\c_sys_shell_escape_int

. 80, 9067, 9082, 9084, 9086
\sys_shell_now:n

. 80, 8911, 8933, 8937, 8940
\sys_shell_shipout:n

. 81, 8942, 8965, 8969, 8972
\sys_split_query:nN . . 81, 9146, 9146
\sys_split_query:nnN . 81, 9146, 9148
\sys_split_query:nnnN

. 81, 9146, 9147, 9149, 9155
\sys_timer:

. . . . 78, 9033, 9046, 9052, 9056, 9060
\c_sys_timestamp_str 76, 9015
\c_sys_year_int 76, 8983

Index 1647

sys internal commands:
\g__sys_backend_tl

. 8784, 8785, 8786, 9188
__sys_const:nn

. 8629, 8629, 8659, 8662,
9065, 9081, 9083, 9085, 9183, 9185

\g__sys_debug_bool . . 8849, 8852, 8854
__sys_elapsedtime: . 9033, 9047, 9066
__sys_everyjob:n

. 8973, 8978, 8981, 8983,
9015, 9024, 9028, 9067, 9079, 9163

\g__sys_everyjob_tl 8973
__sys_finalise:n

. 9165, 9171, 9174, 9189, 9206
\g__sys_finalise_tl 9165
__sys_get:nnN 8869, 8877, 8880
__sys_get_do:Nw 8869, 8894, 8903
__sys_get_query:Nw 9132, 9143
__sys_get_query_auxi:nnnN

. 9088, 9095, 9097, 9112
__sys_get_query_auxii:nnnN

. 9088, 9099, 9113, 9137
\l__sys_internal_tl 8867
__sys_load_backend_check:N

. 8774, 8785, 8791
\c__sys_marker_tl . . . 8868, 8892, 8904
__sys_shell_now:n 8911, 8934
__sys_shell_shipout:n . . . 8942, 8966
\c__sys_shell_stream_int

. 8909, 8938, 8970
__sys_tmp:w

. . 8986, 9007, 9009, 9010, 9011, 9012
\l__sys_tmp_tl 8628,

9129, 9130, 9133, 9158, 9159, 9160
syst commands:

\c_syst_catcodes_n 30765, 30769
\c_syst_last_allocated_toks . . 3184

T
\T . 65
\t 32178, 34497, 34523
\tabskip . 418
\tagcode . 684
tan . 281
tand . 282
\tate . 1186
\tbaselineshift 1187
TEX and LATEX 2ε commands:

\@ . 14181
\@@@@hyph 364
\@@end 1222, 1223
\@@hyph 1226, 1229
\@@input 1224
\@@italiccorr 1230

\@@shipout 1232, 1233
\@@tracingfonts 365, 1268
\@@underline 1231
\@addtofilelist 11443
\@changed@cmd 32110, 34355
\@classoptionslist . . 9208, 9210, 9212
\@current@cmd 32109, 34354
\@currnamestack

. 666, 10950, 10952, 10953
\@expl@finalise@setup@@ 8856, 8858,

30285, 30287, 30805, 30806, 31796,
31798, 33780, 33782, 38565, 38567

\@expl@luadata@bytecode 19
\@filelist 107, 666, 679,

682, 11442, 11563, 11566, 11575, 11580
\@firstofone 25
\@firstoftwo 383
\@gobble . 27
\@gobbletwo 27
\@kernel@after@begindocument . . .

. 8860, 31800, 33784, 38569
\@kernel@before@begindocument . . .

. 38822, 38824
\@protected@testopt 1305, 32097
\@secondoftwo 383
\@sptoken 205
\@tempa 1240, 1254, 1257
\@tfor 365, 1240
\@uclclist 1342, 33809
\@unexpandable@protect 1069
\@unusedoptionlist 9227
\active@prefix 31958
\afterassignment 570
\aftergroup 15
\AtBeginDocument 364
\begingroup 14
\bgroup . 205
\botmark 911
\box . 315
\catcodetable 1265, 1269, 1271
\char . 217
\chardef 208, 209, 590, 593, 852, 1294
\conditionally@traceoff

. 658, 9631, 10671
\conditionally@traceon 9649
\copy . 308
\count 216, 436
\cr . 601
\CROP@shipout 1241
\csname 22, 371, 668, 669
\csstring 393
\currentgrouplevel . . . 406, 633, 1268
\currentgrouptype 406, 633
\day . 76

Index 1648

\declare@file@substitution . . . 30288
\def . 216
\detokenize 118
\development@branch@name 11651, 11652
\dimen . 910
\dimendef 910
\dimexpr 1366
\directlua 108
\dp 309, 1070, 1071
\dup@shipout 1242
\e@alloc@ccodetable@count 30763
\e@alloc@top 436, 3170
\edef 3, 6, 699
\egroup . 205
\else . 29
\end . 364, 626
\endcsname 22
\endgroup . 14
\endinput . 87
\endlinechar . . . 96, 129, 130, 294–

296, 705–707, 911, 1265, 1266, 1268
\endtemplate 75, 601
\errhelp 622
\errmessage 622, 623
\errorcontextlines 373, 623, 734, 1369
\escapechar . . . 118, 392, 407, 476, 657
\everyeof 707
\everyjob 611, 612
\everypar 31, 212, 409
\expandafter 40, 42
\expanded .

. 3, 6, 27, 35, 340, 412, 415, 428, 706
\fi . 29, 215
\firstmark 422, 911
\fmtname . 77
\font 215, 909
\fontdimen 62, 262, 1018–1021
\frozen@everydisplay 1227
\frozen@everymath 1228
\futurelet

. . . 451, 454, 456, 467, 601, 916, 919
\global . 343
\GPTorg@shipout 1243
\halign 75, 106, 410, 601, 902
\hskip . 240
\ht 309, 1070, 1071
\hyphen . 911
\hyphenchar 1018
\if . 30
\ifcase . 184
\ifcat . 30
\ifcsname . 30
\ifdefined 30
\ifdim . 243

\ifeof . 102
\iffalse 29, 67, 697
\ifhbox . 319
\ifhmode . 30
\ifincsname 340
\ifinner . 30
\ifmmode 30, 697
\ifnum . 184
\ifodd 185, 920
\iftrue 29, 67, 697
\ifvbox . 319
\ifvmode . 30
\ifvoid . 319
\ifx . 30
\indent . 409
\infty . 277
\input . 364
\input@path . . . 103, 671, 11131, 11133
\italiccorr 911
\jobname 76, 612
\kcatcode 299
\lastnamedcs 396
\lccode 454, 459, 871
\leavevmode 31
\let . 343, 468
\letcharcode 900
\LL@shipout 1244
\loctoks 436
\long 5, 217, 734
\lower . 1385
\lowercase 470, 558, 559
\luaescapestring 109
\makeatletter 10
\mathchar 217
\mathchardef 209, 852, 1294
\mathop 1436
\mathord 330
\maxdimen 235
\meaning 21,

206, 216, 217, 453, 909, 910, 919, 920
\mem@oldshipout 1245
\message . 35
\month . 76
\newcatcodetable 1265
\newif 67, 111
\newlinechar 129,

130, 373, 397, 623, 655, 705–707, 734
\newread 645
\newtoks 45, 447, 476
\newwrite 652
\noexpand 41, 215
\nullfont 911, 912
\number 184, 849, 1126
\numexpr 372

Index 1649

\opem@shipout 1246
\or . 184
\outer 8, 217, 451, 467–469,

645, 652, 902, 920, 921, 1472, 1473
\parindent 31
\pdfescapehex 777
\pdfescapename 148, 777
\pdfescapestring 148, 777
\pdffeedback 612
\pdffilesize 671
\pdfmapfile 365
\pdfmapline 365
\pdfstrcmp 339, 354, 744
\pdfuniformdeviate 284
\pgfpages@originalshipout 1247
\pi . 277
\pr@shipout 1248
\primitive 365, 612
\protect 659, 1068, 1069, 1355
\protected 217, 734
\protected@edef 1299
\ProvidesClass 10
\ProvidesFile 10
\ProvidesPackage 10
\quitvmode 409
\read 96, 650
\readline 96, 650
\relax 29, 215, 389,

394, 407, 469, 594, 668, 872, 874,
926, 933, 935, 1025, 1027, 1052, 1084

\RequirePackage 11, 666
\romannumeral . . . 43, 1025, 1293, 1300
\savecatcodetable 1267
\scantokens 130, 150, 670, 705
\shipout 364
\show 21, 120, 407
\showbox 1369
\showgroups 15, 407
\showthe 406, 870, 964, 968, 970
\showtokens 121, 628, 734
\sin . 277
\skip 459, 460
\space . 911
\splitbotmark 911
\splitfirstmark 911
\SS . 1358
\strcmp 339, 354
\string 206, 454, 456, 457
\tenrm . 215
\the .

175, 215, 234, 239, 242, 414, 849, 1366
\time . 76
\toks 45, 163, 184,

434–442, 447, 453, 455, 457, 459,

460, 463, 476, 477, 527, 534, 535,
539, 540, 550, 558, 566, 579, 588, 834

\toksdef 447
\topmark 216, 911
\tracingfonts 365
\tracingnesting 670, 705
\tracingonline 1369
\typeout 659
\Ucharcat 901
\Umathcode 77
\undefined 935
\unexpanded 41,

119, 120, 125, 126, 160, 161, 166,
167, 192, 196–198, 223, 699, 723, 856

\unhbox . 315
\unhcopy 312
\uniformdeviate 284
\unless . 29
\unvbox . 315
\unvcopy 314
\uppercase 558
\usepackage 666
\UTFviii@four@octets 31957
\UTFviii@three@octets 31956
\UTFviii@two@octets 31955
\valign . 601
\verb . 130
\verso@orig@shipout 1250
\vskip . 241
\vtop . 1391
\wd 309, 1070, 1071
\write 100, 655
\year . 76

tex commands:
\tex_above:D 151
\tex_abovedisplayshortskip:D . . 152
\tex_abovedisplayskip:D 153
\tex_abovewithdelims:D 154
\tex_accent:D 155
\tex_adjdemerits:D 156
\tex_adjustinterwordglue:D 627
\tex_adjustspacing:D 628, 931
\tex_advance:D . . 157, 3277, 3284,

3287, 3728, 3730, 3763, 3765, 5266,
17694, 17696, 17698, 17700, 17706,
17708, 17710, 17712, 20901, 20904,
20910, 20913, 21327, 21329, 21333,
21335, 21420, 21422, 21426, 21428

\tex_afterassignment:D . 158, 3669,
3712, 7523, 7587, 7731, 19827, 30350

\tex_aftergroup:D . . . 1271, 159, 1424
\tex_alignmark:D 779
\tex_aligntab:D 780
\tex_appendkern:D 629

Index 1650

\tex_atop:D 160
\tex_atopwithdelims:D 161
\tex_attribute:D 781
\tex_attributedef:D 782
\tex_automaticdiscretionary:D . . 784
\tex_automatichyphenmode:D 785
\tex_automatichyphenpenalty:D . . 787
\tex_autospacing:D 1133
\tex_autoxspacing:D 1134
\tex_badness:D 162
\tex_baselineskip:D 163
\tex_batchmode:D 164, 9495
\tex_begincsname:D 788
\tex_begingroup:D 165, 1235, 1279, 1419
\tex_beginL:D 473
\tex_beginR:D 474
\tex_belowdisplayshortskip:D . . 166
\tex_belowdisplayskip:D 167
\tex_binoppenalty:D 168
\tex_bodydir:D 789, 1329
\tex_bodydirection:D 790
\tex_botmark:D 169
\tex_botmarks:D 475
\tex_boundary:D 791
\tex_box:D . . . 170, 34778, 34780, 34823
\tex_boxdir:D 792
\tex_boxdirection:D 793
\tex_boxmaxdepth:D 171
\tex_breakafterdirmode:D 794
\tex_brokenpenalty:D 172
\tex_catcode:D 173, 2685,

6991, 8616, 8619, 12185, 19172, 19174
\tex_catcodetable:D 795, 30607, 30614
\tex_char:D 174
\tex_chardef:D 381,

175, 1412, 1441, 1443, 1795, 1796,
8283, 8305, 8310, 10253, 10504,
17669, 19708, 31828, 31830, 31832

\tex_cleaders:D 176
\tex_clearmarks:D 796
\tex_closein:D 177, 10286
\tex_closeout:D 178, 10530
\tex_clubpenalties:D 476
\tex_clubpenalty:D 179
\tex_compoundhyphenmode:D 798
\tex_copy:D 180, 34772,

34774, 34798, 34807, 34816, 34824
\tex_copyfont:D 630, 932
\tex_count:D 181, 3153, 3169,

3177, 3178, 10201, 10203, 10454, 10456
\tex_countdef:D 182
\tex_cr:D 183
\tex_crampeddisplaystyle:D 799
\tex_crampedscriptscriptstyle:D 801

\tex_crampedscriptstyle:D 802
\tex_crampedtextstyle:D 803
\tex_crcr:D 184
\tex_creationdate:D . . 631, 768, 9021
\tex_csname:D 185, 1406
\tex_csstring:D 804
\tex_currentcjktoken:D 1135
\tex_currentgrouplevel:D

. 1270, 477, 20203, 20221,
30596, 30676, 30686, 30693, 37785

\tex_currentgrouptype:D 478
\tex_currentifbranch:D 479
\tex_currentiflevel:D 480
\tex_currentiftype:D 481
\tex_currentspacingmode:D 1136
\tex_currentxspacingmode:D . . . 1137
\tex_day:D 186, 1286, 1290
\tex_deadcycles:D 187
\tex_def:D

. . 188, 687, 688, 689, 1469, 1473,
1478, 1483, 39444, 39468, 39502, 39915

\tex_defaulthyphenchar:D 189
\tex_defaultskewchar:D 190
\tex_deferred:D 805
\tex_delcode:D 191
\tex_delimiter:D 192
\tex_delimiterfactor:D 193
\tex_delimitershortfall:D 194
\tex_detokenize:D 482, 1415, 1417
\tex_dimen:D 195
\tex_dimendef:D 196
\tex_dimexpr:D 483, 20856, 34748
\tex_directlua:D . 808, 1266, 1267,

8666, 9019, 9020, 9073, 11736, 11761
\tex_disablecjktoken:D 1199
\tex_discretionary:D 197
\tex_discretionaryligaturemode:D 807
\tex_disinhibitglue:D 1138
\tex_displayindent:D 198
\tex_displaylimits:D 199, 37430
\tex_displaystyle:D 200
\tex_displaywidowpenalties:D . . 484
\tex_displaywidowpenalty:D 201
\tex_displaywidth:D 202
\tex_divide:D 203, 3147, 5267
\tex_doublehyphendemerits:D . . . 204
\tex_dp:D 205, 34788
\tex_draftmode:D 632, 933
\tex_dtou:D 1139
\tex_dump:D 206
\tex_dviextension:D 809
\tex_dvifeedback:D 810
\tex_dvivariable:D 811
\tex_eachlinedepth:D 633

Index 1651

\tex_eachlineheight:D 634
\tex_edef:D 207, 1236,

1237, 1253, 1280, 1281, 1286, 1287,
1292, 1293, 1298, 1299, 1470, 1471,
1475, 1480, 1485, 10763, 10821, 38905

\tex_efcode:D 670
\tex_elapsedtime:D

. . . . 635, 769, 9050, 9053, 9066, 9845
\tex_else:D . 208, 1239, 1265, 1283,

1289, 1295, 1301, 1392, 1444, 1447
\tex_emergencystretch:D 209
\tex_enablecjktoken:D . . . 1200, 8651
\tex_end:D 210, 1223, 1312, 1964
\tex_endcsname:D 211, 1407
\tex_endgroup:D

. 212, 1221, 1261, 1304, 1420
\tex_endinput:D 213, 9504, 11427, 11661
\tex_endL:D 485
\tex_endlinechar:D

. 120, 121, 134, 214, 9127,
10358, 10360, 10361, 12373, 12374,
12375, 12409, 30552, 30556, 30569,
30609, 30610, 30625, 30796, 30811,
30845, 39427, 39489, 39498, 39912

\tex_endlocalcontrol:D 814
\tex_endR:D 486
\tex_epTeXinputencoding:D 1140
\tex_epTeXversion:D . 1141, 8739, 8764
\tex_eqno:D 215
\tex_errhelp:D 216, 9372
\tex_errmessage:D 217, 1956, 9392
\tex_errorcontextlines:D

. 218, 2322, 2329,
2330, 9387, 9406, 9593, 13307, 34887

\tex_errorstopmode:D 219
\tex_escapechar:D . 668, 220, 2307,

3634, 3696, 3697, 4041, 4139, 4140,
4143, 4171, 4270, 10380, 10625,
10672, 10678, 14765, 14814, 14867

\tex_escapehex:D 636
\tex_escapename:D 637
\tex_escapestring:D 638
\tex_eTeXglueshrinkorder:D 812
\tex_eTeXgluestretchorder:D . . . 813
\tex_eTeXrevision:D 487
\tex_eTeXversion:D 488
\tex_etoksapp:D 815, 4292, 4293
\tex_etokspre:D 816, 4286, 4287
\tex_euc:D 1142
\tex_everycr:D 221
\tex_everydisplay:D 222, 1227
\tex_everyeof:D

. 489, 8892, 11077, 12382, 12434
\tex_everyhbox:D 223

\tex_everyjob:D 224, 1306, 1313
\tex_everymath:D 225, 1228
\tex_everypar:D 226
\tex_everyvbox:D 227
\tex_exceptionpenalty:D 817
\tex_exhyphenchar:D 818
\tex_exhyphenpenalty:D 228
\tex_expandafter:D

229, 692, 1240, 1254, 1256, 1257, 1408
\tex_expanded:D 428,

820, 1322, 1496, 2400, 2463, 2492,
2550, 2589, 2606, 2671, 2895, 4290,
4296, 12224, 12255, 12296, 12324,
12919, 20735, 21462, 21775, 30969

\tex_explicitdiscretionary:D . . 821
\tex_explicithyphenpenalty:D . . 819
\tex_fam:D 230
\tex_fi:D .

. 231, 693, 1225, 1234, 1258, 1260,
1269, 1270, 1271, 1273, 1274, 1278,
1285, 1291, 1297, 1303, 1307, 1310,
1323, 1331, 1336, 1393, 1449, 1450

\tex_filedump:D
. 702, 770, 1379, 11287, 11300, 11307

\tex_filemoddate:D
. 701, 771, 1375, 11406

\tex_filesize:D
. . . 673, 699, 772, 1362, 11096, 11307

\tex_finalhyphendemerits:D 232
\tex_firstlineheight:D 639
\tex_firstmark:D 233
\tex_firstmarks:D 490
\tex_firstvalidlanguage:D 822
\tex_fixupboxesmode:D 824
\tex_floatingpenalty:D 234
\tex_font:D 235, 23131
\tex_fontchardp:D 491
\tex_fontcharht:D 492
\tex_fontcharic:D 493
\tex_fontcharwd:D 494
\tex_fontdimen:D 236, 23123
\tex_fontexpand:D 640, 934
\tex_fontid:D 825
\tex_fontname:D 237
\tex_fontsize:D 641
\tex_forcecjktoken:D 1201
\tex_formatname:D 826
\tex_futurelet:D . 238, 3642, 3700,

4145, 4158, 4219, 4242, 19822, 19824
\tex_gdef:D 239, 1425, 1427,

1429, 1430, 1451, 1454, 1455, 1456,
1459, 1460, 1461, 1464, 1465, 1466

\tex_gleaders:D 832
\tex_glet:D 833

Index 1652

\tex_global:D 952, 140, 144, 240, 694,
1256, 1284, 1290, 1296, 1302, 1389,
1390, 1391, 1392, 1393, 1394, 1395,
1396, 1397, 1398, 1399, 1400, 1401,
1402, 1403, 1404, 1405, 1406, 1407,
1408, 1409, 1410, 1411, 1412, 1413,
1414, 1415, 1416, 1417, 1418, 1419,
1420, 1422, 1423, 1424, 1440, 1441,
1443, 1446, 1448, 1451, 1452, 1453,
1458, 1463, 1468, 1469, 1470, 1471,
1476, 1481, 1486, 1795, 1796, 2049,
2056, 8283, 8310, 10253, 10504,
12148, 12160, 17647, 17653, 17657,
17670, 17673, 17676, 17687, 17698,
17700, 17710, 17712, 17720, 19445,
19447, 19457, 19708, 19824, 20870,
20875, 20891, 20898, 20904, 20913,
21299, 21319, 21324, 21329, 21335,
21390, 21396, 21412, 21417, 21422,
21428, 23131, 31828, 31829, 31830,
31831, 31832, 31833, 34774, 34780,
34853, 34906, 34918, 34931, 34951,
34998, 35010, 35022, 35035, 35056,
35071, 39443, 39467, 39501, 39915

\tex_globaldefs:D 241
\tex_glueexpr:D 495,

21317, 21319, 21327, 21329, 21333,
21335, 21349, 21356, 21361, 21364,
29234, 39981, 40024, 40146, 40148

\tex_glueshrink:D 496
\tex_glueshrinkorder:D 497
\tex_gluestretch:D . . . 498, 3859, 3865
\tex_gluestretchorder:D 499
\tex_gluetomu:D 500
\tex_glyphdimensionsmode:D 834
\tex_gtoksapp:D 835
\tex_gtokspre:D 836
\tex_halign:D 242
\tex_hangafter:D 243
\tex_hangindent:D 244
\tex_hbadness:D 245
\tex_hbox:D 246, 34898, 34901,

34906, 34913, 34918, 34925, 34931,
34945, 34951, 34959, 34964, 36527

\tex_hfi:D 1143
\tex_hfil:D 247
\tex_hfill:D 248
\tex_hfilneg:D 249
\tex_hfuzz:D 250
\tex_hjcode:D 827
\tex_hoffset:D 251, 1325
\tex_holdinginserts:D 252
\tex_hpack:D 828
\tex_hrule:D 253

\tex_hsize:D
. . . . 254, 35671, 35696, 35697, 35747

\tex_hskip:D 255, 21359
\tex_hss:D

256, 34968, 34970, 34972, 35416, 35425
\tex_ht:D 257, 34787
\tex_hyphen:D 150, 1229
\tex_hyphenation:D 258
\tex_hyphenationbounds:D 829
\tex_hyphenationmin:D 830
\tex_hyphenchar:D 259, 23124
\tex_hyphenpenalty:D 260
\tex_hyphenpenaltymode:D 831
\tex_if:D 261, 1395, 1396
\tex_ifabsdim:D 623, 935
\tex_ifabsnum:D

. 1017, 624, 936, 23190, 23194
\tex_ifcase:D 262, 17537
\tex_ifcat:D 263, 1397
\tex_ifcondition:D 837
\tex_ifcsname:D 501, 1405
\tex_ifdbox:D 1144
\tex_ifddir:D 1145
\tex_ifdefined:D

. 502, 691, 1222, 1226, 1232,
1263, 1266, 1273, 1274, 1305, 1308,
1311, 1324, 1332, 1404, 1442, 1445

\tex_ifdim:D 264, 20855
\tex_ifeof:D 265, 10322
\tex_iffalse:D 266, 1390
\tex_iffontchar:D 503
\tex_ifhbox:D 267, 34835
\tex_ifhmode:D 268, 1401
\tex_ifincsname:D 671
\tex_ifinner:D 269, 1403
\tex_ifjfont:D 1146
\tex_ifmbox:D 1147
\tex_ifmdir:D 1148
\tex_ifmmode:D 270, 1400
\tex_ifnum:D 271, 1272, 1422
\tex_ifodd:D . . 272, 1399, 8276, 17536
\tex_ifprimitive:D 625, 774
\tex_iftbox:D 1149
\tex_iftdir:D 1151
\tex_iftfont:D 1150
\tex_iftrue:D 273, 1389
\tex_ifvbox:D 274, 34836
\tex_ifvmode:D 275, 1402
\tex_ifvoid:D 276, 34837
\tex_ifx:D 277, 1238,

1255, 1282, 1288, 1294, 1300, 1398
\tex_ifybox:D 1152
\tex_ifydir:D 1153
\tex_ignoreddimen:D 642

Index 1653

\tex_ignoreligaturesinfont:D . . 937
\tex_ignorespaces:D 278
\tex_immediate:D

. 279, 1973, 1975, 10506, 10530, 10589
\tex_immediateassigned:D 838
\tex_immediateassignment:D 839
\tex_indent:D 280, 2383
\tex_inhibitglue:D 1154
\tex_inhibitxspcode:D 1155
\tex_initcatcodetable:D . . 840, 30513
\tex_input:D 281,

1224, 1314, 8897, 11083, 11446, 11492
\tex_inputlineno:D . . . 282, 1971, 9310
\tex_insert:D 283
\tex_insertht:D 643, 938
\tex_insertpenalties:D 284
\tex_interactionmode:D 504,

2320, 2325, 2326, 34871, 34874, 34876
\tex_interlinepenalties:D 505
\tex_interlinepenalty:D 285
\tex_italiccorrection:D

. 149, 1230, 1326
\tex_jcharwidowpenalty:D 1156
\tex_jfam:D 1157
\tex_jfont:D 1158
\tex_jis:D 1159
\tex_jobname:D

. 286, 8982, 9164, 10941, 10942
\tex_kanjiskip:D 1160, 8649
\tex_kansuji:D 1161
\tex_kansujichar:D 1162
\tex_kcatcode:D 1163
\tex_kchar:D 1202
\tex_kchardef:D 1203
\tex_kern:D 287, 34752
\tex_knaccode:D 672
\tex_knbccode:D 673
\tex_knbscode:D 674
\tex_kuten:D 1164
\tex_language:D 288, 1315
\tex_lastbox:D 289, 34851, 34853
\tex_lastkern:D 290
\tex_lastlinedepth:D 644
\tex_lastlinefit:D 506
\tex_lastmatch:D 645
\tex_lastnamedcs:D

841, 1835, 1847, 1877, 1891, 1917, 1927
\tex_lastnodechar:D 1165
\tex_lastnodefont:D 1166
\tex_lastnodesubtype:D 1167
\tex_lastnodetype:D 507
\tex_lastpenalty:D 291
\tex_lastskip:D 292
\tex_lastxpos:D 646, 945

\tex_lastypos:D 647, 946
\tex_latelua:D 842, 11762
\tex_lateluafunction:D 843
\tex_lccode:D . . . 293, 3591, 3601,

3611, 3623, 3694, 3696, 3699, 3729,
4107, 7158, 7210, 9139, 9151, 13780,
13781, 13803, 13804, 19248, 19250

\tex_leaders:D 294
\tex_left:D 295, 1333
\tex_leftghost:D 844
\tex_lefthyphenmin:D 296
\tex_leftmarginkern:D 675
\tex_leftskip:D 297
\tex_leqno:D 298
\tex_let:D 1472, 141,

144, 299, 694, 1223, 1224, 1227,
1228, 1229, 1230, 1231, 1233, 1256,
1262, 1264, 1268, 1276, 1277, 1284,
1290, 1296, 1302, 1306, 1309, 1312,
1313, 1314, 1315, 1316, 1317, 1318,
1319, 1320, 1321, 1322, 1325, 1326,
1327, 1328, 1329, 1330, 1333, 1334,
1335, 1389, 1390, 1391, 1392, 1393,
1394, 1395, 1396, 1397, 1398, 1399,
1400, 1401, 1402, 1403, 1404, 1405,
1406, 1407, 1408, 1409, 1410, 1411,
1413, 1414, 1415, 1416, 1417, 1418,
1419, 1420, 1422, 1423, 1424, 1440,
1451, 1452, 1453, 1458, 1463, 1468,
1469, 1470, 1471, 1476, 1481, 1486,
2045, 3592, 3602, 3613, 3625, 4067,
4136, 12146, 12148, 12158, 12160,
19445, 19447, 19457, 38869, 38872

\tex_letcharcode:D 845
\tex_letterspacefont:D 676
\tex_limits:D 300, 37428
\tex_linedir:D 846
\tex_linedirection:D 847
\tex_lineendmode:D 1174
\tex_linepenalty:D 301
\tex_lineskip:D 302
\tex_lineskiplimit:D 303
\tex_localbrokenpenalty:D 848
\tex_localinterlinepenalty:D . . 849
\tex_localleftbox:D 854
\tex_localrightbox:D 855
\tex_long:D 304, 687, 688,

689, 1425, 1427, 1430, 1454, 1455,
1456, 1457, 1459, 1461, 1464, 1465,
1466, 1467, 1473, 1475, 1483, 1485

\tex_looseness:D 305
\tex_lower:D 306, 34834
\tex_lowercase:D 902, 903,

307, 3592, 3602, 3612, 3624, 3695,

Index 1654

4108, 7159, 7211, 9140, 9152, 9379,
13782, 13805, 19279, 19362, 19389

\tex_lpcode:D 677
\tex_luabytecode:D 850
\tex_luabytecodecall:D 851
\tex_luacopyinputnodes:D 852
\tex_luadef:D 853
\tex_luaescapestring:D . . . 856, 11760
\tex_luafunction:D 857
\tex_luafunctioncall:D 858
\tex_luatexbanner:D 859
\tex_luatexrevision:D 860, 8748
\tex_luatexversion:D

. 861, 1274, 1442, 8647,
8744, 8746, 10443, 14087, 17664, 18376

\tex_mag:D 308, 38832
\tex_mark:D 309
\tex_marks:D 508
\tex_match:D 648
\tex_mathaccent:D 310
\tex_mathbin:D 311
\tex_mathchar:D 312
\tex_mathchardef:D 381,

313, 1448, 17672, 31829, 31831, 31833
\tex_mathchoice:D 314
\tex_mathclose:D 315
\tex_mathcode:D . . . 316, 19242, 19244
\tex_mathdefaultsmode:D 862
\tex_mathdelimitersmode:D 863
\tex_mathdir:D 864
\tex_mathdirection:D 865
\tex_mathdisplayskipmode:D 866
\tex_matheqdirmode:D 867
\tex_matheqnogapstep:D 868
\tex_mathflattenmode:D 869
\tex_mathinner:D 317
\tex_mathitalicsmode:D 870
\tex_mathnolimitsmode:D 871
\tex_mathop:D 318, 1316
\tex_mathopen:D 319
\tex_mathoption:D 872
\tex_mathord:D 320
\tex_mathpenaltiesmode:D 873
\tex_mathpunct:D 321
\tex_mathrel:D 322
\tex_mathrulesfam:D 874
\tex_mathrulesmode:D 876
\tex_mathrulethicknessmode:D . . 878
\tex_mathscriptboxmode:D 880
\tex_mathscriptcharmode:D 881
\tex_mathscriptsmode:D 879
\tex_mathstyle:D 882
\tex_mathsurround:D 323
\tex_mathsurroundmode:D 883

\tex_mathsurroundskip:D 884
\tex_maxdeadcycles:D 324
\tex_maxdepth:D 325
\tex_mdfivesum:D

. 700, 773, 1366, 11242, 14178, 14179
\tex_meaning:D . . 326, 1237, 1254,

1280, 1286, 1292, 1298, 1413, 1414
\tex_medmuskip:D 327
\tex_message:D 328
\tex_middle:D 509, 1334
\tex_mkern:D 329
\tex_month:D . . . 330, 1292, 1296, 1317
\tex_moveleft:D 331, 34828
\tex_moveright:D 332, 34830
\tex_mskip:D 333
\tex_muexpr:D

. 510, 21410, 21412, 21420, 21422,
21426, 21428, 21432, 39970, 40029

\tex_multiply:D 334
\tex_muskip:D 335
\tex_muskipdef:D 336
\tex_mutoglue:D

. 370, 1486, 511, 39970, 40029
\tex_newlinechar:D

. 337, 1955, 9385, 9591,
10588, 12375, 12401, 12405, 13305

\tex_noalign:D 338
\tex_noautospacing:D 1168
\tex_noautoxspacing:D 1169
\tex_noboundary:D 339
\tex_noexpand:D 340, 1409
\tex_nohrule:D 885
\tex_noindent:D 341
\tex_nokerns:D 886
\tex_noligatures:D 649
\tex_noligs:D 887
\tex_nolimits:D 342, 37429
\tex_nonscript:D 343
\tex_nonstopmode:D 344
\tex_normaldeviate:D 650, 947
\tex_nospaces:D 888
\tex_novrule:D 889
\tex_nulldelimiterspace:D 345
\tex_nullfont:D 346, 19737
\tex_number:D 347, 17533, 35574
\tex_numexpr:D

512, 4268, 16955, 17534, 19376, 23330
\tex_odelcode:D 1206
\tex_odelimiter:D 1207
\tex_omathaccent:D 1208
\tex_omathchar:D 1209
\tex_omathchardef:D

1210, 1445, 1446, 17665, 17667, 17668
\tex_omathcode:D 1211

Index 1655

\tex_omit:D 348
\tex_openin:D 349, 10255
\tex_openout:D 350, 10506
\tex_or:D 351, 1391
\tex_oradical:D 1212
\tex_outer:D 352, 1318, 38905
\tex_output:D 353
\tex_outputbox:D 890
\tex_outputpenalty:D 354
\tex_over:D 355, 1319
\tex_overfullrule:D 356
\tex_overline:D 357
\tex_overwithdelims:D 358
\tex_pagebottomoffset:D 891
\tex_pagedepth:D 359
\tex_pagedir:D 892, 1330
\tex_pagedirection:D 893
\tex_pagediscards:D 513
\tex_pagefilllstretch:D 360
\tex_pagefillstretch:D 361
\tex_pagefilstretch:D 362
\tex_pagefistretch:D 1170
\tex_pagegoal:D 363
\tex_pageheight:D 651, 949
\tex_pageleftoffset:D 894
\tex_pagerightoffset:D 895
\tex_pageshrink:D 364
\tex_pagestretch:D 365
\tex_pagetopoffset:D 896
\tex_pagetotal:D 366
\tex_pagewidth:D 652, 950
\tex_par:D 367
\tex_pardir:D 897
\tex_pardirection:D 898
\tex_parfillskip:D 368
\tex_parindent:D 369
\tex_parshape:D 370
\tex_parshapedimen:D 514
\tex_parshapeindent:D 515
\tex_parshapelength:D 516
\tex_parskip:D 371
\tex_partokencontext:D 1213
\tex_partokenname:D 1214
\tex_patterns:D 372
\tex_pausing:D 373
\tex_pdfannot:D 539
\tex_pdfcatalog:D 540
\tex_pdfcolorstack:D 542
\tex_pdfcolorstackinit:D 543
\tex_pdfcompresslevel:D 541
\tex_pdfdecimaldigits:D 544
\tex_pdfdest:D 545
\tex_pdfdestmargin:D 546
\tex_pdfendlink:D 547

\tex_pdfendthread:D 548
\tex_pdfextension:D 899
\tex_pdffakespace:D 549
\tex_pdffeedback:D 900
\tex_pdffontattr:D 550
\tex_pdffontname:D 551
\tex_pdffontobjnum:D 552
\tex_pdfgamma:D 553
\tex_pdfgentounicode:D 554
\tex_pdfglyphtounicode:D 555
\tex_pdfhorigin:D 556
\tex_pdfimageapplygamma:D 557
\tex_pdfimagegamma:D 558
\tex_pdfimagehicolor:D 559
\tex_pdfimageresolution:D 560
\tex_pdfincludechars:D 561
\tex_pdfinclusioncopyfonts:D . . 562
\tex_pdfinclusionerrorlevel:D . . 564
\tex_pdfinfo:D 565
\tex_pdfinfoomitdate:D 566
\tex_pdfinterwordspaceoff:D . . . 567
\tex_pdfinterwordspaceon:D 568
\tex_pdflastannot:D 569
\tex_pdflastlink:D 570
\tex_pdflastobj:D 571
\tex_pdflastxform:D 572, 940
\tex_pdflastximage:D 573, 942
\tex_pdflastximagecolordepth:D . 575
\tex_pdflastximagepages:D . . 576, 944
\tex_pdflinkmargin:D 577
\tex_pdfliteral:D 578
\tex_pdfmajorversion:D 581
\tex_pdfmapfile:D 579, 1276
\tex_pdfmapline:D 580, 1277
\tex_pdfminorversion:D 582
\tex_pdfnames:D 583
\tex_pdfnobuiltintounicode:D . . 584
\tex_pdfobj:D 585
\tex_pdfobjcompresslevel:D 586
\tex_pdfomitcharset:D 587
\tex_pdfoutline:D 588
\tex_pdfoutput:D 604,

589, 948, 1309, 8694, 8700, 8708, 9179
\tex_pdfpageattr:D 590
\tex_pdfpagebox:D 591
\tex_pdfpageref:D 592
\tex_pdfpageresources:D 593
\tex_pdfpagesattr:D 594
\tex_pdfrefobj:D 595
\tex_pdfrefxform:D 596, 954
\tex_pdfrefximage:D 597, 955
\tex_pdfrestore:D 598
\tex_pdfretval:D 599
\tex_pdfrunninglinkoff:D 600

Index 1656

\tex_pdfrunninglinkon:D 601
\tex_pdfsave:D 602
\tex_pdfsetmatrix:D 603
\tex_pdfstartlink:D 604
\tex_pdfstartthread:D 605
\tex_pdfsuppressptexinfo:D 606
\tex_pdfsuppresswarningdupdest:D 608
\tex_pdfsuppresswarningdupmap:D 610
\tex_pdfsuppresswarningpagegroup:D

. 612
\tex_pdftexbanner:D 667
\tex_pdftexrevision:D 668, 8727
\tex_pdftexversion:D

. . 669, 1273, 8648, 8723, 8725, 14096
\tex_pdfthread:D 613
\tex_pdfthreadmargin:D 614
\tex_pdftrailer:D 615
\tex_pdftrailerid:D 616
\tex_pdfuniqueresname:D 617
\tex_pdfvariable:D 901
\tex_pdfvorigin:D 618
\tex_pdfxform:D 619, 957
\tex_pdfxformname:D 620
\tex_pdfximage:D 621, 958
\tex_pdfximagebbox:D 622
\tex_penalty:D 374
\tex_pkmode:D 653
\tex_pkresolution:D 654
\tex_postbreakpenalty:D 1171
\tex_postdisplaypenalty:D 375
\tex_postexhyphenchar:D 902
\tex_posthyphenchar:D 903
\tex_prebinoppenalty:D 904
\tex_prebreakpenalty:D 1172
\tex_predisplaydirection:D 517
\tex_predisplaygapfactor:D 905
\tex_predisplaypenalty:D 376
\tex_predisplaysize:D 377
\tex_preexhyphenchar:D 906
\tex_prehyphenchar:D 907
\tex_prependkern:D 656
\tex_prerelpenalty:D 908
\tex_pretolerance:D 378
\tex_prevdepth:D 379
\tex_prevgraf:D 380
\tex_primitive:D . 655, 775, 8991, 9001
\tex_protected:D

. 518, 1454, 1456, 1459,
1460, 1461, 1462, 1464, 1465, 1466,
1467, 1478, 1480, 1483, 1485, 38905

\tex_protrudechars:D . . 657, 778, 951
\tex_protrusionboundary:D 909
\tex_ptexfontname:D 1173

\tex_ptexminorversion:D
. 1175, 8736, 8757

\tex_ptexrevision:D . 1176, 8737, 8758
\tex_ptextracingfonts:D 1177
\tex_ptexversion:D

. 1178, 8731, 8734, 8752, 8755
\tex_pxdimen:D 658, 952
\tex_quitvmode:D 678
\tex_radical:D 381
\tex_raise:D 382, 34832
\tex_randomseed:D 659, 953, 9026
\tex_read:D 383, 9496, 10342
\tex_readline:D 519, 10359
\tex_readpapersizespecial:D . . 1179
\tex_relax:D 370,

1027, 1486, 384, 1418, 17535, 20857
\tex_relpenalty:D 385
\tex_resettimer:D 660, 776
\tex_right:D 386, 1335
\tex_rightghost:D 910
\tex_righthyphenmin:D 387
\tex_rightmarginkern:D 679
\tex_rightskip:D 388
\tex_romannumeral:D 393,

420, 421, 1486, 389, 1411, 1423,
1800, 19291, 23332, 30029, 30046,
30048, 30596, 31070, 31122, 39318

\tex_rpcode:D 680
\tex_savecatcodetable:D

. 911, 30551, 30613
\tex_savepos:D 661, 956
\tex_savinghyphcodes:D 520
\tex_savingvdiscards:D 521
\tex_scantextokens:D 912
\tex_scantokens:D 522, 12387,

12448, 39441, 39465, 39499, 39913
\tex_scriptbaselineshiftfactor:D

. 1181
\tex_scriptfont:D 390
\tex_scriptscriptbaselineshiftfactor:D

. 1183
\tex_scriptscriptfont:D 391
\tex_scriptscriptstyle:D 392
\tex_scriptspace:D 393
\tex_scriptstyle:D 394
\tex_scrollmode:D 395
\tex_setbox:D 396,

34772, 34774, 34778, 34780, 34798,
34807, 34816, 34851, 34853, 34901,
34906, 34913, 34918, 34925, 34931,
34945, 34951, 34993, 34998, 35005,
35010, 35017, 35022, 35029, 35035,
35050, 35056, 35067, 35071, 36527

\tex_setfontid:D 913

Index 1657

\tex_setlanguage:D 397
\tex_setrandomseed:D . 662, 959, 9031
\tex_sfcode:D 398, 19260, 19262
\tex_shapemode:D 914
\tex_shbscode:D 681
\tex_shellescape:D . . . 663, 777, 9076
\tex_shipout:D 399, 1233, 1257
\tex_show:D 400
\tex_showbox:D 401, 34888
\tex_showboxbreadth:D . . . 402, 34884
\tex_showboxdepth:D 403, 34885
\tex_showgroups:D 523, 2324
\tex_showifs:D 524
\tex_showlists:D 404
\tex_showmode:D 1184
\tex_showstream:D 1215
\tex_showthe:D 405
\tex_showtokens:D

. 734, 525, 1328, 9595, 13309
\tex_sjis:D 1185
\tex_skewchar:D 406
\tex_skip:D

407, 3732, 3761, 3780, 3843, 3859, 3865
\tex_skipdef:D 408
\tex_space:D 148
\tex_spacefactor:D 409
\tex_spaceskip:D 410
\tex_span:D 411
\tex_special:D 412
\tex_splitbotmark:D 413
\tex_splitbotmarks:D 526
\tex_splitdiscards:D 527
\tex_splitfirstmark:D 414
\tex_splitfirstmarks:D 528
\tex_splitmaxdepth:D 415
\tex_splittopskip:D 416
\tex_stbscode:D 682
\tex_strcmp:D

. 698, 1339, 11363, 13583, 23703
\tex_string:D 417, 1236,

1240, 1281, 1287, 1293, 1299, 1416
\tex_suppressfontnotfounderror:D 704
\tex_suppressifcsnameerror:D . . 915
\tex_suppresslongerror:D 916
\tex_suppressmathparerror:D . . . 917
\tex_suppressoutererror:D 918
\tex_suppressprimitiveerror:D . . 920
\tex_synctex:D 683
\tex_tabskip:D 418
\tex_tagcode:D 684
\tex_tate:D 1186
\tex_tbaselineshift:D 1187
\tex_textbaselineshiftfactor:D 1189
\tex_textdir:D 921

\tex_textdirection:D 922
\tex_textfont:D 419
\tex_textstyle:D 420
\tex_TeXXeTstate:D 529
\tex_tfont:D 1190
\tex_the:D

. 370, 414, 1064, 1070, 1071, 121,
421, 1971, 2293, 2435, 2439, 3233,
3265, 3314, 3315, 3346, 3347, 3353,
3354, 3858, 3972, 4271, 4290, 4296,
4302, 4310, 6239, 6241, 6255, 6256,
6258, 6259, 6491, 6534, 6756, 6855,
9026, 17070, 17546, 17547, 17747,
17748, 19174, 19244, 19250, 19256,
19262, 21087, 21088, 21089, 21159,
21160, 24323, 24811, 34871, 39307

\tex_thickmuskip:D 422
\tex_thinmuskip:D 423
\tex_time:D 424, 1280, 1284
\tex_tojis:D 1191
\tex_toks:D

. . . . 425, 3206, 3233, 3265, 3303,
3314, 3315, 3346, 3347, 3353, 3354,
3358, 3368, 3378, 3677, 3695, 3858,
4271, 4273, 4274, 4276, 4281, 4290,
4296, 4302, 17070, 17082, 17083, 17084

\tex_toksapp:D 923, 4298, 4299
\tex_toksdef:D 426, 3485
\tex_tokspre:D 924
\tex_tolerance:D 427
\tex_topmark:D 428
\tex_topmarks:D 530
\tex_topskip:D 429
\tex_toucs:D 1192
\tex_tpack:D 925
\tex_tracingassigns:D 531
\tex_tracingcommands:D 430
\tex_tracingfonts:D

. 664, 960, 1262, 1264, 1268
\tex_tracinggroups:D 532
\tex_tracingifs:D 533
\tex_tracinglostchars:D 431
\tex_tracingmacros:D 432
\tex_tracingnesting:D

. 534, 8891, 11076, 12372
\tex_tracingonline:D

. 433, 2321, 2327, 2328, 34886
\tex_tracingoutput:D 434
\tex_tracingpages:D 435
\tex_tracingparagraphs:D 436
\tex_tracingrestores:D 437
\tex_tracingscantokens:D 535
\tex_tracingstacklevels:D 1216
\tex_tracingstats:D 438

Index 1658

\tex_uccode:D 439, 19254, 19256
\tex_Uchar:D 962
\tex_Ucharcat:D 963, 1351, 19327, 19332
\tex_uchyph:D 440
\tex_ucs:D 1193
\tex_Udelcode:D 964
\tex_Udelcodenum:D 965
\tex_Udelimiter:D 966
\tex_Udelimiterover:D 967
\tex_Udelimiterunder:D 968
\tex_Uhextensible:D 969
\tex_Uleft:D 970
\tex_Umathaccent:D 971
\tex_Umathaxis:D 972
\tex_Umathbinbinspacing:D 973
\tex_Umathbinclosespacing:D . . . 974
\tex_Umathbininnerspacing:D . . . 975
\tex_Umathbinopenspacing:D 976
\tex_Umathbinopspacing:D 977
\tex_Umathbinordspacing:D 978
\tex_Umathbinpunctspacing:D . . . 979
\tex_Umathbinrelspacing:D 980
\tex_Umathchar:D 981
\tex_Umathcharclass:D 982
\tex_Umathchardef:D 983
\tex_Umathcharfam:D 984
\tex_Umathcharnum:D 985
\tex_Umathcharnumdef:D 986
\tex_Umathcharslot:D 987
\tex_Umathclosebinspacing:D . . . 988
\tex_Umathcloseclosespacing:D . . 990
\tex_Umathcloseinnerspacing:D . . 992
\tex_Umathcloseopenspacing:D . . 993
\tex_Umathcloseopspacing:D 994
\tex_Umathcloseordspacing:D . . . 995
\tex_Umathclosepunctspacing:D . . 997
\tex_Umathcloserelspacing:D . . . 998
\tex_Umathcode:D 999, 8664
\tex_Umathcodenum:D 1000
\tex_Umathconnectoroverlapmin:D 1002
\tex_Umathfractiondelsize:D . . 1003
\tex_Umathfractiondenomdown:D . 1005
\tex_Umathfractiondenomvgap:D . 1007
\tex_Umathfractionnumup:D 1008
\tex_Umathfractionnumvgap:D . . 1009
\tex_Umathfractionrule:D 1010
\tex_Umathinnerbinspacing:D . . 1011
\tex_Umathinnerclosespacing:D . 1013
\tex_Umathinnerinnerspacing:D . 1015
\tex_Umathinneropenspacing:D . 1016
\tex_Umathinneropspacing:D . . . 1017
\tex_Umathinnerordspacing:D . . 1018
\tex_Umathinnerpunctspacing:D . 1020
\tex_Umathinnerrelspacing:D . . 1021

\tex_Umathlimitabovebgap:D . . . 1022
\tex_Umathlimitabovekern:D . . . 1023
\tex_Umathlimitabovevgap:D . . . 1024
\tex_Umathlimitbelowbgap:D . . . 1025
\tex_Umathlimitbelowkern:D . . . 1026
\tex_Umathlimitbelowvgap:D . . . 1027
\tex_Umathnolimitsubfactor:D . 1028
\tex_Umathnolimitsupfactor:D . 1029
\tex_Umathopbinspacing:D 1030
\tex_Umathopclosespacing:D . . . 1031
\tex_Umathopenbinspacing:D . . . 1032
\tex_Umathopenclosespacing:D . 1033
\tex_Umathopeninnerspacing:D . 1034
\tex_Umathopenopenspacing:D . . 1035
\tex_Umathopenopspacing:D 1036
\tex_Umathopenordspacing:D . . . 1037
\tex_Umathopenpunctspacing:D . 1038
\tex_Umathopenrelspacing:D . . . 1039
\tex_Umathoperatorsize:D 1040
\tex_Umathopinnerspacing:D . . . 1041
\tex_Umathopopenspacing:D 1042
\tex_Umathopopspacing:D 1043
\tex_Umathopordspacing:D 1044
\tex_Umathoppunctspacing:D . . . 1045
\tex_Umathoprelspacing:D 1046
\tex_Umathordbinspacing:D 1047
\tex_Umathordclosespacing:D . . 1048
\tex_Umathordinnerspacing:D . . 1049
\tex_Umathordopenspacing:D . . . 1050
\tex_Umathordopspacing:D 1051
\tex_Umathordordspacing:D 1052
\tex_Umathordpunctspacing:D . . 1053
\tex_Umathordrelspacing:D 1054
\tex_Umathoverbarkern:D 1055
\tex_Umathoverbarrule:D 1056
\tex_Umathoverbarvgap:D 1057
\tex_Umathoverdelimiterbgap:D . 1059
\tex_Umathoverdelimitervgap:D . 1061
\tex_Umathpunctbinspacing:D . . 1062
\tex_Umathpunctclosespacing:D . 1064
\tex_Umathpunctinnerspacing:D . 1066
\tex_Umathpunctopenspacing:D . 1067
\tex_Umathpunctopspacing:D . . . 1068
\tex_Umathpunctordspacing:D . . 1069
\tex_Umathpunctpunctspacing:D . 1071
\tex_Umathpunctrelspacing:D . . 1072
\tex_Umathquad:D 1073
\tex_Umathradicaldegreeafter:D 1075
\tex_Umathradicaldegreebefore:D 1077
\tex_Umathradicaldegreeraise:D 1079
\tex_Umathradicalkern:D 1080
\tex_Umathradicalrule:D 1081
\tex_Umathradicalvgap:D 1082
\tex_Umathrelbinspacing:D 1083

Index 1659

\tex_Umathrelclosespacing:D . . 1084
\tex_Umathrelinnerspacing:D . . 1085
\tex_Umathrelopenspacing:D . . . 1086
\tex_Umathrelopspacing:D 1087
\tex_Umathrelordspacing:D 1088
\tex_Umathrelpunctspacing:D . . 1089
\tex_Umathrelrelspacing:D 1090
\tex_Umathskewedfractionhgap:D 1092
\tex_Umathskewedfractionvgap:D 1094
\tex_Umathspaceafterscript:D . 1095
\tex_Umathstackdenomdown:D . . . 1096
\tex_Umathstacknumup:D 1097
\tex_Umathstackvgap:D 1098
\tex_Umathsubshiftdown:D 1099
\tex_Umathsubshiftdrop:D 1100
\tex_Umathsubsupshiftdown:D . . 1101
\tex_Umathsubsupvgap:D 1102
\tex_Umathsubtopmax:D 1103
\tex_Umathsupbottommin:D 1104
\tex_Umathsupshiftdrop:D 1105
\tex_Umathsupshiftup:D 1106
\tex_Umathsupsubbottommax:D . . 1107
\tex_Umathunderbarkern:D 1108
\tex_Umathunderbarrule:D 1109
\tex_Umathunderbarvgap:D 1110
\tex_Umathunderdelimiterbgap:D 1112
\tex_Umathunderdelimitervgap:D 1114
\tex_Umiddle:D 1115
\tex_undefine:D 30099
\tex_undefined:D

. 470, 911, 912, 982, 1262,
1276, 1277, 1284, 1290, 1296, 1302,
2062, 3156, 3592, 3602, 3612, 3613,
3624, 3625, 3704, 3805, 4106, 18408,
20134, 20434, 21723, 29872, 29889

\tex_underline:D 441, 1231
\tex_unescapehex:D 665
\tex_unexpanded:D

. 420, 536, 1321, 1410, 2667
\tex_unhbox:D 442, 34974
\tex_unhcopy:D 443, 34973
\tex_uniformdeviate:D

. 834, 1227, 1228, 666,
961, 17081, 29303, 29304, 29485, 29488

\tex_unkern:D 444
\tex_unless:D 537, 1394
\tex_Unosubscript:D 1116
\tex_Unosuperscript:D 1117
\tex_unpenalty:D 445
\tex_unskip:D 446
\tex_unvbox:D 447, 35063
\tex_unvcopy:D 448, 35062
\tex_Uoverdelimiter:D 1118
\tex_uppercase:D 449

\tex_uptexrevision:D 1204, 8762
\tex_uptexversion:D 1205, 8761
\tex_Uradical:D 1119
\tex_Uright:D 1120
\tex_Uroot:D 1121
\tex_Uskewed:D 1122
\tex_Uskewedwithdelims:D 1123
\tex_Ustack:D 1124
\tex_Ustartdisplaymath:D 1125
\tex_Ustartmath:D 1126
\tex_Ustopdisplaymath:D 1127
\tex_Ustopmath:D 1128
\tex_Usubscript:D 1129
\tex_Usuperscript:D 1130
\tex_Uunderdelimiter:D 1131
\tex_Uvextensible:D 1132
\tex_vadjust:D 450
\tex_valign:D 451
\tex_variablefam:D 926
\tex_vbadness:D 452
\tex_vbox:D 453, 34978,

34983, 34988, 34993, 34998, 35017,
35022, 35029, 35035, 35050, 35056

\tex_vcenter:D 454, 1320
\tex_vfi:D 1198
\tex_vfil:D 455
\tex_vfill:D 456
\tex_vfilneg:D 457
\tex_vfuzz:D 458
\tex_voffset:D 459, 1327
\tex_vpack:D 927
\tex_vrule:D 460, 36592
\tex_vsize:D 461
\tex_vskip:D 462, 21362
\tex_vsplit:D 463, 35067, 35072
\tex_vss:D 464
\tex_vtop:D . . 465, 34980, 35005, 35010
\tex_wd:D 466, 34789
\tex_widowpenalties:D 538
\tex_widowpenalty:D 467
\tex_wordboundary:D 928
\tex_write:D

. 468, 1973, 1975, 10567, 10570, 10589
\tex_xdef:D

. . . 469, 1452, 1453, 1457, 1462, 1467
\tex_XeTeXcharclass:D 705
\tex_XeTeXcharglyph:D 706
\tex_XeTeXcountfeatures:D 707
\tex_XeTeXcountglyphs:D 708
\tex_XeTeXcountselectors:D 709
\tex_XeTeXcountvariations:D . . . 710
\tex_XeTeXdashbreakstate:D 712
\tex_XeTeXdefaultencoding:D . . . 711
\tex_XeTeXfeaturecode:D 713

Index 1660

\tex_XeTeXfeaturename:D 714
\tex_XeTeXfindfeaturebyname:D . . 716
\tex_XeTeXfindselectorbyname:D . 718
\tex_XeTeXfindvariationbyname:D 720
\tex_XeTeXfirstfontchar:D 721
\tex_XeTeXfonttype:D 722
\tex_XeTeXgenerateactualtext:D . 724
\tex_XeTeXglyph:D 725
\tex_XeTeXglyphbounds:D 726
\tex_XeTeXglyphindex:D 727
\tex_XeTeXglyphname:D 728
\tex_XeTeXhyphenatablelength:D . 767
\tex_XeTeXinputencoding:D 729
\tex_XeTeXinputnormalization:D . 731
\tex_XeTeXinterchartokenstate:D 733
\tex_XeTeXinterchartoks:D 734
\tex_XeTeXinterwordspaceshaping:D

. 765
\tex_XeTeXisdefaultselector:D . . 736
\tex_XeTeXisexclusivefeature:D . 738
\tex_XeTeXlastfontchar:D 739
\tex_XeTeXlinebreaklocale:D . . . 741
\tex_XeTeXlinebreakpenalty:D . . 742
\tex_XeTeXlinebreakskip:D 740
\tex_XeTeXOTcountfeatures:D . . . 743
\tex_XeTeXOTcountlanguages:D . . 744
\tex_XeTeXOTcountscripts:D 745
\tex_XeTeXOTfeaturetag:D 746
\tex_XeTeXOTlanguagetag:D 747
\tex_XeTeXOTscripttag:D 748
\tex_XeTeXpdffile:D 749
\tex_XeTeXpdfpagecount:D 750
\tex_XeTeXpicfile:D 751
\tex_XeTeXrevision:D . 752, 8770, 8997
\tex_XeTeXselectorcode:D 763
\tex_XeTeXselectorname:D 753
\tex_XeTeXtracingfonts:D 754
\tex_XeTeXupwardsmode:D 755
\tex_XeTeXuseglyphmetrics:D . . . 756
\tex_XeTeXvariation:D 757
\tex_XeTeXvariationdefault:D . . 758
\tex_XeTeXvariationmax:D 759
\tex_XeTeXvariationmin:D 760
\tex_XeTeXvariationname:D 761
\tex_XeTeXversion:D

. 762, 8655, 8769, 14086, 17666, 18377
\tex_xkanjiskip:D 1194
\tex_xleaders:D 470
\tex_xspaceskip:D 471
\tex_xspcode:D 1195
\tex_xtoksapp:D 929
\tex_xtokspre:D 930
\tex_ybaselineshift:D 1196
\tex_year:D 472, 1298, 1302

\tex_yoko:D 1197
\text . 34388
text commands:

\l_text_accents_tl 31778, 32013
\l_text_case_exclude_arg_tl

. . 301, 302, 304, 31780, 31977, 32416
\text_case_switch:nnnn

. . . . 303, 31970, 32466, 32765, 32765
\text_declare_case_equivalent:Nn

. 303, 32727, 32727
\text_declare_expand_equivalent:Nn

301, 32171, 32171, 32176, 32179, 32194
\text_declare_lowercase_mapping:nn

. 303, 32732, 32732
\text_declare_lowercase_mapping:nnn

. 303, 32732, 32748
\text_declare_purify_equivalent:Nn

. 304, 34368, 34368,
34373, 34381, 34382, 34383, 34384,
34401, 34426, 34427, 34429, 34430,
34432, 34435, 34436, 34442, 34444,
34445, 34446, 34450, 34483, 34498

\text_declare_titlecase_mapping:nn
. 303, 32732, 32734

\text_declare_titlecase_mapping:nnn
. 303, 32732, 32750

\text_declare_uppercase_mapping:nn
. 303, 32732, 32736, 33818

\text_declare_uppercase_mapping:nnn
. 303, 32732, 32752

\text_expand:n 301, 302, 304,
305, 31834, 31834, 32224, 33824, 34181

\l_text_expand_exclude_tl
. 301, 304, 31791, 31976

\l_text_letterlike_tl . 31778, 32033
\text_lowercase:n

. . . . 144, 203, 302, 32200, 32200,
39021, 39024, 39026, 39028, 39040,
39043, 39068, 39069, 39084, 39085

\text_lowercase:nn
. . . . 302, 32200, 32208, 39029, 39031

\text_map_break: 305,
33823, 33829, 33848, 33864, 33905,
34055, 34157, 34158, 34160, 34168

\text_map_break:n . . 305, 33823, 34159
\text_map_function:nN

. 305, 33823, 33823, 34166
\text_map_inline:nn 305, 34161, 34161
\l_text_math_arg_tl

301, 304, 31787, 31975, 32415, 34297
\l_text_math_delims_tl

301, 304, 31789, 31893, 32345, 34226
\text_purify:n 304, 34175, 34175
\text_titlecase:n 39019, 39020

Index 1661

\text_titlecase:nn 39019, 39023
\text_titlecase_all:n

. 144, 302, 32200, 32204
\text_titlecase_all:nn

. 302, 32200, 32212
\l_text_titlecase_check_letter_-

bool 303, 304, 32198, 32616
\text_titlecase_first:n

. 302, 32200, 32206,
39019, 39021, 39038, 39040, 39072,
39073, 39088, 39089, 39095, 39097

\text_titlecase_first:nn
. 302, 32200,
32214, 39022, 39024, 39041, 39043

\text_uppercase:n
144, 204, 302, 32200, 32202, 39032,
39034, 39070, 39071, 39086, 39087

\text_uppercase:nn
. . . . 302, 32200, 32210, 39035, 39037

text internal commands:
__text_case_switch_marker:

. 32765, 32767, 32770
__text_change_case:nnn

. 32200, 32201, 32203,
32205, 32209, 32211, 32213, 32216

__text_change_case:nnnn
. . 32207, 32215, 32217, 32218, 32218

__text_change_case_auxi:nnnn . . .
. 32218, 32223, 32228

__text_change_case_auxii:nnnn . .
. 32218, 32250, 32253,
32254, 32257, 32302, 32316, 32446

__text_change_case_BCP:nnnn . . .
. 32218, 32230, 32233

__text_change_case_BCP:nnnnnw . .
. 32218, 32244, 32245

__text_change_case_BCP:nnnw . . .
. 32218, 32235, 32240

__text_change_case_boundary_-
upper_el-x-iota:Nnnnw 33310

__text_change_case_boundary_-
upper_el:nnnN . 33310, 33314, 33320

__text_change_case_boundary_-
upper_el:nnnn . 33310, 33326, 33330

__text_change_case_boundary_-
upper_el:Nnnnw 33310, 33310, 33319

__text_change_case_boundary_-
upper_el:nnnnw 33310, 33339, 33342

__text_change_case_break:w
. 32218, 32287, 32335

__text_change_case_break_aux:w .
. 32218, 32288, 32289

__text_change_case_breathing:nnnn
. 33340, 33357, 33357

__text_change_case_breathing:nnnnn
. 33357, 33361, 33370

__text_change_case_breathing:nnnnnnw
. 33357, 33382, 33386, 33395

__text_change_case_breathing:nnnnnw
. 33357, 33373, 33376

__text_change_case_breathing_-
aux:nnnN 33357, 33413, 33417

__text_change_case_breathing_-
aux:nnnnnn . . . 33357, 33390, 33399

__text_change_case_breathing_-
aux:nnnnw 33357, 33404, 33407

__text_change_case_breathing_-
dialytika:nnnn 33357, 33420, 33422

__text_change_case_catcode:nn . .
. 32218, 32689, 32704,
32708, 32780, 32962, 32966, 33351,
33440, 33442, 33456, 33458, 33523,
33525, 33527, 33540, 33577, 33603,
33684, 33699, 33723, 33731, 33743

__text_change_case_codepoint:nn
. 32218, 32653,
32657, 32839, 32849, 32935, 32949,
32977, 32987, 33000, 33024, 33411

__text_change_case_codepoint:nnn
. 32218,
32659, 32662, 32667, 32671, 32672

__text_change_case_codepoint:nnnnn
. . . . 32218, 32577, 32584, 32641,
32645, 32785, 32823, 33432, 33447,
33463, 33466, 33478, 33489, 33535,
33598, 33636, 33649, 33688, 33747

__text_change_case_codepoint_-
aux:nn 32218, 32664, 32679

__text_change_case_codepoint_-
aux:nnn 32218, 32670, 32676

__text_change_case_codepoint_-
aux:nnnn 32681, 32683

__text_change_case_codepoint_-
lower:nnnn 32218, 32568

__text_change_case_codepoint_-
title:nnn 32218, 32624, 32630, 32634

__text_change_case_codepoint_-
title:nnnn 32218, 32614

__text_change_case_codepoint_-
title_auxi:nnnn 32218, 32618, 32627

__text_change_case_codepoint_-
title_auxii:nnnn
. 32218, 32631, 32635, 32636

__text_change_case_codepoint_-
upper:nnnn 32218, 32574

__text_change_case_cs_check:nnnN
. 32218, 32356, 32401

Index 1662

__text_change_case_custom:nnnnn
. 32218

__text_change_case_custom:nnnnnn
. 32539, 32546, 32548, 32552

__text_change_case_custom_-
lower:nnnn . . . 32218, 32537, 32543

__text_change_case_custom_-
title:nnnn 32218, 32544

__text_change_case_custom_-
upper:nnnn 32218, 32542

__text_change_case_end:w 32218,
32270, 32293, 32339, 32381, 32500

__text_change_case_exclude:nnnN
. 32218, 32404, 32411

__text_change_case_exclude:nnnNN
. 32218, 32422, 32425, 32434

__text_change_case_exclude:nnnnN
. 32218, 32413, 32420

__text_change_case_exclude:nnnNnn
. 32218, 32437, 32438

__text_change_case_exclude:nnnNw
. 32218, 32432, 32436

__text_change_case_generate:n . .
. 32771, 32771, 33008, 33030

__text_change_case_group_-
lower:nnnn . . . 32218, 32295, 32308

__text_change_case_group_-
title:nnnn 32218, 32309

__text_change_case_group_-
upper:nnnn 32218, 32307

__text_change_case_if_greek:n . .
. 32789, 33088, 33090, 33093

__text_change_case_if_greek:nTF
. 32789, 33359

__text_change_case_if_greek_-
accent:n 32789, 33117, 33119, 33122

__text_change_case_if_greek_-
accent:nTF 32789, 32913

__text_change_case_if_greek_-
accent_p:n 32894, 33083

__text_change_case_if_greek_-
breathing:n
. 32789, 33228, 33231, 33234

__text_change_case_if_greek_-
breathing:nTF 32789, 32916

__text_change_case_if_greek_-
breathing_p:n 32895, 33084

__text_change_case_if_greek_p:n
. 32792

__text_change_case_if_greek_-
spacing_diacritic:n
. 32789, 33150, 33153, 33156

__text_change_case_if_greek_-
spacing_diacritic:nTF 32789, 32799

__text_change_case_if_greek_-
stress:n 32789, 33246, 33249, 33252

__text_change_case_if_greek_-
stress:nTF 32789, 32926

__text_change_case_if_takes_-
dialytika:n
. 32789, 33264, 33266, 33269

__text_change_case_if_takes_-
dialytika:nTF
. 32789, 32945, 32997, 33424

__text_change_case_if_takes_-
ypogegrammeni:n
. 32789, 33289, 33291, 33294

__text_change_case_if_takes_-
ypogegrammeni:nTF . . 32789, 32853

__text_change_case_letterlike:nnnnnN
. 32218, 32512, 32516, 32517

__text_change_case_letterlike_-
lower:nnnN . . . 32218, 32511, 32514

__text_change_case_letterlike_-
title:nnnN 32218, 32515

__text_change_case_letterlike_-
upper:nnnN 32218, 32513

__text_change_case_loop:nnnw . . .
. 32218, 32261, 32276,
32305, 32330, 32384, 32450, 32462,
32474, 32479, 32534, 32594, 32612,
32720, 32802, 32821, 32840, 32850,
32923, 32930, 32936, 32978, 32988,
33067, 33073, 33086, 33315, 33323,
33346, 33353, 33368, 33379, 33405,
33414, 33427, 33429, 33529, 33549,
33580, 33686, 33701, 33725, 33733

__text_change_case_lower_-
az:nnnnn 33749, 33749

__text_change_case_lower_-
la-x-medieval:nnnnn 33469

__text_change_case_lower_-
lt:nnnN 33491, 33548, 33552

__text_change_case_lower_-
lt:nnnn 33491, 33555, 33557

__text_change_case_lower_-
lt:nnnnn 33491

__text_change_case_lower_-
lt:nnnw 33491, 33542, 33545

__text_change_case_lower_lt_-
auxi:nnnnn 33493, 33504

__text_change_case_lower_lt_-
auxii:nnnnn 33508, 33532

__text_change_case_lower_-
sigma:nnnnN . . . 32218, 32590, 32598

__text_change_case_lower_-
sigma:nnnnn . . . 32218, 32571, 32580

Index 1663

__text_change_case_lower_-
sigma:nnnnw . . . 32218, 32583, 32587

__text_change_case_lower_-
tr:NnnnN 33674, 33694, 33705

__text_change_case_lower_-
tr:Nnnnn 33674, 33708, 33710

__text_change_case_lower_-
tr:nnnnn 33674, 33674, 33750

__text_change_case_lower_-
tr:nnnNw 33674, 33677, 33691

__text_change_case_math_-
group:nnnNn . . . 32218, 32373, 32387

__text_change_case_math_-
loop:nnnNw 32218,
32362, 32367, 32385, 32390, 32399

__text_change_case_math_N_-
type:nnnNN . . . 32218, 32370, 32378

__text_change_case_math_-
search:nnnNNN
. 32218, 32349, 32353, 32365

__text_change_case_math_-
space:nnnNw . . . 32218, 32374, 32394

__text_change_case_N_type:nnnN .
. 32218, 32279, 32336

__text_change_case_N_type:nnnnN
. 32218, 32344, 32347

__text_change_case_N_type_-
aux:nnnN 32218, 32340, 32342

__text_change_case_next_end:nnn
. 32218, 32725

__text_change_case_next_-
lower:nnn 32218, 32719, 32722, 32724

__text_change_case_next_-
title:nnn 32218, 32723

__text_change_case_next_-
upper:nnn 32218, 32721

__text_change_case_replace:nnnN
. 32218, 32428, 32452

__text_change_case_replace:nnnn
. 32218,
32456, 32461, 32463, 32556, 32562

__text_change_case_result:n . . .
. . 32218, 32263, 32268, 32269, 32270

__text_change_case_setup:NN . . .
. 33754, 33761, 33763

__text_change_case_setup:Nn . . .
. 33787, 33807, 33809

__text_change_case_skip:nnw . . .
. 32218, 32319,
32484, 32486, 32502, 32507, 32726

__text_change_case_skip_-
group:nnn 32218, 32492, 32504

__text_change_case_skip_N_-
type:nnN 32218, 32489, 32497

__text_change_case_skip_-
space:nnw 32218, 32493, 32509

__text_change_case_space:nnnw . .
. 32218, 32283, 32323, 32510

__text_change_case_space_-
break:nnn 32334

__text_change_case_space_-
break:nnnw 32218

__text_change_case_store:n
. . . . 32218, 32265, 32267, 32292,
32297, 32311, 32326, 32361, 32382,
32389, 32398, 32441, 32443, 32473,
32478, 32483, 32501, 32506, 32521,
32526, 32592, 32600, 32650, 32652,
32777, 32801, 32816, 32838, 32848,
32921, 32928, 32934, 32948, 32955,
32976, 32986, 32999, 33348, 33410,
33437, 33453, 33473, 33484, 33520,
33537, 33574, 33600, 33645, 33668,
33681, 33696, 33720, 33728, 33740

__text_change_case_store:nw . . .
. 32218, 32266, 32268

__text_change_case_switch:nnnN .
. 32218, 32459, 32464

__text_change_case_switch_-
lower:nnnNnnnn 32218, 32471

__text_change_case_switch_-
title:nnnNnnnn 32218, 32481

__text_change_case_switch_-
upper:nnnNnnnn 32218, 32476

__text_change_case_title_-
el:nnnnn 33431, 33431

__text_change_case_title_-
hy-x-yiwn:nnnnn 33433

__text_change_case_title_-
hy:nnnnn 33433, 33449

__text_change_case_title_-
nl:nnnN 33632, 33654, 33658

__text_change_case_title_-
nl:nnnnn 33632, 33632

__text_change_case_title_-
nl:nnnw 33632, 33647, 33651

__text_change_case_title_nl_-
aux:nnnnn 33632, 33635, 33639

__text_change_case_upper_-
az:nnnnn 33749, 33751

__text_change_case_upper_-
de-alt:nnnnn 32773

__text_change_case_upper_-
de-x-eszett:nnnnn 32773

__text_change_case_upper_-
el-x-iota:nnnnn 32789

__text_change_case_upper_-
el-x-iota_ypogegrammeni:n . 32789

Index 1664

__text_change_case_upper_-
el:nnnn
. . 32789, 32805, 32828, 32917, 33004

__text_change_case_upper_-
el:nnnnN 32789, 32836, 32844

__text_change_case_upper_-
el:nnnnn 32789, 32789, 32827

__text_change_case_upper_-
el:nnnnw 32789, 32831, 32833

__text_change_case_upper_el_-
aux:nnnnN 32789,
32858, 32869, 32875, 32900, 32903

__text_change_case_upper_el_-
aux:nnnnn 32789, 32906, 32908

__text_change_case_upper_el_-
dialytika:n
. . 32789, 32946, 32953, 33001, 33426

__text_change_case_upper_el_-
dialytika:nnnn 32789, 32911, 32943

__text_change_case_upper_el_-
gobble:nnnN . . . 32789, 33066, 33070

__text_change_case_upper_el_-
gobble:nnnn . . . 32789, 33076, 33080

__text_change_case_upper_el_-
gobble:nnnw
. . 32789, 32951, 33002, 33062, 33085

__text_change_case_upper_el_-
hiatus:nnnnN . . 32789, 32974, 32982

__text_change_case_upper_el_-
hiatus:nnnnn . . 32789, 32992, 32995

__text_change_case_upper_el_-
hiatus:nnnnw . . 32789, 32914, 32970

__text_change_case_upper_el_-
stress:nn 32789, 32929, 33028

__text_change_case_upper_el_-
ypogegrammeni:n 32789, 33006

__text_change_case_upper_el_-
ypogegrammeni:nnnnnnN
. 32789, 32866, 32872

__text_change_case_upper_el_-
ypogegrammeni:nnnnnnn
. 32789, 32879, 32885

__text_change_case_upper_el_-
ypogegrammeni:nnnnnnw
. . 32789, 32855, 32861, 32889, 32897

__text_change_case_upper_-
hy-x-yiwn:nnnnn 33433

__text_change_case_upper_-
hy:nnnnn 33433, 33433

__text_change_case_upper_-
la-x-medieval:nnnnn 33469

__text_change_case_upper_-
lt:nnnN 33582, 33611, 33615

__text_change_case_upper_-
lt:nnnn 33582, 33618, 33620

__text_change_case_upper_-
lt:nnnnn 33582

__text_change_case_upper_-
lt:nnnw 33582, 33605, 33608

__text_change_case_upper_lt_-
aux:nnnnn 33584, 33595

__text_change_case_upper_-
tr:nnnnn 33736, 33736, 33752

__text_change_cases_lower_-
lt:nnnnn 33491

__text_change_cases_lower_lt_-
auxi:nnnnn 33491

__text_change_cases_lower_lt_-
auxii:nnnnn 33491

__text_change_cases_upper_-
lt:nnnnn 33582

__text_change_cases_upper_lt_-
aux:nnnnn 33582

__text_char_catcode:N . . . 31623,
31623, 32593, 32609, 32610, 32705,
32711, 33474, 33485, 33646, 33669

\c__text_chardef_group_begin_-
token 31828

\c__text_chardef_group_end_token
. 31828

\c__text_chardef_space_token . 31828
__text_codepoint_compare:nNn . . .

. 31711, 31720
__text_codepoint_compare:nNnTF .

. . . . 31708, 32582, 32685, 32710,
32775, 32814, 32887, 32910, 32919,
33435, 33451, 33471, 33482, 33676,
33679, 33738, 33879, 33885, 33930,
33936, 33983, 33989, 34088, 34094

__text_codepoint_compare_p:nNn .
31708, 32795, 32796, 32958, 32959,

33334, 33335, 33336, 33337, 33402,
33403, 33568, 33569, 33570, 33628,
33718, 33962, 33963, 34130, 34131

__text_codepoint_from_chars:N . .
. 31708, 31738, 31746, 31765

__text_codepoint_from_chars:NN .
. 31708, 31753, 31766

__text_codepoint_from_chars:NNN
. 31708, 31757, 31768

__text_codepoint_from_chars:NNNN
. 31708, 31760, 31770

__text_codepoint_from_chars:Nw .
. 31708, 31716,
31722, 31726, 32621, 32660, 32808,
33011, 33033, 33037, 33049, 33091,

Index 1665

33120, 33154, 33232, 33250, 33267,
33292, 33364, 33495, 33510, 33586

__text_codepoint_from_chars_-
aux:Nw . . 31708, 31732, 31742, 31750

__text_codepoint_process:nN . . .
31670, 31672, 31675, 32406, 32830,

32877, 32905, 32991, 33075, 33325,
33372, 33381, 33394, 33419, 33554,
33617, 33707, 33873, 34063, 34152

__text_codepoint_process:nNN . . .
. 31670, 31693, 31701

__text_codepoint_process:nNNN . .
. 31670, 31696, 31703

__text_codepoint_process:nNNNN .
. 31670, 31697, 31705

__text_codepoint_process_aux:nN
. 31670, 31680, 31684, 31690

__text_data_auxi:w . . . 31475, 31502
__text_data_auxii:w . . 31487, 31489
\g__text_data_ior

. 31470, 31472, 31497, 31505
__text_declare_case_mapping:nnn

. . 32732, 32733, 32735, 32737, 32738
__text_declare_case_mapping:nnnn

. . 32732, 32749, 32751, 32753, 32754
__text_declare_case_mapping_-

aux:nnn 32732, 32740, 32743
__text_declare_case_mapping_-

aux:nnnn 32732, 32756, 32759
__text_end_env:n 34429, 34430, 34431
__text_expand:n

. 31834, 31839, 31842, 31878
__text_expand_accent:N

. 31834, 31995, 32010
__text_expand_accent:NN

. 31834, 32012, 32016, 32028
__text_expand_cs:N

. 31834, 32039, 32050
__text_expand_cs_expand:N

. 31834, 32128, 32131
__text_expand_encoding:N

. 31834, 32099, 32106
__text_expand_encoding_escape:N

. 31834
__text_expand_encoding_escape:NN

. 32111, 32114
__text_expand_end:w

. . 31834, 31854, 31891, 31925, 32077
__text_expand_exclude:N

. 31834, 31946, 31968
__text_expand_exclude:NN

. 31834, 31989, 31992, 32001
__text_expand_exclude:nN

. 31834, 31973, 31987

__text_expand_exclude:Nnn
. 31834, 32004, 32005

__text_expand_exclude:Nw
. 31834, 31999, 32003

__text_expand_exclude_switch:Nnnnn
. 31834, 31971, 31982

__text_expand_explicit:N
. 31834, 31900, 31943

__text_expand_group:n
. 31834, 31866, 31871

__text_expand_letterlike:N
. 31834, 32019, 32030

__text_expand_letterlike:NN . . .
. 31834, 32032, 32036, 32048

__text_expand_loop:w
31834, 31845, 31860, 31881, 31886,

31929, 31961, 31964, 31985, 32008,
32025, 32045, 32068, 32093, 32104,
32111, 32130, 32137, 32141, 32169

__text_expand_math_group:Nn . . .
. 31834, 31917, 31932

__text_expand_math_loop:Nw 31834,
31906, 31911, 31930, 31935, 31941

__text_expand_math_N_type:NN . . .
. 31834, 31914, 31922

__text_expand_math_search:NNN . .
. 31834, 31892, 31897, 31909

__text_expand_math_space:Nw . . .
. 31834, 31918, 31937

__text_expand_N_type:N
. 31834, 31863, 31888

__text_expand_protect:N
. 31834, 32065, 32072

__text_expand_protect:nN
. 31834, 32079, 32082

__text_expand_protect:Nw
. 31834, 32083, 32084

__text_expand_protect:w
. 31834, 32053, 32062

__text_expand_replace:N
. 31834, 32059, 32112, 32115

__text_expand_replace:n
. 31834, 32125, 32130

__text_expand_result:n
. . 31834, 31847, 31852, 31853, 31854

__text_expand_space:w
. 31834, 31867, 31883

__text_expand_store:n
. 31834, 31849,
31851, 31873, 31885, 31905, 31927,
31934, 31940, 31963, 31984, 32007,
32024, 32044, 32067, 32076, 32089,
32090, 32092, 32103, 32140, 32168

Index 1666

__text_expand_store:nw
. 31834, 31850, 31852

__text_expand_testopt:N
. 31834, 32058, 32095

__text_expand_testopt:NNn
. 31834, 32098, 32101

__text_expand_unexpanded:N
. 1307, 31834, 32155, 32159

__text_expand_unexpanded:n
. 31834, 32152, 32166

__text_expand_unexpanded:w
. 31834, 32136, 32144, 32154

__text_expand_unexpanded_test:w
. 31834, 32146, 32149

\c__text_grapheme_Control_clist .
. 33970

__text_if_expandable:N 31655
__text_if_expandable:NTF

. 31655, 32133, 34358
__text_if_q_recursion_tail_-

stop_do:Nn
31518, 31518, 31899, 31994, 32018,

32038, 32338, 32355, 32380, 32427,
32499, 33861, 33902, 34052, 34146,
34220, 34232, 34273, 34301, 34348

__text_if_q_recursion_tail_-
stop_do:nn
. . 31518, 31519, 33928, 33981, 34086

__text_if_recursion_tail_stop:N
. 34174, 34174

__text_if_s_recursion_tail_-
stop_do:Nn
. . 31524, 31524, 31890, 31924, 32074

__text_loop:Nn 34447,
34455, 34457, 34500, 34505, 34507

__text_loop:NNn . 34526, 34532, 34534
__text_map_class:Nnnn

. 33823, 33887,
33916, 33998, 34000, 34002, 34004,
34006, 34008, 34010, 34012, 34014

__text_map_class:nNnnn
. 33823, 33918, 33921

__text_map_class_end:nw . 33823,
33932, 33939, 33944, 33985, 33992

__text_map_class_loop:Nnnnw . . .
. 33823, 33923, 33926, 33937

__text_map_codepoint:Nnn
. 33823, 33874, 33877

__text_map_Control:Nnn 33823, 33945
__text_map_CR:NnN 33823, 33893, 33900
__text_map_CR:Nnw 33823, 33882, 33890
__text_map_Extend:Nnn

. 33823, 33951, 33953

__text_map_function:nN
. 33823, 33824, 33825

__text_map_group:Nnn
. 33823, 33837, 33842

__text_map_hangul:NnnN
. 33823, 34043, 34050

__text_map_hangul:Nnnn
. 33823, 34064, 34067

__text_map_hangul:nNnnnw
. 33823, 34076, 34079

__text_map_hangul:Nnnw
. 33823, 34023, 34029,
34036, 34040, 34107, 34112, 34118

__text_map_hangul_aux:Nnnnw . 33823
__text_map_hangul_aux:Nnnw

. 34069, 34072, 34103
__text_map_hangul_end:nw

. 33823, 34090, 34097, 34104
__text_map_hangul_L:Nnn 33823, 34105
__text_map_hangul_loop:Nnnnnw . .

. 33823, 34081, 34084, 34095
__text_map_hangul_LV:Nnn

. 33823, 34110, 34115
__text_map_hangul_LVT:Nnn

. 33823, 34116, 34121
__text_map_hangul_next:Nnnn . . .

. 33823, 34087, 34091, 34102
__text_map_hangul_T:Nnn 33823, 34121
__text_map_hangul_V:Nnn 33823, 34115
__text_map_L:Nnn 33823, 34020
__text_map_lookahead:NnNN

. 33823, 34140, 34144
__text_map_lookahead:NnNw

. 33823, 33957, 34125, 34137
__text_map_loop:Nnw

33823, 33827, 33831, 33846, 33850,
33857, 33870, 33886, 33896, 33912,
33914, 33949, 33952, 33966, 33982,
33986, 33993, 34018, 34046, 34060,
34075, 34133, 34135, 34141, 34150

__text_map_LV:Nnn 33823, 34026, 34032
__text_map_LVT:Nnn

. 33823, 34033, 34039
__text_map_N_type:NnN

. 33823, 33834, 33859
__text_map_not_Control:Nnn

. 33823, 33997
__text_map_not_Extend:Nnn

. 33823, 33999
__text_map_not_L:Nnn . 33823, 34005
__text_map_not_LV:Nnn . 33823, 34007
__text_map_not_LVT:Nnn 33823, 34011
__text_map_not_Prepend:Nnn

. 33823, 34003

Index 1667

__text_map_not_Regional_-
Indicator:Nnn 34015

__text_map_not_SpacingMark:Nnn .
. 33823, 34001

__text_map_not_T:Nnn . 33823, 34013
__text_map_not_V:Nnn . 33823, 34009
__text_map_output:Nn . . . 33823,

33844, 33855, 33863, 33868, 33881,
33911, 33947, 33948, 33956, 34017,
34022, 34028, 34035, 34124, 34155

__text_map_Prepend:Nnn 33823, 33954
__text_map_Prepend:nNnn

. 33823, 33969, 33974
__text_map_Prepend_aux:Nnn

. 33823, 33957, 33959
__text_map_Prepend_loop:Nnnw . . .

. 33823, 33976, 33979, 33990
__text_map_Regional_Indicator:Nnn

. 33823, 34122
__text_map_Regional_Indicator_-

aux:Nnn 33823, 34125, 34127
__text_map_space:Nnw

. 33823, 33838, 33853
__text_map_SpacingMark:Nnn

. 33823, 33953
__text_map_T:Nnn 33823, 34039
__text_map_V:Nnn 33823, 34032
\l__text_math_mode_tl 31827
\c__text_mathchardef_group_-

begin_token 31828
\c__text_mathchardef_group_end_-

token 31828
\c__text_mathchardef_space_token

. 31828
__text_purify:n . 34175, 34180, 34184
__text_purify_accent:NN

. 34484, 34484, 34498
__text_purify_encoding:N

. 34175, 34344, 34351
__text_purify_encoding_escape:NN

. 34175, 34356, 34363
__text_purify_end:w

. . 34175, 34195, 34220, 34258, 34348
__text_purify_expand:N

. 34175, 34334, 34340
__text_purify_group:n

. 34175, 34207, 34212
__text_purify_loop:w 34175, 34187,

34201, 34212, 34216, 34253, 34330,
34337, 34349, 34359, 34360, 34366

__text_purify_math_cmd:N
. 34175, 34233, 34294

__text_purify_math_cmd:n
. 34306, 34310

__text_purify_math_cmd:NN
. 34175, 34296, 34299, 34308

__text_purify_math_cmd:Nn . . . 34175
__text_purify_math_end:w

. 34175, 34250, 34276, 34311
__text_purify_math_group:NNn . . .

. 34175, 34266, 34282
__text_purify_math_loop:NNw . . .

. 34175,
34243, 34260, 34279, 34285, 34292

__text_purify_math_N_type:NNN . .
. 34175, 34263, 34271

__text_purify_math_result:n . . .
. 34244,
34248, 34249, 34250, 34255, 34311

__text_purify_math_search:NNN . .
. 34175, 34225, 34230, 34239

__text_purify_math_space:NNw . . .
. 34175, 34267, 34287

__text_purify_math_start:NNw . . .
. 34175, 34237, 34241

__text_purify_math_stop:Nw
. 34255, 34274

__text_purify_math_store:n
. . 34175, 34246, 34278, 34284, 34291

__text_purify_math_store:nw . . .
. 34175, 34247, 34248

__text_purify_N_type:N
. 34175, 34204, 34218

__text_purify_N_type_aux:N
. 34175, 34221, 34223

__text_purify_protect:N
. 34175, 34343, 34346

__text_purify_replace:N
. 34175, 34302, 34312

__text_purify_replace_auxi:n . . .
. 34175, 34322, 34330

__text_purify_replace_auxii:n . .
. 34175, 34326, 34331

__text_purify_result:n
. 34189, 34193, 34194, 34195

__text_purify_space:w
. 34175, 34208, 34213

__text_purify_store:n
. 34175, 34191,
34215, 34252, 34257, 34336, 34365

__text_purify_store:nw
. 34175, 34192, 34193

__text_quark_if_nil:n 31513
__text_quark_if_nil:nTF 31513, 32086
__text_quark_if_nil_p:n 31513
__text_tmp:w 31803, 31821
\l__text_tmpa_str

. . 31473, 31482, 31483, 31491, 31493

Index 1668

\l__text_tmpb_str
. . 31474, 31477, 31479, 31481, 31485

__text_token_to_explicit:N
. 31532, 31534, 34327

__text_token_to_explicit:n
. 31532, 31586, 31590

__text_token_to_explicit_auxi:w
. 31532, 31592, 31607

__text_token_to_explicit_-
auxii:w 31532, 31612, 31620

__text_token_to_explicit_-
auxiii:w 31532, 31614, 31622

__text_token_to_explicit_char:N
. 31532, 31544, 31576

__text_token_to_explicit_cs:N . .
. 31532, 31542, 31549

__text_token_to_explicit_cs_-
aux:N 31532, 31553, 31559

__text_use_i_delimit_by_q_-
recursion_stop:nw
31516, 31516, 31903, 31998, 32022,

32042, 32359, 32431, 34236, 34305
__text_use_i_delimit_by_s_-

recursion_stop:nw
. 31522, 31522, 31529

\textbaselineshiftfactor 1188
\textbf . 34393
\textdir . 921
\textdirection 922
\textfont . 419
\textit . 34395
\textmd . 34394
\textnormal 34389
\textrm . 34390
\textsc . 34398
\textsf . 34391
\textsl . 34396
\textstyle . 420
\texttt . 34392
\textulc . 34399
\textup . 34397
\TeXXeTstate 529
\tfont . 1190
\TH 32192, 33774, 34467
\th 32192, 33774, 34480
\the 29, 85, 86, 87, 88, 89, 90, 91, 92, 93, 421
\thickmuskip 422
\thinmuskip . 423
\time 424, 1281, 9007, 9009
\tiny 34424, 36587
tl commands:

\c_catcode_active_space_tl 201, 19386

\c_catcode_other_space_tl
. 202, 660, 10636,
10680, 10760, 10849, 10925, 19391

\c_empty_tl 130, 864,
877, 9514, 12135, 12146, 12148,
12183, 12581, 13385, 13427, 13440,
14193, 18100, 18106, 18482, 18498

\c_novalue_tl . 116, 130, 12184, 12686
\c_space_tl

130, 3545, 9104, 9314, 9602, 9604,
11649, 12188, 13109, 14074, 18988,
22907, 31335, 31430, 31815, 31883,
31938, 32323, 32395, 33853, 34213,
34289, 34442, 36372, 36416, 36483,
36907, 36908, 36909, 36916, 36917,
37092, 37093, 37099, 37100, 37101,
37895, 38008, 38051, 38052, 38074

\tl_analysis_log:N . . . 47, 3908, 3910
\tl_analysis_log:n . . . 47, 3922, 3924
\tl_analysis_map_inline:Nn

. 47, 3884, 3884, 5796
\tl_analysis_map_inline:nn

. 47, 213, 541,
575, 576, 3884, 3885, 3886, 6572, 7395

\tl_analysis_show:N . . 47, 3908, 3908
\tl_analysis_show:n . . 47, 3922, 3922
\tl_build_begin:N 132,

133, 522, 736, 4889, 5398, 5973,
6074, 6604, 6638, 6810, 6876, 7813,
13351, 13351, 39055, 39056, 39621

\tl_build_clear:N 39055, 39056
\tl_build_end:N 132, 133,

522, 736, 4919, 4927, 5408, 6030,
6093, 6910, 7839, 7902, 13415, 13415

\tl_build_gbegin:N 132,
133, 13351, 13353, 39057, 39058, 39702

\tl_build_gclear:N 39055, 39058
\tl_build_gend:N 132, 133, 13415, 13420
\tl_build_get:NN 39059, 39060
\tl_build_get_intermediate:NN . . .

133, 6629, 13433, 13433, 39059, 39060
\tl_build_gput_left:Nn

. . . . 132, 13398, 13401, 13403, 39704
\tl_build_gput_right:Nn

. . . . 132, 13366, 13372, 13377, 39703
\tl_build_put_left:Nn

. . . . 132, 13398, 13398, 13400, 39623
\tl_build_put_right:Nn

. 132, 553, 737, 4896,
4914, 4922, 4926, 4990, 4993, 5033,
5047, 5051, 5174, 5188, 5229, 5251,
5264, 5296, 5309, 5313, 5395, 5401,
5407, 5411, 5454, 5744, 5748, 5755,
5761, 5782, 5798, 5816, 6044, 6089,

Index 1669

6102, 6672, 6899, 6964, 7033, 7090,
7093, 7107, 7175, 7817, 7918, 7921,
7929, 7932, 13366, 13366, 13371, 39622

\tl_case:Nn 39044, 39045, 39052, 39053
\tl_case:NnTF

. 39044, 39047, 39049, 39051
\tl_clear:N . 114, 4218, 4562, 6605,

6639, 9094, 10729, 10730, 10733,
10742, 10852, 10855, 10915, 12145,
12145, 12149, 12152, 12363, 13418,
14474, 18541, 18542, 22115, 22445,
22554, 31805, 37512, 37941, 39609

\tl_clear_new:N
. 114, 11589, 11590, 11591, 11592,
11593, 12151, 12151, 12155, 18545,
18546, 32173, 32729, 32745, 32761,
32763, 34370, 37521, 37555, 37596

\tl_concat:NNN
114, 12163, 12163, 12179, 13481, 39546

\tl_const:Nn 114, 589, 3539,
4256, 4342, 7244, 8868, 9242, 9243,
9278, 9283, 9285, 9287, 9289, 9291,
9296, 9297, 9304, 10626, 10632,
11053, 12138, 12138, 12143, 12144,
12183, 12186, 12188, 12354, 14309,
14314, 16717, 16772, 18538, 19364,
19389, 19391, 19463, 20078, 23358,
23359, 23360, 23361, 23362, 23370,
23459, 25552, 26923, 27370, 27371,
27372, 27373, 27374, 27375, 27376,
27377, 27378, 31147, 31187, 31376,
31388, 31416, 33757, 33759, 33777,
33778, 33795, 33802, 34503, 34529,
37664, 37665, 37666, 37667, 37668,
37714, 37715, 37716, 37726, 37727,
37728, 37729, 37730, 37731, 37732,
37733, 37852, 37867, 37881, 37915,
38171, 38176, 38181, 38342, 39726

\tl_count:N
. . . 34, 116, 119, 12818, 12823, 12830

\tl_count:n
34, 116, 119, 402, 754, 850, 1032,

1640, 1644, 2110, 2161, 5660, 7325,
7329, 7348, 7352, 7422, 7426, 12818,
12818, 12829, 13162, 13177, 13189

\tl_count_tokens:n
. 119, 12831, 12831, 12844

\tl_gclear:N . 114, 438, 3227, 6878,
8976, 9169, 12145, 12147, 12150,
12154, 13423, 18543, 18544, 39690

\tl_gclear_new:N
114, 12151, 12153, 12156, 18547, 18548

\tl_gconcat:NNN
114, 12163, 12171, 12180, 13482, 39547

\tl_gput_left:Nn
. 114, 12205, 12236, 12241, 12246,
12251, 12259, 12273, 12274, 12275,
12276, 12277, 12278, 15199, 15382,
39692, 39693, 39694, 39695, 39696

\tl_gput_right:Nn
. 115, 1584, 1585, 6908,
6959, 6960, 7036, 8858, 8860, 8979,
9172, 12279, 12307, 12309, 12314,
12319, 12327, 12341, 12342, 12343,
12344, 12345, 12346, 16687, 16904,
30114, 30287, 30806, 31798, 31800,
33782, 33784, 38567, 38569, 38824,
39697, 39698, 39699, 39700, 39701

\tl_gremove_all:Nn
. . . . 129, 12571, 12573, 12577, 12578

\tl_gremove_once:Nn
. 128, 12565, 12567, 12570

\tl_greplace_all:Nnn
128, 12454, 12460, 12474, 12476, 12574

\tl_greplace_once:Nnn
127, 12454, 12456, 12466, 12468, 12568

\tl_greverse:N 120, 13145, 13147, 13150
.tl_gset:N 250, 22308
\tl_gset:Nn . . . 114, 133, 160, 699,

708, 738, 6942, 6951, 8784, 8798,
8804, 8813, 8814, 8824, 8825, 8839,
9217, 9219, 9221, 9223, 9225, 12189,
12193, 12195, 12201, 12202, 12203,
12204, 12367, 16873, 17141, 17210

.tl_gset_e:N 250, 22308
\tl_gset_eq:NN . . 114, 3217, 6948,

7239, 8299, 12157, 12159, 12162,
12555, 13478, 14392, 14408, 16740,
16741, 16742, 16743, 18553, 18554,
18555, 18556, 25557, 39529, 39691

\tl_gset_rescan:Nnn
. . . . 129, 12355, 12366, 12397, 12398

.tl_gset_x:N 38936
\tl_gsort:Nn

. 127, 3215, 3217, 3218, 12917
\tl_gtrim_spaces:N

. 120, 12861, 12873, 12876
\tl_head:N 123, 12917, 12930
\tl_head:n 123,

124, 723, 731, 12917, 12917, 12927,
12930, 13186, 25607, 31372, 31381

\tl_head:w . . . 124, 724, 725, 12917,
12928, 31397, 31426, 31499, 38072

\tl_if_blank:n 12613, 12621
\tl_if_blank:nTF 115, 123,

124, 3390, 6584, 8783, 9100, 9102,
9431, 10381, 10935, 11105, 11127,
11160, 11195, 11235, 11299, 11306,

Index 1670

11376, 11385, 11409, 11485, 12612,
12934, 13176, 13461, 14170, 14173,
15531, 15534, 18984, 19102, 22464,
22679, 22829, 30935, 30938, 30941,
30973, 30976, 31100, 31138, 31151,
31171, 31203, 31392, 31420, 31501,
32440, 32690, 32694, 33378, 33388,
33506, 33534, 33597, 34156, 36973,
36994, 37003, 37008, 37023, 37128,
37357, 37573, 37581, 38209, 38212,
38215, 38239, 38265, 38291, 38917

\tl_if_blank_p:n . . . 115, 11255, 12612
\tl_if_empty:N 12579,

12587, 13577, 13579, 18788, 18790
\tl_if_empty:n

. 12589, 12597, 12604, 13581
\tl_if_empty:NTF . 115, 6970, 9130,

9159, 9330, 9340, 10746, 10836,
10871, 10952, 11215, 11342, 11357,
12579, 22492, 22497, 22655, 36945,
37303, 37585, 37947, 37968, 39196

\tl_if_empty:nTF
. 115, 517, 713, 715, 716,
877, 886, 892, 1680, 1776, 2155,
4260, 4261, 5740, 7583, 7747, 8232,
8387, 9588, 9698, 9713, 9806, 9810,
9874, 9981, 10023, 10026, 10058,
10086, 10087, 10097, 10104, 10110,
10117, 10740, 10987, 11518, 11524,
11526, 11528, 11731, 12480, 12589,
12599, 12667, 12708, 13026, 13287,
13322, 13535, 14442, 15497, 16419,
16426, 16443, 16593, 16786, 18492,
18511, 18520, 18523, 18801, 18834,
18948, 19037, 19725, 19999, 20800,
20804, 21826, 21829, 21925, 22878,
24062, 24915, 25605, 29277, 29319,
29784, 30485, 31414, 38553, 39316

\tl_if_empty_p:N
. 115, 11652, 12579, 37347

\tl_if_empty_p:n . . . 115, 12589, 12599
\tl_if_eq:NN 12623, 12624
\tl_if_eq:Nn 12628, 12640
\tl_if_eq:nn 12641, 12654
\tl_if_eq:NNTF

. . . . 115, 116, 136, 151, 744, 831,
9679, 9733, 12623, 13326, 16942,
31261, 36650, 36653, 37034, 37306

\tl_if_eq:NnTF 115, 12628
\tl_if_eq:nnTF 103,

116, 137, 162, 192, 831, 12641, 18822
\tl_if_eq_p:NN 115, 12623
\tl_if_exist:N

. 12181, 12182, 13573, 13575

\tl_if_exist:NTF 114, 3914, 11667,
12152, 12154, 12181, 12811, 31465,
32554, 32560, 33780, 37628, 37912

\tl_if_exist_p:N
114, 11651, 12181, 31796, 32249, 38565

\tl_if_head_eq_catcode:nN
. 724, 726, 12954, 12970

\tl_if_head_eq_catcode:nNTF
. 117, 12940

\tl_if_head_eq_catcode_p:nN
. 117, 12940

\tl_if_head_eq_charcode:nN
. 724, 726, 12940, 12952

\tl_if_head_eq_charcode:nNTF . . .
. 117, 12940, 31140, 32629

\tl_if_head_eq_charcode_p:nN . . .
. 117, 12940

\tl_if_head_eq_meaning:nN
. 725, 12972, 12979

\tl_if_head_eq_meaning:nNTF
. 117, 5827, 12940

\tl_if_head_eq_meaning_p:nN
. 117, 5659, 12940,
31510, 31955, 31956, 31957, 31958

\tl_if_head_is_group:n 13033
\tl_if_head_is_group:nTF

. 117, 12960, 13000, 13033, 13085,
18518, 31865, 31916, 32151, 32281,
32372, 32491, 33836, 34206, 34265

\tl_if_head_is_group_p:n . 117, 13033
\tl_if_head_is_N_type:n . . 724, 13013
\tl_if_head_is_N_type:nTF

. 118, 12705,
12943, 12957, 12974, 13013, 13247,
31862, 31913, 32064, 32155, 32278,
32369, 32488, 32589, 32835, 32864,
32973, 33065, 33313, 33345, 33412,
33547, 33610, 33653, 33693, 33833,
33892, 34042, 34139, 34203, 34262

\tl_if_head_is_N_type_p:n 118, 13013
\tl_if_head_is_space:n 13048
\tl_if_head_is_space:nTF . . . 118,

124, 13048, 13229, 13238, 14068, 20802
\tl_if_head_is_space_p:n . 118, 13048
\tl_if_in:Nn 886, 12660
\tl_if_in:nn 12662, 12671
\tl_if_in:NnTF 116, 12502,

12657, 12657, 12658, 12659, 16681
\tl_if_in:nnTF

. 116, 715, 745, 4459, 8882, 9574,
9576, 10268, 10518, 12404, 12486,
12488, 12657, 12658, 12659, 12662,
13618, 13626, 19997, 29787, 36463

\tl_if_novalue:n 12675

Index 1671

\tl_if_novalue:nTF 116, 12673
\tl_if_novalue_p:n 116, 12673
\tl_if_regex_match:nN

. 12717, 12724, 12729
\tl_if_regex_match:nn

. 12717, 12717, 12722
\tl_if_regex_match:nNTF 117
\tl_if_regex_match:nnTF 117
\tl_if_single:N 12691
\tl_if_single:n 12692
\tl_if_single:NTF

. . . . 116, 12687, 12688, 12689, 12690
\tl_if_single:nTF 116,

593, 716, 5821, 5857, 5872, 5905,
12688, 12689, 12690, 12692, 33634

\tl_if_single_p:N 116, 12687
\tl_if_single_p:n 116, 12687,

12692, 32648, 33562, 33625, 33715
\tl_if_single_token:n 12703
\tl_if_single_token:nTF

. 116, 4963, 12703, 33790
\tl_if_single_token_p:n . . 116, 12703
\tl_item:Nn

125, 949, 13151, 13172, 13173, 20848
\tl_item:nn 125, 564, 731,

7291, 7335, 13151, 13151, 13172, 13177
\tl_log:N .

121, 3911, 13279, 13281, 13282, 14209
\tl_log:n 121, 406,

407, 1104, 2285, 2301, 8351, 9756,
10296, 10540, 13281, 13315, 13315,
13317, 14205, 18417, 18470, 25582

\tl_lower_case:n 39026, 39027
\tl_lower_case:nn 39026, 39030
\tl_map_break:

. 62, 122, 463, 478, 3898,
3899, 12736, 12750, 12765, 12776,
12791, 12802, 12802, 12803, 12805

\tl_map_break:n 122,
123, 3222, 11134, 12802, 12804, 37442

\tl_map_function:NN 121,
122, 5784, 12731, 12738, 12740, 12826

\tl_map_function:nN 121, 2154, 5010,
12731, 12731, 12739, 12821, 16789

\tl_map_inline:Nn
. 121, 122, 3222, 12755,
12768, 12770, 14305, 14307, 37438

\tl_map_inline:nn 121, 122,
154, 478, 3184, 6181, 6631, 8657,
10629, 12755, 12755, 12769, 19955,
19957, 19959, 24968, 28110, 29688,
29696, 31806, 32177, 32180, 34374,
34385, 34402, 34433, 34497, 39102,
39428, 39490, 39923, 39984, 40032

\tl_map_tokens:Nn
. . . . 122, 11133, 12771, 12778, 12780

\tl_map_tokens:nn
122, 6949, 12771, 12771, 12779, 12796

\tl_map_variable:NNn
. 122, 12795, 12799, 12801

\tl_map_variable:nNn
. 122, 719, 12795, 12795, 12800

\tl_mixed_case:n 39026, 39039
\tl_mixed_case:nn 39026, 39042
\tl_new:N 113,

114, 206, 701, 3111, 3536, 3555,
4333, 4334, 4340, 4341, 6547, 6552,
6553, 6559, 6560, 6561, 6817, 6819,
6938, 6939, 7754, 7755, 7756, 7757,
8628, 8867, 8980, 9173, 9188, 9236,
9624, 9625, 10192, 10195, 10217,
10437, 10448, 10482, 10603, 10605,
10618, 10620, 10621, 10623, 10927,
10957, 10958, 12132, 12132, 12137,
12152, 12154, 12626, 12627, 13343,
13344, 13345, 13346, 14216, 14217,
16714, 16715, 18483, 18535, 18536,
19323, 19813, 20015, 21678, 21682,
21687, 21689, 21697, 21699, 21700,
21702, 30110, 30500, 30501, 31778,
31779, 31780, 31787, 31789, 31791,
31827, 35543, 35568, 35569, 36581,
36822, 36825, 36922, 36923, 36924,
36925, 37300, 37377, 37504, 37623,
39186, 39332, 39333, 39334, 40188

\tl_put_left:Nn 114, 12205, 12205,
12210, 12215, 12220, 12228, 12267,
12268, 12269, 12270, 12271, 12272,
39611, 39612, 39613, 39614, 39615

\tl_put_right:Nn 115, 132,
737, 4110, 4177, 4187, 4226, 4248,
4569, 10877, 10880, 10885, 12279,
12279, 12281, 12286, 12291, 12299,
12335, 12336, 12337, 12338, 12339,
12340, 16902, 18720, 19338, 19340,
19341, 19342, 19344, 19346, 19348,
19349, 19351, 19353, 19355, 19357,
21713, 31818, 38104, 38150, 39189,
39616, 39617, 39618, 39619, 39620

\tl_rand_item:N
. 125, 13174, 13179, 13180

\tl_rand_item:n
. 125, 13174, 13174, 13179

\tl_range:Nnn 126, 13181, 13181, 13182
\tl_range:nnn

. 126, 142, 13181, 13181, 13183
\tl_regex_greplace_all:NNn 128, 12534
\tl_regex_greplace_all:Nnn 128, 12534

Index 1672

\tl_regex_greplace_once:NNn
. 128, 12534

\tl_regex_greplace_once:Nnn
. 128, 12534

\tl_regex_replace_all:NNn
. 128, 12534, 12543, 12545

\tl_regex_replace_all:Nnn
. 128, 12534, 12540, 12542

\tl_regex_replace_once:NNn
. 128, 12534, 12537, 12539

\tl_regex_replace_once:Nnn
. 128, 12534, 12534, 12536

\tl_remove_all:Nn
128, 129, 12571, 12571, 12575, 12576

\tl_remove_once:Nn
. 128, 12565, 12565, 12569

\tl_replace_all:Nnn
. 128, 827, 884, 12454,
12458, 12470, 12472, 12572, 16798

\tl_replace_once:Nnn
127, 12454, 12454, 12462, 12464, 12566

\tl_rescan:nn 129,
130, 295, 705, 12355, 12355, 12361

\tl_reverse:N
. 119, 120, 13145, 13145, 13149

\tl_reverse:n 119,
120, 13126, 13126, 13138, 13146, 13148

\tl_reverse_items:n
. 119, 120, 12845, 12845

.tl_set:N 250, 22308
\tl_set:Nn 114, 129,

130, 132, 133, 160, 250, 422, 630,
699, 701, 708, 738, 927, 936, 4036,
4930, 5691, 5768, 6033, 6096, 6623,
6643, 6653, 6669, 6674, 6717, 6749,
6787, 7137, 7808, 7809, 7869, 8872,
8907, 9145, 9369, 9590, 9636, 9719,
10340, 10353, 10386, 10694, 10731,
11057, 11094, 11208, 11311, 11314,
11317, 11320, 11349, 11602, 11605,
11606, 11607, 11608, 11615, 11616,
11617, 11619, 11623, 12189, 12189,
12191, 12197, 12198, 12199, 12200,
12365, 12631, 12644, 12645, 12798,
13304, 13325, 14463, 14613, 16788,
16792, 16871, 16938, 16947, 16970,
17092, 17095, 17112, 17120, 17139,
17148, 17207, 17338, 17995, 18644,
18650, 18659, 18666, 18909, 19336,
19888, 20054, 20189, 20235, 20341,
20349, 20468, 20474, 20484, 20490,
20548, 20767, 21129, 21690, 21901,
21970, 22116, 22343, 22560, 25952,
30634, 30644, 31191, 31244, 31263,

31274, 31286, 31781, 31788, 31790,
31792, 31823, 32174, 32730, 32746,
32762, 34371, 35816, 36464, 36465,
36586, 36823, 36852, 36928, 36955,
36962, 36979, 36987, 36990, 37040,
37055, 37311, 37317, 37318, 37322,
37366, 37374, 37378, 37514, 37522,
37540, 37543, 37584, 37600, 37624,
37633, 37653, 37687, 37689, 37691,
37694, 37711, 37905, 38093, 40186

.tl_set_e:N 250, 22308
\tl_set_eq:NN 114, 190,

590, 3215, 6811, 7234, 7727, 8298,
9682, 9690, 12157, 12157, 12161,
12552, 13477, 14390, 14399, 16736,
16737, 16738, 16739, 18549, 18550,
18551, 18552, 21791, 21969, 22448,
22472, 22549, 22570, 22620, 25556,
31258, 36842, 36957, 37054, 37586,
37606, 37629, 37948, 39528, 39610

\tl_set_rescan:Nnn
. 129, 130, 295, 670,
706, 12355, 12357, 12364, 12395, 12396

.tl_set_x:N 38936
\tl_show:N 120, 121, 190,

464, 3909, 13279, 13279, 13280, 14202
\tl_show:n . 90, 121, 406, 407, 633,

734, 1104, 2281, 2298, 8349, 9754,
10294, 10538, 13279, 13299, 13299,
13301, 14198, 18415, 18469, 19176,
19246, 19252, 19258, 19264, 25580

\tl_sort:Nn 127, 3215, 3215, 3216, 12917
\tl_sort:nN

. . . . 127, 443, 444, 3386, 3386, 12917
\tl_tail:N

. . . 124, 772, 5634, 12917, 12939,
14608, 20824, 20832, 20842, 39195

\tl_tail:n
. . . . 124, 12917, 12931, 12938, 12939

\tl_to_str:N
101, 119, 134, 556, 659, 742, 10689,
10700, 11566, 11580, 12807, 12807,
12808, 13330, 13331, 13543, 13610,
13618, 14201, 14208, 14770, 19149

\tl_to_str:n 53, 55, 80,
101, 118, 119, 129, 130, 134, 144,
145, 218, 220, 221, 245, 376, 388,
556, 713, 716, 742, 749, 755, 910,
946, 1002, 1244, 1415, 1415, 1438,
1665, 1752, 2336, 2710, 2724, 2727,
2734, 2738, 3008, 3040, 3058, 5010,
5967, 7094, 7253, 7329, 7352, 7426,
8337, 8343, 8877, 9100, 9106, 9465,
9466, 9602, 9604, 9608, 9610, 9615,

Index 1673

9617, 10155, 10156, 10157, 10158,
10263, 10513, 10611, 10627, 10992,
11110, 11121, 11187, 12377, 12483,
12591, 12806, 12806, 13300, 13316,
13544, 13618, 13626, 13777, 13799,
13823, 13830, 13884, 13891, 13965,
13984, 13995, 14020, 14028, 14036,
14042, 14054, 14065, 14167, 14178,
14304, 14417, 14422, 14427, 14489,
15509, 16666, 16677, 18272, 18289,
18333, 18422, 18476, 19542, 19546,
19576, 19577, 19611, 19626, 19628,
19630, 19719, 19992, 19997, 20031,
20313, 20367, 20369, 20386, 20414,
20416, 20550, 20568, 20636, 20775,
20781, 20782, 20969, 21169, 21354,
21760, 21939, 22342, 22742, 22816,
22818, 22824, 22825, 23299, 23496,
23500, 23517, 23711, 23712, 24325,
24326, 24331, 24335, 29033, 29087,
29161, 29568, 29575, 29576, 29754,
29862, 29877, 29897, 29914, 29948,
30013, 30024, 30093, 30184, 30351,
30389, 30490, 30709, 31621, 32231,
32236, 32241, 32554, 32557, 32560,
32563, 36607, 36680, 36934, 37557,
37750, 38356, 38887, 38909, 38912,
39095, 39097, 39152, 39160, 39447,
39450, 39459, 39460, 39461, 39470,
39472, 39505, 39507, 39917, 40153

\tl_trim_spaces:N
. 120, 12861, 12871, 12875

\tl_trim_spaces:n . 120, 722, 1007,
11040, 12861, 12861, 12867, 12872,
12874, 16777, 16779, 31494, 38917

\tl_trim_spaces_apply:nN . . . 120,
978, 11037, 12861, 12868, 12870,
18494, 18951, 19041, 19115, 30351

\tl_upper_case:n 39026, 39033
\tl_upper_case:nn 39026, 39036
\tl_use:N .

. . . 119, 196, 234, 239, 242, 8975,
9168, 12809, 12809, 12817, 19023,
22031, 30427, 31259, 31266, 31271,
31275, 31278, 31279, 31287, 31303,
31304, 31446, 31466, 39445, 39449

\g_tmpa_tl 131, 13343
\l_tmpa_tl 7, 60, 129, 130,

1236, 1238, 1255, 1280, 1282, 1286,
1288, 1292, 1294, 1298, 1300, 13345

\g_tmpb_tl 131, 13343
\l_tmpb_tl 130, 1237,

1238, 1253, 1255, 1281, 1282, 1287,
1288, 1293, 1294, 1299, 1300, 13345

tl internal commands:
__tl_act:NNNn

728, 729, 12835, 13064, 13115, 13131
__tl_act_count_group:n 12837, 12844
__tl_act_count_group:nn 12831
__tl_act_count_normal:N 12836, 12842
__tl_act_count_normal:nN 12831
__tl_act_count_space: . 12838, 12843
__tl_act_count_space:n 12831
__tl_act_end:wn

. 721, 13064, 13099, 13103
__tl_act_group:nwNNN

. 13064, 13086, 13101
__tl_act_if_head_is_space:nTF . .

. . . . 728, 13064, 13066, 13082, 13091
__tl_act_if_head_is_space:w . . .

. 13064, 13068, 13072
__tl_act_if_head_is_space_-

true:w 13064, 13069, 13075
__tl_act_loop:w 728, 13064,

13080, 13095, 13105, 13112, 13118
__tl_act_normal:NwNNN

. 13064, 13087, 13092
__tl_act_output:n . 729, 13064, 13122
__tl_act_result:n . . . 729, 13099,

13120, 13122, 13123, 13124, 13125
__tl_act_reverse 729
__tl_act_reverse_output:n

. . 13064, 13124, 13140, 13142, 13144
__tl_act_space:wwNNN

. 728, 13064, 13083, 13109
__tl_analysis:n

454, 464, 3578, 3578, 3888, 3916, 3928
__tl_analysis_a:n . . 3582, 3631, 3631
__tl_analysis_a_bgroup:w

. 3662, 3684, 3686
__tl_analysis_a_cs:ww

. 3741, 3755, 3758
__tl_analysis_a_egroup:w

. 3664, 3684, 3689
__tl_analysis_a_group:nw

. 3684, 3687, 3690, 3692
__tl_analysis_a_group_aux:w . . .

. 3684, 3700, 3702
__tl_analysis_a_group_auxii:w . .

. 3684, 3707, 3710
__tl_analysis_a_group_test:w . . .

. 3684, 3712, 3717
__tl_analysis_a_loop:w . . . 3638,

3641, 3641, 3682, 3724, 3738, 3756
__tl_analysis_a_safe:N

. 3663, 3705, 3741, 3741
__tl_analysis_a_space:w

. 3661, 3667, 3667

Index 1674

__tl_analysis_a_space_test:w . . .
. 457, 3667, 3669, 3674

__tl_analysis_a_store:
. 457, 3678, 3720, 3726, 3726

__tl_analysis_a_type:w
. 3642, 3643, 3643

__tl_analysis_b:n . . 3583, 3769, 3769
__tl_analysis_b_char:Nn

. 470, 3796, 3803, 3803, 4111
__tl_analysis_b_char_aux:nww . . .

. 461, 3797, 3803, 3825
__tl_analysis_b_cs:Nww

. 3799, 3831, 3831
__tl_analysis_b_cs_test:ww

. 3831, 3834, 3836
__tl_analysis_b_loop:w

. . . 463, 3769, 3773, 3777, 3877, 3882
__tl_analysis_b_normal:wwN

. 3782, 3787, 3789, 3852
__tl_analysis_b_normals:ww

461, 462, 3779, 3782, 3782, 3828, 3838
__tl_analysis_b_special:w

. 3785, 3849, 3851
__tl_analysis_b_special_char:wN

. 3849, 3866, 3874
__tl_analysis_b_special_space:w

. 3849, 3868, 3879
__tl_analysis_char_arg:Nw

. 4007, 4007, 4164, 4223
__tl_analysis_char_arg_aux:Nw . .

. 4007, 4010, 4013
\l__tl_analysis_char_token . 451,

457, 458, 3534, 3671, 3676, 3714, 3719
__tl_analysis_cs_space_count:NN

. 3562, 3562, 3755, 3834
__tl_analysis_cs_space_count:w .

. 3562, 3566, 3570, 3574
__tl_analysis_cs_space_count_-

end:w 3562, 3568, 3576
__tl_analysis_disable:n

. . . 455, 3587, 3589, 3598, 3633, 3699
__tl_analysis_disable_char:N . . .

. 3607, 3609, 3620, 3752
__tl_analysis_extract_charcode:

. 3556, 3556, 3694, 4138
__tl_analysis_extract_charcode_-

aux:w 3556, 3558, 3561
\l__tl_analysis_index_int

. 459, 460, 3552, 3636, 3639, 3677,
3695, 3732, 3735, 3761, 3763, 3855

__tl_analysis_map:Nn 3884, 3890, 3893
__tl_analysis_map:NwNw

. 3884, 3896, 3902, 3906

\l__tl_analysis_nesting_int
. 456, 3553, 3637, 3728, 3737

\l__tl_analysis_normal_int
. 3551, 3635, 3680,
3722, 3733, 3736, 3753, 3762, 3767

\g__tl_analysis_result_tl
. 463, 3555, 3771, 3897, 3933

__tl_analysis_show:
. 3918, 3929, 3931, 3931

__tl_analysis_show:Nn
. 3922, 3923, 3925, 3926

__tl_analysis_show:NNN
. 3908, 3909, 3911, 3912

__tl_analysis_show_active:n . . .
. 3946, 3975, 3977

__tl_analysis_show_cs:n
. 3942, 3975, 3975

\c__tl_analysis_show_etc_str . . .
. 466, 3995, 3997, 4256

__tl_analysis_show_long:nn
. 3975, 3976, 3978, 3979

__tl_analysis_show_long_-
aux:nnnn . . . 3975, 3981, 3986, 4001

__tl_analysis_show_loop:wNw . . .
. 3931, 3933, 3937, 3953

__tl_analysis_show_normal:n . . .
. 3949, 3955, 3955

__tl_analysis_show_value:N
. 3960, 3960, 3984

\l__tl_analysis_token
. 451, 452, 456–
458, 467, 3534, 3559, 3642, 3646,
3649, 3652, 3700, 3704, 3719, 4009,
4136, 4145, 4150, 4159, 4219, 4242

\l__tl_analysis_type_int . . . 456,
459, 3554, 3645, 3660, 3728, 3730, 3734

__tl_build_begin:NN
. . 13351, 13352, 13354, 13355, 13386

__tl_build_begin:NNN
. 736, 13351, 13356, 13357

__tl_build_end_loop:NN
. . 13415, 13418, 13423, 13425, 13431

__tl_build_get:NNN
. . 13417, 13422, 13434, 13435, 13435

__tl_build_get:w
. 13435, 13436, 13437, 13443

__tl_build_get_end:w
. 13435, 13441, 13445

__tl_build_last:NNn
. 736, 737, 13363, 13366,
13378, 13382, 13396, 13397, 13437

__tl_build_put:nn
. . . . 737, 13366, 13393, 13395, 13410

Index 1675

__tl_build_put:nw
. 737, 13366, 13395, 13396

__tl_build_put_left:NNn
. 13398, 13399, 13402, 13404

__tl_count:n
. . . . 720, 12818, 12821, 12826, 12828

__tl_head_aux:n 12920, 12922
__tl_head_auxi:nw 12917
__tl_head_auxii:n 12917
__tl_head_exp_not:w

. . . . 726, 12940, 12944, 12958, 13009
__tl_if_blank_p:NNw 12612
__tl_if_empty_if:n

713, 714, 817, 12599, 12599, 12606,
12615, 12678, 12706, 12710, 13060

__tl_if_head_eq_empty_arg:w . . .
724, 726, 12940, 12944, 12958, 13011

__tl_if_head_eq_meaning_-
normal:nN 12975, 12981

__tl_if_head_eq_meaning_-
special:nN 12976, 12990

__tl_if_head_is_group_fi_-
false:w 13033, 13039, 13047

__tl_if_head_is_N_type_auxi:w . .
. 726, 13013, 13016, 13024

__tl_if_head_is_N_type_auxii:n .
. 13013, 13028, 13031

__tl_if_head_is_space:w
. 13048, 13051, 13058

__tl_if_novalue:w
. 716, 12673, 12678, 12684

__tl_if_recursion_tail_break:nN
. 730, 12352, 12352, 13167

__tl_if_recursion_tail_stop:nTF
. 12352

__tl_if_recursion_tail_stop_p:n
. 12352

__tl_if_single:nnw
. 716, 12692, 12694, 12702

\l__tl_internal_a_tl
. . . . 734, 4218, 4226, 4233, 4234,
4250, 12357, 12359, 12363, 12552,
12554, 12555, 12626, 12644, 12648,
13304, 13310, 13325, 13326, 13331

\l__tl_internal_b_tl
. . 12626, 12631, 12634, 12645, 12648

__tl_item:nn
. 13151, 13153, 13165, 13170

__tl_item_aux:nn 13151, 13154, 13159
__tl_map_function:Nnnnnnnnn . . .

718, 12731, 12733, 12741, 12746, 12760
__tl_map_function_end:w

. . . . 718, 12731, 12744, 12748, 12752

__tl_map_tokens:nnnnnnnnn
. 12771, 12773, 12781, 12787

__tl_map_tokens_end:w
. 12771, 12784, 12789, 12793

__tl_map_variable:Nnn
. 12795, 12796, 12797

__tl_peek_analysis_active_str:n
. 4014, 4173, 4175

__tl_peek_analysis_char:N
. 470, 4014, 4092, 4102

__tl_peek_analysis_char:w
. 470, 4014, 4115, 4123

__tl_peek_analysis_collect:n . . .
. 4014, 4223, 4224

__tl_peek_analysis_collect:w . . .
. 4014, 4220, 4222, 4243

__tl_peek_analysis_collect_-
end:NNNN 4014, 4240, 4245

__tl_peek_analysis_collect_-
loop: 4014, 4227, 4229

__tl_peek_analysis_collect_-
test: 4014

__tl_peek_analysis_cs:N
. 4014, 4094, 4098

__tl_peek_analysis_escape:
. 4014, 4171, 4216

__tl_peek_analysis_exp:N
. 4014, 4055, 4063

__tl_peek_analysis_exp_aux:N . 4014
__tl_peek_analysis_exp_aux:Nw . .

. 469, 4073, 4078
__tl_peek_analysis_explicit:n . .

. 4014, 4170, 4185
__tl_peek_analysis_loop:NNn . . .

. 4014, 4024, 4031, 4033
__tl_peek_analysis_nonexp:N . . .

. 4014, 4058, 4086, 4151
__tl_peek_analysis_retest:

. 469, 471, 4014, 4146, 4148
__tl_peek_analysis_special: . . .

. 4014, 4060, 4134
__tl_peek_analysis_str:

. 4014, 4153, 4156
__tl_peek_analysis_str:n

. 4014, 4164, 4165
__tl_peek_analysis_str:w

. 4014, 4160, 4163
__tl_peek_analysis_test:

. 468, 4014, 4042, 4044
\c__tl_peek_catcodes_tl 3537
\l__tl_peek_charcode_int

. 4006, 4137, 4139, 4142, 4169
\l__tl_peek_code_tl

. 468, 3536, 4036, 4065,

Index 1676

4067, 4068, 4076, 4099, 4110, 4119,
4177, 4183, 4187, 4214, 4248, 4254

__tl_quark_if_nil:n 12353
__tl_quark_if_nil:nTF 12491
__tl_range:Nnnn . 13181, 13183, 13184
__tl_range:nnNn . 13181, 13194, 13204
__tl_range:nnnNn 13181, 13188, 13192
__tl_range:w 731, 13181, 13183, 13222
__tl_range_braced:w 731
__tl_range_collect:nn . . . 13181,

13224, 13233, 13240, 13245, 13259
__tl_range_collect_braced:w . . 731
__tl_range_collect_group:nN . 13181
__tl_range_collect_group:nn . . .

. 13249, 13258
__tl_range_collect_N:nN

. 13181, 13248, 13257
__tl_range_collect_space:nw . . .

. 13181, 13241, 13256
__tl_range_items:nnNn 731
__tl_range_normalize:nn

. 13196, 13200, 13260, 13260
__tl_range_skip:w

. . . . 731, 13181, 13211, 13213, 13216
__tl_range_skip_spaces:n

. 13181, 13225, 13227, 13230
__tl_replace:NnNNNnn

. 708, 710, 12455, 12457,
12459, 12461, 12478, 12478, 12489

__tl_replace_auxi:NnnNNNnn
710, 12478, 12492, 12493, 12500, 12503

__tl_replace_auxii:nNNNnn
709, 710, 12478, 12496, 12504, 12506

__tl_replace_next:w
. 708, 710, 711, 12459,
12461, 12478, 12511, 12531, 12533

__tl_replace_next_aux:w
. 12478, 12520, 12531

__tl_replace_wrap:w
. 708, 710, 711, 12455,
12457, 12478, 12509, 12513, 12532

__tl_rescan:NNw
705, 12355, 12383, 12390, 12440, 12445

__tl_rescan_aux: 12355, 12358, 12362
\c__tl_rescan_marker_tl

707, 12354, 12382, 12390, 12420, 12452
__tl_reverse_group_preserve:n . .

. 13133, 13141
__tl_reverse_group_preserve:nn .

. 13126
__tl_reverse_items:nwNwn

. . 12845, 12847, 12848, 12852, 12855
__tl_reverse_items:wn

. 12845, 12849, 12856, 12859

__tl_reverse_normal:N . 13132, 13139
__tl_reverse_normal:nN 13126
__tl_reverse_space: . . 13134, 13143
__tl_reverse_space:n 13126
__tl_set_rescan:nNN

. 705, 707, 12377, 12399, 12399
__tl_set_rescan:NNnn

. . . . 705, 12355, 12365, 12367, 12368
__tl_set_rescan_multi:nNN

705, 707, 12355, 12380, 12407, 12429
__tl_set_rescan_single:nnNN . . .

. . . . 707, 12399, 12410, 12414, 12426
__tl_set_rescan_single:NNww . . 707
__tl_set_rescan_single_aux:nnnNN

. 12399, 12419, 12432
__tl_set_rescan_single_aux:w . . .

. 707, 12399, 12437, 12451
__tl_show:n 13299, 13300, 13302
__tl_show:NN

. 13279, 13279, 13281, 13283
__tl_show:w 13299, 13304, 13314
__tl_tl_head:w . 12917, 12929, 12984
__tl_tmp:w 715,

722, 12547, 12560, 12561, 12562,
12563, 12666, 12667, 12673, 12686,
12877, 12916, 13064, 13079, 13347

__tl_trim_mark: 721, 722,
12864, 12869, 12877, 12884, 12885,
12892, 12896, 12898, 12901, 12914

__tl_trim_spaces:nn
. . . . 978, 12863, 12869, 12877, 12879

__tl_trim_spaces_auxi:w
722, 12877, 12881, 12892, 12895, 12901

__tl_trim_spaces_auxii:w
. 722, 12877, 12885, 12900

__tl_trim_spaces_auxiii:w
722, 12877, 12886, 12903, 12906, 12910

__tl_trim_spaces_auxiv:w
. 722, 12877, 12888, 12912

__tl_use_none_delimit_by_q_act_-
stop:w 13064

__tl_use_none_delimit_by_s_act_-
stop:w 13098, 13103

__tl_use_none_delimit_by_s_-
stop:w 718, 12731,
12743, 12750, 12754, 12783, 12791

\tojis . 1191
token commands:

\c_alignment_token
. 205, 906, 1436, 3813,
19408, 19443, 19482, 31628, 37406

\c_catcode_letter_token 205,
907, 3809, 19399, 19443, 19511, 31640

Index 1677

\c_catcode_other_token 205,
907, 3807, 19402, 19443, 19516, 31643

\c_group_begin_token 205
\c_group_end_token 205
\c_math_subscript_token

. 205, 907, 3817, 19417,
19443, 19501, 31599, 31634, 37421

\c_math_superscript_token
. 205, 906, 3815,
19414, 19443, 19496, 31631, 37422

\c_math_toggle_token
. 205, 906, 3811,
19405, 19443, 19477, 31596, 31625

\c_parameter_token
. . 205, 549, 906, 19443, 19486, 19489

\c_space_token
. 41, 118, 130, 205, 212,
724, 907, 3646, 3676, 3819, 4009,
4049, 4189, 4637, 4678, 6987, 10801,
12962, 13002, 19426, 19443, 19506,
19839, 19864, 19977, 31600, 31637

\token_case_catcode:Nn
. 210, 19770, 19770

\token_case_catcode:NnTF
210, 19770, 19772, 19774, 19776, 37419

\token_case_charcode:Nn
. 210, 19770, 19778

\token_case_charcode:NnTF
. . . . 210, 19770, 19780, 19782, 19784

\token_case_meaning:Nn
. . . . 210, 19770, 19786, 39044, 39045

\token_case_meaning:NnTF
. 210, 5858,
5873, 5906, 5916, 5927, 8357, 19770,
19788, 19790, 19792, 37426, 39046,
39047, 39048, 39049, 39050, 39051

\token_if_active:N 19519
\token_if_active:NTF 207, 19519
\token_if_active_p:N . 207, 19519,

31949, 32122, 32606, 32649, 34319
\token_if_alignment:N 19480
\token_if_alignment:NTF . . 207, 19480
\token_if_alignment_p:N . . 207, 19480
\token_if_chardef:NTF 208, 3964, 19589
\token_if_chardef_p:N

. 208, 19589, 31562
\token_if_cs:N 19553
\token_if_cs:NTF

. 208, 19429, 19553, 31945,
32403, 32846, 32874, 32984, 33072,
33322, 33866, 34057, 34147, 34333

\token_if_cs_p:N
. 208, 19553, 32121, 33563,
33626, 33661, 33716, 33908, 34318

\token_if_dim_register:NTF
. 209, 3966, 19589

\token_if_dim_register_p:N 209, 19589
\token_if_eq_catcode:NN 19526
\token_if_eq_catcode:NNTF

. 207, 210,
211, 19526, 19771, 19773, 19775, 19777

\token_if_eq_catcode_p:NN 207, 19526
\token_if_eq_charcode:NN 19531
\token_if_eq_charcode:NNTF

. 208, 210,
211, 4678, 4683, 5319, 5519, 5532,
5534, 5572, 5710, 6973, 6987, 9929,
10801, 19531, 19779, 19781, 19783,
19785, 21211, 21231, 21234, 27633

\token_if_eq_charcode_p:NN 208, 19531
\token_if_eq_meaning:NN 19524
\token_if_eq_meaning:NNTF

. 208, 210,
211, 5017, 5024, 5325, 5358, 5507,
5530, 5562, 5697, 5705, 5708, 7042,
7048, 7075, 7082, 7100, 7123, 7140,
10853, 19524, 19787, 19789, 19791,
19793, 23832, 24843, 24902, 25633,
25900, 25902, 25907, 25971, 26157,
28230, 29592, 29615, 29740, 29815,
31901, 31926, 31928, 32097, 32135,
32357, 32383, 34234, 34275, 37440

\token_if_eq_meaning_p:NN
. 208, 19524, 31663

\token_if_expandable:N 19558
\token_if_expandable:NTF

. 208, 3962, 19558, 31657
\token_if_expandable_p:N . 208, 19558
\token_if_font_selection:NTF . . .

. 209, 19589
\token_if_font_selection_p:N . . .

. 209, 19589
\token_if_group_begin:N 19465
\token_if_group_begin:NTF 206, 19465
\token_if_group_begin_p:N 206, 19465
\token_if_group_end:N 19470
\token_if_group_end:NTF . . 206, 19470
\token_if_group_end_p:N . . 206, 19470
\token_if_int_register:NTF

. 209, 3967, 19589
\token_if_int_register_p:N 209, 19589
\token_if_letter:N 909, 19509
\token_if_letter:NTF 207, 19509
\token_if_letter_p:N 207, 19509, 32603
\token_if_long_macro:NTF . 208, 19589
\token_if_long_macro_p:N . 208, 19589
\token_if_macro:N 19538

Index 1678

\token_if_macro:NTF
. 208, 2341, 2350, 2359, 19536, 19714

\token_if_macro_p:N 208, 19536
\token_if_math_subscript:N . . . 19499
\token_if_math_subscript:NTF . . .

. 207, 19499
\token_if_math_subscript_p:N . . .

. 207, 19499
\token_if_math_superscript:N . 19493
\token_if_math_superscript:NTF . .

. 207, 19493
\token_if_math_superscript_p:N . .

. 207, 19493
\token_if_math_toggle:N 19475
\token_if_math_toggle:NTF 207, 19475
\token_if_math_toggle_p:N 207, 19475
\token_if_mathchardef:NTF

. 209, 3965, 19589
\token_if_mathchardef_p:N

. 209, 19589, 31563
\token_if_muskip_register:NTF . . .

. 209, 19589
\token_if_muskip_register_p:N . . .

. 209, 19589
\token_if_other:N 19514
\token_if_other:NTF 207, 19514
\token_if_other_p:N 207, 19514
\token_if_parameter:N 19487
\token_if_parameter:NTF . . 207, 19485
\token_if_parameter_p:N . . 207, 19485
\token_if_primitive:N . 19702, 19711
\token_if_primitive:NTF . . 209, 19638
\token_if_primitive_p:N . . 209, 19638
\token_if_protected_long_-

macro:NTF 208, 19589
\token_if_protected_long_macro_-

p:N 208, 19589, 31662, 31811, 31954
\token_if_protected_macro:NTF . . .

. 208, 19589
\token_if_protected_macro_p:N . . .

. . . . 208, 19589, 31661, 31810, 31953
\token_if_skip_register:NTF

. 209, 3968, 19589
\token_if_skip_register_p:N

. 209, 19589
\token_if_space:N 19504
\token_if_space:NTF 207, 19504
\token_if_space_p:N 207, 19504
\token_if_toks_register:NTF

. 209, 3969, 19589
\token_if_toks_register_p:N

. 209, 19589
\token_to_catcode:N 206, 19395, 19395

\token_to_meaning:N
. 21, 206, 216, 908, 911,
1413, 1413, 1429, 1440, 1981, 2344,
2353, 2362, 2724, 3559, 3958, 3983,
4966, 8364, 13295, 13336, 19395,
19542, 19610, 19718, 19980, 31605

\token_to_str:N
. 7, 23, 101, 134, 206, 216,
393, 469, 471, 668, 726, 727, 856,
910, 1065, 1067, 1415, 1416, 1429,
1429, 1643, 1652, 1684, 1707, 1760,
1765, 1780, 1801, 1802, 1822, 1981,
2122, 2158, 2165, 2277, 2297, 2310,
2744, 2829, 2844, 2859, 2866, 2892,
2901, 2938, 3004, 3025, 3483, 3499,
3545, 3546, 3547, 3548, 3567, 3672,
3715, 3745, 3794, 3806, 3808, 3810,
3820, 3860, 3871, 3918, 3957, 3982,
4074, 4081, 4090, 4161, 4181, 4190,
4257, 4580, 4587, 4697, 4701, 5437,
6968, 7265, 7328, 7351, 7425, 8050,
8254, 8256, 8359, 8360, 8364, 8422,
8868, 8988, 10305, 10307, 10549,
10551, 10673, 10674, 10675, 10676,
10677, 10684, 10989, 11006, 11053,
12186, 12354, 13017, 13037, 13291,
13295, 13330, 13336, 13737, 14278,
14286, 14289, 16498, 16522, 16526,
16541, 16684, 16992, 17057, 17515,
17785, 19143, 19149, 19395, 19624,
19625, 19630, 19632, 19633, 19634,
19635, 19636, 20210, 20228, 20788,
20798, 20817, 20818, 20825, 20826,
20827, 23001, 23049, 23168, 23210,
23320, 23495, 23510, 23717, 23718,
24209, 24210, 24239, 24406, 24457,
24489, 24509, 24524, 24536, 24537,
24550, 24551, 24576, 24585, 24587,
24612, 24615, 24640, 24642, 24656,
24672, 24690, 24760, 24770, 24771,
24786, 24787, 25114, 25156, 25348,
25588, 29566, 30158, 30388, 30454,
30471, 30704, 30749, 30755, 31579,
31580, 32118, 32126, 32173, 32174,
32454, 32457, 32519, 32522, 32531,
32729, 32730, 33757, 33759, 33777,
33778, 33793, 33796, 33800, 33803,
34315, 34323, 34370, 34371, 34487,
34490, 34494, 34503, 34530, 34893,
35593, 35815, 36750, 38886, 38909,
38912, 39217, 39226, 39775, 39785

token internal commands:
\c__token_A_int 19708, 19745
\c__token_active_tl 907, 19461, 19521

Index 1679

__token_case:NNnTF
. . . . 19770, 19771, 19773, 19775,
19777, 19779, 19781, 19783, 19785,
19787, 19789, 19791, 19793, 19794

__token_case:NNw
. 19770, 19796, 19801, 19805

__token_case_end:nw
. 19770, 19804, 19807

__token_delimit_by_␣font:w . . 19570
__token_delimit_by_char":w . . 19570
__token_delimit_by_count:w . . 19570
__token_delimit_by_dimen:w . . 19570
__token_delimit_by_macro:w . . 19570
__token_delimit_by_muskip:w . 19570
__token_delimit_by_skip:w . . . 19570
__token_delimit_by_toks:w . . . 19570
__token_if_macro_p:w

. 19536, 19541, 19545
__token_if_primitive:NNw

. 19638, 19717, 19722
__token_if_primitive:Nw

. 19638, 19746, 19752
__token_if_primitive_loop:N . . .

. 19638, 19728, 19743, 19749
__token_if_primitive_lua:N

. 19638, 19704
__token_if_primitive_nullfont:N

. 19638, 19731, 19735
__token_if_primitive_space:w . . .

. 19638, 19726, 19734
__token_if_primitive_undefined:N

. 19638, 19755, 19761
__token_tmp:w 910, 19571,

19580, 19581, 19582, 19583, 19584,
19585, 19586, 19587, 19590, 19624,
19625, 19626, 19627, 19629, 19631,
19632, 19633, 19634, 19635, 19636

__token_to_catcode:N
. 19395, 19396, 19397

\toks . 425, 19636
\toksapp . 923
\toksdef 426, 3479
\tokspre . 924
\tolerance . 427
\topmark . 428
\topmarks . 530
\topskip . 429
\toucs . 1192
\tpack . 925
\tracingassigns 531
\tracingcommands 430
\tracingfonts 960
\tracinggroups 532
\tracingifs . 533

\tracinglostchars 431
\tracingmacros 432
\tracingnesting 534
\tracingonline 433
\tracingoutput 434
\tracingpages 435
\tracingparagraphs 436
\tracingrestores 437
\tracingscantokens 535
\tracingstacklevels 1216
\tracingstats 438
true . 285
trunc . 281
try commands:

try_require 12024
\ttfamily . 34407

U
\u . 32178,

34497, 34513, 34594, 34595, 34610,
34611, 34620, 34621, 34634, 34635,
34636, 34662, 34663, 34688, 34689

\uccode . 439
\Uchar . 962
\Ucharcat . 963
\uchyph . 440
\ucs . 1193
\Udelcode . 964
\Udelcodenum 965
\Udelimiter . 966
\Udelimiterover 967
\Udelimiterunder 968
\Uhextensible 969
\Uleft . 970
\Umathaccent 971
\Umathaxis . 972
\Umathbinbinspacing 973
\Umathbinclosespacing 974
\Umathbininnerspacing 975
\Umathbinopenspacing 976
\Umathbinopspacing 977
\Umathbinordspacing 978
\Umathbinpunctspacing 979
\Umathbinrelspacing 980
\Umathchar . 981
\Umathcharclass 982
\Umathchardef 983
\Umathcharfam 984
\Umathcharnum 985
\Umathcharnumdef 986
\Umathcharslot 987
\Umathclosebinspacing 988
\Umathcloseclosespacing 989
\Umathcloseinnerspacing 991

Index 1680

\Umathcloseopenspacing 993
\Umathcloseopspacing 994
\Umathcloseordspacing 995
\Umathclosepunctspacing 996
\Umathcloserelspacing 998
\Umathcode . 999
\Umathcodenum 1000
\Umathconnectoroverlapmin 1001
\Umathfractiondelsize 1003
\Umathfractiondenomdown 1004
\Umathfractiondenomvgap 1006
\Umathfractionnumup 1008
\Umathfractionnumvgap 1009
\Umathfractionrule 1010
\Umathinnerbinspacing 1011
\Umathinnerclosespacing 1012
\Umathinnerinnerspacing 1014
\Umathinneropenspacing 1016
\Umathinneropspacing 1017
\Umathinnerordspacing 1018
\Umathinnerpunctspacing 1019
\Umathinnerrelspacing 1021
\Umathlimitabovebgap 1022
\Umathlimitabovekern 1023
\Umathlimitabovevgap 1024
\Umathlimitbelowbgap 1025
\Umathlimitbelowkern 1026
\Umathlimitbelowvgap 1027
\Umathnolimitsubfactor 1028
\Umathnolimitsupfactor 1029
\Umathopbinspacing 1030
\Umathopclosespacing 1031
\Umathopenbinspacing 1032
\Umathopenclosespacing 1033
\Umathopeninnerspacing 1034
\Umathopenopenspacing 1035
\Umathopenopspacing 1036
\Umathopenordspacing 1037
\Umathopenpunctspacing 1038
\Umathopenrelspacing 1039
\Umathoperatorsize 1040
\Umathopinnerspacing 1041
\Umathopopenspacing 1042
\Umathopopspacing 1043
\Umathopordspacing 1044
\Umathoppunctspacing 1045
\Umathoprelspacing 1046
\Umathordbinspacing 1047
\Umathordclosespacing 1048
\Umathordinnerspacing 1049
\Umathordopenspacing 1050
\Umathordopspacing 1051
\Umathordordspacing 1052
\Umathordpunctspacing 1053

\Umathordrelspacing 1054
\Umathoverbarkern 1055
\Umathoverbarrule 1056
\Umathoverbarvgap 1057
\Umathoverdelimiterbgap 1058
\Umathoverdelimitervgap 1060
\Umathpunctbinspacing 1062
\Umathpunctclosespacing 1063
\Umathpunctinnerspacing 1065
\Umathpunctopenspacing 1067
\Umathpunctopspacing 1068
\Umathpunctordspacing 1069
\Umathpunctpunctspacing 1070
\Umathpunctrelspacing 1072
\Umathquad 1073
\Umathradicaldegreeafter 1074
\Umathradicaldegreebefore 1076
\Umathradicaldegreeraise 1078
\Umathradicalkern 1080
\Umathradicalrule 1081
\Umathradicalvgap 1082
\Umathrelbinspacing 1083
\Umathrelclosespacing 1084
\Umathrelinnerspacing 1085
\Umathrelopenspacing 1086
\Umathrelopspacing 1087
\Umathrelordspacing 1088
\Umathrelpunctspacing 1089
\Umathrelrelspacing 1090
\Umathskewedfractionhgap 1091
\Umathskewedfractionvgap 1093
\Umathspaceafterscript 1095
\Umathstackdenomdown 1096
\Umathstacknumup 1097
\Umathstackvgap 1098
\Umathsubshiftdown 1099
\Umathsubshiftdrop 1100
\Umathsubsupshiftdown 1101
\Umathsubsupvgap 1102
\Umathsubtopmax 1103
\Umathsupbottommin 1104
\Umathsupshiftdrop 1105
\Umathsupshiftup 1106
\Umathsupsubbottommax 1107
\Umathunderbarkern 1108
\Umathunderbarrule 1109
\Umathunderbarvgap 1110
\Umathunderdelimiterbgap 1111
\Umathunderdelimitervgap 1113
\Umiddle . 1115
undefine commands:

.undefine: 250, 22324
\underline . 441
\unexpanded . 536

Index 1681

\unhbox . 442
\unhcopy . 443
\uniformdeviate 961
\unkern . 444
\unless . 537
\Unosubscript 1116
\Unosuperscript 1117
\unpenalty . 445
\unskip . 446
\unvbox . 447
\unvcopy . 448
\Uoverdelimiter 1118
\uppercase . 449
\upshape . 34413
\uptexrevision 1204
\uptexversion 1205
\Uradical . 1119
\Uright . 1120
\Uroot . 1121
usage commands:

.usage:n 253, 22326
use commands:

\use:N 22, 186, 389, 1489, 1489, 1679,
1775, 4904, 5736, 6979, 7150, 8398,
8420, 9326, 9336, 9339, 9524, 9556,
9562, 9569, 9641, 10758, 11236,
11341, 17783, 18229, 18239, 18344,
18348, 18350, 18352, 18353, 18357,
20972, 21804, 21805, 21811, 22127,
29811, 31168, 31449, 32282, 32407,
32467, 32468, 32523, 32533, 32540,
32549, 32655, 32782, 32922, 33444,
33460, 33475, 33486, 33612, 33629,
33630, 33655, 33670, 33672, 33745,
33929, 33933, 33940, 34098, 34429,
36821, 36857, 36860, 36861, 36866,
36868, 36872, 36873, 37084, 37165,
37367, 37501, 37763, 37788, 37844,
38133, 38166, 38345, 38761, 39292

\use:n . . 25, 27, 113, 215, 382, 428,
434, 444, 541, 578, 579, 641, 705,
841, 925, 1005, 1065, 1369, 1490,
1490, 1496, 1496, 1498, 1498, 1608,
1629, 1655, 1715, 1724, 1735, 1736,
1746, 2142, 2318, 2333, 2574, 2705,
2754, 2891, 2922, 2994, 3972, 4635,
4660, 4873, 5008, 5372, 5536, 5981,
6047, 6115, 6564, 6619, 6675, 6735,
6931, 7885, 7947, 8633, 8640, 9462,
10144, 10356, 10576, 11680, 12561,
12563, 12603, 12612, 12785, 12786,
12789, 12931, 13024, 13058, 13080,
13540, 13617, 13625, 13721, 13742,
13756, 14162, 14535, 16864, 16866,

16868, 17328, 17329, 17330, 17331,
18929, 18930, 18933, 19341, 19457,
19536, 19573, 19592, 19709, 20034,
20706, 20707, 20708, 20709, 20795,
21166, 21714, 21820, 22344, 22637,
22671, 22692, 22821, 22833, 23755,
23763, 23772, 23789, 23797, 23825,
24290, 25892, 29572, 29758, 29766,
29775, 30053, 30058, 30706, 30807,
30925, 30957, 31157, 31406, 31407,
31409, 31683, 31687, 32238, 32321,
32392, 32681, 33852, 34401, 34439,
34888, 36028, 37000, 37154, 37566,
38112, 38227, 38280, 38707, 38722,
39109, 39190, 39359, 39456, 39496

\use:nn 25, 1498, 1499, 2407,
3940, 7834, 8902, 9607, 9609, 9614,
9616, 11089, 12389, 12450, 13766,
14334, 20968, 24320, 24329, 24333,
27813, 30203, 31246, 31552, 37892

\use:nnn 25, 1498, 1500, 2119
\use:nnnn 25, 1498, 1501
\use_i:nn . . 26, 381, 386, 388, 389,

831, 832, 926, 1192, 1195, 1208,
1212, 1213, 1433, 1502, 1502, 1589,
1673, 1695, 1737, 1945, 2098, 2925,
2982, 3307, 3362, 3372, 3382, 3747,
4712, 4853, 5159, 5165, 5742, 6687,
8635, 12453, 14836, 14841, 14922,
14926, 16871, 16873, 16957, 16959,
17315, 17366, 17426, 17510, 20074,
20421, 20648, 23162, 23164, 23476,
24100, 24290, 25730, 26056, 26351,
26839, 27123, 27642, 27808, 28120,
28130, 28134, 28642, 28847, 29382,
29407, 29635, 36838, 37444, 39270

\use_i:nnn
. . . . 26, 778, 929, 934, 943, 1504,
1504, 2344, 3016, 4633, 4658, 4870,
7052, 14320, 14844, 15350, 17180,
20178, 20320, 20655, 20693, 21827,
24259, 26308, 27783, 30137, 30353

\use_i:nnnn 26, 370, 594,
595, 1504, 1507, 1826, 2067, 8392,
8394, 8409, 8414, 8430, 8432, 21721,
25890, 26326, 26333, 26526, 29393

\use_i:nnnnn 26, 1504, 1511
\use_i:nnnnnn 26, 1504, 1516
\use_i:nnnnnnn 26, 1504, 1522
\use_i:nnnnnnnn 26, 1504, 1529
\use_i:nnnnnnnnn 26, 1504, 1537
\use_i_delimit_by_q_nil:nw

. 28, 1551, 1551

Index 1682

\use_i_delimit_by_q_recursion_-
stop:nw
. 28, 1551, 1553, 16412, 16428, 37294

\use_i_delimit_by_q_recursion_-
stop:w 153

\use_i_delimit_by_q_stop:nw
. 28, 1551, 1552

\use_i_ii:nnn . 27, 388, 389, 1546,
1546, 1664, 2433, 16656, 17156, 17261

\use_ii:nn 26, 74,
381, 386, 517, 524, 831, 832, 926,
1192, 1195, 1208, 1212, 1213, 1225,
687, 692, 1435, 1502, 1503, 1591,
1697, 1732, 1737, 1924, 1926, 2096,
2368, 3749, 4316, 4672, 4803, 4824,
4842, 5019, 5366, 5488, 5665, 5748,
6066, 7330, 7353, 7427, 8641, 12402,
12993, 13070, 13076, 16963, 16965,
20073, 20807, 23677, 23700, 24102,
25466, 25730, 25731, 26353, 27644,
28126, 28132, 28136, 28644, 28849,
29279, 29384, 29636, 29740, 36839

\use_ii:nnn 26, 389, 934,
1504, 1505, 2353, 4314, 4670, 4800,
4821, 4839, 4973, 20322, 21830, 39338

\use_ii:nnnn
. 26, 594, 595, 1504, 1508, 8409

\use_ii:nnnnn 26, 1504, 1512
\use_ii:nnnnnn 26, 1504, 1517
\use_ii:nnnnnnn 26, 1504, 1523
\use_ii:nnnnnnnn 26, 1504, 1530
\use_ii:nnnnnnnnn 26, 1504, 1538
\use_ii_i:nn 27, 767,

1547, 1547, 14339, 14424, 18951, 19041
\use_iii:nnn 26, 1504, 1506,

1935, 1937, 1943, 2362, 2373, 4709,
4850, 5162, 20419, 20426, 21831, 23482

\use_iii:nnnn . 26, 594, 595, 1504,
1509, 8409, 8431, 8433, 8434, 39231

\use_iii:nnnnn 26, 1504, 1513
\use_iii:nnnnnn 26, 1504, 1518
\use_iii:nnnnnnn 26, 1504, 1524
\use_iii:nnnnnnnn 26, 1504, 1531
\use_iii:nnnnnnnnn . . . 26, 1504, 1539
\use_iv:nnnn 26,

594, 595, 1504, 1510, 8409, 8429, 25454
\use_iv:nnnnn 26, 1504, 1514
\use_iv:nnnnnn 26, 1504, 1519
\use_iv:nnnnnnn 26, 1504, 1525
\use_iv:nnnnnnnn 26, 1504, 1532
\use_iv:nnnnnnnnn 26, 1504, 1540
\use_ix:nnnnnnnnn 26, 1504, 1545
\use_none:n 27,

370, 461, 463, 623, 660, 714, 786,

821, 874, 882, 885, 923, 925, 927,
929, 935, 937, 941, 942, 945, 948,
1062, 1063, 1066, 1436, 688, 694,
1555, 1555, 1663, 1715, 1716, 1735,
1736, 1855, 1862, 1899, 1906, 2123,
2313, 2949, 2950, 3745, 3794, 3904,
3939, 4090, 4111, 5533, 5828, 5957,
8634, 8639, 8997, 9395, 9589, 9806,
9810, 10060, 10731, 10786, 10842,
11120, 11178, 11540, 11543, 12436,
12525, 12615, 12706, 12925, 12936,
12997, 13032, 13036, 13061, 13238,
13247, 14275, 14298, 14314, 14326,
14359, 14494, 14526, 14780, 14790,
14828, 14890, 15054, 15138, 15243,
15415, 16414, 16429, 16553, 16569,
16653, 16712, 17165, 17396, 17397,
18099, 18105, 18450, 18453, 18523,
18568, 18671, 18760, 18787, 18826,
19758, 20102, 20124, 20184, 20191,
20193, 20197, 20199, 20374, 20432,
20442, 20449, 20454, 20460, 20580,
20589, 20593, 20596, 20600, 20642,
20737, 20833, 20844, 21920, 22602,
23260, 23275, 23471, 23620, 23624,
23628, 23632, 24917, 25166, 25173,
25190, 25209, 25232, 25300, 25341,
25466, 25481, 25502, 25503, 25792,
25793, 26327, 26330, 27311, 29003,
29288, 29798, 31246, 31482, 31530,
34381, 34436, 37432, 38359, 39198,
39201, 39299, 39300, 39319, 39358

\use_none:nn 27, 711, 716, 832, 838,
1486, 1555, 1556, 1645, 1653, 3048,
6356, 7065, 8387, 10787, 10831,
12510, 12696, 12860, 13027, 14383,
16943, 16972, 17187, 18492, 18801,
18948, 19037, 20263, 20681, 23536,
23619, 23623, 23627, 23631, 28998,
29647, 29826, 30048, 34382, 39296

\use_none:nnn . . 27, 725, 931, 939,
1555, 1557, 2830, 2845, 3970, 7543,
7820, 10788, 12984, 16542, 20252,
20501, 20503, 22067, 22076, 23618,
23622, 23626, 23630, 24259, 34428,
37648, 39213, 39222, 39241, 39832

\use_none:nnnn 27,
925, 927, 1555, 1558, 1869, 10789,
20042, 20129, 21099, 34384, 37955

\use_none:nnnnn
. 27, 385, 661, 1046, 1555,
1559, 10790, 10800, 23750, 23784,
23810, 23818, 25916, 39246, 39252

\use_none:nnnnnn

Index 1683

. . 27, 1555, 1560, 1782, 10791, 13428
\use_none:nnnnnnn

27, 1046, 1555, 1561, 23752, 23786,
23812, 23820, 24143, 26367, 39305

\use_none:nnnnnnnn
. 27, 389, 1555, 1562, 1686, 2911

\use_none:nnnnnnnnn . . 27, 1555, 1563
\use_none_delimit_by_q_nil:w . . .

. 27, 1548, 1548
\use_none_delimit_by_q_recursion_-

stop:w 27,
153, 387, 1548, 1550, 16406, 16421

\use_none_delimit_by_q_stop:w . . .
. 27, 786, 823, 1548, 1549

\use_none_delimit_by_s_stop:w . . .
. 155, 16702, 16702

\use_v:nnnnn 26, 1504, 1515
\use_v:nnnnnn 26, 1504, 1520
\use_v:nnnnnnn 26, 1504, 1526
\use_v:nnnnnnnn 26, 1504, 1533
\use_v:nnnnnnnnn 26, 1504, 1541
\use_vi:nnnnnn 26, 1504, 1521
\use_vi:nnnnnnn 26, 1504, 1527
\use_vi:nnnnnnnn 26, 1504, 1534
\use_vi:nnnnnnnnn 26, 1504, 1542
\use_vii:nnnnnnn 26, 1504, 1528
\use_vii:nnnnnnnn 26, 1504, 1535
\use_vii:nnnnnnnnn . . . 26, 1504, 1543
\use_viii:nnnnnnnn . . . 26, 1504, 1536
\use_viii:nnnnnnnnn . . 26, 1504, 1544

\useboxresource 954
\usefont . 34384
\useimageresource 955
\Uskewed . 1122
\Uskewedwithdelims 1123
\Ustack . 1124
\Ustartdisplaymath 1125
\Ustartmath 1126
\Ustopdisplaymath 1127
\Ustopmath 1128
\Usubscript 1129
\Usuperscript 1130
\Uunderdelimiter 1131
\Uvextensible 1132

V
\v 32178, 33818, 34497, 34518,

34604, 34605, 34606, 34607, 34616,
34617, 34650, 34651, 34658, 34659,
34670, 34671, 34678, 34679, 34682,
34683, 34705, 34706, 34707, 34708,
34709, 34710, 34711, 34712, 34713,
34714, 34715, 34716, 34717, 34718,
34719, 34722, 34723, 34732, 34733

\vadjust . 450
\valign . 451
value commands:

.value_forbidden:n 250, 22328

.value_required:n 250, 22328
\variablefam 926
\vbadness . 452
\vbox . 1437, 453
vbox commands:

\vbox:n 308, 313, 34977, 34977
\vbox_gset:Nn

313, 34991, 34996, 35002, 35662, 39705
\vbox_gset:Nw

313, 35027, 35033, 35040, 35737, 39708
\vbox_gset_end:

. 313, 35027, 35047, 35739
\vbox_gset_split_to_ht:NNn

. . . . 314, 35066, 35069, 35074, 39710
\vbox_gset_to_ht:Nnn

. . . . 313, 35015, 35020, 35026, 39707
\vbox_gset_to_ht:Nnw

. . . . 314, 35048, 35054, 35061, 39709
\vbox_gset_top:Nn

. . . . 313, 35003, 35008, 35014, 39706
\vbox_set:Nn

313, 34991, 34991, 35001, 35656, 39624
\vbox_set:Nw

313, 35027, 35027, 35039, 35730, 39627
\vbox_set_end:

313, 314, 35027, 35041, 35047, 35732
\vbox_set_split_to_ht:NNn

. . . . 314, 35066, 35066, 35068, 39629
\vbox_set_to_ht:Nnn

313, 314, 35015, 35015, 35025, 39626
\vbox_set_to_ht:Nnw

. . . . 314, 35048, 35048, 35060, 39628
\vbox_set_top:Nn 313, 35003,

35003, 35013, 35676, 35753, 39625
\vbox_to_ht:nn 313, 34981, 34981
\vbox_to_zero:n . . . 313, 34981, 34986
\vbox_top:n 313, 34977, 34979
\vbox_unpack:N

314, 35062, 35062, 35064, 35676, 35753
\vbox_unpack_drop:N

. 315, 35062, 35063, 35065
\vcenter . 454
vcoffin commands:

\vcoffin_gset:Nnn
. 321, 35653, 35659, 35664

\vcoffin_gset:Nnw
. 321, 35728, 35735, 35741

\vcoffin_gset_end:
. 321, 35728, 35738, 35769

Index 1684

\vcoffin_set:Nnn
. 321, 35653, 35653, 35658

\vcoffin_set:Nnw
. 321, 35728, 35728, 35734

\vcoffin_set_end:
. 321, 35728, 35731, 35768

\vfi . 1198
\vfil . 455
\vfill . 456
\vfilneg . 457
\vfuzz . 458
\voffset . 459
\vpack . 927
\vrule . 460
\vsize . 461
\vskip . 462
\vsplit . 463
\vss . 464
\vtop . 465

W
\wd . 466
\widowpenalties 538
\widowpenalty 467
\wordboundary 928
\write . 68, 468

X
\xdef . 469
\XeTeXcharclass 705
\XeTeXcharglyph 706
\XeTeXcountfeatures 707
\XeTeXcountglyphs 708
\XeTeXcountselectors 709
\XeTeXcountvariations 710
\XeTeXdashbreakstate 712
\XeTeXdefaultencoding 711
\XeTeXfeaturecode 713
\XeTeXfeaturename 714
\XeTeXfindfeaturebyname 715
\XeTeXfindselectorbyname 717
\XeTeXfindvariationbyname 719
\XeTeXfirstfontchar 721
\XeTeXfonttype 722
\XeTeXgenerateactualtext 723
\XeTeXglyph . 725
\XeTeXglyphbounds 726

\XeTeXglyphindex 727
\XeTeXglyphname 728
\XeTeXhyphenatablelength 766
\XeTeXinputencoding 729
\XeTeXinputnormalization 730
\XeTeXinterchartokenstate 732
\XeTeXinterchartoks 734
\XeTeXinterwordspaceshaping 764
\XeTeXisdefaultselector 735
\XeTeXisexclusivefeature 737
\XeTeXlastfontchar 739
\XeTeXlinebreaklocale 741
\XeTeXlinebreakpenalty 742
\XeTeXlinebreakskip 740
\XeTeXOTcountfeatures 743
\XeTeXOTcountlanguages 744
\XeTeXOTcountscripts 745
\XeTeXOTfeaturetag 746
\XeTeXOTlanguagetag 747
\XeTeXOTscripttag 748
\XeTeXpdffile 749
\XeTeXpdfpagecount 750
\XeTeXpicfile 751
\XeTeXprotrudechars 778
\XeTeXrevision 752
\XeTeXselectorcode 763
\XeTeXselectorname 753
\XeTeXtracingfonts 754
\XeTeXupwardsmode 755
\XeTeXuseglyphmetrics 756
\XeTeXvariation 757
\XeTeXvariationdefault 758
\XeTeXvariationmax 759
\XeTeXvariationmin 760
\XeTeXvariationname 761
\XeTeXversion 762
\xkanjiskip 1194
\xleaders . 470
\xspaceskip . 471
\xspcode . 1195
\xtoksapp . 929
\xtokspre . 930

Y
\ybaselineshift 1196
\year 472, 1299, 9012
\yoko . 1197

	Contents
	I Introduction
	1 Introduction to expl3 and this document
	1.1 Naming functions and variables
	1.1.1 Scratch variables
	1.1.2 Terminological inexactitude

	1.2 Documentation conventions
	1.3 Formal language conventions which apply generally
	1.4 TeX concepts not supported by LaTeX3

	II Bootstrapping
	2 The l3bootstrap module: Bootstrap code
	2.1 Using the LaTeX3 modules

	3 The l3names module: Namespace for primitives
	3.1 Setting up the LaTeX3 programming language

	III Programming Flow
	4 The l3basics module: Basic definitions
	4.1 No operation functions
	4.2 Grouping material
	4.3 Control sequences and functions
	4.3.1 Defining functions
	4.3.2 Defining new functions using parameter text
	4.3.3 Defining new functions using the signature
	4.3.4 Copying control sequences
	4.3.5 Deleting control sequences
	4.3.6 Showing control sequences
	4.3.7 Converting to and from control sequences

	4.4 Analysing control sequences
	4.5 Using or removing tokens and arguments
	4.5.1 Selecting tokens from delimited arguments

	4.6 Predicates and conditionals
	4.6.1 Tests on control sequences
	4.6.2 Primitive conditionals

	4.7 Starting a paragraph
	4.8 Debugging support

	5 The l3expan module: Argument expansion
	5.1 Defining new variants
	5.2 Methods for defining variants
	5.3 Introducing the variants
	5.4 Manipulating the first argument
	5.5 Manipulating two arguments
	5.6 Manipulating three arguments
	5.7 Unbraced expansion
	5.8 Preventing expansion
	5.9 Controlled expansion
	5.10 Internal functions

	6 The l3sort module: Sorting functions
	6.1 Controlling sorting

	7 The l3tl-analysis module: Analysing token lists
	8 The l3regex module: Regular expressions in TeX
	8.1 Syntax of regular expressions
	8.1.1 Regular expression examples
	8.1.2 Characters in regular expressions
	8.1.3 Characters classes
	8.1.4 Structure: alternatives, groups, repetitions
	8.1.5 Matching exact tokens
	8.1.6 Miscellaneous

	8.2 Syntax of the replacement text
	8.3 Pre-compiling regular expressions
	8.4 Matching
	8.5 Submatch extraction
	8.6 Replacement
	8.7 Scratch regular expressions
	8.8 Bugs, misfeatures, future work, and other possibilities

	9 The l3prg module: Control structures
	9.1 Defining a set of conditional functions
	9.2 The boolean data type
	9.2.1 Constant and scratch booleans

	9.3 Boolean expressions
	9.4 Logical loops
	9.5 Producing multiple copies
	9.6 Detecting TeX's mode
	9.7 Primitive conditionals
	9.8 Nestable recursions and mappings
	9.8.1 Simple mappings

	9.9 Internal programming functions

	10 The l3sys module: System/runtime functions
	10.1 The name of the job
	10.2 Date and time
	10.3 Engine
	10.4 Output format
	10.5 Platform
	10.6 Random numbers
	10.7 Access to the shell
	10.8 System queries
	10.9 Loading configuration data
	10.9.1 Final settings

	11 The l3msg module: Messages
	11.1 Creating new messages
	11.2 Customizable information for message modules
	11.3 Contextual information for messages
	11.4 Issuing messages
	11.4.1 Messages for showing material
	11.4.2 Expandable error messages

	11.5 Redirecting messages

	12 The l3file module: File and I/O operations
	12.1 Input–output stream management
	12.1.1 Reading from files
	12.1.2 Reading from the terminal
	12.1.3 Writing to files
	12.1.4 Wrapping lines in output
	12.1.5 Constant input–output streams, and variables
	12.1.6 Primitive conditionals

	12.2 File operations
	12.2.1 Basic file operations
	12.2.2 Information about files and file contents
	12.2.3 Accessing file contents

	13 The l3luatex module: LuaTeX-specific functions
	13.1 Breaking out to Lua
	13.2 Lua interfaces

	14 The l3legacy module: Interfaces to legacy concepts

	IV Data types
	15 The l3tl module: Token lists
	15.1 Creating and initialising token list variables
	15.2 Adding data to token list variables
	15.3 Token list conditionals
	15.3.1 Testing the first token

	15.4 Working with token lists as a whole
	15.4.1 Using token lists
	15.4.2 Counting and reversing token lists
	15.4.3 Viewing token lists

	15.5 Manipulating items in token lists
	15.5.1 Mapping over token lists
	15.5.2 Head and tail of token lists
	15.5.3 Items and ranges in token lists
	15.5.4 Sorting token lists

	15.6 Manipulating tokens in token lists
	15.6.1 Replacing tokens
	15.6.2 Reassigning category codes

	15.7 Constant token lists
	15.8 Scratch token lists

	16 The l3tl-build module: Piecewise tl constructions
	16.1 Constructing <tl~var> by accumulation

	17 The l3str module: Strings
	17.1 Creating and initialising string variables
	17.2 Adding data to string variables
	17.3 String conditionals
	17.4 Mapping over strings
	17.5 Working with the content of strings
	17.6 Modifying string variables
	17.7 String manipulation
	17.8 Viewing strings
	17.9 Constant strings
	17.10 Scratch strings

	18 The l3str-convert module: String encoding conversions
	18.1 Encoding and escaping schemes
	18.2 Conversion functions
	18.3 Conversion by expansion (for PDF contexts)
	18.4 Possibilities, and things to do

	19 The l3quark module: Quarks and scan marks
	19.1 Quarks
	19.2 Defining quarks
	19.3 Quark tests
	19.4 Recursion
	19.4.1 An example of recursion with quarks

	19.5 Scan marks

	20 The l3seq module: Sequences and stacks
	20.1 Creating and initialising sequences
	20.2 Appending data to sequences
	20.3 Recovering items from sequences
	20.4 Recovering values from sequences with branching
	20.5 Modifying sequences
	20.6 Sequence conditionals
	20.7 Mapping over sequences
	20.8 Using the content of sequences directly
	20.9 Sequences as stacks
	20.10 Sequences as sets
	20.11 Constant and scratch sequences
	20.12 Viewing sequences

	21 The l3int module: Integers
	21.1 Integer expressions
	21.2 Creating and initialising integers
	21.3 Setting and incrementing integers
	21.4 Using integers
	21.5 Integer expression conditionals
	21.6 Integer expression loops
	21.7 Integer step functions
	21.8 Formatting integers
	21.9 Converting from other formats to integers
	21.10 Random integers
	21.11 Viewing integers
	21.12 Constant integers
	21.13 Scratch integers
	21.14 Direct number expansion
	21.15 Primitive conditionals

	22 The l3flag module: Expandable flags
	22.1 Setting up flags
	22.2 Expandable flag commands

	23 The l3clist module: Comma separated lists
	23.1 Creating and initialising comma lists
	23.2 Adding data to comma lists
	23.3 Modifying comma lists
	23.4 Comma list conditionals
	23.5 Mapping over comma lists
	23.6 Using the content of comma lists directly
	23.7 Comma lists as stacks
	23.8 Using a single item
	23.9 Viewing comma lists
	23.10 Constant and scratch comma lists

	24 The l3token module: Token manipulation
	24.1 Creating character tokens
	24.2 Manipulating and interrogating character tokens
	24.3 Generic tokens
	24.4 Converting tokens
	24.5 Token conditionals
	24.6 Peeking ahead at the next token
	24.7 Description of all possible tokens

	25 The l3prop module: Property lists
	25.1 Creating and initialising property lists
	25.2 Adding and updating property list entries
	25.3 Recovering values from property lists
	25.4 Modifying property lists
	25.5 Property list conditionals
	25.6 Recovering values from property lists with branching
	25.7 Mapping over property lists
	25.8 Viewing property lists
	25.9 Scratch property lists
	25.10 Constants

	26 The l3skip module: Dimensions and skips
	26.1 Creating and initialising dim variables
	26.2 Setting dim variables
	26.3 Utilities for dimension calculations
	26.4 Dimension expression conditionals
	26.5 Dimension expression loops
	26.6 Dimension step functions
	26.7 Using dim expressions and variables
	26.8 Viewing dim variables
	26.9 Constant dimensions
	26.10 Scratch dimensions
	26.11 Creating and initialising skip variables
	26.12 Setting skip variables
	26.13 Skip expression conditionals
	26.14 Using skip expressions and variables
	26.15 Viewing skip variables
	26.16 Constant skips
	26.17 Scratch skips
	26.18 Inserting skips into the output
	26.19 Creating and initialising muskip variables
	26.20 Setting muskip variables
	26.21 Using muskip expressions and variables
	26.22 Viewing muskip variables
	26.23 Constant muskips
	26.24 Scratch muskips
	26.25 Primitive conditional

	27 The l3keys module: Key–value interfaces
	27.1 Creating keys
	27.2 Sub-dividing keys
	27.3 Choice and multiple choice keys
	27.4 Key usage scope
	27.5 Setting keys
	27.6 Handling of unknown keys
	27.7 Selective key setting
	27.8 Precompiling keys
	27.9 Utility functions for keys
	27.10 Low-level interface for parsing key–val lists

	28 The l3intarray module: Fast global integer arrays
	28.1 Creating and initialising integer array variables
	28.2 Adding data to integer arrays
	28.3 Counting entries in integer arrays
	28.4 Using a single entry
	28.5 Integer array conditional
	28.6 Viewing integer arrays
	28.7 Implementation notes

	29 The l3fp module: Floating points
	29.1 Creating and initialising floating point variables
	29.2 Setting floating point variables
	29.3 Using floating points
	29.4 Floating point conditionals
	29.5 Floating point expression loops
	29.6 Symbolic expressions
	29.7 User-defined functions
	29.8 Some useful constants, and scratch variables
	29.9 Scratch variables
	29.10 Floating point exceptions
	29.11 Viewing floating points
	29.12 Floating point expressions
	29.12.1 Input of floating point numbers
	29.12.2 Precedence of operators
	29.12.3 Operations

	29.13 Disclaimer and roadmap

	30 The l3fparray module: Fast global floating point arrays
	30.1 Creating and initialising floating point array variables
	30.2 Adding data to floating point arrays
	30.3 Counting entries in floating point arrays
	30.4 Using a single entry
	30.5 Floating point array conditional

	31 The l3bitset module: Bitsets
	31.1 Creating bitsets
	31.2 Setting and unsetting bits
	31.3 Using bitsets

	32 The l3cctab module: Category code tables
	32.1 Creating and initialising category code tables
	32.2 Using category code tables
	32.3 Category code table conditionals
	32.4 Constant and scratch category code tables

	V Text manipulation
	33 The l3unicode module: Unicode support functions
	34 The l3text module: Text processing
	34.1 Expanding text
	34.2 Case changing
	34.3 Removing formatting from text
	34.4 Control variables
	34.5 Mapping to graphemes

	VI Typesetting
	35 The l3box module: Boxes
	35.1 Creating and initialising boxes
	35.2 Using boxes
	35.3 Measuring and setting box dimensions
	35.4 Box conditionals
	35.5 The last box inserted
	35.6 Constant boxes
	35.7 Scratch boxes
	35.8 Viewing box contents
	35.9 Boxes and color
	35.10 Horizontal mode boxes
	35.11 Vertical mode boxes
	35.12 Using boxes efficiently
	35.13 Affine transformations
	35.14 Viewing part of a box
	35.15 Primitive box conditionals

	36 The l3coffins module: Coffin code layer
	36.1 Creating and initialising coffins
	36.2 Setting coffin content and poles
	36.3 Coffin affine transformations
	36.4 Joining and using coffins
	36.5 Measuring coffins
	36.6 Coffin diagnostics
	36.7 Constants and variables

	37 The l3color module: Color support
	37.1 Color in boxes
	37.2 Color models
	37.3 Color expressions
	37.4 Named colors
	37.5 Selecting colors
	37.6 Colors for fills and strokes
	37.6.1 Coloring math mode material

	37.7 Multiple color models
	37.8 Exporting color specifications
	37.9 Creating new color models
	37.9.1 Color profiles

	38 The l3pdf module: Core PDF support
	38.1 Objects
	38.1.1 Named objects
	38.1.2 Indexed objects
	38.1.3 General functions

	38.2 Version
	38.3 Page (media) size
	38.4 Compression
	38.5 Destinations

	VII Implementation
	39 l3bootstrap implementation
	39.1 The \pdfstrcmp primitive in XeTeX
	39.2 Loading support Lua code
	39.3 Engine requirements
	39.4 The LaTeX3 code environment

	40 l3names implementation
	41 l3kernel-functions: kernel-reserved functions
	41.1 Internal l3debug kernel functions
	41.2 Internal kernel functions
	41.3 Kernel backend functions

	42 l3basics implementation
	42.1 Renaming some TeX primitives (again)
	42.2 Defining some constants
	42.3 Defining functions
	42.4 Selecting tokens
	42.5 Gobbling tokens from input
	42.6 Debugging and patching later definitions
	42.7 Conditional processing and definitions
	42.8 Dissecting a control sequence
	42.9 Exist or free
	42.10 Preliminaries for new functions
	42.11 Defining new functions
	42.12 Copying definitions
	42.13 Undefining functions
	42.14 Generating parameter text from argument count
	42.15 Defining functions from a given number of arguments
	42.16 Using the signature to define functions
	42.17 Checking control sequence equality
	42.18 Diagnostic functions
	42.19 Decomposing a macro definition
	42.20 Doing nothing functions
	42.21 Breaking out of mapping functions
	42.22 Starting a paragraph

	43 l3expan implementation
	43.1 General expansion
	43.2 Hand-tuned definitions
	43.3 Last-unbraced versions
	43.4 Preventing expansion
	43.5 Controlled expansion
	43.6 Defining function variants
	43.7 Definitions with the automated technique
	43.8 Held-over variant generation

	44 l3sort implementation
	44.1 Variables
	44.2 Finding available \toks registers
	44.3 Protected user commands
	44.4 Merge sort
	44.5 Expandable sorting
	44.6 Messages

	45 l3tl-analysis implementation
	45.1 Internal functions
	45.2 Internal format
	45.3 Variables and helper functions
	45.4 Plan of attack
	45.5 Disabling active characters
	45.6 First pass
	45.7 Second pass
	45.8 Mapping through the analysis
	45.9 Showing the results
	45.10 Peeking ahead
	45.11 Messages

	46 l3regex implementation
	46.1 Plan of attack
	46.2 Helpers
	46.2.1 Constants and variables
	46.2.2 Testing characters
	46.2.3 Internal auxiliaries
	46.2.4 Character property tests
	46.2.5 Simple character escape

	46.3 Compiling
	46.3.1 Variables used when compiling
	46.3.2 Generic helpers used when compiling
	46.3.3 Mode
	46.3.4 Framework
	46.3.5 Quantifiers
	46.3.6 Raw characters
	46.3.7 Character properties
	46.3.8 Anchoring and simple assertions
	46.3.9 Character classes
	46.3.10 Groups and alternations
	46.3.11 Catcodes and csnames
	46.3.12 Raw token lists with \u
	46.3.13 Other
	46.3.14 Showing regexes

	46.4 Building
	46.4.1 Variables used while building
	46.4.2 Framework
	46.4.3 Helpers for building an nfa
	46.4.4 Building classes
	46.4.5 Building groups
	46.4.6 Others

	46.5 Matching
	46.5.1 Variables used when matching
	46.5.2 Matching: framework
	46.5.3 Using states of the nfa
	46.5.4 Actions when matching

	46.6 Replacement
	46.6.1 Variables and helpers used in replacement
	46.6.2 Query and brace balance
	46.6.3 Framework
	46.6.4 Submatches
	46.6.5 Csnames in replacement
	46.6.6 Characters in replacement
	46.6.7 An error

	46.7 User functions
	46.7.1 Variables and helpers for user functions
	46.7.2 Matching
	46.7.3 Extracting submatches
	46.7.4 Replacement
	46.7.5 Peeking ahead

	46.8 Messages
	46.9 Code for tracing

	47 l3prg implementation
	47.1 Primitive conditionals
	47.2 Defining a set of conditional functions
	47.3 The boolean data type
	47.4 Internal auxiliaries
	47.5 Boolean expressions
	47.6 Logical loops
	47.7 Producing multiple copies
	47.8 Detecting TeX's mode
	47.9 Internal programming functions

	48 l3sys implementation
	48.1 Kernel code
	48.1.1 Detecting the engine
	48.1.2 Platform
	48.1.3 Configurations
	48.1.4 Access to the shell

	48.2 Dynamic (every job) code
	48.2.1 The name of the job
	48.2.2 Time and date
	48.2.3 Random numbers
	48.2.4 Access to the shell

	48.3 System queries
	48.3.1 Held over from l3file

	48.4 Last-minute code
	48.4.1 Detecting the output
	48.4.2 Configurations

	49 l3msg implementation
	49.1 Internal auxiliaries
	49.2 Creating messages
	49.3 Messages: support functions and text
	49.4 Showing messages: low level mechanism
	49.5 Displaying messages
	49.6 Kernel-specific functions
	49.7 Internal messages
	49.8 Expandable errors
	49.9 Message formatting

	50 l3file implementation
	50.1 Input operations
	50.1.1 Variables and constants
	50.1.2 Stream management
	50.1.3 Reading input

	50.2 Output operations
	50.2.1 Variables and constants
	50.2.2 Internal auxiliaries

	50.3 Stream management
	50.3.1 Deferred writing
	50.3.2 Immediate writing
	50.3.3 Special characters for writing
	50.3.4 Hard-wrapping lines to a character count

	50.4 File operations
	50.4.1 Internal auxiliaries

	50.5 GetIdInfo
	50.6 Checking the version of kernel dependencies
	50.7 Messages
	50.8 Functions delayed from earlier modules

	51 l3luatex implementation
	51.1 Breaking out to Lua
	51.2 Messages
	51.3 Lua functions for internal use
	51.4 Preserving iniTeX Lua data for runs

	52 l3legacy implementation
	53 l3tl implementation
	53.1 Functions
	53.2 Constant token lists
	53.3 Adding to token list variables
	53.4 Internal quarks and quark-query functions
	53.5 Reassigning token list category codes
	53.6 Modifying token list variables
	53.7 Token list conditionals
	53.8 Mapping over token lists
	53.9 Using token lists
	53.10 Working with the contents of token lists
	53.11 The first token from a token list
	53.12 Token by token changes
	53.13 Using a single item
	53.14 Viewing token lists
	53.15 Internal scan marks
	53.16 Scratch token lists

	54 l3tl-build implementation
	55 l3str implementation
	55.1 Internal auxiliaries
	55.2 Creating and setting string variables
	55.3 Modifying string variables
	55.4 String comparisons
	55.5 Mapping over strings
	55.6 Accessing specific characters in a string
	55.7 Counting characters
	55.8 The first character in a string
	55.9 String manipulation
	55.10 Viewing strings

	56 l3str-convert implementation
	56.1 Helpers
	56.1.1 Variables and constants

	56.2 String conditionals
	56.3 Conversions
	56.3.1 Producing one byte or character
	56.3.2 Mapping functions for conversions
	56.3.3 Error-reporting during conversion
	56.3.4 Framework for conversions
	56.3.5 Byte unescape and escape
	56.3.6 Native strings
	56.3.7 clist
	56.3.8 8-bit encodings

	56.4 Messages
	56.5 Escaping definitions
	56.5.1 Unescape methods
	56.5.2 Escape methods

	56.6 Encoding definitions
	56.6.1 utf-8 support
	56.6.2 utf-16 support
	56.6.3 utf-32 support

	56.7 PDF names and strings by expansion
	56.7.1 iso 8859 support

	57 l3quark implementation
	57.1 Quarks
	57.2 Scan marks

	58 l3seq implementation
	58.1 Allocation and initialisation
	58.2 Appending data to either end
	58.3 Modifying sequences
	58.4 Sequence conditionals
	58.5 Recovering data from sequences
	58.6 Mapping over sequences
	58.7 Using sequences
	58.8 Sequence stacks
	58.9 Viewing sequences
	58.10 Scratch sequences

	59 l3int implementation
	59.1 Integer expressions
	59.2 Creating and initialising integers
	59.3 Setting and incrementing integers
	59.4 Using integers
	59.5 Integer expression conditionals
	59.6 Integer expression loops
	59.7 Integer step functions
	59.8 Formatting integers
	59.9 Converting from other formats to integers
	59.10 Viewing integer
	59.11 Random integers
	59.12 Constant integers
	59.13 Scratch integers
	59.14 Integers for earlier modules

	60 l3flag implementation
	60.1 Protected flag commands
	60.2 Expandable flag commands
	60.3 Old n-type flag commands

	61 l3clist implementation
	61.1 Removing spaces around items
	61.2 Allocation and initialisation
	61.3 Adding data to comma lists
	61.4 Comma lists as stacks
	61.5 Modifying comma lists
	61.6 Comma list conditionals
	61.7 Mapping over comma lists
	61.8 Using comma lists
	61.9 Using a single item
	61.10 Viewing comma lists
	61.11 Scratch comma lists

	62 l3token implementation
	62.1 Internal auxiliaries
	62.2 Manipulating and interrogating character tokens
	62.3 Creating character tokens
	62.4 Generic tokens
	62.5 Token conditionals
	62.6 Peeking ahead at the next token

	63 l3prop implementation
	63.1 Internal auxiliaries
	63.2 Structure of a property list
	63.3 Allocation and initialisation
	63.4 Accessing data in property lists
	63.5 Removing data from property lists
	63.6 Adding data to property lists
	63.7 Property list conditionals
	63.8 Mapping over property lists
	63.9 Uses of mapping over property lists
	63.10 Viewing property lists

	64 l3skip implementation
	64.1 Length primitives renamed
	64.2 Internal auxiliaries
	64.3 Creating and initialising dim variables
	64.4 Setting dim variables
	64.5 Utilities for dimension calculations
	64.6 Dimension expression conditionals
	64.7 Dimension expression loops
	64.8 Dimension step functions
	64.9 Using dim expressions and variables
	64.10 Conversion of dim to other units
	64.11 Viewing dim variables
	64.12 Constant dimensions
	64.13 Scratch dimensions
	64.14 Creating and initialising skip variables
	64.15 Setting skip variables
	64.16 Skip expression conditionals
	64.17 Using skip expressions and variables
	64.18 Inserting skips into the output
	64.19 Viewing skip variables
	64.20 Constant skips
	64.21 Scratch skips
	64.22 Creating and initialising muskip variables
	64.23 Setting muskip variables
	64.24 Using muskip expressions and variables
	64.25 Viewing muskip variables
	64.26 Constant muskips
	64.27 Scratch muskips

	65 l3keys implementation
	65.1 Low-level interface
	65.2 Constants and variables
	65.2.1 Internal auxiliaries

	65.3 The key defining mechanism
	65.4 Turning properties into actions
	65.5 Creating key properties
	65.6 Setting keys
	65.7 Utilities
	65.8 Messages

	66 l3intarray implementation
	66.1 Lua implementation
	66.1.1 Allocating arrays
	66.1.2 Array items
	66.1.3 Working with contents of integer arrays

	66.2 Font dimension based implementation
	66.2.1 Allocating arrays
	66.2.2 Array items
	66.2.3 Working with contents of integer arrays

	66.3 Common parts

	67 l3fp implementation
	68 l3fp-aux implementation
	68.1 Access to primitives
	68.2 Internal representation
	68.3 Using arguments and semicolons
	68.4 Constants, and structure of floating points
	68.5 Overflow, underflow, and exact zero
	68.6 Expanding after a floating point number
	68.7 Other floating point types
	68.8 Packing digits
	68.9 Decimate (dividing by a power of 10)
	68.10 Functions for use within primitive conditional branches
	68.11 Integer floating points
	68.12 Small integer floating points
	68.13 Fast string comparison
	68.14 Name of a function from its l3fp-parse name
	68.15 Messages

	69 l3fp-traps implementation
	69.1 Flags
	69.2 Traps
	69.3 Errors
	69.4 Messages

	70 l3fp-round implementation
	70.1 Rounding tools
	70.2 The round function

	71 l3fp-parse implementation
	71.1 Work plan
	71.1.1 Storing results
	71.1.2 Precedence and infix operators
	71.1.3 Prefix operators, parentheses, and functions
	71.1.4 Numbers and reading tokens one by one

	71.2 Main auxiliary functions
	71.3 Helpers
	71.4 Parsing one number
	71.4.1 Numbers: trimming leading zeros
	71.4.2 Number: small significand
	71.4.3 Number: large significand
	71.4.4 Number: beyond 16 digits, rounding
	71.4.5 Number: finding the exponent

	71.5 Constants, functions and prefix operators
	71.5.1 Prefix operators
	71.5.2 Constants
	71.5.3 Functions

	71.6 Main functions
	71.7 Infix operators
	71.7.1 Closing parentheses and commas
	71.7.2 Usual infix operators
	71.7.3 Juxtaposition
	71.7.4 Multi-character cases
	71.7.5 Ternary operator
	71.7.6 Comparisons

	71.8 Tools for functions
	71.9 Messages

	72 l3fp-assign implementation
	72.1 Assigning values
	72.2 Updating values
	72.3 Showing values
	72.4 Some useful constants and scratch variables

	73 l3fp-logic implementation
	73.1 Syntax of internal functions
	73.2 Tests
	73.3 Comparison
	73.4 Floating point expression loops
	73.5 Extrema
	73.6 Boolean operations
	73.7 Ternary operator

	74 l3fp-basics implementation
	74.1 Addition and subtraction
	74.1.1 Sign, exponent, and special numbers
	74.1.2 Absolute addition
	74.1.3 Absolute subtraction

	74.2 Multiplication
	74.2.1 Signs, and special numbers
	74.2.2 Absolute multiplication

	74.3 Division
	74.3.1 Signs, and special numbers
	74.3.2 Work plan
	74.3.3 Implementing the significand division

	74.4 Square root
	74.5 About the sign and exponent
	74.6 Operations on tuples

	75 l3fp-extended implementation
	75.1 Description of fixed point numbers
	75.2 Helpers for numbers with extended precision
	75.3 Multiplying a fixed point number by a short one
	75.4 Dividing a fixed point number by a small integer
	75.5 Adding and subtracting fixed points
	75.6 Multiplying fixed points
	75.7 Combining product and sum of fixed points
	75.8 Extended-precision floating point numbers
	75.9 Dividing extended-precision numbers
	75.10 Inverse square root of extended precision numbers
	75.11 Converting from fixed point to floating point

	76 l3fp-expo implementation
	76.1 Logarithm
	76.1.1 Work plan
	76.1.2 Some constants
	76.1.3 Sign, exponent, and special numbers
	76.1.4 Absolute ln

	76.2 Exponential
	76.2.1 Sign, exponent, and special numbers

	76.3 Power
	76.4 Factorial

	77 l3fp-trig implementation
	77.1 Direct trigonometric functions
	77.1.1 Filtering special cases
	77.1.2 Distinguishing small and large arguments
	77.1.3 Small arguments
	77.1.4 Argument reduction in degrees
	77.1.5 Argument reduction in radians
	77.1.6 Computing the power series

	77.2 Inverse trigonometric functions
	77.2.1 Arctangent and arccotangent
	77.2.2 Arcsine and arccosine
	77.2.3 Arccosecant and arcsecant

	78 l3fp-convert implementation
	78.1 Dealing with tuples
	78.2 Trimming trailing zeros
	78.3 Scientific notation
	78.4 Decimal representation
	78.5 Token list representation
	78.6 Formatting
	78.7 Convert to dimension or integer
	78.8 Convert from a dimension
	78.9 Use and eval
	78.10 Convert an array of floating points to a comma list

	79 l3fp-random implementation
	79.1 Engine support
	79.2 Random floating point
	79.3 Random integer

	80 l3fp-types implementation
	80.1 Support for types
	80.2 Dispatch according to the type

	81 l3fp-symbolic implementation
	81.1 Misc
	81.2 Building blocks for expressions
	81.3 Expanding after a symbolic expression
	81.4 Applying infix operators to expressions
	81.5 Applying prefix functions to expressions
	81.6 Conversions
	81.7 Identifiers
	81.8 Declaring variables and assigning values
	81.9 Messages
	81.10 Road-map

	82 l3fp-functions implementation
	82.1 Declaring functions
	82.2 Defining functions by their expression

	83 l3fparray implementation
	83.1 Allocating arrays
	83.2 Array items

	84 l3bitset implementation
	84.1 Messages

	85 l3cctab implementation
	85.1 Variables
	85.2 Allocating category code tables
	85.3 Saving category code tables
	85.4 Using category code tables
	85.5 Category code table conditionals
	85.6 Constant category code tables
	85.7 Messages

	86 l3unicode implementation
	86.1 User functions
	86.2 Data loader

	87 l3text implementation
	87.1 Internal auxiliaries
	87.2 Utilities
	87.3 Codepoint utilities
	87.4 Configuration variables
	87.5 Expansion to formatted text

	88 l3text-case implementation
	88.1 Case changing

	89 l3text-map implementation
	89.1 Mapping to text

	90 l3text-purify implementation
	90.1 Purifying text
	90.2 Accent and letter-like data for purifying text

	91 l3box implementation
	91.1 Support code
	91.2 Creating and initialising boxes
	91.3 Measuring and setting box dimensions
	91.4 Using boxes
	91.5 Box conditionals
	91.6 The last box inserted
	91.7 Constant boxes
	91.8 Scratch boxes
	91.9 Viewing box contents
	91.10 Horizontal mode boxes
	91.11 Vertical mode boxes
	91.12 Affine transformations
	91.13 Viewing part of a box

	92 l3coffins implementation
	92.1 Coffins: data structures and general variables
	92.2 Basic coffin functions
	92.3 Measuring coffins
	92.4 Coffins: handle and pole management
	92.5 Coffins: calculation of pole intersections
	92.6 Affine transformations
	92.7 Aligning and typesetting of coffins
	92.8 Coffin diagnostics
	92.9 Messages

	93 l3color implementation
	93.1 Basics
	93.2 Predefined color names
	93.3 Setup
	93.4 Utility functions
	93.5 Model conversion
	93.6 Color expressions
	93.7 Selecting colors (and color models)
	93.8 Math color
	93.9 Fill and stroke color
	93.10 Defining named colors
	93.11 Exporting colors
	93.12 Additional color models
	93.13 Applying profiles
	93.14 Diagnostics
	93.15 Messages

	94 l3pdf implementation
	94.1 Compression
	94.2 Objects
	94.3 Version
	94.4 Page size
	94.5 Destinations
	94.6 PDF Page size (media box)

	95 l3deprecation implementation
	95.1 Patching definitions to deprecate
	95.2 Deprecated l3basics functions
	95.3 Deprecated l3file functions
	95.4 Deprecated l3keys functions
	95.5 Deprecated l3msg functions
	95.6 Deprecated l3pdf functions
	95.7 Deprecated l3prg functions
	95.8 Deprecated l3str functions
	95.9 Deprecated l3seq functions
	95.10 Deprecated l3sys functions
	95.11 Deprecated l3text functions
	95.12 Deprecated l3tl functions
	95.13 Deprecated l3token functions
	95.14 Deprecated l3prop functions

	96 l3debug implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

